1
|
Nazeer M, Shah N, Ullah S, Ikram M, Amirzada MI, Alamoudi AJ, Alshamrani M, Shah AJ. Toxicological profiling and diuretic potential of arbutin via aldosterone synthase gene inhibition. Life Sci 2025; 373:123661. [PMID: 40280300 DOI: 10.1016/j.lfs.2025.123661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 04/07/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
AIMS Arbutin (ARB), a natural polyphenol isolated from the bearberry plant Arctostaphylos uva-ursi, has been studied for its diverse pharmacological activities including anti-diabetic, cardioprotective and anti-inflammatory effects. This study aimed to evaluate arbutin's diuretic activity, focusing on its impact on aldosterone synthase gene expression and its toxicity profile. MATERIAL AND METHODS Acute toxicity was assessed using single doses ranging from 500 to 9000 mg/kg and sub-acute toxicity with doses of 375 and 750 mg/kg over 14 days. To evaluate acute diuretic activity, ARB was administered in three doses (25, 50 and 75 mg/kg i.p) alongside standard groups, furosemide (FUR) 10 mg/kg i.p and Spironolactone (SPIR) 25 mg/kg i.p. In sub-acute diuretic study, treatment was administered for seven days, followed by blood collection and adrenal dissection for gene expression analysis. KEY FINDINGS Acute toxicity studies revealed that ARB is well-tolerated up to 7000 mg/kg with no significant changes in organ and body weight. However, sub-acute studies showed minor changes in leukocyte count, alkaline phosphatase (ALP), alanine aminotransferase (ALT) and triglycerides (TGs) at high doses while histopathological evaluations revealed no severe organ damage. The diuretic index and electrolyte analysis confirmed the potential of ARB as diuretic and saluretic with reduced risk of hyperuricemia and hyperkalemia. Gene expression studies showed non-selective downregulation of aldosterone synthase gene (CYP11B2) and 11β-hydroxylase (CYP11B1). While the effects on 17α-hydroxylase (CYP17A1) were less pronounced than SPIR, indicating fewer possible anti-androgenic effects. SIGNIFICANCE Our findings suggest that ARB is a promising diuretic agent with a favorable safety profile.
Collapse
Affiliation(s)
- Maria Nazeer
- Pharmacogenetics Research Lab, Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Pakistan
| | - Nabi Shah
- Pharmacogenetics Research Lab, Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Pakistan.
| | - Saif Ullah
- Pharmacogenetics Research Lab, Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Pakistan
| | - Muhammad Ikram
- Immune Cell Molecular Pharmacology Lab, Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Pakistan.
| | - Muhammad Imran Amirzada
- Pharmacogenetics Research Lab, Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Pakistan.
| | - Abdulmohsin J Alamoudi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Meshal Alshamrani
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia.
| | - Abdul Jabbar Shah
- Pharmacogenetics Research Lab, Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Pakistan.
| |
Collapse
|
2
|
Umer H, Sharif A, Khan HM, Anjum SMM, Akhtar B, Ali S, Ali M, Hanif MA. Mitigation of Neuroinflammation and Oxidative Stress in Rotenone-Induced Parkinson Mouse Model through Liposomal Coenzyme-Q10 Intervention: A Comprehensive In-vivo Study. Inflammation 2025:10.1007/s10753-025-02237-0. [PMID: 39836283 DOI: 10.1007/s10753-025-02237-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Parkinson's disease (PD) stands as the sec most prevalent incapacitating neurodegenerative disorder characterized by deterioration of dopamine-producing neurons in the substantia nigra. Coenzyme Q10 (CoQ10) has garnered attention as a potential antioxidant, anti-inflammatory agent and enhancer of mitochondrial complex-I activity. This study aimed to examine and compare the effectiveness of liposomal and non-encapsulated CoQ10 in rotenone induced-PD mouse model over a 21-day treatment duration. 30 mice were divided into 5 equal groups: Group I (mice receiving normal saline), Group II (rotenone was administered to mice), Group III (standard CoQ10 was given to mice), Group IV (mice were treated with non-encapsulated CoQ10) and Group V (mice were treated with CoQ10 Liposomes). Motor performance, the preservation of dopaminergic neurons, levels of neuroinflammation, oxidative stress, neurotransmitter levels, RT-qPCR analysis of PD-linked genes and histopathology were evaluated. The Liposomal CoQ10 group exhibited superior outcomes in behavioral tests such as reduced anxiety in the open field test, enhanced balance and coordination in beam balance test and improved cognitive performance in Y-maze test. Liposomal Coenzyme Q10 displayed pronounced antioxidative effects, evidenced by a significant (p < 0.001) increase in superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) activities. In contrast, the non-encapsulated CoQ10 group showed a delayed response in mitigating the inflammation and oxidative stress. CoQ10 Liposomes demonstrated superior efficacy (p < 0.0001) in restoring dopamine and noradrenaline levels, reducing acetylcholinesterase activity, and downregulating Synuclein Alpha (SNCA) gene expression (0.722-fold change) compared to oral CoQ10, highlighting its potential in suppressing PD symptoms. The results of this study indicated that the liposomal CoQ10 effectively averted motor impairments, memory lapses, oxidative stress, as well as neuroinflammation triggered by rotenone.
Collapse
Affiliation(s)
- Hajira Umer
- Department of Pharmacology, Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Lahore, Pakistan
| | - Ali Sharif
- Department of Pharmacology, Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Lahore, Pakistan.
| | - Humaira Majeed Khan
- Department of Pharmacology, Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Lahore, Pakistan
| | | | - Bushra Akhtar
- Department of Pharmacy, University of Agriculture Faisalabad, Faisalabad, Pakistan.
| | - Sajid Ali
- Department of Chemistry - Ångström Laboratory, Physical Chemistry, Uppsala University, Uppsala, Sweden
| | - Muhammad Ali
- Department of Biochemistry, Faculty of Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Asif Hanif
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
3
|
Xaviera A, Saleem A, Akhtar MF, Alshammari A, Albekairi NA. Fumaric acid per se and in combination with methotrexate arrests inflammation via moderating inflammatory and oxidative stress biomarkers in arthritic rats. Immunopharmacol Immunotoxicol 2024; 46:793-804. [PMID: 39353866 DOI: 10.1080/08923973.2024.2405171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024]
Abstract
Objective: Fumaric acid is a dicarboxylic acid that belongs to the phenolic class enriched in fruits and vegetables that are traditionally used for the treatment of various ailments. The research was planned to find out the anti-inflammatory and anti-arthritic activities of fumaric acid using in-vitro and in-vivo assays. Moreover, safety study was also done. Materials and methods: The 0.1 ml complete Freund's adjuvant was injected in left hind paw in all Wistar rats except normal rats at day 1 to induced arthritis. The treatment with fumaric acid at 10, 20, 40, and fumaric acid 40 mg/kg together with methotrexate (MTX) was administered to immunized rats at 8th day via oral gavage and continued till 28th day though, MTX was administered as standard control. Results: The fumaric acid notably (p < 0.0001) lessened the paw edema and arthritic scoring, reinstated body and immune organ weight, and oxidation status in treated rats. Fumaric acid notably restored altered C-reactive protein, rheumatoid factor, liver function tests, ESR, WBCs, RBCs and Hb levels in treated rats. The fumaric acid in combination noticeably (p < 0.01-0.0001) suppressed the expression of TNF- α, IL-6, IL-1β, NF-kβ, and COX-2, and over expressed IL-4, and IL-10 in contrast to other treated groups. Fumaric acid had presented a dose-dependent antioxidant, anti-inflammatory and anti-arthritic activities while notable activity exhibited by fumaric acid in combination with MTX. The fumaric acid exhibited non-significant clinical signs of toxicity and mortality in acute toxicity study. The LD50 was more than 2000 mg/kg. Conclusion: Fumaric acid in combination can be used as disease-modifying anti-rheumatic drug but it will need extensive pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Anne Xaviera
- Department of Pharmacology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Norah A Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Mahnashi MH, Ayaz M, Ghufran M, Almazni IA, Alqahtani O, Alyami BA, Alqahtani YS, Khan HA, Sadiq A, Waqas M. Phytochemicals-based β-amyloid cleaving enzyme-1 and MAO-B inhibitors for the treatment of Alzheimer's disease: molecular simulations-based predictions. J Biomol Struct Dyn 2024; 42:8359-8371. [PMID: 37815007 DOI: 10.1080/07391102.2023.2265494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/01/2023] [Indexed: 10/11/2023]
Abstract
Alzheimer's disease (AD) is among the highly prevalent neurodegenerative disorder of the aging brain and is allied with cognitive and behavioral abnormalities. Unfortunately, there is very limited drug discovery for the effective management of AD, and the clinically approved drugs have limited efficacy. Consequently, there is an immediate demand for the development of new compounds that have the ability to act as multitarget-directed ligands (MTDLs). As major pathological targets of the disease, the current study aimed to investigate lead natural bioactive compounds including apigenin, epigallocatechin-3-gallate, berberine, curcumin, genistein, luteolin, quercetin, resveratrol for their inhibitory potentials against β-amyloid cleaving enzyme-1 (BACE1) and monoamine oxidase-B (MAO-B) enzymes. The study compounds were docked against the target enzymes (MAO-B and BACE1) using MOE software and subsequent molecular dynamics simulations (MDS) studies. The molecular docking analysis revealed that these phytochemicals (MTDLs) showed good interactions with the target enzymes as compared to the reference inhibitors. Among these eight phytocompounds, the epigallocatechin-3-gallate compound was an active inhibitor against both drug targets, with the highest docking scores and good interactions with the active residues of the enzymes. Furthermore, the docking result of the active one inhibitor in complex with the target enzymes (epigallocatechin-3-gallate/BACE1, epigallocatechin-3-gallate/MAO-B, reference/BACE1 and reference/MAO-B) were further validated by MDS. According to the findings of our study, epigallocatechin-3-gallate has the potential to be a candidate for use in the treatment of neurological illnesses like AD. This compound has MTDL potential and may be exploited to create new compounds with disease-modifying features.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mater H Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | - Muhammad Ayaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, Pakistan
| | - Mehreen Ghufran
- Department of Pathology, Medical Teaching Institution, Bacha Khan Medical College (BKMC), Mardan, Pakistan
| | - Ibrahim Abdullah Almazni
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran, Kingdom of Saudi Arabia
| | - Omaish Alqahtani
- Department of Pharmacognosy, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | - Bandar A Alyami
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | - Yahya S Alqahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | - Haider Ali Khan
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Abdul Sadiq
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | - Muhammad Waqas
- Department of Biotechnology and Genetic Engineering, Hazara University Mansehra, Dhodial, Pakistan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| |
Collapse
|
5
|
Mahnashi MH, Ali S, M Alshehri O, Almazni IA, Asiri SA, Sadiq A, Zafar R, Jan MS. Pharmacological evaluations of amide carboxylates as potential anti-Alzheimer agents: anti-radicals, enzyme inhibition, simulation and behavioral studies in animal models. J Biomol Struct Dyn 2024; 42:9249-9268. [PMID: 37642974 DOI: 10.1080/07391102.2023.2251052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023]
Abstract
Alzheimer's disease (AD) is a neurological disorder that progresses gradually but irreversibly leading to dementia and is difficult to prevent and treat. There is a considerable time window in which the progression of the disease can be intervened. Scientific advances were required to help the researchers to identify the effective methods for the prevention and treatment of disease. This research was designed to investigate potential mediators for the remedy of AD, five new carboxylate amide zinc complexes (AAZ9-AAZ13) were synthesized and characterized by spectroscopic and physicochemical techniques. The biological evaluation was carried out based on the cholinesterase inhibitory mechanism. The preparation methodology provided the effective synthesis of targeted moieties. The in vitro pharmacological activities were evaluated involving AChE/BChE inhibition and antioxidant potential. All synthesized compounds displayed activity against both enzymes in higher or comparable to the standard drug Galantamine, a reversible inhibitor but the results displayed by compound AAZ10 indicated IC50 of 0.0013 µM (AChE) and 0.061 µM (BChE) as high values for dual AChE/BChE inhibition with potent anti-oxidant results. Structure activity relationship (SAR) indicated that the potent activity of compound AAZ10 appeared due to the presence of nitro clusters at the ortho position of an aromatic ring. The potent synthesized compound AAZ10 was also explored for the in-vivo Anti-Alzheimer activity and anti-oxidant activity. Binding approaches of all synthesized compounds were revealed through molecular docking studies concerning binding pockets of enzymes that analyzed the best posture interaction with amino acid (AA) residues providing an appreciable understanding of enzyme inhibitory mechanisms. Results indicate that synthesized zinc (II) amide carboxylates can behave as an effective remedy in the treatment of Alzheimer's disease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mater H Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | - Saqib Ali
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Osama M Alshehri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Ibrahim Abdullah Almazni
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Saeed Ahmed Asiri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Abdul Sadiq
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, KP, Pakistan
| | - Rehman Zafar
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | | |
Collapse
|
6
|
Mohamed IE, Osman EE, Saeed A, Ming LC, Goh KW, Razi P, Abdullah ADI, Dahab M. Plant extracts as emerging modulators of neuroinflammation and immune receptors in Alzheimer's pathogenesis. Heliyon 2024; 10:e35943. [PMID: 39229544 PMCID: PMC11369442 DOI: 10.1016/j.heliyon.2024.e35943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024] Open
Abstract
Memory loss is becoming an increasingly significant health problem, largely due to Alzheimer's disease (AD), which disrupts the brain in several ways, including causing inflammation and weakening the body's defenses. This study explores the potential of medicinal plants as a source of novel therapeutic agents for AD. First, we tested various plant extracts against acetylcholinesterase (AChE) in vitro, following molecular docking simulations with key AD-related protein targets such as MAO-B, P-gp, GSK-3β, and CD14. Rosemary extract was found to be the most inhibitory towards AChE. The compounds found in rosemary (oleanolic acid), sage (pinocembrin), and cinnamon (italicene) showed promise in potentially binding to MAO-B. These chemicals may interact with a key protein in the brain and alter the production and removal of amyloid-β. Luteolin (from rosemary), myricetin (from sage), chamigrene, and italicene (from cinnamon) exhibited potential for inhibiting tau aggregation. Additionally, ursolic acid found in rosemary, sage, and chamigrene from cinnamon could modulate CD14 activity. For the first time, our findings shed light on the intricate interplay between neuroinflammation, neuroprotective mechanisms, and the immune system's role in AD. Further research is needed to validate the in vivo efficacy and safety of these plant-derived compounds, as well as their interactions with key protein targets, which could lead to the development of novel AD therapeutics.
Collapse
Affiliation(s)
- Intisar E. Mohamed
- Department of Biochemistry, Faculty of Medicine, University of Bahri, P.O. Box 2469, Khartoum, 12223, Sudan
| | - Elbadri E. Osman
- Department of Microbiology, Faculty of Pure and Applied Sciences, International University of Africa, P.O. Box 2469, Khartoum, 12223, Sudan
| | - Ahmed Saeed
- Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Centre for Research, P.O. Box 2404, Khartoum, 12223, Sudan
| | - Long Chiau Ming
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Sunway City, 47500, Malaysia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | - Pakhrur Razi
- Center of Disaster Monitoring and Earth Observation, Universitas Negeri Padang, Padang, Indonesia
| | - Amar Daud Iskandar Abdullah
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Sunway City, 47500, Malaysia
| | - Mahmoud Dahab
- Department of Microbiology, Faculty of Pure and Applied Sciences, International University of Africa, P.O. Box 2469, Khartoum, 12223, Sudan
| |
Collapse
|
7
|
Tripathi PN, Lodhi A, Rai SN, Nandi NK, Dumoga S, Yadav P, Tiwari AK, Singh SK, El-Shorbagi ANA, Chaudhary S. Review of Pharmacotherapeutic Targets in Alzheimer's Disease and Its Management Using Traditional Medicinal Plants. Degener Neurol Neuromuscul Dis 2024; 14:47-74. [PMID: 38784601 PMCID: PMC11114142 DOI: 10.2147/dnnd.s452009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and impaired daily functioning. While there is currently no cure for AD, several pharmacotherapeutic targets and management strategies have been explored. Additionally, traditional medicinal plants have gained attention for their potential role in AD management. Pharmacotherapeutic targets in AD include amyloid-beta (Aβ) aggregation, tau protein hyperphosphorylation, neuroinflammation, oxidative stress, and cholinergic dysfunction. Traditional medicinal plants, such as Ginkgo biloba, Huperzia serrata, Curcuma longa (turmeric), and Panax ginseng, have demonstrated the ability to modulate these targets through their bioactive compounds. Ginkgo biloba, for instance, contains flavonoids and terpenoids that exhibit neuroprotective effects by reducing Aβ deposition and enhancing cerebral blood flow. Huperzia serrata, a natural source of huperzine A, has acetylcholinesterase-inhibiting properties, thus improving cholinergic function. Curcuma longa, enriched with curcumin, exhibits anti-inflammatory and antioxidant effects, potentially mitigating neuroinflammation and oxidative stress. Panax ginseng's ginsenosides have shown neuroprotective and anti-amyloidogenic properties. The investigation of traditional medicinal plants as a complementary approach to AD management offers several advantages, including a lower risk of adverse effects and potential multi-target interactions. Furthermore, the cultural knowledge and utilization of these plants provide a rich source of information for the development of new therapies. However, further research is necessary to elucidate the precise mechanisms of action, standardize preparations, and assess the safety and efficacy of these natural remedies. Integrating traditional medicinal-plant-based therapies with modern pharmacotherapies may hold the key to a more comprehensive and effective approach to AD treatment. This review aims to explore the pharmacotherapeutic targets in AD and assess the potential of traditional medicinal plants in its management.
Collapse
Affiliation(s)
- Prabhash Nath Tripathi
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India
| | - Ankit Lodhi
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India
| | - Sachchida Nand Rai
- Center of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Nilay Kumar Nandi
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India
| | - Shweta Dumoga
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India
| | - Pooja Yadav
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India
| | - Amit Kumar Tiwari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Santosh Kumar Singh
- Center of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Abdel-Nasser A El-Shorbagi
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Sachin Chaudhary
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
8
|
Asiri SA, Shabnam M, Zafar R, Alshehri OM, Alshehri MA, Sadiq A, Mahnashi MH, Jan MS. Evaluation of Habenaria aitchisonii Reichb. for antioxidant, anti-inflammatory, and antinociceptive effects with in vivo and in silico approaches. Front Chem 2024; 12:1351827. [PMID: 38566899 PMCID: PMC10985259 DOI: 10.3389/fchem.2024.1351827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/23/2024] [Indexed: 04/04/2024] Open
Abstract
Habenaria aitchisonii Reichb was analyzed in this research, including its chemical composition and its in vitro antioxidant, anti-inflammatory, acute oral toxicity, and antinociceptive activity. The chloroform and ethyl acetate fractions were found to be the most powerful based on in vitro antioxidant, anti-inflammatory, and analgesic assays. The acute oral toxicity of the crude methanolic extract was determined before in vivo studies. The acetic acid and formalin tests were used to measure the antinociceptive effect, and the potential mechanisms involved in antinociception were explored. The carrageenan-induced paw edema test was used to examine the immediate anti-inflammatory effect, and many phlogistic agents were used to determine the specific mechanism. Furthermore, for ex vivo activities, the mice were sacrificed, the forebrain was isolated, and the antioxidant levels of glutathione (GSH), superoxide dismutase (SOD), thiobarbituric acid reactive substances (TBARS) and catalase (CAT) were estimated using a UV spectrophotometer. No toxicity was seen at oral dosages up to 3,000 mg/kg. The antinociceptive impact was much higher than the standard drug. Both the inflammatory and neurogenic phases of the formalin experiment revealed an analgesic effect in the chloroform and ethyl acetate fractions. In carrageenan anti-inflammatory assays, the chloroform fraction (Ha.Chf) was the most potent fraction. We further studied the GC-MS of crude plant extract and found a total of 18 compounds. In the anti-inflammatory mechanism, it was observed that the Ha.Chf inhibits the COX-2 as well as 5-LOX pathways. The results exhibited that this species is a good source of phytocomponents like germacrone, which can be employed as a sustainable and natural therapeutic agent, supporting its traditional use in folk medicine for inflammatory conditions and pain.
Collapse
Affiliation(s)
- Saeed Ahmed Asiri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Madeeha Shabnam
- Department of Chemistry, Women University, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Rehman Zafar
- Akhtar Saeed College of Pharmacy, Rawalpindi, Pakistan
| | - Osama M. Alshehri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Mohammed Ali Alshehri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Abdul Sadiq
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, Khyber Pakhtunkhwa, Pakistan
| | - Mater H. Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Muhammad Saeed Jan
- Department of Pharmacy, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
9
|
Ayaz M, Mosa OF, Nawaz A, Hamdoon AAE, Elkhalifa MEM, Sadiq A, Ullah F, Ahmed A, Kabra A, Khan H, Murthy HCA. Neuroprotective potentials of Lead phytochemicals against Alzheimer's disease with focus on oxidative stress-mediated signaling pathways: Pharmacokinetic challenges, target specificity, clinical trials and future perspectives. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 124:155272. [PMID: 38181530 DOI: 10.1016/j.phymed.2023.155272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 11/05/2023] [Accepted: 12/10/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Alzheimer's diseases (AD) and dementia are among the highly prevalent neurological disorders characterized by deposition of beta amyloid (Aβ) plaques, dense deposits of highly phosphorylated tau proteins, insufficiency of acetylcholine (ACh) and imbalance in glutamatergic system. Patients typically experience cognitive, behavioral alterations and are unable to perform their routine activities. Evidence also suggests that inflammatory processes including excessive microglia activation, high expression of inflammatory cytokines and release of free radicals. Thus, targeting inflammatory pathways beside other targets might be the key factors to control- disease symptoms and progression. PURPOSE This review is aimed to highlight the mechanisms and pathways involved in the neuroprotective potentials of lead phytochemicals. Further to provide updates regarding challenges associated with their use and their progress into clinical trials as potential lead compounds. METHODS Most recent scientific literature on pre-clinical and clinical data published in quality journals especially on the lead phytochemicals including curcumin, catechins, quercetin, resveratrol, genistein and apigenin was collected using SciFinder, PubMed, Google Scholar, Web of Science, JSTOR, EBSCO, Scopus and other related web sources. RESULTS Literature review indicated that the drug discovery against AD is insufficient and only few drugs are clinically approved which have limited efficacy. Among the therapeutic options, natural products have got tremendous attraction owing to their molecular diversity, their safety and efficacy. Research suggest that natural products can delay the disease onset, reduce its progression and regenerate the damage via their anti-amyloid, anti-inflammatory and antioxidant potentials. These agents regulate the pathways involved in the release of neurotrophins which are implicated in neuronal survival and function. Highly potential lead phytochemicals including curcumin, catechins, quercetin, resveratrol, genistein and apigenin regulate neuroprotective signaling pathways implicated in neurotrophins-mediated activation of tropomyosin receptor kinase (Trk) and p75 neurotrophins receptor (p75NTR) family receptors. CONCLUSIONS Phytochemicals especially phenolic compounds were identified as highly potential molecules which ameliorate oxidative stress induced neurodegeneration, reduce Aβ load and inhibit vital enzymes. Yet their clinical efficacy and bioavailability are the major challenges which need further interventions for more effective therapeutic outcomes.
Collapse
Affiliation(s)
- Muhammad Ayaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18000 Dir (L), KP, Pakistan.
| | - Osama F Mosa
- Public health Department, Health Sciences College at Lieth, Umm Al Qura University, Makkah, KSA
| | - Asif Nawaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18000 Dir (L), KP, Pakistan
| | - Alashary Adam Eisa Hamdoon
- Public health Department, Health Sciences College at Lieth, Umm Al Qura University, Makkah, KSA; University of Khartoum, Faculty of Public and Environmental Health, Sudan
| | - Modawy Elnour Modawy Elkhalifa
- Public health Department, Health Sciences College at Lieth, Umm Al Qura University, Makkah, KSA; University of Khartoum, Faculty of Public and Environmental Health, Sudan
| | - Abdul Sadiq
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18000 Dir (L), KP, Pakistan
| | - Farhat Ullah
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18000 Dir (L), KP, Pakistan
| | - Alshebli Ahmed
- Public health Department, Health Sciences College at Lieth, Umm Al Qura University, Makkah, KSA; University of Khartoum, Faculty of Public and Environmental Health, Sudan
| | - Atul Kabra
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Pakistan
| | - H C Ananda Murthy
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, P O Box 1888, Adama, Ethiopia; Department of Prosthodontics, Saveetha Dental College & Hospital, Saveetha Institute of Medical and technical science (SIMATS), Saveetha University, Chennai-600077, Tamil Nadu, India
| |
Collapse
|
10
|
Javid H, Ul Qadir R, Magray JA, Wani BA, Nawchoo IA, Gulzar S. Variability in morphology, phytochemicals and antioxidant activity in Bistorta amplexicaulis (D. Don) Greene populations under variable habitats and altitudes. Nat Prod Res 2024; 38:563-580. [PMID: 38285923 DOI: 10.1080/14786419.2023.2181802] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/14/2023] [Indexed: 02/24/2023]
Abstract
Phytochemicals have become significantly important for scientific research since these possess incredibly remarkable health benefits, especially antioxidant potential to scavenge free radicals and combat the harmful effects of oxidative stress caused by adverse environmental factors. The efficacy and quantity of these phytochemicals relies upon numerous factors including the extraction method, solvent polarity and the habitat features in which the plant is growing. In this study we emphasized on phytochemical analysis and antioxidant activity of Bistorta amplexicaulis, an important medicinal plant species from Kashmir Himalaya. We evaluated antioxidant activity using different assays from all the selected sites to enumerate the impact of habitat. The sites were selected based on varying habitat features and altitude. Our results revealed that Ethyl acetate is the potent solvent for the extraction of phytochemicals. Below ground parts exhibited better scavenging activity than the above ground parts. Amongst the sites, we found the maximum antioxidant potential at Site I. A positive correlation was found between antioxidant activity and altitude while soil attributes (OC, OM, N, P, and K) and most of the morphological traits showed a negative correlation. Overall, our study identified the elite populations that could be utilized for mass propagation and harness the ultimate antioxidant potential of B. amplexicaulis.
Collapse
Affiliation(s)
- Hanan Javid
- Pant Reproductive Biology, Genetic Diversity, and Phytochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, Jammu & Kashmir, India
| | - Roof Ul Qadir
- Pant Reproductive Biology, Genetic Diversity, and Phytochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, Jammu & Kashmir, India
| | - Junaid A Magray
- Pant Reproductive Biology, Genetic Diversity, and Phytochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, Jammu & Kashmir, India
| | - Bilal A Wani
- Pant Reproductive Biology, Genetic Diversity, and Phytochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, Jammu & Kashmir, India
| | - Irshad A Nawchoo
- Pant Reproductive Biology, Genetic Diversity, and Phytochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, Jammu & Kashmir, India
| | - Shabana Gulzar
- Government College for Womens, Cluster University Srinagar, Srinagar, Jammu & Kashmir, India
| |
Collapse
|
11
|
Mushtaq F, Ashfaq M, Anwar F, Ayesha BT, Latif HS, Khalil S, Sarwar HS, Khan MI, Sohail MF, Maqsood I. Injectable Chitosan-Methoxy Polyethylene Glycol Hybrid Hydrogel Untangling the Wound Healing Behavior: In Vitro and In Vivo Evaluation. ACS OMEGA 2024; 9:2145-2160. [PMID: 38250419 PMCID: PMC10795122 DOI: 10.1021/acsomega.3c04346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/22/2023] [Indexed: 01/23/2024]
Abstract
Wound healing, particularly for difficult-to-treat wounds, presents a serious threat and may lead to complications. Currently available dressings lack mucoadhesion, safety, efficacy, and, most importantly, patient compliance. Herein, we developed a unique, simple, and inexpensive injectable chitosan-methoxy polyethylene glycol (chitosan-mPEG) hybrid hydrogel with tunable physicochemical and mechanical properties for wound healing. The detailed physicochemical and rheological characterization of the chitosan-mPEG hydrogel has revealed chemical interaction between available -NH2 groups of chitosan and -COOH groups of mPEG acid, which, to our perspective, enhanced the mechanical and wound healing properties of hybrid chitosan and mPEG hydrogel compared to solo chitosan or PEG hydrogel. By introducing mPEG, the wound healing ability of hydrogel is synergistically improved due to its antibacterial feature, together with chitosan's innate role in hemostasis and wound closure. The detailed hemostasis and wound closure potential of the chitosan-mPEG hydrogel were investigated in a rat model, which confirmed a significant acceleration in wound healing and ultimately wound closure. In conclusion, the developed chitosan-mPEG hydrogel met all the required specifications and could be developed as a promising material for hemostasis, especially wound management, and as an excellent candidate for wound healing application.
Collapse
Affiliation(s)
- Fizza Mushtaq
- Riphah
International University (R.I.U.), Riphah
Institute of Pharmaceutical Sciences (RIPS), Lahore, Punjab 54000, Pakistan
| | - Madeeha Ashfaq
- Riphah
International University (R.I.U.), Riphah
Institute of Pharmaceutical Sciences (RIPS), Lahore, Punjab 54000, Pakistan
| | - Fareeha Anwar
- Riphah
International University (R.I.U.), Riphah
Institute of Pharmaceutical Sciences (RIPS), Lahore, Punjab 54000, Pakistan
| | - Badarqa Tul Ayesha
- Riphah
International University (R.I.U.), Riphah
Institute of Pharmaceutical Sciences (RIPS), Lahore, Punjab 54000, Pakistan
| | | | - Sadia Khalil
- Riphah
International University (R.I.U.), Riphah
Institute of Pharmaceutical Sciences (RIPS), Lahore, Punjab 54000, Pakistan
| | | | - Muhammad Imran Khan
- Riphah
International University (R.I.U.), Riphah
Institute of Pharmaceutical Sciences (RIPS), Lahore, Punjab 54000, Pakistan
| | - Muhammad Farhan Sohail
- Riphah
International University (R.I.U.), Riphah
Institute of Pharmaceutical Sciences (RIPS), Lahore, Punjab 54000, Pakistan
| | - Iram Maqsood
- Riphah
International University (R.I.U.), Riphah
Institute of Pharmaceutical Sciences (RIPS), Lahore, Punjab 54000, Pakistan
- Department
of Pharmaceutics, School of Pharmacy, University
of Maryland, Baltimore, Maryland 21201, United States
| |
Collapse
|
12
|
Rehman YU, Iqbal A, Ali G, Alotaibi G, Ahmed A, Ayaz M. Phytochemical analysis, radical scavenging and glioblastoma U87 cells toxicity studies of stem bark of buckthorn (Rhamnus pentapomica R. Parker). BMC Complement Med Ther 2024; 24:12. [PMID: 38167318 PMCID: PMC10759440 DOI: 10.1186/s12906-023-04309-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND During the past two decades, the correlation between oxidative stress and a variety of serious illnesses such as atherosclerosis, chronic obstructive pulmonary disease (COPD), Alzheimer disease (AD) and cancer has been established. Medicinal plants and their derived phytochemicals have proven efficacy against free radicals and their associated diseases. The current work was aimed to evaluate the phytochemical constituents of Rhamnus pentapomica R. Parker via Gas Chromatography-Mass Spectrometry (GC-MS) and its antioxidant and anti-glioblastoma potentials. METHODS The bioactive compounds were analysed in Rhamnus pentapomica R. Parker stem bark extracts by GC-MS analysis, and to evaluate their antioxidant and anti-glioblastoma effects following standard procedures. The stem bark was extracted with 80% methanol for 14 days to get crude methanolic extract (Rp.Cme) followed by polarity directed fractionation using solvents including ethyl acetate, chloroform, butanol to get ethyl acetate fraction (Rp.EtAc), chloroform fraction (Rp.Chf) and butanol fraction (Rp.Bt) respectively. Antioxidant assay was performed using DPPH free radicals and cell viability assay against U87 glioblastoma cancer cell lines was performed via MTT assay. RESULTS In GC-MS analysis, thirty-one compounds were detected in Rp.Cme, 22 in Rp.Chf, 24 in Rp.EtAc and 18 compounds were detected in Rp.Bt. Among the identified compounds in Rp.Cme, 9-Octadecenoic acid (Z)-methyl ester (7.73%), Octasiloxane (5.13%) and Heptasiloxane (5.13%), Hexadecanoic acid, methyl ester (3.76%) and Pentadecanoic acid, 14-methyl-, methyl Ester (3.76%) were highly abundant.. In Rp.Chf, Benzene, 1,3-dimethyl- (3.24%) and in Rp.EtAc Benzene, 1,3-dimethyl-(11.29%) were highly abundant compounds. Antioxidant studies revealed that Rp.Cme and Rp.EtAc exhibit considerable antioxidant potentials with IC50 values of 153.53 μg/ml and 169.62 μg/ml respectively. Both fractions were also highly effective against glioblastoma cells with IC50 of 147.64 μg/ml and 76.41ug/ml respectively. CONCLUSION Phytochemical analysis revealed the presence of important metabolites which might be active against free radicals and glioblastoma cells. Various samples of the plant exhibited considerable antioxidant and anti-glioblastoma potentials warranting further detailed studies.
Collapse
Affiliation(s)
- Yaseen Ur Rehman
- Department of Botany, Islamia College Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Arshad Iqbal
- Department of Botany, Islamia College Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan.
| | - Gowhar Ali
- Department of Pharmacy, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Ghallab Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Al-Dawadmi Campus, Shaqra University, Shaqra, Kingdom of Saudi Arabia.
| | - Alshebli Ahmed
- Public Health Department Health Sciences College at Lieth, Umm Al Qura University, Makkah, Kingdom of Saudi Arabia
- Faculty of Public and Environmental Health, UofK, Khartoum, Sudan
| | - Muhammad Ayaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, Dir (L), KP, 18000, Pakistan.
- Department of Pharmacy, University of Malakand, Dir (L), Khyber Pakhtunkhwa, 18800, Pakistan.
| |
Collapse
|
13
|
Saleem U, Chauhdary Z, Bakhtawar Z, Alqahtani J, Farrukh M, Alsharif I, Baokbah TAS, Shah MA, Blundell R, Panichayupakaranant P. Curcuminoids-enriched extract and its cyclodextrin inclusion complexes ameliorates arthritis in complete Freund's adjuvant-induced arthritic mice via modulation of inflammatory biomarkers and suppression of oxidative stress markers. Inflammopharmacology 2023; 31:3047-3062. [PMID: 37955785 DOI: 10.1007/s10787-023-01370-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/06/2023] [Indexed: 11/14/2023]
Abstract
Curcuma longa extract and its marker curcuminoids have potential use in inflammatory conditions. However, curcuminoids solubility and bioavailability are major hindrances to their bioactivity. The current study investigated green extraction-based curcuminoids-enriched extract (CRE) prepared from C. longa and its cyclodextrin inclusion complexes, i.e., binary inclusion complexes (BC) and ternary inclusion complexes (TC), in complete Freund's adjuvant (CFA)-induced mice for their comparative anti-arthritic efficacy. CRE, BC, and TC (2.5 and 5 mg/kg) with the standard drug diclofenac sodium (13.5 mg/kg) were orally administered to mice for 4 weeks. Variations in body weight, hematological and biochemical parameters, along with gene expression analysis of arthritis biomarkers, were studied in animals. The histopathological analysis and radiographic examination of joints were also performed. CRE, BC and TC treatment significantly restored the arthritic index, histopathology and body weight changes. The concentration of C-reactive protein, rheumatoid factor and other liver function parameters were significantly recovered by curcuminoids formulations. The pro-inflammatory cytokines (NF-κB, COX-2, IL-6, IL-1β, and TNF-α) gene expression was considerably (p < 0.001) downregulated, while on the other side, the anti-inflammatory genes IL-4 and IL-10 were upregulated by the use of CRE and its complexes. The concentration of antioxidant enzymes was considerably (P < 0.001) recovered by CRE, BC and TC with marked decrease in lipid peroxidation, erosion of bone, inflammation of joints and pannus formation in comparison to arthritic control animals. Therefore, it is concluded that green CRE and its cyclodextrin formulations with enhanced solubility could be considered as an applicable therapeutic choice to treat chronic polyarthritis.
Collapse
Affiliation(s)
- Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan.
| | - Zunera Chauhdary
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Zunaira Bakhtawar
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Jawaher Alqahtani
- Department of Pharmacognosy, College of Pharmacy, Kingdom of Saudi Arabia, King Saud University, P.O. Box 22452, 11495, Riyadh, Saudi Arabia
| | - Maryam Farrukh
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Ifat Alsharif
- Department of Biology, Jamoum University College, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Tourki A S Baokbah
- Department of Medical Emergency Services, College of Health Sciences-AlQunfudah, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Muhammad Ajmal Shah
- Department of Pharmacy, Hazara University, Mansehra, Pakistan.
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, 90112, Thailand.
| | - Renald Blundell
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, MSD2080, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, MSD2080, Malta
| | - Pharkphoom Panichayupakaranant
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, 90112, Thailand.
- Phytomedicine and Pharmaceutical Biotechnology Excellence Centre, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, 90112, Thailand.
| |
Collapse
|
14
|
Anjum S, Tahir H, Sarwar S, Raza W, Latif I, Rasheed HMF, Jabeen Q, Shahid W, Ashraf M, Zehra SS, Ul-Haq Z, Ayaz M, Sadiq A. LC-ESI-MS analysis, antioxidant, anti-diabetic and molecular docking studies on Corchorus depressus (L.) C.Chr. Nat Prod Res 2023; 37:3832-3837. [PMID: 36445325 DOI: 10.1080/14786419.2022.2150847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/26/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022]
Abstract
The present study encompasses the ethnomedicinal consumption of Corchorus depressus (L.) C.Chr. (C. depressus) for diabetes. Samples were subjected to LC-ESI-MS analyses. The n-hexane, methanolic and water extracts were screened for α-glucosidase inhibition and in vivo anti-diabetic studies. Further, antioxidant (DPPH) and anti-inflammatory study was performed via luminol-enhanced chemi-luminescence assay. The identified compounds were docked against the target enzymes of diabetes. The n-hexane fraction (CD-J1) showed IC50 of 8.4 ± 0.1 µg/mL against α-glucosidase enzyme. The sub fractions CD-12 and CD-13 of CD-J1 obtained after flash column chromatography displayed further reduced IC50 values of 4.3 ± 0.1 and 6.3 ± 0.1, respectively, as compared with standard drug acarbose (IC50 values of 37.5 ± 0.2 µg/mL). Simultaneously, dereplication of most active sub-fraction CD-12 by LC-ESI-MS led to the identification of strophanthidin and some other active metabolites responsible for anti-diabetic activity. Molecular docking of strophanthidin with α-glucosidase and α-amylase revealed high affinity for these target enzymes.
Collapse
Affiliation(s)
- Shazia Anjum
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur-63100, Pakistan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Humna Tahir
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur-63100, Pakistan
| | - Sadia Sarwar
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur-63100, Pakistan
| | - Wajid Raza
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur-63100, Pakistan
| | - Irum Latif
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur-63100, Pakistan
| | | | - Qaiser Jabeen
- Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur-63100, Pakistan
| | - Wardah Shahid
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur-63100, Pakistan
| | - Muhammad Ashraf
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur-63100, Pakistan
| | - Syeda Sadaf Zehra
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur-63100, Pakistan
| | - Zaheer Ul-Haq
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Muhammad Ayaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara 18000, Dir (L), KPK, Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara 18000, Dir (L), KPK, Pakistan
| |
Collapse
|
15
|
Khan HA, Ghufran M, Shams S, Jamal A, Khan A, Abdullah, Awan ZA, Khan MI. Green synthesis of silver nanoparticles from plant Fagonia cretica and evaluating its anti-diabetic activity through indepth in-vitro and in-vivo analysis. Front Pharmacol 2023; 14:1194809. [PMID: 37936909 PMCID: PMC10625996 DOI: 10.3389/fphar.2023.1194809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 10/02/2023] [Indexed: 11/09/2023] Open
Abstract
One of the most widespread metabolic diseases, Type-2 Diabetes Mellitus (T2DM) is defined by high blood sugar levels brought on by decreased insulin secretion, reduced insulin action, or both. Due to its cost-effectiveness and eco-friendliness, plant-mediated green synthesis of nanomaterials has become more and more popular. The aim of the study is to synthesize AgNPs, their characterizations and further in-vitro and in-vivo studies. Several methods were used to morphologically characterise the AgNPs. The AgNPs were crystalline, spherical, and clustered, with sizes ranging from 20 to 50 nm. AgNPs were found to contain various functional groups using Fourier transform infrared spectroscopy. This study focuses on the green-synthesis of AgNPs from Fagonia cretica (F. cretica) leaves extract to evaluate their synthesized AgNPs for in-vitro and in-vivo anti-diabetic function. For the in-vivo tests, 20 male Balb/C albino-mice were split up into four different groups. Anti-diabetic in-vivo studies showed significant weight gain and a decrease in all biochemical markers (pancreas panel, liver function panel, renal function panel, and lipid profile) in Streptozotocin (STZ)-induced diabetic mice. In vitro anti-diabetic investigations were also conducted on AgNPs, comprising α-amylase, α-glucosidase inhibitions, and antioxidant assays. AgNPs showed antioxidant activity in both the DPPH and ABTS assays. The research showed that the isolated nanoparticles have powerful antioxidant and enzyme inhibitory properties, especially against the main enzymes involved in T2DM.
Collapse
Affiliation(s)
- Haider Ali Khan
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Mehreen Ghufran
- Department of Pathology, Medical Teaching Institution Bacha Khan Medical College (BKMC) Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Sulaiman Shams
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Alam Jamal
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abbas Khan
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Abdullah
- Department of Environmental Science, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Zuhier A. Awan
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Imran Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
16
|
Ullah I, Ayaz M. A re-consideration of neural/receptor mechanisms in chemotherapy-induced nausea and vomiting: current scenario and future perspective. Pharmacol Rep 2023; 75:1126-1137. [PMID: 37584820 DOI: 10.1007/s43440-023-00514-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/17/2023]
Abstract
The neural mechanisms and the receptors behind the course of chemotherapy-induced nausea and vomiting (CINV) are well described and considered mechanistically multifactorial, whereas the neurobiology of nausea is not completely understood yet. Some of the anti-neoplastic medications like cisplatin result in biphasic vomiting response. The acute phase of vomiting is triggered mainly via the release of serotonin from the enterochromaffin (EC) cells in the gastrointestinal tract (GIT) and results in stimulation of dorsal vagal complex (DVC) of the vomiting center and the vomiting is initiated by downward communication to the gut via vagal efferents. Agonism of 5HT3 receptors is majorly involved in the mediation of the acute phase. Therefore, antagonists at 5HT3 receptors are effective in the management of acute-phase vomiting episodes. Likewise, Dopamine type 2 (D2) receptors, dopamine neurotransmitter, Muscarinic receptors (M3), GLP1 receptors, and histaminergic receptors (H1) are also implicated in the vomiting act as well. In continuation, Cannabinoid type 1 (CB1) receptors are also recommended and included in the guidelines as agonism of presynaptically located CB1 receptors inhibits the release of excitatory neurotransmitters responsible for vomiting initiation. The delayed phase involves the release of "Substance P" in the gut and results in the stimulation of neurokinin-1 (NK1) receptors centrally in the area postrema (AP) and nucleus tractus solitarius (NTS), subsequently the vomiting response. The current understanding is the existence of overlapping mechanisms of neurotransmitters, serotonin, dopamine, and substance P throughout the time course of CINV. Furthermore, the emetic neurotransmitters are released via calcium ion (Ca++)-dependent mechanisms, implicating the molecular targets of intracellular Ca++ signaling in emetic circuitry. The current review entails the neurobiology of nausea and vomiting induced by cancer chemotherapeutic agents and the recent approaches in the management.
Collapse
Affiliation(s)
- Ihsan Ullah
- Department of Pharmacy, Faculty of Sciences, University of Swabi, Anbar, Swabi, 23430, Khyber Pakhtunkhwa, Pakistan.
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong.
| | - Muhammad Ayaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Dir (L), Chakdara, 18000, KP, Pakistan.
| |
Collapse
|
17
|
Mahnashi MH, Ashraf M, Alhasaniah AH, Ullah H, Zeb A, Ghufran M, Fahad S, Ayaz M, Daglia M. Polyphenol-enriched Desmodium elegans DC. ameliorate scopolamine-induced amnesia in animal model of Alzheimer's disease: In Vitro, In Vivo and In Silico approaches. Biomed Pharmacother 2023; 165:115144. [PMID: 37437376 DOI: 10.1016/j.biopha.2023.115144] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023] Open
Abstract
The current study aims to quantify HPLC-DAD polyphenolics in the crude extracts of Desmodium elegans, evaluating its cholinesterase inhibitory, antioxidant, molecular docking and protective effects against scopolamine-induced amnesia in mice. A total of 16 compounds were identified which include gallic acid (239 mg g-1), p-hydroxybenzoic acid (11.2 mg g-1), coumaric acid (10.0 mg g-1), chlorogenic acid (10.88 mg g-1), caffeic acid (13.9 mg g-1), p-coumaroylhexose (41.2 mg g-1), 3-O-caffeoylquinic acid (22.4 mg g-1), 4-O-caffeoylquinic acid (6.16 mg g-1), (+)-catechin (71.34 mg g-1), (-)-catechin (211.79 mg g-1), quercetin-3-O-glucuronide (17.9 mg g-1), kaempferol-7-O-glucuronide (13.2 mg g-1), kaempferol-7-O-rutinoside (53.67 mg g-1), quercetin-3-rutinoside (12.4 mg g-1), isorhamnetin-7-O-glucuronide (17.6 mg g-1) and isorhamnetin-3-O-rutinoside (15.0 mg g-1). In a DPPH free radical scavenging assay, the chloroform fraction showed the highest antioxidant activity, with an IC50 value of 31.43 µg mL-1. In an AChE inhibitory assay, the methanolic and chloroform fractions showed high inhibitory activities causing 89% and 86.5% inhibitions with IC50 values of 62.34 and 47.32 µg mL-1 respectively. In a BChE inhibition assay, the chloroform fraction exhibited 84.36% inhibition with IC50 values of 45.98 µg mL-1. Furthermore, molecular docking studies revealed that quercetin-3-rutinoside and quercetin-3-O-glucuronide fit perfectly in the active sites of AChE and BChE respectively. Overall, the polyphenols identified exhibited good efficacy, which is likely as a result of the compounds' electron-donating hydroxyl groups (-OH) and electron cloud density. The administration of methanolic extract improved cognitive performance and demonstrated anxiolytic behavior among tested animals.
Collapse
Affiliation(s)
- Mater H Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Muhammad Ashraf
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Dir (L), Chakdara 18000, KP, Pakistan
| | - Abdulaziz Hassan Alhasaniah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran, Saudi Arabia.
| | - Hammad Ullah
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Alam Zeb
- Department of Biochemistry, University of Malakand, Dir (L), Chakdara 18000, KP, Pakistan
| | - Mehreen Ghufran
- Department of Pathology, Medical Teaching Institution Bacha Khan Medical College (BKMC) Mardan, Mardan 23200, Khyber Pakhtunkhwa, Pakistan
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Muhammad Ayaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Dir (L), Chakdara 18000, KP, Pakistan.
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
18
|
Güler Ş, Torul D, Kurt-Bayrakdar S, Tayyarcan EK, Çamsarı Ç, Boyacı İH. Evaluation of antibacterial efficacy of Lawsonia inermis Linn (henna) on periodontal pathogens using agar well diffusion and broth microdilution methods: An in-vitro study. Biomedicine (Taipei) 2023; 13:25-30. [PMID: 37937057 PMCID: PMC10627213 DOI: 10.37796/2211-8039.1411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/13/2023] [Indexed: 11/09/2023] Open
Abstract
Background Although widely explored in medicine, limited evidence exists in the literature regarding the efficacy of Lawsonia inermis Linn (henna) in the dental field. Aim This study aimed to investigate the antibacterial effect of henna on Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis in vitro. Methods The agar well diffusion and broth microdilution methods were used to evaluate the antibacterial effect of henna extracts. Dimethyl sulfoxide was used to prepare the ethanol extract of henna, and distilled water was used to prepare the water extract. For both ethanol and water extracts, 4 different concentrations were prepared as 15, 30, 60, and 120 mg/mL. Results It was determined that the water and ethanol extracts of the henna samples did not show an inhibition zone on P.gingivalis and A.actinomycetemcomitans. As a result of the evaluations made with the broth microdilution method, it was found that the ethanol extract had a higher inhibitory effect on both bacteria, and both extracts had more inhibitory effects against A.actinomycetemcomitans. Conclusion To understand the effect of henna on periodontal pathogens, more comprehensive in vitro studies should be performed on henna samples at different concentrations and with different bases.
Collapse
Affiliation(s)
- Şevki Güler
- Private Practice, Güler Dent Samsun Oral and Dental Health Polyclinic, Samsun,
Turkey
| | - Damla Torul
- Ordu University, Faculty of Dentistry, Department of Oral and Maxillofacial Surgery, Ordu,
Turkey
| | - Sevda Kurt-Bayrakdar
- Eskişehir Osmangazi University, Faculty of Dentistry, Department of Periodontology, Eskişehir,
Turkey
| | - Emine Kübra Tayyarcan
- Hacettepe University, Faculty of Engineering, Department of Food Engineering, Ankara,
Turkey
| | - Çağrı Çamsarı
- Bolu Abant İzzet Baysal University, Innovative Food Technologies Development Application and Research Center, Bolu,
Turkey
| | - İsmail Hakkı Boyacı
- Hacettepe University, Faculty of Engineering, Department of Food Engineering, Ankara,
Turkey
| |
Collapse
|
19
|
Saleem S, Anwar F, Khan A, Saleem U, Akhtar MF, Shahzadi I, Ismail T. Toxicity profiling of Burgmansia aurea Lagerh. Leaves using acute and sub-acute toxicity studies in rats. JOURNAL OF ETHNOPHARMACOLOGY 2023; 311:116447. [PMID: 37015278 DOI: 10.1016/j.jep.2023.116447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Toxicity studies in appropriate animal models are an integral and very important component of pre-clinical studies in drug development. Brugmansia aurea lagerh. is used for both medicinal and non-medical purposes, including treating skin infections, different types of physical discomfort, inflammation, cough, hallucinations, and evil protection. AIM OF THE STUDY This study was designed to detect any hazardous effects of B. aurea on animals and find out its LD50. MATERIALS & METHODS An acute toxicity study was performed to find out the LD50 value and sub-acute toxicity study was performed to find out the toxicity on repeated dose administration till 28 days. Both studies were performed according to the organization of economic cooperation and development (OECD) 425 and 407 respectively. For the acute oral toxicity study, animals were divided into two groups, group I normal control (NC) and group II received a 2000mg/kg dose of B.aurea leaves extract. In the sub-acute toxicity study, male and female animals were divided into eight groups, I-IV for males and V-VIII for females received control, 100, 200 & 400mg/kg B. aurea leaves extract respectively. Hematological and biochemical markers were estimated at the end of each study. RESULTS Results revealed that no mortality and morbidity were observed in acute oral as well as sub-acute toxicity studies. Oxidative stress markers were increased significantly in all organs of the treatment groups in both studies. Animals significantly decreased their food and water intake in an acute oral toxicity study. A slight difference in renal function tests was observed in the acute oral toxicity study when compared with the normal control group. No significant change in histopathology was observed in both studies on selected organs. CONCLUSION This study concluded that B. aurea can be safely used for pharmacological purposes.
Collapse
Affiliation(s)
- Sana Saleem
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan.
| | - Fareeha Anwar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan.
| | - Aslam Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan.
| | - Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan.
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan.
| | - Irum Shahzadi
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan.
| | - Tariq Ismail
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan.
| |
Collapse
|
20
|
Khan HA, Ghufran M, Shams S, Jamal A, Ayaz M, Ullah M, Khan A, Khan MI, Awan ZA. In-depth in-vitro and in-vivo anti-diabetic evaluations of Fagonia cretica mediated biosynthesized selenium nanoparticles. Biomed Pharmacother 2023; 164:114872. [PMID: 37245338 DOI: 10.1016/j.biopha.2023.114872] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/30/2023] Open
Abstract
Therapeutic moieties derived from medicinal plants as well as plants-based ecofriendly processes for producing selenium nanoparticles have shown great promise in the management of type 2 diabetes mellitus (T2DM). The current study was aimed to assess the anti-diabetic potentials of Fagonia cretica mediated biogenic selenium nanoparticles (FcSeNPs) using in-vitro and in-vivo approaches. The bio-synthesized FcSeNPs were characterized using various techniques including UV-VIS spectrophotometry and FTIR analysis. The in-vitro efficacy of FcSeNPs were assessed against α-glucosidase, α-amylase enzymes as well as the anti-radical studies were performed using DPPH and ABTS free radicals scavenging assays. For in-vivo studies, 20 Male Balb/C albino-mice were randomly divided into 4 groups (n = 5) including normal group, disease group (Diabetic group with no treatment), control group and treatment group (Diabetic group treated with FcSeNPs). Further, biochemistry markers including pancreas, liver, kidney and lipid profile were assessed for all treatment groups. The FcSeNPs exhibited a dose-dependent inhibition against α-amylase and α-glucosidase at 62-1000 µg mL-1 concentration with IC50 values of 92 and 100 µg mL-1 respectively. In antioxidant experiments, the FcSeNPs demonstrated significant radicals scavenging effect against DPPH and ABTS radicals. In STZ-induced diabetic mice, a considerable decline in blood glucose level was observed after treatment with FcSeNPs. Anti-hyperglycemic effect of FcSeNPs treated animals were high (105 ± 3.22**) as compared to standard drug (128.6 ± 2.73** mg dL-1). Biochemical investigations revealed that all biochemical parameters for pancreas, liver function, renal function panel and lipid profile were significantly lowered in FcSeNPs treated animals. Our findings indicate a preliminary multi-target efficacy for FcSeNPs against type-2 diabetes and thus warrant further detailed studies.
Collapse
Affiliation(s)
- Haider Ali Khan
- Department of Biochemistry, Abdul Wali Khan University Mardan, 23200 Khyber Pakhtunkhwa Pakistan.
| | - Mehreen Ghufran
- Department of Biochemistry, Women University Mardan, 23200 Khyber Pakhtunkhwa Pakistan.
| | - Sulaiman Shams
- Department of Biochemistry, Abdul Wali Khan University Mardan, 23200 Khyber Pakhtunkhwa Pakistan.
| | - Alam Jamal
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Muhammad Ayaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara 18000, Pakistan.
| | - Mehran Ullah
- District Medical Officer, Sehat Sahulat Program (SSP), Mardan 23200 Khyber Pakhtunkhwa Pakistan.
| | - Abbas Khan
- Department of Chemistry, Abdul Wali Khan University Mardan, 23200 Khyber Pakhtunkhwa Pakistan.
| | - Mohammad Imran Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Centre of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Zuhier A Awan
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Mohamed Saeed Tamer Chair for Pharmaceutical Industries, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
21
|
Mohamed HEA, Khalil AT, Hkiri K, Ayaz M, Abbasi JA, Sadiq A, Ullah F, Nawaz A, Ullah I, Maaza M. Physicochemical and nanomedicine applications of phyto-reduced erbium oxide (Er 2O 3) nanoparticles. AMB Express 2023; 13:24. [PMID: 36840788 PMCID: PMC9968365 DOI: 10.1186/s13568-023-01527-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/13/2023] [Indexed: 02/26/2023] Open
Abstract
Hyphaene thebaica fruits were used for the fabrication of spherical erbium oxide nanoparticles (HT-Er2O3 NPS) using a one-step simple bioreduction process. XRD pattern revealed a highly crystalline and pure phase with crystallite size of ~ 7.5 nm, whereas, the W-H plot revealed crystallite size of 11 nm. FTIR spectra revealed characteristic Er-O atomic vibrations in the fingerprint region. Bandgap was obtained as 5.25 eV using K-M function. The physicochemical and morphological nature was established using Raman spectroscopy, reflectance spectroscopy, SAED and HR-TEM. HT-Er2O3 NPS were further evaluated for antidiabetic potential in mice using in-vivo and in-vitro bioassays. The synthesized HT-Er2O3 NPS were screened for in vitro anti-diabetic potentials against α-glucosidase enzyme and α-amylase enzyme and their antioxidant potential was evaluated using DPPH free radical assay. A dose dependent inhibition was obtained against α-glucosidase (IC50 12 μg/mL) and α-amylase (IC50 78 μg/mL) while good DPPH free radical scavenging potential (IC50 78 μg mL-1) is reported. At 1000 μg/mL, the HT-Er2O3 NPS revealed 90.30% and 92.30% inhibition of α-amylase and α-glucosidase enzymes. HT-Er2O3 NPs treated groups were observed to have better glycemic control in diabetic animals (503.66 ± 5.92*** on day 0 and 185.66 ± 2.60*** on day 21) when compared with positive control glibenclamide treated group. Further, HT-Er2O3 NPS therapy for 21 days caused a considerable effect on serum total lipids, cholesterol, triglycerides, HDL and LDL as compared to untreated diabetic group. In conclusion, our preliminary findings on HT-Er2O3 NPS revealed considerable antidiabetic potential and thus can be an effective candidate for controlling the post-prandial hyperglycemia. However, further studies are encouraged especially taking into consideration the toxicity aspects of the nanomaterial.
Collapse
Affiliation(s)
- Hamza Elsayed Ahmad Mohamed
- grid.412801.e0000 0004 0610 3238UNESCO UNISA Africa Chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa, Pretoria, South Africa ,grid.462638.d0000 0001 0696 719XNanoscience African Network (NANOAFNET), Materials Research Department, iThemba LABS, Cape Town, South Africa
| | - Ali Talha Khalil
- Department of Pathology, Lady Reading Hospital Medical Teaching Institution, Peshawar, 25000 KP, Pakistan.
| | - Khaoula Hkiri
- grid.412801.e0000 0004 0610 3238UNESCO UNISA Africa Chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa, Pretoria, South Africa ,grid.462638.d0000 0001 0696 719XNanoscience African Network (NANOAFNET), Materials Research Department, iThemba LABS, Cape Town, South Africa
| | - Muhammad Ayaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Dir (L), KPK, Chakdara, 18000, Pakistan.
| | - Jamil Anwar Abbasi
- grid.440567.40000 0004 0607 0608Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Dir (L), KPK, Chakdara, 18000 Pakistan
| | - Abdul Sadiq
- grid.440567.40000 0004 0607 0608Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Dir (L), KPK, Chakdara, 18000 Pakistan
| | - Farhat Ullah
- grid.440567.40000 0004 0607 0608Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Dir (L), KPK, Chakdara, 18000 Pakistan
| | - Asif Nawaz
- grid.440567.40000 0004 0607 0608Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Dir (L), KPK, Chakdara, 18000 Pakistan
| | - Ikram Ullah
- grid.440530.60000 0004 0609 1900Department of Biotechnology & Genetic Engineering, Hazara University Mansehra, Mansehra, KP Pakistan
| | - Malik Maaza
- grid.412801.e0000 0004 0610 3238UNESCO UNISA Africa Chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa, Pretoria, South Africa ,grid.462638.d0000 0001 0696 719XNanoscience African Network (NANOAFNET), Materials Research Department, iThemba LABS, Cape Town, South Africa
| |
Collapse
|
22
|
Orabi MAA, Orabi EA, Abdel-Sattar ES, English AM, Hatano T, Elimam H. Structural determination and anticholinesterase assay of C-glycosidic ellagitannins from Lawsonia inermis leaves: A study supported by DFT calculations and molecular docking. Fitoterapia 2023; 164:105360. [PMID: 36423882 DOI: 10.1016/j.fitote.2022.105360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
An ellagitannin monomer, lythracin M (1), and a dimer, lythracin D (2), along with eight known monomers (3-10) were isolated from Lawsonia inermis (Lythraceae) leaves. Lythracin M (1) is a C-glycosidic ellagitannin with a flavogallonyl dilactone moiety that participates in the creation of a γ-lactone ring with the anomeric carbon of the glucose core. Lythracin D (2) was determined as an atropisomer of the reported lythcarin D. These newly discovered structures (1 and 2) were determined by intensive spectroscopic experiments and by comparing DFT-calculated 1H1H coupling, 1H NMR chemical shifts, and ECD data with experimental values. The anti-acetylcholinesterase assay of the compounds 1-10 revealed that the C-1 ellagitannin epimers [casuarinin (7; IC50 = 34 ± 2 nM) and stachyurin (8; IC50 = 56 ± 3 nM)], and the new dimer (2; IC50 = 61 ± 4 nM) possess enzyme inhibitory effects comparable to the reference drug (donepezil, IC50 = 44 ± 3 nM). Molecular docking of compounds 1-10 with AChE identified the free galloyl moiety as an important pharmacophore in the anticholinesterase activity of tannins.
Collapse
Affiliation(s)
- Mohamed A A Orabi
- Department of Pharmacognosy, College of Pharmacy, Najran University, Najran 55461, Saudi Arabia.
| | - Esam A Orabi
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada
| | - El-Shaymaa Abdel-Sattar
- Department of Medical Microbiology and Immunology, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt
| | - Ann M English
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada
| | - Tsutomu Hatano
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Tsushima, Kita-Ku, Okayama 700-8530, Japan
| | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City 32958, Egypt; Department of Biochemistry, Faculty of Pharmacy, Sinai University, Kantara, Egypt
| |
Collapse
|
23
|
Ssempijja F, Dare SS, Bukenya EEM, Kasozi KI, Kenganzi R, Fernandez EM, Vicente-Crespo M. Attenuation of Seizures, Cognitive Deficits, and Brain Histopathology by Phytochemicals of Imperata cylindrica (L.) P. Beauv (Poaceae) in Acute and Chronic Mutant Drosophila melanogaster Epilepsy Models. J Evid Based Integr Med 2023; 28:2515690X231160191. [PMID: 36866635 PMCID: PMC9989407 DOI: 10.1177/2515690x231160191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 08/09/2022] [Accepted: 02/06/2023] [Indexed: 03/04/2023] Open
Abstract
Imperata cylindrica is a globally distributed plant known for its antiepileptic attributes, but there is a scarcity of robust evidence for its efficacy. The study investigated neuroprotective attributes of Imperata cylindrica root extract on neuropathological features of epilepsy in a Drosophila melanogaster mutant model of epilepsy. It was conducted on 10-day-old (at the initiation of study) male post-eclosion bang-senseless paralytic Drosophila (parabss1) involved acute (1-3 h) and chronic (6-18 days) experiments; n = 50 flies per group (convulsions tests); n = 100 flies per group (learning/memory tests and histological examination). Administrations were done in 1 g standard fly food, per os. The mutant flies of study (parabss1) showed marked age-dependent progressive brain neurodegeneration and axonal degeneration, significant (P < 0.05) bang sensitivity and convulsions, and cognitive deficits due to up-regulation of the paralytic gene in our mutants. The neuropathological findings were significantly (P < 0.05) alleviated in dose and duration-dependent fashions to near normal/normal after acute and chronic treatment with extract similar to sodium valproate. Therefore, para is expressed in neurons of brain tissues in our mutant flies to bring about epilepsy phenotypes and behaviors of the current juvenile and old-adult mutant D. melanogaster models of epilepsy. The herb exerts neuroprotection by anticonvulsant and antiepileptogenic mechanisms in mutant D. melanogaster due to plant flavonoids, polyphenols, and chromones (1 and 2) which exert antioxidative and receptor or voltage-gated sodium ion channels' inhibitory properties, and thus causing reduced inflammation and apoptosis, increased tissue repair, and improved cell biology in the brain of mutant flies. The methanol root extract provides anticonvulsant and antiepileptogenic medicinal values which protect epileptic D. melanogaster. Therefore, the herb should be advanced for more experimental and clinical studies to confirm its efficacy in treating epilepsy.
Collapse
Affiliation(s)
- Fred Ssempijja
- Department of Anatomy, Faculty of Medicine, Mbarara University of Science and Technology, P.O Box 1410, Mbarara, Uganda
- Department of Anatomy, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O Box 71, Ishaka, Bushenyi, Uganda
| | - Samuel Sunday Dare
- Department of Anatomy, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O Box 71, Ishaka, Bushenyi, Uganda
- School of Medicine, Kabale University, P.O Box 317, Kabale, Uganda
| | - Edmund E. M. Bukenya
- Department of Anatomy, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O Box 71, Ishaka, Bushenyi, Uganda
- School of Medicine, Kabale University, P.O Box 317, Kabale, Uganda
| | | | - Ritah Kenganzi
- Department of Medical Laboratory Sciences, School of Allied Health Sciences, Kampala International University Teaching Hospital, P.O Box 71, Ishaka, Bushenyi, Uganda
| | - Edgar Mario Fernandez
- Department of Anatomy, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O Box 71, Ishaka, Bushenyi, Uganda
| | - Marta Vicente-Crespo
- Institute of Biomedical Research, Kampala International University Western Campus, P.O Box 71, Bushenyi, Uganda
- Department of Biochemistry, Faculty of Biomedical Sciences, Kampala International University Western Campus, P.O Box 71, Bushenyi, Uganda
| |
Collapse
|
24
|
Adekeye AO, Fafure AA, Ogunsemowo AE, Enye LA, Saka OS, Ogedengbe OO. Naringin ameliorates motor dysfunction and exerts neuroprotective role against vanadium-induced neurotoxicity. AIMS Neurosci 2022; 9:536-550. [PMID: 36660080 PMCID: PMC9826750 DOI: 10.3934/neuroscience.2022031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Exposure to vanadium has been known to lead to a progressive neurodegenerative disorder like Parkinson's disease. Naringin is a known flavonoid glycoside that is mostly seen in the flesh of grapefruit and orange and is believed to have protective effects for the treatment of neurodegenerative disorders. This study sought to investigate the role of Naringin in the treatment of vanadium-induced neurotoxicity. Vanadium (10 mg/kg BW) was injected intraperitoneally to induce motor dysfunction, followed by treatment with Naringin (30 mg/kg BW) intraperitoneally for 14 days. Oxidative stress imbalance was monitored by checking Glutathione Peroxidase (GPX) and Catalase levels. Histological and immunohistochemical alterations were observed using RBFOX3 polyclonal antibody to determine neuronal cell distribution and NLRP3 inflammasome antibody as a marker of inflammation. Exposure to vanadium induces neurotoxicity by significantly increasing the Catalase and Glutathione Peroxidase (GPX) levels. Vanadium administration also led to increased inflammatory cells and a significant reduction of the viable neuronal cells in the SNc and CPu. Treatment with Naringin showed a neuroprotective role by dependently restoring the Catalase and Glutathione Peroxidase (GPX) levels, inflammasome activation, and neuronal damage in the SNc and CPu. Naringin demonstrated anti-oxidative, and anti-inflammatory responses by inhibiting oxidative stress, and inflammation and exerts neuroprotective effects by inhibiting apoptosis following vanadium-induced neurotoxicity in adult Wistar rats.
Collapse
Affiliation(s)
- Adeshina O. Adekeye
- Department of Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Adedamola A. Fafure
- Department of Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria,* Correspondence: ; Tel: +2348069501996
| | - Ayoola E. Ogunsemowo
- Department of Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Linus A. Enye
- Department of Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Olusola S. Saka
- Department of Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Oluwatosin O. Ogedengbe
- Department of Anatomy, Faculty of Basic Medical Sciences, Federal University Oye-Ekiti, Ekiti State, Nigeria
| |
Collapse
|
25
|
Ayaz M, Wadood A, Sadiq A, Ullah F, Anichkina O, Ghufran M. In-silico evaluations of the isolated phytosterols from polygonum hydropiper L against BACE1 and MAO drug targets. J Biomol Struct Dyn 2022; 40:10230-10238. [PMID: 34157942 DOI: 10.1080/07391102.2021.1940286] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Our previous anti-Alzheimer's studies on crude extracts, essential oils and isolated compounds including β-sitostrol from Polygonum hydropiper L, motivated us for further studies against beta amyloid cleaving enzyme 1 (BACE1) and monoamine oxidases (MAO-A), (MAO-B) enzymes. Before performing detailed studies on the compounds using animal models and immunohistochemistry, molecular docking study was performed against three vital enzymes implicated in several neurological disorders including Alzheimer's disease (AD), Parkinson's disease (PD), depression and anxiety to predict their inhibitory potential against important enzymes. Beta amyloid cleaving enzyme 1 (BACE1) is important enzyme that catalyze pathological amyloidogenic pathway of processing amyloid precursor proteins to form neurotoxic amyloid plaques. Subsequently, BACE1 inhibitors are considered an important tool in the management of AD. MAOs have been categorized in two well-known groups MAO-A and MAO-B, based on their differential affinity for various monoamines substrates. MAO-A has more affinity for norepinephrine and 5-HT, whereas, MAO-B mainly catalyze the breakdown of dopamine and 2-phenylathylamine (PEA) and other monoamines. Subsequently, they have divergent behavioral outcomes and play a significant role in pathophysiology of several neurodegenerative disorders like AD, depression, drug abuse, migraines, schizophrenia, Attention Deficit Disorder (ADD) and Parkinson's disease (PD). Molecular docking was carried out to predict the binding modes of β-sitosterol and stigmasterol in the binding pockets of BACE1 (beta-sectretase 1) and MAO (monoamine oxidase A, B) enzymes. The 3 D structure of BACE1 (PDB ID: 2QP8), MAO A (PDB ID: 2ZPX) and MAO B (PDB ID: 2XFN) were downloaded from protein databank. The 3 D structures were then subjected to protonation and energy minimization using default parameters of MOE. Three dimensional structures of β-sitosterol and stigmasterol were built by using Molecular Builder Module program implemented in MOE and saved as a (.mdb) file for molecular docking. Subsequently, the energy of both the compounds were minimized up to 0.05 Gradient using MMFF 94 s force field implemented in MOE. Both the compounds were docked into the active site of proteins using the Triangular Matching docking method (default) and 10 different conformations for each compound were generated. To obtain minimum energy structures the ligands were allowed to be flexible during docking. At the end of docking, the predicted ligand-protein complexes were analyzed for molecular interactions. Overall the docking results showed that these compounds showed good interaction with active site residues of BACE1 as compare to MAO-A and MAO-B. Furthermore, β-sitosterol showed good interaction with BACE1 as compare to stigmasterol.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Chakdara, Dir (L), KPK, Pakistan
| | - Abdul Wadood
- Department of biochemistry, Garden campus, Abdul Wali Khan University, Mardan, Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Chakdara, Dir (L), KPK, Pakistan
| | - Farhat Ullah
- Department of Pharmacy, University of Malakand, Chakdara, Dir (L), KPK, Pakistan
| | - Olga Anichkina
- K.G. Razumovsky, Moscow State University of Technologies and Management (the First Cossack University), Moscow, Russian Federation
| | - Mehreen Ghufran
- Department of biochemistry, Garden campus, Abdul Wali Khan University, Mardan, Pakistan
| |
Collapse
|
26
|
Kabra A, Garg R, Brimson J, Živković J, Almawash S, Ayaz M, Nawaz A, Hassan SSU, Bungau S. Mechanistic insights into the role of plant polyphenols and their nano-formulations in the management of depression. Front Pharmacol 2022; 13:1046599. [PMID: 36419621 PMCID: PMC9676275 DOI: 10.3389/fphar.2022.1046599] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/24/2022] [Indexed: 01/07/2024] Open
Abstract
Depression is a condition characterized by low mood and an aversion to activity, that causes behavioral problems, poor quality of life and limits daily life activities. It is considered as the fourth leading cause of disability worldwide. Selective Serotonin Reuptake Inhibitors (SSRIs) Monoamine Oxidase (MAO) inhibitors, Tricyclic Antidepressants (TCAs), and atypical antidepressants are some of the conventional medications used to treat depression. However, only about half of patients with major depressive disorder (MDD) respond effectively to first-line antidepressant therapy. Additionally, there are a number of drawbacks to standard antidepressants, such as anti-cholinergic side effects, drug-drug interactions, and food-drug interactions, which prompts researchers to look at alternative approaches to the treatment of depression. Medicinal plants and their metabolites are extensively tested for their efficacy against depression. Electronic databases such as Google scholar, Science Direct, SciFinder and PubMed were used to search relevant literature on the role of polyphenols in depression. Plants-derived Polyphenols represent a major class of compounds extensively distributed in plants. Number of polyphenols have demonstrated antidepressant activity, among which berberine, piperine, curcumin, naringenin, ascorbic acid and ginsenosides are extensively evaluated. The medicinal plants and their derived compounds mediated synthesized green nanoparticles have also exhibited considerable efficacy in the management of depression. The therapeutic effects of these phytochemicals is mediated via differentiation and inhibition of neuronal cell apoptosis, promotion of neuronal cell survival and modulation of key neurotransmitters. The aim of this study is to review compressively the chemical, pharmacological and neurological evidence showing the potential of polyphenols in depression.
Collapse
Affiliation(s)
- Atul Kabra
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| | - Ruchika Garg
- University School of Pharmaceutical Sciences, Rayat Bhara University, Mohali, Punjab, India
| | - James Brimson
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Jelena Živković
- Department for Pharmaceutical Research and Development, Institute for Medicinal Plants Research “Dr. Josif Pančić”, Belgrade, Serbia
| | - Saud Almawash
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia
| | - Muhammad Ayaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, Pakistan
| | - Asif Nawaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, Pakistan
| | - Syed Shams Ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
27
|
Iftikhar N, Saleem A, Akhtar MF, Abbas G, Shah S, Bibi S, Ashraf GM, Alghamdi BS, Abujamel TS. In Vitro and In Vivo Anti-Arthritic Potential of Caralluma tuberculata N. E. Brown. and Its Chemical Characterization. Molecules 2022; 27:6323. [PMID: 36234860 PMCID: PMC9572219 DOI: 10.3390/molecules27196323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
Present research was planned to assess the in vitro and in vivo anti-arthritic potential of Caralluma tuberculata N. E. Brown. methanolic (CTME) and aqueous (CTAQ) extracts. Chemical characterization was done by high-performance liquid chromatography and gas chromatography−mass spectrometry analysis. The Complete Freund’s Adjuvant (CFA) was injected in left hind paw of rat at day 1 and dosing at 150, 300 and 600 mg/kg was started on the 8th day via oral gavage in all groups except normal and disease control rats (which were given distilled water), whereas methotrexate (intraperitoneal; 1 mg/kg/mL) was administered to standard control. The CTME and CTAQ exerted significant (p < 0.01−0.0001) in vitro anti-arthritic action. Both extracts notably reduced paw edema, and restored weight loss, immune organs weight, arthritic score, RBCs, ESR, platelet count, rheumatoid factor (RF), C-reactive protein, and WBCs in treated rats. The plant extracts showed significant (p < 0.05−0.0001) downregulation of tumor necrosis factor-α, Interleukin-6, -1β, NF-κB, and cyclooxygenase-2, while notably upregulated IL-4, IL-10, I-κBα in contrast to disease control rats. The plant extracts noticeably (p < 0.001−0.0001) restored the superoxide dismutase and catalase activities and MDA levels in treated rats. Both extracts exhibited significant anti-arthritic potential. The promising potential was exhibited by both extracts probably due to phenolic, and flavonoids compounds.
Collapse
Affiliation(s)
- Nida Iftikhar
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore 54000, Pakistan
| | - Ghulam Abbas
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Shahid Shah
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Badrah S. Alghamdi
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Neuroscience Unit, Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Turki S. Abujamel
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
28
|
Küçük Öztürk G, İlgün S. Use of medicinal plants by individuals diagnosed with mental illness: A qualitative study. J Psychiatr Ment Health Nurs 2022; 30:461-471. [PMID: 36125272 DOI: 10.1111/jpm.12874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/03/2022] [Accepted: 09/09/2022] [Indexed: 11/30/2022]
Abstract
UNLABELLED WHAT IS KNOWN ON THE SUBJECT?: Medicinal plants are a part of everyday life. Medicinal plants have many effects on the lives of individuals diagnosed with mental illness. WHAT THE PAPER ADDS TO EXISTING KNOWLEDGE?: Since there is no qualitative study in which individuals diagnosed with mental illness provided a detailed explanation of their views about the use of medicinal plants, this study will fill a gap in the literature and guide mental health nurses. This study provides information for mental health nurses about how individuals diagnosed with mental illness evaluate medicinal plants, what it means to them and the effects of medicinal plants. It provides ideas about the use of medicinal plants as a tool to protect and improve mental health. In addition, since the majority of the studies on mental illnesses and medicinal plants are quantitative studies, it was thought that this study was different from the seminal studies in the literature and could offer new ideas for future studies. WHAT ARE THE IMPLICATIONS FOR PRACTICE?: The results of this study show mental health nurses that the positive aspects of medicinal plants can be used to maintain and improve the mental health of individuals diagnosed with mental illness. Mental health nurses should evaluate the treatment and maintenance process in detail, considering that medicinal plants may interact with drug treatment or the risks of using medicinal plants in terms of adverse effects. Moreover, mental health nurses should fight against the negative aspects of medicinal plants. Mental health nurses and individuals diagnosed with mental illness should be made aware of the use of medicinal plants. ABSTRACT AIM: There was no qualitative study found in which individuals diagnosed with mental illness explained their views in detail about the use of medicinal plants. It is therefore thought that this study will fill this gap in the literature and guide mental health nurses in the field. The research was carried out to determine the use of medicinal plants by individuals diagnosed with mental illness. METHOD This research was a qualitative study conducted using the case study design. Ten individuals diagnosed with mental illness for at least 10 years, determined by the purposeful sampling method were interviewed. The data were collected between March and April 2022 with information form and semi-structured interview form and analysed with the content analysis method. FINDINGS Four of the participants had depression, four had anxiety and two had mood disorders. Themes were determined to be a source of healing (ointment for the soul, body tonic and organic and nature's miracles) and cultural accumulation (faith and inheritance, counselling helpline). CONCLUSION Participants described medicinal plants as a source of healing, stating that medicinal plants are good for bodily and mental health and provide purification. Individuals stated that the information about medicinal plants represents cultural accumulation as an inheritance, they applied them as a counselling helpline in case of illness. IMPLICATIONS FOR PRACTICE The positive effects of medicinal plant use can be supported by mental health nurses. Considering that medicinal plants may interact with the drug treatment, the use of medicinal plants should be evaluated in detail by mental health nurses.
Collapse
Affiliation(s)
- Gülhan Küçük Öztürk
- Department of Psychiatric Nursing, Semra and Vefa Küçük Faculty of Health Sciences, Nevşehir Hacı Bektaş Veli University, Nevşehir, Turkey
| | - Selen İlgün
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| |
Collapse
|
29
|
Phytotherapeutic Approach in the Management of Cisplatin Induced Vomiting; Neurochemical Considerations in Pigeon Vomit Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3914408. [PMID: 36148411 PMCID: PMC9489405 DOI: 10.1155/2022/3914408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 12/02/2022]
Abstract
Cisplatin induced vomiting involves multiple mechanisms in its genesis and a single antiemetic agent do not cover both the phases (acute & delayed) of vomiting in clinics; necessitating the use of antiemetics in combination. Cannabis sativa and other selected plants have ethnopharmacological significance in relieving emesis. The aim of the present study was to investigate the intrinsic antiemetic profile of Cannabis sativa (CS), Bacopa monniera (BM, family Scrophulariaceae), and Zingiber officinale (ZO, family Zingiberaceae) in combinations against vomiting induced by highly emetogenic anticancer drug-cisplatin in pigeons. We have analysed the neurotransmitters which trigger the vomiting response centrally and peripherally. Electrochemical detector (ECD) was used for the quantification of neurotransmitters and their respective metabolites by high performance liquid chromatography in the brain stem (BS) and area postrema (AP) while peripherally in the small intestine. Cisplatin (7 mg/kg i.v.) induced reliable vomiting throughout the observation period (24 hrs). CS-HexFr (10 mg) + BM-MetFr (10 mg)–Combination 1, BM-ButFr (5 mg) + ZO-ActFr (25 mg)–Combination 2, ZO-ActFr (25 mg) + CS-HexFr (10 mg)–Combination 3, and CS-HexFr (10 mg) + BM-ButFr (5 mg)–Combination 4; provided ~30% (30 ± 1.1), 70% (12 ± 0.4; P < 0.01), 60% (19 ± 0.2; P < 0.05) and 90% (05 ± 0.1; P < 0.001) protection, respectively, against cisplatin induced vomiting as compared to cisplatin control. Standard MCP (30 mg) provided ~50% (23 ± 0.3) protection (P > 0.05). CS Hexane fraction (10 mg/kg), BM methanolic (10 mg/kg) and bacoside rich n-butanol fraction (5 mg/kg) and ZO acetone fraction (25 mg/kg) alone provided ~62%, 36%, 71%, and 44% protection, respectively, as compared to cisplatin control. The most effective and synergistic combination 4 was found to reduce 5HT and 5HIAA (P < 0.05–0.001) in all the brain areas area postrema (AP)+brain stem (BS) and intestine at the 3rd hour of cisplatin administration. In continuation, at the 18th of cisplatin administration reduction in dopamine (P < 0.001) in the AP and 5HT in the brain stem and intestine (P < 0.001) was observed. The said combination did not change the neurotransmitters basal levels and their respective metabolites any significantly. In conclusion, all the tested combinations offered protection against cisplatin induced vomiting to variable degrees, where combination 4 provided enhanced attenuation by antiserotonergic mechanism at the 3rd hour while a blended antidopaminergic and antiserotonergic mechanism at the 18th hour after cisplatin administration.
Collapse
|
30
|
Khan FA, Ali G, Rahman K, Khan Y, Ayaz M, Mosa OF, Nawaz A, Hassan SSU, Bungau S. Efficacy of 2-Hydroxyflavanone in Rodent Models of Pain and Inflammation: Involvement of Opioidergic and GABAergic Anti-Nociceptive Mechanisms. Molecules 2022; 27:5431. [PMID: 36080199 PMCID: PMC9457732 DOI: 10.3390/molecules27175431] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/14/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
The current work examined the pharmacological potential of a selected flavanone derivative 2-hydroxyflavanone as a promising remedy for the treatment and management of pain. The selected flavanone derivative (2-HF) was evaluated for its analgesic and anti-inflammatory potentials following standard pharmacological protocols including hot plate, acetic acid-induced writhing and tail immersion tests. Naloxone and pentylenetetrazol were used to evaluate the potential implication of GABAergic and opioidergic mechanisms. The anti-inflammatory potential of 2-HF was confirmed using carrageenan-, serotonin- and histamine-induced paw edema models as well as a xylene-induced ear edema model. Furthermore, the anti-neuropathic potential of 2-HF was tested using a cisplatin-induced neuropathic pain model. Our sample, at the tested concentrations of 15, 30 and 45 mg kg-1, showed considerable analgesic, anti-inflammatory effects, as well as efficacy against neuropathic pain. Naloxone and pentylenetetrazol at 1 and 15 mg kg-1 antagonized the anti-nociceptive activities of 2-hydroxyflavanone indicating the involvement of opioidergic and GABAergic mechanisms. In the static allodynia model, combination of gabapentin 75 mg kg-1 with 2-HF at 15, 30, 45 mg kg-1 doses exhibited considerable efficacy. In cold allodynia, 2-hydroxyflavanone, at doses of 15, 30 and 45 mg kg-1 and in combination with gabapentin (75 mg kg-1), demonstrated prominent anti-allodynic effects. The paw withdrawal latency was considerably increased in gabapentin + cisplatin treated groups. Moreover, cisplatin + 2-hydroxyflavanone 15, 30, 45 mg kg-1 showed increases in paw withdrawal latency. Likewise, considerable efficacy was observed for 2-hydroxyflavanone in thermal hyperalgesia and dynamic allodynia models. Our findings suggest that 2-hydroxyflavanone is a potential remedy for pain syndrome, possibly mediated through opioidergic and GABAergic mechanisms.
Collapse
Affiliation(s)
- Faiz Ali Khan
- Department of Pharmacy, University of Peshawar, Peshawar 25000, Pakistan
| | - Gowhar Ali
- Department of Pharmacy, University of Peshawar, Peshawar 25000, Pakistan
| | - Khista Rahman
- Department of Pharmacy, University of Peshawar, Peshawar 25000, Pakistan
| | - Yahya Khan
- Department of Pharmacy, University of Peshawar, Peshawar 25000, Pakistan
| | - Muhammad Ayaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara 18000, Pakistan
| | - Osama F. Mosa
- Public Health Department, Health Sciences College at Lieth, Umm Al Qura University, Makkah 24231, Saudi Arabia
- Biochemistry Department, Bukhara State Medical Institute Named after Abu Ali Ibn Sino, Bukhara 281403, Uzbekistan
| | - Asif Nawaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara 18000, Pakistan
| | - Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| |
Collapse
|
31
|
Green Nano-Biotechnology: A New Sustainable Paradigm to Control Dengue Infection. Bioinorg Chem Appl 2022; 2022:3994340. [PMID: 35979184 PMCID: PMC9377959 DOI: 10.1155/2022/3994340] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/09/2022] [Indexed: 12/17/2022] Open
Abstract
Dengue is a growing mosquito-borne viral disease prevalent in 128 countries, while 3.9 billion people are at high risk of acquiring the infection. With no specific treatment available, the only way to mitigate the risk of dengue infection is through controlling of vector, i.e., Aedes aegypti. Nanotechnology-based prevention strategies like biopesticides with nanoformulation are now getting popular for preventing dengue fever. Metal nanoparticles (NPs) synthesized by an eco-friendly process, through extracts of medicinal plants have indicated potential anti-dengue applications. Green synthesis of metal NPs is simple, cost-effective, and devoid of hazardous wastes. The recent progress in the phyto-synthesized multifunctional metal NPs for anti-dengue applications has encouraged us to review the available literature and mechanistic aspects of the dengue control using green-synthesized NPs. Furthermore, the molecular bases of the viral inhibition through NPs and the nontarget impacts or hazards with reference to the environmental integrity are discussed in depth. Till date, major focus has been on green synthesis of silver and gold NPs, which need further extension to other innovative composite nanomaterials. Further detailed mechanistic studies are required to critically evaluate the mechanistic insights during the synthesis of the biogenic NPs. Likewise, detailed analysis of the toxicological aspects of NPs and their long-term impact in the environment should be critically assessed.
Collapse
|
32
|
Fu C, Zhang K, Wang M, Qiu F. Casticin and chrysosplenol D from Artemisia annua L. induce apoptosis by inhibiting topoisomerase IIα in human non-small-cell lung cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154095. [PMID: 35398735 DOI: 10.1016/j.phymed.2022.154095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 03/12/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Artemisia annua L. (A. annua) and its active components exhibit antitumour effects in many cancer cells. However, the biological processes and mechanisms involved are not well understood, especially for the treatment of non-small-cell lung cancer (NSCLC). PURPOSE This study aimed to comprehensively explore the biological processes of A. annua and its active components in NSCLC cells and to identify the mechanism by which these compounds induce apoptosis. STUDY DESIGNS/METHODS Cell viability and flow cytometry assays were used to evaluate the cytotoxicity of A. annua active components casticin (CAS) and chrysosplenol D (CHD) in A. annua in NSCLC cells. After treatment with CAS and CHD, A549 cells were subjected to RNA sequencing (RNA-seq) analysis, differentially expressed genes (DEGs) were screened and subjected to functional enrichment analysis (KEGG and GO analysis) as well as protein interaction network analysis. The key targets associated with apoptosis induction in A549 cells were screened by Cytoscape, and the screened DEGs were validated by qRT-PCR. Immunoblotting, immunofluorescence, and molecular docking assays were used to determine whether CAS and/or CHD could induce apoptosis in NSCLC cells by inducing DNA damage through down-regulation of topoisomerase IIα (topo IIα) expression. The same experiments were verified again in the H1299 lung cancer cell line. RESULTS CAS and CHD inhibited NSCLC cells proliferation in a time- and dose-dependent manner, and significantly induced apoptosis. A total of 115 co-upregulated DEGs and 277 co-downregulated DEGs were identified in A549 cells following treatment with CAS and CHD. Comprehensive and systematic data about biological processes and mechanisms were obtained. DNA damage pathways and topo IIα targets were screened to study the apoptosis effects of CAS and CHD on NSCLC cells. CAS and CHD may be able to induce DNA damage by binding to topo IIα-DNA and reducing topo IIα activity. CONCLUSION This study suggested that CAS and CHD may reduce topo IIα activity by binding to topo IIα-DNA, affecting the replication of DNA, triggering DNA damage, and inducing apoptosis. It described a novel mechanism associated with topo IIα inhibition to reveal a novel role for CAS and CHD in A. annua as potential anticancer agents and/or adjuvants in NSCLC cells.
Collapse
Affiliation(s)
- Chunqing Fu
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Keyu Zhang
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Manyuan Wang
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Feng Qiu
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
33
|
Antioxidant, Enzyme Inhibitory, and Molecular Docking Approaches to the Antidiabetic Potentials of Bioactive Compounds from Persicaria hydropiper L. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6705810. [PMID: 35463090 PMCID: PMC9023165 DOI: 10.1155/2022/6705810] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/02/2022] [Accepted: 03/31/2022] [Indexed: 02/08/2023]
Abstract
Introduction Natural products are among the most useful sources for the discovery of new drugs against various diseases. Keeping in view the ethnobotanical relevance ethnopharmacological significance of Polygonaceae family in diabetes, the current study was designed to isolate pure compounds from Persicaria hydropiper L. leaves and evaluate their in vitro and in silico antidiabetic potentials. Methods Six compounds were isolated from the chloroform-ethyl acetate fractions using gravity column chromatography and were subjected to structure elucidation process. Structures were confirmed using 1H-NMR, 13C-NMR, and mass spectrometry techniques. Isolated phytochemicals were subjected to in vitro antidiabetic studies, including α-glucosidase, α-amylase inhibition, and DPPH, and ABTS antioxidant studies. Furthermore, the in silico binding mode of these compounds in the target enzymes was elucidated via MOE-Dock software. Results The isolated compounds revealed concentration-dependent inhibitions against α-glucosidase enzyme. Ph-1 and Ph-2 were most potent with 81.84 and 78.79% enzyme inhibitions at 1000 µg·mL−1, respectively. Ph-1 and Ph-2 exhibited IC50s of 85 and 170 µg·mL−1 correspondingly. Likewise, test compounds showed considerable α-amylase inhibitions with Ph-1 and Ph-2 being the most potent. Tested compounds exhibited considerable antioxidant potentials in both DPPH and ABTS assays. Molecular simulation studies also revealed top-ranked confirmations for the majority of the compounds in the target enzymes. Highest observed potent compound was Ph-1 with docking score of −12.4286 and formed eight hydrogen bonds and three H-pi linkages with the Asp 68, Phe 157, Phe 177, Asn 241, Glu 276, His 279, Phe 300, Glu 304, Ser 308, Pro 309, Phe 310, Asp 349, and Arg 439 residues of α-glucosidase binding packets. Asp 68, Glu 276, Asp 349, and Arg 439 formed polar bonds with the 3-ethyl-2-methylpentane moiety of the ligand. Conclusions The isolated compounds exhibited considerable antioxidant and inhibitory potentials against vital enzymes implicated in T2DM. The docking scores of the compounds revealed that they exhibit affinity for binding with target ligands. The enzyme inhibition and antioxidant potential of the compounds might contribute to the hypoglycemic effects of the plant and need further studies.
Collapse
|
34
|
Salihu M, Batiha GES, Kasozi KI, Zouganelis GD, Sharkawi SM, Ahmed EI, Usman IM, Nalugo H, Ochieng JJ, Ssengendo I, Okeniran OS, Pius T, Kimanje KR, Kegoye ES, Kenganzi R, Ssempijja F. Crinum jagus (J. Thomps. Dandy): Antioxidant and protective properties as a medicinal plant on toluene-induced oxidative stress damages in liver and kidney of rats. Toxicol Rep 2022; 9:699-712. [PMID: 35433275 PMCID: PMC9011043 DOI: 10.1016/j.toxrep.2022.03.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/22/2022] [Accepted: 03/25/2022] [Indexed: 12/18/2022] Open
Abstract
Crinum jagus (C. jagus; J. Thomps.) Dandy (Liliaceae) is a pantropical plant known for its medicinal values and pharmacological properties. The study assessed the protective effects and changes in oxidative stress indices due to C. jagus leaf extracts on the toluene-induced liver and kidney injuries in rats. The study was conducted on 8-week-old male Wistar rats (n = 80), weighing 243.3 ± 1.42 g. Group I, 1 ml/kg distilled water for 7 days; Group II, 4.5 ml/kg toluene once, 1 ml/kg distilled water for 7 days; Group III, 4.5 ml/kg toluene once, 500 mg/kg methanolic extract for 7 days; Group IV, 4.5 ml/kg toluene once, 500 mg/kg aqueous extract for 7 days; Group V, 500 mg/kg methanolic extract for 7 days; Group VI, 500 mg/kg aqueous extract for 7 days; Group VII, 500 mg/kg of vitamin C for 7 days; Group, VIII, 4.5 ml/kg toluene once, 500 mg/kg vitamin C for 7 days, all administrations were given by oral gavage. The phytochemical contents, absolute and relative organ weights of liver and kidneys, liver and kidney function tests, antioxidant status, as well as histological tests were analyzed using standard protocols. The tannins, flavonoids, and polyphenols were in highest concentration in both extracts, content in methanol extract (57.04 ± 1.51 mgg-1, 35.43 ± 1.03 mgg-1, 28.2 ± 0.34 mgg-1 respectively) > aqueous extract (18.74 ± 1.01 mgg-1, 13.43 ± 0.47 mgg-1, 19.65 ± 0.21 mgg-1 respectively). In the negative control group (II), bodyweights significantly (P < 0.05) reduced by 22%, liver weight and kidney weight significantly (P < 0.05) increased by 42% and 83% respectively, liver-to-bodyweight and kidney-to-bodyweight ratios increased significantly (P < 0.05); serum liver function tests (LFTs) i.e., bilirubin, alkaline phosphatase (ALP), Alanine aminotransferase (ALT), Aspartate aminotransferase (AST), Gamma-glutamyl transferase (GGT), and serum kidney function tests (creatinine and urea) were significantly (P < 0.05) elevated; oxidant status (tissue malondialdehyde; MDA) was significantly (P < 0.05) elevated, antioxidant status i.e., tissue superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) levels was significantly (P < 0.05) reduced; with markedly visible renal and hepatic histopathological findings, compared to the normal control group. In C. jagus extract test groups (III and IV), the parameters were significantly (P < 0.05) alleviated and reversed to normal/near normal compared to the negative control. The LFTs, kidney function tests, and antioxidant status were significantly (P < 0.05) more improved with the methanol extract test and standard control groups compared to the aqueous extract test group; Also, the methanol extract test group showed better histological features than the aqueous extract test and standard control groups. The methanolic extract shows better antioxidant potential due to the availability of more nonenzymatic antioxidants (tannins, flavonoids, and polyphenols). The findings showed that toluene is a very aggressive xenobiotic due to the promotion of oxidative stress and peroxidation of cellular lipids, but C. jagus leaves provide significant protection through the reducing power of nonenzymatic antioxidants and their ability to induce endogenous antioxidant enzymes (SOD, CAT, and glutathione reductase or GR) causing reduced cellular lipid peroxidation and tissue damages, quickened tissue repair, and improved cell biology of liver and kidneys during toluene toxicity. The methanol leaf extract provides better protection and should be advanced for more experimental and clinical studies to confirm its efficacy in alleviating oxidative stress tissue injuries, specifically due to toluene.
Collapse
Key Words
- ALP, Alkaline phosphatase
- ALT, Alanine aminotransferase
- AST, Aspartate Aminotransferase
- Anti-lipid peroxidation
- Antioxidants
- Catalase Crinum jagus
- GGT, Gamma-glutamyl transferase
- GR, glutathione reductase
- GSH, Glutathione
- Glutathione superoxide dismutase
- Histoprotective
- LFTs, Liver function tests
- MDA, malondialdehyde
- Malondialdehyde
- SOD, Superoxide dismutase
- TOL, Toluene
- Toluene toxicity
- VC, Vitamin C
Collapse
Affiliation(s)
- Mariama Salihu
- Department of Biochemistry, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O Box 71, Ishaka, Bushenyi, Uganda
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | | | - George D. Zouganelis
- Human Science Research Centre, University of Derby, Kedleston Road, DE22 1GB, Derby, United Kingdom
| | - Souty M.Z. Sharkawi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Eman Ibrahim Ahmed
- Pharmacology and Therapeutics Department, College of Medicine, Jouf University, Sakaka 72346, Saudi Arabia
- Pharmacology Department, Faculty of Medicine, Fayoum University, Fayoum 63511, Egypt
| | - Ibe Michael Usman
- Department of Anatomy, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O Box 71, Ishaka, Bushenyi, Uganda
| | - Halima Nalugo
- Department of Anatomy, Faculty of Medicine, Mbarara University of Science and Technology, P.O Box 1410, Mbarara, Uganda
| | - Juma J. Ochieng
- Department of Anatomy, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O Box 71, Ishaka, Bushenyi, Uganda
| | - Ibrahim Ssengendo
- Department of Anatomy, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O Box 71, Ishaka, Bushenyi, Uganda
| | - Olatayo Segun Okeniran
- Department of Anatomy, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O Box 71, Ishaka, Bushenyi, Uganda
| | - Theophilus Pius
- Department of Medical Laboratory Sciences, School of Allied Health Sciences, Kampala International University Teaching Hospital, P.O Box 71, Ishaka, Bushenyi, Uganda
| | - Kyobe Ronald Kimanje
- Department of Biochemistry, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O Box 71, Ishaka, Bushenyi, Uganda
| | - Eric Simidi Kegoye
- Department of Anatomy, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O Box 71, Ishaka, Bushenyi, Uganda
| | - Ritah Kenganzi
- Department of Medical Laboratory Sciences, School of Allied Health Sciences, Kampala International University Teaching Hospital, P.O Box 71, Ishaka, Bushenyi, Uganda
| | - Fred Ssempijja
- Department of Anatomy, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O Box 71, Ishaka, Bushenyi, Uganda
| |
Collapse
|
35
|
Shaukat B, Mehmood MH, Anwar H. Ziziphus Oxyphylla hydro-methanolic extract ameliorates hypertension in L-NAME induced hypertensive rats through NO/cGMP pathway and suppression of oxidative stress related inflammatory biomarkers. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114825. [PMID: 34774683 DOI: 10.1016/j.jep.2021.114825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 09/20/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ziziphus Oxyphylla belongs to family Ziziphus and has been used traditionally in hypertension. It is enriched with quercetin and kaempferol derivatives, catechin and cyclopeptide alkaloids. AIM The current research evaluates the antihypertensive potential of aqueous methanolic extract of Z. oxyphylla (AMEZO) in NG-nitro-L-arginine methyl ester (LNAME) induced hypertension in rats. MATERIAL AND METHODOLOGY Phytochemical analysis of AMEZO was carried out using high performance liquid chromatography (HPLC) and electrospray ionization mass spectrometry (ESI-MS/MS). Antihypertensive activities of AMEZO (200 and 400 mg/kg) and Kaempferol were assessed in L-NAME (185 μmol/kg, intraperitoneal) injected hypertensive rats. In normotensive rats, blood pressure was assessed using Power Lab data system. Serum and tissue samples were preserved for estimation of nitric oxide (NO), Cyclic guanosine monophosphate (cGMP), interleukin-6 (IL-6), tumor necrosis factor (TNF- α) and oxidative stress markers respectively. mRNA levels of eNOS, ACE, COX-2 and NF-kB genes were assessed through qPCR. RESULTS The HPLC and ESI-MS/MS identified kaempferol, quercetin, catechin, ceanothic acid, zizybernalic acid and oxyphylline F. Chronic administration of AMEZO and kaempferol in L-NAME induced hypertensive rats significantly (p < 0.001) reduced systolic, diastolic and mean blood pressure. AMEZO and kaempferol caused meaningfully improved (p < 0.001) serum NO and cGMP levels. AMEZO administration also noticeably decrease the elevated IL-6 and TNF- α concentration in hypertensive animals. Administration of AMEZO and kaempferol also improved oxidative stress markers (MDA, CAT, SOD, GSH). The antihypertensive activity of AMEZO also resulted in upregulation of eNOS and downregulation of ACE. CONCLUSION These data depict that AMEZO and kaempferol showed antihypertensive activity in LNAME induced hypertensive rats possibly mediated through improvement in NO and cGMP levels, modulation of mRNA expression of eNOS, ACE, COX-2 and NF-kB and suppression of oxidative stress related inflammatory markers, proposing a defensive role in cardiovascular diseases.
Collapse
Affiliation(s)
- Bushra Shaukat
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan.
| | - Malik Hassan Mehmood
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan.
| | - Haseeb Anwar
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan.
| |
Collapse
|
36
|
Hepatoprotective Effects of (-) Epicatechin in CCl 4-Induced Toxicity Model Are Mediated via Modulation of Oxidative Stress Markers in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2021:4655150. [PMID: 34976093 PMCID: PMC8716200 DOI: 10.1155/2021/4655150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/08/2021] [Indexed: 12/24/2022]
Abstract
Objective (−) Epicatechin (EP) is a naturally occurring antioxidant flavonoid found in some green plants. The current study was designed to evaluate the potential role of antioxidant mechanisms in the hepatoprotective properties of EP using the carbon tetrachloride (CCl4)-induced acute liver injury model. Materials and Methods Rats (n = 7 per group) were divided into five groups including control group, (−) epicatechin group (20 mg·kg−1 body weight), CCl4 group (1 mL−1 body weight), CCl4-EP treatment group, and CCl4-silymarin (SILY) group. The levels of enzymes including hepatic malondialdehyde (MDA), glutathione (GSH), catalase (CAT), glutathione S-transferase (GST), nitric oxide synthase (NOS), glutathione peroxidase (GPx), and cytochrome P450 (CYP450) were analyzed via enzyme-linked immunosorbent assay (ELISA). Histological studies were performed on all groups to assess the regenerative effects of test sample and compare it with the control group. Results Test compound EP and standard drug silymarin (SILY) considerably reduced liver function enzyme levels in the blood, which were raised by CCl4 administration, and increased serum albumin and total protein (TP) concentrations. The hepatic malondialdehyde (MDA) level was considerably declined, whereas glutathione (GSH), catalase (CAT), glutathione S-transferase (GST), nitric oxide synthase (NOS), glutathione peroxidase (GPx), and cytochrome P450 (CYP450) levels were upregulated in the EC-treated groups. The hepatoprotective results of the study were further confirmed via the histological assessments, which indicated a regeneration of the damaged hepatic tissue in treated rats. Conclusions The results of this study revealed a significant protective efficacy of EP against CCl4-induced liver injury, which was potentially mediated via upregulation of antioxidant enzymes and direct scavenging effects of the compound against free radicals.
Collapse
|
37
|
Nasar MQ, Zohra T, Khalil AT, Ovais M, Ullah I, Ayaz M, Zahoor M, Shinwari ZK. Extraction optimization, Total Phenolic-Flavonoids content, HPLC-DAD finger printing, antimicrobial, antioxidant and cytotoxic potentials of Chinese folklore Ephedra intermedia Schrenk & C. A. Mey. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
| | | | | | | | | | | | | | - Zabta Khan Shinwari
- Quaid-i-Azam University, Pakistan; Lady Reading Hospital (MTI), Pakistan; Pakistan Academy of Sciences, Pakistan
| |
Collapse
|
38
|
Mahnashi MH, Alyami BA, Alqahtani YS, Alqarni AO, Jan MS, Ayaz M, Ullah F, Shahid M, Rashid U, Sadiq A. Neuroprotective potentials of selected natural edible oils using enzyme inhibitory, kinetic and simulation approaches. BMC Complement Med Ther 2021; 21:248. [PMID: 34600509 PMCID: PMC8487577 DOI: 10.1186/s12906-021-03420-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 09/22/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Edible oils have proven health benefits in the prevention and treatment of various disorders since the establishment of human era. This study was aimed to appraise neuropharmacological studies on the commonly used edible oils including Cinnamomum verum (CV), Zingiber officinale (ZO) and Cuminum cyminum (CC). METHODS The oils were analyzed via GC-MS for identifications of bioactive compounds. Anti-radicals capacity of the oils were evaluated via 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radicals scavenging assays. The samples were also tested against two important acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) which are among the important drug targets in Alzheimer's disease. Lineweaver-Burk plots were constructed for enzyme inhibition studies which correspond to velocity of enzymes (Vmax) against the reciprocal of substrate concentration (Km) in the presence of test samples and control drugs following Michaelis-Menten kinetics. Docking studies on AChE target were also carried out using Molecular Operating Environment (MOE 2016.0802) software. RESULTS (Gas chromatography-mass spectrometry GC-MS) analysis revealed the presence of thirty-four compounds in Cinnamon oil (Cv.Eo), fourteen in ginger oil (Zo.Eo) and fifty-six in cumin oil (Cc.Eo). In the antioxidant assays, Cv.Eo, Zo.Eo and Cc.Eo exhibited IC50 values of 85, 121, 280 μg/ml sequentially against DPPH radicals. Whereas, in ABTS assay, Cv.Eo, Zo.Eo and Cc.Eo showed considerable anti-radicals potentials with IC50 values of 93, 77 and 271 μg/ml respectively. Furthermore, Cv.Eo was highly active against AChE enzyme with IC50 of 21 μg/ml. Zo.Eo and Cc.Eo exhibited considerable inhibitory activities against AChE with IC50 values of 88 and 198 μg/ml respectively. In BChE assay, Cv.Eo, Zo.Eo and Cc.Eo exhibited IC50 values of 106, 101 and 37 μg/ml respectively. Our results revealed that these oils possess considerable antioxidant and cholinesterase inhibitory potentials. As functional foods these oils can be effective remedy for the prevention and management of neurological disorders including AD. Synergistic effect of all the identified compounds was determined via binding energy values computed through docking simulations. Binding orientations showed that all the compounds interact with amino acid residues present in the peripheral anionic site (PAS) and catalytic anionic site (CAS) amino acid residues, oxyanion hole and acyl pocket via π-π stacking interactions and hydrogen bond interactions.
Collapse
Affiliation(s)
- Mater H. Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Bandar A. Alyami
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Yahya S. Alqahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Ali O. Alqarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | | | - Muhammad Ayaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, KP 18000 Dir (L) Pakistan
| | - Farhat Ullah
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, KP 18000 Dir (L) Pakistan
| | - Muhammad Shahid
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa 25000 Pakistan
| | - Umer Rashid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060 Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, KP 18000 Dir (L) Pakistan
| |
Collapse
|
39
|
Khalil AT, Khan MD, Razzaque S, Afridi S, Ullah I, Iqbal J, Tasneem S, Shah A, Shinwari ZK, Revaprasadu N, Ayaz M. Single precursor-based synthesis of transition metal sulfide nanoparticles and evaluation of their antimicrobial, antioxidant and cytotoxic potentials. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-02030-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
40
|
Phytochemical Analysis and Evaluation of Biological Activity of Lawsonia inermis Seeds Related to Alzheimer's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5965061. [PMID: 34335830 PMCID: PMC8313326 DOI: 10.1155/2021/5965061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/12/2021] [Accepted: 07/01/2021] [Indexed: 12/31/2022]
Abstract
Using Lawsonia inermis L. (henna) seeds has been frequently recommended for the improvement of memory in Iranian Traditional Medicine (ITM). In this respect, different fractions of the plant were prepared and evaluated for their in vitro biological assays related to Alzheimer's disease (AD), including acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity as well as metal chelating ability and DPPH antioxidant activity. The dichloromethane and ethyl acetate fractions were able to inhibit the BChE selectively with IC50 values of 113.47 and 124.90 μg/mL, respectively, compared with donepezil as the reference drug (IC50 = 1.52 μg/mL). However, all fractions were inactive toward AChE. Phytochemical analysis of the dichloromethane fraction indicated the presence of β-sitosterol (1), 3-O-β-acetyloleanolic acid (2), 3-O-(Z)-coumaroyl oleanolic acid (3), betulinic acid (4), and oleanolic acid (5). The inhibitory activity of isolated compounds was also evaluated toward AChE and BChE. Among them, compounds 2 and 5 showed potent inhibitory activity toward BChE with IC50 values of 77.13 and 72.20 μM, respectively. However, all compounds were inactive toward AChE. Moreover, molecular docking study confirmed desired interactions between those compounds and the BChE active site. The ability of fractions and compounds to chelate biometals (Cu2+, Fe2+, and Zn2+) was also investigated. Finally, DPPH antioxidant assay revealed that the ethyl acetate (IC50 = 3.08 μg/mL) and methanol (IC50 = 3.64 μg/mL) fractions possessed excellent antioxidant activity in comparison to BHA as the positive control (IC50 = 3.79 μg/mL).
Collapse
|
41
|
Anwar F, Saleem U, Rehman AU, Ahmad B, Froeyen M, Mirza MU, Kee LY, Abdullah I, Ahmad S. Toxicity Evaluation of the Naphthalen-2-yl 3,5-Dinitrobenzoate: A Drug Candidate for Alzheimer Disease. Front Pharmacol 2021; 12:607026. [PMID: 34040515 PMCID: PMC8141749 DOI: 10.3389/fphar.2021.607026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/18/2021] [Indexed: 12/31/2022] Open
Abstract
The presented study was designed to probe the toxicity potential of newly identified compound naphthalen-2-yl 3,5-dinitrobenzoate (SF1). Acute, subacute toxicity and teratogenicity studies were performed as per Organization of economic cooperation and development (OECD) 425, 407, and 414 test guidelines, respectively. An oral dose of 2000 mg/kg to rats for acute toxicity. Furthermore, 5, 10, 20, and 40 mg/kg doses were administered once daily for 28 days in subacute toxicity study. Teratogenicity study was performed with 40 mg/kg due to its excellent anti-Alzheimer results at this dose. SF1 induced a significant rise in Alkaline Phosphatases (ALP), bilirubin, white blood cells (WBC), and lymphocyte levels with a decrease in platelet count. Furthermore, the reduction in urea, uric acid, and aspartate transaminase (AST) levels and an increase in total protein levels were measured in subacute toxicity. SF1 increased spermatogenesis at 5 and 10 mg/kg doses. Teratogenicity study depicted no resorptions, early abortions, cleft palate, spina bifida and any skeletal abnormalities in the fetuses. Oxidative stress markers (Superoxide dismutase (SOD), Catalase (CAT), and glutathione (GSH) were increased in all the experiments, whereas the effect on melanoaldehyde Malondialdehyde (MDA) levels was variable. Histopathology further corroborated these results with no change in the architectures of selected organs. Consequently, a 2000 mg/kg dose of SF1 tends to induce minor liver dysfunction along with immunomodulation, and it is well below its LD 50 . Moreover, it can be safely used in pregnancy owing to its no detectable teratogenicity.
Collapse
Affiliation(s)
- Fareeha Anwar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan.,Riphah Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Govt. College University, Faisalabad, Pakistan
| | - Atta-Ur Rehman
- Department of Pharmacy, Forman Christian University, Lahore, Pakistan
| | - Bashir Ahmad
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Matheus Froeyen
- Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Medicinal Chemistry, University of Leuven, Leuven, Belgium
| | - Muhammad Usman Mirza
- Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Medicinal Chemistry, University of Leuven, Leuven, Belgium
| | - Lee Yean Kee
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Iskandar Abdullah
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Sarfraz Ahmad
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
42
|
Tong X, Li X, Ayaz M, Ullah F, Sadiq A, Ovais M, Shahid M, Khayrullin M, Hazrat A. Neuroprotective Studies on Polygonum hydropiper L. Essential Oils Using Transgenic Animal Models. Front Pharmacol 2021; 11:580069. [PMID: 33584260 PMCID: PMC7873646 DOI: 10.3389/fphar.2020.580069] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 12/08/2020] [Indexed: 01/12/2023] Open
Abstract
Polygonum hydropiper L. and related species are reported to possess neuroprotective potentials. In an attempt to validate its anti-Alzheimer's potentials, leaf oils (Ph. Lo) were extensively evaluated in this study against several in vitro and in vivo models of Alzheimer's disease. The Ph. Lo were tested against pathological targets of Alzheimer's diseases (ADs). The in vitro and in vivo assays were done for cholinesterase inhibition, anti-radical properties and cognitive assessments using transgenic animal models. In preliminary cholinesterase inhibition assays, Ph. Lo were more active against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2-azinobis (3-ethylbenzthiazoline)-6-sulfonic acid (ABTS), and hydrogen peroxide (H2O2) radicals. Subsequently, Ph. Lo was evaluated for its effects on special memory, exploratory behavior, and coordination using shallow water maze (SWM), Y-maze, open filed, and balance beam tests. Animal pre-genotyping was done via polymerase chain reaction (PCR) to confirm amyloid precursor protein (APP) transgene, and after completion of drug therapy, brain homogenates from the cortex and hippocampus were evaluated for cholinesterase and free radical studies. In SWM task, disease control animals treated with 10 mg/kg of Ph. Lo for 5 days exhibited significant improvement in cognitive performance indicated by low escape times on 5th day compared with normal animals. In the Y-maze test, transgenic animals showed higher spontaneous alternation behavior than disease control animals and standard control group animals. Ph. Lo therapy has improved the exploratory behavior and declined anxiety behavior in diseased animals as accessed via open field test. Ph. Lo administration significantly augmented the motor and coordination abilities of transgenic animals when compared to other groups of animals and declined AChE, BChE activities as well as free radicals load in the cortex and hippocampus tissues. Based on our finding, it is concluded that Ph. Lo exhibit significant neuroprotective potentials preliminary due to their anti-radicals and cholinesterase inhibitory activities. Ph. Lo need further detailed studies as potential aromatherapy against neurodegenerative disorders.
Collapse
Affiliation(s)
- Xin Tong
- Department of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaoling Li
- Department of Imaging, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Farhat Ullah
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Muhammad Ovais
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Muhammad Shahid
- Department of Pharmacy, Sarhad University of Information Technology, Peshawar, Pakistan
| | - Mars Khayrullin
- K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), Moscow, Russia
| | - Ali Hazrat
- Department of Botany, University of Malakand, Chakdara, Pakistan
| |
Collapse
|
43
|
Saleem U, Usman M, Anwar F, Akhtar MF, Ahmad B. Pharmacological and toxicological evaluation of two anti-asthmatic polyherbal formulations. AN ACAD BRAS CIENC 2020; 92:e20191562. [PMID: 33053107 DOI: 10.1590/0001-3765202020191562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/11/2020] [Indexed: 11/21/2022] Open
Abstract
The study aim was to evaluate the toxic potential of two polyherbal formulation i.e. " PH 1 & PH 2" and scientific validation of their anti-asthmatic use. Acute oral toxicity study as per OECD 425 TG was conducted. For validation of anti-asthmatic claim, in vivo assay named Ovalbumin (OVA)-induced murine method in Wistar rats was used. Eosinophils and IgE antibody were quantified post-administration of low and high doses of the formulations. No mortality was observed in acute toxicity study. Elevated levels of alkaline phosphatase and damaged liver structure indicating the hepatotoxicity were more pronounced in PH 2 treated rats. Congestion in kidney tissue and increased urea level were evident of the nephrotoxic nature of PH 2 in animals. Treatment with selected polyherbal products decreased the MDA level while increasing the SOD and GSH levels in lung tissue homogenates. The maximum decrease in IgE load (3.18 ± 0.08 IU/mL) was found in rats treated with 12 mg/kg dose of PH 1 followed by 100 mg/kg dose of PH 2 (3.44 ± 0.06 IU/mL). It was concluded that both polyherbal formulations had anti-asthmatic activities, however, PH 1 exhibited the liver and kidney toxicity and should be cautiously used.
Collapse
Affiliation(s)
- Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, 38000, Pakistan
| | - Maryam Usman
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Lahore, 54000, Pakistan
| | - Fareeha Anwar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Lahore, 54000, Pakistan
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Lahore, 54000, Pakistan
| | - Bashir Ahmad
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Lahore, 54000, Pakistan
| |
Collapse
|
44
|
Exploring the Therapeutic Potentials of Highly Selective Oxygenated Chalcone Based MAO-B Inhibitors in a Haloperidol-Induced Murine Model of Parkinson's Disease. Neurochem Res 2020; 45:2786-2799. [PMID: 32939670 DOI: 10.1007/s11064-020-03130-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 01/10/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder of dopaminergic, noradrenergic, and serotonergic systems, in which dopamine, noradrenaline, and serotonin levels are depleted and lead to the development of motor and non-motor symptoms such as tremor, bradykinesia, weight changes, fatigue, depression, and visual hallucinations. Therapeutic strategies place much focus on dopamine replacement and the inhibition of dopamine metabolism. The present study was based on the known abilities of chalcones to act as molecular scaffolds that selectively inhibit MAO-B with the added advantage of binding reversibly. Recently, we synthesized a series of 26 chalcone compounds, amongst which (2E)-1-(2H-1,3-benzodioxol-5-yl)-3-(4-fluorophenyl)prop-2-en-1-one (O10) and (2E)-1-(2,3-dihydro-1,4-benzodioxin-6-yl)-3-(4-fluorophenyl)prop-2-en-1-one (O23) most inhibited MAO-B. Hence, the present study was performed to explore the molecular mechanisms responsible for the neuroprotective effect of O10 and O23 at varying doses such as 10, 20, and 30 mg/kg each in a haloperidol-induced murine model of PD. Both compounds were effective (though O23 was the more effective) at ameliorating extrapyramidal and non-motor symptoms in the model and improved locomotory and exploratory behaviors, reduced oxidative stress markers, and enhanced antioxidant marker and neurotransmitter levels. Furthermore, histopathological studies showed O10 and O23 both reduced neurofibrillary tangles and plaques to almost normal control levels.
Collapse
|
45
|
Sani A, Hassan D, Khalil AT, Mughal A, El-Mallul A, Ayaz M, Yessimbekov Z, Shinwari ZK, Maaza M. Floral extracts-mediated green synthesis of NiO nanoparticles and their diverse pharmacological evaluations. J Biomol Struct Dyn 2020; 39:4133-4147. [DOI: 10.1080/07391102.2020.1775120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ayesha Sani
- National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
| | - Dilawar Hassan
- National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
- UNESCO-UNISA Africa chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa, Pretoria, South Africa
- Nanosciences African Network (NANOAFNET), Materials Research Department, iThemba LABS, Cape Town, South Africa
| | - Ali Talha Khalil
- UNESCO-UNISA Africa chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa, Pretoria, South Africa
- Nanosciences African Network (NANOAFNET), Materials Research Department, iThemba LABS, Cape Town, South Africa
- Department of Biotechnology, Qarshi University, Lahore, Pakistan
| | - Affifa Mughal
- College of Pharmacy, Liaquat University of Medical and Health Sciences (LUMHS), Jamshoro, Pakistan
| | - Ahmed El-Mallul
- Department of Food Engineering, Warsaw Medical University, Warszawa, Poland
| | - Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Zhanibek Yessimbekov
- Department of Food Engineering, Shakarim State University of Semey, Semey City, Kazakhstan
| | | | - Malik Maaza
- UNESCO-UNISA Africa chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa, Pretoria, South Africa
- Nanosciences African Network (NANOAFNET), Materials Research Department, iThemba LABS, Cape Town, South Africa
| |
Collapse
|
46
|
Taxonomic Distribution of Medicinal Plants for Alzheimer’s Disease: A Cue to Novel Drugs. Int J Alzheimers Dis 2020. [DOI: 10.1155/2020/7603015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder manifested by decline in memory and mild cognitive impairment leading to dementia. Despite global occurrence of AD, the severity and hence onset of dementia vary among different regions, which was correlated with the customary use of medicinal herbs and exposure level to the causatives. In spite of execution of versatile therapeutic strategies to combat AD and other neurodegenerative diseases, success is only limited to symptomatic treatment. The role of natural remedies remained primitive and irreplaceable in all ages. In some examples, the extracted drugs failed to show comparable results due to lack of micro ingredients. Micro ingredients impart a peerless value to natural remedies which are difficult to isolate and/or determine their precise role during treatment. A variety of plants have been used for memory enhancement and other dementia-related complications since ages. Acetyl choline esterase inhibition, antioxidant potential, neuroprotection, mitochondrial energy restoration, and/or precipitated protein clearance put a vast taxonomic variety into a single group of anti-AD plants. Secondary metabolites derived from these medicinal plants have the potential to treat AD and other brain diseases of common pathology. This review summarizes the potential of taxonomically diverse medicinal plants in the treatment of AD serving as a guide to further exploration.
Collapse
|
47
|
Saleem U, Khalid S, Zaib S, Anwar F, Ahmad B, Ullah I, Zeb A, Ayaz M. Phytochemical analysis and wound healing studies on ethnomedicinally important plant Malva neglecta Wallr. JOURNAL OF ETHNOPHARMACOLOGY 2020; 249:112401. [PMID: 31739103 DOI: 10.1016/j.jep.2019.112401] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 07/28/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVENCE The use of herbal medicines is increasing in developed countries as alternative and/or supportive therapy to conventional health care medicines. Malva neglecta Wallr. (Family: Malvaceae) has been reported as wound healing remedy in traditional medicines, however no experimental data is available on its wound healing potentials. The aim of this study was to explore phytochemistry and validate wound healing potentials of the plant using animal models. MATERIALS AND METHODS M. neglecta crude methanolic extract (Mn.Cme) was chemically characterized using HPLC-DAD and GCMS analysis. Acute dermal toxicity was determined in albino rats following Organization of Economic Co-operation and Development (OECD) 402 established standards. Wound healing potentials were evaluated in rats using excision wound model. Wounds (177 mm2) were made by an excision on the skin of rats which were placed individually in cages. Mn.Cme was formulated in ointment form and was applied topically onto the wound area once daily for 14 days. The wound area was measured with translucent paper and thereafter estimated on a 1 mm2 graph sheet every 3rd day until epithelialization and complete wound closure was recorded. Wound contraction was calculated as a percentage of the original wound size. Antioxidant potentials were also evaluated via FRAP, DPPH and H2O2 free radicals scavenging assays. RESULTS HPLC-DAD analysis revealed 25 phenolic compounds with higher amounts of hydrotyrosol (109.3 mg/g), coumaroylhexoside (97.4 mg/g), kaempferol-3-(p-coumaroyldiglucoside)-7-glucoside (37.2 mg/g), quercetin-3-O-rutinoside (31.5 mg/g) and epicatechin-3-O-(4-O-methyl)-gallate (31.3 mg/g). In GC-MS analysis, oleic acid (19.67%), taurine (17.60%), ethylene dimercaptan (14.67%), isoeugenol (14.61%), patchoulane (10.36%), methyl 12-methyltetradecanoate (8.47%) and isopropyl myristate (7.02%) were highly abundant compounds. No sign of toxicity was observed in the acute dermal toxicity test. Our test sample (Mn.Cme) exhibited considerable wound healing tendency at all doses (1 g, 1.5 g, 2 g per 10 g of ointment base) with reduced epithelialization period in a dose-related manner. Absolute healing was observed after application of 2 g of Mn.Cme ointment. Further, Mn.Cme exhibited considerable anti-radical potential in all assays. CONCLUSION It may be concluded that M. neglecta possess very potent secondary metabolites which are previously reported for wound healing potentials. The plant has considerable antioxidant and wound healing properties and thus warrant further studies to uncover the molecular mechanism its wound healing potentials.
Collapse
Affiliation(s)
- Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan.
| | - Sana Khalid
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan.
| | - Shigraf Zaib
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan.
| | - Fareeha Anwar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan.
| | - Bashir Ahmad
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan.
| | - Izhar Ullah
- Department of Pharmacy, University of the Poonch, Rawalakot, AJK, Pakistan.
| | - Alam Zeb
- Department of Biochemistry, University of Malakand, Khyber Pakhtunkhwa, 18800, Pakistan.
| | - Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Khyber Pakhtunkhwa, 18800, Pakistan.
| |
Collapse
|
48
|
Ahmad A, Ullah F, Sadiq A, Ayaz M, Rahim H, Rashid U, Ahmad S, Jan MS, Ullah R, Shahat AA, Mahmood HM. Pharmacological Evaluation of Aldehydic-Pyrrolidinedione Against HCT-116, MDA-MB231, NIH/3T3, MCF-7 Cancer Cell Lines, Antioxidant and Enzyme Inhibition Studies. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:4185-4194. [PMID: 31849450 PMCID: PMC6911349 DOI: 10.2147/dddt.s226080] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/12/2019] [Indexed: 12/16/2022]
Abstract
Purpose The current work was designed to synthesize a bioactive derivative of succinimide and evaluate it for anti-Alzheimer, anticancer and anti-diabetic potentials. Methods The compound was synthesized by Michael addition of butyraldehyde with N-phenylmaleimide. The synthesized compound was screened for biological potentials including anti-cholinesterase, in-vitro anti-diabetic, antioxidant and anthelmintic potentials. The anti-cholinesterase potential was evaluated against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), anti-diabetic potential against α-glucosidase, antioxidant potential against ABTS, DPPH and H2O2 and anthelmintic potential against Perethima posthuma and Ascaridia galli respectively. Results The compound demonstrated significant AChE and BChE inhibition i.e., 71.34±1.92 and 73.42 ±1.92 at the concentration of 1000 µg/mL respectively. Other dilutions exhibited concentration-dependent inhibitory activity against both enzymes. In the MTT assay, the newly synthesized compound was found active against all of the cell lines viz, HCT-116, MDA-MB231, NIH/3T3 and MCF-7 and the highest cytotoxicity potential was observed against the colon cancer cell line (HCT-116) with an IC50 value of 78 µg/mL exhibiting its highest potential. Moreover, the compound exhibited prominent α-glucosidase inhibitory potentials (79.86±2.54% at 1000 µg/mL) with IC50 value of 156.23 µg/mL. Further, our test compound exhibited considerable scavenging activity against DPPH, ABTS and H2O2 free radicals with percent inhibitions of 75.84±1.58, 72.85±1.17 and 54.82±1.82 and IC50 values of 84.36, 139.74 and 752.21 µg/mL respectively. Our test sample exhibited significant anthelmintic potentials. It demonstrated significant paralysis and death of the test worms in an unbelievably short time in comparison with albendazole. Conclusion Going into the detail of all observations, it may be deduced that the newly synthesized succinimide derivative could be an important drug candidate against neurodegenerative disorders like Alzheimer's disease, cancer, diabetes mellitus and worms. Further detailed studies in animal models are required for in-vivo analysis of the compound.
Collapse
Affiliation(s)
- Ashfaq Ahmad
- Department of Pharmacy, University of Malakand, Chakdara, Dir (L), KP (Khyber Pakhtunkhwa) 18000, Pakistan
| | - Farhat Ullah
- Department of Pharmacy, University of Malakand, Chakdara, Dir (L), KP (Khyber Pakhtunkhwa) 18000, Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Chakdara, Dir (L), KP (Khyber Pakhtunkhwa) 18000, Pakistan
| | - Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Chakdara, Dir (L), KP (Khyber Pakhtunkhwa) 18000, Pakistan
| | - Haroon Rahim
- Department of Pharmacy, Sarhad University of Science & Information Technology, Peshawar, KP (Khyber Pakhtunkhwa), Pakistan
| | - Umer Rashid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, KP (Khyber Pakhtunkhwa), Pakistan
| | - Sajjad Ahmad
- Department of Pharmacy, University of Malakand, Chakdara, Dir (L), KP (Khyber Pakhtunkhwa) 18000, Pakistan
| | - Muhammad Saeed Jan
- Department of Pharmacy, University of Malakand, Chakdara, Dir (L), KP (Khyber Pakhtunkhwa) 18000, Pakistan
| | - Riaz Ullah
- Department of Pharmacognosy (MAPPRC), College of Pharmacy, King Saud University Riyadh, Riyadh, Saudi Arabia
| | - Abdelaaty A Shahat
- Department of Pharmacognosy (MAPPRC), College of Pharmacy, King Saud University Riyadh, Riyadh, Saudi Arabia.,Phytochemistry Department, National Research Centre, Giza, Egypt
| | - Hafiz Majid Mahmood
- Department of Pharmacology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
49
|
Ayaz M, Ullah F, Sadiq A, Kim MO, Ali T. Editorial: Natural Products-Based Drugs: Potential Therapeutics Against Alzheimer's Disease and Other Neurological Disorders. Front Pharmacol 2019; 10:1417. [PMID: 31849668 PMCID: PMC6889855 DOI: 10.3389/fphar.2019.01417] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 11/07/2019] [Indexed: 12/20/2022] Open
Affiliation(s)
- Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Farhat Ullah
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Myeong Ok Kim
- Division of Applied Life Science (BK 21), College of Natural Science, Gyeongsang National University, Jinju, South Korea
| | - Tahir Ali
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Alberta, Canada
| |
Collapse
|
50
|
Ayaz M, Ullah F, Sadiq A, Ullah F, Ovais M, Ahmed J, Devkota HP. Synergistic interactions of phytochemicals with antimicrobial agents: Potential strategy to counteract drug resistance. Chem Biol Interact 2019; 308:294-303. [PMID: 31158333 DOI: 10.1016/j.cbi.2019.05.050] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 05/18/2019] [Accepted: 05/29/2019] [Indexed: 01/22/2023]
Abstract
The emergence of multidrug resistant (MDR) pathogens is a global threat and has created problems in providing adequate treatment of many infectious diseases. Although the conventional antimicrobial agents are quite effective against several pathogens, yet there is a need for more effective antimicrobial agents against MDR pathogens. Herbal drugs and phytochemicals have been used for their effective antimicrobial activity from ancient times and there is an increasing trend for development of plant based natural products for the prevention and treatment of pathogenic diseases. One of the strategies for effective resistance modification is the use of antimicrobial agent-phytochemical combinations that will neutralize the resistance mechanism, enabling the drug to still be effective against resistant microbes. These phytochemicals can work by several strategies, such as inhibition of target modifying and drug degrading enzymes or as efflux pumps inhibitors. A plethora of herbal extracts, essential oils and isolated pure compounds have been reported to act synergistically with existing antibiotics, antifungals and chemotherapeutics and augment the activity of these drugs. Considerable increases in the susceptibility pattern of several microbes towards the natural antimicrobials and their combinations were observed as indicated by significant decline in minimum inhibitory concentrations. This review paper summarizes the current developments regarding synergistic interactions of plant extracts and isolated pure compounds in combination with existing antibacterial, antifungal agents and chemotherapeutics. The effect of these agents on the susceptibility patterns of these pathogens and possible mechanisms of action are described in detail. In conclusion, many phytochemicals in combination with existing drugs were found to act as resistance modifying agents and proper combinations may rescue the efficacy of important lifesaving antimicrobial agents.
Collapse
Affiliation(s)
- Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Khyber Pakhtunkhwa (KP), 18000, Pakistan.
| | - Farhat Ullah
- Department of Pharmacy, University of Malakand, Khyber Pakhtunkhwa (KP), 18000, Pakistan.
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Khyber Pakhtunkhwa (KP), 18000, Pakistan.
| | - Farman Ullah
- Department of Pharmacy, Kohat University of Science and Technology (KUST), Khyber Pakhtunkhwa (KP), Pakistan.
| | - Muhammad Ovais
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Jawad Ahmed
- Institute of Basic Medical Sciences (IBMS), Khyber Medical University, Peshawar, Pakistan.
| | - Hari Prasad Devkota
- (e)Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City, Kumamoto, 862-0973, Japan.
| |
Collapse
|