1
|
CHEN L, XIE Y, LI C. [Intestinal Flora Dysregulation and Lung Cancer:
Mechanism Analysis and Clinical Application]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2025; 28:69-74. [PMID: 39988442 PMCID: PMC11848647 DOI: 10.3779/j.issn.1009-3419.2025.106.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Indexed: 02/25/2025]
Abstract
Lung cancer is the deadliest form of cancer globally, with millions of new cases diagnosed each year. Although rapid advancements in surgical techniques, targeted therapies, and immunotherapy have significantly improved patient outcomes, the overall 5-year survival rate remains disappointingly low. Recent studies have highlighted the vital role of gut microbiota in maintaining host health and its close association with the onset and progression of lung cancer through various mechanisms. This article provides a systematic analysis of the role of gut microbiota in lung cancer, focusing on its immunomodulatory and metabolic functions, as well as its potential applications in treatment, while also exploring its prospects for clinical use.
.
Collapse
|
2
|
Deng W, Almeida G, Gibson KE. Virus Association with Bacteria and Bacterial Cell Components Enhance Virus Infectivity. FOOD AND ENVIRONMENTAL VIROLOGY 2025; 17:15. [PMID: 39789292 PMCID: PMC11717783 DOI: 10.1007/s12560-025-09633-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 01/01/2025] [Indexed: 01/12/2025]
Abstract
The transmission and infection of enteric viruses can be influenced by co-existing bacteria within the environment and host. However, the viral binding ligands on bacteria and the underlying interaction mechanisms remain unclear. This study characterized the association of norovirus surrogate Tulane virus (TuV) and murine norovirus (MNV) as well as the human enteric virus Aichi virus (AiV) with six bacteria strains (Pantoea agglomerans, Pantoea ananatis, Bacillus cereus, Enterobacter cloacae, Exiguobacterium sibiricum, Pseudomonas spp.). At room temperature, the viruses bound to all bacteria in strain-dependent rates and remained bound for at least 2 h. The virus association with two gram-positive bacteria B. cereus and E. sibiricum was less efficient than gram-negative bacteria. Next, the bacterial envelope components including lipopolysaccharides (LPS), extracellular polymeric substances (EPS), and peptidoglycan (PG) from selected strains were co-incubated with viruses to evaluate their effect on virus infectivity. All the tested bacteria components significantly increased virus infection to variable degrees as compared to PBS. The LPS of E. coli O111:B4 resulted in the greatest increases of infection by 0.19 log PFU for TuV as determined by plaque assay. Lastly, bacterial whole cell lysate of B. cereus and E. cloacae was examined for their impact on the infectivity of MNV and TuV. The co-incubation with whole cell lysates significantly increased the infectivity of TuV by 0.2 log PFU but not MNV. This study indicated that both the individual bacteria components and whole bacterial cell lysate can enhance virus infectivity, providing key insights for understanding virus-bacteria interaction.
Collapse
Affiliation(s)
- Wenjun Deng
- College of Life Science, Qingdao University, Qingdao, People's Republic of China
- Division of Agriculture, Department of Food Science, University of Arkansas, 1371 West Altheimer Dr, Fayetteville, AR, 72704, USA
| | - Giselle Almeida
- Division of Agriculture, Department of Food Science, University of Arkansas, 1371 West Altheimer Dr, Fayetteville, AR, 72704, USA
- Arkansas Children's Hospital, Little Rock, AR, USA
| | - Kristen E Gibson
- Division of Agriculture, Department of Food Science, University of Arkansas, 1371 West Altheimer Dr, Fayetteville, AR, 72704, USA.
| |
Collapse
|
3
|
Pezzino G, Calabrò A, Drommi F, Campana S, Cavaliere R, Bonaccorsi I, Carrega P, Zammuto V, Rizzo MG, Gugliandolo C, Ferlazzo G, De Pasquale C. EPS T14 from Bacillus licheniformis Prevents Infection of Human Nasal Epithelial Cells by Respiratory Viruses. Immunotargets Ther 2024; 13:487-499. [PMID: 39364227 PMCID: PMC11446858 DOI: 10.2147/itt.s470319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/21/2024] [Indexed: 10/05/2024] Open
Abstract
Background Respiratory viral infections are a leading cause of severe diseases and mortality; therefore, novel treatments effective for their prevention are highly requested. Here, we identified a broad-spectrum antiviral activity of a natural exopolysaccharide, EPS T14, purified from a marine thermotolerant strain of Bacillus licheniformis strain T14. Methods The effects on human normal nasal epithelial cells (HNEpCs) following treatment with EPS T14 was evaluated at different time points and with increasing concentration of compound. To assess the antiviral properties, viability of HNEpCs treated with EPS T14 was analysed following infection with different respiratory viruses. Results Neither toxicity nor pro-inflammatory properties were observed in vitro on HNEpCs treated with EPS T14 up to high concentrations, thus ensuring its safety. Cell culture-based assays revealed that treatment of HNEpCs with EPS T14 (used at 400ug/mL) results in efficient prevention of cell infection by different respiratory viruses through physically hindering the entry of the viruses via cell surface receptors. Interestingly, in addition to this prophylactic antiviral activity, EPS T14 also shows a long-lasting efficacy by inhibiting viral spread in the cell culture. Finally, combination of EPS T14 with a hypertonic saline solution shows a synergistic antiviral activity. Conclusion EPS T14 can exert both prophylactic and therapeutic antiviral activity by blocking viral attachment to cellular receptors and could therefore represent a promising antiviral agent for preventing infections by different respiratory viruses.
Collapse
Affiliation(s)
- Gaetana Pezzino
- Laboratory of Immunology and Biotherapy, Department Human Pathology ”G. Barresi”, University of Messina, Messina, Italy
| | - Alessia Calabrò
- Laboratory of Immunology and Biotherapy, Department Human Pathology ”G. Barresi”, University of Messina, Messina, Italy
| | - Fabiana Drommi
- Laboratory of Immunology and Biotherapy, Department Human Pathology ”G. Barresi”, University of Messina, Messina, Italy
| | - Stefania Campana
- Laboratory of Immunology and Biotherapy, Department Human Pathology ”G. Barresi”, University of Messina, Messina, Italy
| | - Riccardo Cavaliere
- Laboratory of Immunology and Biotherapy, Department Human Pathology ”G. Barresi”, University of Messina, Messina, Italy
- Division of Clinical Pathology, University Hospital Policlinico G. Martino, Messina, Italy
| | - Irene Bonaccorsi
- Laboratory of Immunology and Biotherapy, Department Human Pathology ”G. Barresi”, University of Messina, Messina, Italy
| | - Paolo Carrega
- Laboratory of Immunology and Biotherapy, Department Human Pathology ”G. Barresi”, University of Messina, Messina, Italy
| | - Vincenzo Zammuto
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
- Research Centre for Extreme Environments and Extremophiles, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
- ATHENA Green Solutions S.r.l., Messina, Italy
| | - Maria Giovanna Rizzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Concetta Gugliandolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
- Research Centre for Extreme Environments and Extremophiles, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Guido Ferlazzo
- Department of Experimental Medicine (DIMES), University of Genoa, Genova, Italy
- Unit of Experimental Pathology and Immunology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Claudia De Pasquale
- Laboratory of Immunology and Biotherapy, Department Human Pathology ”G. Barresi”, University of Messina, Messina, Italy
| |
Collapse
|
4
|
Akhtar N, Wani AK, Sharma NR, Sanami S, Kaleem S, Machfud M, Purbiati T, Sugiono S, Djumali D, Retnaning Prahardini PE, Purwati RD, Supriadi K, Rahayu F. Microbial exopolysaccharides: Unveiling the pharmacological aspects for therapeutic advancements. Carbohydr Res 2024; 539:109118. [PMID: 38643705 DOI: 10.1016/j.carres.2024.109118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
Microbial exopolysaccharides (EPSs) have emerged as a fascinating area of research in the field of pharmacology due to their diverse and potent biological activities. This review paper aims to provide a comprehensive overview of the pharmacological properties exhibited by EPSs, shedding light on their potential applications in various therapeutic areas. The review begins by introducing EPSs, exploring their various sources, significance in microbial growth and survival, and their applications across different industries. Subsequently, a thorough examination of the pharmaceutical properties of microbial EPSs unveils their antioxidant, immunomodulatory, antimicrobial, antidepressant, antidiabetic, antiviral, antihyperlipidemic, hepatoprotective, anti-inflammatory, and anticancer activities. Mechanistic insights into how different EPSs exert these therapeutic effects have also been discussed in this review. The review also provides comprehensive information about the monosaccharide composition, backbone, branches, glycosidic bonds, and molecular weight of pharmacologically active EPSs from various microbial sources. Furthermore, the factors that can affect the pharmacological activities of EPSs and approaches to improve the EPSs' pharmacological activity have also been discussed. In conclusion, this review illuminates the immense pharmaceutical promise of microbial EPS as versatile bioactive compounds with wide-ranging therapeutic applications. By elucidating their structural features, biological activities, and potential applications, this review aims to catalyze further research and development efforts in leveraging the pharmaceutical potential of microbial EPS for the advancement of human health and well-being, while also contributing to sustainable and environmentally friendly practices in the pharmaceutical industry.
Collapse
Affiliation(s)
- Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, (144411), Punjab, India
| | - Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, (144411), Punjab, India.
| | - Neeta Raj Sharma
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, (144411), Punjab, India
| | - Samira Sanami
- Health Promotion Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shaikh Kaleem
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, (144411), Punjab, India
| | - Moch Machfud
- Research Center for Estate Crops, National Research and Innovation Agency, Bogor, (16911), Indonesia
| | - Titiek Purbiati
- Research Center for Horticulture, National Research and Innovation Agency, Bogor, (16911), Indonesia
| | - Sugiono Sugiono
- Research Center for Horticulture, National Research and Innovation Agency, Bogor, (16911), Indonesia
| | - Djumali Djumali
- Research Center for Estate Crops, National Research and Innovation Agency, Bogor, (16911), Indonesia
| | | | - Rully Dyah Purwati
- Research Center for Estate Crops, National Research and Innovation Agency, Bogor, (16911), Indonesia
| | - Khojin Supriadi
- Research Center for Food Crops, National Research and Innovation Agency, Bogor, (16911), Indonesia
| | - Farida Rahayu
- Research Center for Genetic Engineering, National Research and Innovation Agency, Bogor, (16911), Indonesia
| |
Collapse
|
5
|
Saad MH, Sidkey NM, El-Fakharany EM. Characterization and optimization of exopolysaccharide extracted from a newly isolated halotolerant cyanobacterium, Acaryochloris Al-Azhar MNE ON864448.1 with antiviral activity. Microb Cell Fact 2024; 23:117. [PMID: 38644470 PMCID: PMC11034128 DOI: 10.1186/s12934-024-02383-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/01/2024] [Indexed: 04/23/2024] Open
Abstract
Several antiviral agents lost their efficacy due to their severe side effects and virus mutations. This study aimed to identify and optimize the conditions for exopolysaccharide (EPS) production from a newly isolated cyanobacterium, Acaryochloris Al-Azhar MNE ON864448.1, besides exploring its antiviral activity. The cyanobacterial EPS was purified through DEAE-52 cellulose column with a final yield of 83.75%. Different analysis instruments were applied for EPS identification, including Fourier-transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), and gas chromatographic-mass spectrometry (GC-MS). Plackett-Burman's design demonstrated that working volume (X1), EDTA (X2), inoculum size (X3), CaCl2 (X4), and NaCl (X5) are the most important variables influencing EPS production. Central composite design (CCD) exhibited maximum EPS yield (9.27 mg/mL) at a working volume of 300 mL in a 1 L volumetric flask, EDTA 0.002 g/L, inoculum size 7%, CaCl2 0.046 g/L, and NaCl 20 g/L were applied. EPS showed potent antiviral activities at different stages of herpes simplex virus type-1 and 2 (HSV-1, HSV-2), adenovirus (ADV) and coxsackievirus (A16) infections. The highest half-maximal inhibitory concentration (IC50) (6.477 µg/mL) was recorded during HSV-1 internalization mechanism, while the lowest IC50 (0.005669 µg/mL) was recorded during coxsackievirus neutralization mechanism.
Collapse
Affiliation(s)
- Mabroka H Saad
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab, Alexandria, Egypt
- Botany & Microbiology Department, Faculty of Science, Al Azhar University (Girls Branch), Nasr City, Egypt
| | - Nagwa M Sidkey
- Botany & Microbiology Department, Faculty of Science, Al Azhar University (Girls Branch), Nasr City, Egypt
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab, Alexandria, Egypt.
- Pharmaceutical and Fermentation Industries Development Centre (PFIDC), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al Arab, Alexandria, Egypt.
| |
Collapse
|
6
|
Jia L, Beidelschies M, Evans JM, Niemtzow RC, Niemtzow SZ, Dusek JA, Lin Y, Wu C, Su YC, Wang CJ, Lin CY, Astana PRW, Ardiyanto D, Hardjoutomo R, Visithanon K, Puagkong J, Chokpaisarn J, Lopez MV, Yotsuyanagi H, Lee MS, Ramirez HJG, Bobadilla CP, Quinteros EMG, Galanti de la Paz M, Maramba-Lazarte CC. Recommendations and guidelines of integrative medicine for COVID-19 care: The APEC project outcome. Integr Med Res 2024; 13:101022. [PMID: 38434793 PMCID: PMC10907161 DOI: 10.1016/j.imr.2024.101022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
This article - Recommendations and Guidelines of Integrative Medicine (IM) for COVID-19 Care - was one of the outcomes from an Asia-Pacific Economic Cooperation (APEC) Project (Integrative Medicine (IM) and COVID -19 Care) during the time between May 2022 and March 2023. With the efforts from care providers, researchers, health policy makers and healthcare administrative leaders among APEC economies, the purpose of this file was to provide comprehensive IM systems for COVID-19 care as recommendations and suggestive guidelines including care methods, tools, procedures, symptom conditions and targets selections, and points need to be considered during care applications. All cited COVID-19 care practices have confirmed their efficacy and usefulness either used alone or combined with conventional medicine. This article provides current useful medical information on IM for COVID-19 care which could benefit APEC economies and world health communities on their healthcare system.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - C. Jason Wang
- National Research Institute of Chinese Medicine, Chinese Taipei
| | - Chien-Yu Lin
- Hsinchu MacKay Memorial Hospital, Chinese Taipei
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - APEC Health Working Group
- National Cancer Institute, USA
- Cleveland Clinic, USA
- The Center for Functional Medicine, USA
- The US Air Force Medical Corps, USA
- Connor Whole Health, USA
- Food and Drug Administration, USA
- Stanford University, USA
- National Research Institute of Chinese Medicine, Chinese Taipei
- Hsinchu MacKay Memorial Hospital, Chinese Taipei
- Sebelas Maret University of Surakarta, Indonesia
- Ministry of Health, Indonesia
- Public Health Management, Ministry of Health, Indonesia
- Department of Thai Traditional and Alternative Medicine, Thailand
- Prince of Songkla University, Thailand
- National University of San Marcos, Peru
- University of Tokyo, Japan
- Korea Institute of Oriental Medicine, Republic of Korea
- Complementary Care System, Mexico
- Academic Network of Integrative Medicine and Health, Chile
- Ministry of Health, Chile
- Academic University of Chile, Chile
- National Institutes of Health, Philippines
| |
Collapse
|
7
|
Avitabile E, Menotti L, Giordani B, Croatti V, Parolin C, Vitali B. Vaginal Lactobacilli Supernatants Protect from Herpes Simplex Virus Type 1 Infection in Cell Culture Models. Int J Mol Sci 2024; 25:2492. [PMID: 38473739 DOI: 10.3390/ijms25052492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
A healthy vaginal microbiota hosts Lactobacillus as the most predominant genus. Lactobacilli play a role in human health through the production of diverse antimicrobial substances that can act against human pathogens or modulate the immune system. Previous reports highlighted the ability of vaginal lactobacilli to counteract viruses causing STIs, e.g., HIV-1 and HSV-2. In this report, we analyze the activity of supernatants of vaginal lactobacilli against HSV-1 infection, which is becoming increasingly relevant as a STI. We show that the supernatants of two vaginal Lactobacillus species (i.e., L. crispatus and L. gasseri) were active at neutralizing HSV-1 infection in two different cell lines of human and simian origin. Specifically, we demonstrate that L. crispatus strains are the most effective in antiviral activity, as evidenced by the comparison with a vaginal pathogen taken as reference. The effect was specific and not attributable to the generic toxicity of the supernatants to the cells. Our results pave the way for the development of probiotics to limit the impact of HSV-1 infection on women's health.
Collapse
Affiliation(s)
- Elisa Avitabile
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| | - Laura Menotti
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| | - Barbara Giordani
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| | - Vanessa Croatti
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| | - Carola Parolin
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| | - Beatrice Vitali
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| |
Collapse
|
8
|
Kim HJ, Park JG, Moon KS, Jung SB, Kwon YM, Kang NS, Kim JH, Nam SJ, Choi G, Baek YB, Park SI. Identification and characterization of a marine bacterium extract from Mameliella sp. M20D2D8 with antiviral effects against influenza A and B viruses. Arch Virol 2024; 169:41. [PMID: 38326489 PMCID: PMC10850258 DOI: 10.1007/s00705-024-05979-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/24/2023] [Indexed: 02/09/2024]
Abstract
Despite significant improvements in vaccines and chemotherapeutic drugs, pathogenic RNA viruses continue to have a profound impact on the global economy and pose a serious threat to animal and human health through emerging and re-emerging outbreaks of diseases. To overcome the challenge of viral adaptation and evolution, increased vigilance is required. Particularly, antiviral drugs derived from new, natural sources provide an attractive strategy for controlling problematic viral diseases. In this antiviral study, we discovered a previously unknown bacterium, Mameliella sp. M20D2D8, by conducting an antiviral screening of marine microorganisms. An extract from M20D2D8 exhibited antiviral activity with low cytotoxicity and was found to be effective in vitro against multiple influenza virus strains: A/PR8 (IC50 = 2.93 µg/mL, SI = 294.85), A/Phil82 (IC50 = 1.42 µg/mL, SI = 608.38), and B/Yamagata (IC50 = 1.59 µg/mL, SI = 543.33). The antiviral action was found to occur in the post-entry stages of viral replication and to suppress viral replication by inducing apoptosis in infected cells. Moreover, it efficiently suppressed viral genome replication, protein synthesis, and infectivity in MDCK and A549 cells. Our findings highlight the antiviral capabilities of a novel marine bacterium, which could potentially be useful in the development of drugs for controlling viral diseases.
Collapse
Affiliation(s)
- Hyo-Jin Kim
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jun-Gyu Park
- Laboratory of Veterinary Zoonotic Diseases, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Kyeong-Seo Moon
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, Republic of Korea
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea
| | - Su-Bin Jung
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, Republic of Korea
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea
| | - Yong Min Kwon
- Department of Microbial Resources, National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101beon-gil, Seocheon-gun, Chungcheongnam-do, 33662, Republic of Korea
| | - Nam Seon Kang
- Department of Microbial Resources, National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101beon-gil, Seocheon-gun, Chungcheongnam-do, 33662, Republic of Korea
| | - Jeong-Hyeon Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Grace Choi
- Department of Microbial Resources, National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101beon-gil, Seocheon-gun, Chungcheongnam-do, 33662, Republic of Korea.
| | - Yeong-Bin Baek
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Sang-Ik Park
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, Republic of Korea.
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea.
| |
Collapse
|
9
|
Farahmandi F, Parhizgar P, Mozafari Komesh Tape P, Bizhannia F, Rohani FS, Bizhanzadeh M, Mostafavi Alhosseini ZS, Hosseinzade M, Farsi Y, Nasiri MJ. Implications and Mechanisms of Antiviral Effects of Lactic Acid Bacteria: A Systematic Review. Int J Microbiol 2023; 2023:9298363. [PMID: 38144900 PMCID: PMC10748726 DOI: 10.1155/2023/9298363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 10/09/2023] [Accepted: 11/17/2023] [Indexed: 12/26/2023] Open
Abstract
Background Lactic acid bacteria (LAB) are among the most important strains of probiotics. Some are normal flora of human mucous membranes in the gastrointestinal system, skin, urinary tract, and genitalia. There is evidence suggesting that LAB has an antiviral effect on viral infections. However, these studies are still controversial; a systematic review was conducted to evaluate the antiviral effects of LAB on viral infections. Methods The systematic search was conducted until the end of December 17, 2022, using international databases such as Scopus, Web of Science, and Medline (via PubMed). The keywords of our search were lactic acid bacteria, Lactobacillales, Lactobacillus (as well as its species), probiotics, antiviral, inhibitory effect, and virus. Results Of 15.408 potentially relevant articles obtained, 45 eligible in-vivo human studies were selected for inclusion in the study from databases, registers, and citation searching. We conducted a systematic review of the antiviral effects of the LAB based on the included articles. The most commonly investigated lactobacillus specie were Lactobacillus rhamnosus GG and Lactobacillus casei. Conclusion Our study indicates that 40 of the selected 45 of the included articles support the positive effect of LAB on viral infections, although some studies showed no significant positive effect of LABs on some viral infections.
Collapse
Affiliation(s)
- Fargol Farahmandi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parynaz Parhizgar
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parya Mozafari Komesh Tape
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fahimeh Bizhannia
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fateme Sadat Rohani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marzieh Bizhanzadeh
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Maede Hosseinzade
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yeganeh Farsi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Nasiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Dekham K, Jones SM, Jitrakorn S, Charoonnart P, Thadtapong N, Intuy R, Dubbs P, Siripattanapipong S, Saksmerprome V, Chaturongakul S. Functional and genomic characterization of a novel probiotic Lactobacillus johnsonii KD1 against shrimp WSSV infection. Sci Rep 2023; 13:21610. [PMID: 38062111 PMCID: PMC10703779 DOI: 10.1038/s41598-023-47897-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
White Spot syndrome virus (WSSV) causes rapid shrimp mortality and production loss worldwide. This study demonstrates potential use of Lactobacillus johnsonii KD1 as an anti-WSSV agent for post larva shrimp cultivation and explores some potential mechanisms behind the anti-WSSV properties. Treatment of Penaeus vannamei shrimps with L. johnsonii KD1 prior to oral challenge with WSSV-infected tissues showed a significantly reduced mortality. In addition, WSSV copy numbers were not detected and shrimp immune genes were upregulated. Genomic analysis of L. johnsonii KD1 based on Illumina and Nanopore platforms revealed a 1.87 Mb chromosome and one 15.4 Kb plasmid. Only one antimicrobial resistance gene (ermB) in the chromosome was identified. Phylogenetic analysis comparing L. johnsonii KD1 to other L. johnsonii isolates revealed that L. johnsonii KD1 is closely related to L. johnsonii GHZ10a isolated from wild pigs. Interestingly, L. johnsonii KD1 contains isolate-specific genes such as genes involved in a type I restriction-modification system and CAZymes belonging to the GT8 family. Furthermore, genes coding for probiotic survival and potential antimicrobial/anti-viral metabolites such as a homolog of the bacteriocin helveticin-J were found. Protein-protein docking modelling suggests the helveticin-J homolog may be able to block VP28-PmRab7 interactions and interrupt WSSV infection.
Collapse
Affiliation(s)
- Kanokwan Dekham
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Samuel Merryn Jones
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, CT2 7NZ, UK
| | - Sarocha Jitrakorn
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Patai Charoonnart
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Nalumon Thadtapong
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani, 12120, Thailand
| | - Rattanaporn Intuy
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Padungsri Dubbs
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | | | - Vanvimon Saksmerprome
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand.
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| | - Soraya Chaturongakul
- Molecular Medical Biosciences Cluster, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
11
|
Salimi F, Farrokh P. Recent advances in the biological activities of microbial exopolysaccharides. World J Microbiol Biotechnol 2023; 39:213. [PMID: 37256348 DOI: 10.1007/s11274-023-03660-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/22/2023] [Indexed: 06/01/2023]
Abstract
Microbial exopolysaccharides (EPSs) are valuable extracellular macromolecules secreted as capsules or slime layers. Various microorganisms, including bacteria, yeasts, fungi, and algae have been studied for their ability to produce EPSs. Microbial EPSs exist as homopolysaccharides or heteropolysaccharides with various properties such as different monosaccharide compositions, structural conformation, molecular weight, and functional groups. They are cost-effective alternatives to plant and animal-derived polysaccharides because the microbial cells produced them in large quantities by biotechnological processes using low-cost substrates such as industrial wastes in a short time. Microbial EPSs are safe, biodegradable, and compatible polymers. They have extensive bioactivities, including antibacterial, antifungal, antiviral, antioxidant, antitumor, antidiabetic, antiulcer, anticoagulant, antiaging, immunomodulatory, wound healing, and cholesterol-lowering activities. Microbial EPSs owing to biological activities, special biochemical structures, and attractive physicochemical properties find plenty of potential applications in various industries. The enhancement of the production of EPSs and improving their properties can be provided by genetic engineering methods. The current review aims to provide a comprehensive examination of the therapeutic activities of microbial EPSs in infectious diseases and metabolic disorders, with a focus on the mechanisms involved. Also, the effect of the physicochemical characteristics of EPSs on these bioactivities was discussed to reveal the structure-activity relationship.
Collapse
Affiliation(s)
- Fatemeh Salimi
- Department of Cellular and Molecular Biology, School of Biology, Damghan University, Damghan, 36716-41167, Iran.
| | - Parisa Farrokh
- Department of Cellular and Molecular Biology, School of Biology, Damghan University, Damghan, 36716-41167, Iran
| |
Collapse
|
12
|
Grinevich VB, Lazebnik LB, Kravchuk YA, Radchenko VG, Tkachenko EI, Pershko AM, Seliverstov PV, Salikova CP, Zhdanov KV, Kozlov KV, Makienko VV, Potapova IV, Ivanyuk ES, Egorov DV, Sas EI, Korzheva MD, Kozlova NM, Ratnikova AK, Ratnikov VA, Sitkin SI, Bolieva LZ, Turkina CV, Abdulganieva DI, Ermolova TV, Kozhevnikova SA, Tarasova LV, Myazin RG, Khomeriki NM, Pilat TL, Kuzmina LP, Khanferyan RA, Novikova VP, Polunina AV, Khavkin AI. Gastrointestinal disorders in post-COVID syndrome. Clinical guidelines. EXPERIMENTAL AND CLINICAL GASTROENTEROLOGY 2023:4-68. [DOI: 10.31146/1682-8658-ecg-208-12-4-68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Summary Post- COVID syndrome refers to the long-term consequences of a new coronavirus infection COVID-19, which includes a set of symptoms that develop or persist after COVID-19. Symptoms of gastrointestinal disorders in post- COVID syndrome, due to chronic infl ammation, the consequences of organ damage, prolonged hospitalization, social isolation, and other causes, can be persistent and require a multidisciplinary approach. The presented clinical practice guidelines consider the main preventive and therapeutic and diagnostic approaches to the management of patients with gastroenterological manifestations of postCOVID syndrome. The Guidelines were approved by the 17th National Congress of Internal Medicine and the 25th Congress of Gastroenterological Scientifi c Society of Russia.
Collapse
Affiliation(s)
| | - L. B. Lazebnik
- A. I. Yevdokimov Moscow State University of Medicine and Dentistry
| | | | | | | | | | | | | | | | - K. V. Kozlov
- Military Medical Academy named after S. M. Kirov
| | | | | | | | - D. V. Egorov
- Military Medical Academy named after S. M. Kirov
| | - E. I. Sas
- Military Medical Academy named after S. M. Kirov
| | | | | | - A. K. Ratnikova
- North-West District Scientifi c and Clinical Center named after L. G. Sokolov Federal Medical and Biological Agency
| | - V. A. Ratnikov
- North-West District Scientifi c and Clinical Center named after L. G. Sokolov Federal Medical and Biological Agency
| | - S. I. Sitkin
- North-Western state medical University named after I. I. Mechnikov;
Almazov National Medical Research Centre
| | | | | | | | - T. V. Ermolova
- North-Western state medical University named after I. I. Mechnikov
| | | | | | | | - N. M. Khomeriki
- Moscow Regional Research Clinical Institute n. a. M. F. Vladimirsky”
| | - T. L. Pilat
- Scientifi c Research Institute of labour medicine named after academician N. F. Izmerov
| | - L. P. Kuzmina
- Scientifi c Research Institute of labour medicine named after academician N. F. Izmerov;
I. M. Sechenov First Moscow State Medical University (Sechenov University)
| | | | | | | | - A. I. Khavkin
- Russian National Research Medical University named after N. I. Pirogov
| |
Collapse
|
13
|
Kaur N, Dey P. Bacterial exopolysaccharides as emerging bioactive macromolecules: from fundamentals to applications. Res Microbiol 2023; 174:104024. [PMID: 36587857 DOI: 10.1016/j.resmic.2022.104024] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022]
Abstract
Microbial exopolysaccharides (EPS) are extracellular carbohydrate polymers forming capsules or slimy coating around the cells. EPS can be secreted by various bacterial genera that can help bacterial cells in attachment, environmental adaptation, stress tolerance and are an integral part of microbial biofilms. Several gut commensals (e.g., Lactobacillus, Bifidobacterium) produce EPS that possess diverse bioactivities. Bacterial EPS also has extensive commercial applications in the pharmaceutical and food industries. Owing to the structural and functional diversity, genetic and metabolic engineering strategies are currently employed to increase EPS production. Therefore, the current review provides a comprehensive overview of the fundamentals of bacterial exopolysaccharides, including their classification, source, biosynthetic pathways, and functions in the microbial community. The review also provides an overview of the diverse bioactivities of microbial EPS, including immunomodulatory, anti-diabetic, anti-obesity, and anti-cancer properties. Since several gut microbes are EPS producers and gut microbiota helps maintain a functional gut barrier, emphasis has been given to the intestinal-level bioactivities of the gut microbial EPS. Collectively, the review provides a comprehensive overview of microbial bioactive exopolysaccharides.
Collapse
Affiliation(s)
- Navneet Kaur
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India.
| | - Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India.
| |
Collapse
|
14
|
Song Y, Li S, Gong H, Yip RCS, Chen H. Biopharmaceutical applications of microbial polysaccharides as materials: A review. Int J Biol Macromol 2023; 239:124259. [PMID: 37003381 DOI: 10.1016/j.ijbiomac.2023.124259] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/06/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Biological characteristics of natural polymers make microbial polysaccharides an excellent choice for biopharmaceuticals. Due to its easy purifying procedure and high production efficiency, it is capable of resolving the existing application issues associated with some plant and animal polysaccharides. Furthermore, microbial polysaccharides are recognized as prospective substitutes for these polysaccharides based on the search for eco-friendly chemicals. In this review, the microstructure and properties of microbial polysaccharides are utilized to highlight their characteristics and potential medical applications. From the standpoint of pathogenic processes, in-depth explanations are provided on the effects of microbial polysaccharides as active ingredients in the treatment of human diseases, anti-aging, and drug delivery. In addition, the scholarly developments and commercial applications of microbial polysaccharides as medical raw materials are also discussed. The conclusion is that understanding the use of microbial polysaccharides in biopharmaceuticals is essential for the future development of pharmacology and therapeutic medicine.
Collapse
Affiliation(s)
- Yige Song
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, PR China
| | - Shuxin Li
- SDU-ANU Joint Science College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, PR China
| | - Hao Gong
- SDU-ANU Joint Science College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, PR China
| | - Ryan Chak Sang Yip
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Hao Chen
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, PR China.
| |
Collapse
|
15
|
Giordani B, Naldi M, Croatti V, Parolin C, Erdoğan Ü, Bartolini M, Vitali B. Exopolysaccharides from vaginal lactobacilli modulate microbial biofilms. Microb Cell Fact 2023; 22:45. [PMID: 36890519 PMCID: PMC9993704 DOI: 10.1186/s12934-023-02053-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/02/2023] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND Exopolysaccharides (EPS) secreted by beneficial lactobacilli exert a plethora of positive activities, but little is known about their effects on biofilms of opportunistic vaginal pathogens and especially on biofilms of lactobacilli themselves. Here, the EPS produced by six vaginal lactobacilli, belonging to Lactobacillus crispatus (BC1, BC4, BC5) and Lactobacillus gasseri (BC9, BC12, BC14) species were isolated from cultural supernatants and lyophilized. RESULTS Lactobacillus EPS were chemically characterized in terms of monosaccharide composition by liquid chromatography (LC) analysis coupled to UV and mass spectrometry (MS) detection. Moreover, the ability of EPS (0.1, 0.5, 1 mg/mL) to stimulate the biofilm formation of lactobacilli and to inhibit the formation of pathogens' biofilms was evaluated by crystal violet (CV) staining and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Isolated EPS (yields 133-426 mg/L) were heteropolysaccharides mainly composed of D-mannose (40-52%) and D-glucose (11-30%). For the first time we demonstrated that Lactobacillus EPS were able to stimulate in a dose-dependent manner (p < 0.05) the formation of biofilms of ten strains belonging to L. crispatus, L. gasseri and Limosilactobacillus vaginalis species, in terms of cell viability (84-282% increase at 1 mg/mL) and especially biofilm biomass (40-195% increase at 1 mg/mL), quantified with MTT assay and CV staining, respectively. EPS released from L. crispatus and L. gasseri were found to better stimulate the biofilms of the same producer species rather than that of other species, including producing strains themselves and other strains. Conversely, the biofilm formation of bacterial (Escherichia coli, Staphylococcus spp., Enterococcus spp. and Streptococcus agalactiae) and fungal (Candida spp.) pathogens was inhibited. The anti-biofilm activity was dose-dependent and was more marked for L. gasseri-derived EPS (inhibition up to 86%, 70%, and 58% at 1 mg/mL, 0.5 mg/mL, and 0.1 mg/mL, respectively), whilst L. crispatus-derived EPS resulted overall less efficient (inhibition up to 58% at 1 mg/mL and 40% at 0.5 mg/mL) (p < 0.05). CONCLUSIONS Lactobacilli-derived EPS favour the biofilm formation of lactobacilli preventing, at the same time, that of opportunistic pathogens. These results support the possible employment of EPS as postbiotics in medicine as a therapeutic/preventive strategy to counteract vaginal infections.
Collapse
Affiliation(s)
- Barbara Giordani
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Marina Naldi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Vanessa Croatti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Carola Parolin
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | | | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Beatrice Vitali
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.
| |
Collapse
|
16
|
In Vitro Screening of Antiviral Activity of Lactic Acid Bacteria Isolated from Traditional Fermented Foods. MICROBIOLOGY RESEARCH 2023. [DOI: 10.3390/microbiolres14010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Studies of newly isolated strains of lactic acid bacteria (LAB) are a good basis for expanding the potential for their applications in functional foods, probiotic food supplements, and other probiotic products. They exhibit various functional properties, including such with antiviral activity. Probiotic strains can manifest their antiviral effects by various mechanisms, including direct interaction with viruses, production of antiviral compounds, or immune system modulation. Ten newly isolated LAB strains from traditional fermented food products have been tested for the determination of their antiviral activity. This study was performed to evaluate the effect of cell-free supernatants (CFSs) from the studied strains for the effect on viral replication of Human alphaherpesvirus—HHV-1 and HHV-2 as well as for direct virucidal activity. The CFSs of the LAB strains were used in non-toxic concentrations of 25%, 6.25%, and 1.6%. No direct virucidal activity was observed in tested CFSs, but five of the strains observed a well-defined effect of viral replication inhibition with the selective index (SI) from 4.40 to >54. For two of these five strains, Lactobacillus delbrueckii subsp. bulgaricus KZM 2-11-3 and Lactiplantibacillus plantarum KC 5-12 strong activity against HHV-2 with a selective index (SI) over 45 was detected, which is a good basis for further research.
Collapse
|
17
|
Structural and Functional Characterization of Exopolysaccharide Produced by a Novel Isolate Bacillus sp. EPS003. Appl Biochem Biotechnol 2023:10.1007/s12010-023-04368-2. [PMID: 36705841 DOI: 10.1007/s12010-023-04368-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/28/2023]
Abstract
An exopolysaccharide (EPS)-producing soil bacterium was isolated and characterized using 16S rRNA as Bacillus sp. EPS003. EPS was precipitated using ethanol and % composition of total carbohydrate, and protein was determined. Monosaccharide composition was identified using thin layer chromatography (TLC), and it was found to be a levan. Fourier transform infrared (FTIR) spectrum revealed the peaks for carboxyl, hydroxyl, and amide functional groups. 1H nuclear magnetic resonance (NMR) spectrum further confirmed the presence of fructose monomer. Field emission scanning electron microscopic images (FE-SEM) revealed porous and amorphous characteristics of EPS which was further confirmed with broad peaks in X-ray diffraction (XRD) spectrum. Elemental composition was determined using energy-dispersive X-ray analysis (EDAX). Thermogravimetric analysis (TGA) of EPS resulted in a residual mass of 33.81% at 548 °C indicating high thermal stability. In addition, solubility index and water-holding capacity of EPS were found to be 56% and 264%, respectively, making EPS suitable for various applications. Further, antioxidant potential of EPS was studied using hydroxyl and DPPH radical scavenging assays. In vitro cytotoxicity assessment using L929 cells and SK-MEL-3 cell lines clearly indicated that the EPS produced by the novel isolate Bacillus sp. EPS003 could serve as a potential anticancer agent.
Collapse
|
18
|
Jia K, Wei M, He Y, Wang Y, Wei H, Tao X. Characterization of Novel Exopolysaccharides from Enterococcus hirae WEHI01 and Its Immunomodulatory Activity. Foods 2022; 11:3538. [PMID: 36360150 PMCID: PMC9655783 DOI: 10.3390/foods11213538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/23/2022] [Accepted: 11/04/2022] [Indexed: 09/08/2024] Open
Abstract
Exopolysaccharide (EPS) from probiotic Enterococcus hirae WEHI01 was isolated and purified by anion exchange chromatography and gel chromatography, the results of which show that the EPS consists of four fractions, namely I01-1, I01-2, I01-3, and I01-4. As the main purification components, I01-2 and I01-4 were preliminarily characterized for their structure and their immunomodulatory activity was explored. The molecular weight of I01-2 was 2.28 × 104 Da, which consists mainly of galactose, and a few other sugars including glucose, arabinose, mannose, xylose, fucose, and rhamnose, while the I01-4 was composed of galactose only and has a molecular weight of 2.59 × 104 Da. Furthermore, the results of an evaluation of immunomodulatory activity revealed that I01-2 and I01-4 could improve the viability of macrophage cells, improve phagocytosis, boost NO generation, and encourage the release of cytokines including TNF-α and IL-6 in RAW 264.7 macrophages. These results imply that I01-2 and I01-4 could improve macrophage-mediated immune responses and might be useful in the production of functional food and medications.
Collapse
Affiliation(s)
| | | | | | | | | | - Xueying Tao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| |
Collapse
|
19
|
Khan R, Shah MD, Shah L, Lee PC, Khan I. Bacterial polysaccharides-A big source for prebiotics and therapeutics. Front Nutr 2022; 9:1031935. [PMID: 36407542 PMCID: PMC9671505 DOI: 10.3389/fnut.2022.1031935] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/11/2022] [Indexed: 07/29/2023] Open
Abstract
Bacterial polysaccharides are unique due to their higher purity, hydrophilic nature, and a finer three-dimensional fibrous structure. Primarily, these polymers provide protection, support, and energy to the microorganism, however, more recently several auxiliary properties of these biopolymers have been unmasked. Microbial polysaccharides have shown therapeutic abilities against various illnesses, augmented the healing abilities of the herbal and Western medicines, improved overall health of the host, and have exerted positive impact on the growth of gut dwelling beneficial bacteria. Specifically, the review is discussing the mechanism through which bacterial polysaccharides exert anti-inflammatory, antioxidant, anti-cancer, and anti-microbial properties. In addition, they are holding promising application in the 3D printing. The review is also discussing a perspective about the metagenome-based screening of polysaccharides, their integration with other cutting-edge tools, and synthetic microbiome base intervention of polysaccharides as a strategy for prebiotic intervention. This review has collected interesting information about the bacterial polysaccharides from Google Scholar, PubMed, Scopus, and Web of Science databases. Up to our knowledge, this is the first of its kind review article that is summarizing therapeutic, prebiotics, and commercial application of bacterial polysaccharides.
Collapse
Affiliation(s)
- Raees Khan
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Muhammad Dawood Shah
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Luqman Shah
- Department of Biochemistry, Faculty of Biological and Health Sciences, Hazara University, Mansehra, Pakistan
| | - Ping-Chin Lee
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Imran Khan
- Department of Biotechnology, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan, Pakistan
| |
Collapse
|
20
|
Rossi RE, Chen J, Caplin ME. The Role of Diet and Supplements in the Prevention and Progression of COVID-19: Current Knowledge and Open Issues. Prev Nutr Food Sci 2022; 27:137-149. [PMID: 35919576 PMCID: PMC9309075 DOI: 10.3746/pnf.2022.27.2.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/22/2022] [Accepted: 03/22/2022] [Indexed: 01/08/2023] Open
Abstract
A healthy diet and dietary supplements have gained attention as potential co-adjuvants in managing and preventing coronavirus disease 2019 (COVID-19). This paper critically reviews the current evidence regarding the impact of diet and supplements on the prevention and progression of COVID-19. According to available data, a healthy diet and normal weight are considered protective factors. Regarding dietary supplementation, the most robust results from human studies are for vitamin C, which appears to decrease inflammatory markers and suppress cytokine storm. A small, randomized trial showed that a high dose of vitamin D significantly reduced the need for intensive care unit treatment of patients requiring hospitalization for COVID-19. According to retrospective human studies, there is limited evidence for vitamin E and selenium supplements. Animal studies have investigated the effects of green tea and curcumin. Xanthohumol and probiotics, interesting for their antiviral, anti-inflammatory, and immunoregulatory properties, need formal clinical study. In summary, there is promising evidence supporting the role of diet and supplements as co-adjuvants in the treatment of COVID-19. Further studies and properly designed clinical trials are necessary to draw more robust conclusions; however, it is not unreasonable to take a pragmatic approach and promote the use of appropriate diet and supplements to counter the effects of COVID-19, ideally with a mechanism to assess outcomes.
Collapse
Affiliation(s)
- Roberta Elisa Rossi
- Hepatology and Hepato-Pancreatic-Biliary Surgery and Liver Transplantation, Fondazione IRCCS, Istituto Nazionale Tumori, Milan, MI 20133, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, MI 20122, Italy
| | - Jie Chen
- Department of Gastroenterology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510275, China
| | - Martyn Evan Caplin
- Centre for Gastroenterology, Royal Free Hospital, London NW3 2QG, UK
- Division of Medicine, Faculty of Medical Sciences, University College London, London WC1E 6BT, UK
| |
Collapse
|
21
|
Nayebi A, Navashenaq JG, Soleimani D, Nachvak SM. Probiotic supplementation: A prospective approach in the treatment of COVID-19. Nutr Health 2022; 28:163-175. [PMID: 34747257 PMCID: PMC9160438 DOI: 10.1177/02601060211049631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background: Despite strategies based on social distancing, the coronavirus disease 2019 (COVID-19) expands globally, and so far, many attempts have been made to achieve effective treatment for patients with COVID-19. This disease infects the lower respiratory tract and may lead to severe acute respiratory syndrome coronavirus (SARS-CoV). COVID-19 also can cause gastrointestinal infections. Therefore, COVID-19 patients with gastrointestinal symptoms are more likely to be complicated by SARS-CoV. In this disease, acquired immune responses are impaired, and uncontrolled inflammatory responses result in cytokine storms, leading to acute lung injury and thrombus formation. Probiotics are living microorganisms that contribute to the health of the host if administered in appropriate doses. Aim: This study aimed to provide evidence to show the importance of gut dysbiosis in viral disease, especially COVID-19. Therefore, we have focused on the impact of probiotics consumption on preventing severe symptoms of the disease. Methods: We have entirely searched SCOPUS, PubMed, and Google Scholar databases to collect evidence regarding the relationship between probiotics and viral infections to expand this relationship to the COVID-19. Results: It has been shown that probiotics directly counteract SARS-CoV in the gastrointestinal and respiratory tracts. Moreover, probiotics suppress severe immune responses and prevent cytokine storms to inhibit pathologic inflammatory conditions in the body via modulation of immune responses. Conclusion: According to available evidence based on their antiviral and respiratory activities, using probiotics might be an adjuvant therapy to reduce the burden and severity of this disease.
Collapse
Affiliation(s)
- Atiyeh Nayebi
- Student Research Committee, Nutritional Sciences Department, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Nutritional Sciences Department, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Davood Soleimani
- Student Research Committee, Nutritional Sciences Department, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyyed Mostafa Nachvak
- Student Research Committee, Nutritional Sciences Department, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Nutritional Sciences Department, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
22
|
Gut Microbiota Disruption in COVID-19 or Post-COVID Illness Association with severity biomarkers: A Possible Role of Pre / Pro-biotics in manipulating microflora. Chem Biol Interact 2022; 358:109898. [PMID: 35331679 PMCID: PMC8934739 DOI: 10.1016/j.cbi.2022.109898] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/28/2022] [Accepted: 03/14/2022] [Indexed: 01/08/2023]
Abstract
Coronavirus disease (COVID-19), a coronavirus-induced illness attributed to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission, is thought to have first emerged on November 17, 2019. According to World Health Organization (WHO). COVID-19 has been linked to 379,223,560 documented occurrences and 5,693,245 fatalities globally as of 1st Feb 2022. Influenza A virus that has also been discovered diarrhea and gastrointestinal discomfort was found in the infected person, highlighting the need of monitoring them for gastro intestinal tract (GIT) symptoms regardless of whether the sickness is respiration related. The majority of the microbiome in the intestines is Firmicutes and Bacteroidetes, while Bacteroidetes, Proteobacteria, and Firmicutes are found in the lungs. Although most people overcome SARS-CoV-2 infections, many people continue to have symptoms months after the original sickness, called Long-COVID or Post COVID. The term "post-COVID-19 symptoms" refers to those that occur with or after COVID-19 and last for more than 12 weeks (long-COVID-19). The possible understanding of biological components such as inflammatory, immunological, metabolic activity biomarkers in peripheral blood is needed to evaluate the study. Therefore, this article aims to review the informative data that supports the idea underlying the disruption mechanisms of the microbiome of the gastrointestinal tract in the acute COVID-19 or post-COVID-mediated elevation of severity biomarkers.
Collapse
|
23
|
Werning ML, Hernández-Alcántara AM, Ruiz MJ, Soto LP, Dueñas MT, López P, Frizzo LS. Biological Functions of Exopolysaccharides from Lactic Acid Bacteria and Their Potential Benefits for Humans and Farmed Animals. Foods 2022; 11:1284. [PMID: 35564008 PMCID: PMC9101012 DOI: 10.3390/foods11091284] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Lactic acid bacteria (LAB) synthesize exopolysaccharides (EPS), which are structurally diverse biopolymers with a broad range of technological properties and bioactivities. There is scientific evidence that these polymers have health-promoting properties. Most commercialized probiotic microorganisms for consumption by humans and farmed animals are LAB and some of them are EPS-producers indicating that some of their beneficial properties could be due to these polymers. Probiotic LAB are currently used to improve human health and for the prevention and treatment of specific pathologic conditions. They are also used in food-producing animal husbandry, mainly due to their abilities to promote growth and inhibit pathogens via different mechanisms, among which the production of EPS could be involved. Thus, the aim of this review is to discuss the current knowledge of the characteristics, usage and biological role of EPS from LAB, as well as their postbiotic action in humans and animals, and to predict the future contribution that they could have on the diet of food animals to improve productivity, animal health status and impact on public health.
Collapse
Affiliation(s)
- María Laura Werning
- Laboratory of Food Analysis “Rodolfo Oscar DALLA SANTINA”, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National, Council of Scientific and Technical Research (UNL/CONICET), Esperanza 3080, SF, Argentina; (M.J.R.); (L.P.S.); (L.S.F.)
| | - Annel M. Hernández-Alcántara
- Department of Microorganisms and Plant Biotechnology, Margarita Salas Center for Biological Research (CIB)-Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; (A.M.H.-A.); (P.L.)
| | - María Julia Ruiz
- Laboratory of Food Analysis “Rodolfo Oscar DALLA SANTINA”, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National, Council of Scientific and Technical Research (UNL/CONICET), Esperanza 3080, SF, Argentina; (M.J.R.); (L.P.S.); (L.S.F.)
- Department of Animal Health and Preventive Medicine, Faculty of Veterinary Sciences, National University of the Center of the Province of Buenos Aires, Buenos Aires 7000, Argentina
| | - Lorena Paola Soto
- Laboratory of Food Analysis “Rodolfo Oscar DALLA SANTINA”, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National, Council of Scientific and Technical Research (UNL/CONICET), Esperanza 3080, SF, Argentina; (M.J.R.); (L.P.S.); (L.S.F.)
- Department of Public Health, Faculty of Veterinary Science, Litoral National University, Esperanza 3038, Argentina
| | - María Teresa Dueñas
- Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country (UPV/EHU), 20018 San Sebastián, Spain;
| | - Paloma López
- Department of Microorganisms and Plant Biotechnology, Margarita Salas Center for Biological Research (CIB)-Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; (A.M.H.-A.); (P.L.)
| | - Laureano Sebastián Frizzo
- Laboratory of Food Analysis “Rodolfo Oscar DALLA SANTINA”, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National, Council of Scientific and Technical Research (UNL/CONICET), Esperanza 3080, SF, Argentina; (M.J.R.); (L.P.S.); (L.S.F.)
- Department of Public Health, Faculty of Veterinary Science, Litoral National University, Esperanza 3038, Argentina
| |
Collapse
|
24
|
Khalil MA, Sonbol FI, Al-Madboly LA, Aboshady TA, Alqurashi AS, Ali SS. Exploring the Therapeutic Potentials of Exopolysaccharides Derived From Lactic Acid Bacteria and Bifidobacteria: Antioxidant, Antitumor, and Periodontal Regeneration. Front Microbiol 2022; 13:803688. [PMID: 35547125 PMCID: PMC9082500 DOI: 10.3389/fmicb.2022.803688] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/16/2022] [Indexed: 12/24/2022] Open
Abstract
The metabolites of lactic acid bacteria (LAB) and bifidobacteria (Bb) have recently received a lot of attention due to their ability to protect interactions in blood and tissues, as well as their biodegradability and biocompatibility in human tissue. Exopolysaccharides (EPS) derived from bacteria have a long history of use in therapeutic and other industrial applications with no adverse effects. In this regard, EPSs were isolated and characterized from LAB and Bb culture supernatants to determine their antioxidant, antitumor, and periodontal regeneration properties. The antioxidant capacity of the EPSs varied with concentration (0.625-20 mg/ml). The highest antioxidant activity was found in LAB: Streptococcus thermophiles DSM 24731-EPS1, Lactobacillus delbrueckii ssp. bulgaricus DSM 20081T-EPS5, Limosilactobacillus fermentum DSM 20049-EPS6, and Bb; Bifidobacterium longum ssp. longum DSM 200707-EPS10. Human breast cancer cells (MCF7), human colon cancer cells (CaCo2), human liver cancer cells (HepG2), and human embryonic kidney 293 (HEK 293) cells were used as controls to assess the antitumor properties of the selected EPSs. According to the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium-bromide (MTT) assay, EPS5 had the highest cytotoxicity against MCF7, CaCo2, and HepG2, with IC50 values of 7.91, 10.69, and 9.12 mg/ml, respectively. Lactate dehydrogenase (LDH) activity was significantly higher in cell lines treated with EPS5-IC50 values compared to other EPSs-IC50 values (p < 0.05). Real time (RT)-PCR results showed that EPS5 treatment increased Bax, Caspase 8, Caspase 3, and p53 gene expression. The expression of the BCL2, MCL1, and Vimentin genes, on the other hand, was reduced. The MTT test was used to examine the effect of EPS5 on the viability of human periodontal ligament fibroblast cells (hPDLFCs), and it was discovered that EPS5 increased hPDLFC viability. According to high-performance liquid chromatography (HPLC) analysis, galactose made up 12.5% of EPS5. The findings of this study pave the way for the use of EPS, which hold great promise for a variety of therapeutic purposes such as antioxidant, antitumor, and periodontal regeneration.
Collapse
Affiliation(s)
- Maha A. Khalil
- Biology Department, College of Science, Taif University, Taif, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Fatma I. Sonbol
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Lamiaa A. Al-Madboly
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Tamer A. Aboshady
- Periodontology, Oral Medicine, Diagnosis and Radiology Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
- Oral and Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, Taif, Saudi Arabia
| | - Abeer S. Alqurashi
- Biology Department, College of Science, Taif University, Taif, Saudi Arabia
| | - Sameh S. Ali
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, Egypt
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
25
|
Pourjafar H, Ansari F, Sadeghi A, Samakkhah SA, Jafari SM. Functional and health-promoting properties of probiotics' exopolysaccharides; isolation, characterization, and applications in the food industry. Crit Rev Food Sci Nutr 2022; 63:8194-8225. [PMID: 35266799 DOI: 10.1080/10408398.2022.2047883] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Exopolysaccharides (EPS) are extracellular sugar metabolites/polymers of some slim microorganisms and, a wide variety of probiotics have been broadly investigated for their ability to produce EPS. EPS originated from probiotics have potential applications in food, pharmaceutical, cosmetology, wastewater treatment, and textiles industries, nevertheless slight is recognized about their function. The present review purposes to comprehensively discuss the structure, classification, biosynthesis, extraction, purification, sources, health-promoting properties, techno-functional benefits, application in the food industry, safety, toxicology, analysis, and characterization methods of EPS originated from probiotic microorganisms. Various studies have shown that probiotic EPS used as stabilizers, emulsifiers, gelling agents, viscosifiers, and prebiotics can alter the nutritional, texture, and rheological characteristics of food and beverages and play a major role in improving the quality of these products. Numerous studies have also proven the beneficial health effects of probiotic EPS, including antioxidant, antimicrobial, anti-inflammatory, immunomodulatory, anticancer, antidiabetic, antibiofilm, antiulcer, and antitoxin activities. Although the use of probiotic EPS has health effects and improves the organoleptic and textural properties of food and pharmaceutical products and there is a high tendency for their use in related industries, the production yield of these products is low and requires basic studies to support their products in large scale.
Collapse
Affiliation(s)
- Hadi Pourjafar
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Food Sciences and Nutrition, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Fereshteh Ansari
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
- Research Center for Evidence-Based Medicine, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Iranian EBM Centre: A Joanna Briggs Institute Affiliated Group, Tabriz, Iran
| | - Alireza Sadeghi
- Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Shohre Alian Samakkhah
- Department of Food Hygiene and Quality Control, Faculty of Veterinary of Medicine, Amol University of Special Modern Technology, Amol, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
| |
Collapse
|
26
|
Foolchand A, Ghazi T, Chuturgoon AA. Malnutrition and Dietary Habits Alter the Immune System Which May Consequently Influence SARS-CoV-2 Virulence: A Review. Int J Mol Sci 2022; 23:2654. [PMID: 35269795 PMCID: PMC8910702 DOI: 10.3390/ijms23052654] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/06/2023] Open
Abstract
COVID-19, resulting from the SARS-CoV-2 virus, is a major pandemic that the world is fighting. SARS-CoV-2 primarily causes lung infection by attaching to the ACE2 receptor on the alveolar epithelial cells. However, the ACE2 receptor is also present in intestinal epithelial cells, suggesting a link between nutrition, virulence and clinical outcomes of COVID-19. Respiratory viral infections perturb the gut microbiota. The gut microbiota is shaped by our diet; therefore, a healthy gut is important for optimal metabolism, immunology and protection of the host. Malnutrition causes diverse changes in the immune system by repressing immune responses and enhancing viral vulnerability. Thus, improving gut health with a high-quality, nutrient-filled diet will improve immunity against infections and diseases. This review emphasizes the significance of dietary choices and its subsequent effects on the immune system, which may potentially impact SARS-CoV-2 vulnerability.
Collapse
Affiliation(s)
| | | | - Anil A. Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, Howard College Campus, University of Kwa-Zulu Natal, Durban 4041, South Africa; (A.F.); (T.G.)
| |
Collapse
|
27
|
Khani N, Abedi Soleimani R, Noorkhajavi G, Abedi Soleimani A, Abbasi A, Homayouni Rad A. Postbiotics as Potential Promising Tools for SARS‐COV‐2 Disease Adjuvant Therapy. J Appl Microbiol 2022; 132:4097-4111. [DOI: 10.1111/jam.15457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/02/2022] [Accepted: 01/15/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Nader Khani
- Student Research Committee Tabriz University of Medical Sciences Tabriz Iran
- Department of Food Science and Technology Faculty of Nutrition & Food Sciences Nutrition Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Roya Abedi Soleimani
- Department of Food Science and Technology Faculty of Nutrition & Food Sciences Nutrition Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Ghasem Noorkhajavi
- Department of Medical Nanotechnology Tabriz University of Medical Sciences Tabriz Iran
| | - Azar Abedi Soleimani
- Faculty of Nursing & Midwifery Isfahan University of Medical Sciences Isfahan Iran
| | - Amin Abbasi
- Student Research Committee Department of Food Science and Technology National Nutrition and Food Technology Research Institute Faculty of Nutrition Science and Food Technology Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Aziz Homayouni Rad
- Department of Food Science and Technology Faculty of Nutrition & Food Sciences Nutrition Research Center Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
28
|
Muninathan C, Guruchandran S, Viswanath Kalyan AJ, Ganesan ND. Microbial exopolysaccharides: role in functional food engineering and gut‐health management. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15334] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | | | | | - Nandhini Devi Ganesan
- Centre for Food Technology Department of Biotechnology Anna University Chennai 600025 India
| |
Collapse
|
29
|
Chaisuwan W, Phimolsiripol Y, Chaiyaso T, Techapun C, Leksawasdi N, Jantanasakulwong K, Rachtanapun P, Wangtueai S, Sommano SR, You S, Regenstein JM, Barba FJ, Seesuriyachan P. The Antiviral Activity of Bacterial, Fungal, and Algal Polysaccharides as Bioactive Ingredients: Potential Uses for Enhancing Immune Systems and Preventing Viruses. Front Nutr 2021; 8:772033. [PMID: 34805253 PMCID: PMC8602887 DOI: 10.3389/fnut.2021.772033] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/15/2021] [Indexed: 12/23/2022] Open
Abstract
Viral infections may cause serious human diseases. For instance, the recent appearance of the novel virus, SARS-CoV-2, causing COVID-19, has spread globally and is a serious public health concern. The consumption of healthy, proper, functional, and nutrient-rich foods has an important role in enhancing an individual's immune system and preventing viral infections. Several polysaccharides from natural sources such as algae, bacteria, and fungi have been considered as generally recognized as safe (GRAS) by the US Food and Drug Administration. They are safe, low-toxicity, biodegradable, and have biological activities. In this review, the bioactive polysaccharides derived from various microorganisms, including bacteria, fungi, and algae were evaluated. Antiviral mechanisms of these polysaccharides were discussed. Finally, the potential use of microbial and algal polysaccharides as an antiviral and immune boosting strategy was addressed. The microbial polysaccharides exhibited several bioactivities, including antioxidant, anti-inflammatory, antimicrobial, antitumor, and immunomodulatory activities. Some microbes are able to produce sulfated polysaccharides, which are well-known to exert a board spectrum of biological activities, especially antiviral properties. Microbial polysaccharide can inhibit various viruses using different mechanisms. Furthermore, these microbial polysaccharides are also able to modulate immune responses to prevent and/or inhibit virus infections. There are many molecular factors influencing their bioactivities, e.g., functional groups, conformations, compositions, and molecular weight. At this stage of development, microbial polysaccharides will be used as adjuvants, nutrient supplements, and for drug delivery to prevent several virus infections, especially SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Worraprat Chaisuwan
- Interdisciplinary Program in Biotechnology, Graduate School, Chiang Mai University, Chiang Mai, Thailand
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Yuthana Phimolsiripol
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Agro Bio-Circular-Green Industry (Agro-BCG), Chiang Mai University, Chiang Mai, Thailand
| | - Thanongsak Chaiyaso
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Agro Bio-Circular-Green Industry (Agro-BCG), Chiang Mai University, Chiang Mai, Thailand
| | - Charin Techapun
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Agro Bio-Circular-Green Industry (Agro-BCG), Chiang Mai University, Chiang Mai, Thailand
| | - Noppol Leksawasdi
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Agro Bio-Circular-Green Industry (Agro-BCG), Chiang Mai University, Chiang Mai, Thailand
| | - Kittisak Jantanasakulwong
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Agro Bio-Circular-Green Industry (Agro-BCG), Chiang Mai University, Chiang Mai, Thailand
| | - Pornchai Rachtanapun
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Agro Bio-Circular-Green Industry (Agro-BCG), Chiang Mai University, Chiang Mai, Thailand
| | - Sutee Wangtueai
- Cluster of Agro Bio-Circular-Green Industry (Agro-BCG), Chiang Mai University, Chiang Mai, Thailand
- College of Maritime Studies and Management, Chiang Mai University, Samut Sakhon, Thailand
| | - Sarana Rose Sommano
- Cluster of Agro Bio-Circular-Green Industry (Agro-BCG), Chiang Mai University, Chiang Mai, Thailand
- Plant Bioactive Compound Laboratory (BAC), Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, South Korea
| | - Joe M. Regenstein
- Department of Food Science, College of Agriculture and Life Science, Cornell University, Ithaca, NY, United States
| | - Francisco J. Barba
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Valencia, Spain
| | - Phisit Seesuriyachan
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Agro Bio-Circular-Green Industry (Agro-BCG), Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
30
|
Effect of Gamma Irradiation on Enhanced Biological Activities of Exopolysaccharide from Halomonas desertis G11: Biochemical and Genomic Insights. Polymers (Basel) 2021; 13:polym13213798. [PMID: 34771355 PMCID: PMC8588121 DOI: 10.3390/polym13213798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 02/07/2023] Open
Abstract
In this work, a native exopolysaccharide (nEPS) produced by Halomonas desertis G11 isolated from a Tunisian extreme environment was modified by gamma irradiation. Characterization as well as the antioxidant and antitumor activities of nEPS and its gamma-irradiated derivatives (iEPSs) were comparatively evaluated. In vitro and in vivo antioxidant potentials were determined by using different methods and through different antioxidant enzymes. The antitumor activity was checked against a human colon cancer cell line. Analyses of the complete genome sequence were carried out to identify genes implicated in the production of nEPS. Thus, the genomic biosynthesis pathway and the export mechanism of nEPS were proposed. Analyses of irradiation data showed that iEPSs acquired new functional groups, lower molecular weights, and gained significantly (p < 0.05) higher antioxidant and antitumor abilities compared with nEPS. These findings provide a basis for using iEPSs as novel pharmaceutical agents for human therapies.
Collapse
|
31
|
Akhtach S, Tabia Z, Bricha M, Belkhou R, Mabrouk KE. Investigation on exopolysaccharide production by Lacticaseibacillus rhamnosus P14 isolated from Moroccan raw cow's milk. J Food Sci 2021; 86:4840-4850. [PMID: 34642967 DOI: 10.1111/1750-3841.15941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 11/29/2022]
Abstract
Twenty-four strains were isolated from 50 samples of raw cow's milk originated from different regions of Morocco. After different screening methods, one strain was selected as the highest exopolysaccharide (EPS)-producing isolate and was identified by 16S rDNA sequencing as Lacticaseibacillus rhamnosus P14. Moreover, the EPS-producing ability, bacterial growth, and pH of the medium were monitored. The optimization of culture conditions indicated that the high yield of EPS was 685.14 mg/L obtained at 42°C, with lactose as a carbon source. The characterization study showed that the purified EPS consisted of one main fraction that contained 97.67% of carbohydrates. Furthermore, the EPS was identified as a homogeneous polysaccharide, mainly composed of glucose. These results demonstrated the high EPS production ability of the selected L. rhamnosus P14, representing a promising candidate to improve the textural and sensory properties of fermented food.
Collapse
Affiliation(s)
- Sihame Akhtach
- Euromed Research Center, Euromed University of Fez, Eco-Campus, Fez, Morocco.,Laboratory of Biotechnology, Environment, Agri-Food, and Health (LBEAS), High School of Technology, Sidi Mohamed Ben Abdallah University, Atlas Fez, Morocco
| | - Zakaria Tabia
- Euromed Research Center, Euromed University of Fez, Eco-Campus, Fez, Morocco
| | - Meriem Bricha
- Euromed Research Center, Euromed University of Fez, Eco-Campus, Fez, Morocco
| | - Rajae Belkhou
- Laboratory of Biotechnology, Environment, Agri-Food, and Health (LBEAS), High School of Technology, Sidi Mohamed Ben Abdallah University, Atlas Fez, Morocco
| | - Khalil El Mabrouk
- Euromed Research Center, Euromed University of Fez, Eco-Campus, Fez, Morocco
| |
Collapse
|
32
|
Screening of Lactic Acid Bacterial Strains with Antiviral Activity Against Porcine Epidemic Diarrhea. Probiotics Antimicrob Proteins 2021; 14:546-559. [PMID: 34350565 DOI: 10.1007/s12602-021-09829-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2021] [Indexed: 12/12/2022]
Abstract
Newly emerging and re-emerging viral infectious diseases cause significant economic losses in swine production. Efficacious vaccines have not yet been developed for several major swine infectious diseases, including porcine epidemic diarrhea virus (PEDV). We used the PEDV-infected Vero cell model to screen lactic acid bacteria (LAB) strains with antiviral activity. Sixty LAB strains were isolated from the feces of nursing piglets. After the elimination of LAB strains with high cytotoxicity to Vero cells, the protective effects of the remaining 6 strains against PEDV infection were determined. Vero cells pretreated with the intracellular extracts or cell wall fractions of YM22 and YM33 strains for 24 h before infection with PEDV showed significantly higher cell viabilities and lower mRNA expression of PEDV nucleocapsid (PEDV-N) than the unpretreated cells, indicating that the intracellular extracts and cell wall fractions of YM22 and YM33 possessed prophylactic effects on Vero cells against PEDV infection. PEDV-infection significantly increased the mRNA expression of proinflammatory cytokines, including tumor necrosis factor-α (TNF-α) and interleukin-8 (IL-8) in Vero cells. However, pretreatment of Vero cells with the cell wall fractions of YM22 and YM33 decreased the mRNA expression of TNF-α and IL-8, which could be a mechanism associated with the protective effects of YM22 and YM33 against PEDV. Based on the biochemical characteristics and phylogenetic analyses, YM22 and YM33 were identified as Ligilactobacillus agilis (basonym: Lactobacillus agilis) and Ligilactobacillus salivarius (basonym: Lactobacillus salivarius), respectively. These findings suggest that L. agilis YM22 and L. salivarius YM33 could provide some levels of protective effects against PEDV infections.
Collapse
|
33
|
Zayed A, Mansour MK, Sedeek MS, Habib MH, Ulber R, Farag MA. Rediscovering bacterial exopolysaccharides of terrestrial and marine origins: novel insights on their distribution, biosynthesis, biotechnological production, and future perspectives. Crit Rev Biotechnol 2021; 42:597-617. [PMID: 34320886 DOI: 10.1080/07388551.2021.1942779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Bacteria exist in colonies as aggregates or associated with surfaces forming biofilms rather than planktonic cells. Living in such a unique manner is always mediated via a matrix of extracellular polymeric substances, which are composed mainly of polysaccharides or specifically exopolysaccharides (EPS). Biofilm formation and hence EPS production are affected by biotic and abiotic factors inducing/inhibiting several involved genes and other molecules. In addition, various aspects of bacterial EPS regarding: physiological functions, molecular weight, and chemical composition were demonstrated. Recent investigations have revealed a wide spectrum of EPS chemical and physicochemical properties showing promising applications in different industrial sectors. For instance, lactic acid bacteria (LAB)- and marine-derived EPS exhibit: immunomodulatory, antioxidant, antitumor, bioremediation of heavy metals, as well as thickening and viscosity modifiers in the food industry. However, bacterial EPS have not yet been commercially implemented, in contrast to plant-derived analogues. The current review aims to rediscover the EPS structural and biosynthetic features derived from marine and terrestrial bacteria, and applications as well.
Collapse
Affiliation(s)
- Ahmed Zayed
- Pharmacognosy Department, College of Pharmacy, Tanta University, Tanta, Egypt.,Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Mai K Mansour
- Department of Medicinal Plants and Natural Products, National Organization for Drug Control and Research, Giza, Egypt
| | - Mohamed S Sedeek
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed H Habib
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Roland Ulber
- Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt.,Chemistry Department, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
| |
Collapse
|
34
|
Abdalla AK, Ayyash MM, Olaimat AN, Osaili TM, Al-Nabulsi AA, Shah NP, Holley R. Exopolysaccharides as Antimicrobial Agents: Mechanism and Spectrum of Activity. Front Microbiol 2021; 12:664395. [PMID: 34093478 PMCID: PMC8170130 DOI: 10.3389/fmicb.2021.664395] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/20/2021] [Indexed: 01/16/2023] Open
Abstract
Exopolysaccharides (EPSs) are metabolites synthesized and excreted by a variety of microorganisms, including lactic acid bacteria (LAB). EPS serve several biological functions such as interactions between bacteria and their environments, protection against hostile conditions including dehydration, the alleviation of the action of toxic compounds (bile salts, hydrolyzing enzymes, lysozyme, gastric, and pancreatic enzymes, metal ions, antibiotics), and stresses (changing pH, osmolarity), and evasion of the immune response and phage attack. Bacterial EPSs are considered valuable by the food, pharmaceutical, and nutraceutical industries, owing to their health-promoting benefits and rheological impacts. Numerous studies have reported the unusual antimicrobial activities of various EPS against a wide variety of pathogenic microbes (bacteria, virus, and fungi). This review aims to provide a comprehensive examination of the in vitro and in vivo antimicrobial activities of different EPSs, mainly against foodborne bacterial, fungal, and viral pathogens. The mechanism of EPS action against these pathogens as well as the methods used to measure antimicrobial activities are critically reviewed.
Collapse
Affiliation(s)
| | - Mutamed M. Ayyash
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Tareq M. Osaili
- Department Clinical Nutrition and Dietetics, University of Sharjah, Sharjah, United Arab Emirates
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid, Jordan
| | - Anas A. Al-Nabulsi
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid, Jordan
| | - Nagendra P. Shah
- Food and Nutritional Science, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong
| | - Richard Holley
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
35
|
Lordan R, Rando HM, Greene CS. Dietary Supplements and Nutraceuticals under Investigation for COVID-19 Prevention and Treatment. mSystems 2021; 6:e00122-21. [PMID: 33947804 PMCID: PMC8269209 DOI: 10.1128/msystems.00122-21] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has caused global disruption and a significant loss of life. Existing treatments that can be repurposed as prophylactic and therapeutic agents may reduce the pandemic's devastation. Emerging evidence of potential applications in other therapeutic contexts has led to the investigation of dietary supplements and nutraceuticals for COVID-19. Such products include vitamin C, vitamin D, omega 3 polyunsaturated fatty acids, probiotics, and zinc, all of which are currently under clinical investigation. In this review, we critically appraise the evidence surrounding dietary supplements and nutraceuticals for the prophylaxis and treatment of COVID-19. Overall, further study is required before evidence-based recommendations can be formulated, but nutritional status plays a significant role in patient outcomes, and these products may help alleviate deficiencies. For example, evidence indicates that vitamin D deficiency may be associated with a greater incidence of infection and severity of COVID-19, suggesting that vitamin D supplementation may hold prophylactic or therapeutic value. A growing number of scientific organizations are now considering recommending vitamin D supplementation to those at high risk of COVID-19. Because research in vitamin D and other nutraceuticals and supplements is preliminary, here we evaluate the extent to which these nutraceutical and dietary supplements hold potential in the COVID-19 crisis.IMPORTANCE Sales of dietary supplements and nutraceuticals have increased during the pandemic due to their perceived "immune-boosting" effects. However, little is known about the efficacy of these dietary supplements and nutraceuticals against the novel coronavirus (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) or the disease that it causes, CoV disease 2019 (COVID-19). This review provides a critical overview of the potential prophylactic and therapeutic value of various dietary supplements and nutraceuticals from the evidence available to date. These include vitamin C, vitamin D, and zinc, which are often perceived by the public as treating respiratory infections or supporting immune health. Consumers need to be aware of misinformation and false promises surrounding some supplements, which may be subject to limited regulation by authorities. However, considerably more research is required to determine whether dietary supplements and nutraceuticals exhibit prophylactic and therapeutic value against SARS-CoV-2 infection and COVID-19. This review provides perspective on which nutraceuticals and supplements are involved in biological processes that are relevant to recovery from or prevention of COVID-19.
Collapse
Affiliation(s)
- Ronan Lordan
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Halie M Rando
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
- Center for Health AI, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Casey S Greene
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
- Center for Health AI, University of Colorado School of Medicine, Aurora, Colorado, USA
- Childhood Cancer Data Lab, Alex's Lemonade Stand Foundation, Philadelphia, Pennsylvania, USA
| |
Collapse
|
36
|
Sagaya Jansi R, Khusro A, Agastian P, Alfarhan A, Al-Dhabi NA, Arasu MV, Rajagopal R, Barcelo D, Al-Tamimi A. Emerging paradigms of viral diseases and paramount role of natural resources as antiviral agents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143539. [PMID: 33234268 PMCID: PMC7833357 DOI: 10.1016/j.scitotenv.2020.143539] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/14/2020] [Accepted: 10/17/2020] [Indexed: 05/04/2023]
Abstract
In the current scenario, the increasing prevalence of diverse microbial infections as well as emergence and re-emergence of viral epidemics with high morbidity and mortality rates are major public health threat. Despite the persistent production of antiviral drugs and vaccines in the global market, viruses still remain as one of the leading causes of deadly human diseases. Effective control of viral diseases, particularly Zika virus disease, Nipah virus disease, Severe acute respiratory syndrome, Coronavirus disease, Herpes simplex virus infection, Acquired immunodeficiency syndrome, and Ebola virus disease remain promising goal amidst the mutating viral strains. Current trends in the development of antiviral drugs focus solely on testing novel drugs or repurposing drugs against potential targets of the viruses. Compared to synthetic drugs, medicines from natural resources offer less side-effect to humans and are often cost-effective in the productivity approaches. This review intends not only to emphasize on the major viral disease outbreaks in the past few decades and but also explores the potentialities of natural substances as antiviral traits to combat viral pathogens. Here, we spotlighted a comprehensive overview of antiviral components present in varied natural sources, including plants, fungi, and microorganisms in order to identify potent antiviral agents for developing alternative therapy in future.
Collapse
Affiliation(s)
- R Sagaya Jansi
- Department of Bioinformatics, Stella Maris College, Chennai, India
| | - Ameer Khusro
- Department of Plant Biology and Biotechnology, Loyola College, Chennai, India
| | - Paul Agastian
- Department of Plant Biology and Biotechnology, Loyola College, Chennai, India.
| | - Ahmed Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia.
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Damia Barcelo
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia; Water and Soil Research Group, Department of Environmental Chemistry, IDAEA-CSIC, JORDI GIRONA 18-26, 08034 Barcelona, Spain
| | - Amal Al-Tamimi
- Ecology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
37
|
Harper A, Vijayakumar V, Ouwehand AC, ter Haar J, Obis D, Espadaler J, Binda S, Desiraju S, Day R. Viral Infections, the Microbiome, and Probiotics. Front Cell Infect Microbiol 2021; 10:596166. [PMID: 33643929 PMCID: PMC7907522 DOI: 10.3389/fcimb.2020.596166] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/23/2020] [Indexed: 01/07/2023] Open
Abstract
Viral infections continue to cause considerable morbidity and mortality around the world. Recent rises in these infections are likely due to complex and multifactorial external drivers, including climate change, the increased mobility of people and goods and rapid demographic change to name but a few. In parallel with these external factors, we are gaining a better understanding of the internal factors associated with viral immunity. Increasingly the gastrointestinal (GI) microbiome has been shown to be a significant player in the host immune system, acting as a key regulator of immunity and host defense mechanisms. An increasing body of evidence indicates that disruption of the homeostasis between the GI microbiome and the host immune system can adversely impact viral immunity. This review aims to shed light on our understanding of how host-microbiota interactions shape the immune system, including early life factors, antibiotic exposure, immunosenescence, diet and inflammatory diseases. We also discuss the evidence base for how host commensal organisms and microbiome therapeutics can impact the prevention and/or treatment of viral infections, such as viral gastroenteritis, viral hepatitis, human immunodeficiency virus (HIV), human papilloma virus (HPV), viral upper respiratory tract infections (URTI), influenza and SARS CoV-2. The interplay between the gastrointestinal microbiome, invasive viruses and host physiology is complex and yet to be fully characterized, but increasingly the evidence shows that the microbiome can have an impact on viral disease outcomes. While the current evidence base is informative, further well designed human clinical trials will be needed to fully understand the array of immunological mechanisms underlying this intricate relationship.
Collapse
Affiliation(s)
- Ashton Harper
- ADM Health & Wellness, Medical Affairs Department, Somerset, United Kingdom
| | | | - Arthur C. Ouwehand
- Global Health and Nutrition Sciences, DuPont Nutrition and Biosciences, Kantvik, Finland
| | | | - David Obis
- Innovation Science & Nutrition Department, Danone Nutricia Research, Palaiseau, France
| | | | - Sylvie Binda
- Lallemand Health Solutions, Montreal, QC, Canada
| | | | - Richard Day
- ADM Health & Wellness, Medical Affairs Department, Somerset, United Kingdom
| |
Collapse
|
38
|
Spangler JR, Caruana JC, Medintz IL, Walper SA. Harnessing the potential of Lactobacillus species for therapeutic delivery at the lumenal-mucosal interface. Future Sci OA 2021; 7:FSO671. [PMID: 33815818 PMCID: PMC8015674 DOI: 10.2144/fsoa-2020-0153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Lactobacillus species have been studied for over 30 years in their role as commensal organisms in the human gut. Recently there has been a surge of interest in their abilities to natively and recombinantly stimulate immune activities, and studies have identified strains and novel molecules that convey particular advantages for applications as both immune adjuvants and immunomodulators. In this review, we discuss the recent advances in Lactobacillus-related activity at the gut/microbiota interface, the efforts to probe the boundaries of the direct and indirect therapeutic potential of these bacteria, and highlight the continued interest in harnessing the native capacity for the production of biogenic compounds shown to influence nervous system activity. Taken together, these aspects underscore Lactobacillus species as versatile therapeutic delivery vehicles capable of effector production at the lumenal-mucosal interface, and further establish a foundation of efficacy upon which future engineered strains can expand.
Collapse
Affiliation(s)
- Joseph R Spangler
- National Research Council Postdoctoral Fellow sited in US Naval Research Laboratory, Code 6900, Center for Bio/Molecular Science & Engineering, 4555 Overlook Ave SW, Washington DC, 20375, USA
| | - Julie C Caruana
- American Society for Engineering Education Postdoctoral Fellow sited in US Naval Research Laboratory, Code 6900, Center for Bio/Molecular Science & Engineering, 4555 Overlook Ave SW, Washington DC, 20375, USA
| | - Igor L Medintz
- US Naval Research Laboratory, Code 6900, Center for Bio/Molecular Science & Engineering, 4555 Overlook Ave SW, Washington DC, 20375, USA
| | - Scott A Walper
- US Naval Research Laboratory, Code 6900, Center for Bio/Molecular Science & Engineering, 4555 Overlook Ave SW, Washington DC, 20375, USA
| |
Collapse
|
39
|
Lordan R, Rando HM, Greene CS. Dietary Supplements and Nutraceuticals Under Investigation for COVID-19 Prevention and Treatment. ARXIV 2021:arXiv:2102.02250v1. [PMID: 33564696 PMCID: PMC7872359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has caused global disruption and a significant loss of life. Existing treatments that can be repurposed as prophylactic and therapeutic agents could reduce the pandemic's devastation. Emerging evidence of potential applications in other therapeutic contexts has led to the investigation of dietary supplements and nutraceuticals for COVID-19. Such products include vitamin C, vitamin D, omega 3 polyunsaturated fatty acids, probiotics, and zinc, all of which are currently under clinical investigation. In this review, we critically appraise the evidence surrounding dietary supplements and nutraceuticals for the prophylaxis and treatment of COVID-19. Overall, further study is required before evidence-based recommendations can be formulated, but nutritional status plays a significant role in patient outcomes, and these products could help alleviate deficiencies. For example, evidence indicates that vitamin D deficiency may be associated with greater incidence of infection and severity of COVID-19, suggesting that vitamin D supplementation may hold prophylactic or therapeutic value. A growing number of scientific organizations are now considering recommending vitamin D supplementation to those at high risk of COVID-19. Because research in vitamin D and other nutraceuticals and supplements is preliminary, here we evaluate the extent to which these nutraceutical and dietary supplements hold potential in the COVID-19 crisis.
Collapse
Affiliation(s)
- Ronan Lordan
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-5158, USA
| | - Halie M Rando
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America; Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Casey S Greene
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America; Childhood Cancer Data Lab, Alex's Lemonade Stand Foundation, Philadelphia, Pennsylvania, United States of America; Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, United States of America; Center for Health AI, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| |
Collapse
|
40
|
Hosgood HD, Cai Q, Hua X, Long J, Shi J, Wan Y, Yang Y, Abnet C, Bassig BA, Hu W, Ji BT, Klugman M, Xiang Y, Gao YT, Wong JY, Zheng W, Rothman N, Shu XO, Lan Q. Variation in oral microbiome is associated with future risk of lung cancer among never-smokers. Thorax 2020; 76:256-263. [PMID: 33318237 DOI: 10.1136/thoraxjnl-2020-215542] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/09/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To prospectively investigate whether diversity in oral microbiota is associated with risk of lung cancer among never-smokers. DESIGN AND SETTING A nested case-control study within two prospective cohort studies, the Shanghai Women's Health Study (n=74 941) and the Shanghai Men's Health Study (n=61 480). PARTICIPANTS Lifetime never-smokers who had no cancer at baseline. Cases were subjects who were diagnosed with incident lung cancer (n=114) and were matched 1:1 with controls on sex, age (≤2 years), date (≤30 days) and time (morning/afternoon) of sample collection, antibiotic use during the week before sample collection (yes/no) and menopausal status (for women). MAIN OUTCOMES AND MEASURES Metagenomic shotgun sequencing was used to measure the community structure and abundance of the oral microbiome in pre-diagnostic oral rinse samples of each case and control. Multivariable logistic regression models were used to estimate the association of lung cancer risk with alpha diversity metrics and relative abundance of taxa. The Microbiome Regression-Based Kernel Association Test (MiRKAT) evaluated the association between risk and the microbiome beta diversity. RESULTS Subjects with lower microbiota alpha diversity had an increased risk of lung cancer compared with those with higher microbial alpha diversity (Shannon: ptrend=0.05; Simpson: ptrend=0.04; Observed Species: ptrend=0.64). No case-control differences were apparent for beta diversity (pMiRKAT=0.30). After accounting for multiple comparisons, a greater abundance of Spirochaetia (ORlow 1.00 (reference), ORmedium 0.61 (95% CI 0.32 to 1.18), ORhigh 0.42 (95% CI 0.21 to 0.85)) and Bacteroidetes (ORlow 1.00 (reference), ORmedium 0.66 (95% CI 0.35 to 1.25), ORhigh 0.31 (95% CI 0.15 to 0.64)) was associated with a decreased risk of lung cancer, while a greater abundance of the Bacilli class (ORlow 1.00 (reference), ORmedium 1.49 (95% CI 0.73 to 3.08), ORhigh 2.40 (95% CI 1.18 to 4.87)) and Lactobacillales order (ORlow 1.00 (reference), ORmedium 2.15 (95% CI 1.03 to 4.47), ORhigh 3.26 (95% CI 1.58 to 6.70)) was associated with an increased risk of lung cancer. CONCLUSIONS Our prospective study of never-smokers suggests that lower alpha diversity was associated with a greater risk of lung cancer and the abundance of certain specific taxa was associated with altered risk, providing further insight into the aetiology of lung cancer in the absence of active tobacco smoking.
Collapse
Affiliation(s)
- H Dean Hosgood
- Albert Einstein College of Medicine, Bronx, New York, USA
| | - Qiuyin Cai
- Vanderbilt University, Nashville, Tennessee, USA
| | - Xing Hua
- National Cancer Institute, Bethesda, Maryland, USA
| | - Jirong Long
- Vanderbilt University, Nashville, Tennessee, USA
| | - Jianxin Shi
- National Cancer Institute, Bethesda, Maryland, USA
| | - Yunhu Wan
- National Cancer Institute, Bethesda, Maryland, USA
| | - Yaohua Yang
- Vanderbilt University, Nashville, Tennessee, USA
| | | | | | - Wei Hu
- National Cancer Institute, Bethesda, Maryland, USA
| | - Bu-Tian Ji
- National Cancer Institute, Bethesda, Maryland, USA
| | | | | | | | | | - Wei Zheng
- Vanderbilt University, Nashville, Tennessee, USA
| | | | - Xiao-Ou Shu
- Vanderbilt University, Nashville, Tennessee, USA
| | - Qing Lan
- National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
41
|
Angelin J, Kavitha M. Exopolysaccharides from probiotic bacteria and their health potential. Int J Biol Macromol 2020; 162:853-865. [PMID: 32585269 PMCID: PMC7308007 DOI: 10.1016/j.ijbiomac.2020.06.190] [Citation(s) in RCA: 262] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 01/06/2023]
Abstract
Exopolysaccharides (EPS) are extracellular macromolecules excreted as tightly bound capsule or loosely attached slime layer in microorganisms. They play most prominent role against desiccation, phagocytosis, cell recognition, phage attack, antibiotics or toxic compounds and osmotic stress. In the last few decades, natural polymers have gained much attention among scientific communities owing to their therapeutic potential. In particular the EPS retrieved from probiotic bacteria with varied carbohydrate compositions possess a plenty of beneficial properties. Different probiotic microbes have unique behavior in expressing their capability to display significant health promoting characteristics in the form of polysaccharides. In this new era of alternative medicines, these polysaccharides are considered as substitutes for synthetic drugs. The EPS finds applications in various fields like textiles, cosmetics, bioremediation, food and therapeutics. The present review is focused on sources, chemical composition, biosynthetic pathways of EPS and their biological potential. More attention has been given to the scientific investigations on antimicrobial, antitumor, anti-biofilm, antiviral, anti-inflammatory and immunomodulatory activities.
Collapse
Affiliation(s)
- J Angelin
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - M Kavitha
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
42
|
Kibar H, Arslan YE, Ceylan A, Karaca B, Haliscelik O, Kiran F. Weissella cibaria EIR/P2-derived exopolysaccharide: A novel alternative to conventional biomaterials targeting periodontal regeneration. Int J Biol Macromol 2020; 165:2900-2908. [PMID: 33736289 DOI: 10.1016/j.ijbiomac.2020.10.106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/04/2020] [Accepted: 10/14/2020] [Indexed: 12/16/2022]
Abstract
Healing and regeneration of periodontium are considered as a complex physiological process. Therefore, treatments need to be addressed with highly effective components modulating the multiple pathways. In this study, exopolysaccharide (EPS) produced by Weissella cibaria EIR/P2, was partially purified from the culture supernatant and subjected to characterization within the aim of evaluating its potential for periodontal regeneration. High-Performance Liquid Chromatography analysis revealed a single-peak corresponding to the glucose which identified the EPS as dextran. Fourier transform-infrared spectra were also displayed characteristic peaks for polysaccharides. According to the results of gel permeation/size exclusion-chromatography, the molecular mass was determined to be 8 × 106 Da. To clarify its anti-bacterial activity on Streptococcus mutans, effects on viability and biofilm formation was evaluated. At 50 mg/mL, dextran exhibited a bactericidal effect with 70% inhibition on biofilm formation. Besides, dose-dependent antioxidant effects were also detected. The efficacy of dextran in enhancing the viability of human periodontal ligament fibroblast cells (hPDLFCs) was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium-bromide (MTT) assay, and an increase was observed in the viability of hPDLFCs. In conclusion, dextran derived from W. cibaria can be potentially used as a multi-functional bioactive polymer in the design of new therapeutic strategies to promote healing and regeneration of periodontium.
Collapse
Affiliation(s)
- Hazal Kibar
- Pharmabiotic Technologies Research Laboratory, Department of Biology, Faculty of Science, Ankara University, 06100 Ankara, Turkey; Regenerative Biomaterials Laboratory, Department of Bioengineering, Faculty of Engineering, Canakkale Onsekiz Mart University, 17100 Canakkale, Turkey
| | - Yavuz Emre Arslan
- Regenerative Biomaterials Laboratory, Department of Bioengineering, Faculty of Engineering, Canakkale Onsekiz Mart University, 17100 Canakkale, Turkey
| | - Ahmet Ceylan
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Ankara University, 06110 Ankara, Turkey
| | - Başar Karaca
- Microbiology Research Laboratory, Department of Biology, Faculty of Science, Ankara University, 06100 Ankara, Turkey
| | - Ozan Haliscelik
- Pharmabiotic Technologies Research Laboratory, Department of Biology, Faculty of Science, Ankara University, 06100 Ankara, Turkey
| | - Fadime Kiran
- Pharmabiotic Technologies Research Laboratory, Department of Biology, Faculty of Science, Ankara University, 06100 Ankara, Turkey.
| |
Collapse
|
43
|
Chang-Liao WP, Lee A, Chiu YH, Chang HW, Liu JR. Isolation of a Leuconostoc mesenteroides Strain With Anti-Porcine Epidemic Diarrhea Virus Activities From Kefir Grains. Front Microbiol 2020; 11:1578. [PMID: 32760370 PMCID: PMC7373756 DOI: 10.3389/fmicb.2020.01578] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/17/2020] [Indexed: 12/21/2022] Open
Abstract
Swine grown under commercial conditions are vulnerable to environmental exposure to several viruses, which may cause infectious diseases and spread easily and rapidly, resulting in significant economic losses in animal husbandry. Previous studies have suggested that probiotics seem to be a new and promising alternative to vaccinations to protect animals against potential viral infections. In this study, we used the Vero cell culture model of infection to study porcine epidemic diarrhea virus (PEDV). We screened lactic acid bacteria (LAB) with anti-PEDV potential from kefir grains, which are starter cultures used to ferment milk into kefir. Twenty-nine LAB strains were isolated and identified as Enterococcus durans, Lactobacillus kefiri, Lactococcus lactis, and Leuconostoc mesenteroides, according to 16S ribosomal RNA (rRNA) and rpoA gene sequence analyses. The anti-PEDV activities of the LAB intracellular extracts were compared, and the intracellular extracts of Ln. mesenteroides showed higher anti-PEDV activities than that of the other species. Among the Ln. mesenteroides strains, a strain designated YPK30 showed a higher growth rate than that of the other strains and was further evaluated for its anti-PEDV activity. The results showed that the intracellular extracts of Ln. mesenteroides YPK30 possessed in vitro prophylactic, therapeutic, and direct-inhibitory effects against PEDV in the Vero cell model. The expression levels of Type 1 interferon (IFN)-dependent genes, including Myxovirus resistance 1 (MX1) and interferon-stimulated gene 15 (ISG15), were significantly increased after treatment with intracellular extracts of Ln. mesenteroides YPK30 for 24 h. Such expression suggests that the anti-PEDV activity of Ln. mesenteroides YPK30 could be attributed to its up-regulatory effect on the expression of MX1 and ISG15 genes. These results suggested that Ln. mesenteroides YPK30 has the potential to provide some levels of host protection against PEDV infections.
Collapse
Affiliation(s)
| | - An Lee
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Yu-Han Chiu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Hui-Wen Chang
- School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Je-Ruei Liu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan.,Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan.,Center for Biotechnology, National Taiwan University, Taipei, Taiwan.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
44
|
Infusino F, Marazzato M, Mancone M, Fedele F, Mastroianni CM, Severino P, Ceccarelli G, Santinelli L, Cavarretta E, Marullo AGM, Miraldi F, Carnevale R, Nocella C, Biondi-Zoccai G, Pagnini C, Schiavon S, Pugliese F, Frati G, d’Ettorre G. Diet Supplementation, Probiotics, and Nutraceuticals in SARS-CoV-2 Infection: A Scoping Review. Nutrients 2020; 12:1718. [PMID: 32521760 PMCID: PMC7352781 DOI: 10.3390/nu12061718] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/29/2020] [Accepted: 06/05/2020] [Indexed: 02/05/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (Sars-CoV-2) global pandemic is a devastating event that is causing thousands of victims every day around the world. One of the main reasons of the great impact of coronavirus disease 2019 (COVID-19) on society is its unexpected spread, which has not allowed an adequate preparation. The scientific community is fighting against time for the production of a vaccine, but it is difficult to place a safe and effective product on the market as fast as the virus is spreading. Similarly, for drugs that can directly interfere with viral pathways, their production times are long, despite the great efforts made. For these reasons, we analyzed the possible role of non-pharmacological substances such as supplements, probiotics, and nutraceuticals in reducing the risk of Sars-CoV-2 infection or mitigating the symptoms of COVID-19. These substances could have numerous advantages in the current circumstances, are generally easily available, and have negligible side effects if administered at the already used and tested dosages. Large scientific evidence supports the benefits that some bacterial and molecular products may exert on the immune response to respiratory viruses. These could also have a regulatory role in systemic inflammation or endothelial damage, which are two crucial aspects of COVID-19. However, there are no specific data available, and rigorous clinical trials should be conducted to confirm the putative benefits of diet supplementation, probiotics, and nutraceuticals in the current pandemic.
Collapse
Affiliation(s)
- Fabio Infusino
- Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy; (F.I.); (M.M.); (F.F.); (P.S.); (F.M.); (C.N.)
| | - Massimiliano Marazzato
- Department of Public Health and Infectious Diseases, Sapienza, University of Rome, 00185 Rome, Italy; (M.M.); (C.M.M.); (G.C.); (L.S.)
| | - Massimo Mancone
- Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy; (F.I.); (M.M.); (F.F.); (P.S.); (F.M.); (C.N.)
| | - Francesco Fedele
- Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy; (F.I.); (M.M.); (F.F.); (P.S.); (F.M.); (C.N.)
| | - Claudio Maria Mastroianni
- Department of Public Health and Infectious Diseases, Sapienza, University of Rome, 00185 Rome, Italy; (M.M.); (C.M.M.); (G.C.); (L.S.)
| | - Paolo Severino
- Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy; (F.I.); (M.M.); (F.F.); (P.S.); (F.M.); (C.N.)
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, Sapienza, University of Rome, 00185 Rome, Italy; (M.M.); (C.M.M.); (G.C.); (L.S.)
| | - Letizia Santinelli
- Department of Public Health and Infectious Diseases, Sapienza, University of Rome, 00185 Rome, Italy; (M.M.); (C.M.M.); (G.C.); (L.S.)
| | - Elena Cavarretta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (E.C.); (A.G.M.M.); (R.C.); (G.B.-Z.); (S.S.); (G.F.)
- Mediterranea Cardiocentro, 80133 Naples, Italy
| | - Antonino G. M. Marullo
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (E.C.); (A.G.M.M.); (R.C.); (G.B.-Z.); (S.S.); (G.F.)
| | - Fabio Miraldi
- Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy; (F.I.); (M.M.); (F.F.); (P.S.); (F.M.); (C.N.)
| | - Roberto Carnevale
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (E.C.); (A.G.M.M.); (R.C.); (G.B.-Z.); (S.S.); (G.F.)
- Mediterranea Cardiocentro, 80133 Naples, Italy
| | - Cristina Nocella
- Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy; (F.I.); (M.M.); (F.F.); (P.S.); (F.M.); (C.N.)
| | - Giuseppe Biondi-Zoccai
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (E.C.); (A.G.M.M.); (R.C.); (G.B.-Z.); (S.S.); (G.F.)
- Mediterranea Cardiocentro, 80133 Naples, Italy
| | - Cristiano Pagnini
- Department of Gastroenterology and Digestive Endoscopy, Azienda Ospedaliera San Giovanni Addolorata, 00184 Rome, Italy;
| | - Sonia Schiavon
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (E.C.); (A.G.M.M.); (R.C.); (G.B.-Z.); (S.S.); (G.F.)
| | - Francesco Pugliese
- Department of General Surgery and Surgical Specialities “Paride Stefanini”, Sapienza, University of Rome, 00185 Rome, Italy;
| | - Giacomo Frati
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (E.C.); (A.G.M.M.); (R.C.); (G.B.-Z.); (S.S.); (G.F.)
- IRCCS NeuroMed, 86077 Pozzilli (IS), Italy
| | - Gabriella d’Ettorre
- Department of Public Health and Infectious Diseases, Sapienza, University of Rome, 00185 Rome, Italy; (M.M.); (C.M.M.); (G.C.); (L.S.)
| |
Collapse
|