1
|
Brokowska J, Herman-Antosiewicz A, Hać A. Isothiocyanates induce autophagy and inhibit protein synthesis in primary cells via modulation of AMPK-mTORC1-S6K1 signaling pathway, and protect against mutant huntingtin aggregation. Eur J Nutr 2024; 64:46. [PMID: 39680190 PMCID: PMC11649724 DOI: 10.1007/s00394-024-03539-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 11/04/2024] [Indexed: 12/17/2024]
Abstract
PURPOSE Autophagy is a degradation process whose activation underlies beneficial effects of caloric restriction. Isothiocyanates (ITCs) induce autophagy in cancer cells, however, their impact on primary cells remains insufficiently explored, particularly in non-epithelial cells. The aim of this study was to investigate whether ITCs induce autophagy in primary (non-immortalized) mesenchymal cells and if so, to determine the molecular mechanism underlying its activation and consequences on cell functioning. METHODS Primary human dermal fibroblasts (HDFa) and prostate cancer cells (PC3) as well as two ITCs, sulforaphane and phenethyl isothiocyanate, were applied. Cell viability was measured by the MTT test, protein synthesis - by 3H-leucine incorporation, and protein level - by immunoblotting. A number of mutant huntingtin (mHtt) aggregates was assessed by fluorescence microscopy. RESULTS Both ITCs efficiently induced autophagy in fibroblasts which coincided with suppression of mTORC1 - a negative autophagy regulator - and protein synthesis arrest. A dephosphorylation of mTORC1 substrate, S6K1, and ribosomal S6 protein was preceded by activation of AMPK, an inhibitor of mTORC1 and autophagy activator. A similar response was observed in phenethyl isothiocyanate-treated prostate cancer cells. We also showed that ITCs-induced autophagy and/or translation block do not affect cells viability and can protect cells against an accumulation of mHtt aggregates - a main cause of Huntington's disease. CONCLUSION Our study showed that ITCs induce autophagy and inhibit protein synthesis in both primary mesenchymal and cancer cells via modulation of the AMPK-mTORC1-S6K1 pathway. Moreover, it suggests that ITCs might have a potential in developing therapeutics for Huntington's disease.
Collapse
Affiliation(s)
- Joanna Brokowska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk, 80-308, Poland
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Anna Herman-Antosiewicz
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk, 80-308, Poland
| | - Aleksandra Hać
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk, 80-308, Poland.
| |
Collapse
|
2
|
Almanza-Aguilera E, Martínez-Huélamo M, López-Hernández Y, Guiñón-Fort D, Guadall A, Cruz M, Perez-Cornago A, Rostgaard-Hansen AL, Tjønneland A, Dahm CC, Katzke V, Schulze MB, Masala G, Agnoli C, Tumino R, Ricceri F, Lasheras C, Crous-Bou M, Sánchez MJ, Aizpurua-Atxega A, Guevara M, Tsilidis KK, Chatziioannou AC, Weiderpass E, Travis RC, Wishart DS, Andrés-Lacueva C, Zamora-Ros R. Prediagnostic Plasma Nutrimetabolomics and Prostate Cancer Risk: A Nested Case-Control Analysis Within the EPIC Study. Cancers (Basel) 2024; 16:4116. [PMID: 39682302 PMCID: PMC11639937 DOI: 10.3390/cancers16234116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/29/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Background and Objective: Nutrimetabolomics may reveal novel insights into early metabolic alterations and the role of dietary exposures on prostate cancer (PCa) risk. We aimed to prospectively investigate the associations between plasma metabolite concentrations and PCa risk, including clinically relevant tumor subtypes. Methods: We used a targeted and large-scale metabolomics approach to analyze plasma samples of 851 matched PCa case-control pairs from the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Associations between metabolite concentrations and PCa risk were estimated by multivariate conditional logistic regression analysis. False discovery rate (FDR) was used to control for multiple testing correction. Results: Thirty-one metabolites (predominately derivatives of food intake and microbial metabolism) were associated with overall PCa risk and its clinical subtypes (p < 0.05), but none of the associations exceeded the FDR threshold. The strongest positive and negative associations were for dimethylglycine (OR = 2.13; 95% CI 1.16-3.91) with advanced PCa risk (n = 157) and indole-3-lactic acid (OR = 0.28; 95% CI 0.09-0.87) with fatal PCa risk (n = 57), respectively; however, these associations did not survive correction for multiple testing. Conclusions: The results from the current nutrimetabolomics study suggest that apart from early metabolic deregulations, some biomarkers of food intake might be related to PCa risk, especially advanced and fatal PCa. Further independent and larger studies are needed to validate our results.
Collapse
Affiliation(s)
- Enrique Almanza-Aguilera
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain; (E.A.-A.); (D.G.-F.); (M.C.-B.)
| | - Miriam Martínez-Huélamo
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.M.-H.); (A.G.); (M.C.); (C.A.-L.)
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Nutrition and Food Safety Research Institute (INSA), Food Innovation Network (XIA), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Yamilé López-Hernández
- The Metabolomics Innovation Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada; (Y.L.-H.); (D.S.W.)
- CONAHCyT-Metabolomics and Proteomics Laboratory, Academic Unit of Biological Sciences, Autonomous University of Zacatecas, Zacatecas 98000, Mexico
| | - Daniel Guiñón-Fort
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain; (E.A.-A.); (D.G.-F.); (M.C.-B.)
| | - Anna Guadall
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.M.-H.); (A.G.); (M.C.); (C.A.-L.)
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Nutrition and Food Safety Research Institute (INSA), Food Innovation Network (XIA), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Meryl Cruz
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.M.-H.); (A.G.); (M.C.); (C.A.-L.)
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Nutrition and Food Safety Research Institute (INSA), Food Innovation Network (XIA), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Aurora Perez-Cornago
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK (R.C.T.)
| | - Agnetha L. Rostgaard-Hansen
- Danish Cancer Society Research Center, Diet, Cancer and Health, 2100 Copenhagen, Denmark; (A.L.R.-H.); (A.T.)
| | - Anne Tjønneland
- Danish Cancer Society Research Center, Diet, Cancer and Health, 2100 Copenhagen, Denmark; (A.L.R.-H.); (A.T.)
- Department of Public Health, University of Copenhagen, 1353 Copenhagen, Denmark
| | - Christina C. Dahm
- Department of Public Health, Aarhus University, 8000 Aarhus, Denmark;
| | - Verena Katzke
- Department of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
| | - Matthias B. Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam Rehbruecke, 14558 Nuthetal, Germany;
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
| | - Giovanna Masala
- Clinical Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), 50139 Florence, Italy;
| | - Claudia Agnoli
- Department of Research Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori, 20133 Milan, Italy;
| | - Rosario Tumino
- Hyblean Association for Epidemiological Research, Associazione Iblea per la Ricerca Epidemiologica (AIRE-ONLUS), 97100 Ragusa, Italy;
| | - Fulvio Ricceri
- Centre for Biostatistics, Epidemiology, and Public Health (C-BEPH, Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy;
| | - Cristina Lasheras
- Department of Functional Biology, Oviedo University, 33003 Oviedo, Spain;
| | - Marta Crous-Bou
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain; (E.A.-A.); (D.G.-F.); (M.C.-B.)
| | - Maria-Jose Sánchez
- Escuela Andaluza de Salud Pública (EASP), 18011 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain;
| | - Amaia Aizpurua-Atxega
- Sub Directorate for Public Health and Addictions of Gipuzkoa, Ministry of Health of the Basque Government, 20013 San Sebastian, Spain;
- Epidemiology of Chronic and Communicable Diseases Group, Biogipuzkoa (BioDonostia) Health Research Institute, 20014 San Sebastián, Spain
| | - Marcela Guevara
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain;
- Instituto de Salud Pública y Laboral de Navarra, 31003 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Kostas K. Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary’s Campus, London SW7 2AZ, UK;
| | | | - Elisabete Weiderpass
- International Agency for Research on Cancer (IARC/WHO), 69366 Lyon, France; (A.C.C.); (E.W.)
| | - Ruth C. Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK (R.C.T.)
| | - David S. Wishart
- The Metabolomics Innovation Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada; (Y.L.-H.); (D.S.W.)
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Cristina Andrés-Lacueva
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.M.-H.); (A.G.); (M.C.); (C.A.-L.)
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Nutrition and Food Safety Research Institute (INSA), Food Innovation Network (XIA), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Raul Zamora-Ros
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain; (E.A.-A.); (D.G.-F.); (M.C.-B.)
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Nutrition and Food Safety Research Institute (INSA), Food Innovation Network (XIA), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
3
|
Spezzini J, Piragine E, Flori L, Calderone V, Martelli A. Natural H 2S-donors: A new pharmacological opportunity for the management of overweight and obesity. Phytother Res 2024; 38:2388-2405. [PMID: 38430052 DOI: 10.1002/ptr.8181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024]
Abstract
The prevalence of overweight and obesity has progressively increased in the last few years, becoming a real threat to healthcare systems. To date, the clinical management of body weight gain is an unmet medical need, as there are few approved anti-obesity drugs and most require an extensive monitoring and vigilance due to risk of adverse effects and poor patient adherence/persistence. Growing evidence has shown that the gasotransmitter hydrogen sulfide (H2S) and, therefore, H2S-donors could have a central role in the prevention and treatment of overweight/obesity. The main natural sources of H2S-donors are plants from the Alliaceae (garlic and onion), Brassicaceae (e.g., broccoli, cabbage, and wasabi), and Moringaceae botanical families. In particular, polysulfides and isothiocyanates, which slowly release H2S, derive from the hydrolysis of alliin from Alliaceae and glucosinolates from Brassicaceae/Moringaceae, respectively. In this review, we describe the emerging role of endogenous H2S in regulating adipose tissue function and the potential efficacy of natural H2S-donors in animal models of overweight/obesity, with a final focus on the preliminary results from clinical trials. We conclude that organosulfur-containing plants and their extracts could be used before or in combination with conventional anti-obesity agents to improve treatment efficacy and reduce inflammation in obesogenic conditions. However, further high-quality studies are needed to firmly establish their clinical efficacy.
Collapse
Affiliation(s)
| | | | - Lorenzo Flori
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Interdepartmental Research Center "Nutraceuticals and Food for Health (NUTRAFOOD)", University of Pisa, Pisa, Italy
- Interdepartmental Research Center "Biology and Pathology of Ageing", University of Pisa, Pisa, Italy
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Interdepartmental Research Center "Nutraceuticals and Food for Health (NUTRAFOOD)", University of Pisa, Pisa, Italy
- Interdepartmental Research Center "Biology and Pathology of Ageing", University of Pisa, Pisa, Italy
| |
Collapse
|
4
|
Singla RK, Wang X, Gundamaraju R, Joon S, Tsagkaris C, Behzad S, Khan J, Gautam R, Goyal R, Rakmai J, Dubey AK, Simal-Gandara J, Shen B. Natural products derived from medicinal plants and microbes might act as a game-changer in breast cancer: a comprehensive review of preclinical and clinical studies. Crit Rev Food Sci Nutr 2023; 63:11880-11924. [PMID: 35838143 DOI: 10.1080/10408398.2022.2097196] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Breast cancer (BC) is the most prevalent neoplasm among women. Genetic and environmental factors lead to BC development and on this basis, several preventive - screening and therapeutic interventions have been developed. Hormones, both in the form of endogenous hormonal signaling or hormonal contraceptives, play an important role in BC pathogenesis and progression. On top of these, breast microbiota includes both species with an immunomodulatory activity enhancing the host's response against cancer cells and species producing proinflammatory cytokines associated with BC development. Identification of novel multitargeted therapeutic agents with poly-pharmacological potential is a dire need to combat advanced and metastatic BC. A growing body of research has emphasized the potential of natural compounds derived from medicinal plants and microbial species as complementary BC treatment regimens, including dietary supplements and probiotics. In particular, extracts from plants such as Artemisia monosperma Delile, Origanum dayi Post, Urtica membranacea Poir. ex Savigny, Krameria lappacea (Dombey) Burdet & B.B. Simpson and metabolites extracted from microbes such as Deinococcus radiodurans and Streptomycetes strains as well as probiotics like Bacillus coagulans and Lactobacillus brevis MK05 have exhibited antitumor effects in the form of antiproliferative and cytotoxic activity, increase in tumors' chemosensitivity, antioxidant activity and modulation of BC - associated molecular pathways. Further, bioactive compounds like 3,3'-diindolylmethane, epigallocatechin gallate, genistein, rutin, resveratrol, lycopene, sulforaphane, silibinin, rosmarinic acid, and shikonin are of special interest for the researchers and clinicians because these natural agents have multimodal action and act via multiple ways in managing the BC and most of these agents are regularly available in our food and fruit diets. Evidence from clinical trials suggests that such products had major potential in enhancing the effectiveness of conventional antitumor agents and decreasing their side effects. We here provide a comprehensive review of the therapeutic effects and mechanistic underpinnings of medicinal plants and microbial metabolites in BC management. The future perspectives on the translation of these findings to the personalized treatment of BC are provided and discussed.
Collapse
Affiliation(s)
- Rajeev K Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Xiaoyan Wang
- Department of Pathology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Lab, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, Australia
| | - Shikha Joon
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | | | - Sahar Behzad
- Evidence-based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Majmaah, Saudi Arabia
| | - Rupesh Gautam
- Department of Pharmacology, MM School of Pharmacy, MM University, Sadopur, Haryana, India
| | - Rajat Goyal
- Department of Pharmacology, MM School of Pharmacy, MM University, Sadopur, Haryana, India
| | - Jaruporn Rakmai
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute (KAPI), Kasetsart University, Bangkok, Thailand
| | | | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Adepoju FO, Duru KC, Li E, Kovaleva EG, Tsurkan MV. Pharmacological Potential of Betulin as a Multitarget Compound. Biomolecules 2023; 13:1105. [PMID: 37509141 PMCID: PMC10377123 DOI: 10.3390/biom13071105] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Betulin is a natural triterpene, usually from birch bark, known for its potential wound-healing properties. Despite having a wide range of pharmacological targets, no studies have proposed betulin as a multitarget compound. Betulin has protective effects against cardiovascular and liver diseases, cancer, diabetes, oxidative stress, and inflammation. It reduces postprandial hyperglycemia by inhibiting α-amylase and α-glucosidase activity, combats tumor cells by inducing apoptosis and inhibiting metastatic proteins, and modulates chronic inflammation by blocking the expression of proinflammatory cytokines via modulation of the NFκB and MAPKs pathways. Given its potential to influence diverse biological networks with high target specificity, it can be hypothesized that betulin may eventually become a new lead for drug development because it can modify a variety of pharmacological targets. The summarized research revealed that the diverse beneficial effects of betulin in various diseases can be attributed, at least in part, to its multitarget anti-inflammatory activity. This review focuses on the natural sources, pharmacokinetics, pharmacological activity of betulin, and the multi-target effects of betulin on signaling pathways such as MAPK, NF-κB, and Nrf2, which are important regulators of the response to oxidative stress and inflammation in the body.
Collapse
Affiliation(s)
- Feyisayo O Adepoju
- Department of Technology for Organic Synthesis, Chemical Technology Institute, Ural Federal University, Mira 19, 620002 Yekaterinburg, Russia
| | - Kingsley C Duru
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854-8021, USA
| | - Erguang Li
- Medical School, Nanjing University, Nanjing, 22 Hankou Road, Nanjing 210093, China
| | - Elena G Kovaleva
- Department of Technology for Organic Synthesis, Chemical Technology Institute, Ural Federal University, Mira 19, 620002 Yekaterinburg, Russia
| | | |
Collapse
|
6
|
Anticarcinogenic Effects of Isothiocyanates on Hepatocellular Carcinoma. Int J Mol Sci 2022; 23:ijms232213834. [PMID: 36430307 PMCID: PMC9693344 DOI: 10.3390/ijms232213834] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, accounting for about 90% of cases. Sorafenib, lenvatinib, and the combination of atezolizumab and bevacizumab are considered first-line treatments for advanced HCC. However, clinical application of these drugs has also caused some adverse reactions such as hypertension, elevated aspartate aminotransferases, and proteinuria. At present, natural products and their derivatives have drawn more and more attention due to less side effects as cancer treatments. Isothiocyanates (ITCs) are one type of hydrolysis products from glucosinolates (GLSs), secondary plant metabolites found exclusively in cruciferous vegetables. Accumulating evidence from encouraging in vitro and in vivo animal models has demonstrated that ITCs have multiple biological activities, especially their potentially health-promoting activities (antibacterial, antioxidant, and anticarcinogenic effects). In this review, we aim to comprehensively summarize the chemopreventive, anticancer, and chemosensitizative effects of ITCs on HCC, and explain the underlying molecular mechanisms.
Collapse
|
7
|
Chopra H, Bibi S, Goyal R, Gautam RK, Trivedi R, Upadhyay TK, Mujahid MH, Shah MA, Haris M, Khot KB, Gopan G, Singh I, Kim JK, Jose J, Abdel-Daim MM, Alhumaydhi FA, Emran TB, Kim B. Chemopreventive Potential of Dietary Nanonutraceuticals for Prostate Cancer: An Extensive Review. Front Oncol 2022; 12:925379. [PMID: 35903701 PMCID: PMC9315356 DOI: 10.3389/fonc.2022.925379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/25/2022] [Indexed: 12/24/2022] Open
Abstract
There are more than two hundred fifty different types of cancers, that are diagnosed around the world. Prostate cancer is one of the suspicious type of cancer spreading very fast around the world, it is reported that in 2018, 29430 patients died of prostate cancer in the United State of America (USA), and hence it is expected that one out of nine men diagnosed with this severe disease during their lives. Medical science has identified cancer at several stages and indicated genes mutations involved in the cancer cell progressions. Genetic implications have been studied extensively in cancer cell growth. So most efficacious drug for prostate cancer is highly required just like other severe diseases for men. So nutraceutical companies are playing major role to manage cancer disease by the recommendation of best natural products around the world, most of these natural products are isolated from plant and mushrooms because they contain several chemoprotective agents, which could reduce the chances of development of cancer and protect the cells for further progression. Some nutraceutical supplements might activate the cytotoxic chemotherapeutic effects by the mechanism of cell cycle arrest, cell differentiation procedures and changes in the redox states, but in other, it also elevate the levels of effectiveness of chemotherapeutic mechanism and in results, cancer cell becomes less reactive to chemotherapy. In this review, we have highlighted the prostate cancer and importance of nutraceuticals for the control and management of prostate cancer, and the significance of nutraceuticals to cancer patients during chemotherapy.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-milat University, Islamabad, Pakistan
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, China
| | - Rajat Goyal
- Maharishi Markandeshwar (MM) School of Pharmacy, Maharishi Markandeshwar University, Sadopur-Ambala, India
- Maharishi Markandeshwar (MM) College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| | - Rupesh K. Gautam
- Maharishi Markandeshwar (MM) School of Pharmacy, Maharishi Markandeshwar University, Sadopur-Ambala, India
| | - Rashmi Trivedi
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, India
| | - Mohd Hasan Mujahid
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, India
| | | | - Muhammad Haris
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Kartik Bhairu Khot
- Department of Pharmaceutics, NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Gopika Gopan
- Department of Pharmaceutics, NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Jin Kyu Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jobin Jose
- Department of Pharmaceutics, NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
8
|
Fanta CC, Tlusty KJ, Pauley SE, Johnson AL, Benjamin GA, Yseth TK, Bunde MM, Pierce PT, Wang S, Vitiello PF, Mays JR. Synthesis and Evaluation of Functionalized Aryl and Biaryl Isothiocyanates Against Human MCF-7 Cells. ChemMedChem 2022; 17:e202200250. [PMID: 35588002 DOI: 10.1002/cmdc.202200250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/18/2022] [Indexed: 11/11/2022]
Abstract
Organic isothiocyanates (ITCs) are a class of anticancer agents which naturally result from the enzymatic degradation of glucosinolates produced by Brassica vegetables. Previous studies have demonstrated that the structure of an ITC impacts its potency and mode(s) of anticancer properties, opening the way to preparation and evaluation of synthetic, non-natural ITC analogues. This study describes the preparation of a library of 79 non-natural ITC analogues intended to probe further structure-activity relationships for aryl ITCs and second-generation, functionalized biaryl ITC variants. ITC candidates were subjected to bifurcated evaluation of antiproliferative and antioxidant response element (ARE)-induction capacity against human MCF-7 cells. The results of this study led to the identification of (1) several key structure-activity relationships and (2) lead ITCs demonstrating potent antiproliferative properties.
Collapse
Affiliation(s)
- Claire C Fanta
- Augustana University, Chemistry & Biochemistry, UNITED STATES
| | | | - Sarah E Pauley
- Augustana University, Chemistry & Biochemistry, UNITED STATES
| | | | | | - Taylor K Yseth
- Augustana University, Chemistry & Biochemistry, UNITED STATES
| | | | - Paul T Pierce
- The University of Oklahoma Health Sciences Center, Pediatrics, UNITED STATES
| | - Shirley Wang
- The University of Oklahoma Health Sciences Center, Pediatrics, UNITED STATES
| | - Peter F Vitiello
- The University of Oklahoma Health Sciences Center, Pediatrics; Physiology; Biochemistry & Molecular Biology, UNITED STATES
| | - Jared R Mays
- Augustana University, Chemistry & Biochemistry, 2001 S. Summit Ave., 57197, Sioux Falls, UNITED STATES
| |
Collapse
|
9
|
Cebeci F, Mayer MJ, Rossiter JT, Mithen R, Narbad A. Molecular Cloning, Expression and Characterisation of a Bacterial Myrosinase from Citrobacter Wye1. Protein J 2022; 41:131-140. [PMID: 35031980 DOI: 10.1007/s10930-021-10034-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2021] [Indexed: 10/19/2022]
Abstract
Glucosinolates are plant natural products which on degradation by myrosinases give rise to the beneficial bioactive isothiocyanates. Recently, a myrosinase activity was detected in a Citrobacter strain isolated from soil. This enzyme was purified enabling its amino acid sequence and gene sequence (cmyr) to be determined. In order to study this myrosinase it was necessary to establish an expression system that would enable future work such as a structural determination of the protein to be carried out. The myrosinase gene was amplified, cloned and expressed in Escherichia coli with a 6XHis-tag. The heterologous expression of cmyr enabled relatively large amounts of myrosinase to be produced (3.4 mg cmyr/100 ml culture). Myrosinase activity was determined by mixing substrate and enzyme and determining glucose release. Optimum pH and temperature were determined to be pH 6.0 and 25 °C for the Ni-NTA purified protein. The kinetic parameters of the purified myrosinase were determined using sinigrin as a substrate. Km and Vmax were estimated as 0.18 mM and 0.033 mmol/min/mg respectively for sinigrin under optimum conditions and compared to other kinetic data for myrosinases. The substrate specificity of myrosinase was determined having the highest affinity for sinigrin followed by glucoiberin, progoitrin, glucoerucin, glucoraphanin and glucotropaeolin.
Collapse
Affiliation(s)
- Fatma Cebeci
- Food Innovation and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich, UK. .,Department of Nutrition and Dietetics, Bayburt University, Bayburt, Turkey.
| | - Melinda J Mayer
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich, UK
| | - John T Rossiter
- Department of Life Sciences, Imperial College London, London, UK
| | - Richard Mithen
- Food Innovation and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich, UK.,Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Arjan Narbad
- Food Innovation and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich, UK.,Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich, UK
| |
Collapse
|
10
|
Tuli HS, Sak K, Gupta DS, Kaur G, Aggarwal D, Chaturvedi Parashar N, Choudhary R, Yerer MB, Kaur J, Kumar M, Garg VK, Sethi G. Anti-Inflammatory and Anticancer Properties of Birch Bark-Derived Betulin: Recent Developments. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122663. [PMID: 34961132 PMCID: PMC8705846 DOI: 10.3390/plants10122663] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 05/03/2023]
Abstract
Birch tree bark-derived betulin has attracted scientific interest already for several centuries, being one of the first natural products identified from plants. However, the cellular events regulated by betulin and precise molecular mechanisms under these processes have been begun to be understood only recently. Today, we know that betulin can exert important anticancer activities through modulation of diverse cellular pathways. In this review article, betulin-regulated molecular signaling is unraveled and presented with a special focus on its participation in anti-inflammatory processes, especially by modulating nuclear factor-κB (NF-κB), prostaglandin/COX, and nuclear factor erythroid2-related factor 2 (Nrf2)-mediated cascades. By regulating these diverse pathways, betulin can not only affect the development and progression of different cancers, but also enhance the antitumor action of traditional therapeutic modalities. It is expected that by overcoming the low bioavailability of betulin by encapsulating it into nanocarriers, this promising natural compound may provide novel possibilities for targeting inflammation-related cancers.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana, India; (D.A.); (N.C.P.); (R.C.)
- Correspondence: (H.S.T.); (G.S.)
| | | | - Dhruv Sanjay Gupta
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’s NMIMS, Mumbai 40056, Maharashtra, India; (D.S.G.); (G.K.)
| | - Ginpreet Kaur
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’s NMIMS, Mumbai 40056, Maharashtra, India; (D.S.G.); (G.K.)
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana, India; (D.A.); (N.C.P.); (R.C.)
| | - Nidarshana Chaturvedi Parashar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana, India; (D.A.); (N.C.P.); (R.C.)
| | - Renuka Choudhary
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana, India; (D.A.); (N.C.P.); (R.C.)
| | - Mukerrem Betul Yerer
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey;
| | - Jagjit Kaur
- ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Graduate School of Biomedical Engineering, Faculty of Engineering, The University of New South Wales, Sydney 2052, Australia;
| | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar University, Sadopur 134007, Haryana, India;
| | - Vivek Kumar Garg
- Department of Medical Laboratory Technology, University Institute of Applied Health Sciences, Chandigarh University, Gharuan, Mohali 140413, Punjab, India;
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Correspondence: (H.S.T.); (G.S.)
| |
Collapse
|
11
|
Qin Z, Ou S, Xu L, Sorensen K, Zhang Y, Hu DP, Yang Z, Hu WY, Chen F, Prins GS. Design and synthesis of isothiocyanate-containing hybrid androgen receptor (AR) antagonist to downregulate AR and induce ferroptosis in GSH-Deficient prostate cancer cells. Chem Biol Drug Des 2021; 97:1059-1078. [PMID: 33470049 PMCID: PMC8168342 DOI: 10.1111/cbdd.13826] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/16/2020] [Accepted: 01/10/2021] [Indexed: 12/16/2022]
Abstract
Sustained androgen receptor (AR) signaling and apoptosis evasion are among the main hurdles of castration-resistant prostate cancer (CRPC) treatment. We designed and synthesized isothiocyanate (ITC)-containing hybrid AR antagonist (ITC-ARi) and rationally combined ITC-ARi with GSH synthesis inhibitor buthionine sulfoximine (BSO) to efficiently downregulate AR/AR splice variant and induce ferroptosis in CRPC cells. The representative ITC-ARi 13 is an AR ligand that contains an N-acetyl cysteine-masked ITC moiety and gradually releases parental unconjugated ITC 12b in aqueous solution. The in vitro anti-PCa activities of 13, such as growth inhibition and AR downregulation, are significantly enhanced when combined with BSO. The drug combination caused notable lipid peroxidation and the cell viability was effectively rescued by iron chelator, antioxidants or the inhibitor of heme oxygenase-1, supporting the induction of ferroptosis. 13 and BSO cooperatively downregulate AR and induce ferroptosis likely through increasing the accessibility of 13/12b to cellular targets, escalating free intracellular ferrous iron and attenuating GSH-centered cellular defense and adaptation. Further studies on the combination of ITC-ARi and GSH synthesis inhibitor could result in a new modality against CRPC.
Collapse
Affiliation(s)
- Zhihui Qin
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Siyu Ou
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Liping Xu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Kathleen Sorensen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Yingxue Zhang
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Dan-Ping Hu
- Department of Urology, University of Illinois at Chicago, Chicago, IL, USA
| | - Zhe Yang
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Wen-Yang Hu
- Department of Urology, University of Illinois at Chicago, Chicago, IL, USA
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Gail S. Prins
- Department of Urology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
12
|
The Effect of Different Extraction Protocols on Brassica oleracea var. acephala Antioxidant Activity, Bioactive Compounds, and Sugar Profile. PLANTS 2020; 9:plants9121792. [PMID: 33348742 PMCID: PMC7766149 DOI: 10.3390/plants9121792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 11/17/2022]
Abstract
The extraction of glucosinolates in boiling aqueous methanol from freeze dried leaf tissues is the most common method for myrosinase inactivation but can be hazardous because of methanol toxicity. Although freeze drying is the best dehydration method in terms of nutritional quality preservation, the main drawbacks are a limited sample quantity that can be processed simultaneously, a long processing time, and high energy consumption. Therefore, the aim of this study is to evaluate the effects of applying high temperature for myrosinase inactivation via hot air drying prior to the extraction step, as well as the effects of cold aqueous methanol extraction on total antioxidant activity, total glucosinolates, total phenolic content, and sugar profile in 36 landraces of kale. The results from our study indicate that cold aqueous methanol can be used instead of boiling aqueous methanol with no adverse effects on total glucosinolate content. Our results also show that hot air drying, compared to freeze drying, followed by cold extraction has an adverse effect on antioxidant activity measured by DPPH radical scavenging, total glucosinolate content, as well as on the content of all investigated sugars.
Collapse
|
13
|
Drozdowska M, Leszczyńska T, Koronowicz A, Piasna-Słupecka E, Dziadek K. Comparative study of young shoots and the mature red headed cabbage as antioxidant food resources with antiproliferative effect on prostate cancer cells. RSC Adv 2020; 10:43021-43034. [PMID: 35514921 PMCID: PMC9058263 DOI: 10.1039/d0ra07861a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/18/2020] [Indexed: 11/30/2022] Open
Abstract
The increasing knowledge on health benefit properties of plant origin food ingredients supports recommendations for the use of edible plants in the prevention of diet related diseases, including cancer. The beneficial effects of young shoots of red cabbage can be attributed to their mixture of phytochemicals possessing antioxidant and potential anticancer activity. The objective of this study was to compare the content of bioactive compounds, including HPLC analysis of polyphenols and antioxidant activity of young shoots of red cabbage and the vegetable at full maturity. The content of vitamin C and polyphenols in juices obtained from young shoots and the mature vegetable were also determined. The other aim of this study was to confirm the hypothesis that juice of young shoots more effectively, compared to juice of the mature vegetable, reduces the proliferation of prostate cancer cell lines DU145 and LNCaP in vitro. A significantly higher content of vitamin C and carotenoids, as well as a higher antioxidant activity were found in edible young shoots in comparison to the mature vegetable. In addition, studies have shown higher amount of vitamin C in the juice of young shoots than in the juice of the mature vegetable and similar content of polyphenolic compounds. The level of total polyphenol content in the studied plant samples did not differ significantly. Flavonoids were the main polyphenols in young shoots and juice obtained from them, while phenolic acids were dominant in the mature vegetable and in juice obtained from it. The juice of young shoots has shown stronger in vitro anti-proliferation effect against prostate cancer cells than juice of the mature vegetable. Young shoots of red cabbage could be a good source of phytochemicals with potential anticancer activity.![]()
Collapse
Affiliation(s)
- Mariola Drozdowska
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow 122 Balicka St. 30-149 Krakow Poland
| | - Teresa Leszczyńska
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow 122 Balicka St. 30-149 Krakow Poland
| | - Aneta Koronowicz
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow 122 Balicka St. 30-149 Krakow Poland
| | - Ewelina Piasna-Słupecka
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow 122 Balicka St. 30-149 Krakow Poland
| | - Kinga Dziadek
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow 122 Balicka St. 30-149 Krakow Poland
| |
Collapse
|
14
|
Gnocchi D, Cesari G, Calabrese GJ, Capone R, Sabbà C, Mazzocca A. Inhibition of Hepatocellular Carcinoma Growth by Ethyl Acetate Extracts of Apulian Brassica oleracea L. and Crithmum maritimum L. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2020; 75:33-40. [PMID: 31741122 DOI: 10.1007/s11130-019-00781-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Nowadays, a growing body of evidence supports the view that plants offer an extraordinary opportunity to discover and develop new promising therapeutic strategies for many diseases, including cancer. Here we tested the anticancer action against Hepatocellular carcinoma (HCC) of extracts obtained from two plants harvested in Apulia, namely Brassica oleracea L. and Crithmum maritimum L. B. oleracea was grown in biodynamical agriculture without any agrochemical input, instead C. maritimum was collected on Apulian coasts and is still commonly eaten in Apulia. HCC, one of the most frequent tumors worldwide, is estimated to become the third leading cause of cancer-related deaths in Western Countries by 2030. The approved synthetic drugs for the treatment of HCC are currently inadequate in terms of therapeutic results and tolerability. Hence, aim of the present study was to test the anticancer action against HCC of extracts obtained from Brassica oleracea L. and Crithmum maritimum L. We preliminary prepared extracts from both plants using four solvents with different polarity: hexane, ethyl acetate, methanol and ethanol. Then, we tested the effect of the different fractions in inhibiting HCC cell growth. Finally, we characterized the mechanism of action of the most effective fraction. We found that ethyl acetate fractions from both plants were the most effective in inhibiting HCC growth. In particular, we demonstrated that these fractions effectively reduce HCC growth by exerting, on one hand, a cytostatic effect through their action on the cell cycle, and on the other hand by triggering apoptosis and necrosis. Our findings support the notion that ethyl acetate fractions from Apulian B. oleracea and C. maritimum can be in perspective considered as promising tools to expand the opportunities to identify new and not toxic anticancer therapeutic approaches for HCC. Further pharmacological investigations will shed light on how this could be effectively achieved. Graphical Abstract Experimental workflow for the detection of the ethyl acetate extract of Brassica oleracea L. and Crithmum maritimum L. as an active fraction in inhibiting HCC cell growth.
Collapse
Affiliation(s)
- Davide Gnocchi
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124, Bari, Italy
| | - Gianluigi Cesari
- Department of Organic Agriculture, CIHEAM - Mediterranean Agronomic Institute of Bari, 70010, Valenzano, BA, Italy
| | - Generosa Jenny Calabrese
- Department of Organic Agriculture, CIHEAM - Mediterranean Agronomic Institute of Bari, 70010, Valenzano, BA, Italy
| | - Roberto Capone
- Department of Organic Agriculture, CIHEAM - Mediterranean Agronomic Institute of Bari, 70010, Valenzano, BA, Italy
| | - Carlo Sabbà
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124, Bari, Italy
| | - Antonio Mazzocca
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124, Bari, Italy.
| |
Collapse
|
15
|
Mastuo T, Miyata Y, Yuno T, Mukae Y, Otsubo A, Mitsunari K, Ohba K, Sakai H. Molecular Mechanisms of the Anti-Cancer Effects of Isothiocyanates from Cruciferous Vegetables in Bladder Cancer. Molecules 2020; 25:molecules25030575. [PMID: 32013065 PMCID: PMC7037050 DOI: 10.3390/molecules25030575] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 12/18/2022] Open
Abstract
Bladder cancer (BC) is a representative of urological cancer with a high recurrence and metastasis potential. Currently, cisplatin-based chemotherapy and immune checkpoint inhibitors are used as standard therapy in patients with advanced/metastatic BC. However, these therapies often show severe adverse events, and prolongation of survival is unsatisfactory. Therefore, a treatment strategy using natural compounds is of great interest. In this review, we focused on the anti-cancer effects of isothiocyanates (ITCs) derived from cruciferous vegetables, which are widely cultivated and consumed in many regions worldwide. Specifically, we discuss the anti-cancer effects of four ITC compounds—allyl isothiocyanate, benzyl isothiocyanate, sulforaphane, and phenethyl isothiocyanate—in BC; the molecular mechanisms underlying their anti-cancer effects; current trends and future direction of ITC-based treatment strategies; and the carcinogenic potential of ITCs. We also discuss the advantages and limitations of each ITC in BC treatment, furthering the consideration of ITCs in treatment strategies and for improving the prognosis of patients with BC.
Collapse
|
16
|
Krishna SBN, Dubey A, Malla MA, Kothari R, Upadhyay CP, Adam JK, Kumar A. Integrating Microbiome Network: Establishing Linkages Between Plants, Microbes and Human Health. Open Microbiol J 2019; 13:330-342. [DOI: 10.2174/1874285801913020330] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 12/29/2022] Open
Abstract
The trillions of microbes that colonize and live around us govern the health of both plants and animals through a cascade of direct and indirect mechanisms. Understanding of this enormous and largely untapped microbial diversity has been the focus of microbial research from the past few decades or so. Amidst the advancements in sequencing technologies, significant progress has been made to taxonomically and functionally catalogue these microbes and also to establish their exact role in the health and disease state. In comparison to the human microbiome, plants are also surrounded by a vast diversity of microbes that form complex ecological communities that affect plant growth and health through collective metabolic activities and interactions. This plant microbiome has a substantial influence on human health and environment via its passage through the nasal route and digestive tract and is responsible for changing our gut microbiome. This review primarily focused on the advances and challenges in microbiome research at the interface of plant and human, and role of microbiome at different compartments of the body’s ecosystems along with their correlation to health and diseases. This review also highlighted the potential therapies in modulating the gut microbiota and technologies for studying the microbiome.
Collapse
|
17
|
Glucosinolate-Degradation Products as Co-Adjuvant Therapy on Prostate Cancer in Vitro. Int J Mol Sci 2019; 20:ijms20204977. [PMID: 31600887 PMCID: PMC6834131 DOI: 10.3390/ijms20204977] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/01/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022] Open
Abstract
Glucosinolate-degradation products (GS-degradation products) are believed to be responsible for the anticancer effects of cruciferous vegetables. Furthermore, they could improve the efficacy and reduce side-effects of chemotherapy. The aim of the present study was to determine the cytotoxic effects of GS-degradation products on androgen-insensitive human prostate cancer (AIPC) PC-3 and DU 145 cells and investigate their ability to sensitize such cells to chemotherapeutic drug Docetaxel (DOCE). Cells were cultured under growing concentrations of allyl-isothiocyanate (AITC), sulforaphane (SFN), 4-pentenyl-isothiocyanate (4PI), iberin (IB), indole-3-carbinol (I3C), or phenethyl-isothiocyanate (PEITC) in absence or presence of DOCE. The anti-tumor effects of these compounds were analyzed using the trypan blue exclusion, apoptosis, invasion and RT-qPCR assays and confocal microscopy. We observed that AITC, SFN, IB, and/or PEITC induced a dose- and time-dependent cytotoxic effect on PC-3 and DU 145 cells, which was mediated, at least, by apoptosis and cell cycle arrest. Likewise, we showed that these GS-degradation products sensitized both cell lines to DOCE by synergic mechanisms. Taken together, our results indicate that GS-degradation products can be promising compounds as co-adjuvant therapy in prostate cancer.
Collapse
|
18
|
Sousa DP, Pojo M, Pinto AT, Leite V, Serra AT, Cavaco BM. Nobiletin Alone or in Combination with Cisplatin Decreases the Viability of Anaplastic Thyroid Cancer Cell Lines. Nutr Cancer 2019; 72:352-363. [DOI: 10.1080/01635581.2019.1634745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Diana P. Sousa
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Professor Lima Basto, Lisboa, Portugal
| | - Marta Pojo
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Professor Lima Basto, Lisboa, Portugal
| | - Ana T. Pinto
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Professor Lima Basto, Lisboa, Portugal
| | - Valeriano Leite
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Professor Lima Basto, Lisboa, Portugal
- Serviço de Endocrinologia, Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Professor Lima Basto, Lisboa, Portugal
| | - Ana Teresa Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Branca M. Cavaco
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Professor Lima Basto, Lisboa, Portugal
| |
Collapse
|
19
|
Salehi B, Fokou PVT, Yamthe LRT, Tali BT, Adetunji CO, Rahavian A, Mudau FN, Martorell M, Setzer WN, Rodrigues CF, Martins N, Cho WC, Sharifi-Rad J. Phytochemicals in Prostate Cancer: From Bioactive Molecules to Upcoming Therapeutic Agents. Nutrients 2019; 11:E1483. [PMID: 31261861 PMCID: PMC6683070 DOI: 10.3390/nu11071483] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/22/2019] [Accepted: 06/27/2019] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer is a heterogeneous disease, the second deadliest malignancy in men and the most commonly diagnosed cancer among men. Traditional plants have been applied to handle various diseases and to develop new drugs. Medicinal plants are potential sources of natural bioactive compounds that include alkaloids, phenolic compounds, terpenes, and steroids. Many of these naturally-occurring bioactive constituents possess promising chemopreventive properties. In this sense, the aim of the present review is to provide a detailed overview of the role of plant-derived phytochemicals in prostate cancers, including the contribution of plant extracts and its corresponding isolated compounds.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran
| | - Patrick Valere Tsouh Fokou
- Antimicrobial and Biocontrol Agents Unit, Department of Biochemistry, Faculty of Science, University of Yaounde I, Ngoa Ekelle, Annex Fac. Sci, Yaounde 812, Cameroon
| | | | - Brice Tchatat Tali
- Antimicrobial Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaoundé I, Messa-Yaoundé 812, Cameroon
| | - Charles Oluwaseun Adetunji
- Applied Microbiology, Biotechnology and Nanotechnology Laboratory, Department of Microbiology, Edo University, Iyamho, Edo State 300271, Nigeria
| | - Amirhossein Rahavian
- Department of Urology, Shohada-e-Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran 1989934148, Iran
| | - Fhatuwani Nixwell Mudau
- Department of Agriculture and Animal Health, University of South Africa, Private Bag X6, Florida 1710, South Africa
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion 4070386, Chile.
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - Célia F Rodrigues
- LEPABE-Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China.
| | - Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol 61615-585, Iran.
| |
Collapse
|
20
|
N��ez-Iglesias M, Novio S, Garc�a-Santiago C, Cartea M, Soengas P, Velasco P, Freire-Garabal M. Effects of 3-butenyl isothiocyanate on phenotypically different prostate cancer cells. Int J Oncol 2018; 53:2213-2223. [DOI: 10.3892/ijo.2018.4545] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/27/2018] [Indexed: 11/05/2022] Open
Affiliation(s)
- M.j. N��ez-Iglesias
- Screening of New Libraries Laboratory, School of Medicine and Dentistry, University of Santiago de Compostela, 15782 A Coru�a, Spain
| | - S. Novio
- Screening of New Libraries Laboratory, School of Medicine and Dentistry, University of Santiago de Compostela, 15782 A Coru�a, Spain
| | - C. Garc�a-Santiago
- Screening of New Libraries Laboratory, School of Medicine and Dentistry, University of Santiago de Compostela, 15782 A Coru�a, Spain
| | - M.e. Cartea
- Group of Genetics, Breeding and Biochemistry of Brassicas, Biological Mission of Galicia, CSIC, 36143 Pontevedra, Spain
| | - P. Soengas
- Group of Genetics, Breeding and Biochemistry of Brassicas, Biological Mission of Galicia, CSIC, 36143 Pontevedra, Spain
| | - P. Velasco
- Group of Genetics, Breeding and Biochemistry of Brassicas, Biological Mission of Galicia, CSIC, 36143 Pontevedra, Spain
| | - M. Freire-Garabal
- Screening of New Libraries Laboratory, School of Medicine and Dentistry, University of Santiago de Compostela, 15782 A Coru�a, Spain
| |
Collapse
|
21
|
Anderson RH, Lensing CJ, Forred BJ, Amolins MW, Aegerter CL, Vitiello PF, Mays JR. Differentiating Antiproliferative and Chemopreventive Modes of Activity for Electron-Deficient Aryl Isothiocyanates against Human MCF-7 Cells. ChemMedChem 2018; 13:1695-1710. [PMID: 29924910 PMCID: PMC6105534 DOI: 10.1002/cmdc.201800348] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/12/2018] [Indexed: 12/13/2022]
Abstract
The consumption of Brassica vegetables provides beneficial effects through organic isothiocyanates (ITCs), products of the enzymatic hydrolysis of glucosinolate secondary metabolites. The ITC l-sulforaphane (l-SFN) is the principle agent in broccoli that demonstrates several modes of anticancer action. While the anticancer properties of ITCs like l-SFN have been extensively studied and l-SFN has been the subject of multiple human clinical trials, the scope of this work has largely been limited to those derivatives found in nature. Previous studies have demonstrated that structural changes in an ITC can lead to marked differences in a compound's potency to 1) inhibit the growth of cancer cells, and 2) alter cellular transcriptional profiles. This study describes the preparation of a library of non-natural aryl ITCs and the development of a bifurcated screening approach to evaluate the dose- and time-dependence on antiproliferative and chemopreventive properties against human MCF-7 breast cancer cells. Antiproliferative effects were evaluated using a commercial MTS cell viability assay. Chemopreventive properties were evaluated using an antioxidant response element (ARE)-promoted luciferase reporter assay. The results of this study have led to the identification of 1) several key structure-activity relationships and 2) lead ITCs for continued development.
Collapse
Affiliation(s)
- Ruthellen H. Anderson
- Department of Chemistry Augustana University 2001 S. Summit Ave. Sioux Falls, SD 57197
| | - Cody J. Lensing
- Department of Chemistry Augustana University 2001 S. Summit Ave. Sioux Falls, SD 57197
| | - Benjamin J. Forred
- Environmental Influences on Health and Disease Group Sanford Research 2301 E. 60 St. N. Sioux Falls, SD 57104
| | - Michael W. Amolins
- Department of Chemistry Augustana University 2001 S. Summit Ave. Sioux Falls, SD 57197
- Environmental Influences on Health and Disease Group Sanford Research 2301 E. 60 St. N. Sioux Falls, SD 57104
| | - Cassandra L. Aegerter
- Environmental Influences on Health and Disease Group Sanford Research 2301 E. 60 St. N. Sioux Falls, SD 57104
| | - Peter F. Vitiello
- Environmental Influences on Health and Disease Group Sanford Research 2301 E. 60 St. N. Sioux Falls, SD 57104
| | - Jared R. Mays
- Department of Chemistry Augustana University 2001 S. Summit Ave. Sioux Falls, SD 57197
| |
Collapse
|
22
|
Flandroy L, Poutahidis T, Berg G, Clarke G, Dao MC, Decaestecker E, Furman E, Haahtela T, Massart S, Plovier H, Sanz Y, Rook G. The impact of human activities and lifestyles on the interlinked microbiota and health of humans and of ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 627:1018-1038. [PMID: 29426121 DOI: 10.1016/j.scitotenv.2018.01.288] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/28/2018] [Accepted: 01/28/2018] [Indexed: 05/03/2023]
Abstract
Plants, animals and humans, are colonized by microorganisms (microbiota) and transiently exposed to countless others. The microbiota affects the development and function of essentially all organ systems, and contributes to adaptation and evolution, while protecting against pathogenic microorganisms and toxins. Genetics and lifestyle factors, including diet, antibiotics and other drugs, and exposure to the natural environment, affect the composition of the microbiota, which influences host health through modulation of interrelated physiological systems. These include immune system development and regulation, metabolic and endocrine pathways, brain function and epigenetic modification of the genome. Importantly, parental microbiotas have transgenerational impacts on the health of progeny. Humans, animals and plants share similar relationships with microbes. Research paradigms from humans and other mammals, amphibians, insects, planktonic crustaceans and plants demonstrate the influence of environmental microbial ecosystems on the microbiota and health of organisms, and indicate links between environmental and internal microbial diversity and good health. Therefore, overlapping compositions, and interconnected roles of microbes in human, animal and plant health should be considered within the broader context of terrestrial and aquatic microbial ecosystems that are challenged by the human lifestyle and by agricultural and industrial activities. Here, we propose research priorities and organizational, educational and administrative measures that will help to identify safe microbe-associated health-promoting modalities and practices. In the spirit of an expanding version of "One health" that includes environmental health and its relation to human cultures and habits (EcoHealth), we urge that the lifestyle-microbiota-human health nexus be taken into account in societal decision making.
Collapse
Affiliation(s)
- Lucette Flandroy
- Federal Public Service Health, Food Chain Safety and Environment, Belgium
| | - Theofilos Poutahidis
- Laboratory of Pathology, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Gabriele Berg
- Environmental Biotechnology, Graz University of Technology, Petersgasse 12, A-8010 Graz, Austria
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science, APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Maria-Carlota Dao
- ICAN, Institute of Cardiometabolism and Nutrition, Assistance Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Paris, France; INSERM, UMRS U1166 (Eq 6) Nutriomics, Paris 6, France; UPMC, Sorbonne University, Pierre et Marie Curie-Paris 6, France
| | - Ellen Decaestecker
- Aquatic Biology, Department Biology, Science, Engineering & Technology Group, KU Leuven, Campus Kortrijk. E. Sabbelaan 53, B-8500 Kortrijk, Belgium
| | - Eeva Furman
- Finnish Environment Institute (SYKE), Helsinki, Finland
| | - Tari Haahtela
- Skin and Allergy Hospital, Helsinki University Hospital, University of Helsinki, Finland
| | - Sébastien Massart
- Laboratory of Integrated and Urban Phytopathology, TERRA, Gembloux Agro-Bio Tech, University of Liège, Passage des deportes, 2, 5030 Gembloux, Belgium
| | - Hubert Plovier
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Yolanda Sanz
- Microbial Ecology, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Graham Rook
- Centre for Clinical Microbiology, Department of Infection, UCL (University College London), London, UK.
| |
Collapse
|
23
|
Brassica vegetables as sources of epithionitriles: Novel secondary products formed during cooking. Food Chem 2018; 245:564-569. [DOI: 10.1016/j.foodchem.2017.10.124] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/23/2017] [Accepted: 10/23/2017] [Indexed: 01/13/2023]
|
24
|
Gründemann C, Huber R. Chemoprevention with isothiocyanates - From bench to bedside. Cancer Lett 2017; 414:26-33. [PMID: 29111351 DOI: 10.1016/j.canlet.2017.10.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/10/2017] [Accepted: 10/20/2017] [Indexed: 12/15/2022]
Abstract
Isothiocyanates (ITCs) are naturally occurring hydrolization products from glucosinolates (GLSs) in brassicaceae and in epidemiological studies their intake has been weakly to moderately inversely correlated with the risk of colorectal cancer, prostate cancer and lung cancer. Numerous preclinical studies demonstrate chemopreventive mode of actions of ITCs, mainly related to a.) detoxification (induction of phase II enzymes), b.) anti-inflammatory properties by down-regulation of NFkappaB activity, c.) cyclin-mediated cell cycle arrest and d.) epigenetic modulation by inhibition of histone deacetylase activity. First prospective clinical trials were promising in patients with risk of prostate cancer recurrence. The glutathione-S-transferase gene expression seems to play a major role in the individual susceptibility towards ITCs. Safety issues are widely unclear and should be more addressed in future studies because ITCs can, in low concentrations, compromise the function of human immune cells and might impair genome stability.
Collapse
Affiliation(s)
- Carsten Gründemann
- Center for Complementary Medicine, Institute for Infection Prevention and Hospital Epidemiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Roman Huber
- Center for Complementary Medicine, Institute for Infection Prevention and Hospital Epidemiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
25
|
Kang JH, Choi S, Jang JE, Ramalingam P, Ko YT, Kim SY, Oh SH. Wasabia japonica is a potential functional food to prevent colitis via inhibiting the NF-κB signaling pathway. Food Funct 2017; 8:2865-2874. [PMID: 28726958 DOI: 10.1039/c7fo00576h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel diseases (IBDs), including Crohn's disease (CD) and ulcerative colitis (UC), are prevalent and debilitating health problems worldwide. Many types of drugs are used to treat IBDs, but they exhibit adverse effects such as vomiting, nausea, abdominal pain, diarrhea, etc. In order to overcome the limitations of current therapeutic drugs, scientists have searched for functional foods from natural resources. In this study, we investigated the anti-colitic effects of Wasabia japonica extract in a DSS-induced colitis model. Wasabi japonica is a plant of the Brassicaceae family that has recently been reported to exhibit properties of detoxification, anti-inflammation, and induction of apoptosis in cancer cells. In this study, we generated wasabi ethanol extract (WK) and assessed its anti-colitic effect. In addition, in order to improve delivery of the extract to the colon, WK was coated with 5% Eudragit S100 (WKE), after which the anti-colitic effects of WKE were assessed. In conclusion, WK prevented development of colitis through inhibition of the NF-kB signaling pathway and recovery of epithelial tight junctions. In addition, the anti-colitic effect of WK was enhanced by improving its delivery to the colon by coating the WK with Eudragit S100. Therefore, we suggest that wasabi can be used as a new functional food to prevent IBDs due to its anti-colitic effect.
Collapse
Affiliation(s)
- Ju-Hee Kang
- Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, Republic of Korea.
| | - Seungho Choi
- College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jeong-Eun Jang
- Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, Republic of Korea.
| | - Prakash Ramalingam
- Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, Republic of Korea.
| | - Young Tag Ko
- Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, Republic of Korea.
| | - Sun Yeou Kim
- Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, Republic of Korea.
| | - Seung Hyun Oh
- Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, Republic of Korea.
| |
Collapse
|
26
|
Giacoppo S, Iori R, Rollin P, Bramanti P, Mazzon E. Moringa isothiocyanate complexed with α-cyclodextrin: a new perspective in neuroblastoma treatment. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:362. [PMID: 28705212 PMCID: PMC5513314 DOI: 10.1186/s12906-017-1876-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/09/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND Several lines of evidence suggest the consume of natural products for cancer prevention or treatment. In particular, isothiocyanates (ITCs) exerting anti-cancer properties, have received great interest as potential chemotherapeutic agents. This study was designed to assess the anti-proliferative activities of a new preparation of Moringa oleifera-derived 4-(α-L-rhamnopyranosyloxy)benzyl ITC (moringin) complexed with alpha-cyclodextrin (moringin + α-CD; MAC) on SH-SY5Y human neuroblastoma cells. This new formulation arises in the attempt to overcome the poor solubility and stability of moringin alone in aqueous media. METHODS SH-SY5Y cells were cultured and exposed to increasing concentrations of MAC (1.0, 2.5 and 5.0 μg). Cell proliferation was examined by MTT and cell count assays. The cytotoxic activity of the MAC complex was assessed by lactate dehydrogenase (LDH) assay and trypan blue exclusion test. In addition, western blotting analyses for the main apoptosis-related proteins were performed. RESULTS Treatment of SH-SY5Y cells with the MAC complex reduced cell growth in concentration dependent manner. Specifically, MAC exhibited a potent action in inhibiting the PI3K/Akt/mTOR pathway, whose aberrant activation was found in many types of cancer. MAC was also found to induce the nuclear factor-κB (NF-κB) p65 activation by phosphorylation and its translocation into the nucleus. Moreover, treatment with MAC was able to down-regulate MAPK pathway (results focused on JNK and p38 expression). Finally, MAC was found to trigger apoptotic death pathway (based on expression levels of cleaved-caspase 3, Bax/Bcl-2 balance, p53 and p21). CONCLUSION These findings suggest that use of MAC complex may open novel perspectives to improve the poor prognosis of patients with neuroblastoma.
Collapse
Affiliation(s)
- Sabrina Giacoppo
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124, Messina, Italy
| | - Renato Iori
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di ricerca Agricoltura e Ambiente (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
| | - Patrick Rollin
- Université d'Orléans et CNRS, ICOA, UMR 7311, BP 6759, F-45067, Orléans, France
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124, Messina, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124, Messina, Italy.
| |
Collapse
|
27
|
Microbial carcinogenic toxins and dietary anti-cancer protectants. Cell Mol Life Sci 2017; 74:2627-2643. [PMID: 28238104 PMCID: PMC5487888 DOI: 10.1007/s00018-017-2487-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/03/2017] [Accepted: 02/06/2017] [Indexed: 12/16/2022]
Abstract
Several toxins are known which account for the ability of some bacteria to initiate or promote carcinogenesis. These ideas are summarised and evidence is discussed for more specific mechanisms involving chymotrypsin and the bacterial chymotryptic enzyme subtilisin. Subtilisin and Bacillus subtilis are present in the gut and environment and both are used commercially in agriculture, livestock rearing and meat processing. The enzymes deplete cells of tumour suppressors such as deleted in colorectal cancer (DCC) and neogenin, so their potential presence in the food chain might represent an important link between diet and cancer. Over-eating increases secretion of chymotrypsin which is absorbed from the gut and could contribute to several forms of cancer linked to obesity. Inhibition of these serine proteases by Bowman–Birk inhibitors in fruit and vegetables could account for some of the protective effects of a plant-rich diet. These interactions represent previously unknown non-genetic mechanisms for the modification of tumour suppressor proteins and provide a plausible explanation contributing to both the pro-oncogenic effects of meat products and the protective activity of a plant-rich diet. The data suggest that changes to farming husbandry and food processing methods to remove these sources of extrinsic proteases might significantly reduce the incidence of several cancers.
Collapse
|
28
|
Sita G, Hrelia P, Tarozzi A, Morroni F. Isothiocyanates Are Promising Compounds against Oxidative Stress, Neuroinflammation and Cell Death that May Benefit Neurodegeneration in Parkinson's Disease. Int J Mol Sci 2016; 17:ijms17091454. [PMID: 27598127 PMCID: PMC5037733 DOI: 10.3390/ijms17091454] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 08/23/2016] [Accepted: 08/29/2016] [Indexed: 12/26/2022] Open
Abstract
Parkinson’s disease (PD) is recognized as the second most common neurodegenerative disorder and is characterized by a slow and progressive degeneration of dopaminergic neurons in the substantia nigra. Despite intensive research, the mechanisms involved in neuronal loss are not completely understood yet; however, misfolded proteins, oxidative stress, excitotoxicity and inflammation play a pivotal role in the progression of the pathology. Neuroinflammation may have a greater function in PD pathogenesis than initially believed, taking part in the cascade of events that leads to neuronal death. To date, no efficient therapy, able to arrest or slow down PD, is available. In this context, the need to find novel strategies to counteract neurodegenerative progression by influencing diseases’ pathogenesis is becoming increasingly clear. Isothiocyanates (ITCs) have already shown interesting properties in detoxification, inflammation, apoptosis and cell cycle regulation through the induction of phase I and phase II enzyme systems. Moreover, ITCs may be able to modulate several key points in oxidative and inflammatory evolution. In view of these considerations, the aim of the present review is to describe ITCs as pleiotropic compounds capable of preventing and modulating the evolution of PD.
Collapse
Affiliation(s)
- Giulia Sita
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, via Irnerio 48, 40126 Bologna, Italy.
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, via Irnerio 48, 40126 Bologna, Italy.
| | - Andrea Tarozzi
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto, 237, 47900 Rimini, Italy.
| | - Fabiana Morroni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, via Irnerio 48, 40126 Bologna, Italy.
| |
Collapse
|