1
|
Isah MB, Tajuddeen N, Yusuf A, Mohammed A, Ibrahim MA, Melzig M, Zhang X. The antidiabetic properties of lignans: a comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156717. [PMID: 40220408 DOI: 10.1016/j.phymed.2025.156717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/23/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Diabetes mellitus (DM) is a chronic metabolic disease with a high global prevalence. Lignans, a class of plant natural compounds found in commonly consumed foods, are well-tolerated by humans and have demonstrated promising potential in the management of DM. Consumption of lignan-rich foods has been associated with improved overall health and quality of life. PURPOSE The clinical and preclinical evidence on the role of lignans in managing DM are critically examined. METHODS A thorough literature search was conducted across major scientific databases, focusing on studies that reported the effects of individual lignans on key diabetes indicators, such as glucose utilisation and insulin sensitivity, in both human and animal models, as well as in cell-based studies. RESULTS A total of 180 lignans were included in the review. Out of these, only three were investigated in randomised clinical trials in humans and 31 in animal models. The reviewed evidence suggests some beneficial effects of lignans in preventing the development of obesity-related diabetes. Their therapeutic benefits in preventing diabetes-related complications, particularly diabetic nephropathy, in both type 1 and type 2 diabetes, are also supported. Metabolites of various lignans, produced by microbial metabolism in the gut and serum enzymes, appear to be key bioactive forms, highlighting the need for detailed pharmacodynamic studies, optimised dosage designs, and the use of the appropriate lignan molecules for cell-based screening. CONCLUSION Lignans and their microbial metabolites show promise in preventing obesity-related diabetes and mitigating diabetes-related complications such as diabetic nephropathy, though further clinical studies are needed to optimize their therapeutic potential.
Collapse
Affiliation(s)
- Murtala Bindawa Isah
- Chinese-German Joint Laboratory for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China; Department of Biochemistry, Umaru Musa Yar'adua University Katsina, Nigeria.
| | - Nasir Tajuddeen
- Department of Chemistry, Ahmadu Bello University Zaria, Nigeria
| | - Anas Yusuf
- Chinese-German Joint Laboratory for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China
| | - Aminu Mohammed
- Department of Biochemistry, Ahmadu Bello University Zaria, Nigeria
| | | | - Matthias Melzig
- Chinese-German Joint Laboratory for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China; Freie Universitaet Berlin, Institute of Pharmacy, Berlin, Germany.
| | - Xiaoying Zhang
- Chinese-German Joint Laboratory for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China; Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal; Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
2
|
Gulcin İ. Antioxidants: a comprehensive review. Arch Toxicol 2025:10.1007/s00204-025-03997-2. [PMID: 40232392 DOI: 10.1007/s00204-025-03997-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 02/18/2025] [Indexed: 04/16/2025]
Abstract
Antioxidants had a growing interest owing to their protective roles in food and pharmaceutical products against oxidative deterioration and in the body and against oxidative stress-mediated pathological processes. Screening of antioxidant properties of plants and plant derived compounds requires appropriate methods, which address the mechanism of antioxidant activity and focus on the kinetics of the reactions including the antioxidants. Many studies have been conducted with evaluating antioxidant activity of various samples of research interest using by different methods in food and human health. These methods were classified methods described and discussed in this review. Methods based on inhibited autoxidation are the most suited for termination-enhancing antioxidants and, for chain-breaking antioxidants while different specific studies are needed for preventive antioxidants. For this purpose, the most commonly methods used in vitro determination of antioxidant capacity of food and pharmaceutical constituents are examined and also a selection of chemical testing methods is critically reviewed and highlighting. In addition, their advantages, disadvantages, limitations and usefulness were discussed and investigated for pure molecules and raw plant extracts. The effect and influence of the reaction medium on performance of antioxidants is also addressed. Hence, this overview provides a basis and rationale for developing standardized antioxidant capacity methods for the food, nutraceuticals, and dietary supplement industries. Also, the most important advantages and shortcomings of each method were detected and highlighted. The underlying chemical principles of these methods have been explained and thoroughly analyzed. The chemical principles of methods of 1,1-diphenyl-2-picrylhydrazyl (DPPH•) radical scavenging, 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulphonate) radical (ABTS·+) scavenging, ferric ions (Fe3+) reducing assay, ferric reducing antioxidant power (FRAP) assay, cupric ions (Cu2+) reducing power assay (Cuprac), Folin-Ciocalteu reducing capacity (FCR assay), superoxide radical anion (O2·-), hydroxyl radical (OH·) scavenging, peroxyl radical (ROO·) removing, hydrogen peroxide (H2O2) decomposing, singlet oxygen (1O2) quenching assay, nitric oxide radical (NO·) scavenging assay and chemiluminescence assay are overviewed and critically discussed. Also, the general antioxidant aspects of the main food and pharmaceutical components were discussed through several methods currently used for detecting antioxidant properties of these components. This review consists of two main sections. The first section is devoted to the main components in food and their pharmaceutical applications. The second general section includes definitions of the main antioxidant methods commonly used for determining the antioxidant activity of components. In addition, some chemical, mechanistic, and kinetic properties, as well as technical details of the above mentioned methods, are provided. The general antioxidant aspects of main food components have been discussed through various methods currently used to detect the antioxidant properties of these components.
Collapse
Affiliation(s)
- İlhami Gulcin
- Faculty of Sciences, Department of Chemistry, Atatürk University, 25240, Erzurum, Türkiye.
| |
Collapse
|
3
|
Tillman L, Margalef Rieres J, Ahjem E, Bishop-Guest F, McGrath M, Hatrick H, Pranjol MZI. Thinking Outside the Therapeutic Box: The Potential of Polyphenols in Preventing Chemotherapy-Induced Endothelial Dysfunction. Cells 2025; 14:566. [PMID: 40277892 PMCID: PMC12026109 DOI: 10.3390/cells14080566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
The numerous side effects and adverse health implications associated with chemotherapies have long plagued the field of cancer care. Whilst in some cases a curative measure, this highly toxic intervention consistently scores poorly on quantitative measures of tolerability and safety. Of these side effects, cardiac and microvascular defects pose the greatest health risk and are the leading cause of death amongst cancer survivors who do not succumb to relapse. In fact, in many low-grade cancers, the risk of recurrence is far outweighed by the cardiovascular risk of morbidity. As such, there is a pressing need to improve outcomes within these populations. Polyphenols are a group of naturally occurring metabolites that have shown potential vasoprotective effects. Studies suggest they possess antioxidant and anti-inflammatory activities, in addition to directly modulating vascular signalling pathways and gene expression. Leveraging these properties may help counteract the vascular toxicity induced by chemotherapy. In this review, we outline the main mechanisms by which the endothelium is damaged by chemotherapeutic agents and discuss the ability of polyphenols to counteract such side effects. We suggest future considerations that may help overcome some of the published limitations of these compounds that have stalled their clinical success. Finally, we briefly explore their pharmacological properties and how novel approaches could enhance their efficacy while minimising treatment-related side effects.
Collapse
Affiliation(s)
- Luke Tillman
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (L.T.); (J.M.R.); (M.M.); (H.H.)
| | - Jaume Margalef Rieres
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (L.T.); (J.M.R.); (M.M.); (H.H.)
| | - Elena Ahjem
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (L.T.); (J.M.R.); (M.M.); (H.H.)
| | - Fynn Bishop-Guest
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (L.T.); (J.M.R.); (M.M.); (H.H.)
| | - Meghan McGrath
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (L.T.); (J.M.R.); (M.M.); (H.H.)
| | - Helena Hatrick
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (L.T.); (J.M.R.); (M.M.); (H.H.)
| | | |
Collapse
|
4
|
Zhou L, Zhang J, Zhao K, Chen B, Sun Z. Natural products modulating MAPK for CRC treatment: a promising strategy. Front Pharmacol 2025; 16:1514486. [PMID: 40110122 PMCID: PMC11919913 DOI: 10.3389/fphar.2025.1514486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/03/2025] [Indexed: 03/22/2025] Open
Abstract
Colorectal cancer (CRC) is a common malignant tumor of the digestive system, and the pathogenic mechanism is still unclear, mostly related to genetics, immunity, inflammation, and abnormal activation of tumor-related signaling pathways. MAPK belongs to the Ser/Thr kinase family, which plays an important role in complex cellular programs such as the regulation of cell proliferation, differentiation, apoptosis, angiogenesis, and tumor metastasis. Increasing evidence supports that MAPK activation is highly correlated with the risk of CRC. Targeting MAPK may be a therapeutic strategy, and natural products show great therapeutic potential in regulating MAPK-related proteins. In this paper, we searched PubMed, Web of Science and CNKI databases with keywords "colorectal cancer, natural products, MAPK pathway, ERK, P38, JNK" for relevant studies in the last 14 years from 2010 to 2024. This work retrieved 47 studies, aiming to provide new therapeutic strategies for CRC patients and lay the foundation for new drug development.
Collapse
Affiliation(s)
- Lin Zhou
- The First Clinical Medical College, Shandong University of traditional Chinese medicine, Jinan, China
| | - Jinlong Zhang
- The First Clinical Medical College, Shandong University of traditional Chinese medicine, Jinan, China
| | - Kangning Zhao
- The First Clinical Medical College, Shandong University of traditional Chinese medicine, Jinan, China
| | - Bo Chen
- Department of Gastroenterology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhen Sun
- The Second Gastroenterology Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
5
|
Al Amin M, Nafady MH, Zehravi M, Sweilam SH, Kumar KP, Akiful Haque M, Unnisa A, Singh LP, Sayeed M, Alshehri MA, Ahmad I, Emran TB, Uddin MZ. Bird's eye view of natural products for the development of new anti-HIV agents: Understanding from a therapeutic viewpoint. Animal Model Exp Med 2025; 8:441-457. [PMID: 39921221 PMCID: PMC11904116 DOI: 10.1002/ame2.12563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 01/05/2025] [Indexed: 02/10/2025] Open
Abstract
Acquired immune deficiency syndrome (AIDS) is the name used to describe several potentially life-threatening infections and disorders that happen when HIV has severely compromised the immune system. The primary effect of HIV is to decrease host immunity, exposing the host to external pathogens. The development of pharmaceutical drugs that directly cure the infection is crucial because of the current wide-ranging epidemic of HIV. Most therapeutic anti-HIV drugs are nucleosides. However, their high toxicity and potential for drug resistance restrict their use. Many of the most effective clinical drugs used to inhibit HIV, the activation of latent HIV, and AIDS have been obtained from natural sources. This review focuses on potential natural medicinal products for treating and managing HIV and AIDS. Notwithstanding, further clinical research studies are needed to understand the subject and its dynamics.
Collapse
Affiliation(s)
- Md. Al Amin
- Department of Pharmacy, Faculty of Health and Life SciencesDaffodil International UniversityDhakaBangladesh
| | - Mohamed H. Nafady
- Faculty of Applied Health Science TechnologyMisr University for Science and TechnologyGizaEgypt
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & PharmacyBuraydah Private CollegesBuraydahSaudi Arabia
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, Faculty of PharmacyEgyptian Russian UniversityBadrEgypt
- Department of Clinical Pharmacy Girls SectionPrince Sattam Bin Abdul Aziz UniversityAl‐KharjSaudi Arabia
| | - Kusuma Praveen Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical SciencesDelhi Pharmaceutical Sciences and Research University (DPSRU), Govt. of N.C.T. of DelhiNew DelhiIndia
| | - M. Akiful Haque
- Department of Pharmaceutical Analysis, School of PharmacyAnurag UniversityHyderabadIndia
| | - Aziz Unnisa
- Department of Pharmaceutical Chemistry, College of PharmacyUniversity of Ha'ilHa'ilSaudi Arabia
| | - Laliteshwar Pratap Singh
- Department of Pharmaceutical Chemistry, Narayan Institute of PharmacyGopal Narayan Singh UniversitySasaram (Rohtas)BiharIndia
| | - Mohammed Sayeed
- Department of Pharmacology, School of PharmacyAnurag UniversityHyderabadTelanganaIndia
| | | | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical ScienceKing Khalid UniversityAbhaSaudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life SciencesDaffodil International UniversityDhakaBangladesh
| | - Md. Zia Uddin
- Department of Pharmacy, Faculty of Pharmaceutical SciencesUniversity of Science and Technology ChittagongChattogramBangladesh
| |
Collapse
|
6
|
He M, Yin Y, Yu G, Zhou H. Phytoestrogens: Pharmacological Potential and Therapeutic Insights for Urinary Tract Infections. Phytother Res 2025; 39:1261-1276. [PMID: 39739399 DOI: 10.1002/ptr.8429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/23/2024] [Accepted: 12/14/2024] [Indexed: 01/02/2025]
Abstract
Urinary tract infections (UTIs) are exceptionally common in postmenopausal female or patients with diabetes mellitus or nephrolithiasis, carrying substantial burden on patients and healthcare system. Increasing proportion and ongoing spread of antibiotic-resistant pathogens have further debilitated the condition in battlefield against the UTIs. Lack of estrogen may contribute to high inclination of UTIs after menopause and hormone replacement therapy can mitigate symptoms of hot flashes, vaginal dryness and UTIs, rationalizing the usage of estrogen and analogues in treatment and prophylaxis of UTIs. Phytoestrogens which comprise flavonoids, coumerins, stilbenes, and lignans, are natural botanical compounds with estrogen structural similarity and biochemical features. Phytoestrogens have emerged as adjuvant remedy and prophylaxis for uropathogenic bacteria even for multidrug-resistant ones, with the multifaceted mechanisms such as inhibition of adhesion and invading ability of bacteria, destruction of biofilms, synergistically enhancement of antibiotics activity. It is plausible to propose phytoestrogens as potential agents or combination with other strategies to ameliorate the challenge of multi-drug resistance in UTIs.
Collapse
Affiliation(s)
- Mengzhen He
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nursing, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yisheng Yin
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gan Yu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Zhou
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Sun L, Liu J, Cheng Y, Wu Y, He T, Zhang Y, Bai X, Zhou Z, Xu X, Yao Y, Tan Y, Qiu Q, Liu C. Metabolomics with gut microbiota analysis of podophyllotoxin-mediated cardiotoxicity in mice based on the toxicological evidence chain (TEC) concept. Chem Biol Interact 2025; 406:111360. [PMID: 39706312 DOI: 10.1016/j.cbi.2024.111360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
Podophyllotoxin (PPT) is a lignan isolated from the traditional Chinese medicine Dysosma Versipellis, with significant anti-tumor activity. However, its cardiotoxicity restricts its clinical application. This study aims to investigate the cardiotoxicity of PPT in mice and its underlying mechanisms based on the concept of toxicological evidence chain (TEC). In this study, alterations in body weight, behavior, and the levels of myocardial enzymes and histopathology in mice were observed. Additionally, microbiome and metabolome were integrated to identify potential microorganisms, metabolic markers and major pathways with correlation analysis. The results indicated that PPT induced pathological changes in mice, including weight loss, diarrhea, alopecia and dehydration accompanied by increased levels of serum myocardial enzymes. The results of microbiome showed that PPT altered the gut microbiota composition, changing the abundance of microbial community. The results of metabolome studies indicated total of 55 differential metabolites were involved in glycine, serine, and threonine metabolism, alanine, glutamate, and aspartate metabolism, purine, pyrimidine metabolism, and steroid hormone metabolism. Integrating the results of microbiome and metabolome, it was concluded that PPT remodeled the gut microbiota composition, which in turn modified the gut microbiota metabolism, affecting amino acid metabolisms, nucleotide metabolism, and steroid hormone metabolism in the heart, potentially leading to energy metabolism disorders, apoptosis, and oxidative stress, ultimately inducing cardiotoxicity.
Collapse
Affiliation(s)
- Lu Sun
- College of Chinese Materia Medica and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Jiaojiao Liu
- College of Chinese Materia Medica and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Yangyang Cheng
- College of Chinese Materia Medica and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Yikang Wu
- College of Chinese Materia Medica and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Tao He
- College of Chinese Materia Medica and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Yingyue Zhang
- College of Chinese Materia Medica and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Xiaorui Bai
- College of Chinese Materia Medica and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Zixin Zhou
- College of Chinese Materia Medica and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Xiayu Xu
- College of Chinese Materia Medica and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Yuxin Yao
- College of Chinese Materia Medica and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Yafei Tan
- College of Chinese Materia Medica and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Qiang Qiu
- College of Chinese Materia Medica and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Chuanxin Liu
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China.
| |
Collapse
|
8
|
Wang C, Zhang H, Wang X, Wang X, Li X, Li C, Wang Y, Zhang M. Comprehensive Review on Fruit of Terminalia chebula: Traditional Uses, Phytochemistry, Pharmacology, Toxicity, and Pharmacokinetics. Molecules 2024; 29:5547. [PMID: 39683707 DOI: 10.3390/molecules29235547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Terminalia chebula Retz., known for its dried fruit, namely Chebulae Fructus, is a medicinal plant with a long-standing global reputation, which was initially recognized for its therapeutic properties during the Jin Dynasty. This review consolidates current knowledge on the traditional uses, phytochemistry, pharmacological properties, toxicity, and pharmacokinetics of Chebulae Fructus, highlighting its clinical significance and the promising therapeutic potential of its compounds. To date, studies have identified approximately 149 compounds within the plant, including tannins, phenolic acids, lignans, triterpenes, flavonoids, and volatiles. These compounds confer a broad spectrum of biological activities in vitro and in vivo, such as antioxidant, anti-inflammatory, antiviral, anticancer, antibacterial, hepatoprotective, nephroprotective, neuroprotective, and anti-diabetic, some of which are already integrated into clinical practice. However, despite substantial advancements, considerable gaps remain in understanding the complete mechanisms of action, pharmacokinetics, and safety profiles of its extracts and compounds. This paper advocates for enhanced focus on these areas to fully elucidate the therapeutic capacities and facilitate the clinical application of Chebulae Fructus. This comprehensive analysis not only reinforces the ethnopharmacological significance of Chebulae Fructus but also lays a foundation for future pharmacological explorations.
Collapse
Affiliation(s)
- Changjian Wang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hongfei Zhang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiangdong Wang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xinyue Wang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xinru Li
- State Key Laboratory of Chinese Medicine Modernization, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Cuiying Li
- State Key Laboratory of Chinese Medicine Modernization, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuefei Wang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Min Zhang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
9
|
Mei H, Li Y, Wu S, He J. Natural plant polyphenols contribute to the ecological and healthy swine production. J Anim Sci Biotechnol 2024; 15:146. [PMID: 39491001 PMCID: PMC11533317 DOI: 10.1186/s40104-024-01096-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/25/2024] [Indexed: 11/05/2024] Open
Abstract
The absence of trace amounts of natural bioactive compounds with important biological activities in traditional dietary models for global farm animals, coupled with an incomplete theoretical system for animal nutrition, has led to unbalanced and inadequate animal nutrition. This deficiency has adversely impacted animal health and the ecological environment, presenting formidable challenges to the advancement of the swine breeding industry in various countries around the world toward high-quality development. Recently, due to the ban of antibiotics for growth promotion in swine diets, botanical active compounds have been extensively investigated as feed additives. Polyphenols represent a broad group of plant secondary metabolites. They are natural, non-toxic, pollution-free, and highly reproducible compounds that have a wide range of physiological functions, such as antioxidant, anti-inflammatory, immunomodulatory, antiviral, antibacterial, and metabolic activities. Accordingly, polyphenols have been widely studied and used as feed additives in swine production. This review summarizes the structural characteristics, classification, current application situation, general properties of polyphenols, and the latest research advances on their use in swine production. Additionally, the research and application bottlenecks and future development of plant polyphenols in the animal feed industry are reviewed and prospected. This review aims to stimulate the in-depth study of natural plant polyphenols and the research and development of related products in order to promote the green, healthy, and high-quality development of swine production, while also providing ideas for the innovation and development in the theoretical system of animal nutrition.
Collapse
Affiliation(s)
- Huadi Mei
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, 410128, China
| | - Yuanfei Li
- Jiangxi Province Key Laboratory of Genetic Improvement of Indigenous Chicken Breeds, Institute of Biotechnology, Nanchang Normal University, Nanchang, Jiangxi, 330000, China
| | - Shusong Wu
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, 410128, China.
| | - Jianhua He
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, 410128, China.
| |
Collapse
|
10
|
Gao Z, Cao Q, Deng Z. Unveiling the Power of Flax Lignans: From Plant Biosynthesis to Human Health Benefits. Nutrients 2024; 16:3520. [PMID: 39458513 PMCID: PMC11510306 DOI: 10.3390/nu16203520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Flax (Linum usitatissimum L.) is the richest plant source of lignin secondary metabolites. Lignans from flax have been applied in the fields of food, medicine, and health due to their significant physiological activities. The most abundant lignan is secoisolariciresinol, which exists in a glycosylated form in plants. RESULTS After ingestion, it is converted by human intestinal flora into enterodiol and enterolactone, which both have physiological roles. Here, the basic structures, contents, synthesis, regulatory, and metabolic pathways, as well as extraction and isolation methods, of flax lignans were reviewed. Additionally, the physiological activity-related mechanisms and their impacts on human health, from the biosynthesis of lignans in plants to the physiological activity effects observed in animal metabolites, were examined. CONCLUSIONS The review elucidates that lignans, as phenolic compounds, not only function as active substances in plants but also offer significant nutritional values and health benefits when flax is consumed.
Collapse
Affiliation(s)
- Zhan Gao
- School of Physical Education and Training, Capital University of Physical Education and Sports, Beijing 100191, China
| | - Qinglei Cao
- Department of Physical Education, University of Science and Technology Beijing, Beijing 100083, China; (Q.C.); (Z.D.)
| | - Zhongyuan Deng
- Department of Physical Education, University of Science and Technology Beijing, Beijing 100083, China; (Q.C.); (Z.D.)
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
11
|
Sejbuk M, Mirończuk-Chodakowska I, Karav S, Witkowska AM. Dietary Polyphenols, Food Processing and Gut Microbiome: Recent Findings on Bioavailability, Bioactivity, and Gut Microbiome Interplay. Antioxidants (Basel) 2024; 13:1220. [PMID: 39456473 PMCID: PMC11505337 DOI: 10.3390/antiox13101220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Polyphenols are organic chemical compounds naturally present in plants, renowned for their anti-inflammatory, antioxidant, immunomodulatory, anticancer, and cardiovascular protective properties. Their bioactivity and bioavailability can vary widely depending on the methods of food processing and interactions with the gut microbiome. These factors can induce changes in polyphenols, affecting their ability to achieve their intended health benefits. Thus, it is essential to develop and apply food processing methods that optimize polyphenol content while maintaining their bioactivity and bioavailability. This review aims to explore how various food processing techniques affect the quantity, bioactivity, and bioavailability of polyphenols, as well as their interactions with the gut microbiome, which may ultimately determine their health effects.
Collapse
Affiliation(s)
- Monika Sejbuk
- Department of Food Biotechnology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (I.M.-C.); (A.M.W.)
| | - Iwona Mirończuk-Chodakowska
- Department of Food Biotechnology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (I.M.-C.); (A.M.W.)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye;
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (I.M.-C.); (A.M.W.)
| |
Collapse
|
12
|
Lee JE, Jayakody JTM, Kim JI, Jeong JW, Choi KM, Kim TS, Seo C, Azimi I, Hyun JM, Ryu BM. The Influence of Solvent Choice on the Extraction of Bioactive Compounds from Asteraceae: A Comparative Review. Foods 2024; 13:3151. [PMID: 39410186 PMCID: PMC11475975 DOI: 10.3390/foods13193151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
While the potential of Asteraceae plants as herbal remedies has been globally recognized, their widespread application in the food, cosmetic, and pharmaceutical industries requires a deeper understanding of how extraction methods influence bioactive compound yields and functionalities. Previous research has primarily focused on the physiological activities or chemical compositions of individual Asteraceae species, often overlooking the critical role of solvent selection in optimizing extraction. Additionally, the remarkable physiological activities observed in these plants have spurred a growing number of clinical trials, aiming to validate their efficacy and safety for potential therapeutic and commercial applications. This work aims to bridge these knowledge gaps by providing an integrated analysis of extraction techniques, the diverse range of bioactive compounds present in Asteraceae, and the influence of solvent choice on isolating these valuable substances. By elucidating the interplay between extraction methods, solvent properties, and bioactivity, we underscore the promising potential of Asteraceae plants and highlight the importance of continued research, including clinical trials, to fully unlock their potential in the food, cosmetic, and pharmaceutical sectors.
Collapse
Affiliation(s)
- Ji-Eun Lee
- Department of Food Science Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (J.-E.L.); (J.-I.K.)
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | | | - Jae-Il Kim
- Department of Food Science Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (J.-E.L.); (J.-I.K.)
| | - Jin-Woo Jeong
- Honam National Institute of Biological Resources, 99 Gohadoangil, Mokpo-si 587262, Republic of Korea; (J.-W.J.); (K.-M.C.); (T.-S.K.); (C.S.)
| | - Kyung-Min Choi
- Honam National Institute of Biological Resources, 99 Gohadoangil, Mokpo-si 587262, Republic of Korea; (J.-W.J.); (K.-M.C.); (T.-S.K.); (C.S.)
| | - Tae-Su Kim
- Honam National Institute of Biological Resources, 99 Gohadoangil, Mokpo-si 587262, Republic of Korea; (J.-W.J.); (K.-M.C.); (T.-S.K.); (C.S.)
| | - Chan Seo
- Honam National Institute of Biological Resources, 99 Gohadoangil, Mokpo-si 587262, Republic of Korea; (J.-W.J.); (K.-M.C.); (T.-S.K.); (C.S.)
| | - Iman Azimi
- Monash Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Melbourne, VIC 3168, Australia;
| | - Ji-Min Hyun
- Department of Food Science Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (J.-E.L.); (J.-I.K.)
| | - Bo-Mi Ryu
- Department of Food Science Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (J.-E.L.); (J.-I.K.)
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
13
|
Ciambrone M, Langat MK, Cheek M. Vepris amaniensis: a morphological, biochemical, and molecular investigation of a species complex. PeerJ 2024; 12:e17881. [PMID: 39346043 PMCID: PMC11438429 DOI: 10.7717/peerj.17881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/17/2024] [Indexed: 10/01/2024] Open
Abstract
Vepris Comm. ex A. Juss. is a genus of 96 species extending from Africa to India that are distinct in their unarmed stems and their digitately (1-)3(-5) foliolate leaflets, and whose many secondary compounds earn them uses in traditional medicine. Mziray (1992) subsumed six related genera into Vepris, with Vepris amaniensis (Engl.) Mziray becoming somewhat of a dustpan for ambiguous specimens (Cheek & Luke, 2023). This study, using material from the Kew herbarium, sought to pull out novel species from those previously incorrectly filed as Vepris amaniensis, and here describes the new species Vepris usambarensis sp. nov. This species is morphologically distinct from Vepris amaniensis with its canaliculate to winged petioles, 0.5-2.3 cm long inflorescences, 1-3 foliolate leaflets, and hairs on inflorescences and stem apices. Phytochemical analysis attributed seven compounds to Vepris usambarensis: tecleanthine (1), evoxanthine (2), 6-methoxytecleanthine (3), tecleanone (4), 1-(3,4-methylenedioxyphenyl)-1,2,3-propanetriol (5), lupeol (6), and arborinine (7). This is a unique mixture of compounds for a species of Vepris, though all are known to occur in the genus, with the exception of 1-(3,4-methylenedioxyphenyl)-1,2,3-propanetriol (5) which was characterized from a species in the Asteraceae. An attempt at constructing a phylogeny for Vepris using the ITS and trnL-F regions was made, but these two regions could not be used to differentiate at species level and it is suggested that 353 sequencing is used for further research. Originally more than one new species was hypothesized to be within the study group; however, separating an additional species was unsupported by the data produced. Further phylogenetic analysis is recommended to fully elucidate species relationships and identify any cryptic species that may be present within Vepris usambarensis.
Collapse
Affiliation(s)
- Mary Ciambrone
- Queen Mary University of London, London, United Kingdom
- Accelerated Taxonomy, Royal Botanic Gardens at Kew, London, United Kingdom
| | - Moses K. Langat
- Trait Diversity and Function, Royal Botanic Gardens Kew, London, United Kingdom
| | - Martin Cheek
- Accelerated Taxonomy, Royal Botanic Gardens at Kew, London, United Kingdom
| |
Collapse
|
14
|
Roy D, Manumol M, Alagarasu K, Parashar D, Cherian S. Phytochemicals of Different Medicinal Herbs as Potential Inhibitors Against Dengue Serotype 2 Virus: A Computational Approach. Mol Biotechnol 2024:10.1007/s12033-024-01282-8. [PMID: 39264526 DOI: 10.1007/s12033-024-01282-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
Dengue is one of the major mosquito-borne infectious diseases of the present century, reported to affect about 100-400 million people globally. The lack of effective therapeutic options has inspired several in vitro and in silico studies for the search of antivirals. Our previous study revealed the anti-dengue activity of different plant extracts from Plumeria alba, Bacopa monnieri, Vitex negundo, and Ancistrocladus heyneanus. Therefore, the current in silico study was designed to identify the phytochemicals present in the aforementioned plants, which are possibly responsible for the anti-dengue activity. Different plant databases as well as relevant literature were explored to find out the major compounds present in the above-stated plants followed by screening of the retrieved phytochemicals for the assessment of their binding affinity against different dengue viral proteins via molecular docking. The best poses of protein-ligand complexes obtained after molecular docking were selected for the calculation of binding free energy via MM-GBSA method. Based on the highest docking score and binding energy, six complexes were considered for further analysis. To analyze the stability of the complex, 100 ns molecular dynamics (MD) simulations were carried out using Desmond module in the Schrodinger suite. The MD simulation analysis showed that four compounds viz. liriodendrin, bacopaside VII, isoorientin, and cynaroside exhibited stability with viral targets including the RdRp, NS3 helicase, and E protein indicating their potential as novel anti-dengue antivirals.
Collapse
Affiliation(s)
- Diya Roy
- Bioinformatics Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune, Maharashtra, 411001, India
| | - M Manumol
- Bioinformatics Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune, Maharashtra, 411001, India
| | - Kalichamy Alagarasu
- Dengue & Chikungunya Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune, Maharashtra, 411001, India
| | - Deepti Parashar
- Dengue & Chikungunya Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune, Maharashtra, 411001, India
| | - Sarah Cherian
- Bioinformatics Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune, Maharashtra, 411001, India.
| |
Collapse
|
15
|
Sanford LM, Keiser P, Fujii N, Woods H, Zhang C, Xu Z, Mahajani NS, Cortés JG, Plescia CB, Knipp G, Stahelin RV, Davey R, Davisson VJ. Evaluation of potency and metabolic stability of diphyllin-derived Vacuolar-ATPase inhibitors. Eur J Med Chem 2024; 275:116537. [PMID: 38875806 PMCID: PMC11236507 DOI: 10.1016/j.ejmech.2024.116537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/16/2024] [Accepted: 05/26/2024] [Indexed: 06/16/2024]
Abstract
Diphyllin is a naturally occurring lignan comprised of an aryl naphthalene lactone scaffold that demonstrates beneficial biological activities in disease models of cancer, obesity, and viral infection. A target of diphyllin and naturally occurring derivatives is the vacuolar ATPase (V-ATPase) complex. Although diphyllin-related natural products are active with in vitro models for viral entry, the potencies and unknown pharmacokinetic properties limit well-designed in vivo evaluations. Previous studies demonstrated that diphyllin derivatives have the utility of blocking the Ebola virus cell entry pathway. However, diphyllin shows limited potency and poor oral bioavailability in mice. An avenue to improve the potency was used in a new library of synthetic derivatives of diphyllin. Diphyllin derivatives exploiting ether linkages at the 4-position with one-to-three carbon spacers to an oxygen or nitrogen atom provided compounds with EC50 values ranging from 7 to 600 nM potency and selectivity up to >500 against Ebola virus in infection assays. These relative potencies are reflected in the Ebola virus infection of primary macrophages, a cell type involved in early pathogenesis. A target engagement study reveals that reducing the ATPV0a2 protein expression enhanced the potency of diphyllin derivatives to block EBOV entry, consistent with effects on the endosomal V-ATPase function. Despite the substantial enhancement of antiviral potencies, limitations were identified, including rapid clearance predicted by in vitro microsome stability assays. However, compounds with similar or improved half-lives relative to diphyllin demonstrated improved pharmacokinetic profiles in vivo. Importantly, these derivatives displayed suitable plasma levels using oral administration, establishing the feasibility of in vivo antiviral testing.
Collapse
Affiliation(s)
- Laura M Sanford
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, United States
| | - Patrick Keiser
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, 02118, United States
| | - Naoaki Fujii
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, United States
| | - Hannah Woods
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, United States
| | - Charlie Zhang
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, United States; Department of Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, IN, 47907, United States
| | - Zhuangyan Xu
- Department of Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, IN, 47907, United States
| | - Nivedita S Mahajani
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, United States
| | - Julián González Cortés
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, United States
| | - Caroline B Plescia
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, United States
| | - Gregory Knipp
- Department of Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, IN, 47907, United States
| | - Robert V Stahelin
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, United States
| | - Robert Davey
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, 02118, United States
| | - Vincent Jo Davisson
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, United States.
| |
Collapse
|
16
|
Elsbaey M, Igarashi Y, Alnajjar R, Darwish KM, Miyamoto T. Nuciferol C, a new sesquineolignan dimer from Cocos nucifera L.: bioactivity and theoretical investigation. RSC Adv 2024; 14:25900-25907. [PMID: 39157580 PMCID: PMC11328675 DOI: 10.1039/d4ra02940b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024] Open
Abstract
Nuciferol C (NC), an undescribed dimer of nuciferol B (NB), was isolated from the endocarp of Cocos nucifera L. The planar structure of NC was determined using 1D- and 2D-NMR spectroscopy as well as high resolution MS spectrometry. The absolute configuration was concluded based on analysis of NOESY spectra. NC showed cytotoxic activity against colon cancer cells (CaCo-2) with an IC50 value of 76 μM, and significantly decreased the expression of human epidermal growth factor receptor (EGFR) and tumor necrosis factor alpha (TNF-α) in CaCo-2 as compared with untreated cells by 39% and 33%, respectively (p < 0.05). In addition, NC exhibited anti-herpes simplex virus (HSV-I) activity with an IC50 value of 23 μM. In silico study of NC was implemented at three levels: density functional theory (DFT) was used to study its electronic properties, molecular mechanics was used to estimate the docking results, and finally, molecular dynamic simulation was used to study the behavior and stability of NC inside the active site of the target protein of HSV-1.
Collapse
Affiliation(s)
- Marwa Elsbaey
- Pharmacognosy Department, Faculty of Pharmacy, Mansoura University Mansoura 35516 Egypt
| | - Yasuhiro Igarashi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University 5180 Kurokawa, Imizu Toyama 939-0398 Japan
| | - Radwan Alnajjar
- CADD Unit, Faculty of Pharmacy, Libyan International Medical University Benghazi 16063 Libya
| | - Khaled M Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt
| | - Tomofumi Miyamoto
- School of Pharmaceutical Sciences, Kyushu University 3-1-1 Maidashi, Higashi-ku Fukuoka 812-8582 Japan
| |
Collapse
|
17
|
Jawhara S. How Do Polyphenol-Rich Foods Prevent Oxidative Stress and Maintain Gut Health? Microorganisms 2024; 12:1570. [PMID: 39203412 PMCID: PMC11356206 DOI: 10.3390/microorganisms12081570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
Inflammatory bowel disease (IBD), which includes Crohn's disease and ulcerative colitis, involves chronic inflammatory disorders of the digestive tract. Oxidative stress, associated with increased reactive oxygen species generation, is a major risk factor for IBD pathogenesis. Industrialized lifestyles expose us to a variety of factors that contribute to deteriorating gut health, especially for IBD patients. Many alternative therapeutic strategies have been developed against oxidative stress along with conventional therapy to alleviate IBD pathogenesis. Polyphenol-rich foods have attracted growing interest from scientists due to their antioxidant properties. Polyphenols are natural compounds found in plants, fruits, vegetables, and nuts that exhibit antioxidant properties and protect the body from oxidative damage. This review presents an overview of polyphenol benefits and describes the different types of polyphenols. It also discusses polyphenols' role in inhibiting oxidative stress and fungal growth prevention. Overall, this review highlights how a healthy and balanced diet and avoiding the industrialized lifestyles of our modern society can minimize oxidative stress damage and protect against pathogen infections. It also highlights how polyphenol-rich foods play an important role in protecting against oxidative stress and fungal growth.
Collapse
Affiliation(s)
- Samir Jawhara
- Centre National de la Recherche Scientifique, UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; ; Tel.: +33-(0)3-20-62-35-46
- Institut National de la Santé et de la Recherche Médicale U1285, University of Lille, F-59000 Lille, France
- Medicine Faculty, University of Lille, F-59000 Lille, France
| |
Collapse
|
18
|
Chen Y, Duan M, Wang X, Xu J, Tian S, Xu X, Duan A, Mahal A, Zhu Y, Zhu Q. Synthesis and evaluation of pentacyclic triterpenoids conjugates as novel HBV entry inhibitors targeting NTCP receptor. Bioorg Chem 2024; 147:107385. [PMID: 38663255 DOI: 10.1016/j.bioorg.2024.107385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/27/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024]
Abstract
Chronic liver diseases caused by hepatitis B virus (HBV) are the accepted main cause leading to liver cirrhosis, hepatic fibrosis, and hepatic carcinoma. Sodium taurocholate cotransporting polypeptide (NTCP), a specific membrane receptor of hepatocytes for triggering HBV infection, is a promising target against HBV entry. In this study, pentacyclic triterpenoids (PTs) including glycyrrhetinic acid (GA), oleanolic acid (OA), ursolic acid (UA) and betulinic acid (BA) were modified via molecular hybridization with podophyllotoxin respectively, and resulted in thirty-two novel conjugates. The anti-HBV activities of conjugates were evaluated in HepG2.2.15 cells. The results showed that 66% of the conjugates exhibited lower toxicity to the host cells and had significant inhibitory effects on the two HBV antigens, especially HBsAg. Notably, the compounds BA-PPT1, BA-PPT3, BA-PPT4, and UA-PPT3 not only inhibited the secretion of HBsAg but also suppressed HBV DNA replication. A significant difference in the binding of active conjugates to NTCP compared to the HBV PreS1 antigen was observed by SPR assays. The mechanism of action was found to be the competitive binding of these compounds to the NTCP 157-165 epitopes, blocking HBV entry into host cells. Molecular docking results indicated that BA-PPT3 interacted with the amino acid residues of the target protein mainly through π-cation, hydrogen bond and hydrophobic interaction, suggesting its potential as a promising HBV entry inhibitor targeting the NTCP receptor.
Collapse
Affiliation(s)
- Yixin Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, China
| | - Meitao Duan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xiangwan Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jianling Xu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Shuo Tian
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xiaotian Xu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Ao Duan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Ahmed Mahal
- Department of Medical Biochemical Analysis, College of Health Technology, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Yongyan Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, China.
| | - Quanhong Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, China.
| |
Collapse
|
19
|
Zheng Z, Sun C, Zhong Y, Shi Y, Zhuang L, Liu B, Liu Z. Fraxini cortex: Progresses in phytochemistry, pharmacology and ethnomedicinal uses. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117849. [PMID: 38301981 DOI: 10.1016/j.jep.2024.117849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fraxini cortex, which has been widely used as a traditional Chinese medicine for 2000 years, is made from the dried bark of four plant species: Fraxinus chinensis subsp. rhynchophylla (Hance) A.E.Murray, Fraxinus chinensis Roxb., Fraxinus chinensis subsp. chinensis and Fraxinus stylosa Lingelsh.. In Chinese traditional medicine, it possesses the properties of heat-clearing and dampness-drying, asthma relief and cough suppression, as well as vision improvement. It is utilized for treating bacterial disorders, enteritis, leukorrhea, chronic bronitis, painful red eyes with swelling, lacrimation due to windward exposure, psoriasis, and other diseases or related symptoms. AIM OF THE STUDY Fraxini cortex is abundant in chemical constituents and has garnered significant attention from plant chemists, particularly regarding coumarins, as evidenced by the recently identified three coumarin compounds. Considering the current dearth of systematic reporting on studies pertaining to Fraxini cortex, herein we provide a comprehensive summary of the advancements in phytochemistry, pharmacology, detection methods, and ethnomedicinal applications of Fraxini cortex. MATERIALS AND METHODS We conducted a comprehensive search across online data sources (Web of Science, Public Medicine (PubMed), China National Knowledge Infrastructure (CNKI), as well as Chinese dissertations) and traditional Chinese medicine classics to gather the necessary literature resources for this review. RESULTS Briefly, The Fraxini cortex yielded a total of 132 phytochemicals, including coumarins, lignans, secoiridoids, phenylethanol glycosides, flavonoids, triterpenoids, and other compounds. Among them, the main active ingredients are coumarins which possess a diverse range of pharmacological activities such as anti-inflammatory effects, anti-tumor properties, prevention of tissue fibrosis and oxidation damage as well as cardioprotective effects. CONCLUSIONS All types of research conducted on Fraxini cortex, particularly in the field of ethnopharmacology, phytochemistry, and pharmacology, have been thoroughly reviewed. However, certain traditional applications and pharmacological activities of Fraxini cortex lack scientific evaluation or convincing evidence due to incomplete methodologies and ambiguous results, as well as a lack of clinical data. To validate its pharmacological activity, clinical efficacy, and safety profile, a systematic and comprehensive research evaluation is imperative. As an important traditional Chinese medicine, Fraxini cortex should be further explored to facilitate the development of novel drugs and therapeutics for various diseases. Greater attention should be given to how it can be better utilized.
Collapse
Affiliation(s)
- Zuoliang Zheng
- School of Life Science, Jiaying University, Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, China.
| | - Chaoyue Sun
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China.
| | - Yuping Zhong
- School of Life Science, Jiaying University, Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, China.
| | - Yufei Shi
- School of Life Science, Jiaying University, Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, China.
| | - Likai Zhuang
- School of Life Science, Jiaying University, Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, China.
| | - Bo Liu
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Zhiwei Liu
- School of Life Science, Jiaying University, Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, China.
| |
Collapse
|
20
|
Mihaylova D, Dimitrova-Dimova M, Popova A. Dietary Phenolic Compounds-Wellbeing and Perspective Applications. Int J Mol Sci 2024; 25:4769. [PMID: 38731987 PMCID: PMC11084633 DOI: 10.3390/ijms25094769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Contemporary living is continuously leading to poor everyday choices resulting in the manifestation of various diseases. The benefits of plant-based nutrition are undeniable and research on the topic is rising. Modern man is now aware of the possibilities that plant nutrition can provide and is seeking ways to benefit from it. Dietary phenolic compounds are among the easily accessible beneficial substances that can exhibit antioxidant, anti-inflammatory, antitumor, antibacterial, antiviral, antifungal, antiparasitic, analgesic, anti-diabetic, anti-atherogenic, antiproliferative, as well as cardio-and neuroprotective activities. Several industries are exploring ways to incorporate biologically active substances in their produce. This review is concentrated on presenting current information about the dietary phenolic compounds and their contribution to maintaining good health. Additionally, this content will demonstrate the importance and prosperity of natural compounds for various fields, i.e., food industry, cosmetology, and biotechnology, among others.
Collapse
Affiliation(s)
- Dasha Mihaylova
- Department of Biotechnology, Technological Faculty, University of Food Technologies, 4002 Plovdiv, Bulgaria
| | - Maria Dimitrova-Dimova
- Department of Catering and Nutrition, Economics Faculty, University of Food Technologies, 4002 Plovdiv, Bulgaria;
| | - Aneta Popova
- Department of Catering and Nutrition, Economics Faculty, University of Food Technologies, 4002 Plovdiv, Bulgaria;
| |
Collapse
|
21
|
Berežni S, Mimica-Dukić N, Domina G, Raimondo FM, Orčić D. Anthriscus sylvestris-Noxious Weed or Sustainable Source of Bioactive Lignans? PLANTS (BASEL, SWITZERLAND) 2024; 13:1087. [PMID: 38674496 PMCID: PMC11053937 DOI: 10.3390/plants13081087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024]
Abstract
Anthriscus sylvestris (L.) Hoffm. (Apiaceae), commonly known as wild chervil, has gained scientific interest owing to its diverse phytochemical profile and potential therapeutic applications. The plant, despite being categorized as a noxious weed, is traditionally used in treating various conditions like headaches, dressing wounds, and as a tonic, antitussive, antipyretic, analgesic, and diuretic. Its pharmacological importance stems from containing diverse bioactive lignans, especially aryltetralins and dibenzylbutyrolactones. One of the main compounds of A. sylvestris, deoxypodophyllotoxin, among its wide-ranging effects, including antitumor, antiproliferative, antiplatelet aggregation, antiviral, anti-inflammatory, and insecticidal properties, serves as a pivotal precursor to epipodophyllotoxin, crucial in the semisynthesis of cytostatic agents like etoposide and teniposide. The main starting compound for these anticancer medicines was podophyllotoxin, intensively isolated from Sinopodophyllum hexandrum, now listed as an endangered species due to overexploitation. Since new species are being investigated as potential sources, A. sylvestris emerges as a highly promising candidate owing to its abundant lignan content. This review summarizes the current knowledge on A. sylvestris, investigating its biological and morphological characteristics, and pharmacological properties. Emphasizing the biological activities and structure-activity relationship, this review underscores its therapeutic potential, thus encouraging further exploration and utilization of this valuable plant resource.
Collapse
Affiliation(s)
- Sanja Berežni
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (N.M.-D.); (D.O.)
| | - Neda Mimica-Dukić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (N.M.-D.); (D.O.)
| | - Gianniantonio Domina
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, bldg. 4, 90128 Palermo, Italy;
| | - Francesco Maria Raimondo
- PLANTA/Center for Research, Documentation and Training, Via Serraglio Vecchio 28, 90123 Palermo, Italy;
| | - Dejan Orčić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (N.M.-D.); (D.O.)
| |
Collapse
|
22
|
Du Q, Xing N, Guo S, Li R, Meng X, Wang S. Cycads: A comprehensive review of its botany, traditional uses, phytochemistry, pharmacology and toxicology. PHYTOCHEMISTRY 2024; 220:114001. [PMID: 38286200 DOI: 10.1016/j.phytochem.2024.114001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
Cycads, which primarily consist of the families Cycadaceae and Zamiaceae, possess intrinsic therapeutic attributes that are prominently expressed across their morphological spectrum, including roots, leaves, flowers, and seeds. In Chinese traditional medicine, the leaves of cycads are particularly revered for their profound healing capabilities. This meticulous review engages with existing literature on cycads and presents insightful avenues for future research. Over 210 phytoconstituents have been isolated and identified from various cycad tissues, including flavonoids, azoxy metabolites, sterols, lignans, non-proteogenic amino acids, terpenoids, and other organic constituents. The contemporary pharmacological discourse highlights the antineoplastic, antimicrobial, and antidiabetic activities inherent in these ancient plants, which are of particular importance to the field of oncology. Despite the prevalent focus on crude extracts and total flavonoid content, our understanding of the nuanced pharmacodynamics of cycads lags considerably behind. The notoriety of cycads derived toxicity, notably within the context of Guam's neurological disease cluster, has precipitated an established emphasis on toxicological research within this field. As such, this critical review emphasizes nascent domains deserving of academic and clinical pursuit, whilst nested within the broader matrix of current scientific understanding. The systematic taxonomy, traditional applications, phytochemical composition, therapeutic potential, and safety profile of cycads are holistically interrogated, assimilating an indispensable repository for future scholarly inquiries. In conclusion, cycads stand as a veritable treasure trove of pharmacological virtue, displaying remarkable therapeutic prowess and holding vast promise for ongoing scientific discovery and clinical utilization.
Collapse
Affiliation(s)
- Qinyun Du
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Nan Xing
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Sa Guo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Rui Li
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, 620010, China
| | - Xianli Meng
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Shaohui Wang
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, 620010, China; School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
23
|
Susanti I, Pratiwi R, Rosandi Y, Hasanah AN. Separation Methods of Phenolic Compounds from Plant Extract as Antioxidant Agents Candidate. PLANTS (BASEL, SWITZERLAND) 2024; 13:965. [PMID: 38611494 PMCID: PMC11013868 DOI: 10.3390/plants13070965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024]
Abstract
In recent years, discovering new drug candidates has become a top priority in research. Natural products have proven to be a promising source for such discoveries as many researchers have successfully isolated bioactive compounds with various activities that show potential as drug candidates. Among these compounds, phenolic compounds have been frequently isolated due to their many biological activities, including their role as antioxidants, making them candidates for treating diseases related to oxidative stress. The isolation method is essential, and researchers have sought to find effective procedures that maximize the purity and yield of bioactive compounds. This review aims to provide information on the isolation or separation methods for phenolic compounds with antioxidant activities using column chromatography, medium-pressure liquid chromatography, high-performance liquid chromatography, counter-current chromatography, hydrophilic interaction chromatography, supercritical fluid chromatography, molecularly imprinted technologies, and high-performance thin layer chromatography. For isolation or purification, the molecularly imprinted technologies represent a more accessible and more efficient procedure because they can be applied directly to the extract to reduce the complicated isolation process. However, it still requires further development and refinement.
Collapse
Affiliation(s)
- Ike Susanti
- Pharmaceutical Analysis and Medicinal Chemistry Department, Faculty of Pharmacy, Universitas Padjadjaran, Jl Raya Bandung Sumedang KM 21 r, Sumedang 45363, Indonesia
| | - Rimadani Pratiwi
- Pharmaceutical Analysis and Medicinal Chemistry Department, Faculty of Pharmacy, Universitas Padjadjaran, Jl Raya Bandung Sumedang KM 21 r, Sumedang 45363, Indonesia
| | - Yudi Rosandi
- Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Sumedang 45363, Indonesia
| | - Aliya Nur Hasanah
- Pharmaceutical Analysis and Medicinal Chemistry Department, Faculty of Pharmacy, Universitas Padjadjaran, Jl Raya Bandung Sumedang KM 21 r, Sumedang 45363, Indonesia
- Drug Development Study Center, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Sumedang 45363, Indonesia
| |
Collapse
|
24
|
Basit A, Khan KUR, Rahman AU, Khan M, Ahmad T, Arafat M, Khan KU, Nalinbenjapun S, Sripetthong S, Ovatlarnporn C. UPLC-Q-TOF-MS profiling of Viola stocksii Boiss. and evaluation of aphrodisiac potential and risk factors associated with erectile dysfunction. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117477. [PMID: 38007166 DOI: 10.1016/j.jep.2023.117477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Viola stocksii Boiss. locally known as makhni or makhanr booti, is an important medicinal food plant with multiple therapeutic applications, including erectile dysfunction (ED). It is mixed with butter and used for boosting energy and sexual health in the subcontinent. AIMS OF THE STUDY This study was designed to evaluate the chemical composition, aphrodisiac potential and effect of V. stocksii on the risk factors associated with ED. METHODOLOGY The hydroethanolic extract of V. stocksii (HEEVS) was prepared through the microwave-assisted extraction (MAE) technique. The chemical composition was evaluated using preliminary phytochemical screening and UPLC-Q-TOF-MS analysis. Metals and minerals analysis was performed by an atomic absorption spectrophotometer. The aphrodisiac activity of HEEVS was evaluated using an in vivo aphrodisiac model established in male albino rats and the effect on various sexual parameters such as mount, intromission, ejaculation frequencies and mount, intromission, ejaculation latencies, postejaculatory interval, penile reflexes and serum hormone concentration were analyzed. The effect of HEEVS on various risk factors associated with ED, including prostate cancer (PC), bacterial infections, diabetes and obesity, was evaluated using various in vitro assays. Moreover, four compounds were selected from the UPLC-Q-TOF-MS profile and evaluated for in silico computational analysis against phosphodiesterase-5 (PDE-5) for possible interaction. FINDINGS The phytochemical screening revealed the presence of various secondary metabolites in HEEVS, while 58 compounds were tentatively identified in the UPLC-Q-TOF-MS analysis. Various important minerals and metals such as zinc, calcium, cadmium and magnesium were detected in the atomic absorption spectrometry analysis. The in vivo aphrodisiac evaluation showed a significant (p < 0.05) increase in the mount, intromission and ejaculation frequencies and a decrease in the mount, intromission latencies and post-ejaculatory intervals at a dose of 300 mg/kg. A marked (p < 0.05) increase was observed in the concentration of serum testosterone and luteinizing hormones in HEEVS treated animals with a significant increase in total penile reflexes. The extract displayed significant anti-prostate cancer activity and a potential antibacterial spectrum against E. coli and S. aureus, with MIC50 values of 215.72 μg/mL and 139.05 μg/mL, respectively. Similarly, HEEVS was found active towards pancreatic lipase (67.34 ± 1.03%), α-glucosidase (3.87 ± 0.54 mmol ACAE/g d.w.) and α-amylase (6.98 ± 1.63 mmol ACAE/g d.w.). The in silico docking study presented a potential interaction between the selected compounds and residues of the active site of PDE-5. CONCLUSION This report highlights the aphrodisiac potential of V. stocksii and provides experimental support for its traditional use in ED with an attenuative effect on the risk factors associated with ED. Moreover, the chemical composition displayed the presence of functional phytoconstituents and minerals in HEEVS and paves the way for the isolation of compounds with potent aphrodisiac activity.
Collapse
Affiliation(s)
- Abdul Basit
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand; Drug Delivery System and Excellence Center, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand
| | - Kashif Ur Rehman Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan.
| | - Asad Ur Rahman
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand; Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan.
| | - Muhammad Khan
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand
| | - Tawseef Ahmad
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand
| | - Mosab Arafat
- College of Pharmacy, Al Ain University, Al Ain, United Arab Emirates
| | - Kifayat Ullah Khan
- Quaid-e-Azam College of Pharmacy, Quaid-e-Azam Educational Complex, Sahiwal, Punjab, Pakistan
| | - Sirinporn Nalinbenjapun
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand; Drug Delivery System and Excellence Center, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand
| | - Sasikarn Sripetthong
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand; Drug Delivery System and Excellence Center, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand
| | - Chitchamai Ovatlarnporn
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand; Drug Delivery System and Excellence Center, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand.
| |
Collapse
|
25
|
Siew ZY, Asudas E, Khoo CT, Cho GH, Voon K, Fang CM. Fighting nature with nature: antiviral compounds that target retroviruses. Arch Microbiol 2024; 206:130. [PMID: 38416180 DOI: 10.1007/s00203-024-03846-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/29/2024]
Abstract
The human immunodeficiency virus (HIV) is a type of lentivirus that targets the human immune system and leads to acquired immunodeficiency syndrome (AIDS) at a later stage. Up to 2021, there are millions still living with HIV and many have lost their lives. To date, many anti-HIV compounds have been discovered in living organisms, especially plants and marine sponges. However, no treatment can offer a complete cure, but only suppressing it with a life-long medication, known as combined antiretroviral therapy (cART) or highly active antiretroviral therapy (HAART) which are often associated with various adverse effects. Also, it takes many years for a discovered compound to be approved for clinical use. Thus, by employing advanced technologies such as automation, conducting systematic screening and testing protocols may boost the discovery and development of potent and curative therapeutics for HIV infection/AIDS. In this review, we aim to summarize the antiretroviral therapies/compounds and their associated drawbacks since the discovery of azidothymidine. Additionally, we aim to provide an updated analysis of the most recent discoveries of promising antiretroviral candidates, along with an exploration of the current limitations within antiretroviral research. Finally, we intend to glean insightful perspectives and propose future research directions in this crucial area of study.
Collapse
Affiliation(s)
- Zhen Yun Siew
- Division of Biomedical Sciences, School of Pharmacy, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor, Malaysia.
| | - Elishea Asudas
- Division of Biomedical Sciences, School of Pharmacy, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor, Malaysia
| | - Chia Ting Khoo
- School of Biosciences, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia
| | - Gang Hyeon Cho
- School of Pharmacy, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia
| | - Kenny Voon
- Division of Biomedical Sciences, School of Pharmacy, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor, Malaysia
| | - Chee-Mun Fang
- Division of Biomedical Sciences, School of Pharmacy, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor, Malaysia.
| |
Collapse
|
26
|
Liu Y, Shi Y, Zhang M, Han F, Liao W, Duan X. Natural polyphenols for drug delivery and tissue engineering construction: A review. Eur J Med Chem 2024; 266:116141. [PMID: 38237341 DOI: 10.1016/j.ejmech.2024.116141] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 02/05/2024]
Abstract
Polyphenols, natural compounds rich in phenolic structures, are gaining prominence due to their antioxidant, anti-inflammatory, antibacterial, and anticancer properties, making them valuable in biomedical applications. Through covalent and noncovalent interactions, polyphenols can bind to biomaterials, enhancing their performance and compensating for their shortcomings. Such polyphenol-based biomaterials not only increase the efficacy of polyphenols but also improve drug stability, control release kinetics, and boost the therapeutic effects of drugs. They offer the potential for targeted drug delivery, reducing off-target impacts and enhancing therapeutic outcomes. In tissue engineering, polyphenols promote cell adhesion, proliferation, and differentiation, thus aiding in the formation of functional tissues. Additionally, they offer excellent biocompatibility and mechanical strength, essential in designing scaffolds. This review explores the significant roles of polyphenols in tissue engineering and drug delivery, emphasizing their potential in advancing biomedical research and healthcare.
Collapse
Affiliation(s)
- Yu Liu
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiangxi, China; Medical College of Jiujiang University, Jiangxi, China
| | - Yuying Shi
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiangxi, China; Medical College of Jiujiang University, Jiangxi, China
| | - Mengqi Zhang
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiangxi, China; Medical College of Jiujiang University, Jiangxi, China
| | - Feng Han
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiangxi, China; Medical College of Jiujiang University, Jiangxi, China
| | - Weifang Liao
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiangxi, China; Medical College of Jiujiang University, Jiangxi, China
| | - Xunxin Duan
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiangxi, China; Medical College of Jiujiang University, Jiangxi, China.
| |
Collapse
|
27
|
Hao M, Xu H. Chemistry and Biology of Podophyllotoxins: An Update. Chemistry 2024; 30:e202302595. [PMID: 37814110 DOI: 10.1002/chem.202302595] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/11/2023]
Abstract
Podophyllotoxin is an aryltetralin lignan lactone derived from different plants of Podophyllum. It consists of five rings with four chiral centers, one trans-lactone and one aryl tetrahydronaphthalene skeleton with multiple modification sites. Moreover, podophyllotoxin and its derivatives showed lots of bioactivities, including anticancer, anti-inflammatory, antiviral, and insecticidal properties. The demand for podophyllotoxin and its derivatives is rising as a result of their high efficacy. As a continuation of our previous review (Chem. Eur. J., 2017, 23, 4467-4526), herein, total synthesis, biotransformation, structural modifications, bioactivities, and structure-activity relationships of podophyllotoxin and its derivatives from 2017 to 2022 are summarized. Meanwhile, a piece of update information on the origin of new podophyllotoxin analogues from plants from 2014 to 2022 was compiled. We hope that this review will provide a reference for future high value-added applications of podophyllotoxin and its analogues in the pharmaceutical and agricultural fields.
Collapse
Affiliation(s)
- Meng Hao
- College of Plant Protection, Northwest A&F University, Xian Yang Shi, Yangling, 712100, P.R. China
| | - Hui Xu
- College of Plant Protection, Northwest A&F University, Xian Yang Shi, Yangling, 712100, P.R. China
| |
Collapse
|
28
|
Hou W, Huang LJ, Huang H, Liu SL, Dai W, Li ZM, Zhang ZY, Xin SY, Wang JY, Zhang ZY, Ouyang X, Lan JX. Bioactivities and Mechanisms of Action of Diphyllin and Its Derivatives: A Comprehensive Systematic Review. Molecules 2023; 28:7874. [PMID: 38067601 PMCID: PMC10707837 DOI: 10.3390/molecules28237874] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Natural products are treasure houses for modern drug discovery. Diphyllin is a natural arylnaphthalene lignan lactone isolated from the leaf of Astilboides tabularis. Studies have found that it possesses plenty of bioactivity characteristics. In this paper, we reviewed the structure, bioactivity, and mechanism of action of diphyllin and its derivatives. The references were obtained from PubMed, Web of Science, and Science Direct databases up to August 2023. Papers without a bio-evaluation were excluded. Diphyllin and its derivatives have demonstrated V-ATPase inhibition, anti-tumor, anti-virus, anti-biofilm, anti-inflammatory, and anti-oxidant activities. The most studied activities of diphyllin and its derivatives are V-ATPase inhibition, anti-tumor activities, and anti-virus activities. Furthermore, V-ATPase inhibition activity is the mechanism of many bioactivities, including anti-tumor, anti-virus, and anti-inflammatory activities. We also found that the galactosylated modification of diphyllin is a common phenomenon in plants, and therefore, galactosylated modification is applied by researchers in the laboratory to obtain more excellent diphyllin derivatives. This review will provide useful information for the development of diphyllin-based anti-tumor and anti-virus compounds.
Collapse
Affiliation(s)
- Wen Hou
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.-L.L.); (W.D.); (Z.-Y.Z.); (S.-Y.X.); (J.-Y.W.); (Z.-Y.Z.); (X.O.)
| | - Le-Jun Huang
- College of Rehabilitation, Gannan Medical University, Ganzhou 341000, China;
| | - Hao Huang
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.-L.L.); (W.D.); (Z.-Y.Z.); (S.-Y.X.); (J.-Y.W.); (Z.-Y.Z.); (X.O.)
| | - Sheng-Lan Liu
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.-L.L.); (W.D.); (Z.-Y.Z.); (S.-Y.X.); (J.-Y.W.); (Z.-Y.Z.); (X.O.)
| | - Wei Dai
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.-L.L.); (W.D.); (Z.-Y.Z.); (S.-Y.X.); (J.-Y.W.); (Z.-Y.Z.); (X.O.)
| | - Zeng-Min Li
- Laboratory Animal Engineering Research Center of Ganzhou, Gannan Medical University, Ganzhou 341000, China;
| | - Zhen-Yu Zhang
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.-L.L.); (W.D.); (Z.-Y.Z.); (S.-Y.X.); (J.-Y.W.); (Z.-Y.Z.); (X.O.)
| | - Su-Ya Xin
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.-L.L.); (W.D.); (Z.-Y.Z.); (S.-Y.X.); (J.-Y.W.); (Z.-Y.Z.); (X.O.)
| | - Jin-Yang Wang
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.-L.L.); (W.D.); (Z.-Y.Z.); (S.-Y.X.); (J.-Y.W.); (Z.-Y.Z.); (X.O.)
| | - Zi-Yun Zhang
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.-L.L.); (W.D.); (Z.-Y.Z.); (S.-Y.X.); (J.-Y.W.); (Z.-Y.Z.); (X.O.)
| | - Xi Ouyang
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.-L.L.); (W.D.); (Z.-Y.Z.); (S.-Y.X.); (J.-Y.W.); (Z.-Y.Z.); (X.O.)
| | - Jin-Xia Lan
- College of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
29
|
Zhang H, Teng K, Zang H. Actinidia arguta (Sieb. et Zucc.) Planch. ex Miq.: A Review of Phytochemistry and Pharmacology. Molecules 2023; 28:7820. [PMID: 38067549 PMCID: PMC10708088 DOI: 10.3390/molecules28237820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/25/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
Actinidia arguta (Siebold & Zucc.) Planch ex Miq. (A. arguta) is a highly valued vine plant belonging to the Actinidia lindl genus. It is extensively utilized for its edible and medicinal properties. The various parts of A. arguta serve diverse purposes. The fruit is rich in vitamins, amino acids, and vitamin C, making it a nutritious and flavorful raw material for producing jam, canned food, and wine. The flowers yield volatile oils suitable for essential oil extraction. The leaves contain phenolic compounds and can be used for tea production. Additionally, the roots, stems, and leaves of A. arguta possess significant medicinal value, as they contain a wide array of active ingredients that exert multiple pharmacological and therapeutic effects. These effects include quenching thirst, relieving heat, stopping bleeding, promoting blood circulation, reducing swelling, dispelling wind, and alleviating dampness. Comprehensive information on A. arguta was collected from scientific databases covering the period from 1970 to 2023. The databases used for this review included Web of Science, PubMed, ProQuest, and CNKI. The objective of this review was to provide a detailed explanation of A. arguta from multiple perspectives, such as phytochemistry and pharmacological effects. By doing so, it aimed to establish a solid foundation and propose new research ideas for further exploration of the plant's potential applications and industrial development. To date, a total of 539 compounds have been isolated and identified from A. arguta. These compounds include terpenoids, flavonoids, phenolics, phenylpropanoids, lignin, organic acids, volatile components, alkanes, coumarins, anthraquinones, alkaloids, polysaccharides, and inorganic elements. Flavonoids, phenolics, alkaloids, and polysaccharides are the key bioactive constituents of A. arguta. Moreover, phenolics and flavonoids in A. arguta exhibit remarkable antioxidant, anti-inflammatory, and anti-tumor properties. Additionally, they show promising potential in improving glucose metabolism, combating aging, reducing fatigue, and regulating the immune system. While some fundamental studies on A. arguta have been conducted, further research is necessary to enhance our understanding of its mechanism of action, quality evaluation, and compatibility mechanisms. A more comprehensive investigation is highly warranted to explore the mechanism of action and expand the range of drug resources associated with A. arguta. This will contribute to the current hot topics of anti-aging and anti-tumor drug research and development, thereby promoting its further development and utilization.
Collapse
Affiliation(s)
- Haifeng Zhang
- School of TCM and Pharmacology Health and Early Childhood Care, Ningbo College of Health Sciences, Ningbo 315100, China;
| | - Kun Teng
- School of TCM and Pharmacology Health and Early Childhood Care, Ningbo College of Health Sciences, Ningbo 315100, China;
| | - Hao Zang
- Green Medicinal Chemistry Laboratory, School of Pharmacy and Medicine, Tonghua Normal University, Tonghua 134002, China
| |
Collapse
|
30
|
Chu Z, Hu Z, Luo Y, Zhou Y, Yang F, Luo F. Targeting gut-liver axis by dietary lignans ameliorate obesity: evidences and mechanisms. Crit Rev Food Sci Nutr 2023; 65:243-264. [PMID: 37870876 DOI: 10.1080/10408398.2023.2272269] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
An imbalance between energy consumption and energy expenditure causes obesity. It is characterized by increased adipose accumulation and accompanied by chronic low-grade inflammation. Many studies have suggested that the gut microbiota of the host mediates the relationship between high-fat diet consumption and the development of obesity. Diet and nutrition of the body are heavily influenced by gut microbiota. The alterations in the microbiota in the gut may have effects on the homeostasis of the host's energy levels, systemic inflammation, lipid metabolism, and insulin sensitivity. The liver is an important organ for fat metabolism and gut-liver axis play important role in the fat metabolism. Gut-liver axis is a bidirectional relationship between the gut and its microbiota and the liver. As essential plant components, lignans have been shown to have different biological functions. Accumulating evidences have suggested that lignans may have lipid-lowering properties. Lignans can regulate the level of the gut microbiota and their metabolites in the host, thereby affecting signaling pathways related to fat synthesis and metabolism. These signaling pathways can make a difference in inhibiting fat accumulation, accelerating energy metabolism, affecting appetite, and inhibiting chronic inflammation. It will provide the groundwork for future studies on the lipid-lowering impact of lignans and the creation of functional meals based on those findings.
Collapse
Affiliation(s)
- Zhongxing Chu
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P.R. China
| | - Zuomin Hu
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P.R. China
| | - Yi Luo
- Department of Clinic Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, P.R. China
| | - Yaping Zhou
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P.R. China
| | - Feiyan Yang
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P.R. China
| | - Feijun Luo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P.R. China
| |
Collapse
|
31
|
Carvalho ARV, Reis JDE, Gomes PWP, Ferraz AC, Mardegan HA, Menegatto MBDS, Souza Lima RL, de Sarges MRV, Pamplona SDGSR, Jeunon Gontijo KS, de Magalhães JC, da Silva MN, Magalhães CLDB, Silva CYYE. Untargeted-based metabolomics analysis and in vitro/in silico antiviral activity of extracts from Phyllanthus brasiliensis (Aubl.) Poir. PHYTOCHEMICAL ANALYSIS : PCA 2023; 34:869-883. [PMID: 37403427 DOI: 10.1002/pca.3259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 07/06/2023]
Abstract
INTRODUCTION This study describes the molecular profile and the potential antiviral activity of extracts from Phyllanthus brasiliensis, a plant widely found in the Brazilian Amazon. The research aims to shed light on the potential use of this species as a natural antiviral agent. METHODS The extracts were analysed using liquid chromatography-mass spectrometry (LC-MS) system, a potent analytical technique to discover drug candidates. In the meantime, in vitro antiviral assays were performed against Mayaro, Oropouche, Chikungunya, and Zika viruses. In addition, the antiviral activity of annotated compounds was predicted by in silico methods. RESULTS Overall, 44 compounds were annotated in this study. The results revealed that P. brasiliensis has a high content of fatty acids, flavones, flavan-3-ols, and lignans. Furthermore, in vitro assays revealed potent antiviral activity against different arboviruses, especially lignan-rich extracts against Zika virus (ZIKV), as follows: methanolic extract from bark (MEB) [effective concentration for 50% of the cells (EC50 ) = 0.80 μg/mL, selectivity index (SI) = 377.59], methanolic extract from the leaf (MEL) (EC50 = 0.84 μg/mL, SI = 297.62), and hydroalcoholic extract from the leaf (HEL) (EC50 = 1.36 μg/mL, SI = 735.29). These results were supported by interesting in silico prediction, where tuberculatin (a lignan) showed a high antiviral activity score. CONCLUSIONS Phyllanthus brasiliensis extracts contain metabolites that could be a new kick-off point for the discovery of candidates for antiviral drug development, with lignans becoming a promising trend for further virology research.
Collapse
Affiliation(s)
- Alice Rhelly V Carvalho
- Laboratory of Liquid Chromatography, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
- Faculty of Pharmacy, Institute of Health Sciences, Federal University of Pará, Belém, Brazil
| | - José Diogo E Reis
- Laboratory of Liquid Chromatography, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
- Chemistry Post-Graduation Programme, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
| | - Paulo Wender P Gomes
- Collaborative Mass Spectrometry Innovation Centre, University of California San Diego, La Jolla, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Ariane Coelho Ferraz
- Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Horrana A Mardegan
- Laboratory of Liquid Chromatography, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
- Pharmaceutical Sciences Post-Graduation Programme, Institute of Health Sciences, Federal University of Pará, Belém, Brazil
| | - Marília Bueno da Silva Menegatto
- Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Rafaela Lameira Souza Lima
- Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Maria Rosilda V de Sarges
- Laboratory of Liquid Chromatography, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
- Pharmaceutical Sciences Post-Graduation Programme, Institute of Health Sciences, Federal University of Pará, Belém, Brazil
| | - Sônia das G S R Pamplona
- Laboratory of Liquid Chromatography, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
- Chemistry Post-Graduation Programme, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
| | | | - José Carlos de Magalhães
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal de São João del-Rei, São João del Rei, Brazil
| | - Milton N da Silva
- Laboratory of Liquid Chromatography, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
- Chemistry Post-Graduation Programme, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
| | - Cintia Lopes de Brito Magalhães
- Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal de São João del-Rei, São João del Rei, Brazil
- Programa de Pós-Graduação em Biotecnologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Consuelo Yumiko Yoshioka E Silva
- Laboratory of Liquid Chromatography, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
- Faculty of Pharmacy, Institute of Health Sciences, Federal University of Pará, Belém, Brazil
- Pharmaceutical Sciences Post-Graduation Programme, Institute of Health Sciences, Federal University of Pará, Belém, Brazil
| |
Collapse
|
32
|
Kiani HS, Ahmad W, Nawaz S, Farah MA, Ali A. Optimized Extraction of Polyphenols from Unconventional Edible Plants: LC-MS/MS Profiling of Polyphenols, Biological Functions, Molecular Docking, and Pharmacokinetics Study. Molecules 2023; 28:6703. [PMID: 37764478 PMCID: PMC10534510 DOI: 10.3390/molecules28186703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Plant bioactive phenolic metabolites have recently attracted the attention of researchers due to their numerous health advantages. Therefore, this study aimed to investigate with advanced techniques the bioactive metabolites and antioxidant and antidiabetic capacity of four unconventional edible plant leaves: lemongrass (Cymbopogon citratus (DC.) Stapf), chicory (Cichorium intybus L.), moringa (Moringa oleifera Lam.), and ryegrass (Lolium perenne L.). The extraction process was optimized using different solvents. These plants' phenolic composition, identification, and characterization have been determined herein using LCESI-QTOF-MS/MS. This research identified 85 phenolic compounds, including 24 phenolic acids, 31 flavonoids, 7 stilbenes and lignans, and 17 other metabolites. Moreover, the study determined that moringa has the highest total phenolic content (TPC; 18.5 ± 1.01 mg GAE/g), whereas ryegrass has the lowest (3.54 ± 0.08 mg GAE/g) among the selected plants. It seems that, compared to other plants, moringa was found to have the highest antioxidant potential and antidiabetic potential. In addition, twenty-two phenolic compounds were quantified in these chosen edible plants. Rosmarinic acid, chlorogenic acid, chicoric acid, ferulic acid, protocatechuic acid, and caffeic acid were the most abundant phenolic acids. In silico molecular docking was also conducted to investigate the structure-function relationship of phenolic compounds to inhibit the alpha-glucosidase. Finally, the simulated pharmacokinetic characteristics of the most common substances were also predicted. In short, this investigation opens the way for further study into these plants' pharmaceutical and dietary potential.
Collapse
Affiliation(s)
| | - Waheed Ahmad
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Sana Nawaz
- Department of Nutritional Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Mohammad Abul Farah
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Akhtar Ali
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
33
|
Abdelmohsen UR, Bayoumi SAL, Mohamed NM, Mostafa YA, Ngwa CJ, Pradel G, Farag SF. Naturally occurring phenylethanoids and phenylpropanoids: antimalarial potential. RSC Adv 2023; 13:26804-26811. [PMID: 37692342 PMCID: PMC10483269 DOI: 10.1039/d3ra04242a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/27/2023] [Indexed: 09/12/2023] Open
Abstract
Malaria as an infectious disease is one of the world's most dangerous parasitic diseases. There is an urgent need for the development of new antimalarial drugs. Natural products are a very rich source of new bioactive compounds. Our research aims to shed light on the recent studies which demonstrated the antimalarial potential of phenylpropanoids as a major natural-products class. This study involves an in silico analysis of naturally-occurring phenylpropanoids and phenylethanoids which showed 25 compounds with moderate to strong binding affinity to various amino acid residues lining the active site; P. falciparum kinase (PfPK5), P. falciparum cytochrome bc1 complex (cyt bc1), and P. falciparum lysyl-tRNA synthetase (PfKRS1); of Plasmodium falciparum parasite, a unicellular protozoan which causes the most severe and life-threatening malaria. Furthermore, the study was augmented by the assessment of antiplasmodial activity of glandularin, a naturally occurring dibenzylbutyrolactolic lignan, against chloroquine-sensitive 3D7 strain of P. falciparum using SYBR green I-based fluorescence assay, which showed high antimalarial activity with IC50 value of 11.2 μM after 24 hours of incubation. Our results highlight phenylpropanoids and glandularin in particular as a promising chemical lead for development of antimalarial drugs.
Collapse
Affiliation(s)
- Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University Minia 61519 Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University 7 Universities Zone 61111 New Minia City Egypt
| | - Soad A L Bayoumi
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt
| | - Nesma M Mohamed
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Assiut Assiut 77771 Egypt
| | - Yaser A Mostafa
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University 71526 Assiut Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Badr University in Assiut Assiut 77771 Egypt
| | - Che J Ngwa
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University 52074 Aachen Germany
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University 52074 Aachen Germany
| | - Salwa F Farag
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt
- Department of Pharmacognosy, College of Pharmacy, Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| |
Collapse
|
34
|
Chandrasekaran V, Hediyal TA, Anand N, Kendaganna PH, Gorantla VR, Mahalakshmi AM, Ghanekar RK, Yang J, Sakharkar MK, Chidambaram SB. Polyphenols, Autophagy and Neurodegenerative Diseases: A Review. Biomolecules 2023; 13:1196. [PMID: 37627261 PMCID: PMC10452370 DOI: 10.3390/biom13081196] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Polyphenols are secondary metabolites from plant origin and are shown to possess a wide range of therapeutic benefits. They are also reported as regulators of autophagy, inflammation and neurodegeneration. The autophagy pathway is vital in degrading outdated organelles, proteins and other cellular wastes. The dysregulation of autophagy causes proteinopathies, mitochondrial dysfunction and neuroinflammation thereby contributing to neurodegeneration. Evidence reveals that polyphenols improve autophagy by clearing misfolded proteins in the neurons, suppress neuroinflammation and oxidative stress and also protect from neurodegeneration. This review is an attempt to summarize the mechanism of action of polyphenols in modulating autophagy and their involvement in pathways such as mTOR, AMPK, SIRT-1 and ERK. It is evident that polyphenols cause an increase in the levels of autophagic proteins such as beclin-1, microtubule-associated protein light chain (LC3 I and II), sirtuin 1 (SIRT1), etc. Although it is apparent that polyphenols regulate autophagy, the exact interaction of polyphenols with autophagy markers is not known. These data require further research and will be beneficial in supporting polyphenol supplementation as a potential alternative treatment for regulating autophagy in neurodegenerative diseases.
Collapse
Affiliation(s)
- Vichitra Chandrasekaran
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India; (V.C.); (T.A.H.); (A.M.M.)
- Center for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education and Research, Mysuru 570015, India;
| | - Tousif Ahmed Hediyal
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India; (V.C.); (T.A.H.); (A.M.M.)
- Center for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education and Research, Mysuru 570015, India;
| | - Nikhilesh Anand
- Department of Pharmacology, College of Medicine, American University of Antigua, Saint John’s P.O. Box W-1451, Antigua and Barbuda;
| | - Pavan Heggadadevanakote Kendaganna
- Center for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education and Research, Mysuru 570015, India;
| | | | - Arehally M. Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India; (V.C.); (T.A.H.); (A.M.M.)
- Center for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education and Research, Mysuru 570015, India;
| | - Ruchika Kaul Ghanekar
- Symbiosis Centre for Research and Innovation (SCRI), Symbiosis International (Deemed University), Pune 412115, India;
| | - Jian Yang
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
| | - Meena Kishore Sakharkar
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India; (V.C.); (T.A.H.); (A.M.M.)
- Center for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education and Research, Mysuru 570015, India;
| |
Collapse
|
35
|
Bravo-Arrepol G, Becerra J, Ortiz L, Cabrera-Pardo J, Schmidt B, Heydenreich M, Kelling A, Sperlich E, Karpiński TM, Paz C. Bromination of eudesmin isolated from araucaria araucana induces epimerization and give bromine derivatives with loss of anti-Candida activity. Nat Prod Res 2023; 37:2466-2471. [PMID: 35707900 DOI: 10.1080/14786419.2022.2089140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 10/18/2022]
Abstract
Furofuran lignanes show important biological activities for the treatment of infectious diseases, inflammatory and metabolic pathologies. They have been isolated from leaves and barks of many plants. In Chile the native conifer Araucaria araucana produces eudesmin, matairesinol, secoisolariciresinol and lariciresinol in stemwood, branchwood and knotwood. These compounds were previously isolated by laborious flash chromatography on silica gel. Here we report the easy isolation of eudesmin by soxhlet extraction from milled knots of Araucaria araucana with hexane, followed by cryo-crystallization at -20 °C. Upon bromination of the isolated eudesmin epimerization at one benzylic position occurs, giving epieudesmin and the corresponding mono and di-brominated derivatives. The structures were determined by 1D, 2D NMR and X-ray diffraction. The analysis of products against Candida yeast showed that eudesmin has a moderate activity against different strains of Candida from 62.5 to 500 µg/mL. This activity decreases for epieudesmin, while bromine derivatives are not active.
Collapse
Affiliation(s)
- Gastón Bravo-Arrepol
- Laboratorio de Química de Productos Naturales, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - José Becerra
- Laboratorio de Química de Productos Naturales, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Leandro Ortiz
- Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Jaime Cabrera-Pardo
- Laboratorio de Química Aplicada y Sustentable, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica, Chile
| | - Bernd Schmidt
- Institut für Chemie, Universität Potsdam, Potsdam, Germany
| | | | | | - Eric Sperlich
- Institut für Chemie, Universität Potsdam, Potsdam, Germany
| | - Tomasz M Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Poznań, Poland
| | - Cristian Paz
- Laboratory of Natural Products & Drug Discovery, Centre CEBIM, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
36
|
Hedayati N, Yaghoobi A, Salami M, Gholinezhad Y, Aghadavood F, Eshraghi R, Aarabi MH, Homayoonfal M, Asemi Z, Mirzaei H, Hajijafari M, Mafi A, Rezaee M. Impact of polyphenols on heart failure and cardiac hypertrophy: clinical effects and molecular mechanisms. Front Cardiovasc Med 2023; 10:1174816. [PMID: 37293283 PMCID: PMC10244790 DOI: 10.3389/fcvm.2023.1174816] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/02/2023] [Indexed: 06/10/2023] Open
Abstract
Polyphenols are abundant in regular diets and possess antioxidant, anti-inflammatory, anti-cancer, neuroprotective, and cardioprotective effects. Regarding the inadequacy of the current treatments in preventing cardiac remodeling following cardiovascular diseases, attention has been focused on improving cardiac function with potential alternatives such as polyphenols. The following online databases were searched for relevant orginial published from 2000 to 2023: EMBASE, MEDLINE, and Web of Science databases. The search strategy aimed to assess the effects of polyphenols on heart failure and keywords were "heart failure" and "polyphenols" and "cardiac hypertrophy" and "molecular mechanisms". Our results indicated polyphenols are repeatedly indicated to regulate various heart failure-related vital molecules and signaling pathways, such as inactivating fibrotic and hypertrophic factors, preventing mitochondrial dysfunction and free radical production, the underlying causes of apoptosis, and also improving lipid profile and cellular metabolism. In the current study, we aimed to review the most recent literature and investigations on the underlying mechanism of actions of different polyphenols subclasses in cardiac hypertrophy and heart failure to provide deep insight into novel mechanistic treatments and direct future studies in this context. Moreover, due to polyphenols' low bioavailability from conventional oral and intravenous administration routes, in this study, we have also investigated the currently accessible nano-drug delivery methods to optimize the treatment outcomes by providing sufficient drug delivery, targeted therapy, and less off-target effects, as desired by precision medicine standards.
Collapse
Affiliation(s)
- Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Alireza Yaghoobi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marziyeh Salami
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Yasaman Gholinezhad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farnaz Aghadavood
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Eshraghi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad-Hossein Aarabi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Hajijafari
- Department of Anesthesiology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Malihe Rezaee
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Kato LS, Lelis CA, da Silva BD, Galvan D, Conte-Junior CA. Micro- and nanoencapsulation of natural phytochemicals: Challenges and recent perspectives for the food and nutraceuticals industry applications. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 104:77-137. [PMID: 37236735 DOI: 10.1016/bs.afnr.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Worldwide, there has been growing interest in the research, development, and commercialization of functional bioactive components and nutraceuticals. As a result of consumer awareness of the relationship between diet, health, and disease, the consumption of plant-derived bioactive components has recently increased in the past two decades. Phytochemicals are bioactive nutrient plant chemicals in fruits, vegetables, grains, and other plant foods that may provide desirable health benefits beyond essential nutrition. They may reduce the risk of major chronic diseases, cardiovascular diseases, cancer, osteoporosis, diabetes, high blood pressure, and psychotic diseases and have antioxidant, antimicrobial, and antifungal properties, cholesterol-lowering, antithrombotic, or anti-inflammatory effects. Phytochemicals have been recently studied and explored for various purposes, such as pharmaceuticals, agrochemicals, flavors, fragrances, coloring agents, biopesticides, and food additives. These compounds are known as secondary metabolites and are commonly classified as polyphenols, terpenoids (terpenes), tocotrienols and tocopherols, carotenoids, alkaloids and other nitrogen-containing metabolites, stilbenes and lignans, phenolic acids, and glucosinates. Thus, this chapter aims to define the general chemistry, classification, and essential sources of phytochemicals, as well as describe the potential application of phytochemicals in the food and nutraceuticals industry, explaining the main properties of interest of the different compounds. Finally, the leading technologies involving micro and nanoencapsulation of phytochemicals are extensively detailed to protect them against degradation and enhance their solubility, bioavailability, and better applicability in the pharmaceutical, food, and nutraceutical industry. The main challenges and perspectives are detailed.
Collapse
Affiliation(s)
- Lilian Seiko Kato
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, UFRJ, Cidade Universitária, Rio de Janeiro, RJ, Brazil; Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), UFRJ, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Carini Aparecida Lelis
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, UFRJ, Cidade Universitária, Rio de Janeiro, RJ, Brazil; Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), UFRJ, Cidade Universitária, Rio de Janeiro, RJ, Brazil; Graduate Program in Chemistry (PGQu), IQ, UFRJ, Cidade Universitária, Rio de Janeiro, RJ, Brazil; Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Bruno Dutra da Silva
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, UFRJ, Cidade Universitária, Rio de Janeiro, RJ, Brazil; Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), UFRJ, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Diego Galvan
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, UFRJ, Cidade Universitária, Rio de Janeiro, RJ, Brazil; Graduate Program in Chemistry (PGQu), IQ, UFRJ, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, UFRJ, Cidade Universitária, Rio de Janeiro, RJ, Brazil; Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), UFRJ, Cidade Universitária, Rio de Janeiro, RJ, Brazil; Graduate Program in Chemistry (PGQu), IQ, UFRJ, Cidade Universitária, Rio de Janeiro, RJ, Brazil; Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil; Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói, RJ, Brazil; Residue Analysis Laboratory (LAB RES), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
38
|
Zare S, Mirlohi A, Sabzalian MR, Saeidi G, Koçak MZ, Hano C. Water Stress and Seed Color Interacting to Impact Seed and Oil Yield, Protein, Mucilage, and Secoisolariciresinol Diglucoside Content in Cultivated Flax ( Linum usitatissimum L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:1632. [PMID: 37111857 PMCID: PMC10141971 DOI: 10.3390/plants12081632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
Flaxseed (Linum usitatissimum L.) is a plant with a wide range of medicinal, health, nutritional, and industrial uses. This study assessed the genetic potential of yellow and brown seeds in thirty F4 families under different water conditions concerning seed yield, oil, protein, fiber, mucilage, and lignans content. Water stress negatively affected seed and oil yield, while it positively affected mucilage, protein, lignans, and fiber content. The total mean comparison showed that under normal moisture conditions, seed yield (209.87 g/m2) and most quality traits, including oil (30.97%), secoisolariciresinol diglucoside (13.89 mg/g), amino acids such as arginine (1.17%) and histidine (1.95%), and mucilage (9.57 g/100 g) were higher in yellow-seeded genotypes than the brown ones ((188.78 g/m2), (30.10%), (11.66 mg/g), (0.62%), (1.87%), and (9.35 g/100 g), respectively). Under water stress conditions, brown-seeded genotypes had a higher amount of fiber (16.74%), seed yield (140.04 g/m2), protein (239.02 mg. g-1), methionine (5.04%), and secondary metabolites such as secoisolariciresinol diglucoside (17.09 mg/g), while their amounts in families with yellow seeds were 14.79%, 117.33 g/m2, 217.12 mg. g-1, 4.34%, and 13.98 mg/g, respectively. Based on the intended food goals, different seed color genotypes may be appropriate for cultivation under different moisture environments.
Collapse
Affiliation(s)
- Sara Zare
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan 84156 83111, Iran
| | - Aghafakhr Mirlohi
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan 84156 83111, Iran
| | - Mohammad R. Sabzalian
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan 84156 83111, Iran
| | - Ghodratollah Saeidi
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan 84156 83111, Iran
| | - Mehmet Zeki Koçak
- Department of Herbal and Animal Production, Vocational School of Technical Sciences, Igdir University, 76000 Igdir, Turkey
| | - Christophe Hano
- Department of Chemical Biology, Eure & Loir Campus, University of Orleans, 28000 Chartres, France
| |
Collapse
|
39
|
Fontana R, Caproni A, Sicurella M, Manfredini S, Baldisserotto A, Marconi P. Effects of Flavonoids and Phenols from Moringa oleifera Leaf Extracts on Biofilm Processes in Xanthomonas campestris pv. campestris. PLANTS (BASEL, SWITZERLAND) 2023; 12:1508. [PMID: 37050135 PMCID: PMC10096499 DOI: 10.3390/plants12071508] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Xanthomonas campestris pv. campestris is the causal agent of black rot in crucifers, a plant disease with significant economic impact. Xanthomonadaceae is a large family of Gram-negative bacteria that cause symptoms by blocking water flow in plants by invading the xylem. To accomplish this, the main mechanism the bacteria use to adapt to environmental changes and colonize tissues is biofilm formation. In recent years, growing interest in natural antimicrobial compounds has led to the study of different phytocomplexes derived from plants. In this work, Moringa oleifera was selected, as its leaves are rich in phenols, essential oils, and vitamins that exert antibacterial activity. X. campestris pv. campestris biofilm, one of its major virulence factors, was studied. Biofilm formation and removal were analyzed on abiotic and biotic surfaces with and without M. oleifera leaf extracts. The data from the analysis show that Moringa oleifera leaf extracts and single phenols were able to inhibit biofilm growth on abiotic surfaces, but the activity of the whole phytocomplex was significantly higher compared to that of individual phenols. The effect of Moringa oleifera extracts on cabbage leaves in vivo was also found to be very important, as scanning electron microscopy showed that treatment with the extracts led to clear unblocking of the xylem, implying many advantages for use in black rot control.
Collapse
Affiliation(s)
- Riccardo Fontana
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Anna Caproni
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Mariaconcetta Sicurella
- Department of Environmental Sciences and Prevention, University of Ferrara, 441211 Ferrara, Italy
| | - Stefano Manfredini
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Anna Baldisserotto
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Peggy Marconi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
- Technopole of Ferrara, LTTA Laboratory for Advanced Therapies, Ferrara 44121, Italy
| |
Collapse
|
40
|
Lignans from the genus Piper L. and their pharmacological activities: An updated review. Fitoterapia 2023; 165:105403. [PMID: 36577457 DOI: 10.1016/j.fitote.2022.105403] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/26/2022]
Abstract
The genus Piper, a member of the Piperaceae family, comprises >2000 species, of which many are well known to possess considerable economic and medicinal values. Lignans are essential ingredients and are rich in Piper plants. Although many phytochemical studies have reported many lignans identified from Piper plants, comprehensive research has not reviewed these compounds. Hence, the present review reports on natural lignans from the genus Piper and their pharmacological activities. At least 275 lignans have been discovered from the Piper genus until October 2022, including traditional lignans, neolignans, oxyneolignans, norlignans, secolignans, and polyneolignans, especially some neolignans and norlignans with novel and complex scaffolds. In addition, these lignans have been reported to show various pharmacological activities, such as antimicrobial, anti-inflammatory, neuroprotective, antioxidative, anti-platelet aggregation, cytotoxic, anti-parasitic, CYP3A4 inhibitory activities, and so on. The current work presents an up-to-date critical review and a systematic summary of publications on lignans from the genus Piper to lay the groundwork and show better insights for further investigations.
Collapse
|
41
|
Koech PK, Jócsák G, Boldizsár I, Moldován K, Borbély S, Világi I, Dobolyi A, Varró P. Anti-glutamatergic Effects of Three Lignan Compounds: Arctigenin, Matairesinol and Trachelogenin - An ex vivo Study on Rat Brain Slices. PLANTA MEDICA 2023. [PMID: 36592636 DOI: 10.1055/a-2005-5497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Arctigenin is a bioactive dibenzylbutyrolactone-type lignan exhibiting various pharmacological activities. The neuroprotective effects of arctigenin were demonstrated to be mediated via inhibition of AMPA and KA type glutamate receptors in the somatosensory cortex of the rat brain. The aim of this study was to compare the effects of arctigenin with matairesinol and trachelogenin on synaptic activity in ex vivo rat brain slices. Arctigenin, matairesinol and trachelogenin were isolated from Arctium lappa, Centaurea scabiosa and Cirsium arvense, respectively, and applied on brain slices via perfusion medium at the concentration range of 0.5 - 40 µM. The effects of the lignans were examined in the CA1 hippocampus and the somatosensory cortex by recording electrically evoked field potentials. Arctigenin and trachelogenin caused a significant dose-dependent decrease in the amplitude of hippocampal population spikes (POPS) and the slope of excitatory postsynaptic potentials (EPSPs), whereas matairesinol (1 µM and 10 µM) decreased EPSP slope but had no effect on POPS amplitude. Trachelogenin effect (0.5 µM, 10 µM, 20 µM) was comparable to arctigenin (1 µM, 20 µM, 40 µM) (p > 0.05). In the neocortex, arctigenin (10 µM, 20 µM) and trachelogenin (10 µM) significantly decreased the amplitude of evoked potential early component, while matairesinol (1 µM and 10 µM) had no significant effect (p > 0.05). The results suggest that trachelogenin and arctigenin act via inhibition of AMPA and KA receptors in the brain and trachelogenin has a higher potency than arctigenin. Thus, trachelogenin and arctigenin could serve as lead compounds in the development of neuroprotective drugs.
Collapse
Affiliation(s)
- Peter Kiplangʼat Koech
- Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Gergely Jócsák
- Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Imre Boldizsár
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
- Department of Pharmacognosy, Semmelweis University, Budapest, Hungary
| | - Kinga Moldován
- Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Sándor Borbély
- Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
- Neuronal Network and Behavior Research Group, Institute of Experimental Medicine, ELKH, Budapest, Hungary
| | - Ildikó Világi
- Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Arpád Dobolyi
- Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University and the Hungarian Academy of Sciences, Budapest, Hungary
| | - Petra Varró
- Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
42
|
Ban Y, Wang Y, Qiao L, Zhang C, Wang H, He X, Jia D, Zheng C. Total lignans from Vitex negundo seeds attenuate osteoarthritis and their main component vitedoin A alleviates osteoclast differentiation by suppressing ERK/NFATc1 signaling. Phytother Res 2023; 37:1422-1434. [PMID: 36737044 DOI: 10.1002/ptr.7750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/10/2023] [Accepted: 01/20/2023] [Indexed: 02/05/2023]
Abstract
The seeds of Vitex negundo have been used for inflammation-related disease treatment in traditional medicine. This study focused on the anti-osteoarthritis (OA) effects of the total lignans of V. negundo seeds (TOV) in monosodium iodoacetate-induced osteoarthritis rats and its pharmacokinetic properties, as well as the effects and potential mechanism of its main components VN1 (6-hydroxy-4-(4-hydroxy-3-methoxy-phenyl)-3-hydro-xymethyl-7-methoxy-3,4-dihydro-2-naphthaldehydeb) and VN2 (vitedoin A) on receptor activator of NF-κB ligand (RANKL)-induced osteoclast differentiation in bone marrow macrophages (BMMs). TOV significantly attenuated osteoarthritis, leading to an increase in pain thresholds, improvement of knee articular cartilages and chondrocytes loss, and decreased total joint scores and serum levels of TNF-α, interleukin-1β (IL-1β), and prostaglandin E2 (PGE2) in osteoarthritis rats. The half-time (T1/2 ) was 2.82 h and 1.33 h, and the bioavailability was 15.34%-21.89% and 16.29%-22.11%, for VN1 and VN2, respectively. VN2, rather than VN1, remarkably inhibited tartrate-resistant acid phosphatase (TRAP) activity, reduced the number of TRAP-positive multinuclear cells, diminished the formation of actin ring, and decreased mRNA levels of cathepsin K (CTSK), TRAP, nuclear factor of activated T cell 1 (NFATc1), and osteoclast-associated receptor, as well as downregulated protein levels of p-ERK (phosphorylated extracellular signal-regulated kinase), TRAP, CTSK and NFATc1 in BMMs. These findings suggest TOV has promising therapeutic potential for OA treatment and VN2, in particular, attenuates osteoclast differentiation by suppressing ERK/NFATc1 signaling and actin ring, mainly accounting for the anti-OA efficacy of TOV.
Collapse
Affiliation(s)
- Yanfei Ban
- Faculty of Pharmacy, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Yang Wang
- Zhejiang Int'lmedicine Co., Ltd., Hangzhou, China
| | | | - Chengzhong Zhang
- Faculty of Pharmacy, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Hongrui Wang
- Faculty of Pharmacy, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Xuhui He
- Faculty of Pharmacy, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Dan Jia
- Faculty of Pharmacy, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Chengjian Zheng
- Faculty of Pharmacy, Second Military Medical University/Naval Medical University, Shanghai, China
| |
Collapse
|
43
|
Motyka S, Jafernik K, Ekiert H, Sharifi-Rad J, Calina D, Al-Omari B, Szopa A, Cho WC. Podophyllotoxin and its derivatives: Potential anticancer agents of natural origin in cancer chemotherapy. Biomed Pharmacother 2023; 158:114145. [PMID: 36586242 DOI: 10.1016/j.biopha.2022.114145] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
The use of plant secondary metabolites has gained considerable attention among clinicians in the prevention and treatment of cancer. A secondary metabolite isolated mainly from the roots and rhizomes of Podophyllum species (Berberidaceae) is aryltetralin lignan - podophyllotoxin (PTOX). The purpose of this review is to discuss the therapeutic properties of PTOX as an important anticancer compound of natural origin. The relevant information regarding the antitumor mechanisms of podophyllotoxin and its derivatives were collected and analyzed from scientific databases. The results of the analysis showed PTOX exhibits potent cytotoxic activity; however, it cannot be used in its pure form due to its toxicity and generation of many side effects. Therefore, it practically remains clinically unusable. Currently, high effort is focused on attempts to synthesize analogs of PTOX that have better properties for therapeutic use e.g. etoposide (VP-16), teniposide, etopophos. PTOX derivatives are used as anticancer drugs which are showing additional immunosuppressive, antiviral, antioxidant, hypolipemic, and anti-inflammatory effects. In this review, attention is paid to the high potential of the usefulness of in vitro cultures of P. peltatum which can be a valuable source of lignans, including PTOX. In conclusion, the preclinical pharmacological studies in vitro and in vivo confirm the anticancer and chemotherapeutic potential of PTOX and its derivatives. In the future, clinical studies on human subjects are needed to certify the antitumor effects and the anticancer mechanisms to be certified and analyzed in more detail and to validate the experimental pharmacological preclinical studies.
Collapse
Affiliation(s)
- Sara Motyka
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, ul. Medyczna 9, 30-688 Kraków, Poland; Doctoral School of Medical and Health Sciences, Medical College, Jagiellonian University, ul. Łazarza 16, 31-530 Kraków, Poland.
| | - Karolina Jafernik
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, ul. Medyczna 9, 30-688 Kraków, Poland.
| | - Halina Ekiert
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, ul. Medyczna 9, 30-688 Kraków, Poland.
| | | | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
| | - Basem Al-Omari
- Department of Epidemiology and Population Health, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates.
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, ul. Medyczna 9, 30-688 Kraków, Poland.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong.
| |
Collapse
|
44
|
Mahboob A, Senevirathne DKL, Paul P, Nabi F, Khan RH, Chaari A. An investigation into the potential action of polyphenols against human Islet Amyloid Polypeptide aggregation in type 2 diabetes. Int J Biol Macromol 2023; 225:318-350. [PMID: 36400215 DOI: 10.1016/j.ijbiomac.2022.11.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/24/2022] [Accepted: 11/04/2022] [Indexed: 11/17/2022]
Abstract
Type 2 diabetes (T2D), a chronic metabolic disease characterized by hyperglycemia, results in significant disease burden and financial costs globally. Whilst the majority of T2D cases seem to have a genetic basis, non-genetic modifiable and non-modifiable risk factors for T2D include obesity, diet, physical activity and lifestyle, smoking, age, ethnicity, and mental stress. In healthy individuals, insulin secretion from pancreatic islet β-cells is responsible for keeping blood glucose levels within normal ranges. T2D patients suffer from multifactorial onset of β-cell dysfunction and/or loss of β-cell mass owing to reactive oxygen species (ROS) production, mitochondrial dysfunction, autophagy, and endoplasmic reticulum (ER) stress. Most predominantly however, and the focus of this review, it is the aggregation and misfolding of human Islet Amyloid Polypeptide (hIAPP, also known as amylin), which is detrimental to β-cell function and health. Whilst hIAPP is found in healthy individuals, its misfolded version is cytotoxic and able to induce β-cell dysfunction and/or death through various mechanisms including membrane changes in β-cell causing influx of calcium ions, arresting complete granule membrane recovery and ER stress. There are several existing therapeutics for T2D. However, there is a need for alternative or adjunct therapies for T2D with milder adverse effects and greater availability. Foremost among the potential natural therapeutics are polyphenols. Extensive data from studies evaluating the potential of polyphenols to inhibit hIAPP aggregation and disassemble aggregated hIAPP are promising. Moreover, in-vivo, and in-silico studies also highlight the potential effects of polyphenols against hIAPP aggregation and mitigation of larger pathological effects of T2D. Whilst there have been some promising clinical studies on the therapeutic potential of polyphenols, extensive further clinical studies and in-vitro studies evaluating the mechanisms of action and ideal doses for many of these compounds are required. The need for these studies is made more important by the postulated link between Alzheimer's disease (AD) and T2D pathophysiology given the similar aggregation process of their respective amyloid proteins, which evokes thoughts of cross-reactive polyphenols which can be effective for both AD and T2D patients.
Collapse
Affiliation(s)
- Anns Mahboob
- Premedical Division Weill Cornell Medicine Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | | | - Pradipta Paul
- Weill Cornell Medicine Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | - Faisal Nabi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202001, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202001, India
| | - Ali Chaari
- Premedical Division Weill Cornell Medicine Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar.
| |
Collapse
|
45
|
A new host-targeted antiviral cyclolignan (SAU-22.107) for Dengue Virus infection in cell cultures. Potential action mechanisms based on cell imaging. Virus Res 2023; 323:198995. [PMID: 36336130 DOI: 10.1016/j.virusres.2022.198995] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Dengue virus (DENV) infection is the most arbovirosis in the world. However, medications have not been approved for its treatment. Drug discovery based on the host-targeted antiviral (HTA) constitutes a new promising strategy, considering their high genetic barrier to resistance and the low probability of selecting drug resistance strains. In this study, we have tested fifty-seven podophyllotoxin-related cyclolignans on DENV-2 infected cells and found the most promising compound was S.71. Using cellular and molecular biology experiments, we have discovered that the new lignan altered the distribution of microtubules, induced changes in cell morphology, and caused retraction of the rough endoplasmic reticulum. In addition, the compound alters the viral envelope protein and the double-stranded RNA, while there is a decrease in negative-strand RNA synthesis; especially when the compound was added between 6- and 12-hours post-infection. Altogether, S.71 decreases the viral yield through an HTA-related mechanism of action, possibly altering the DENV genome replication and/or polyprotein translation, through the alteration of microtubule distribution and endoplasmic reticulum deterioration. Finally, pharmacokinetic predictors show that S.71 falls within the standard ranges established for drugs.
Collapse
|
46
|
Gao J, Yang Z, Zhao C, Tang X, Jiang Q, Yin Y. A comprehensive review on natural phenolic compounds as alternatives to in-feed antibiotics. SCIENCE CHINA. LIFE SCIENCES 2022:10.1007/s11427-022-2246-4. [PMID: 36586071 DOI: 10.1007/s11427-022-2246-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/17/2022] [Indexed: 01/01/2023]
Abstract
Intensive livestock and poultry farming in China largely relied on the use of in-feed antibiotics until July 2020. The consequences of antibiotic overuse in animal feed include accumulation in animal products and the development of bacterial antibiotic resistance, both of which threaten food safety and human health. China has now completely banned the circulation of commercial feed containing growth-promoting drug additives (except Chinese herbal medicine). Therefore, alternatives to in-feed antibiotics in animal production are greatly needed. Natural phenolic compounds (NPCs) exist widely in plants and are non-toxic, non-polluting, highly reproducible, and leave little residue. Many natural flavonoids, phenolic acids, lignans, and stilbenes have polyphenol chemical structures and exhibit great potential as alternatives to antibiotics. In this review we delineate the characteristics of plant-derived NPCs and summarize their current applications as alternatives to in-feed antibiotics, aiming to provide new strategies for antibiotic-free feeding and promote the development of more sustainable animal husbandry practices.
Collapse
Affiliation(s)
- Jingxia Gao
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.,Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Zhe Yang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Chongqi Zhao
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Xiongzhuo Tang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Qian Jiang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China. .,Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| | - Yulong Yin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China. .,Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| |
Collapse
|
47
|
Lopes SM, de Medeiros HIR, Scotti MT, Scotti L. Natural Products Against COVID-19 Inflammation: A Mini-Review. Comb Chem High Throughput Screen 2022; 25:2358-2369. [PMID: 35088662 DOI: 10.2174/1386207325666220128114547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/03/2021] [Accepted: 11/18/2021] [Indexed: 01/27/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) is a virus whose genetic material is positive single-stranded RNA, being responsible for coronavirus disease 2019 (COVID- 19), an infection that compromises the lungs and consequently the respiratory capacity of the infected individual, according to the WHO in November 2021, 249,743,428 cases were confirmed, of which 5,047,652 individuals died due to complications resulting from the infection caused by SARSCOV- 2. As the infection progresses, the individual may experience loss of smell and taste, as well as breathing difficulties, severe respiratory failure, multiple organ failure, and death. Due to this new epidemiological agent in March 2020 it was announced by the director general of the World Health Organization (WHO) a pandemic status, and with that, many research groups are looking for new therapeutic alternatives through synthetic and natural bioactives. This research is a literature review of some in silico studies involving natural products against COVID-19 inflammation published in 2020 and 2021. Work like this presents relevant information to the scientific community, boosting future research and encouraging the use of natural products for the search for new antivirals against COVID-19.
Collapse
Affiliation(s)
- Simone Mendes Lopes
- Postgraduate Program in Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa Pb, Brazil
| | - Herbert Igor Rodrigues de Medeiros
- Postgraduate Program in Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa Pb, Brazil
| | - Marcus Tullius Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa Pb, Brazil
| | - Luciana Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa Pb, Brazil.,Lauro Wanderley University Hospital (HULW), Health Sciences Center, Federal University of Paraíba, João Pessoa Pb, Brazil
| |
Collapse
|
48
|
de Matos PH, da Silva TP, Mansano AB, Gancedo NC, Tonin FS, Pelloso FC, Petruco MV, de Melo EB, Fernandez-Llimos F, Sanches ACC, de Mello JCP, Chierrito D, de Medeiros Araújo DC. Bioactive compounds as potential angiotensin-converting enzyme II inhibitors against COVID-19: a scoping review. Inflamm Res 2022; 71:1489-1500. [PMID: 36307652 PMCID: PMC9616414 DOI: 10.1007/s00011-022-01642-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/29/2022] [Accepted: 09/10/2022] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE AND DESIGN The current study aimed to summarize the evidence of compounds contained in plant species with the ability to block the angiotensin-converting enzyme 2 (ACE-II), through a scoping review. METHODS PubMed and Scopus electronic databases were used for the systematic search and a manual search was performed RESULTS: Studies included were characterized as in silico. Among the 200 studies retrieved, 139 studies listed after the exclusion of duplicates and 74 were included for the full read. Among them, 32 studies were considered eligible for the qualitative synthesis. The most evaluated class of secondary metabolites was flavonoids with quercetin and curcumin as most actives substances and terpenes (isothymol, limonin, curcumenol, anabsinthin, and artemisinin). Other classes that were also evaluated were alkaloid, saponin, quinone, substances found in essential oils, and primary metabolites as the aminoacid L-tyrosine and the lipidic compound 2-monolinolenin. CONCLUSION This review suggests the most active substance from each class of metabolites, which presented the strongest affinity to the ACE-II receptor, what contributes as a basis for choosing compounds and directing the further experimental and clinical investigation on the applications these compounds in biotechnological and health processes as in COVID-19 pandemic.
Collapse
Affiliation(s)
- Pedro Henrique de Matos
- Centro Universitário Ingá-UNINGÁ, Rodovia PR 317, 6114. Parque Industrial, 200, Maringá,, PR, 87035-510, Brazil
| | - Thalita Prates da Silva
- Departamento de Farmácia, Universidade Estadual de Maringá, Avenida Colombo, Maringá, 5790, Brazil
| | - Amanda Benites Mansano
- Departamento de Farmácia, Universidade Estadual de Maringá, Avenida Colombo, Maringá, 5790, Brazil
| | - Naiara Cássia Gancedo
- Departamento de Farmácia, Universidade Estadual de Maringá, Avenida Colombo, Maringá, 5790, Brazil
| | - Fernanda Stumpf Tonin
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Avenida Prefeito Lothário Meissner 632, Curitiba, Brazil
- H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - Fernando Castilho Pelloso
- Complexo Hospital de Clínicas, Universidade Federal Do Paraná, Rua General Carneiro, Curitiba, 181, Brazil
| | | | - Eduardo Borges de Melo
- Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Rua Universitário 2069, Cascavel, Brazil
| | - Fernando Fernandez-Llimos
- Departamento de Ciências do Medicamento, Universidade do Porto, Praça Gomes Teixeira, Porto, Portugal
| | | | | | - Danielly Chierrito
- Centro Universitário Ingá-UNINGÁ, Rodovia PR 317, 6114. Parque Industrial, 200, Maringá,, PR, 87035-510, Brazil
| | | |
Collapse
|
49
|
Arifian H, Maharani R, Megantara S, Gazzali AM, Muchtaridi M. Amino-Acid-Conjugated Natural Compounds: Aims, Designs and Results. Molecules 2022; 27:molecules27217631. [PMID: 36364457 PMCID: PMC9654077 DOI: 10.3390/molecules27217631] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Protein is one of the essential macronutrients required by all living things. The breakdown of protein produces monomers known as amino acids. The concept of conjugating natural compounds with amino acids for therapeutic applications emerged from the fact that amino acids are important building blocks of life and are abundantly available; thus, a greater shift can result in structural modification, since amino acids contain a variety of sidechains. This review discusses the data available on amino acid–natural compound conjugates that were reported with respect to their backgrounds, the synthetic approach and their bioactivity. Several amino acid–natural compound conjugates have shown enhanced pharmacokinetic characteristics, including absorption and distribution properties, reduced toxicity and increased physiological effects. This approach could offer a potentially effective system of drug discovery that can enable the development of pharmacologically active and pharmacokinetically acceptable molecules.
Collapse
Affiliation(s)
- Hanggara Arifian
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Department of Pharmacochemistry, Faculty of Pharmacy, Universitas Mulawarman, Samarinda 75119, Indonesia
| | - Rani Maharani
- Research Collaboration Centre for Theranostic Radiopharmaceuticals, National Research and Innovation Agency (BRIN), Jakarta 10340, Indonesia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Sandra Megantara
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Research Collaboration Centre for Theranostic Radiopharmaceuticals, National Research and Innovation Agency (BRIN), Jakarta 10340, Indonesia
| | - Amirah Mohd Gazzali
- School of Pharmaceutical Sciences, Universiti Saisn Malaysia, Penang 11800, Malaysia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Research Collaboration Centre for Theranostic Radiopharmaceuticals, National Research and Innovation Agency (BRIN), Jakarta 10340, Indonesia
- Correspondence:
| |
Collapse
|
50
|
Wei H, Liu M, Ke K, Xiao S, Huang L, He Q, Mo C, Pang H, Xiao G, Li P, Yu Q. Study on aptamer based high throughput approach identifies natural ingredients against RGNNV. JOURNAL OF FISH DISEASES 2022; 45:1711-1719. [PMID: 35916773 DOI: 10.1111/jfd.13693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Nervous necrosis virus (NNV) is one of the most destructive pathogens in marine fish aquaculture and is capable of infecting more than 50 fish species worldwide, which resulted in great economic losses. Effective drugs for managing NNV infection are urgently required. Medicinal plants have been known for thousands of years and benefit of medicinal plants against pathogens in aquaculture have emerged. Nowadays, the most commonly used method for detecting virus infection and assessing antiviral drugs efficacy is reverse transcription-quantitative real-time PCR. However, the application is limited on account of high reagent costs, complex time-consuming operations and long detection time. Aptamers have been widely applied in application of pathogens or diseases diagnosis and treatments because of high specificity, strong affinity, good stability, easy synthesized and low costs. This study aimed to establish an aptamer (GBN34)-based high-throughput screening (GBN34-AHTS) model for efficient selection and evaluation of natural ingredients against NNV infection. GBN34-AHTS is an expeditious rapid method for selecting natural ingredients against NNV, which is characterized with high-speed, dram, sensitive and accurate. AHTS strategy could reduce work intensity and experimental costs and shorten the whole screening cycle of effective ingredients. AHTS should be suitable for rapid selection of effective ingredients against other viruses, which is important for improving the prevention and controlling of aquatic diseases.
Collapse
Affiliation(s)
- Hongling Wei
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Academy of Sciences, Nanning, China
| | - Mingzhu Liu
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Academy of Sciences, Nanning, China
| | - Ke Ke
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Academy of Sciences, Nanning, China
| | - Shuangyan Xiao
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Academy of Sciences, Nanning, China
| | - Lin Huang
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Academy of Sciences, Nanning, China
| | - Qiongyu He
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Academy of Sciences, Nanning, China
- Guangxi Yulin Xinjian planting and breeding Co., Ltd, Yulin, China
| | - Changping Mo
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Academy of Sciences, Nanning, China
- Guangxi Yulin Xinjian planting and breeding Co., Ltd, Yulin, China
| | - Hai Pang
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Academy of Sciences, Nanning, China
- Guangxi Yulin Xinjian planting and breeding Co., Ltd, Yulin, China
| | - Guozhu Xiao
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Academy of Sciences, Nanning, China
- Guangxi Yulin Xinjian planting and breeding Co., Ltd, Yulin, China
| | - Pengfei Li
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Academy of Sciences, Nanning, China
| | - Qing Yu
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Academy of Sciences, Nanning, China
| |
Collapse
|