1
|
Hegazi NM, El Shabrawy M, Aboulthana WM, Ragheb AY, Ibrahim LF, Marzouk MM. UPLC-HRMS/MS Guided Isolation and NMR Investigation of Major Flavonoids from Enarthrocarpus strangulatus Boissier (Brassicaceae) with In Vitro Enzymes Inhibitory Potential. Chem Biodivers 2025; 22:e202401402. [PMID: 39370397 DOI: 10.1002/cbdv.202401402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/02/2024] [Accepted: 10/05/2024] [Indexed: 10/08/2024]
Abstract
Various members of the family Brassicaceae are economically important and traditionally used to treat many disorders. Among the family members, Enarthrocarpus strangulatus Boissier is a common Egyptian species that was rarely studied. Consequently, the current study aims to characterize its phytochemical composition and assess its potential bioactivity comprehensively. A metabolomics approach integrating UPLC-HRMS/MS-based molecular networking enabled the dereplication of 91 metabolites, including primary (i. e. organic acids, amino acids, fatty acids, and phospholipids) and secondary metabolites (i. e. glucosinolates, phenolic acids, and flavonoids). Among the 91 annotated features, 13 major metabolites were fully characterized following their isolation and purification. Exclusive of only three flavonoids, all the detected metabolites are described for the first time within this species. Furthermore, the crude extract and four major isolated flavonoids were subjected to in vitro biological screening, including antioxidant, radical scavenging, anti-diabetic, anti-Alzheimer's, and anti-inflammatory activities. It was noticed that nobiletin (61) exhibited the highest antioxidant and anti-Alzheimer's activities. At the same time, isorhamnetin 3-O-glucose (51) showed the highest anti-diabetic activity compared to the other isolated flavonoids and the total extract itself. Regarding the anti-inflammatory activity, no obvious differences were detected numerically among all studied flavonoids.
Collapse
Affiliation(s)
- Nesrine M Hegazi
- Phytochemistry and Plant Systematics Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), Dokki, Giza, 12622, Egypt
| | - Mona El Shabrawy
- Phytochemistry and Plant Systematics Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), Dokki, Giza, 12622, Egypt
| | - Wael M Aboulthana
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), Dokki, Giza, 12622, Egypt
| | - Alia Y Ragheb
- Phytochemistry and Plant Systematics Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), Dokki, Giza, 12622, Egypt
- Pharmacognosy Department, Faculty of Pharmacy, Sadat City University, Sadat City, 32897, Egypt
| | - Lamiaa F Ibrahim
- Phytochemistry and Plant Systematics Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), Dokki, Giza, 12622, Egypt
- Pharmacognosy Department, Faculty of Pharmacy, Sinai University-Kantara Branch, Ismailia, 41636, Egypt
| | - Mona M Marzouk
- Phytochemistry and Plant Systematics Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), Dokki, Giza, 12622, Egypt
| |
Collapse
|
2
|
Antar SA, Ashour NA, Hamouda AO, Noreddin AM, Al-Karmalawy AA. Recent advances in COVID-19-induced liver injury: causes, diagnosis, and management. Inflammopharmacology 2024:10.1007/s10787-024-01535-7. [PMID: 39126569 DOI: 10.1007/s10787-024-01535-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 03/29/2024] [Indexed: 08/12/2024]
Abstract
Since the start of the pandemic, considerable advancements have been made in our understanding of the effects of SARS-CoV-2 infection and the associated COVID-19 on the hepatic system. There is a broad range of clinical symptoms for COVID-19. It affects multiple systems and has a dominant lung illness depending on complications. The progression of COVID-19 in people with pre-existing chronic liver disease (CLD) has also been studied in large multinational groups. Notably, SARS-CoV-2 infection is associated with a higher risk of hepatic decompensation and death in patients with cirrhosis. In this review, the source, composition, mechanisms, transmission characteristics, clinical characteristics, therapy, and prevention of SARS-CoV-2 were clarified and discussed, as well as the evolution and variations of the virus. This review briefly discusses the causes and effects of SARS-CoV-2 infection in patients with CLD. As part of COVID-19, In addition, we assess the potential of liver biochemistry as a diagnostic tool examine the data on direct viral infection of liver cells, and investigate potential pathways driving SARS-CoV-2-related liver damage. Finally, we explore how the pandemic has had a significant impact on patient behaviors and hepatology services, which may increase the prevalence and severity of liver disease in the future. The topics encompassed in this review encompass the intricate relationships between SARS-CoV-2, liver health, and broader health management strategies, providing valuable insights for both current clinical practice and future research directions.
Collapse
Affiliation(s)
- Samar A Antar
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA, 24016, USA
- Department of Pharmacology, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
| | - Nada A Ashour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Amir O Hamouda
- Department of Biochemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
| | - Ayman M Noreddin
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ahram Canadian University, 6Th of October City, Giza, 12566, Egypt
- Department of Internal Medicine, School of Medicine, University of California -Irvine, Irvine, USA
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, New Damietta, 34518, Egypt.
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6Th of October City, Giza, 12566, Egypt.
| |
Collapse
|
3
|
Al-Karmalawy AA, Alnajjar R, Elmaaty AA, Binjubair FA, Al-Rashood ST, Mansour BS, Elkamhawy A, Eldehna WM, Mansour KA. Investigating the promising SARS-CoV-2 main protease inhibitory activity of secoiridoids isolated from Jasminum humile; in silico and in Vitro assessments with structure-activity relationship. J Biomol Struct Dyn 2024; 42:6941-6953. [PMID: 37505066 DOI: 10.1080/07391102.2023.2240419] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
The proteolytic enzyme 3 C-like protease (3Clpro or Mpro) is considered the most important target for SARS-CoV-2 which could be attributed to its crucial role in viral maturation and/or replication. Besides, natural phytoconstituents from plant origin are always promising lead compounds in the drug discovery area. Herein, the previously isolated and identified seven compounds from Jasminum humile (J. humile) were examined in vitro and in silico against the SARS-CoV-2 Mpro. First, the Vero E6 cells were utilized to pursue the potential of the investigated compounds (both in fractions and individual isolates) using the MTT assay. The total extract (T1) displayed the most significant activity against SARS-CoV-2 with IC50 = 29.36 µg/mL. Besides, the fractions (Fr1 and Fr3) showed good activity against the SARS-CoV-2 with IC50 values of 70.42, and 73.09 µg/mL, respectively. Then, the SARS-CoV-2 Mpro inhibitory assay was utilized to emphasize the inhibitory potential of the investigated isolates. MJN, JMD, and IJM candidates displayed prominent Mpro inhibitory potentials with IC50 = 30.44, 30.24, and 56.25 µM, respectively. Moreover, molecular docking of the identified seven compounds against the Mpro of SARS-CoV-2 showed that the five secoiridoids achieved superior results. MJN, JSM, IJM, and JMD showed higher affinities towards the Mpro target compared to the co-crystallized antagonist. Furthermore, the most active complexes (MJN, JSM, IJM, and JMD-Mpro) were subjected to MD simulations run for 150 ns and MM-GBSA calculations, compared to the co-crystallized inhibitor (O6K-Mpro). Finally, the SAR study clarified that JMD achieved the best anti-SARS-CoV-2 Mpro activity followed by MJN.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ahmed A Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Radwan Alnajjar
- Department of Chemistry, Faculty of Science, University of Benghazi, Benghazi, Libya
- PharmD, Faculty of Pharmacy, Libyan International Medical University, Benghazi, Libya
| | - Ayman Abo Elmaaty
- Department of Medicinal Chemistry, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Faizah A Binjubair
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sara T Al-Rashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Basma S Mansour
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Elkamhawy
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
- School of Biotechnology, Badr University in Cairo, Badr City, Egypt
| | - Khaled Ahmed Mansour
- Department of Pharmacognosy, Faculty of Pharmacy, Horus University in Egypt, New Damietta, Egypt
| |
Collapse
|
4
|
Majrashi TA, El Hassab MA, Mahmoud SH, Mostafa A, Wahsh EA, Elkaeed EB, Hassan FE, Eldehna WM, Abdelgawad SM. In vitro biological evaluation and in silico insights into the antiviral activity of standardized olive leaves extract against SARS-CoV-2. PLoS One 2024; 19:e0301086. [PMID: 38662719 PMCID: PMC11045091 DOI: 10.1371/journal.pone.0301086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/08/2024] [Indexed: 04/28/2024] Open
Abstract
There is still a great global need for efficient treatments for the management of SARS-CoV-2 illness notwithstanding the availability and efficacy of COVID-19 vaccinations. Olive leaf is an herbal remedy with a potential antiviral activity that could improve the recovery of COVID-19 patients. In this work, the olive leaves major metabolites were screened in silico for their activity against SARS-CoV-2 by molecular docking on several viral targets such as methyl transferase, helicase, Plpro, Mpro, and RdRp. The results of in silico docking study showed that olive leaves phytoconstituents exhibited strong potential antiviral activity against SARS-CoV-2 selected targets. Verbacoside demonstrated a strong inhibition against methyl transferase, helicase, Plpro, Mpro, and RdRp (docking scores = -17.2, -20, -18.2, -19.8, and -21.7 kcal/mol.) respectively. Oleuropein inhibited 5rmm, Mpro, and RdRp (docking scores = -15, -16.6 and -18.6 kcal/mol., respectively) respectively. Apigenin-7-O-glucoside exhibited activity against methyl transferase and RdRp (docking score = -16.1 and -19.4 kcal/mol., respectively) while Luteolin-7-O-glucoside inhibited Plpro and RdRp (docking score = -15.2 and -20 kcal/mol., respectively). The in vitro antiviral assay was carried out on standardized olive leaf extract (SOLE) containing 20% oleuropein and IC50 was calculated. The results revealed that 20% SOLE demonstrated a moderate antiviral activity against SARS-CoV-2 with IC50 of 118.3 μg /mL. Accordingly, olive leaf could be a potential herbal therapy against SARS-CoV-2 but more in vivo and clinical investigations are recommended.
Collapse
Affiliation(s)
- Taghreed A. Majrashi
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Asir, Saudi Arabia
| | - Mahmoud A. El Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, Egypt
| | - Sara H. Mahmoud
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Engy A. Wahsh
- Clinical Pharmacy Department, Faculty of Pharmacy, October 6 University, Giza Governorate, Egypt
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Fatma E. Hassan
- Department of Physiology, General Medicine Practice Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Medical Physiology Department, Kasr Alainy, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | | |
Collapse
|
5
|
Okasha NI, Abdel-Rahman MA, Nafie MS, Abo Shama NM, Mahmoud SH, El-Ebeedy DA, Abdel Azeiz AZ. Identification of potential antiviral compounds from Egyptian sea stars against MERS-CoV with the in vitro and in silico experiments. Nat Prod Res 2024:1-7. [PMID: 38563220 DOI: 10.1080/14786419.2024.2335361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 03/17/2024] [Indexed: 04/04/2024]
Abstract
Recently, the world faced many epidemics which were caused by viral respiratory pathogens. Marine creatures including Asteroidea class have been one of the recent research topics due to their diverse and complex secondary metabolites. Some of these constituents exhibit antiviral activities. The present study aimed to extract and identify the potential antiviral compounds from Pentaceraster cumingi, Astropecten polyacanthus and Pentaceraster mammillatus. The results showed that promising activity of the methanolic extract of P. cumingi with 50% inhibitory concentration (IC50) of 3.21 mg/ml against MERS-CoV with a selective index (SI) of 13.975. The biochemical components of the extracts were identified by GC/MS analysis. The Molecular docking study highlighted the virtual mechanism of binding the identified compounds towards three PDB codes of MERS-CoV non-structural protein 10/16. Interestingly, 2-mono Linolein showed promising binding energy of -14.75 Kcal/mol with the second PDB code (5YNI) and -15.22 Kcal/mol with the third PDB code (5YNQ).
Collapse
Affiliation(s)
- Nadia I Okasha
- College of Biotechnology, Misr University for Science and Technology (MUST), 6th of October, Egypt
| | | | - Mohamed S Nafie
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Noura M Abo Shama
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Sara H Mahmoud
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Dalia A El-Ebeedy
- College of Biotechnology, Misr University for Science and Technology (MUST), 6th of October, Egypt
| | - Ahmed Z Abdel Azeiz
- College of Biotechnology, Misr University for Science and Technology (MUST), 6th of October, Egypt
| |
Collapse
|
6
|
El Maksoud AIA, Al-Karmalawy AA, ElEbeedy D, Ghanem A, Rasheed Y, Ibrahim IA, Elghaish RA, Belal A, Raslan MA, Taher RF. Symbiotic Antidiabetic Effect of Lactobacillus casei and the Bioactive Extract of Cleome droserifolia (Forssk.) Del. on Mice with Type 2 Diabetes Induced by Alloxan. Chem Biodivers 2024; 21:e202301397. [PMID: 38078801 DOI: 10.1002/cbdv.202301397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/28/2023] [Indexed: 01/17/2024]
Abstract
The consumption of probiotics protects pancreatic β-cells from oxidative damage, delaying the onset of type 2 diabetes mellitus (T2DM) and preventing microvascular and macrovascular complications. This study aimed to evaluate the antidiabetic activity of CDE fermented by Lactobacillus casei (ATCC 39539) (LC) in alloxan-induced diabetic rats. The oxidative stress identified by catalase (CAT), serum AST, ALT, ALP, creatinine, urea, and uric acid were measured. The chemical profiles of the plant extract and the fermented extract were studied using HPLC/MS. The potential of the compounds towards the binding pockets of aldose reductase and PPAR was discovered by molecular docking. A significant reduction in fasting blood glucose in alloxan-treated rats. The CAT showed a significant decrease in diabetic rats. Also, serum AST, ALT, ALP, creatinine, urea, and uric acid were significantly decreased in the mixture group. Mild histological changes of pancreatic and kidney tissues suggested that the mixture of probiotics and cleome possesses a marked anti-diabetic effect. Overall, the study suggests that the combination of Cleome droserifolia fermented by Lactobacillus casei exhibits significant antidiabetic activity (p-value=0.05), reduces oxidative stress, improves lipid profiles, and shows potential for the treatment of diabetes.
Collapse
Affiliation(s)
- Ahmed I Abd El Maksoud
- Industrial Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, 12566, Egypt
| | - Dalia ElEbeedy
- Department of Microbiology and Immunology, Faculty of Biotechnology, Misr University for Science and Technology, 6th of October City, Giza, Egypt
| | - Aml Ghanem
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, 11829, Egypt
| | - Yasmin Rasheed
- College of Biotechnology, Misr University for Science and Technology, 6th of October City, Egypt
| | - Ibrahim A Ibrahim
- Plant Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | | | - Amany Belal
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Mona A Raslan
- Pharmacognosy Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, 12622, Egypt
| | - Rehab F Taher
- Department of Natural Compounds Chemistry, National Research Center, 33 El Bohouth St., Dokki, Giza, 12622, Egypt
| |
Collapse
|
7
|
Saha C, Naskar R, Chakraborty S. Antiviral Flavonoids: A Natural Scaffold with Prospects as Phytomedicines against SARS-CoV2. Mini Rev Med Chem 2024; 24:39-59. [PMID: 37138419 DOI: 10.2174/1389557523666230503105053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/01/2023] [Accepted: 03/13/2023] [Indexed: 05/05/2023]
Abstract
Flavonoids are vital candidates to fight against a wide range of pathogenic microbial infections. Due to their therapeutic potential, many flavonoids from the herbs of traditional medicine systems are now being evaluated as lead compounds to develop potential antimicrobial hits. The emergence of SARS-CoV-2 caused one of the deadliest pandemics that has ever been known to mankind. To date, more than 600 million confirmed cases of SARS-CoV2 infection have been reported worldwide. Situations are worse due to the unavailability of therapeutics to combat the viral disease. Thus, there is an urgent need to develop drugs against SARS-CoV2 and its emerging variants. Here, we have carried out a detailed mechanistic analysis of the antiviral efficacy of flavonoids in terms of their potential targets and structural feature required for exerting their antiviral activity. A catalog of various promising flavonoid compounds has been shown to elicit inhibitory effects against SARS-CoV and MERS-CoV proteases. However, they act in the high-micromolar regime. Thus a proper leadoptimization against the various proteases of SARS-CoV2 can lead to high-affinity SARS-CoV2 protease inhibitors. To enable lead optimization, a quantitative structure-activity relationship (QSAR) analysis has been developed for the flavonoids that have shown antiviral activity against viral proteases of SARS-CoV and MERS-CoV. High sequence similarities between coronavirus proteases enable the applicability of the developed QSAR to SARS-CoV2 proteases inhibitor screening. The detailed mechanistic analysis of the antiviral flavonoids and the developed QSAR models is a step forward toward the development of flavonoid-based therapeutics or supplements to fight against COVID-19.
Collapse
Affiliation(s)
- Chiranjeet Saha
- Amity Institute of Biotechnology, Amity University, Kolkata, 700135, India
| | - Roumi Naskar
- Amity Institute of Biotechnology, Amity University, Kolkata, 700135, India
| | - Sandipan Chakraborty
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, 500046, India
| |
Collapse
|
8
|
Bogoyavlenskiy A, Zaitseva I, Alexyuk P, Alexyuk M, Omirtaeva E, Manakbayeva A, Moldakhanov Y, Anarkulova E, Imangazy A, Berezin V, Korulkin D, Hasan AH, Noamaan M, Jamalis J. Naturally Occurring Isorhamnetin Glycosides as Potential Agents Against Influenza Viruses: Antiviral and Molecular Docking Studies. ACS OMEGA 2023; 8:48499-48514. [PMID: 38144046 PMCID: PMC10734298 DOI: 10.1021/acsomega.3c08407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023]
Abstract
Influenza remains one of the most widespread infections, causing an annual illness in adults and children. Therefore, the search for new antiviral drugs is one of the priorities of practical health care. Eight isorhamnetin glycosides were purified from Persicaria species, characterized by nuclear magnetic resonance spectroscopy and mass spectrometry and then evaluated as potential agents against influenza virus. A comprehensive in vitro and in vivo assessment of the compounds revealed that compound 5 displayed the most potent inhibitory activity with an EC50 value of 1.2-1.3 μM, better than standard drugs (isorhamnetin 28.0-56.0 μM and oseltamivir 1.3-9.1 μM). Molecular docking results also revealed that compound 5 has the lowest binding energy (-10.7 kcal/mol) among the tested compounds and isorhamnetin (-8.1 kcal/mol). The ability of the isorhamnetin glycosides to suppress the reproduction of the influenza virus was studied on a model of a cell culture and chicken embryos. The ability of active compounds to influence the structure of the virion, as well as the activity of hemagglutinin and neuraminidase, has been demonstrated. Compound 1, 5, and 6 demonstrated the most effective inhibition of virus replication for all tested viruses. Molecular dynamics simulation techniques were run for 100 ns for compound 5 with two protein receptors Hem (1RUY) and Neu (3BEQ). These results revealed that the Hem-complex system acquired a relatively more stable conformation and even better descriptors than the other Neu-complex studied systems, suggesting that it can be an effective inhibiting drug toward hemagglutinin than neuraminidase inhibition. Based on the reported results, compound 5 can be a good candidate to be evaluated for effectiveness in preclinical testing.
Collapse
Affiliation(s)
- Andrey Bogoyavlenskiy
- Research
and Production Center for Microbiology and Virology, Almaty 050010, Kazakhstan
| | - Irina Zaitseva
- Research
and Production Center for Microbiology and Virology, Almaty 050010, Kazakhstan
| | - Pavel Alexyuk
- Research
and Production Center for Microbiology and Virology, Almaty 050010, Kazakhstan
| | - Madina Alexyuk
- Research
and Production Center for Microbiology and Virology, Almaty 050010, Kazakhstan
| | - Elmira Omirtaeva
- Research
and Production Center for Microbiology and Virology, Almaty 050010, Kazakhstan
| | - Adolat Manakbayeva
- Research
and Production Center for Microbiology and Virology, Almaty 050010, Kazakhstan
| | - Yergali Moldakhanov
- Research
and Production Center for Microbiology and Virology, Almaty 050010, Kazakhstan
| | - Elmira Anarkulova
- Research
and Production Center for Microbiology and Virology, Almaty 050010, Kazakhstan
| | - Anar Imangazy
- Research
and Production Center for Microbiology and Virology, Almaty 050010, Kazakhstan
| | - Vladimir Berezin
- Research
and Production Center for Microbiology and Virology, Almaty 050010, Kazakhstan
| | - Dmitry Korulkin
- Department
of Chemistry and Chemical Technology, al-Farabi
Kazakh National University, Almaty 050010, Kazakhstan
| | - Aso Hameed Hasan
- Department
of Chemistry, College of Science, University
of Garmian, Kalar, Kurdistan Region 46021, Iraq
| | - Mahmoud Noamaan
- Mathematics
Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Joazaizulfazli Jamalis
- Department
of Chemistry Faculty of Science, Universiti
Teknologi Malaysia, UTM Johor
Bahru, Johor 81310, Malaysia
| |
Collapse
|
9
|
Farouk F, Elmaaty AA, Elkamhawy A, Tawfik HO, Alnajjar R, Abourehab MAS, Saleh MA, Eldehna WM, Al‐Karmalawy AA. Investigating the potential anticancer activities of antibiotics as topoisomerase II inhibitors and DNA intercalators: in vitro, molecular docking, molecular dynamics, and SAR studies. J Enzyme Inhib Med Chem 2023; 38:2171029. [PMID: 36701269 PMCID: PMC9881673 DOI: 10.1080/14756366.2023.2171029] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Topoisomerase II (TOP-2) is a promising molecular target for cancer therapy. Numerous antibiotics could interact with biologically relevant macromolecules and provoke antitumor potential. Herein, molecular docking studies were used to investigate the binding interactions of 138 antibiotics against the human topoisomerase II-DNA complex. Followed by the MD simulations for 200 ns and MM-GBSA calculations. On the other hand, the antitumor activities of the most promising candidates were investigated against three cancer cell lines using doxorubicin (DOX) as a reference drug. Notably, spiramycin (SP) and clarithromycin (CL) showed promising anticancer potentials on the MCF-7 cell line. Moreover, azithromycin (AZ) and CL exhibited good anticancer potentials against the HCT-116 cell line. Finally, the TOP-2 enzyme inhibition assay was carried out to confirm the proposed rationale. Briefly, potent TOP-2 inhibitory potentials were recorded for erythromycin (ER) and roxithromycin (RO). Additionally, a SAR study opened eyes to promising anticancer pharmacophores encountered by these antibiotics.HighlightsMolecular docking studies of 139 antibiotics against the topoisomerase II-DNA complex.SP, RO, AZ, CL, and ER were the most promising and commercially available candidates.Molecular dynamics simulations for 200 ns for the most promising five complexes.MM-GBSA calculations for the frontier five complexes.SP and CL showed promising anticancer potentials on the MCF-7 cell line, besides, AZ and CL exhibited good anticancer potentials against the HCT-116 cell line.Potent TOP-2 inhibitory potentials were recorded for ER and RO.
Collapse
Affiliation(s)
- Faten Farouk
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Ayman Abo Elmaaty
- Department of Medicinal Chemistry, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Ahmed Elkamhawy
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea,Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Haytham O. Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Radwan Alnajjar
- Department of Chemistry, Faculty of Science, University of Benghazi, Benghazi, Libya,PharmD, Faculty of Pharmacy, Libyan International Medical University, Benghazi, Libya,Department of Chemistry, University of Cape Town, Rondebosch, South Africa
| | | | - Mohamed A. Saleh
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, the United Arab Emirates,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt,School of Biotechnology, Badr University in Cairo, Badr City, Egypt
| | - Ahmed A. Al‐Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt,CONTACT Ahmed A. Al‐Karmalawy Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| |
Collapse
|
10
|
Al-Warhi T, Al-Karmalawy AA, Elmaaty AA, Alshubramy MA, Abdel-Motaal M, Majrashi TA, Asem M, Nabil A, Eldehna WM, Sharaky M. Biological evaluation, docking studies, and in silico ADME prediction of some pyrimidine and pyridine derivatives as potential EGFR WT and EGFR T790M inhibitors. J Enzyme Inhib Med Chem 2023; 38:176-191. [PMID: 36317648 PMCID: PMC9635468 DOI: 10.1080/14756366.2022.2135512] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022] Open
Abstract
Herein, a set of pyridine and pyrimidine derivatives were assessed for their impact on the cell cycle and apoptosis. Human breast cancer (MCF7), hepatocellular carcinoma (HEPG2), larynx cancer (HEP2), lung cancer (H460), colon cancers (HCT116 and Caco2), and hypopharyngeal cancer (FADU), and normal Vero cell lines were used. Compounds 8 and 14 displayed outstanding effects on the investigated cell lines and were further tested for their antioxidant activity in MCF7, H460, FADU, HEP2, HEPG2, HCT116, Caco2, and Vero cells by measuring superoxide dismutase (SOD), malondialdehyde content (MDA), reduced glutathione (GSH), and nitric oxide (NO) content. Besides, Annexin V-FITC apoptosis detection and cell cycle DNA index using the HEPG-2 cell line were established on both compounds as well. Furthermore, compounds 8 and 14 were assessed for their EGFR kinase (Wild and T790M) inhibitory activities, revealing eligible potential. Additionally, molecular docking, ADME, and SAR studies were carried out for the investigated candidates.
Collapse
Affiliation(s)
- Tarfah Al-Warhi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ahmed A. Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Ayman Abo Elmaaty
- Department of Medicinal Chemistry, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Maha A. Alshubramy
- Department of Chemistry, College of Science, Qassim University, Buraydah, Saudi Arabia
| | - Marwa Abdel-Motaal
- Department of Chemistry, College of Science, Qassim University, Buraydah, Saudi Arabia
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Taghreed A. Majrashi
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Medhat Asem
- College of Engineering and Information Technology, Onaizah Colleges, Al-Qassim, Saudi Arabia
| | - Ahmed Nabil
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), Tsukuba, Japan
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
- School of Biotechnology, Badr University in Cairo, Badr City, Egypt
| | - Marwa Sharaky
- Cancer Biology Department, Pharmacology Unit, National Cancer Institute (NCI), Cairo University, Cairo, Egypt
| |
Collapse
|
11
|
Tafish AM, El-Sherbiny M, Al‐Karmalawy AA, Soliman OAEA, Saleh NM. Carvacrol-Loaded Phytosomes for Enhanced Wound Healing: Molecular Docking, Formulation, DoE-Aided Optimization, and in vitro/in vivo Evaluation. Int J Nanomedicine 2023; 18:5749-5780. [PMID: 37849641 PMCID: PMC10578319 DOI: 10.2147/ijn.s421617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/01/2023] [Indexed: 10/19/2023] Open
Abstract
Background Despite recent advances in wound healing products, phytochemicals have been considered promising and attractive alternatives. Carvacrol (CAR), a natural phenolic compound, has been reported to be effective in wound healing. Purpose This work endeavored to develop novel CAR-loaded phytosomes for the enhancement of the wound healing process. Methods Molecular docking was performed to compare the affinities of the different types of phospholipids to CAR. Phytosomes were prepared by three methods (thin-film hydration, cosolvency, and salting out) using Lipoid S100 and Phospholipon 90H with three levels of saturation percent (0%, 50%, and 100%), and three levels of phospholipid molar percent (66.67%, 75%, and 80%). The optimization was performed using Design Expert where particle size, polydispersity index, and zeta potential were chosen as dependent variables. The optimized formula (F1) was further investigated regarding entrapment efficiency, TEM, 1H-NMR, FT-IR, DSC, X-RD, in vitro release, ex vivo permeation, and stability. Furthermore, it was incorporated into a hydrogel formulation, and an in vivo study was conducted to investigate the wound-healing properties of F1. Results F1 was chosen as the optimized formula prepared via the thin-film hydration method with a saturation percent and a phospholipid molar percent of zero and 66.67, respectively. TEM revealed the spherical shape of phytosomal vesicles with uniform size, while the results of 1H-NMR, FT-IR, DSC, and X-RD confirmed the formation of the phytosomal complex. F1 demonstrated a higher in vitro release and a slower permeation than free CAR. The wound area of F1-treated animals showed a marked reduction associated with a high degree of collagen fiber deposition and enhanced cellular proliferation. Conclusion F1 can be considered as a promising remedy for the enhancement of wound healing and hence it would be hoped to undergo further investigation.
Collapse
Affiliation(s)
- Ahmed Mowafy Tafish
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Horus University, New Damietta, 34518, Egypt
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed A Al‐Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University, New Damietta, 34518, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, 12566, Egypt
| | | | - Noha Mohamed Saleh
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
12
|
Cheng H, Zhang D, Wu J, Liu J, Zhou Y, Tan Y, Feng W, Peng C. Interactions between gut microbiota and polyphenols: A mechanistic and metabolomic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:154979. [PMID: 37552899 DOI: 10.1016/j.phymed.2023.154979] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/30/2023] [Accepted: 07/15/2023] [Indexed: 08/10/2023]
Abstract
BACKGROUND Polyphenols are a class of naturally sourced compounds with widespread distribution and an extensive array of bioactivities. However, due to their complex constituents and weak absorption, a convincing explanation for their remarkable bioactivity remains elusive for a long time. In recent years, interaction with gut microbiota is hypothesized to be a reasonable explanation of the potential mechanisms for natural compounds especially polyphenols. OBJECTIVES This review aims to present a persuasive explanation for the contradiction between the limited bioavailability and the remarkable bioactivities of polyphenols by examining their interactions with gut microbiota. METHODS We assessed literatures published before April 10, 2023, from several databases, including Scopus, PubMed, Google Scholar, and Web of Science. The keywords used include "polyphenols", "gut microbiota", "short-chain fatty acids", "bile acids", "trimethylamine N-oxide", "lipopolysaccharides" "tryptophan", "dopamine", "intestinal barrier", "central nervous system", "lung", "anthocyanin", "proanthocyanidin", "baicalein", "caffeic acid", "curcumin", "epigallocatechin-3-gallate", "ferulic acid", "genistein", "kaempferol", "luteolin", "myricetin", "naringenin", "procyanidins", "protocatechuic acid", "pterostilbene", "quercetin", "resveratrol", etc. RESULTS: The review first demonstrates that polyphenols significantly alter gut microbiota diversity (α- and β-diversity) and the abundance of specific microorganisms. Polyphenols either promote or inhibit microorganisms, with various factors influencing their effects, such as dosage, treatment duration, and chemical structure of polyphenols. Furthermore, the review reveals that polyphenols regulate several gut microbiota metabolites, including short-chain fatty acids, dopamine, trimethylamine N-oxide, bile acids, and lipopolysaccharides. Polyphenols affect these metabolites by altering gut microbiota composition, modifying microbial enzyme activity, and other potential mechanisms. The changed microbial metabolites induced by polyphenols subsequently trigger host responses in various ways, such as acting as intestinal acid-base homeostasis regulators and activating on specific target receptors. Additionally, polyphenols are transformed into microbial derivatives by gut microbiota and these polyphenols' microbial derivatives have many potential advantages (e.g., increased bioactivity, improved absorption). Lastly, the review shows polyphenols maintain intestinal barrier, central nervous system, and lung function homeostasis by regulating gut microbiota. CONCLUSION The interaction between polyphenols and gut microbiota provides a credible explanation for the exceptional bioactivities of polyphenols. This review aids our understanding of the underlying mechanisms behind the bioactivity of polyphenols.
Collapse
Affiliation(s)
- Hao Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Dandan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Jing Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Juan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Yaochuan Zhou
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Yuzhu Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China; The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China; The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.
| |
Collapse
|
13
|
Lin L, Chen DY, Scartelli C, Xie H, Merrill-Skoloff G, Yang M, Sun L, Saeed M, Flaumenhaft R. Plant flavonoid inhibition of SARS-CoV-2 main protease and viral replication. iScience 2023; 26:107602. [PMID: 37664626 PMCID: PMC10470319 DOI: 10.1016/j.isci.2023.107602] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/15/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023] Open
Abstract
Plant-based flavonoids have been evaluated as inhibitors of β-coronavirus replication and as therapies for COVID-19 on the basis of their safety profile and widespread availability. The SARS-CoV-2 main protease (Mpro) has been implicated as a target for flavonoids in silico. Yet no comprehensive in vitro testing of flavonoid activity against SARS-CoV-2 Mpro has heretofore been performed. We screened 1,019 diverse flavonoids for their ability to inhibit SARS-CoV-2 Mpro. Multiple structure-activity relationships were identified among active compounds such as enrichment of galloylated flavonoids and biflavones, including multiple biflavone analogs of apigenin. In a cell-based SARS-CoV-2 replication assay, the most potent inhibitors were apigenin and the galloylated pinocembrin analog, pinocembrin 7-O-(3''-galloyl-4'',6''-(S)-hexahydroxydiphenoyl)-beta-D-glucose (PGHG). Molecular dynamic simulations predicted that PGHG occludes the S1 binding site via a galloyl group and induces a conformational change in Mpro. These studies will advance the development of plant-based flavonoids-including widely available natural products-to target β-coronaviruses.
Collapse
Affiliation(s)
- Lin Lin
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou Institute of Oceanography, Fuzhou, China
| | - Da-Yuan Chen
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA, USA
- Department of Biochemistry & Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Christina Scartelli
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Huanzhang Xie
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou Institute of Oceanography, Fuzhou, China
| | - Glenn Merrill-Skoloff
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Moua Yang
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Lijun Sun
- Center for Drug Discovery and Translational Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Mohsan Saeed
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA, USA
- Department of Biochemistry & Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
14
|
Shalaby AS, Eid HH, El-Shiekh RA, Youssef FS, Al-Karmalawy AA, Farag NA, Sleem AA, Morsy FA, Ibrahim KM, Tadros SH. A Comparative GC/MS Analysis of Citrus Essential Oils: Unveiling the Potential Benefits of Herb-Drug Interactions in Preventing Paracetamol-Induced Hepatotoxicity. Chem Biodivers 2023; 20:e202300778. [PMID: 37599265 DOI: 10.1002/cbdv.202300778] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/22/2023]
Abstract
Our study aimed to test the potential of Citrus oils in protecting against paracetamol (PAR)-induced hepatotoxicity. The essential oils of Pineapple sweet orange (OO), Murcott mandarin (MO), Red grapefruit (GO), and Oval kumquat (KO) were investigated using gas chromatography coupled with mass spectrometry (GC/MS). Twenty-seven compounds were identified, with monoterpene hydrocarbons being abundant class. d-Limonene had the highest percentage (92.98 %, 92.82 %, 89.75 %, and 94.46 % in OO, MO, GO, and KO, respectively). Hierarchical cluster analysis (HCA) and principal components analysis (PCA) revealed that octanal, linalool, germacrene D, and d-limonene were the principal discriminatory metabolites that segregated the samples into three distinct clusters. In vitro antioxidant capacities were ranged from 1.2-12.27, 1.79-5.91, and 235.05-585.28 μM Trolox eq/mg oil for 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic (ABTS), ferric-reducing antioxidant power (FRAP), and oxygen radical absorbance capacity (ORAC), respectively. In vivo, citrus oils exhibited a significant reduction in alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), and nitric oxide (NO). Additionally, there was an increase in glutathione reductase (GSH), and the liver architecture was nearly normal. Molecular docking revealed that d-limonene exhibited a good inhibitory interaction with cytochrome P450 (CYP450) isoforms 1A2, 3A4, and 2E1, with binding energies of -6.17, -4.51, and -5.61 kcal/mol, respectively.
Collapse
Affiliation(s)
- Aya S Shalaby
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Hanaa H Eid
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Riham A El-Shiekh
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Fadia S Youssef
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Abbasia, Cairo, 11566, Egypt
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, 12566, Egypt
| | - Nahla A Farag
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
| | - Amany A Sleem
- Pharmacology Department, National Research Center, Dokki, Cairo, 12622, Egypt
| | - Fatma Adly Morsy
- Pathology Department, National Research Center, Dokki, Cairo, 12622, Egypt
| | - Khaled M Ibrahim
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Soad H Tadros
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
15
|
Zeng J, Li X, Cai R, Li C, Chen S. Jinhua Qinggan Granule UHPLC-Q-extractive-Orbitrap-MS assay: Putative identification of 45 potential anti-Covid-19 constituents, confidential addition, and pharmacopoeia quality-markers recommendation. J Food Drug Anal 2023; 31:534-551. [PMID: 39666276 PMCID: PMC10629912 DOI: 10.38212/2224-6614.3466] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/22/2023] [Indexed: 12/13/2024] Open
Abstract
The study combined UHPLC-Q-Orbitrap-MS analysis with authentic standards, to create a novel strategy for isomers recognition and putative identification. Through the strategy, anti-Covid-19 Jinhua Qinggan Granule was found to comprise 28 isomers and 45 potential anti-Covid-19 constituents. The detection of three constituents (Danshensu, cryptotanshin, and tanshinone IIA) suggests Danshen as confidential additive. Based on this, 6 constituents are recommended as quality-marker candidates, including chlorogenic acid, acteoside, peimisine, baicalein, licoricesaponin H2, and tanshinone IIA. Obviously, the study can not only help the public to really understand the Granule's formula and chemistry, but also facilitate its Pharmacopoeia collection in future.
Collapse
Affiliation(s)
- Jingyuan Zeng
- School of Chinese Herbal Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People’s Republic of
China
| | - Xican Li
- School of Chinese Herbal Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People’s Republic of
China
| | - Rongxin Cai
- School of Chinese Herbal Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People’s Republic of
China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of
China
| | - Chunhou Li
- School of Chinese Herbal Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People’s Republic of
China
| | - Shaoman Chen
- School of Chinese Herbal Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People’s Republic of
China
| |
Collapse
|
16
|
Salem MA, Mohamed OG, Mosalam EM, Elberri AI, Abdel-Bar HM, Hassan M, Al-Karmalawy AA, Tripathi A, Ezzat SM, Abo Mansour HE. Investigation of the phytochemical composition, antioxidant, antibacterial, anti-osteoarthritis, and wound healing activities of selected vegetable waste. Sci Rep 2023; 13:13034. [PMID: 37563154 PMCID: PMC10415269 DOI: 10.1038/s41598-023-38591-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/11/2023] [Indexed: 08/12/2023] Open
Abstract
Agri-food wastes, produced following industrial food processing, are mostly discarded, leading to environmental hazards and losing the nutritional and medicinal values associated with their bioactive constituents. In this study, we performed a comprehensive analytical and biological evaluation of selected vegetable by-products (potato, onion, and garlic peels). The phytochemical analysis included UHPLC-ESI-qTOF-MS/MS in combination with molecular networking and determination of the total flavonoid and phenolic contents. Further, the antimicrobial, anti-osteoarthritis and wound healing potentials were also evaluated. In total, 47 compounds were identified, belonging to phenolic acids, flavonoids, saponins, and alkaloids as representative chemical classes. Onion peel extract (OPE) showed the higher polyphenolic contents, the promising antioxidant activity, the potential anti-osteoarthritis activity, and promising antimicrobial activity, especially against methicillin-resistant Staphylococcus aureus (MRSA). Furthermore, OPE revealed to have promising in vivo wound healing activity, restoring tissue physiology and integrity, mainly through the activation of AP-1 signaling pathway. Lastly, when OPE was loaded with nanocapsule based hydrogel, the nano-formulation revealed enhanced cellular viability. The affinities of the OPE major metabolites were evaluated against both p65 and ATF-2 targets using two different molecular docking processes revealing quercetin-3,4'-O-diglucoside, alliospiroside C, and alliospiroside D as the most promising entities with superior binding scores. These results demonstrate that vegetable by-products, particularly, those derived from onion peels can be incorporated as natural by-product for future evaluation against wounds and osteoarthritis.
Collapse
Affiliation(s)
- Mohamed A Salem
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Menoufia University, Gamal Abd El Nasr st., Shibīn al-Kawm, 32511, Menoufia, Egypt.
| | - Osama G Mohamed
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo, 11562, Egypt
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Esraa M Mosalam
- Biochemistry Department, Faculty of Pharmacy, Menoufia University, Gamal Abd El Nasr st., Shebin El-Koum, 32511, Egypt
| | - Aya Ibrahim Elberri
- Genetic Engineering and Molecular Biology Division, Department of Zoology, Faculty of Science, Menoufia University, Shebin El-Kom, 32511, Menoufia, Egypt
| | - Hend Mohamed Abdel-Bar
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Mariam Hassan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Kasr el Aini st., Cairo, 11562, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt
| | - Ahmed A Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, 12566, Egypt
| | - Ashootosh Tripathi
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Shahira M Ezzat
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo, 11562, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Hend E Abo Mansour
- Biochemistry Department, Faculty of Pharmacy, Menoufia University, Gamal Abd El Nasr st., Shebin El-Koum, 32511, Egypt
| |
Collapse
|
17
|
Eissa KI, Kamel MM, Mohamed LW, Doghish AS, Alnajjar R, Al-Karmalawy AA, Kassab AE. Design, synthesis, and biological evaluation of thienopyrimidine derivatives as multifunctional agents against Alzheimer's disease. Drug Dev Res 2023; 84:937-961. [PMID: 37067008 DOI: 10.1002/ddr.22064] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/24/2023] [Accepted: 04/01/2023] [Indexed: 04/18/2023]
Abstract
A series of 12 S-substituted tetrahydrobenzothienopyrimidines were designed and synthesized based on the donepezil scaffold. All the newly synthesized compounds were evaluated for their acetylcholinesterase (AChE) inhibitory activity and the most active compounds were tested for their butyrylcholinesterase (BuChE) inhibitory activity. Moreover, all the synthesized compounds were evaluated for their inhibitory effects against Aβ aggregation and antioxidant activity using the oxygen radical absorbance capacity method. Compounds 4b, 6b, and 8b displayed the most prominent AChE inhibitory action comparable to donepezil. Compound 6b showed the greatest AChE inhibitory action (IC50 = 0.07 ± 0.003 µM) and the most potent BuChE inhibitory action (IC50 = 0.059 ± 0.004 µM). Furthermore, the three compounds exhibited significant antioxidant activity. Compounds 6b and 8b exerted more inhibitory action on Aβ aggregation than donepezil. The cytotoxic activity of compounds 4b, 6b, and 8b against the WI-38 cell line in comparison with donepezil was examined using 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide assay. The results revealed that compounds 6b and 8b were less cytotixic than donepezil, while compound 4b showed nonsignificant cytotoxicity compared to donepezil. For more insights about the binding patterns of the most promising compounds (4b, 6b, and 8b) with the AChE at molecular levels; molecular docking and molecular dynamics simulations were performed. The density functional theory calculations and absorption, distribution, metabolism, excretion and toxicity properties were described as well. The results highlighted compound 6b, which incorporates a phenylpiperazine moiety coupled to a thienopyrimidone scaffold via two-atom spacer, to be a promising multifunctional therapeutic agent for the treatment of Alzheimer's disease. It is a potent dual AChE and BuChE inhibitor. Furthermore, it had stronger Aβ aggregation inhibitory action than donepezil. Additionally, compound 6b exerted significant antioxidant activity.
Collapse
Affiliation(s)
- Kholoud I Eissa
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mona M Kamel
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Lamia W Mohamed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Radwan Alnajjar
- Department of Chemistry, Faculty of Science, University of Benghazi, Benghazi, Libya
- Faculty of Pharmacy, Libyan International Medical University, Benghazi, Libya
| | - Ahmed A Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Egypt
| | - Asmaa E Kassab
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
18
|
Gao S, Chen X, Yu Z, Du R, Chen B, Wang Y, Cai X, Xu J, Chen J, Duan H, Cai Y, Zheng G. Progress of research on the role of active ingredients of Citri Reticulatae Pericarpium in liver injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154836. [PMID: 37119760 DOI: 10.1016/j.phymed.2023.154836] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/01/2023] [Accepted: 04/18/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Liver is a vital organ responsible for metabolizing and detoxifying both endogenous and exogenous substances in the body. However, it is susceptible to damage from chemical and natural toxins. The high incidence and mortality rates of liver disease and its associated complications impose a significant economic burden and survival pressure on patients and their families. Various liver diseases exist, including cholestasis, viral and non-viral hepatitis, fatty liver disease, drug-induced liver injury, alcoholic liver injury, and severe end-stage liver diseases such as cirrhosis, hepatocellular carcinoma (HCC), and cholangiocellular carcinoma (CCA). Recent research has shown that flavonoids found in Citri Reticulatae Pericarpium (CRP) have the potential to normalize blood glucose, cholesterol levels, and liver lipid levels. Additionally, these flavonoids exhibit anti-inflammatory properties, prevent oxidation and lipid peroxidation, and reduce liver toxicity, thereby preventing liver injury. Given these promising findings, it is essential to explore the potential of active components in CRP for developing new drugs to treat liver diseases. OBJECTIVE Recent studies have revealed that flavonoids, including hesperidin (HD), hesperetin (HT), naringenin (NIN), nobiletin (NOB), naringin (NRG), tangerine (TN), and erodcyol (ED), are the primary bioactive components in CRP. These flavonoids exhibit various therapeutic effects on liver injury, including anti-oxidative stress, anti-cytotoxicity, anti-inflammatory, anti-fibrosis, and anti-tumor mechanisms. In this review, we have summarized the research progress on the hepatoprotective effects of HD, HT, NIN, NOB, NRG, TN, ED and limonene (LIM), highlighting their underlying molecular mechanisms. Despite their promising effects, the current clinical application of these active ingredients in CRP has some limitations. Therefore, further studies are needed to explore the full potential of these flavonoids and develop new therapeutic strategies for liver diseases. METHODS For this review, we conducted a systematic search of three databases (ScienceNet, PubMed, and Science Direct) up to July 2022, using the search terms "CRP active ingredient," "liver injury," and "flavonoids." The search data followed the PRISMA standard. RESULTS Our findings indicate that flavonoids found in CRP can effectively reduce drug-induced liver injury, alcoholic liver injury, and non-alcoholic liver injury. These therapeutic effects are mainly attributed to the ability of flavonoids to improve liver resistance to oxidative stress and inflammation while normalizing cholesterol and liver lipid levels by exhibiting anti-free radical and anti-lipid peroxidation properties. CONCLUSION Our review provides new insights into the potential of active components in CRP for preventing and treating liver injury by regulating various molecular targets within different cell signaling pathways. This information can aid in the development of novel therapeutic strategies for liver disease.
Collapse
Affiliation(s)
- Shuhan Gao
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiaojing Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhiqian Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Rong Du
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Baizhong Chen
- Guangdong Xinbaotang Biological Technology Co., Ltd, Guangdong Jiangmen, 529000, China
| | - Yuxin Wang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiaoting Cai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jiepei Xu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jiamin Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Huiying Duan
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yi Cai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Guodong Zheng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
19
|
Liu Y, Shi X, Tian Y, Zhai S, Liu Y, Xiong Z, Chu S. An insight into novel therapeutic potentials of taxifolin. Front Pharmacol 2023; 14:1173855. [PMID: 37261284 PMCID: PMC10227600 DOI: 10.3389/fphar.2023.1173855] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/03/2023] [Indexed: 06/02/2023] Open
Abstract
Taxifolin is a flavonoid compound, originally isolated from the bark of Douglas fir trees, which is often found in foods such as onions and olive oil, and is also used in commercial preparations, and has attracted the interest of nutritionists and medicinal chemists due to its broad range of health-promoting effects. It is a powerful antioxidant with excellent antioxidant, anti-inflammatory, anti-microbial and other pharmacological activities. This review focuses on the breakthroughs in taxifolin for the treatment of diseases from 2019 to 2022 according to various systems of the human body, such as the nervous system, immune system, and digestive system, and on the basis of this review, we summarize the problems of current research and try to suggest solutions and future research directions.
Collapse
Affiliation(s)
- Yang Liu
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xiaolu Shi
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ye Tian
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shaobo Zhai
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yuyan Liu
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhengrong Xiong
- Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (CAS), Changchun, China
| | - Shunli Chu
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
20
|
Nathan J, Shameera R, Ramachandran A. Impact of nutraceuticals on immunomodulation against viral infections-A review during COVID-19 pandemic in Indian scenario. J Biochem Mol Toxicol 2023; 37:e23320. [PMID: 36799127 DOI: 10.1002/jbt.23320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/13/2022] [Accepted: 02/02/2023] [Indexed: 02/18/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) originated in Wuhan, China, in early December 2019 is a censorious global emergency after World War II. Research on the coronavirus uncovered essential information that aided in the development of the vaccine, and specific coronavirus disease 2019 (COVID-19) vaccines were later developed and were approved for usage in humans. But then, mutations in the coronavirus gave rise to new variants and questioned the vaccine's efficacy against them. On the other hand, the investigation of traditional medicine was also on its path to find a novel outcome against COVID-19. On a comparative analysis between India and the United States, India had low death rate and high recovery rate than the latter. The dietary regulation of immunity may be the factor that makes the above difference. The immunity gained from the regular diet of Indian culture nourishes Indian people with essential phytochemicals that support immunity and metabolism. Dietary phytochemicals or nutraceuticals possess antioxidant, anti-inflammatory, and anticancer properties, out of which our concern will be on immune-boosting phytochemicals from our daily nutritional supplements. In several case studies, dietary substance like lemon, ginger, and spinach was reported in the recovery of COVID-19 patients. Thus in this review, we discuss coronavirus and its available variants, vaccines, and the effect of nutraceuticals against the coronavirus. Further, we denote that the immunity of the Indian population may be high because of their diet, which adds natural phytochemicals to boost their immunity and metabolism.
Collapse
Affiliation(s)
- Jhansi Nathan
- AUKBC Research Centre for Emerging Technologies, Anna University, Chennai, Tamil Nadu, India
| | - Rabiathul Shameera
- AUKBC Research Centre for Emerging Technologies, Anna University, Chennai, Tamil Nadu, India
| | - Arunkumar Ramachandran
- Multidisciplinary Research Unit (MRU), Madras Medical College, Chennai, Tamil Nadu, India
| |
Collapse
|
21
|
Boswell Z, Verga JU, Mackle J, Guerrero-Vazquez K, Thomas OP, Cray J, Wolf BJ, Choo YM, Croot P, Hamann MT, Hardiman G. In-Silico Approaches for the Screening and Discovery of Broad-Spectrum Marine Natural Product Antiviral Agents Against Coronaviruses. Infect Drug Resist 2023; 16:2321-2338. [PMID: 37155475 PMCID: PMC10122865 DOI: 10.2147/idr.s395203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/16/2023] [Indexed: 05/10/2023] Open
Abstract
The urgent need for SARS-CoV-2 controls has led to a reassessment of approaches to identify and develop natural product inhibitors of zoonotic, highly virulent, and rapidly emerging viruses. There are yet no clinically approved broad-spectrum antivirals available for beta-coronaviruses. Discovery pipelines for pan-virus medications against a broad range of betacoronaviruses are therefore a priority. A variety of marine natural product (MNP) small molecules have shown inhibitory activity against viral species. Access to large data caches of small molecule structural information is vital to finding new pharmaceuticals. Increasingly, molecular docking simulations are being used to narrow the space of possibilities and generate drug leads. Combining in-silico methods, augmented by metaheuristic optimization and machine learning (ML) allows the generation of hits from within a virtual MNP library to narrow screens for novel targets against coronaviruses. In this review article, we explore current insights and techniques that can be leveraged to generate broad-spectrum antivirals against betacoronaviruses using in-silico optimization and ML. ML approaches are capable of simultaneously evaluating different features for predicting inhibitory activity. Many also provide a semi-quantitative measure of feature relevance and can guide in selecting a subset of features relevant for inhibition of SARS-CoV-2.
Collapse
Affiliation(s)
- Zachary Boswell
- School of Biological Sciences and Institute for Global Security, Queen's University, Belfast, Northern Ireland, UK
| | - Jacopo Umberto Verga
- School of Biological Sciences and Institute for Global Security, Queen's University, Belfast, Northern Ireland, UK
- Genomic Data Science, University of Galway, Galway, Ireland
| | - James Mackle
- School of Biological Sciences and Institute for Global Security, Queen's University, Belfast, Northern Ireland, UK
| | | | - Olivier P Thomas
- School of Biological and Chemical Sciences, Ryan Institute, University of Galway, Galway, H91TK33Ireland
| | - James Cray
- Department of Biomedical Education and Anatomy, College of Medicine and Division of Biosciences, College of Dentistry, Ohio State University, Columbus, OH, USA
| | - Bethany J Wolf
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Yeun-Mun Choo
- Department of Chemistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Peter Croot
- Irish Centre for Research in Applied Geoscience, Earth and Ocean Sciences and Ryan Institute, School of Natural Sciences, University of Galway, Galway, Ireland
| | - Mark T Hamann
- Departments of Drug Discovery and Biomedical Sciences and Public Health, Colleges of Pharmacy and Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Gary Hardiman
- School of Biological Sciences and Institute for Global Security, Queen's University, Belfast, Northern Ireland, UK
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
- Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
22
|
Cholinesterase Inhibitors from an Endophytic Fungus Aspergillus niveus Fv-er401: Metabolomics, Isolation and Molecular Docking. Molecules 2023; 28:molecules28062559. [PMID: 36985531 PMCID: PMC10052609 DOI: 10.3390/molecules28062559] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Alzheimer’s disease poses a global health concern with unmet demand requiring creative approaches to discover new medications. In this study, we investigated the chemical composition and the anticholinesterase activity of Aspergillus niveus Fv-er401 isolated from Foeniculum vulgare (Apiaceae) roots. Fifty-eight metabolites were identified using UHPLC-MS/MS analysis of the crude extract. The fungal extract showed acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory effects with IC50 53.44 ± 1.57 and 48.46 ± 0.41 µg/mL, respectively. Two known metabolites were isolated, terrequinone A and citrinin, showing moderate AChE and BuChE inhibitory activity using the Ellman’s method (IC50 = 11.10 ± 0.38 µg/mL and 5.06 ± 0.15 µg/mL, respectively for AChE, and IC50 15.63 ± 1.27 µg/mL and 8.02 ± 0.08 µg/mL, respectively for BuChE). As evidenced by molecular docking, the isolated compounds and other structurally related metabolites identified by molecular networking had the required structural features for AChE and BuChE inhibition. Where varioxiranol G (−9.76 and −10.36 kcal/mol), penicitrinol B (−9.50 and −8.02 kcal/mol), dicitrinol A (−8.53 and −7.98 kcal/mol) and asterriquinone CT5 (−8.02 and −8.25 kcal/mol) showed better binding scores as AChE and BuChE inhibitors than the co-crystallized inhibitor (between −7.89 and 7.82 kcal/mol) making them promising candidates for the development of new drugs to treat Alzheimer’s.
Collapse
|
23
|
Jantan I, Arshad L, Septama AW, Haque MA, Mohamed-Hussein ZA, Govender NT. Antiviral effects of phytochemicals against severe acute respiratory syndrome coronavirus 2 and their mechanisms of action: A review. Phytother Res 2023; 37:1036-1056. [PMID: 36343627 PMCID: PMC9878073 DOI: 10.1002/ptr.7671] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022]
Abstract
The worldwide spreading of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed a serious threat to health, economic, environmental, and social aspects of human lives. Currently, there are no approved treatments that can effectively block the virus although several existing antimalarial and antiviral agents have been repurposed and allowed use during the pandemic under the emergency use authorization (EUA) status. This review gives an updated overview of the antiviral effects of phytochemicals including alkaloids, flavonoids, and terpenoids against the COVID-19 virus and their mechanisms of action. Search for natural lead molecules against SARS-CoV-2 has been focusing on virtual screening and in vitro studies on phytochemicals that have shown great promise against other coronaviruses such as SARS-CoV. Until now, there is limited data on in vivo investigations to examine the antiviral activity of plants in SARS-CoV-2-infected animal models and the studies were performed using crude extracts. Further experimental and preclinical investigations on the in vivo effects of phytochemicals have to be performed to provide sufficient efficacy and safety data before clinical studies can be performed to develop them into COVID-19 drugs. Phytochemicals are potential sources of new chemical leads for the development of safe and potent anti-SARS-CoV-2 agents.
Collapse
Affiliation(s)
- Ibrahim Jantan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Laiba Arshad
- Department of Pharmacy, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Abdi Wira Septama
- Research Center for Pharmaceutical Ingredient and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong Science Center, West Java, Indonesia
| | - Md Areeful Haque
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zeti-Azura Mohamed-Hussein
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia.,Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Nisha T Govender
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| |
Collapse
|
24
|
Metformin ameliorates doxorubicin-induced cardiotoxicity targeting HMGB1/TLR4/NLRP3 signaling pathway in mice. Life Sci 2023; 316:121390. [PMID: 36649752 DOI: 10.1016/j.lfs.2023.121390] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
AIMS Oxidative stress and inflammation have been linked to doxorubicin (DOX)-induced cardiotoxicity, while the exact molecular processes are currently under investigation. The goal of this study is to investigate Metformin's preventive role in cardiotoxicity induced by DOX. MATERIALS AND METHODS Male albino mice were divided randomly into 4 groups. Metformin (Met) 200 mg/kg orally (p.o.) was given either alone or when combined with a single DOX (15 mg/kg; i.p.). A control group of 5 mice was also provided. Met was initiated 7 days before DOX, lasting for 14 days. Besides, docking studies of Met towards HMGB1, NF-kB, and caspase 3 were performed. KEY FINDINGS Heart weight, cardiac troponin T (cTnT), creatine kinase Myocardial Band (CK-MB) levels, malondialdehyde (MDA), and nitric oxide (NO) contents all increased significantly when comparing the DOX group to the control normal group. Conversely, there was a substantial decline in superoxide dismutase (SOD) and glutathione peroxidase (GSH). DOX group depicts a high expression of TLR4, HMGB1, and caspase 3. Immunohistochemical staining revealed an increase in NLRP3 inflammasome and NF-κB expressions alongside histopathological modifications. Additionally, Met dramatically decreased cardiac weight, CK-MB, and cTnT while maintaining the tissues' histological integrity. Inflammatory biomarkers, including HMGB1, TLR4, NF-κB, inflammasome, and caspase 3 were reduced after Met therapy. Furthermore, molecular docking studies suggested the antagonistic activity of Met towards HMGB1, NF-κB, and caspase 3 target receptors. SIGNIFICANCE According to recent evidence, Met is a desirable strategy for improving cardiac toxicity produced by DOX by inhibiting the HMGB1/NF-κB inflammatory pathway, thus preserving heart function.
Collapse
|
25
|
Eloutify YT, El-Shiekh RA, Ibrahim KM, Hamed AR, Al-Karmalawy AA, Shokry AA, Ahmed YH, Avula B, Katragunta K, Khan IA, Meselhy MR. Bioactive fraction from Plumeria obtusa L. attenuates LPS-induced acute lung injury in mice and inflammation in RAW 264.7 macrophages: LC/QToF-MS and molecular docking. Inflammopharmacology 2023; 31:859-875. [PMID: 36773191 PMCID: PMC10140140 DOI: 10.1007/s10787-023-01144-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/26/2022] [Indexed: 02/12/2023]
Abstract
In this study, the anti-inflammatory effects of the methanolic extract (TE) of Plumeria obtusa L. (aerial parts) and its fractions were evaluated in vitro, and active fraction was evaluated in vivo. Among tested extracts, dichloromethane fraction (DCM-F) exhibited the strongest inhibition of lipopolysaccharide (LPS)-induced nitric oxide (NO) in RAW 264.7 macrophages. The effect of DCM-F on LPS-induced acute lung injury (ALI) in mice was studied. The animals were divided into five groups (n = 7) randomly; Gp I: negative control, GP II: positive control (LPS group), GP III: standard (dexamethasone, 2 mg/kg b.wt), GP IV and V: DCM-F (100 mg/kg), and DEM-F (200 mg/kg), respectively. DCM-F at a dose of 200 mg/kg suppressed the ability of LPS to increase the levels of nitric oxide synthase (iNOS), NO, tumor necrosis factor-α (TNF-α), and interleukin 6 (IL-6), as measured by ELISA. In addition, the expression of cyclooxygenase-2 (COX-2) was reduced (determined by immunohistochemistry) and the level of malondialdehyde (MDA) was decreased while that of catalase was restored to the normal values. Furthermore, the histopathological scores of inflammation induced by LPS were reduced. Twenty-two compounds were tentatively identified in DCM-F using LC/ESI-QToF with iridoids, phenolic derivatives and flavonoids as major constituents. Identified compounds were subjected to two different molecular docking processes against iNOS and prostaglandin E synthase-1 target receptors. Notably, protoplumericin A and 13-O-coumaroyl plumeride were the most promising members compared to the co-crystallized inhibitor in each case. These findings suggested that DCM-F attenuates the LPS-induced ALI in experimental animals through its anti-inflammatory and antioxidant potential.
Collapse
Affiliation(s)
- Yousra T Eloutify
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo, 11562, Egypt
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo, 11562, Egypt
| | - Khaled Meselhy Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo, 11562, Egypt
| | - Ahmed R Hamed
- Chemistry of Medicinal Plants Department and Biology Unit, Central Lab for the Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El-Bohouth St, Giza, 12622, Dokki, Egypt
| | - Ahmed A Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, 12566, Egypt
| | - Aya A Shokry
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Yasmine H Ahmed
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Bharathi Avula
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Kumar Katragunta
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Ikhlas A Khan
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, 38677, USA.,Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Meselhy R Meselhy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo, 11562, Egypt.
| |
Collapse
|
26
|
Al-Karmalawy AA, Nafie MS, Shaldam MA, Elmaaty AA, Antar SA, El-Hamaky AA, Saleh MA, Elkamhawy A, Tawfik HO. Ligand-Based Design on the Dog-Bone-Shaped BIBR1532 Pharmacophoric Features and Synthesis of Novel Analogues as Promising Telomerase Inhibitors with In Vitro and In Vivo Evaluations. J Med Chem 2023; 66:777-792. [PMID: 36525642 DOI: 10.1021/acs.jmedchem.2c01668] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Telomerase is an outstanding biological target for cancer treatment. BIBR1532 is a non-nucleoside selective telomerase inhibitor; however, it experiences ineligible pharmacokinetics. Herein, we aimed to design new BIBR1532-based analogues as promising telomerase inhibitors. Therefore, two novel series of pyridazine-linked to cyclopenta[b]thiophene (8a-f) and tetrahydro-1-benzothiophene (9a-f) were synthesized. A quantitative real-time polymerase chain reaction was utilized to investigate the telomerase inhibitory activity of candidates. Notably, 8e and 9e exhibited the best inhibition profiles. Moreover, 8e showed strong antitumor effects against both MCF-7 and A549 cancer cell lines. The effects of 8e on the cell cycle and apoptosis were measured. Besides, 8e was evaluated for its in vivo antitumor activity using solid Ehrlich carcinoma. The reduction in both the tumor weight and volume was greater than doxorubicin. Also, molecular docking and ADME studies were performed. Finally, a SAR study was conducted to gain further insights into the different telomerase inhibition potentials upon variable structural modifications.
Collapse
Affiliation(s)
- Ahmed A Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt
| | - Mohamed S Nafie
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Ayman Abo Elmaaty
- Department of Medicinal Chemistry, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt
| | - Samar A Antar
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University, New Damietta 34518, Egypt.,Center for Vascular and Heart Research, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, Virginia 24016, United States
| | - Anwar A El-Hamaky
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Mohamed A Saleh
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, The United Arab Emirates.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed Elkamhawy
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea.,Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
27
|
Meng JR, Liu J, Fu L, Shu T, Yang L, Zhang X, Jiang ZH, Bai LP. Anti-Entry Activity of Natural Flavonoids against SARS-CoV-2 by Targeting Spike RBD. Viruses 2023; 15:160. [PMID: 36680200 PMCID: PMC9862759 DOI: 10.3390/v15010160] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
COVID-19 is still a global public health concern, and the SARS-CoV-2 mutations require more effective antiviral agents. In this study, the antiviral entry activity of thirty-one flavonoids was systematically evaluated by a SARS-CoV-2 pseudovirus model. Twenty-four flavonoids exhibited antiviral entry activity with IC50 values ranging from 10.27 to 172.63 µM and SI values ranging from 2.33 to 48.69. The structure-activity relationship of these flavonoids as SARS-CoV-2 entry inhibitors was comprehensively summarized. A subsequent biolayer interferometry assay indicated that flavonoids bind to viral spike RBD to block viral interaction with ACE2 receptor, and a molecular docking study also revealed that flavonols could bind to Pocket 3, the non-mutant regions of SARS-CoV-2 variants, suggesting that flavonols might be also active against virus variants. These natural flavonoids showed very low cytotoxic effects on human normal cell lines. Our findings suggested that natural flavonoids might be potential antiviral entry agents against SARS-CoV-2 via inactivating the viral spike. It is hoped that our study will provide some encouraging evidence for the use of natural flavonoids as disinfectants to prevent viral infections.
Collapse
Affiliation(s)
- Jie-Ru Meng
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa 999078, China
| | - Jiazheng Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa 999078, China
| | - Lu Fu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa 999078, China
| | - Tong Shu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Lingzhi Yang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa 999078, China
| | - Li-Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa 999078, China
| |
Collapse
|
28
|
Khan T, Raza S. Exploration of Computational Aids for Effective Drug Designing and Management of Viral Diseases: A Comprehensive Review. Curr Top Med Chem 2023; 23:1640-1663. [PMID: 36725827 DOI: 10.2174/1568026623666230201144522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/14/2022] [Accepted: 12/19/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Microbial diseases, specifically originating from viruses are the major cause of human mortality all over the world. The current COVID-19 pandemic is a case in point, where the dynamics of the viral-human interactions are still not completely understood, making its treatment a case of trial and error. Scientists are struggling to devise a strategy to contain the pandemic for over a year and this brings to light the lack of understanding of how the virus grows and multiplies in the human body. METHODS This paper presents the perspective of the authors on the applicability of computational tools for deep learning and understanding of host-microbe interaction, disease progression and management, drug resistance and immune modulation through in silico methodologies which can aid in effective and selective drug development. The paper has summarized advances in the last five years. The studies published and indexed in leading databases have been included in the review. RESULTS Computational systems biology works on an interface of biology and mathematics and intends to unravel the complex mechanisms between the biological systems and the inter and intra species dynamics using computational tools, and high-throughput technologies developed on algorithms, networks and complex connections to simulate cellular biological processes. CONCLUSION Computational strategies and modelling integrate and prioritize microbial-host interactions and may predict the conditions in which the fine-tuning attenuates. These microbial-host interactions and working mechanisms are important from the aspect of effective drug designing and fine- tuning the therapeutic interventions.
Collapse
Affiliation(s)
- Tahmeena Khan
- Department of Chemistry, Integral University, Lucknow, 226026, U.P., India
| | - Saman Raza
- Department of Chemistry, Isabella Thoburn College, Lucknow, 226007, U.P., India
| |
Collapse
|
29
|
Yang R, Yang X, Zhang F. New Perspectives of Taxifolin in Neurodegenerative Diseases. Curr Neuropharmacol 2023; 21:2097-2109. [PMID: 36740800 PMCID: PMC10556370 DOI: 10.2174/1570159x21666230203101107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), cerebral amyloid angiopathy (CAA), and Huntington's disease (HD) are characterized by cognitive and motor dysfunctions and neurodegeneration. These diseases have become more severe over time and cannot be cured currently. Until now, most treatments for these diseases are only used to relieve the symptoms. Taxifolin (TAX), 3,5,7,3,4-pentahydroxy flavanone, also named dihydroquercetin, is a compound derived primarily from Douglas fir and Larix gemelini. TAX has been confirmed to exhibit various pharmacological activities, including anti-inflammation, anti-cancer, anti-virus, and regulation of oxidative stress effects. In the central nervous system, TAX has been demonstrated to inhibit Aβ fibril formation, protect neurons and improve cerebral blood flow, cognitive ability, and dyskinesia. At present, TAX is only applied as a health additive in clinical practice. This review aimed to summarize the application of TAX in neurodegenerative diseases and the underlying neuroprotective mechanisms, such as suppressing inflammation, attenuating oxidative stress, preventing Aβ protein formation, maintaining dopamine levels, and thus reducing neuronal loss.
Collapse
Affiliation(s)
- Rong Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Center, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xinxing Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Center, Zunyi Medical University, Zunyi, Guizhou, China
| | - Feng Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Center, Zunyi Medical University, Zunyi, Guizhou, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
30
|
Ahmed S, Kamel MS, Aboelez MO, Ma X, Al-Karmalawy AA, Mousa SAS, Shokr EK, Abdel-Ghany H, Belal A, El Hamd MA, Al Shehri ZS, El Aleem Ali Ali El-Remaily MA. Thieno[2,3- b]thiophene Derivatives as Potential EGFR WT and EGFRT 790M Inhibitors with Antioxidant Activities: Microwave-Assisted Synthesis and Quantitative In Vitro and In Silico Studies. ACS OMEGA 2022; 7:45535-45544. [PMID: 36530244 PMCID: PMC9753534 DOI: 10.1021/acsomega.2c06219] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/08/2022] [Indexed: 05/13/2023]
Abstract
Microwave-assisted synthesis and spectral analysis of certain novel derivatives of 3,4-diaminothieno[2,3-b]thiophene-2,5-dicarbonitrile 1-7 were carried out. Compounds 1-7 were examined for cytotoxicity against MCF-7 and A549 cell lines using the quantitative MTT method, and gefitinib and erlotinib were used as reference standards. Compounds 1-7 were shown to be more active than erlotinib against the two cell lines tested. Compound 2 outperformed regular erlotinib by 4.42- and 4.12-fold in MCF-7 and A549 cells, respectively. The most cytotoxic compounds were subsequently studied for their suppression of kinase activity using the homogeneous time-resolved fluorescence assay versus epidermal growth factor receptor (EGFRWT) and EGFR790M. With IC50 values of 0.28 ± 0.03 and 5.02 ± 0.19, compound 2 was demonstrated to be the most effective against both forms of EGFR. Furthermore, compound 2 also had the best antioxidant property, decreasing the radical scavenging activity by 78%. Molecular docking research, on the other hand, was carried out for the analyzed candidates (1-7) to study their mechanism of action as EGFR inhibitors. In silico absorption, distribution, metabolism, excretion, and toxicity tests were also performed to explain the physicochemical features of the examined derivatives.
Collapse
Affiliation(s)
- Sanaa
A. Ahmed
- Department
of Pharmacology, Faculty of Medicine, Sohag
University, Sohag82524, Egypt
| | - Moumen S. Kamel
- Department
of Chemistry, Faculty of Science, Sohag
University, Sohag82524, Egypt
| | - Moustafa O. Aboelez
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag82524, Egypt
| | - Xiang Ma
- School
of Pharmacy, Tongji Medical College, Huazhong
University of Science and Technology, Wuhan430030, China
| | - Ahmed A. Al-Karmalawy
- Pharmaceutical
Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th
of October City, Giza12566, Egypt
| | - Sayed A. S. Mousa
- Department
of Chemistry, Faculty of Science, Al-Azhar
University, Assiut Branch, Assiut71524, Egypt
| | - Elders Kh. Shokr
- Department
of Physics, Faculty of Science, Sohag University, Sohag82524, Egypt
| | - H. Abdel-Ghany
- Department
of Chemistry, Faculty of Science, Sohag
University, Sohag82524, Egypt
| | - Amany Belal
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef62514, Egypt
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif21944, Saudi Arabia
| | - Mohamed A. El Hamd
- Department
of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra11961, Saudi Arabia
- Department of Pharmaceutical Analytical Chemistry, Faculty
of Pharmacy, South Valley University, Qena83523, Egypt
- . Phone: +966554117991
| | - Zafer S. Al Shehri
- Department of Medical Laboratories, College
of Applied Medical Sciences, Shaqra University, Shaqra11961, Saudi Arabia
| | | |
Collapse
|
31
|
Ezz Eldin RR, Saleh MA, Alotaibi MH, Alsuair RK, Alzahrani YA, Alshehri FA, Mohamed AF, Hafez SM, Althoqapy AA, Khirala SK, Amin MM, A. F Y, AbdElwahab AH, Alesawy MS, Elmaaty AA, Al-Karmalawy AA. Ligand-based design and synthesis of N'-Benzylidene-3,4-dimethoxybenzohydrazide derivatives as potential antimicrobial agents; evaluation by in vitro, in vivo, and in silico approaches with SAR studies. J Enzyme Inhib Med Chem 2022; 37:1098-1119. [PMID: 35430934 PMCID: PMC9037180 DOI: 10.1080/14756366.2022.2063282] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 02/08/2023] Open
Abstract
Herein, a series of N'-benzylidene-3,4-dimethoxybenzohydrazide derivatives were designed and synthesised to target the multidrug efflux pump (MATE). The antibacterial activities were screened against S. aureus, Acinetobacter, S. typhi, E. coli, and P. aeruginosa, whereas their antifungal activities were screened against C. albicans. Compounds 4a, 4h, and 4i showed the most promising antibacterial and antifungal activities. Moreover, compounds 4h and 4i being the broader and superior members regarding their antimicrobial effects were selected to be further evaluated via in vivo testing using biochemical analysis and liver/kidney histological examination. Additionally, molecular docking was carried out to attain further deep insights into the synthesised compounds' binding modes. Also, ADMET studies were performed to investigate the physicochemical/pharmacokinetics features and toxicity parameters of the synthesised derivatives. Finally, a structure-antimicrobial activity relationship study was established to facilitate further structural modifications in the future. HighlightsA series of new N'-benzylidene-3,4-dimethoxybenzohydrazide derivatives were designed and synthesised targeting the multidrug efflux pump (MATE) guided by the pharmacophoric features of the co-crystallized native inhibitor of the target protein.The newly synthesised compounds were assessed through in vitro, in vivo, and in silico approaches.Using the agar well diffusion assay, the antibacterial activities of the synthesised compounds were screened against S. aureus, Acinetobacter, S. typhi, E. coli, and P. aeruginosa, whereas, their antifungal activities were screened against C. albicans.The minimal inhibitory concentration (MIC) and the minimal bactericidal concentration (MBC) of the synthesised compounds were investigated on variable microbial species.Compounds (4h and 4i) -as the broader and superior members regarding their antimicrobial effects- were further evaluated via in vivo testing using bio-chemical analysis and liver/kidney histological examination.A molecular docking study and ADMET in silico studies were performed.A structure-antimicrobial activity relationship study was established to facilitate further structural modifications in the future.
Collapse
Affiliation(s)
- Rogy R. Ezz Eldin
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Marwa A. Saleh
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Mohammad Hayal Alotaibi
- National Center for Chemical Technologies, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Reem K. Alsuair
- National Center for Chemical Technologies, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Yahya A. Alzahrani
- National Center for Chemical Technologies, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Feras A. Alshehri
- National Center for Chemical Technologies, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Amany F. Mohamed
- Department of Anatomy and Embryology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Shaimaa M. Hafez
- Department of Anatomy and Embryology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Azza Ali Althoqapy
- Department of Microbiology and Immunology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Seham K. Khirala
- Department of Microbiology and Immunology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Mona M. Amin
- Department of Pharmacology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Yousuf A. F
- Department of Physiology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Azza H. AbdElwahab
- Department of Physiology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Mohamed S. Alesawy
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al‐Azhar University, Cairo, Egypt
| | - Ayman Abo Elmaaty
- Department of Medicinal Chemistry, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Ahmed A. Al-Karmalawy
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| |
Collapse
|
32
|
Hussein ME, Mohamed OG, El-Fishawy AM, El-Askary HI, Hamed AA, Abdel-Aziz MM, Alnajjar R, Belal A, Naglah AM, Almehizia AA, Al-Karmalawy AA, Tripathi A, El Senousy AS. Anticholinesterase Activity of Budmunchiamine Alkaloids Revealed by Comparative Chemical Profiling of Two Albizia spp., Molecular Docking and Dynamic Studies. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11233286. [PMID: 36501324 PMCID: PMC9738009 DOI: 10.3390/plants11233286] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/22/2022] [Accepted: 11/15/2022] [Indexed: 05/31/2023]
Abstract
Alzheimer's disease remains a global health challenge and an unmet need requiring innovative approaches to discover new drugs. The current study aimed to investigate the inhibitory activity of Albizia lucidior and Albizia procera leaves against acetylcholinesterase enzyme in vitro and explore their chemical compositions. Metabolic profiling of the bioactive plant, A. lucidior, via UHPLC/MS/MS-based Molecular Networking highlighted the richness of its ethanolic extract with budmunchiamine alkaloids, fourteen budmunchiamine alkaloids as well as four new putative ones were tentatively identified for the first time in A. lucidior. Pursuing these alkaloids in the fractions of A. lucidior extract via molecular networking revealed that alkaloids were mainly concentrated in the ethyl acetate fraction. In agreement, the alkaloid-rich fraction showed the most promising anticholinesterase activity (IC50 5.26 µg/mL) versus the ethanolic extract and ethyl acetate fraction of A. lucidior (IC50 24.89 and 6.90 µg/mL, respectively), compared to donepezil (IC50 3.90 µg/mL). Furthermore, deep in silico studies of tentatively identified alkaloids of A. lucidior were performed. Notably, normethyl budmunchiamine K revealed superior stability and receptor binding affinity compared to the two used references: donepezil and the co-crystallized inhibitor (MF2 700). This was concluded based on molecular docking, molecular dynamics simulations and molecular mechanics generalized born/solvent accessibility (MM-GBSA) calculations.
Collapse
Affiliation(s)
- Mai E. Hussein
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo 11562, Egypt
| | - Osama G. Mohamed
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo 11562, Egypt
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ahlam M. El-Fishawy
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo 11562, Egypt
| | - Hesham I. El-Askary
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo 11562, Egypt
| | - Ahmed A. Hamed
- Microbial Chemistry Department, National Research Centre, 33 El-Buhouth Street, Dokki, Giza 12622, Egypt
| | - Marwa M. Abdel-Aziz
- Regional Center for Mycology and Biotechnology (RCMB), Al-Azhar University, Cairo 11651, Egypt
| | - Radwan Alnajjar
- Department of Chemistry, Faculty of Science, University of Benghazi, Benghazi 16063, Libya
- PharmD, Faculty of Pharmacy, Libyan International Medical University, Benghazi 16063, Libya
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Amany Belal
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Ahmed M. Naglah
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Peptide Chemistry Department, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Abdulrahman A. Almehizia
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed A. Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt
| | - Ashootosh Tripathi
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amira S. El Senousy
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo 11562, Egypt
| |
Collapse
|
33
|
Antar SA, Saleh MA, Al-Karmalawy AA. Investigating the possible mechanisms of pirfenidone to be targeted as a promising anti-inflammatory, anti-fibrotic, anti-oxidant, anti-apoptotic, anti-tumor, and/or anti-SARS-CoV-2. Life Sci 2022; 309:121048. [PMID: 36209833 PMCID: PMC9536875 DOI: 10.1016/j.lfs.2022.121048] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/23/2022] [Accepted: 10/02/2022] [Indexed: 01/10/2023]
Abstract
Pirfenidone (PFD) is a non-peptide synthetic chemical that inhibits the production of transforming growth factor-beta 1 (TGF-β1), tumor necrosis factor-alpha (TNF-α), platelet-derived growth factor (PDGF), Interleukin 1 beta (IL-1β), and collagen 1 (COL1A1), all of which have been linked to the prevention or removal of excessive scar tissue deposition in many organs. PFD has been demonstrated to decrease apoptosis, downregulate angiotensin-converting enzyme (ACE) receptor expression, reduce inflammation through many routes, and alleviate oxidative stress in pneumocytes and other cells while protecting them from COVID-19 invasion and cytokine storm. Based on the mechanism of action of PFD and the known pathophysiology of COVID-19, it was recommended to treat COVID-19 patients. The use of PFD as a treatment for a range of disorders is currently being studied, with an emphasis on outcomes related to reduced inflammation and fibrogenesis. As a result, rather than exploring the molecule's chemical characteristics, this review focuses on innovative PFD efficacy data. Briefly, herein we tried to investigate, discuss, and illustrate the possible mechanisms of actions for PFD to be targeted as a promising anti-inflammatory, anti-fibrotic, anti-oxidant, anti-apoptotic, anti-tumor, and/or anti-SARS-CoV-2 candidate.
Collapse
Affiliation(s)
- Samar A Antar
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University, New Damietta 34518, Egypt.
| | - Mohamed A Saleh
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, the United Arab Emirates; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed A Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt.
| |
Collapse
|
34
|
Investigating the Potential Anti-SARS-CoV-2 and Anti-MERS-CoV Activities of Yellow Necklacepod among Three Selected Medicinal Plants: Extraction, Isolation, Identification, In Vitro, Modes of Action, and Molecular Docking Studies. Metabolites 2022; 12:metabo12111109. [PMID: 36422249 PMCID: PMC9696309 DOI: 10.3390/metabo12111109] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
The anti-MERS-CoV activities of three medicinal plants (Azadirachta indica, Artemisia judaica, and Sophora tomentosa) were evaluated. The highest viral inhibition percentage (96%) was recorded for S. tomentosa. Moreover, the mode of action for both S. tomentosa and A. judaica showed 99.5% and 92% inhibition, respectively, with virucidal as the main mode of action. Furthermore, the anti-MERS-CoV and anti-SARS-CoV-2 activities of S. tomentosa were measured. Notably, the anti-SARS-CoV-2 activity of S. tomentosa was very high (100%) and anti-MERS-CoV inhibition was slightly lower (96%). Therefore, the phytochemical investigation of the very promising S. tomentosa L. led to the isolation and structural identification of nine compounds (1−9). Then, both the CC50 and IC50 values for the isolated compounds against SARS-CoV-2 were measured. Compound 4 (genistein 4’-methyl ether) achieved superior anti-SARS-CoV-2 activity with an IC50 value of 2.13 µm. Interestingly, the mode of action of S. tomentosa against SARS-CoV-2 showed that both virucidal and adsorption mechanisms were very effective. Additionally, the IC50 values of S. tomentosa against SARS-CoV-2 and MERS-CoV were found to be 1.01 and 3.11 µg/mL, respectively. In addition, all the isolated compounds were subjected to two separate molecular docking studies against the spike (S) and main protease (Mpr°) receptors of SARS-CoV-2.
Collapse
|
35
|
Glimepiride ameliorates renal toxicity induced by cadmium in mice: Modulation of Jun N terminal kinase (JNK)/nuclear factor kappa B (NF-κB) and phosphatidylinositol 3-kinases (PI3K)/protein kinase (AKT) pathways. Life Sci 2022; 311:121184. [DOI: 10.1016/j.lfs.2022.121184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
|
36
|
Zekeya N, Mamiro B, Ndossi H, Mallya RC, Kilonzo M, Kisingo A, Mtambo M, Kideghesho J, Chilongola J. Screening and evaluation of cytotoxicity and antiviral effects of secondary metabolites from water extracts of Bersama abyssinica against SARS-CoV-2 Delta. BMC Complement Med Ther 2022; 22:280. [PMID: 36289484 PMCID: PMC9598020 DOI: 10.1186/s12906-022-03754-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 10/07/2022] [Indexed: 11/10/2022] Open
Abstract
Background Bersama abyssinica is a common herb in Africa, with diverse medical uses in different areas. The plant is well-known in Tanzania for treating respiratory disorders such as TB, tonsillitis, bronchitis, and asthma, and it has lately been utilized to treat COVID-19 symptoms. Water extract of leaf and stem bark has been registered as an herbal medication known as 'Coviba Dawa' in Tanzania for the relief of bacterial respiratory infections. The extracts, however, have not been scientifically tested for their anti-viral activities. The aim of this work was to test for the cytotoxicity and antiviral effects of bioactive ingredients from B. abyssinica extracts against the Delta variant of the SARS-CoV-2 coronavirus. Methods B. abyssinica leaves and stem bark were dried under shade in room temperature and then pulverized to obtain small pieces before soaking into different solvents. One hundred grams of each, leaves and stem bark, were extracted in petroleum ether, dichloromethane, ethyl acetate and methanol. Water extract was obtained by decoction of stem bark and leaves into water. Phenols, flavonoids, tannins, and antioxidants were confirmed as components of the extracts. Analysis of polar extracts of bark stem bark and leaves was done. Antiviral screening and cytotoxicity experiments were conducted in a Biosafety Level 3 (BSL-3) Laboratory facility according to International Standard Operating Procedures (SOPs). Results By the use of LC–MS/MS analysis, this study confirmed the existence of four phenolic compounds in B. abyssinica water extract; 2,4-di-tert-butylphenol, 4-formyl-2-methoxyphenyl propionate, 7,8-Dihydroxy-4-methylcoumarin, and 2,3, 6-trimethoxyflavone with antioxidant activity. This study showed that, while the water extracts of B. abyssinica had significant antiviral activity against SARS Cov2 virus, it showed no cytotoxicity effect on Vero E6 cells. In particular, the water extract (Coviba dawa) showed 75% while ethylacetate fraction of B. abyssinica leaves showed a 50% in vitro viral inhibition, indicating that these substances may be useful for the development of future anti-viral agents. Conclusion We therefore recommend isolation of compounds for further profiling and development with a broader concentration range. We further recommend studies that determine the antiviral activity of extracts of B.abyssinica on other viral pathogens of clinical concern. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03754-3.
Collapse
Affiliation(s)
- Never Zekeya
- grid.442468.80000 0001 0566 9529Department of Wildlife Management, College of African Wildlife Management, CAWM, P.O. Box 3031, Mweka, Moshi, Kilimanjaro Tanzania
| | - Bertha Mamiro
- grid.463666.70000 0001 0358 5436Tanzania Industrial Research and Development Organization (TIRDO), P.O. Box 23235, Msasani, Dar es Salaam, Tanzania
| | - Humphrey Ndossi
- grid.463666.70000 0001 0358 5436Tanzania Industrial Research and Development Organization (TIRDO), P.O. Box 23235, Msasani, Dar es Salaam, Tanzania
| | - Rehema Chande Mallya
- grid.25867.3e0000 0001 1481 7466School of Pharmacy and Pharmacognosy, Muhimbili University of Health and Allied Sciences, P.O. Box 65014, Dar es salaam, Tanzania
| | - Mhuji Kilonzo
- grid.442459.a0000 0001 1998 2954University of Dodoma, Dodoma, Tanzania
| | - Alex Kisingo
- grid.442468.80000 0001 0566 9529Department of Wildlife Management, College of African Wildlife Management, CAWM, P.O. Box 3031, Mweka, Moshi, Kilimanjaro Tanzania
| | - Mkumbukwa Mtambo
- grid.463666.70000 0001 0358 5436Tanzania Industrial Research and Development Organization (TIRDO), P.O. Box 23235, Msasani, Dar es Salaam, Tanzania
| | - Jafari Kideghesho
- grid.442468.80000 0001 0566 9529Department of Wildlife Management, College of African Wildlife Management, CAWM, P.O. Box 3031, Mweka, Moshi, Kilimanjaro Tanzania
| | - Jaffu Chilongola
- grid.412898.e0000 0004 0648 0439Kilimanjaro Christian Medical University College, P.O. Box 2240, Moshi, Kilimanjaro Tanzania
| |
Collapse
|
37
|
Wang Z, Belecciu T, Eaves J, Reimers M, Bachmann MH, Woldring D. Phytochemical drug discovery for COVID-19 using high-resolution computational docking and machine learning assisted binder prediction. J Biomol Struct Dyn 2022:1-21. [PMID: 35993534 DOI: 10.1080/07391102.2022.2112976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
The COVID-19 pandemic has resulted in millions of deaths around the world. Multiple vaccines are in use, but there are many underserved locations that do not have adequate access to them. Variants may emerge that are highly resistant to existing vaccines, and therefore cheap and readily obtainable therapeutics are needed. Phytochemicals, or plant chemicals, can possibly be such therapeutics. Phytochemicals can be used in a polypharmacological approach, where multiple viral proteins are inhibited and escape mutations are made less likely. Finding the right phytochemicals for viral protein inhibition is challenging, but in-silico screening methods can make this a more tractable problem. In this study, we screen a wide range of natural drug products against a comprehensive set of SARS-CoV-2 proteins using a high-resolution computational workflow. This workflow consists of a structure-based virtual screening (SBVS), where an initial phytochemical library was docked against all selected protein structures. Subsequently, ligand-based virtual screening (LBVS) was employed, where chemical features of 34 lead compounds obtained from the SBVS were used to predict 53 lead compounds from a larger phytochemical library via supervised learning. A computational docking validation of the 53 predicted leads obtained from LBVS revealed that 28 of them elicit strong binding interactions with SARS-CoV-2 proteins. Thus, the inclusion of LBVS resulted in a 4-fold increase in the lead discovery rate. Of the total 62 leads, 18 showed promising pharmacokinetic properties in a computational ADME screening. Collectively, this study demonstrates the advantage of incorporating machine learning elements into a virtual screening workflow.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zirui Wang
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.,Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - Theodore Belecciu
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.,Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - Joelle Eaves
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.,Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - Mark Reimers
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.,Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| | - Michael H Bachmann
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Daniel Woldring
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.,Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
38
|
Tarasova OA, Rudik AV, Biziukova NY, Filimonov DA, Poroikov VV. Chemical named entity recognition in the texts of scientific publications using the naïve Bayes classifier approach. J Cheminform 2022; 14:55. [PMID: 35964150 PMCID: PMC9375066 DOI: 10.1186/s13321-022-00633-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022] Open
Abstract
Motivation Application of chemical named entity recognition (CNER) algorithms allows retrieval of information from texts about chemical compound identifiers and creates associations with physical–chemical properties and biological activities. Scientific texts represent low-formalized sources of information. Most methods aimed at CNER are based on machine learning approaches, including conditional random fields and deep neural networks. In general, most machine learning approaches require either vector or sparse word representation of texts. Chemical named entities (CNEs) constitute only a small fraction of the whole text, and the datasets used for training are highly imbalanced. Methods and results We propose a new method for extracting CNEs from texts based on the naïve Bayes classifier combined with specially developed filters. In contrast to the earlier developed CNER methods, our approach uses the representation of the data as a set of fragments of text (FoTs) with the subsequent preparati`on of a set of multi-n-grams (sequences from one to n symbols) for each FoT. Our approach may provide the recognition of novel CNEs. For CHEMDNER corpus, the values of the sensitivity (recall) was 0.95, precision was 0.74, specificity was 0.88, and balanced accuracy was 0.92 based on five-fold cross validation. We applied the developed algorithm to the extracted CNEs of potential Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro) inhibitors. A set of CNEs corresponding to the chemical substances evaluated in the biochemical assays used for the discovery of Mpro inhibitors was retrieved. Manual analysis of the appropriate texts showed that CNEs of potential SARS-CoV-2 Mpro inhibitors were successfully identified by our method. Conclusion The obtained results show that the proposed method can be used for filtering out words that are not related to CNEs; therefore, it can be successfully applied to the extraction of CNEs for the purposes of cheminformatics and medicinal chemistry. Supplementary Information The online version contains supplementary material available at 10.1186/s13321-022-00633-4.
Collapse
Affiliation(s)
- O A Tarasova
- Laboratory of Structure-Function Based Drug Design, Institute of Biomedical Chemistry, 10 bldg. 8, Pogodinskaya Str., Moscow, 119121, Russia.
| | - A V Rudik
- Laboratory of Structure-Function Based Drug Design, Institute of Biomedical Chemistry, 10 bldg. 8, Pogodinskaya Str., Moscow, 119121, Russia
| | - N Yu Biziukova
- Laboratory of Structure-Function Based Drug Design, Institute of Biomedical Chemistry, 10 bldg. 8, Pogodinskaya Str., Moscow, 119121, Russia
| | - D A Filimonov
- Laboratory of Structure-Function Based Drug Design, Institute of Biomedical Chemistry, 10 bldg. 8, Pogodinskaya Str., Moscow, 119121, Russia
| | - V V Poroikov
- Laboratory of Structure-Function Based Drug Design, Institute of Biomedical Chemistry, 10 bldg. 8, Pogodinskaya Str., Moscow, 119121, Russia
| |
Collapse
|
39
|
Robust antiviral activity of commonly prescribed antidepressants against emerging coronaviruses: in vitro and in silico drug repurposing studies. Sci Rep 2022; 12:12920. [PMID: 35902647 PMCID: PMC9331004 DOI: 10.1038/s41598-022-17082-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/20/2022] [Indexed: 12/11/2022] Open
Abstract
During the current coronavirus disease 2019 (COVID-19) pandemic, symptoms of depression are commonly documented among both symptomatic and asymptomatic quarantined COVID-19 patients. Despite that many of the FDA-approved drugs have been showed anti-SARS-CoV-2 activity in vitro and remarkable efficacy against COVID-19 in clinical trials, no pharmaceutical products have yet been declared to be fully effective for treating COVID-19. Antidepressants comprise five major drug classes for the treatment of depression, neuralgia, migraine prophylaxis, and eating disorders which are frequently reported symptoms in COVID-19 patients. Herein, the efficacy of eight frequently prescribed FDA-approved antidepressants on the inhibition of both SARS-CoV-2 and MERS-CoV was assessed. Additionally, the in vitro anti-SARS-CoV-2 and anti-MERS-CoV activities were evaluated. Furthermore, molecular docking studies have been performed for these drugs against the spike (S) and main protease (Mpro) pockets of both SARS-CoV-2 and MERS-CoV. Results showed that Amitriptyline, Imipramine, Paroxetine, and Sertraline had potential anti-viral activities. Our findings suggested that the aforementioned drugs deserve more in vitro and in vivo studies targeting COVID-19 especially for those patients suffering from depression.
Collapse
|
40
|
Bio-Guided Isolation of SARS-CoV-2 Main Protease Inhibitors from Medicinal Plants: In Vitro Assay and Molecular Dynamics. PLANTS 2022; 11:plants11151914. [PMID: 35893619 PMCID: PMC9332707 DOI: 10.3390/plants11151914] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 12/24/2022]
Abstract
Since the emergence of the pandemic of the coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the discovery of antiviral phytoconstituents from medicinal plants against SARS-CoV-2 has been comprehensively researched. In this study, thirty-three plants belonging to seventeen different families used traditionally in Saudi Arabia were tested in vitro for their ability to inhibit the SARS-CoV-2 main protease (MPRO). Major constituents of the bio-active extracts were isolated and tested for their inhibition potential against this enzyme; in addition, their antiviral activity against the SARS-CoV-2 Egyptian strain was assessed. Further, the thermodynamic stability of the best active compounds was studied through focused comparative insights for the active metabolites regarding ligand–target binding characteristics at the molecular level. Additionally, the obtained computational findings provided useful directions for future drug optimization and development. The results revealed that Psiadia punctulata, Aframomum melegueta, and Nigella sativa extracts showed a high percentage of inhibition of 66.4, 58.7, and 31.5%, against SARS-CoV-2 MPRO, respectively. The major isolated constituents of these plants were identified as gardenins A and B (from P. punctulata), 6-gingerol and 6-paradol (from A. melegueta), and thymoquinone (from N. sativa). These compounds are the first to be tested invitro against SARS-CoV-2 MPRO. Among the isolated compounds, only thymoquinone (THY), gardenin A (GDA), 6-gingerol (GNG), and 6-paradol (PAD) inhibited the SARS-CoV-2 MPRO enzyme with inhibition percentages of 63.21, 73.80, 65.2, and 71.8%, respectively. In vitro assessment of SARS-CoV-2 (hCoV-19/Egypt/NRC-03/2020 (accession number on GSAID: EPI_ISL_430820) revealed a strong-to-low antiviral activity of the isolated compounds. THY showed relatively high cytotoxicity and was anti-SARS-CoV-2, while PAD demonstrated a cytotoxic effect on the tested VERO cells with a selectivity index of CC50/IC50 = 1.33 and CC50/IC50 = 0.6, respectively. Moreover, GNG had moderate activity at non-cytotoxic concentrations in vitro with a selectivity index of CC50/IC50 = 101.3/43.45 = 2.3. Meanwhile, GDA showed weak activity with a selectivity index of CC50/IC50 = 246.5/83.77 = 2.9. The thermodynamic stability of top-active compounds revealed preferential stability and SARS-CoV-2 MPRO binding affinity for PAD through molecular-docking-coupled molecular dynamics simulation. The obtained results suggest the treating potential of these plants and/or their active metabolites for COVID-19. However, further in-vivo and clinical investigations are required to establish the potential preventive and treatment effectiveness of these plants and/or their bio-active compounds in COVID-19.
Collapse
|
41
|
Hicks EG, Kandel SE, Lampe JN. Identification of Aloe-derived natural products as prospective lead scaffolds for SARS-CoV-2 main protease (M pro) inhibitors. Bioorg Med Chem Lett 2022; 66:128732. [PMID: 35427739 PMCID: PMC9004148 DOI: 10.1016/j.bmcl.2022.128732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 11/16/2022]
Abstract
In the past two years, the COVID-19 pandemic has caused over 5 million deaths and 250 million infections worldwide. Despite successful vaccination efforts and emergency approval of small molecule therapies, a diverse range of antivirals is still needed to combat the inevitable resistance that will arise from new SARS-CoV-2 variants. The main protease of SARS-CoV-2 (Mpro) is an attractive drug target due to the clinical success of protease inhibitors against other viruses, such as HIV and HCV. However, in order to combat resistance, various chemical scaffolds need to be identified that have the potential to be developed into potent inhibitors. To this end, we screened a high-content protease inhibitor library against Mproin vitro, in order to identify structurally diverse compounds that could be further developed into antiviral leads. Our high-content screening efforts retrieved 27 hits each with > 50% inhibition in our Mpro FRET assay. Of these, four of the top inhibitor compounds were chosen for follow-up due to their potency and drugability (Lipinski's rules of five criteria): anacardic acid, aloesin, aloeresin D, and TCID. Further analysis via dose response curves revealed IC50 values of 6.8 μM, 38.9 μM, 125.3 μM, and 138.0 μM for each compound, respectively. Molecular docking studies demonstrated that the four inhibitors bound at the catalytic active site of Mpro with varying binding energies (-7.5 to -5.6 kcal/mol). Furthermore, Mpro FRET assay kinetic studies demonstrated that Mpro catalysis is better represented by a sigmoidal Hill model than the standard Michaelis-Menten hyperbola, indicating substantial cooperativity of the active enzyme dimer. This result suggests that the dimerization interface could be an attractive target for allosteric inhibitors. In conclusion, we identified two closely-related natural product compounds from the Aloe plant (aloesin and aloeresin D) that may serve as novel scaffolds for Mpro inhibitor design and additionally confirmed the strongly cooperative kinetics of Mpro proteolysis. These results further advance our knowledge of structure-function relationships in Mpro and offer new molecular scaffolds for inhibitor design.
Collapse
Affiliation(s)
- Emily G Hicks
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, CO 80045, United States
| | - Sylvie E Kandel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, CO 80045, United States
| | - Jed N Lampe
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, CO 80045, United States.
| |
Collapse
|
42
|
Deniz FSŞ, Eren G, Orhan IE. Flavonoids as Sirtuin Modulators. Curr Top Med Chem 2022; 22:790-805. [PMID: 35466876 DOI: 10.2174/1568026622666220422094744] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/03/2022] [Accepted: 03/06/2022] [Indexed: 11/22/2022]
Abstract
Sirtuins (SIRTs) are described as NAD+-dependent deacetylases, also known as class III histone deacetylases. So far, seven sirtuin genes (SIRTS 1-7) have been identified and characterized in mammals and also known to occur in bacteria and eukaryotes. SIRTs are involved in various biological processes including endocrine system, apoptosis, aging and longevity, diabetes, rheumatoid arthritis, obesity, inflammation, etc. Among them, the best characterized one is SIRT1. Actually, small molecules seem to be the most effective SIRT modulators. Flavonoids have been reported to possess many positive effects favrable for human health, while a relatively less research has been reported so far on their funcions as SIRT modulation mechanisms. In this regard, we herein aimed to focus on modulatory effects of flavonoids on SIRTs as the most common secondary metabolites in natural products. Our literature survey covering the years of 2006-2021 pointed out that flavonoids frequently interact with SIRT1 and SIRT3 followed by SIRT6. It can be also concluded that some popular flavonoid derivatives, e.g. resveratrol, quercetin, and catechin derivatives came forward in terms of SIRT modulation.
Collapse
Affiliation(s)
| | - Gökçen Eren
- Faculty of Pharmacy, Gazi University, 06330 Ankara
| | | |
Collapse
|
43
|
El-Naggar AM, Hassan AMA, Elkaeed EB, Alesawy MS, Al-Karmalawy AA. Design, synthesis, and SAR studies of novel 4-methoxyphenyl pyrazole and pyrimidine derivatives as potential dual tyrosine kinase inhibitors targeting both EGFR and VEGFR-2. Bioorg Chem 2022; 123:105770. [PMID: 35395446 DOI: 10.1016/j.bioorg.2022.105770] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/09/2022] [Accepted: 03/29/2022] [Indexed: 02/08/2023]
Abstract
Guided by the pharmacophoric features of both EGFR and VEGFR-2 antagonists, two novel series of 4-methoxyphenyl pyrazole and pyrimidine derivatives [(4a-c) and (5a-c, 6, 7a-c, 8, 9, 10, 11a,c, 12, 13a-c, 14a-c, and 15a,b)], respectively, were designed and synthesized as dual EGFR/VEGFR-2 inhibitors. Interestingly, compound 12 showed very strong antiproliferative effects towards all the five studied cell lines (HepG-2, MCF-7, MDA-231, HCT-116, and Caco-2) with IC50 values of 3.74, 7.81, 4.85, 2.96, and 9.27 µM, respectively. Also, it achieved the highest inhibitory activities against both EGFR and VEGFR-2 as well (IC50 = 0.071 and 0.098 µM) compared to the two reference drugs, erlotinib (IC50 = 0.063 µM) and sorafenib (IC50 = 0.041 µM), respectively. Moreover, four compounds (4a, 7a, 7c, and 12) were selected for further evaluation through cell cycle analysis and Annexin V-based flow cytometry assay in the HepG-2 cell line. In addition, deep computational studies including molecular docking, physicochemical properties, profiling pharmacokinetics, ADMET studies, and toxicity predictions were performed for the designed compounds to evaluate the prospective drug candidates. Finally, analyzing the structure-activity relationship (SAR) of the new derivatives gives us a lot of interesting promising results which could help medicinal chemists to design more potent drug candidates soon as well.
Collapse
Affiliation(s)
- Abeer M El-Naggar
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbassiya 11566, Cairo, Egypt.
| | - A M A Hassan
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbassiya 11566, Cairo, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Mohamed S Alesawy
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 35527, Egypt
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt.
| |
Collapse
|
44
|
Kreiser T, Zaguri D, Sachdeva S, Zamostiano R, Mograbi J, Segal D, Bacharach E, Gazit E. Inhibition of Respiratory RNA Viruses by a Composition of Ionophoric Polyphenols with Metal Ions. Pharmaceuticals (Basel) 2022; 15:ph15030377. [PMID: 35337174 PMCID: PMC8955458 DOI: 10.3390/ph15030377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/23/2022] Open
Abstract
Controlling the infectivity of respiratory RNA viruses is critical, especially during the current SARS-CoV-2 pandemic. There is an unmet need for therapeutic agents that can reduce viral replication, preferably independent of the accumulation of viral mutations. Zinc ions have an apparent activity as modulators of intracellular viral RNA replication and thus, appear attractive in reducing viral RNA load and infectivity. However, the intracellular concentration of zinc is usually too low for achieving an optimal inhibitory effect. Various herbal polyphenols serve as excellent zinc ionophores with known antiviral properties. Here, we combined zinc picolinate with a collection of flavonoids, representing commonly used polyphenols. Copper was added to avoid ionic imbalance during treatment and to improve efficacy. Each component separately, as well as their combinations, did not interfere with the viability of cultured A549, H1299, or Vero cells in vitro as determined by MTT assay. The safe combinations were further evaluated to determine antiviral activity. Fluorescence-activated cell sorting and quantitative polymerase chain reaction were used to evaluate antiviral activity of the combinations. They revealed a remarkable (50–95%) decrease, in genome replication levels of a diverse group of respiratory RNA viruses, including the human coronavirus OC43 (HCoV-OC43; a betacoronavirus that causes the common cold), influenza A virus (IAV, strain A/Puerto Rico/8/34 H1N1), and human metapneumovirus (hMPV). Collectively, our results offer an orally bioavailable therapeutic approach that is non-toxic, naturally sourced, applicable to numerous RNA viruses, and potentially insensitive to new mutations and variants.
Collapse
Affiliation(s)
- Topaz Kreiser
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel; (T.K.); (D.Z.); (S.S.); (R.Z.); (D.S.)
| | - Dor Zaguri
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel; (T.K.); (D.Z.); (S.S.); (R.Z.); (D.S.)
| | - Shreya Sachdeva
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel; (T.K.); (D.Z.); (S.S.); (R.Z.); (D.S.)
| | - Rachel Zamostiano
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel; (T.K.); (D.Z.); (S.S.); (R.Z.); (D.S.)
| | | | - Daniel Segal
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel; (T.K.); (D.Z.); (S.S.); (R.Z.); (D.S.)
- Sagol Interdisciplinary School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Eran Bacharach
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel; (T.K.); (D.Z.); (S.S.); (R.Z.); (D.S.)
- Correspondence: (E.B.); (E.G.)
| | - Ehud Gazit
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel; (T.K.); (D.Z.); (S.S.); (R.Z.); (D.S.)
- BLAVATNIK CENTER for Drug Discovery, Tel Aviv University, Tel Aviv 6997801, Israel
- Correspondence: (E.B.); (E.G.)
| |
Collapse
|
45
|
Ashour NA, Abo Elmaaty A, Sarhan AA, Elkaeed EB, Moussa AM, Erfan IA, Al-Karmalawy AA. A Systematic Review of the Global Intervention for SARS-CoV-2 Combating: From Drugs Repurposing to Molnupiravir Approval. Drug Des Devel Ther 2022; 16:685-715. [PMID: 35321497 PMCID: PMC8935998 DOI: 10.2147/dddt.s354841] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/26/2022] [Indexed: 02/05/2023] Open
Abstract
The rising outbreak of SARS-CoV-2 continues to unfold all over the world. The development of novel effective antiviral drugs to fight against SARS-CoV-2 is a time cost. As a result, some specific FDA-approved drugs have already been repurposed and authorized for COVID-19 treatment. The repurposed drugs used were either antiviral or non-antiviral drugs. Accordingly, the present review thoroughly focuses on the repurposing efficacy of these drugs including clinical trials experienced, the combination therapies used, the novel methods followed for treatment, and their future perspective. Therefore, drug repurposing was regarded as an effective avenue for COVID-19 treatment. Recently, molnupiravir is a prodrug antiviral medication that was approved in the United Kingdom in November 2021 for the treatment of COVID-19. On the other hand, PF-07321332 is an oral antiviral drug developed by Pfizer. For the treatment of COVID-19, the PF-07321332/ritonavir combination medication is used in Phase III studies and was marketed as Paxlovid. Herein, we represented the almost history of combating COVID-19 from repurposing to the recently available oral anti-SARS-CoV-2 candidates, as a new hope to end the current pandemic.
Collapse
Affiliation(s)
- Nada A Ashour
- Department of Clinical Pharmacology, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
| | - Ayman Abo Elmaaty
- Department of Medicinal Chemistry, Faculty of Pharmacy, Port Said University, Port Said, 42526, Egypt
| | - Amany A Sarhan
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah, 13713, Riyadh, Saudi Arabia
| | - Ahmed M Moussa
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
| | - Ibrahim Ali Erfan
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
| |
Collapse
|
46
|
Salem MA, Aborehab NM, Al-Karmalawy AA, Fernie AR, Alseekh S, Ezzat SM. Potential Valorization of Edible Nuts By-Products: Exploring the Immune-Modulatory and Antioxidants Effects of Selected Nut Shells Extracts in Relation to Their Metabolic Profiles. Antioxidants (Basel) 2022; 11:462. [PMID: 35326112 PMCID: PMC8944461 DOI: 10.3390/antiox11030462] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 02/05/2023] Open
Abstract
The immune system is a potent army that defends our body against various infections and diseases through innate and adaptive immunity. Herbal medicine is one of the essential sources for enhancing immunity because of affordability, availability, minor side effects, and consumers' preferences. Hazelnuts, walnuts, almonds, and peanuts are among the most widespread edible nuts that are rich in phenolics, fats, fibers, vitamins, proteins, and minerals. The potential of nut shells in phytoremediation has attracted increasing attention as a sustainable solution for waste recycling. Here, we determined the in vitro immune-modulatory activity as well as the metabolite profile of the four nut shell extracts. The addition of the extracts to LPS-stimulated macrophages, especially peanut and walnut shells, has downregulated the gene expression of AP-1, TNF-α, IL-8, iNOS, and COX-2 expression levels. Significant antioxidant capabilities and immune-modulatory effects have been traced for peanut shells. UPLC-MS metabolic profiling of the four nut shell extracts allowed the detection of a relatively high level of phenolic compounds in peanut shells. Intriguingly, a significant correlation between the antioxidant capacity and the total phenolic content was found, indicating the contribution of the phenolic compounds to the antioxidant properties and hence the immune-modulatory activity. Furthermore, molecular docking and structure-activity relationship (SAR) studies revealed kaempferol rutinoside and proanthocyanidin A5' as potential iNOS inhibitors.
Collapse
Affiliation(s)
- Mohamed A. Salem
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Menoufia University, Gamal Abd El Nasr St., Shibin Elkom 32511, Egypt
| | - Nora M. Aborehab
- Department of Biochemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt;
| | - Ahmed A. Al-Karmalawy
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt;
| | - Alisdair R. Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany;
- Center for Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany;
- Center for Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Shahira M. Ezzat
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy Street, Cairo 11562, Egypt;
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt
| |
Collapse
|
47
|
Abd-ElGawad AM, El-Amier YA, Bonanomi G, Gendy AENGE, Elgorban AM, Alamery SF, Elshamy AI. Chemical Composition of Kickxia aegyptiaca Essential Oil and Its Potential Antioxidant and Antimicrobial Activities. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11050594. [PMID: 35270064 PMCID: PMC8912309 DOI: 10.3390/plants11050594] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 05/16/2023]
Abstract
The exploration of new bioactive compounds from natural resources as alternatives to synthetic chemicals has recently attracted the attention of scientists and researchers. To our knowledge, the essential oil (EO) of Kickxia aegyptiaca has not yet been explored. Thus, the present study was designed to explore the EO chemical profile of K. aegyptiaca for the first time, as well as evaluate its antioxidant and antibacterial activities, particularly the extracts of this plant that have been reported to possess various biological activities. The EO was extracted from the aerial parts via hydrodistillation and then characterized by gas chromatography-mass spectrometry (GC-MS). The extracted EO was tested for its antioxidant activity via the reduction in the free radicals, 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). In addition, the EO was tested as an antibacterial mediator against eight Gram-negative and Gram-positive bacterial isolates. Forty-three compounds were identified in the EO of K. aegyptiaca, with a predominance of terpenoids (75.46%). Oxygenated compounds were the main class, with oxygenated sesquiterpenes attaining 40.42% of the EO total mass, while the oxygenated monoterpenes comprised 29.82%. The major compounds were cuminic aldehyde (21.99%), caryophyllene oxide (17.34%), hexahydrofarnesyl acetone (11.74%), ar-turmerone (8.51%), aromadendrene oxide (3.74%), and humulene epoxide (2.70%). According to the IC50 data, the K. aegyptiaca EO revealed considerable antioxidant activity, with IC50 values of 30.48 mg L-1 and 35.01 mg L-1 for DPPH and ABTS, respectively. In addition, the EO of K. aegyptiaca showed more substantial antibacterial activity against Gram-positive bacterial isolates compared to Gram-negative. Based on the minimum inhibitory concentration (MIC), the EO showed the highest activity against Escherichia coli and Bacillus cereus, with an MIC value of 0.031 mg mL-1. The present study showed, for the first time, that the EO of K. aegyptiaca has more oxygenated compounds with substantial antioxidant and antibacterial activities. This activity could be attributed to the effect of the main compounds, either singular or synergistic. Thus, further studies are recommended to characterize the major compounds, either alone or in combination as antioxidants or antimicrobial agents, and evaluate their biosafety.
Collapse
Affiliation(s)
- Ahmed M. Abd-ElGawad
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt;
- Correspondence: ; Tel.: +20-1003438980
| | - Yasser A. El-Amier
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt;
| | - Giuliano Bonanomi
- Department of Agriculture, University of Naples Federico II, 80055 Naples, Italy;
| | | | - Abdallah M. Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Salman F. Alamery
- Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Abdelsamed I. Elshamy
- Department of Natural Compounds Chemistry, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt;
| |
Collapse
|
48
|
Elmaaty A, Darwish KM, Chrouda A, Boseila AA, Tantawy MA, Elhady SS, Shaik AB, Mustafa M, Al-karmalawy AA. In Silico and In Vitro Studies for Benzimidazole Anthelmintics Repurposing as VEGFR-2 Antagonists: Novel Mebendazole-Loaded Mixed Micelles with Enhanced Dissolution and Anticancer Activity. ACS OMEGA 2022; 7:875-899. [PMID: 35036753 PMCID: PMC8757357 DOI: 10.1021/acsomega.1c05519] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/03/2021] [Indexed: 02/08/2023]
Abstract
Cancer is a leading cause of death worldwide and its incidence is unfortunately anticipated to rise in the next years. On the other hand, vascular endothelial growth factor receptor 2 (VEGFR-2) is highly expressed in tumor-associated endothelial cells, where it affects tumor-promoting angiogenesis. Therefore, VEGFR-2 is considered one of the most promising therapeutic targets for cancer treatment. Furthermore, some FDA-approved benzimidazole anthelmintics have already shown potential anticancer activities. Therefore, repurposing them against VEGFR-2 can provide a rapid and effective alternative that can be implicated safely for cancer treatment. Hence, 13 benzimidazole anthelmintic drugs were subjected to molecular docking against the VEGFR-2 receptor. Among the tested compounds, fenbendazole (FBZ, 1), mebendazole (MBZ, 2), and albendazole (ABZ, 3) were proposed as potential VEGFR-2 antagonists. Furthermore, molecular dynamics simulations were carried out at 200 ns, giving more information on their thermodynamic and dynamic properties. Besides, the anticancer activity of the aforementioned drugs was tested in vitro against three different cancer cell lines, including liver cancer (HUH7), lung cancer (A549), and breast cancer (MCF7) cell lines. The results depicted potential cytotoxic activity especially against both HUH7 and A549 cell lines. Furthermore, to improve the aqueous solubility of MBZ, it was formulated in the form of mixed micelles (MMs) which showed an enhanced drug release with better promising cytotoxicity results compared to the crude MBZ. Finally, an in vitro quantification for VEGFR-2 concentration in treated HUH7 cells has been conducted based on the enzyme-linked immunosorbent assay. The results disclosed that FBZ, MBZ, and ABZ significantly (p < 0.001) reduced the concentration of VEGFR-2, while the lowest inhibition was achieved in MBZ-loaded MMs, which was even much better than the reference drug sorafenib. Collectively, the investigated benzimidazole anthelmintics could be encountered as lead compounds for further structural modifications and thus better anticancer activity, and that was accomplished through studying their structure-activity relationships.
Collapse
Affiliation(s)
- Ayman
Abo Elmaaty
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt
| | - Khaled M. Darwish
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Amani Chrouda
- Department
of Chemistry, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia
- Laboratory
of Interfaces and Advanced Materials, Faculty of Sciences, Monastir University, Monastir 5000, Tunisia
| | - Amira A. Boseila
- Pharmaceutics
Department, Egyptian Drug Authority EDA
(Formerly Known as National Organization for Drug Control and Research
NODCAR) Dokki, Giza 12611, Egypt
| | - Mohamed A. Tantawy
- Hormones
Department, Medical Research Division, National
Research Centre, Dokki, Giza 12622, Egypt
- Stem
Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Sameh S. Elhady
- Department
of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Afzal B. Shaik
- Department
of Pharmaceutical Chemistry, Vignan Pharmacy College, Jawaharlal Nehru Technological University, Vadlamudi 522 213, Andhra Pradesh, India
| | - Muhamad Mustafa
- Department
of Medicinal Chemistry, Deraya University, Minia 61111, Egypt
| | - Ahmed A. Al-karmalawy
- Department of Pharmaceutical Medicinal
Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
| |
Collapse
|
49
|
El-Masry RM, Al-Karmalawy AA, Alnajjar R, Mahmoud SH, Mostafa A, Kadry HH, Abou-Seri SM, Taher AT. Newly synthesized series of oxoindole–oxadiazole conjugates as potential anti-SARS-CoV-2 agents: in silico and in vitro studies. NEW J CHEM 2022. [DOI: 10.1039/d1nj04816c] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The pharmacophoric features of the novel series of 1,3,4-oxadiazole–oxoindole conjugates (IVa–g) as potential anti-SARS-CoV-2 agents based on the reported Mpro inhibitor (Ia) are presented.
Collapse
Affiliation(s)
- Rana M. El-Masry
- Organic Chemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), October 6 city, Giza, Egypt
| | - Ahmed A. Al-Karmalawy
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
| | - Radwan Alnajjar
- Department of Chemistry, Faculty of Science, University of Benghazi, Benghazi, Libya
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Sara H. Mahmoud
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), Dokki, Giza 12622, Egypt
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), Dokki, Giza 12622, Egypt
| | - Hanan H. Kadry
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Sahar M. Abou-Seri
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Azza T. Taher
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Organic Pharmaceutical Chemistry, Faculty of Pharmacy, October 6 University (O6U), October 6 City, Giza, Egypt
| |
Collapse
|
50
|
Madbouly EA, Lashine ESM, Al-Karmalawy AA, Sebaiy MM, Pratsinis H, Kletsas D, Metwally K. Design and synthesis of novel quinazolinone–chalcone hybrids as potential apoptotic candidates targeting caspase-3 and PARP-1: in vitro, molecular docking, and SAR studies. NEW J CHEM 2022. [DOI: 10.1039/d2nj04053k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Novel quinazolinone–chalcone hybrids as potential apoptotic candidates targeting caspase-3 and PARP-1.
Collapse
Affiliation(s)
- Eman A. Madbouly
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - El-Sayed M. Lashine
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Ahmed A. Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt
| | - Mahmoud M. Sebaiy
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Harris Pratsinis
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre of Scientific Research “Demokritos”, Athens, Greece
| | - Dimitris Kletsas
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre of Scientific Research “Demokritos”, Athens, Greece
| | - Kamel Metwally
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| |
Collapse
|