1
|
Zhou J, Guo Y, Liu X, Yuan W. Bioinformatics analysis identifies key secretory protein-encoding differentially expressed genes in adipose tissue of metabolic syndrome. Adipocyte 2025; 14:2446243. [PMID: 39819282 DOI: 10.1080/21623945.2024.2446243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/19/2025] Open
Abstract
The objective of this study was to identify key secretory protein-encoding differentially expressed genes (SP-DEGs) in adipose tissue in female metabolic syndrome, thus detecting potential targets in treatment. We examined gene expression profiles in 8 women with metabolic syndrome and 7 healthy, normal body weight women. A total of 143 SP-DEGs were screened, including 83 upregulated genes and 60 downregulated genes. GO analyses of these SP-DEGs included proteolysis, angiogenesis, positive regulation of endothelial cell proliferation, immune response, protein processing, positive regulation of neuroblast proliferation, cell adhesion and ER to Golgi vesicle-mediated transport. KEGG pathway analysis of the SP-DEGs were involved in the TGF-beta signalling pathway, cytokine‒cytokine receptor interactions, the hippo signalling pathway, Malaria. Two modules were identified from the PPI network, namely, Module 1 (DNMT1, KDM1A, NCoR1, and E2F1) and Module 2 (IL-7 R, IL-12A, and CSF3). The gene DNMT1 was shared between the network modules and the WGCNA brown module. According to the single-gene GSEA results, DNMT1 was significantly positively correlated with histidine metabolism and phenylalanine metabolism. This study identified 7 key SP-DEGs in adipose tissue. DNMT1 was selected as the central gene in the development of metabolic syndrome and might be a potential therapeutic target.
Collapse
Affiliation(s)
- Jiandong Zhou
- Department of Nephrology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| | - Yunshan Guo
- Department of Nephrology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| | - Xuan Liu
- Department of Nephrology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| | - Weijie Yuan
- Department of Nephrology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| |
Collapse
|
2
|
Ohara R, Dario FL, Emílio-Silva MT, Assunção R, Rodrigues VP, Bueno G, Raimundo PR, Justulin LA, da Rocha LRM, Hiruma-Lima CA. A high-fat diet changes the interaction of the extracellular matrix, cytokines, and growth factors in gastric ulcer repair. Biochem Biophys Res Commun 2025; 755:151565. [PMID: 40043617 DOI: 10.1016/j.bbrc.2025.151565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/18/2025] [Accepted: 02/28/2025] [Indexed: 03/17/2025]
Abstract
BACKGROUND Obesity is characterized by persistent low-grade inflammation that alters the gastrointestinal system and healing process. The link between obesity and the prevalence of stomach ulcers has not yet been fully established. AIMS We investigated the healing features of gastric lesions in male Swiss mice fed a standard diet (SD) or high-fat diet (HFD) using morphometric, biochemical, and molecular parameters. METHODS After 12 weeks on different diets, the animals underwent acetic acid-induced stomach ulcer surgery. To evaluate healing patterns, the stomachs of the animals were studied at five post-induction times, including the early, middle, and late phases of healing (1, 3, 7, 10, and 14 days). Morphometric features, activity of matrix metalloproteinases 2 and 9 (MMP-2 and 9), and measurement of inflammatory and growth factors were investigated using multiplex immunoassays. RESULTS Compared with the SD group, the HFD group demonstrated slowing of the early healing process. During the initial phase of the healing process, the SD group had significantly higher levels of EGF, VEGF-A, and VEGF-D than the HFD group. In the intermediate phase, only the SD group showed a 70 % increase in the regeneration area compared with the initial phase of the procedure. In this phase, the SD group also had higher levels of MMP-9, VEGF-D, and HGF than the HFD group. CONCLUSIONS HFD can have a negative impact on the healing process of gastric ulcers in animals by delaying repair in gastric tissue when compared with animals consuming SD.
Collapse
Affiliation(s)
- Rie Ohara
- Department of Structural and Functional Biology, Physiology Sector, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
| | - Felipe Lima Dario
- Department of Structural and Functional Biology, Physiology Sector, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Maycon Tavares Emílio-Silva
- Department of Structural and Functional Biology, Physiology Sector, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Renata Assunção
- Department of Structural and Functional Biology, Physiology Sector, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Vinícius Peixoto Rodrigues
- Department of Structural and Functional Biology, Physiology Sector, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Gabriela Bueno
- Department of Structural and Functional Biology, Physiology Sector, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Priscila Romano Raimundo
- Department of Structural and Functional Biology, Physiology Sector, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Luis Antonio Justulin
- Department of Structural and Functional Biology, Morphology Sector, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Lúcia Regina Machado da Rocha
- Department of Structural and Functional Biology, Physiology Sector, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Clelia Akiko Hiruma-Lima
- Department of Structural and Functional Biology, Physiology Sector, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| |
Collapse
|
3
|
Ramírez-Gallegos I, Tárraga López PJ, Paublini Oliveira H, López-González ÁA, Martorell Sánchez C, Martínez-Almoyna-Rifá E, Ramírez-Manent JI. Relationship Between Metabolic Age Determined by Bioimpedance and Insulin Resistance Risk Scales in Spanish Workers. Nutrients 2025; 17:945. [PMID: 40289929 PMCID: PMC11945281 DOI: 10.3390/nu17060945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/23/2025] [Accepted: 03/07/2025] [Indexed: 04/30/2025] Open
Abstract
Introduction: Metabolic age (MA) is the difference between an individual's actual age and the age of their body based on physiological and biological factors. It is an indicator that reflects a person's physical and biological state, regardless of chronological age. Insulin resistance (IR) is a health disorder in which tissues exhibit a reduced response to the circulating glucose uptake stimulated by insulin. Objective: The aim of this study is to evaluate the association between MA, determined through bioelectrical impedance analysis, and the risk of IR, assessed using validated scales, in a cohort of Spanish workers. Methodology: A descriptive cross-sectional study was conducted on 8590 Spanish workers to assess the association between MA and a set of sociodemographic variables, health habits, and IR risk scales such as the Triglyceride-Glucose Index (TyG Index), Metabolic Score for Insulin Resistance (METS-IR), and Single Point Insulin Sensitivity Estimator (SPISE). Results: All analyzed variables were associated with MA values, with the strongest associations observed for IR risk scale values (OR 4.88 [95% CI 4.12-5.65] for METS-IR, 4.42 [95% CI 3.70-5.15] for SPISE, and 3.42 [95% CI 2.97-3.87] for the TyG Index) and physical activity. Conclusions: Metabolic age is influenced by sociodemographic variables such as age, sex, and social class; health habits such as smoking, physical activity, and adherence to the Mediterranean diet; and by IR risk scale values.
Collapse
Affiliation(s)
- Ignacio Ramírez-Gallegos
- ADEMA-Health Group University Institute of Health Sciences Research (IUNICS), 07120 Palma, Balearic Islands, Spain; (I.R.-G.); (H.P.O.); (C.M.S.); (E.M.-A.-R.); (J.I.R.-M.)
| | - Pedro Juan Tárraga López
- Faculty of Medicine, University of Castilla la Mancha, 02071 Albacete, Castilla-La Mancha, Spain;
| | - Hernán Paublini Oliveira
- ADEMA-Health Group University Institute of Health Sciences Research (IUNICS), 07120 Palma, Balearic Islands, Spain; (I.R.-G.); (H.P.O.); (C.M.S.); (E.M.-A.-R.); (J.I.R.-M.)
| | - Ángel Arturo López-González
- ADEMA-Health Group University Institute of Health Sciences Research (IUNICS), 07120 Palma, Balearic Islands, Spain; (I.R.-G.); (H.P.O.); (C.M.S.); (E.M.-A.-R.); (J.I.R.-M.)
- Faculty of Dentistry, University School ADEMA, 07009 Palma, Balearic Islands, Spain
- IDISBA, Balearic Islands Health Research Institute Foundation, 07010 Palma, Balearic Islands, Spain
- Balearic Islands Health Service, 07010 Palma, Balearic Islands, Spain
| | - Cristina Martorell Sánchez
- ADEMA-Health Group University Institute of Health Sciences Research (IUNICS), 07120 Palma, Balearic Islands, Spain; (I.R.-G.); (H.P.O.); (C.M.S.); (E.M.-A.-R.); (J.I.R.-M.)
- Faculty of Medicine, University of Castilla la Mancha, 02071 Albacete, Castilla-La Mancha, Spain;
| | - Emilio Martínez-Almoyna-Rifá
- ADEMA-Health Group University Institute of Health Sciences Research (IUNICS), 07120 Palma, Balearic Islands, Spain; (I.R.-G.); (H.P.O.); (C.M.S.); (E.M.-A.-R.); (J.I.R.-M.)
- Faculty of Medicine, University of Castilla la Mancha, 02071 Albacete, Castilla-La Mancha, Spain;
| | - José Ignacio Ramírez-Manent
- ADEMA-Health Group University Institute of Health Sciences Research (IUNICS), 07120 Palma, Balearic Islands, Spain; (I.R.-G.); (H.P.O.); (C.M.S.); (E.M.-A.-R.); (J.I.R.-M.)
- IDISBA, Balearic Islands Health Research Institute Foundation, 07010 Palma, Balearic Islands, Spain
- Balearic Islands Health Service, 07010 Palma, Balearic Islands, Spain
- Faculty of Medicine, University of the Balearic Islands, 07010 Palma, Balearic Islands, Spain
| |
Collapse
|
4
|
Ließem A, Leimer U, Germann GK, Köllensperger E. Adipokines in Breast Cancer: Decoding Genetic and Proteomic Mechanisms Underlying Migration, Invasion, and Proliferation. BREAST CANCER (DOVE MEDICAL PRESS) 2025; 17:79-102. [PMID: 39882382 PMCID: PMC11776935 DOI: 10.2147/bctt.s491277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/04/2024] [Indexed: 01/31/2025]
Abstract
Background Adipokines, bioactive peptides secreted by adipose tissue, appear to contribute to breast cancer development and progression. While numerous studies suggest their role in promoting tumor growth, the exact mechanisms of their involvement are not yet completely understood. Methods In this project, varying concentrations of recombinant human adipokines (Leptin, Lipocalin-2, PAI-1, and Resistin) were used to study their effects on four selected breast cancer cell lines (EVSA-T, MCF-7, MDA-MB-231, and SK-Br-3). Over a five-day proliferation phase, linear growth was assessed by calculating doubling times and malignancy-associated changes in gene and protein expression were identified using quantitative TaqMan real-time PCR and multiplex protein analysis. Migration and invasion behaviors were quantified using specialized Boyden chamber assays. Results We found significant, adipokine-mediated genetic and proteomic alterations, with PCR showing an up to 6-fold increase of numerous malignancy-associated genes after adipokine-supplementation. Adipokines further altered protein secretion, such as raising the concentrations of different tumor-associated proteins up to 13-fold. Effects on proliferation varied, however, with most approaches showing significant enhancement in growth kinetics. A concentration-dependent increase in migration and invasion was generally observed, with no significant reductions in any approaches. Conclusion We could show a robust promoting effect of several adipokines on different breast cancer cells in vitro. Understanding the interaction between adipose tissue and breast cancer cells opens potential avenues for innovative breast cancer prevention and therapy strategies. Our findings indicate that antibodies against specific adipokines could become a beneficial component of clinical breast cancer treatment in the future.
Collapse
Affiliation(s)
- Anne Ließem
- Clinic for Plastic, Aesthetic and Reconstructive Surgery, Spine, Orthopedic and Hand Surgery, Preventive Medicine – ETHIANUM, Heidelberg, 69115, Germany
| | - Uwe Leimer
- Clinic for Plastic, Aesthetic and Reconstructive Surgery, Spine, Orthopedic and Hand Surgery, Preventive Medicine – ETHIANUM, Heidelberg, 69115, Germany
| | - Günter K Germann
- Clinic for Plastic, Aesthetic and Reconstructive Surgery, Spine, Orthopedic and Hand Surgery, Preventive Medicine – ETHIANUM, Heidelberg, 69115, Germany
| | - Eva Köllensperger
- Clinic for Plastic, Aesthetic and Reconstructive Surgery, Spine, Orthopedic and Hand Surgery, Preventive Medicine – ETHIANUM, Heidelberg, 69115, Germany
| |
Collapse
|
5
|
Matsui M, Fukuda A, Onishi S, Ushiro K, Nishikawa T, Asai A, Kim SK, Nishikawa H. Metabolic Syndrome and Somatic Composition: A Large Cross-sectional Analysis. In Vivo 2025; 39:381-389. [PMID: 39740891 PMCID: PMC11705143 DOI: 10.21873/invivo.13839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND/AIM To elucidate the relationship between metabolic syndrome (Mets) and somatic composition [fat mass, fat-free (FF) mass, and fat to fat-free (F-FF) ratio] among health checkup recipients (7,776 males and 10,121 females). PATIENTS AND METHODS We classified study subjects into four types considering Japanese criteria for Mets; Type A is for males with waist circumference (WC) <85 cm and females with WC <90 cm, Type B is for males with WC ≥85 cm and females with WC ≥90 cm, but without any metabolic abnormalities, Type C is for males with WC ≥85 cm and females with WC ≥90 cm and one metabolic disorder (pre-Mets), and Type D is Mets. We compared baseline characteristics among types of A, B, C, and D. RESULTS F index, FF index, and F-FF ratio showed an increasing trend with increasing risk factors for Mets in both sexes. CONCLUSION This study demonstrates a clear correlation between somatic composition and the severity of metabolic syndrome (Mets). As Mets risk factors increase, fat mass, fat-free mass, and the fat-to-fat-free ratio also rise, indicating that body composition shifts with disease progression. These findings emphasize the need for early intervention, such as exercise and diet, to manage somatic composition imbalances and reduce complications like insulin resistance.
Collapse
Affiliation(s)
- Masahiro Matsui
- Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Akira Fukuda
- Osaka Medical and Pharmaceutical University Health Science Clinic, Takatsuki, Japan
| | - Saori Onishi
- Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Kosuke Ushiro
- Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Tomohiro Nishikawa
- Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Akira Asai
- Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Soo Ki Kim
- Department of Gastroenterology, Kobe Asahi Hospital, Kobe, Japan
| | - Hiroki Nishikawa
- Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan;
| |
Collapse
|
6
|
Szkudelski T, Szkudelska K. The relevance of the heme oxygenase system in alleviating diabetes-related hormonal and metabolic disorders. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167552. [PMID: 39490940 DOI: 10.1016/j.bbadis.2024.167552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024]
Abstract
Heme oxygenase (HO) is an enzyme that catalyzes heme degradation. HO dysfunction is linked to various pathological conditions, including diabetes. Results of animal studies indicate that HO expression and activity are downregulated in experimentally induced diabetes. This is associated with severe hormonal and metabolic disturbances. However, these pathological changes have been shown to be reversed by therapy with HO activators. In animals with experimentally induced diabetes, HO was upregulated by genetic manipulation or by pharmacological activators such as hemin and cobalt protoporphyrin. Induction of HO alleviated elevated blood glucose levels and improved insulin action, among other effects. This effect resulted from beneficial changes in the main insulin-sensitive tissues, i.e., the skeletal muscle, the liver, and the adipose tissue. The action of HO activators was due to positive alterations in pivotal signaling molecules and regulatory enzymes. Furthermore, diabetes-related oxidative and inflammatory stress was reduced due to HO induction. HO upregulation was effective in various animal models of type 1 and type 2 diabetes. These data suggest the possibility of testing HO activators as a potential tool for alleviating hormonal and metabolic disorders in people with diabetes.
Collapse
Affiliation(s)
- Tomasz Szkudelski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland.
| | - Katarzyna Szkudelska
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland.
| |
Collapse
|
7
|
Zeng Z, Chen M, Liu Y, Zhou Y, Liu H, Wang S, Ji Y. Role of Akkermansia muciniphila in insulin resistance. J Gastroenterol Hepatol 2025; 40:19-32. [PMID: 39396929 DOI: 10.1111/jgh.16747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/15/2024] [Accepted: 09/11/2024] [Indexed: 10/15/2024]
Abstract
Insulin resistance (IR) is a pathogenic factor in numerous metabolic diseases. The gut microbiota plays a crucial role in maintaining the function of the intestinal barrier and overall human health, thereby influencing IR. Dysbiosis of the gut microbiota can contribute to the development of IR. Therefore, it is essential to maintain a balanced and diverse gut microbiota for optimal health. Akkermansia muciniphila, a widely present microorganism in the human intestine, has been shown to regulate gastrointestinal mucosal barrier integrity, reduce endotoxin penetration, decrease systemic inflammation levels, and improve insulin sensitivity. Reduced abundance of A. muciniphila is associated with an increased risk of IR and other metabolic diseases, highlighting its correlation with IR. Understanding the role and regulatory mechanism of A. muciniphila is crucial for comprehending IR pathogenesis and developing novel strategies for preventing and treating related metabolic disorders. Individual variations may exist in both the gut microbiota composition and its impact on IR among different individuals. Further investigation into individual differences between A. muciniphila and IR will facilitate advancements in personalized medicine by promoting tailored interventions based on the gut microbiota composition, which is a potential future direction that would optimize insulin sensitivity while preventing metabolic disease occurrence. In this review, we describe the physiological characteristics of A. muciniphila, emphasize its roles in underlying mechanisms contributing to IR pathology, and summarize how alterations in its abundance affect IR development, thereby providing valuable insights for further research on A. muciniphila, as well as new drug development targeting diabetes.
Collapse
Affiliation(s)
- Zhijun Zeng
- Jiangxi University of Chinese Medicine, Nanchang, China
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Mengjie Chen
- Jiangxi University of Chinese Medicine, Nanchang, China
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yimin Liu
- Jiangxi University of Chinese Medicine, Nanchang, China
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yun Zhou
- Jiangxi University of Chinese Medicine, Nanchang, China
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Hongning Liu
- Jiangxi University of Chinese Medicine, Nanchang, China
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi Province Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Shaohua Wang
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yanhua Ji
- Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
8
|
Takahata M, Koike Y, Endo T, Ikegawa S, Imagama S, Kato S, Kanayama M, Kobayashi K, Kaito T, Sakai H, Kawaguchi Y, Oda I, Terao C, Kanto T, Taneichi H, Iwasaki N. Adipokine dysregulation as an underlying pathology for diffuse ectopic ossification of spinal posterior longitudinal ligament in patients with obesity. Spine J 2025; 25:80-90. [PMID: 39341572 DOI: 10.1016/j.spinee.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/14/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND CONTEXT Growing evidence suggests that obesity is implicated in the progression of heterotopic ossification of the posterior longitudinal ligament of the spine (OPLL), a major cause of myelopathy in Asians. However, it remains unclear whether dysregulation of adipokine production due to fat accumulation contributes to OPLL progression. PURPOSE To determine whether adipose-derived biochemical signals are associated with OPLL development or severity. STUDY DESIGN/SETTING A nationwide, multicenter, case-control study. PATIENT SAMPLE Patients with symptomatic thoracic OPLL (T-OPLL) who received treatment between June 2017 and March 2021 and 111 controls without OPLL. OUTCOME MEASURES OPLL severity index based on whole-spine computed tomography. METHODS Serum concentrations of adipokines, including leptin (Lep), tumor necrosis factor α (TNFα), and adiponectin (Adpn), as well as the Adpn/Lep ratio-an indicator of adipokine production dysregulation-were compared between the multiple-region OPLL and the single-region OPLL groups. Regression analysis was performed to examine the correlation between adipokine concentrations and OPLL severity index, which was calculated using whole-spine computed tomography images of 77 patients with T-OPLL within 3 years of onset. Using propensity score matching, the adipokine profiles of 59 patients with T-OPLL were compared with those of 59 non-OPLL controls. RESULTS Patients with multiple-region OPLL exhibited a higher body mass index (BMI), lower serum Adpn/Lep ratio, and higher serum concentration of osteocalcin (OCN) than those with single-region OPLL. The OPLL severity index exhibited a weak positive correlation with BMI and serum Lep levels and a weak negative correlation with the Adpn/Lep ratio. Serum TNFα and OCN concentrations were significantly higher in patients with T-OPLL than in controls with similar age, sex, and BMI. CONCLUSIONS Patients with diffuse OPLL over the entire spine are often metabolically obese with low Adpn/Lep ratios. In patients with OPLL, TNFα and OCN serum concentrations were essentially elevated regardless of obesity, suggesting a potential association with OPLL development. Considering the absence of therapeutic drugs for OPLL, the findings presented herein offer valuable insights that can aid in identifying therapeutic targets and formulating strategies to impede its progression.
Collapse
Affiliation(s)
- Masahiko Takahata
- Department of Orthopaedic Surgery, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi, Shimotuga, 321-0293, Japan; Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Kita-15 Nishi-7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan.
| | - Yoshinao Koike
- Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Kita-15 Nishi-7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan; Laboratory for Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKEN, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Tsutomu Endo
- Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Kita-15 Nishi-7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKEN, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Shiro Imagama
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumaicho, Showa Ward, Nagoya, Aichi, 466-8550, Japan
| | - Satoshi Kato
- Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi,-Kanazawa, Ishikawa, 920-8641, Japan
| | - Masahiro Kanayama
- Department of Orthopedics, Hakodate Central General Hospital, 33-2 Hon-cho, Hakodate, Hokkaido, 040-8585, Japan
| | - Kazuyoshi Kobayashi
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumaicho, Showa Ward, Nagoya, Aichi, 466-8550, Japan
| | - Takashi Kaito
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroaki Sakai
- Department of Orthopedic Surgery, Japan Organization of Occupational Health and Safety, Spinal Injuries Center, 550-4 Igisu, Iizuka, Fukuoka, 820-8508, Japan
| | - Yoshiharu Kawaguchi
- Department of Orthopedic Surgery, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Itaru Oda
- Department of Spine Surgery, Hokkaido Orthopedic Memorial Hospital, 7-13 Hiragishi, Toyohira-ku, Sapporo, Hokkaido, 062-0937, Japan
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, Center for Integrative Medical Sciences, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Tomoya Kanto
- Department of Orthopaedic Surgery, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi, Shimotuga, 321-0293, Japan
| | - Hiroshi Taneichi
- Department of Orthopaedic Surgery, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi, Shimotuga, 321-0293, Japan
| | - Norimasa Iwasaki
- Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Kita-15 Nishi-7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| |
Collapse
|
9
|
Mustață ML, Ionescu M, Radu L, Neagoe CD, Ahrițculesei RV, Cîmpeanu RC, Matei D, Amzolini AM, Predoi MC, Ianoși SL. The Role of Metabolic Syndrome in Psoriasis Treatment Response: A One-Year Comparative Analysis of PASI Progression. Diagnostics (Basel) 2024; 14:2887. [PMID: 39767248 PMCID: PMC11675552 DOI: 10.3390/diagnostics14242887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/11/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Psoriasis is a chronic dermatological condition with systemic implications, especially with metabolic syndrome (MS). This study evaluated the vicious cycle where obesity and MS exacerbate systemic inflammation that complicates the efficacy of psoriasis therapies by examining the PASI score over a one-year period. Patients were classified into two subgroups: those with psoriasis alone (PSO) and those with both psoriasis and metabolic syndrome (PSO-MS). METHODS A total of 150 patients, half of whom also concomitantly presented with metabolic syndrome, received biologic therapies comprising anti-IL-17, anti-IL-23, and anti-TNF-a, or methotrexate, with PASI scores assessed at baseline and at 3, 6, and 12 months. RESULTS All treatments showed significant reductions in PASI; however, patients with PSO showed more marked reductions in PASI score than those in the PSO-MS group. Anti-IL-17 treatments produced the greatest sustained long-term improvements, whereas anti-IL-23 produced prompt early improvements. Increases in BMI and leptin concentrations were associated with a modest rate of reduction in PASI score, underlining the impact of obesity and metabolic dysfunction on treatment efficacy. CONCLUSIONS This study highlights the importance of managing comorbidities such as MS in the treatment of psoriasis, as the interplay between systemic inflammation and metabolic health further complicates therapeutic outcomes.
Collapse
Affiliation(s)
- Maria-Lorena Mustață
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (M.-L.M.); (R.-V.A.); (R.-C.C.)
| | - Mihaela Ionescu
- Department of Medical Informatics and Biostatistics, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Lucrețiu Radu
- Department of Hygiene, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Carmen-Daniela Neagoe
- Department of Internal Medicine, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Roxana-Viorela Ahrițculesei
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (M.-L.M.); (R.-V.A.); (R.-C.C.)
| | - Radu-Cristian Cîmpeanu
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (M.-L.M.); (R.-V.A.); (R.-C.C.)
| | - Daniela Matei
- Department of Physical and Rehabilitation Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Anca-Maria Amzolini
- Department of Internal Medicine, Medical Semiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Maria-Cristina Predoi
- Department of Morphology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Simona-Laura Ianoși
- Department of Dermatology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| |
Collapse
|
10
|
Medoro A, Davinelli S, Fogacci F, Alfieri S, Tiso D, Cicero AFG, Scapagnini G. Palmitoylethanolamide in Postmenopausal Metabolic Syndrome: Current Evidence and Clinical Perspectives. Nutrients 2024; 16:4313. [PMID: 39770936 PMCID: PMC11677032 DOI: 10.3390/nu16244313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/03/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Menopause leads to a decline in estrogen levels, resulting in significant metabolic alterations that increase the risk of developing metabolic syndrome-a cluster of conditions including central obesity, insulin resistance, dyslipidemia, and hypertension. Traditional interventions such as hormone replacement therapy carry potential adverse effects, and lifestyle modifications alone may not suffice for all women. This review explores the potential role of palmitoylethanolamide (PEA), an endogenous fatty acid amide, in managing metabolic syndrome during the postmenopausal period. PEA primarily acts by activating peroxisome proliferator-activated receptor-alpha (PPAR-α), influencing lipid metabolism, energy homeostasis, and inflammation. Evidence indicates that PEA may promote the browning of white adipocytes, enhancing energy expenditure and reducing adiposity. It also improves lipid profiles by boosting fatty acid oxidation and decreasing lipid synthesis, potentially lowering low-density lipoprotein cholesterol and triglyceride levels while increasing high-density lipoprotein cholesterol. Additionally, the anti-inflammatory properties of PEA enhance insulin sensitivity by reducing pro-inflammatory cytokines that interfere with insulin signaling. PEA may aid in weight management by influencing appetite regulation and improving leptin sensitivity. Furthermore, its neuroprotective effects may address the mood disturbances and cognitive decline associated with menopause. Given these multifaceted biological activities and a favorable safety profile, PEA may represent a promising non-pharmacological supplement for managing metabolic syndrome in postmenopausal women. However, further large-scale clinical studies are necessary to establish its efficacy, optimal dosing, and long-term safety. If validated, PEA could become an integral part of strategies to improve metabolic and neuropsychological health outcomes in this population.
Collapse
Affiliation(s)
- Alessandro Medoro
- Department of Medicine and Health Sciences “V.Tiberio”, University of Molise, 86100 Campobasso, Italy; (A.M.); (G.S.)
| | - Sergio Davinelli
- Department of Medicine and Health Sciences “V.Tiberio”, University of Molise, 86100 Campobasso, Italy; (A.M.); (G.S.)
| | - Federica Fogacci
- Hypertension and Cardiovascular Risk Research Unit, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (F.F.); (A.F.G.C.)
- Italian Nutraceutical Society (SINut), 40138 Bologna, Italy
| | | | - Domenico Tiso
- Clinical Nutrition, “Villa Maria” Hospital, 47921 Rimini, Italy;
| | - Arrigo F. G. Cicero
- Hypertension and Cardiovascular Risk Research Unit, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (F.F.); (A.F.G.C.)
- Italian Nutraceutical Society (SINut), 40138 Bologna, Italy
- Cardiovascular Medicine Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences “V.Tiberio”, University of Molise, 86100 Campobasso, Italy; (A.M.); (G.S.)
- Italian Nutraceutical Society (SINut), 40138 Bologna, Italy
| |
Collapse
|
11
|
Valado A, Cunha M, Pereira L. Biomarkers and Seaweed-Based Nutritional Interventions in Metabolic Syndrome: A Comprehensive Review. Mar Drugs 2024; 22:550. [PMID: 39728125 DOI: 10.3390/md22120550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/28/2024] [Accepted: 11/30/2024] [Indexed: 12/28/2024] Open
Abstract
Metabolic Syndrome (MetS) is a complex, multifactorial condition characterized by risk factors such as abdominal obesity, insulin resistance, dyslipidemia and hypertension, which significantly contribute to the development of cardiovascular disease (CVD), the leading cause of death worldwide. Early identification and effective monitoring of MetS is crucial for preventing serious cardiovascular complications. This article provides a comprehensive overview of various biomarkers associated with MetS, including lipid profile markers (triglyceride/high-density lipoprotein cholesterol (TG/HDL-C) ratio and apolipoprotein B/apolipoprotein A1 (ApoB/ApoA1) ratio), inflammatory markers (interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), plasminogen activator inhibitor type 1 (PAI-1), C-reactive protein (CRP), leptin/adiponectin ratio, omentin and fetuin-A/adiponectin ratio), oxidative stress markers (lipid peroxides, protein and nucleic acid oxidation, gamma-glutamyl transferase (GGT), uric acid) and microRNAs (miRNAs) such as miR-15a-5p, miR5-17-5p and miR-24-3p. Additionally, this review highlights the importance of biomarkers in MetS and the need for advancements in their identification and use for improving prevention and treatment. Seaweed therapy is also discussed as a significant intervention for MetS due to its rich content of fiber, antioxidants, minerals and bioactive compounds, which help improve cardiovascular health, reduce inflammation, increase insulin sensitivity and promote weight loss, making it a promising nutritional strategy for managing metabolic and cardiovascular health.
Collapse
Affiliation(s)
- Ana Valado
- Polytechnic University of Coimbra, Coimbra Health School, Biomedical Laboratory Sciences, Rua 5 de Outubro-S. Martinho do Bispo, Apartado 7006, 3045-043 Coimbra, Portugal
- Research Centre for Natural Resources Environment and Society (CERNAS), Polytechnic University of Coimbra, Bencanta, 3045-601 Coimbra, Portugal
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, University of Coimbra, 3000-456 Coimbra, Portugal
- H&TRC-Health & Technology Research Center, Coimbra Health School, Polytechnic University of Coimbra, Rua 5 de Outubro, 3045-043 Coimbra, Portugal
| | - Margarida Cunha
- Polytechnic University of Coimbra, Coimbra Health School, Biomedical Laboratory Sciences, Rua 5 de Outubro-S. Martinho do Bispo, Apartado 7006, 3045-043 Coimbra, Portugal
| | - Leonel Pereira
- Centre for Functional Ecology: Science for People & Planet, Marine Resources, Conservation and Technology-Marine Algae Lab, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| |
Collapse
|
12
|
López-Almada G, Mejía-León ME, Salazar-López NJ. Probiotic, Postbiotic, and Paraprobiotic Effects of Lactobacillus rhamnosus as a Modulator of Obesity-Associated Factors. Foods 2024; 13:3529. [PMID: 39593945 PMCID: PMC11592899 DOI: 10.3390/foods13223529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/28/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
Obesity is a pandemic currently affecting the world's population that decreases the quality of life and promotes the development of chronic non-communicable diseases. Lactobacillus rhamnosus is recognized for multiple positive effects on obesity and overall health. In fact, such effects may occur even when the microorganisms do not remain alive (paraprobiotic effects). This raises the need to elucidate the mechanisms by which obesity-associated factors can be modulated. This narrative review explores recent findings on the effects of L. rhamnosus, particularly, its postbiotic and paraprobiotic effects, on the modulation of adiposity, weight gain, oxidative stress, inflammation, adipokines, satiety, and maintenance of intestinal integrity, with the aim of providing a better understanding of its mechanisms of action in order to contribute to streamlining its clinical and therapeutic applications. The literature shows that L. rhamnosus can modulate obesity-associated factors when analyzed in vitro and in vivo. Moreover, its postbiotic and paraprobiotic effects may be comparable to the more studied probiotic actions. Some mechanisms involve regulation of gene expression, intracellular signaling, and enteroendocrine communication, among others. We conclude that the evidence is promising, although there are still multiple knowledge gaps that require further study in order to fully utilize L. rhamnosus to improve human health.
Collapse
Affiliation(s)
| | | | - Norma Julieta Salazar-López
- Facultad de Medicina de Mexicali, Universidad Autónoma de Baja California, Dr. Humberto Torres Sanginés, Centro Cívico, Mexicali 21000, BCN, Mexico
| |
Collapse
|
13
|
Jiang Y, Guo JQ, Wu Y, Zheng P, Wang SF, Yang MC, Ma GS, Yao YY. Excessive or sustained endoplasmic reticulum stress: one of the culprits of adipocyte dysfunction in obesity. Ther Adv Endocrinol Metab 2024; 15:20420188241282707. [PMID: 39381518 PMCID: PMC11459521 DOI: 10.1177/20420188241282707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/22/2024] [Indexed: 10/10/2024] Open
Abstract
As the prevalence of obesity continues to rise globally, the research on adipocytes has attracted more and more attention. In the presence of nutrient overload, adipocytes are exposed to pressures such as hypoxia, inflammation, mechanical stress, metabolite, and oxidative stress that can lead to organelle dysfunction. Endoplasmic reticulum (ER) is a vital organelle for sensing cellular pressure, and its homeostasis is essential for maintaining adipocyte function. Under conditions of excess nutrition, ER stress (ERS) will be triggered by the gathering of abnormally folded proteins in the ER lumen, resulting in the activation of a signaling response known as the unfolded protein responses (UPRs), which is a response system to relieve ERS and restore ER homeostasis. However, if the UPRs fail to rescue ER homeostasis, ERS will activate pathways to damage cells. Studies have shown a role for disturbed activation of adipocyte ERS in the pathophysiology of obesity and its complications. Prolonged or excessive ERS in adipocytes can aggravate lipolysis, insulin resistance, and apoptosis and affect the bioactive molecule production. In addition, ERS also impacts the expression of some important genes. In view of the fact that ERS influences adipocyte function through various mechanisms, targeting ERS may be a viable strategy to treat obesity. This article summarizes the effects of ERS on adipocytes during obesity.
Collapse
Affiliation(s)
- Yu Jiang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Jia-Qi Guo
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Ya Wu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Peng Zheng
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Shao-Fan Wang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Meng-Chen Yang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Gen-Shan Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Yu-Yu Yao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China
| |
Collapse
|
14
|
Giangregorio F, Mosconi E, Debellis MG, Provini S, Esposito C, Garolfi M, Oraka S, Kaloudi O, Mustafazade G, Marín-Baselga R, Tung-Chen Y. A Systematic Review of Metabolic Syndrome: Key Correlated Pathologies and Non-Invasive Diagnostic Approaches. J Clin Med 2024; 13:5880. [PMID: 39407941 PMCID: PMC11478146 DOI: 10.3390/jcm13195880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Background and Objectives: Metabolic syndrome (MetS) is a condition marked by a complex array of physiological, biochemical, and metabolic abnormalities, including central obesity, insulin resistance, high blood pressure, and dyslipidemia (characterized by elevated triglycerides and reduced levels of high-density lipoproteins). The pathogenesis develops from the accumulation of lipid droplets in the hepatocyte (steatosis). This accumulation, in genetically predisposed subjects and with other external stimuli (intestinal dysbiosis, high caloric diet, physical inactivity, stress), activates the production of pro-inflammatory molecules, alter autophagy, and turn on the activity of hepatic stellate cells (HSCs), provoking the low grade chronic inflammation and the fibrosis. This syndrome is associated with a significantly increased risk of developing type 2 diabetes mellitus (T2D), cardiovascular diseases (CVD), vascular, renal, pneumologic, rheumatological, sexual, cutaneous syndromes and overall mortality, with the risk rising five- to seven-fold for T2DM, three-fold for CVD, and one and a half-fold for all-cause mortality. The purpose of this narrative review is to examine metabolic syndrome as a "systemic disease" and its interaction with major internal medicine conditions such as CVD, diabetes, renal failure, and respiratory failure. It is essential for internal medicine practitioners to approach this widespread condition in a "holistic" rather than a fragmented manner, particularly in Western countries. Additionally, it is important to be aware of the non-invasive tools available for assessing this condition. Materials and Methods: We conducted an exhaustive search on PubMed up to July 2024, focusing on terms related to metabolic syndrome and other pathologies (heart, Lung (COPD, asthma, pulmonary hypertension, OSAS) and kidney failure, vascular, rheumatological (osteoarthritis, rheumatoid arthritis), endocrinological, sexual pathologies and neoplastic risks. The review was managed in accordance with the PRISMA statement. Finally, we selected 300 studies (233 papers for the first search strategy and 67 for the second one). Our review included studies that provided insights into metabolic syndrome and non-invasive techniques for evaluating liver fibrosis and steatosis. Studies that were not conducted on humans, were published in languages other than English, or did not assess changes related to heart failure were excluded. Results: The findings revealed a clear correlation between metabolic syndrome and all the pathologies above described, indicating that non-invasive assessments of hepatic fibrosis and steatosis could potentially serve as markers for the severity and progression of the diseases. Conclusions: Metabolic syndrome is a multisystem disorder that impacts organs beyond the liver and disrupts the functioning of various organs. Notably, it is linked to a higher incidence of cardiovascular diseases, independent of traditional cardiovascular risk factors. Non-invasive assessments of hepatic fibrosis and fibrosis allow clinicians to evaluate cardiovascular risk. Additionally, the ability to assess liver steatosis may open new diagnostic, therapeutic, and prognostic avenues for managing metabolic syndrome and its complications, particularly cardiovascular disease, which is the leading cause of death in these patients.
Collapse
Affiliation(s)
- Francesco Giangregorio
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Emilio Mosconi
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Maria Grazia Debellis
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Stella Provini
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Ciro Esposito
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Matteo Garolfi
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Simona Oraka
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Olga Kaloudi
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Gunel Mustafazade
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Raquel Marín-Baselga
- Department of Internal Medicine, Hospital Universitario La Paz, Paseo Castellana 241, 28046 Madrid, Spain;
| | - Yale Tung-Chen
- Department of Internal Medicine, Hospital Universitario La Paz, Paseo Castellana 241, 28046 Madrid, Spain;
| |
Collapse
|
15
|
Yan M, Man S, Ma L, Guo L, Huang L, Gao W. Immunological mechanisms in steatotic liver diseases: An overview and clinical perspectives. Clin Mol Hepatol 2024; 30:620-648. [PMID: 38988278 PMCID: PMC11540396 DOI: 10.3350/cmh.2024.0315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024] Open
Abstract
Steatotic liver diseases (SLD) are the principal worldwide cause of cirrhosis and end-stage liver cancer, affecting nearly a quarter of the global population. SLD includes metabolic dysfunction-associated alcoholic liver disease (MetALD) and metabolic dysfunction-associated steatotic liver disease (MASLD), resulting in asymptomatic liver steatosis, fibrosis, cirrhosis and associated complications. The immune processes include gut dysbiosis, adiposeliver organ crosstalk, hepatocyte death and immune cell-mediated inflammatory processes. Notably, various immune cells such as B cells, plasma cells, dendritic cells, conventional CD4+ and CD8+ T cells, innate-like T cells, platelets, neutrophils and macrophages play vital roles in the development of MetALD and MASLD. Immunological modulations targeting hepatocyte death, inflammatory reactions and gut microbiome include N-acetylcysteine, selonsertib, F-652, prednisone, pentoxifylline, anakinra, JKB-121, HA35, obeticholic acid, probiotics, prebiotics, antibiotics and fecal microbiota transplantation. Understanding the immunological mechanisms underlying SLD is crucial for advancing clinical therapeutic strategies.
Collapse
Affiliation(s)
- Mengyao Yan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin, China
| |
Collapse
|
16
|
Limberger Nedel B, Garcia Madure M, Guaresi S, Soares Machado ME, Madrid de Bittencourt M, Nobrega Chagas N, Gerchman F. Breast Adiposity: Menopausal Status Impact and its Influence on Glycemic and Anthropometric Metabolic Parameters. J Clin Endocrinol Metab 2024; 109:2467-2477. [PMID: 38558168 DOI: 10.1210/clinem/dgae205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
CONTEXT Ectopic fat depots are related to the deregulation of energy homeostasis, leading to diseases related to obesity and metabolic syndrome (MetS). Despite significant changes in body composition over women's lifespans, little is known about the role of breast adipose tissue (BrAT) and its possible utilization as an ectopic fat depot in women of different menopausal statuses. OBJECTIVE We aimed to assess the relationship between BrAT and metabolic glycemic and lipid profiles and body composition parameters in adult women. METHODS In this cross-sectional study, we enrolled adult women undergoing routine mammograms and performed history and physical examination, body composition assessment, semi-automated assessment of breast adiposity (BA) from mammograms, and fasting blood collection for biochemical analysis. Correlations and multivariate regression analysis were used to examine associations of BA with metabolic and body composition parameters. RESULTS Of the 101 participants included in the final analysis, 76.2% were in menopause, and 23.8% were in premenopause. The BA was positively related with fasting plasma glucose, glycated hemoglobin, homeostasis model assessment of insulin resistance, body mass index, waist circumference, body fat percentage, and abdominal visceral and subcutaneous fat when adjusted for age among women in postmenopause. Also, the BA was an independent predictor of hyperglycemia and MetS. These associations were not present among women in premenopause. CONCLUSION The BA was related to different adverse body composition and metabolic factors in women in postmenopause. The results suggest that there might be a relevant BrAT endocrine role during menopause, with mechanisms yet to be clarified, thus opening up research perspectives on the subject and potential clinical implications.
Collapse
Affiliation(s)
- Barbara Limberger Nedel
- Graduate Program in Medical Sciences: Endocrinology, Department of Internal Medicine, Faculty of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-000, Brazil
| | - Michelle Garcia Madure
- Faculty of Nutrition and Food Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-000, Brazil
| | - Silvia Guaresi
- Faculty of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-000, Brazil
| | - Maria Elisa Soares Machado
- Faculty of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-000, Brazil
| | | | - Nathalia Nobrega Chagas
- Faculty of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-000, Brazil
| | - Fernando Gerchman
- Graduate Program in Medical Sciences: Endocrinology, Department of Internal Medicine, Faculty of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-000, Brazil
- Division of Endocrinology and Metabolism, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, 90035-903, Brazil
| |
Collapse
|
17
|
Cai X, Zhang Q, Wang J, Miao Y, Sun Y, Xia Z, Zhang L, Yu Q, Jiang Z. Novel Dual PPAR δ/γ Partial Agonist Induces Hepatic Lipid Accumulation through Direct Binding and Inhibition of AKT1 Phosphorylation, Mediating CD36 Upregulation. Chem Res Toxicol 2024; 37:1574-1587. [PMID: 39235066 DOI: 10.1021/acs.chemrestox.4c00268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
ZLY06 is a dual agonist of peroxisome proliferator-activated receptor (PPAR) δ/γ, showing potential therapeutic effects on metabolic syndrome. However, our research has revealed that ZLY06 exhibits hepatotoxicity in normal C57BL/6J mice, though the precise mechanism remains unclear. This study aims to investigate the manifestations and mechanisms of ZLY06-induced hepatotoxicity. We administered ZLY06 via oral gavage to C57BL/6J mice (once daily for six weeks) and monitored various indicators to preliminarily explore its hepatotoxicity. Additionally, we further investigate the specific mechanisms of ZLY06-induced hepatotoxicity using PPAR inhibitors (GW9662 and GSK0660) and the Protein kinase B (AKT) activator (SC79). Results showed that ZLY06 led to increased serum ALP, ALT and AST, as well as elevated liver index and hepatic lipid levels. There was upregulation in the gene and protein expression of lipid metabolism-related molecules Acc, Scd1, Cd36, Fabp1 and Fabp2 in hepatocytes, with Cd36 showing the most significant change. Furthermore, cotreatment with SC79 significantly reduced ZLY06-induced hepatotoxicity in AML12 cells, evidenced by decreased intracellular TG levels and downregulation of CD36 expression. Specific knockdown of CD36 also mitigated ZLY06-induced hepatotoxicity. The study found that ZLY06 may bind to AKT1, inhibiting its phosphorylation activation, with the downregulation of p-AKT1 preceding the upregulation of CD36. In summary, ZLY06 mediates the upregulation of CD36 by potentially binding to and inhibiting the phosphorylation of AKT1, leading to hepatic lipid metabolism disorder and inducing liver toxicity.
Collapse
Affiliation(s)
- Xiaotong Cai
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Qin Zhang
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jiwei Wang
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yingying Miao
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yuqing Sun
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ziyin Xia
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Luyong Zhang
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qinwei Yu
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhenzhou Jiang
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Center for Pharmacodynamics Research and Evaluation, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
18
|
Sarray S, Ezzidi I, Moussa S, Abdennebi HB, Mtiraoui N. Association study between adiponectin gene variants, serum levels and the risk of type 2 diabetes in Tunisian women: Insights from BMI stratification. Cytokine 2024; 181:156695. [PMID: 39018944 DOI: 10.1016/j.cyto.2024.156695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/02/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Although prior studies have shown that adiponectin synthesis is genetically determined and that its levels influence susceptibility to T2D, the results in this regard have been inconsistent. This study aims, to investigate the relationship between adiponectin gene variants with the risk of developing T2D among Tunisian women and in relation to their BMI status. A cohort of 491 Tunisian T2D women and 373 non-diabetic subjects participated in the study. Nine ADIPOQ variants namely rs16861194, rs17300539, rs266729, rs822395, rs822396, rs2241766, rs1501299, rs2241767 and rs3774261 were selected and genotyped using the TaqMan® SNP genotyping assay. Fasting serum adiponectin levels were quantified using ELISA. The results showed that only the rs17300539 variant exhibited a significant association with the risk of T2D. However, upon considering T2D group stratification based on BMI (normal weight [18-24.99 Kg/m2], overweight [25-29.99 Kg/m2] and obese [30-34.99 Kg/m2]), the ADIPOQ rs2241766 variant emerged as a contributing risk factor for increased BMI in obese women with T2D. Linear regression analysis revealed that the minor allele (A), (GA) and (AA) genotypes of rs17300539 as well as the (G) allele and (GG) genotype of rs2241766 were significantly associated with hypoadiponectinemia in T2D subjects. Two haplotypes namely GGCAATGAA and AGCCGTGGA, were identified as conferring a higher risk of T2D with the GGCAATGAA haplotype also correlating with hypoadiponectinemia. Our study underscores the importance of the rs17300539 variant and the GGCAATGAA haplotype in the risk of T2D and hypoadiponectinemia. Additionally, the presence of the rs2241766 variant highlights its association with 'diabesity' and hypoadiponectinemia among Tunisian T2D women.
Collapse
Affiliation(s)
- Sameh Sarray
- College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain; Faculty of Sciences, University of Tunis EL Manar, Tunis, Tunisia
| | - Intissar Ezzidi
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia; Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia
| | - Saif Moussa
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
| | - Hassen Ben Abdennebi
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
| | - Nabil Mtiraoui
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia; Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia.
| |
Collapse
|
19
|
Mączka K, Stasiak O, Przybysz P, Grymowicz M, Smolarczyk R. The Impact of the Endocrine and Immunological Function of Adipose Tissue on Reproduction in Women with Obesity. Int J Mol Sci 2024; 25:9391. [PMID: 39273337 PMCID: PMC11395521 DOI: 10.3390/ijms25179391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Obesity, which leads to metabolic dysregulation and body function impairment, emerges as one of the pressing health challenges worldwide. Excessive body fat deposits comprise a dynamic and biologically active organ possessing its own endocrine function. One of the mechanisms underlying the pathophysiology of obesity is low-grade systemic inflammation mediated by pro-inflammatory factors such as free fatty acids, lipopolysaccharides, adipokines (including leptin, resistin and visfatin) and cytokines (TNF-α, IL-1β, Il-6), which are secreted by adipose tissue. Together with obesity-induced insulin resistance and hyperandrogenism, the exacerbated immune response has a negative impact on the hypothalamic-pituitary-gonadal axis at all levels and directly affects reproduction. In women, it results in disrupted ovarian function, irregular menstrual cycles and anovulation, contributing to infertility. This review focuses on the abnormal intracellular communication, altered gene expression and signaling pathways activated in obesity, underscoring its multifactorial character and consequences at a molecular level. Extensive presentation of the complex interplay between adipokines, cytokines, immune cells and neurons may serve as a foundation for future studies in search of potential sites for more targeted treatment of reproductive disorders related to obesity.
Collapse
Affiliation(s)
- Katarzyna Mączka
- Department of Gynecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Olga Stasiak
- Department of Gynecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland
| | - Paulina Przybysz
- Department of Gynecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland
| | - Monika Grymowicz
- Department of Gynecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland
| | - Roman Smolarczyk
- Department of Gynecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland
| |
Collapse
|
20
|
Liu L, Li M, Qin Y, Liu L, Xiao Y. Serum follistatin like 1 in children with obesity and metabolic-associated fatty liver disease. BMC Endocr Disord 2024; 24:165. [PMID: 39210310 PMCID: PMC11360849 DOI: 10.1186/s12902-024-01702-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Follistatin-like protein 1 (FSTL1) has been identified as a secreted glycoprotein that plays an important role in obesity. However, its role in children with metabolic-associated fatty liver disease (MAFLD) has not been investigated. This study aimed at characterizing the relationship between serum FSTL1 concentration and MAFLD in children with obesity. METHODS A total of 121 subjects were recruited from the Second Affiliated Hospital of Xi'an Jiaotong University, including 45 obese children with MAFLD, 31 obese children without MAFLD, and 45 healthy controls. Anthropometric parameters, biochemical data were measured and circulating FSTL1 levels were detected by ELISA. RESULTS The levels of FSTL1 in obese children with MAFLD were higher than that in obese children without MAFLD: 1.31 (0.35-2.29) ng/mL vs. 0.55 (0.36-1.38) ng/mL. Correlation analysis illustrated that FSTL1 was associated with nonesterified free fatty acid and leptin (r = 0.278, P < 0.05 and r = 0.572, P < 0.05, respectively). Binary logistic regression suggested that increased FSTL1 was a risk factor for MAFLD in children (OR = 1.105, 95% CI: 1.066-1.269, P < 0.05). CONCLUSIONS Serum FSTL1 concentrations increase in obese children with MAFLD and may have the potential to be a risk factor for MAFLD in children with obesity.
Collapse
Affiliation(s)
- Lujie Liu
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710061, Shaanxi, China
| | - Meng Li
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710061, Shaanxi, China
| | - Yujie Qin
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710061, Shaanxi, China
| | - Luyang Liu
- School of Public Health, Xi'an Jiaotong University, Xi'an, China
| | - Yanfeng Xiao
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
21
|
Mustata ML, Neagoe CD, Ionescu M, Predoi MC, Mitran AM, Ianosi SL. Clinical Implications of Metabolic Syndrome in Psoriasis Management. Diagnostics (Basel) 2024; 14:1774. [PMID: 39202262 PMCID: PMC11353756 DOI: 10.3390/diagnostics14161774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
Psoriasis is an increasingly common chronic immune-mediated skin disease recognized for its systemic effects that extend beyond the skin and include various cardiovascular diseases, neurological diseases, type 2 diabetes, and metabolic syndrome. This study aimed to explore the complex relationship between psoriasis and metabolic syndrome by analyzing clinical, biochemical, and immunological parameters in patients with psoriasis alone and in patients combining psoriasis and metabolic syndrome. A total of 150 patients were enrolled, 76 with psoriasis only (PSO) and 74 with psoriasis and metabolic syndrome (PSO-MS). Data collected included anthropometric measurements, blood tests, and inflammatory markers. Statistical analysis was performed using the independent t-test, Mann-Whitney U test, Kruskal-Wallis test, and chi-square test to compare the two groups. Patients in the PSO-MS group had a significantly higher body weight, abdominal circumference, BMI, and inflammatory markers compared to patients with PSO. In addition, increased levels of IL-17A, cholesterol, triglycerides, and glucose were observed in the PSO-MS group. This study highlights the increased metabolic risk and exacerbated systemic inflammation associated with the coexistence of psoriasis and metabolic syndrome. These findings demonstrate the need for a comprehensive therapeutic approach and early intervention to manage metabolic complications in patients with psoriasis and metabolic syndrome.
Collapse
Affiliation(s)
- Maria-Lorena Mustata
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (M.-L.M.); (A.-M.M.)
| | - Carmen-Daniela Neagoe
- Department of Internal Medicine, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Mihaela Ionescu
- Department of Medical Informatics and Biostatistics, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Maria-Cristina Predoi
- Department of Morphology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Ana-Maria Mitran
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (M.-L.M.); (A.-M.M.)
| | - Simona-Laura Ianosi
- Department of Dermatology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| |
Collapse
|
22
|
Shen Q, Pu J, Xue C, Zhang M, Qu Y, Huo S, Belford M, Maxey C, Wijeratne N, Martins C, Peterman S, Qian WJ, Boeser C, Qu J. A Trapping-Micro-LC-FAIMS/dCV-MS Strategy for Ultrasensitive and Robust Targeted Quantification of Protein Drugs and Biomarkers. Anal Chem 2024; 96:13140-13149. [PMID: 39078725 PMCID: PMC11984221 DOI: 10.1021/acs.analchem.4c01888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The sensitivity of LC-MS in quantifying target proteins in plasma/tissues is significantly hindered by coeluted matrix interferences. While antibody-based immuno-enrichment effectively reduces interferences, developing and optimizing antibodies are often time-consuming and costly. Here, by leveraging the orthogonal separation capability of Field Asymmetric Ion Mobility Spectrometry (FAIMS), we developed a FAIMS/differential-compensation-voltage (FAIMS/dCV) method for antibody-free, robust, and ultrasensitive quantification of target proteins directly from plasma/tissue digests. By comparing the intensity-CV profiles of the target vs coeluted endogenous interferences, the FAIMS/dCV approach identifies the optimal CV for quantification of each target protein, thus maximizing the signal-to-noise ratio (S/N). Compared to quantification without FAIMS, this technique dramatically reduces endogenous interferences, showing a median improvement of the S/N by 14.8-fold for the quantification of 17 representative protein drugs and biomarkers in plasma or tissues and a 5.2-fold median increase in S/N over conventional FAIMS approach, which uses the peak CV of each target. We also discovered that the established CV parameters remain consistent over months and are matrix-independent, affirming the robustness of the developed FAIMS/dCV method and the transferability of the method across matrices. The developed method was successfully demonstrated in three applications: the quantification of monoclonal antibodies with subng/mL LOQ in plasma, an investigation of the time courses of evolocumab and its target PCSK9 in a preclinical setting, and a clinical investigation of low abundance obesity-related biomarkers. This innovative and easy-to-use method has extensive potential in clinical and pharmaceutical research, particularly where sensitive and high-throughput quantification of protein drugs and biomarkers is required.
Collapse
Affiliation(s)
- Qingqing Shen
- The Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, New York 14214, United States
| | - Jie Pu
- The Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, New York 14214, United States
- Clinical Pharmacology & Pharmacometrics, Bristol Myers Squibb, Summit, New Jersey 07901, United States
| | - Chao Xue
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York 14214, United States
| | - Ming Zhang
- The Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, New York 14214, United States
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York 14203, United States
| | - Yang Qu
- The Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, New York 14214, United States
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York 14203, United States
| | - Shihan Huo
- The Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, New York 14214, United States
| | - Michael Belford
- Thermo Fisher Scientific, San Jose, California 95134, United States
| | - Charles Maxey
- Thermo Fisher Scientific, San Jose, California 95134, United States
| | - Neloni Wijeratne
- Thermo Fisher Scientific, San Jose, California 95134, United States
| | - Claudia Martins
- Thermo Fisher Scientific, San Jose, California 95134, United States
| | - Scott Peterman
- Thermo Fisher Scientific, San Jose, California 95134, United States
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Cornelia Boeser
- Thermo Fisher Scientific, San Jose, California 95134, United States
| | - Jun Qu
- The Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, New York 14214, United States
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York 14203, United States
| |
Collapse
|
23
|
Zhang D, Ma X, Li H, Li X, Wang J, Zan L. SERPINE1AS2 regulates intramuscular adipogenesis by inhibiting PAI1 protein expression. Int J Biol Macromol 2024; 275:133592. [PMID: 38960265 DOI: 10.1016/j.ijbiomac.2024.133592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Antisense long non-coding RNAs (lncRNAs) played a crucial role in the precise regulation of essential biological processes and were abundantly present in animals. Many of these antisense lncRNAs have been identified as key roles in adipose tissue accumulation in livestock, underscoring their vital role in the regulation of animal physiology. Nonetheless, the functional roles of these antisense lncRNAs in regulating adipogenesis and the specific molecular mechanisms these processes were still unclear, which was a significant gap in current scientific research. In this study, we identified and characterized SERPINE1AS2, a novel natural antisense lncRNA, was highly expressed in the fat tissues of adult cattle and calves. Its expression gradually increased during the differentiation of intramuscular adipocytes. Through functional studies, we observed that knockdown of SERPINE1AS2 inhibited the proliferation and adipogenesis of intramuscular adipocytes, while overexpression of SERPINE1AS2 produced the opposite effect. RNA sequencing (RNA-seq) analysis following SERPINE1AS2 knockdown revealed that differential expression genes (DEGs) were significantly enriched in key signaling pathways, notably the MAPK, Wnt, and mTOR signaling pathways. Furthermore, SERPINE1AS2 interacted with Plasminogen Activator Inhibitor-1 (PAI1), forming RNA dimers through complementary base pairing and consequently influencing PAI1 expression. Interestingly, studies on PAI1 suggested that reduced expression facilitated adipogenesis and the downregulation of PAI1 alleviated the inhibitory effect of reduced SERPINE1AS2 on adipogenesis. In summary, this study suggested that SERPINE1AS2 played a crucial role in the adipogenesis of bovine intramuscular adipocytes by modulating the expression of PAI1. SERPINE1AS2 also regulated adipogenesis by engaging in the MAPK, Wnt, and mTOR signaling pathways. Our results suggested that SERPINE1AS2 had a complex regulatory mechanism on adipogenesis in intramuscular adipocytes.
Collapse
Affiliation(s)
- Dianqi Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xinhao Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Huaxuan Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xuefeng Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Juze Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China; National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
24
|
Phuong LDT, Tran Huy T, Huynh Quang T. The Plasma Levels of Protein Adiponectin ( AdipoQ) and Meteorin-Like (Metrnl) in Newly Diagnosed Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2024; 17:2903-2909. [PMID: 39100966 PMCID: PMC11298186 DOI: 10.2147/dmso.s471954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024] Open
Abstract
Purpose This study aimed to measure the concentrations of the Adiponectin and Meteorin - Like (Metrnl) in newly diagnosed type 2 diabetes patients. Patients and Methods A comparative cross-sectional study contained two groups: Group 1 (86 newly diagnosed diabetes mellitus type 2 patients) and group 2 (71 healthy persons). The plasma concentrations of Adiponectin and Metrnl were measured by Enzyme Link Immunosorbent Assay (ELISA). Results The plasma level of Adiponectin of the newly diagnosed diabetes mellitus type 2 group and the healthy group were 1219.82 ng/mL (1132.43-2772.50) and 1187.25 ng/mL (1160.66-3807.50) respectively. The plasma level of Metrnl of two groups were 757.60 pg/mL (564.15-994.00) and 697.60 pg/mL (538.50-986.10) respectively. There were no significant difference between two groups. Metrnl had no correlation with glucose, HbA1c, lipid profile, BMI. Adiponectin had correlation with Metrnl and HDL-cholesterol. Adiponectin had no correlation to glucose, HbA1c, LDL-cholesterol, total cholesterol, triglyceride, BMI. People with the lower Adiponectin concentration had the higher risk of diabetes (OR=6.52; 95% CI: 2.43 -17.55). Conclusion Adiponectin and Metrnl were not significantly different in newly diagnosed type 2 diabetes and healthy people. The lower concentration of Adiponectin might increase the risk of type 2 diabetes.
Collapse
Affiliation(s)
- Lan Dam Thi Phuong
- Biochemistry Department, Hanoi Medical University, Hanoi, Vietnam
- Department of Biochemistry, 103 Military Hospital, Vietnam Military Medical University, Hanoi, Vietnam
| | - Thinh Tran Huy
- Biochemistry Department, Hanoi Medical University, Hanoi, Vietnam
| | - Thuan Huynh Quang
- Department of Biochemistry, 103 Military Hospital, Vietnam Military Medical University, Hanoi, Vietnam
| |
Collapse
|
25
|
Badoiu SC, Enescu DM, Tatar R, Miricescu D, Stanescu-Spinu II, Greabu M, Coricovac AM, Badoiu SE, Jinga V. Adipokines-A Cohort Prospective Study in Children with Severe Burns. Int J Mol Sci 2024; 25:7630. [PMID: 39062875 PMCID: PMC11277113 DOI: 10.3390/ijms25147630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/20/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Burns generate every year an important burden of morbidity, being a major global public health problem through prolonged hospitalization, complications, and increased mortality. This study's purpose was to evaluate the serum levels of three adipokines and to establish significant correlations with other circulating molecules and with some clinical parameters. We evaluated 32 children with severe burns (over 25% total burned surface area-TBSA) at 48 h, day 10, and day 21 post burn, and 21 controls. The serum levels of adiponectin, resistin, leptin, tumor necrosis factor-α (TNF-α), plasminogen activator inhibitor-1 (PAI-1), and C-reactive protein (CRP) (among nine other biochemical parameters) were detected by Multiplex technique. Significant statistical differences were obtained for resistin and leptin compared to the control group, in different moments of measurements. Adiponectin serum levels presented statistically significant correlations with hot liquid mechanism of burn, the Revised Baux score, TBSA, resistin, PAI-1, CRP, TNF-α, and triglycerides (TGLs) serum levels. Resistin serum levels presented statistically significant correlations with adiponectin, CRP, PAI-1, leptin, and TNF-α. Additionally, we found statistically significant correlations between leptin serum levels and length of hospitalization, TNF-α, resistin, adiponectin, and PAI-1 serum levels. In severely burned children, adiponectin, resistin, and leptin specifically correlate with clinical parameters and with proteins involved in the systemic inflammatory response and the hypermetabolic response.
Collapse
Affiliation(s)
- Silviu Constantin Badoiu
- Department of Anatomy and Embriology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania;
- Department of Plastic and Reconstructive Surgery, Life Memorial Hospital, 365 Grivitei Street, 010719 Bucharest, Romania
| | - Dan Mircea Enescu
- Department of Plastic Reconstructive Surgery and Burns, Grigore Alexandrescu Clinical Emergency Hospital for Children, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania; (D.M.E.); (R.T.)
| | - Raluca Tatar
- Department of Plastic Reconstructive Surgery and Burns, Grigore Alexandrescu Clinical Emergency Hospital for Children, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania; (D.M.E.); (R.T.)
| | - Daniela Miricescu
- Discipline of Biochemistry, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania;
| | - Iulia-Ioana Stanescu-Spinu
- Discipline of Physiology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
| | - Maria Greabu
- Discipline of Biochemistry, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania;
| | - Anca Magdalena Coricovac
- Discipline of Embriology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania;
| | - Silvia Elena Badoiu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania;
| | - Viorel Jinga
- Department of Urology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania;
- Academy of Romanian Scientists, 3 Ilfov, 050085 Bucharest, Romania
| |
Collapse
|
26
|
Xu S, Chen Y, Gong Y. Improvement of Theaflavins on Glucose and Lipid Metabolism in Diabetes Mellitus. Foods 2024; 13:1763. [PMID: 38890991 PMCID: PMC11171799 DOI: 10.3390/foods13111763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
In diabetes mellitus, disordered glucose and lipid metabolisms precipitate diverse complications, including nonalcoholic fatty liver disease, contributing to a rising global mortality rate. Theaflavins (TFs) can improve disorders of glycolipid metabolism in diabetic patients and reduce various types of damage, including glucotoxicity, lipotoxicity, and other associated secondary adverse effects. TFs exert effects to lower blood glucose and lipids levels, partly by regulating digestive enzyme activities, activation of OATP-MCT pathway and increasing secretion of incretins such as GIP. By the Ca2+-CaMKK ꞵ-AMPK and PI3K-AKT pathway, TFs promote glucose utilization and inhibit endogenous glucose production. Along with the regulation of energy metabolism by AMPK-SIRT1 pathway, TFs enhance fatty acids oxidation and reduce de novo lipogenesis. As such, the administration of TFs holds significant promise for both the prevention and amelioration of diabetes mellitus.
Collapse
Affiliation(s)
- Shiyu Xu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China;
- Key Laboratory of Tea Science of Ministry of Education, Changsha 410128, China
| | - Ying Chen
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China;
- Key Laboratory of Tea Science of Ministry of Education, Changsha 410128, China
| | - Yushun Gong
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
27
|
Varra FN, Varras M, Varra VK, Theodosis-Nobelos P. Molecular and pathophysiological relationship between obesity and chronic inflammation in the manifestation of metabolic dysfunctions and their inflammation‑mediating treatment options (Review). Mol Med Rep 2024; 29:95. [PMID: 38606791 PMCID: PMC11025031 DOI: 10.3892/mmr.2024.13219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/17/2024] [Indexed: 04/13/2024] Open
Abstract
Obesity reaches up to epidemic proportions globally and increases the risk for a wide spectrum of co‑morbidities, including type‑2 diabetes mellitus (T2DM), hypertension, dyslipidemia, cardiovascular diseases, non‑alcoholic fatty liver disease, kidney diseases, respiratory disorders, sleep apnea, musculoskeletal disorders and osteoarthritis, subfertility, psychosocial problems and certain types of cancers. The underlying inflammatory mechanisms interconnecting obesity with metabolic dysfunction are not completely understood. Increased adiposity promotes pro‑inflammatory polarization of macrophages toward the M1 phenotype, in adipose tissue (AT), with subsequent increased production of pro‑inflammatory cytokines and adipokines, inducing therefore an overall, systemic, low‑grade inflammation, which contributes to metabolic syndrome (MetS), insulin resistance (IR) and T2DM. Targeting inflammatory mediators could be alternative therapies to treat obesity, but their safety and efficacy remains to be studied further and confirmed in future clinical trials. The present review highlights the molecular and pathophysiological mechanisms by which the chronic low‑grade inflammation in AT and the production of reactive oxygen species lead to MetS, IR and T2DM. In addition, focus is given on the role of anti‑inflammatory agents, in the resolution of chronic inflammation, through the blockade of chemotactic factors, such as monocytes chemotractant protein‑1, and/or the blockade of pro‑inflammatory mediators, such as IL‑1β, TNF‑α, visfatin, and plasminogen activator inhibitor‑1, and/or the increased synthesis of adipokines, such as adiponectin and apelin, in obesity‑associated metabolic dysfunction.
Collapse
Affiliation(s)
- Fani-Niki Varra
- Department of Pharmacy, School of Health Sciences, Frederick University, Nicosia 1036, Cyprus
- Medical School, Dimocritus University of Thrace, Alexandroupolis 68100, Greece
| | - Michail Varras
- Fourth Department of Obstetrics and Gynecology, ‘Elena Venizelou’ General Hospital, Athens 11521, Greece
| | | | | |
Collapse
|
28
|
Vesa CM, Zaha DC, Bungău SG. Molecular Mechanisms of Metabolic Syndrome. Int J Mol Sci 2024; 25:5452. [PMID: 38791493 PMCID: PMC11121717 DOI: 10.3390/ijms25105452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Metabolic syndrome represents a cluster of conditions, such as abdominal obesity, hypertension, dyslipidemia, and hyperglycemia, that are highly prevalent in developed countries because of unhealthy lifestyles [...].
Collapse
Affiliation(s)
- Cosmin Mihai Vesa
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (C.M.V.); (D.C.Z.)
| | - Dana Carmen Zaha
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (C.M.V.); (D.C.Z.)
| | - Simona Gabriela Bungău
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
29
|
Thaqi G, Berisha B, Pfaffl MW. Expression dynamics of adipokines during induced ovulation in the bovine follicles and early corpus luteum. Reprod Domest Anim 2024; 59:e14624. [PMID: 38798196 DOI: 10.1111/rda.14624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/02/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
The study aimed to assess the local gene expression of adipokine members, namely vaspin, adiponectin, visfatin, resistin and their associated receptors - heat shock 70 protein 5 (HSPA5), adiponectin receptor 1 (AdipoR1) and adiponectin receptor 2 (AdipoR2) - in bovine follicles during the preovulatory period and early corpus luteum development. Follicles were collected before gonadotropin-releasing hormone (GnRH) treatment (0 h) and at 4, 10, 20, 25 and 60 h after GnRH application through transvaginal ovariectomy (n = 5 samples/group). Relative mRNA expression levels were quantified using real-time reverse transcription polymerase chain reaction (RT-qPCR). Vaspin exhibited high mRNA levels immediately 4 h after GnRH application, followed by a significant decrease. Adiponectin mRNA levels were elevated at 25 h after GnRH treatment. AdipoR2 exhibited late-stage upregulation, displaying increased expression at 20, 25 and 60 h following GnRH application. Visfatin showed upregulation at 20 h post-GnRH application. In conclusion, the observed changes in adipokine family members within preovulatory follicles, following experimentally induced ovulation, may constitute crucial components of the local mechanisms regulating final follicle growth and development.
Collapse
Affiliation(s)
- Granit Thaqi
- Chair of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Bajram Berisha
- Chair of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Munich, Germany
- Faculty of Agriculture and Veterinary, Department of Animal Biotechnology, University of Prishtina, Prishtina, Kosovo
| | - Michael W Pfaffl
- Chair of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Munich, Germany
| |
Collapse
|
30
|
Gao Y, Li W, Huang X, Lyu Y, Yue C. Advances in Gut Microbiota-Targeted Therapeutics for Metabolic Syndrome. Microorganisms 2024; 12:851. [PMID: 38792681 PMCID: PMC11123306 DOI: 10.3390/microorganisms12050851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/07/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024] Open
Abstract
Previous investigations have illuminated the significant association between the gut microbiome and a broad spectrum of health conditions, including obesity, diabetes, cardiovascular diseases, and psychiatric disorders. Evidence from certain studies suggests that dysbiosis of the gut microbiota may play a role in the etiology of obesity and diabetes. Moreover, it is acknowledged that dietary habits, pharmacological interventions, psychological stress, and other exogenous factors can substantially influence the gut microbial composition. For instance, a diet rich in fiber has been demonstrated to increase the population of beneficial bacteria, whereas the consumption of antibiotics can reduce these advantageous microbial communities. In light of the established correlation between the gut microbiome and various pathologies, strategically altering the gut microbial profile represents an emerging therapeutic approach. This can be accomplished through the administration of probiotics or prebiotics, which aim to refine the gut microbiota and, consequently, mitigate the manifestations of associated diseases. The present manuscript evaluates the recent literature on the relationship between gut microbiota and metabolic syndrome published over the past three years and anticipates future directions in this evolving field.
Collapse
Affiliation(s)
- Yu Gao
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an 716000, China; (Y.G.); (W.L.); (X.H.); (Y.L.)
| | - Wujuan Li
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an 716000, China; (Y.G.); (W.L.); (X.H.); (Y.L.)
| | - Xiaoyu Huang
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an 716000, China; (Y.G.); (W.L.); (X.H.); (Y.L.)
| | - Yuhong Lyu
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an 716000, China; (Y.G.); (W.L.); (X.H.); (Y.L.)
- Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yan’an University, Yan’an 716000, China
| | - Changwu Yue
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an 716000, China; (Y.G.); (W.L.); (X.H.); (Y.L.)
- Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yan’an University, Yan’an 716000, China
| |
Collapse
|
31
|
Corona-Meraz FI, Vázquez-Del Mercado M, Sandoval-García F, Robles-De Anda JA, Tovar-Cuevas AJ, Rosales-Gómez RC, Guzmán-Ornelas MO, González-Inostroz D, Peña-Nava M, Martín-Márquez BT. Biomarkers in Systemic Lupus Erythematosus along with Metabolic Syndrome. J Clin Med 2024; 13:1988. [PMID: 38610754 PMCID: PMC11012563 DOI: 10.3390/jcm13071988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Metabolic syndrome (MetS) is a group of physiological abnormalities characterized by obesity, insulin resistance (IR), and hypertriglyceridemia, which carry the risk of developing cardiovascular disease (CVD) and type 2 diabetes (T2D). Immune and metabolic alterations have been observed in MetS and are associated with autoimmune development. Systemic lupus erythematosus (SLE) is an autoimmune disease caused by a complex interaction of environmental, hormonal, and genetic factors and hyperactivation of immune cells. Patients with SLE have a high prevalence of MetS, in which elevated CVD is observed. Among the efforts of multidisciplinary healthcare teams to make an early diagnosis, a wide variety of factors have been considered and associated with the generation of biomarkers. This review aimed to elucidate some primary biomarkers and propose a set of assessments to improve the projection of the diagnosis and evolution of patients. These biomarkers include metabolic profiles, cytokines, cardiovascular tests, and microRNAs (miRs), which have been observed to be dysregulated in these patients and associated with outcomes.
Collapse
Affiliation(s)
- Fernanda Isadora Corona-Meraz
- Multidisciplinary Health Research Center, Department of Biomedical Sciences, University Center of Tonala, University of Guadalajara, Guadalajara 45425, Jalisco, Mexico; (A.-J.T.-C.); (R.-C.R.-G.); (M.-O.G.-O.)
- Department of Molecular Biology and Genomics, Institute of Rheumatology and Musculoskeletal System Research, University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (M.V.-D.M.); (F.S.-G.); (J.-A.R.-D.A.); (D.G.-I.); (M.P.-N.)
| | - Mónica Vázquez-Del Mercado
- Department of Molecular Biology and Genomics, Institute of Rheumatology and Musculoskeletal System Research, University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (M.V.-D.M.); (F.S.-G.); (J.-A.R.-D.A.); (D.G.-I.); (M.P.-N.)
- Rheumatology Service, Internal Medicine Division, Civil Hospital of Guadalajara “Dr. Juan I. Menchaca”, Guadalajara 44340, Jalisco, Mexico
- Academic Group UDG-CA-703, “Immunology and Rheumatology”, University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Flavio Sandoval-García
- Department of Molecular Biology and Genomics, Institute of Rheumatology and Musculoskeletal System Research, University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (M.V.-D.M.); (F.S.-G.); (J.-A.R.-D.A.); (D.G.-I.); (M.P.-N.)
- Academic Group UDG-CA-703, “Immunology and Rheumatology”, University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Jesus-Aureliano Robles-De Anda
- Department of Molecular Biology and Genomics, Institute of Rheumatology and Musculoskeletal System Research, University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (M.V.-D.M.); (F.S.-G.); (J.-A.R.-D.A.); (D.G.-I.); (M.P.-N.)
| | - Alvaro-Jovanny Tovar-Cuevas
- Multidisciplinary Health Research Center, Department of Biomedical Sciences, University Center of Tonala, University of Guadalajara, Guadalajara 45425, Jalisco, Mexico; (A.-J.T.-C.); (R.-C.R.-G.); (M.-O.G.-O.)
| | - Roberto-Carlos Rosales-Gómez
- Multidisciplinary Health Research Center, Department of Biomedical Sciences, University Center of Tonala, University of Guadalajara, Guadalajara 45425, Jalisco, Mexico; (A.-J.T.-C.); (R.-C.R.-G.); (M.-O.G.-O.)
| | - Milton-Omar Guzmán-Ornelas
- Multidisciplinary Health Research Center, Department of Biomedical Sciences, University Center of Tonala, University of Guadalajara, Guadalajara 45425, Jalisco, Mexico; (A.-J.T.-C.); (R.-C.R.-G.); (M.-O.G.-O.)
| | - Daniel González-Inostroz
- Department of Molecular Biology and Genomics, Institute of Rheumatology and Musculoskeletal System Research, University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (M.V.-D.M.); (F.S.-G.); (J.-A.R.-D.A.); (D.G.-I.); (M.P.-N.)
| | - Miguel Peña-Nava
- Department of Molecular Biology and Genomics, Institute of Rheumatology and Musculoskeletal System Research, University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (M.V.-D.M.); (F.S.-G.); (J.-A.R.-D.A.); (D.G.-I.); (M.P.-N.)
| | - Beatriz-Teresita Martín-Márquez
- Department of Molecular Biology and Genomics, Institute of Rheumatology and Musculoskeletal System Research, University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (M.V.-D.M.); (F.S.-G.); (J.-A.R.-D.A.); (D.G.-I.); (M.P.-N.)
- Academic Group UDG-CA-703, “Immunology and Rheumatology”, University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| |
Collapse
|
32
|
Hashimoto N, Nagata R, Han KH, Wakagi M, Ishikawa-Takano Y, Fukushima M. Involvement of the vagus nerve and hepatic gene expression in serum adiponectin concentrations in mice. J Physiol Biochem 2024; 80:99-112. [PMID: 37837567 DOI: 10.1007/s13105-023-00987-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/27/2023] [Indexed: 10/16/2023]
Abstract
Several humoral factors, such as adiponectin and urate, have been suggested to affect metabolic syndromes. Previously, we reported a reduction in blood adiponectin concentrations after a high-fructose diet partially via the vagus nerve in rats. Although a lithogenic diet (LD), i.e., supplementation of a normal control diet (CT) with 0.6% cholesterol and 0.2% sodium cholate, reduced blood adiponectin concentrations, the involvement of the vagus nerve in this mechanism remains unclear. To estimate the involvement of the vagus nerve in the regulation of blood adiponectin concentrations using an LD, male imprinting control region mice that had been vagotomized (HVx) or only laparotomized (Sham) were administered a CT or an LD for 10 weeks. Serum adiponectin concentrations in the Sham-LD, HVx-CT, and HVx-LD groups were reduced by half compared with the Sham-CT group. The hepatic mRNA levels of fibroblast growth factor 21 (Fgf21), which reportedly stimulates adiponectin secretion from white adipose tissue, were lower in the LD groups compared with the CT groups. HepG2 hepatoma cells showed that various bile acids reduced the mRNA expression of FGF21. Moreover, the LD increased serum urate concentrations and reduced hepatic expressions of the acyl-CoA oxidase 1 (Acox1) mRNA and glucokinase, suggesting insufficient regeneration of ATP from AMP. In conclusion, serum adiponectin concentration may be regulated via the vagus nerve in normal mice, whereas a reduction of hepatic Fgf21 mRNA by bile acids may also lower serum adiponectin levels. Moreover, the LD may promote hepatic AMP accumulation and subsequently increase the serum urate concentration in mice.
Collapse
Affiliation(s)
- Naoto Hashimoto
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11, Inada, Obihiro, Hokkaido, 080-8555, Japan.
- Division of Food Function Research, Food Research Institute, National Agriculture and Food Research Organization, 2-1-12, Kannondai, Tsukuba, Ibaraki, 305-8642, Japan.
| | - Ryuji Nagata
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11, Inada, Obihiro, Hokkaido, 080-8555, Japan
| | - Kyu-Ho Han
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11, Inada, Obihiro, Hokkaido, 080-8555, Japan
| | - Manabu Wakagi
- Division of Food Function Research, Food Research Institute, National Agriculture and Food Research Organization, 2-1-12, Kannondai, Tsukuba, Ibaraki, 305-8642, Japan
| | - Yuko Ishikawa-Takano
- Division of Food Function Research, Food Research Institute, National Agriculture and Food Research Organization, 2-1-12, Kannondai, Tsukuba, Ibaraki, 305-8642, Japan
| | - Michihiro Fukushima
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11, Inada, Obihiro, Hokkaido, 080-8555, Japan
| |
Collapse
|
33
|
Tarabeih N, Kalinkovich A, Ashkenazi S, Cherny SS, Shalata A, Livshits G. Relationships between Circulating Biomarkers and Body Composition Parameters in Patients with Metabolic Syndrome: A Community-Based Study. Int J Mol Sci 2024; 25:881. [PMID: 38255954 PMCID: PMC10815336 DOI: 10.3390/ijms25020881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Metabolic syndrome (MetS) is a complex disease involving multiple physiological, biochemical, and metabolic abnormalities. The search for reliable biomarkers may help to better elucidate its pathogenesis and develop new preventive and therapeutic strategies. In the present population-based study, we looked for biomarkers of MetS among obesity- and inflammation-related circulating factors and body composition parameters in 1079 individuals (with age range between 18 and 80) belonging to an ethnically homogeneous population. Plasma levels of soluble markers were measured by using ELISA. Body composition parameters were assessed using bioimpedance analysis (BIA). Statistical analysis, including mixed-effects regression, with MetS as a dependent variable, revealed that the most significant independent variables were mainly adipose tissue-related phenotypes, including fat mass/weight (FM/WT) [OR (95% CI)], 2.77 (2.01-3.81); leptin/adiponectin ratio (L/A ratio), 1.50 (1.23-1.83); growth and differentiation factor 15 (GDF-15) levels, 1.32 (1.08-1.62); inflammatory markers, specifically monocyte to high-density lipoprotein cholesterol ratio (MHR), 2.53 (2.00-3.15), and a few others. Additive Bayesian network modeling suggests that age, sex, MHR, and FM/WT are directly associated with MetS and probably affect its manifestation. Additionally, MetS may be causing the GDF-15 and L/A ratio. Our novel findings suggest the existence of complex, age-related, and possibly hierarchical relationships between MetS and factors associated with obesity.
Collapse
Affiliation(s)
- Nader Tarabeih
- Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 40700, Israel; (N.T.); (S.A.)
| | - Alexander Kalinkovich
- Department of Anatomy and Anthropology, Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel; (A.K.); (S.S.C.)
| | - Shai Ashkenazi
- Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 40700, Israel; (N.T.); (S.A.)
| | - Stacey S. Cherny
- Department of Anatomy and Anthropology, Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel; (A.K.); (S.S.C.)
| | - Adel Shalata
- The Simon Winter Institute for Human Genetics, Bnai Zion Medical Center, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 32000, Israel;
| | - Gregory Livshits
- Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 40700, Israel; (N.T.); (S.A.)
- Department of Anatomy and Anthropology, Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel; (A.K.); (S.S.C.)
| |
Collapse
|
34
|
Pezzino S, Luca T, Castorina M, Puleo S, Latteri S, Castorina S. Role of Perturbated Hemostasis in MASLD and Its Correlation with Adipokines. Life (Basel) 2024; 14:93. [PMID: 38255708 PMCID: PMC10820028 DOI: 10.3390/life14010093] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) continues to rise, making it one of the most prevalent chronic liver disorders. MASLD encompasses a range of liver pathologies, from simple steatosis to metabolic dysfunction-associated steatohepatitis (MASH) with inflammation, hepatocyte damage, and fibrosis. Interestingly, the liver exhibits close intercommunication with fatty tissue. In fact, adipose tissue could contribute to the etiology and advancement of MASLD, acting as an endocrine organ that releases several hormones and cytokines, with the adipokines assuming a pivotal role. The levels of adipokines in the blood are altered in people with MASLD, and recent research has shed light on the crucial role played by adipokines in regulating energy expenditure, inflammation, and fibrosis in MASLD. However, MASLD disease is a multifaceted condition that affects various aspects of health beyond liver function, including its impact on hemostasis. The alterations in coagulation mechanisms and endothelial and platelet functions may play a role in the increased vulnerability and severity of MASLD. Therefore, more attention is being given to imbalanced adipokines as causative agents in causing disturbances in hemostasis in MASLD. Metabolic inflammation and hepatic injury are fundamental components of MASLD, and the interrelation between these biological components and the hemostasis pathway is delineated by reciprocal influences, as well as the induction of alterations. Adipokines have the potential to serve as the shared elements within this complex interrelationship. The objective of this review is to thoroughly examine the existing scientific knowledge on the impairment of hemostasis in MASLD and its connection with adipokines, with the aim of enhancing our comprehension of the disease.
Collapse
Affiliation(s)
- Salvatore Pezzino
- Mediterranean Foundation “GB Morgagni”, 95125 Catania, Italy (M.C.); (S.C.)
| | - Tonia Luca
- Mediterranean Foundation “GB Morgagni”, 95125 Catania, Italy (M.C.); (S.C.)
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy;
| | | | - Stefano Puleo
- Mediterranean Foundation “GB Morgagni”, 95125 Catania, Italy (M.C.); (S.C.)
| | - Saverio Latteri
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy;
| | - Sergio Castorina
- Mediterranean Foundation “GB Morgagni”, 95125 Catania, Italy (M.C.); (S.C.)
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy;
| |
Collapse
|
35
|
Islam T, Scoggin S, Gong X, Zabet-Moghaddam M, Kalupahana NS, Moustaid-Moussa N. Anti-Inflammatory Mechanisms of Curcumin and Its Metabolites in White Adipose Tissue and Cultured Adipocytes. Nutrients 2023; 16:70. [PMID: 38201900 PMCID: PMC10780365 DOI: 10.3390/nu16010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
The plant-derived polyphenol curcumin alleviates the inflammatory and metabolic effects of obesity, in part, by reducing adipose tissue inflammation. We hypothesized that the benefits of curcumin supplementation on diet-induced obesity and systemic inflammation in mice occur through downregulation of white adipose tissue (WAT) inflammation. The hypothesis was tested in adipose tissue from high-fat diet-induced obese mice supplemented with or without curcumin and in 3T3-L1 adipocytes treated with or without curcumin. Male B6 mice were fed a high-fat diet (HFD, 45% kcal fat) with or without 0.4% (w/w) curcumin supplementation (HFC). Metabolic changes in these mice have been previously reported. Here, we determined the serum levels of the curcumin metabolites tetrahydrocurcumin (THC) and curcumin-O-glucuronide (COG) using mass spectrometry. Moreover, we determined interleukin 6 (IL-6) levels and proteomic changes in LPS-stimulated 3T3-L1 adipocytes treated with or without curcumin by using immunoassays and mass spectrometry, respectively, to gain further insight into any altered processes. We detected both curcumin metabolites, THC and COG, in serum samples from the curcumin-fed mice. Both curcumin and its metabolites reduced LPS-induced adipocyte IL-6 secretion and mRNA levels. Proteomic analyses indicated that curcumin upregulated EIF2 and mTOR signaling pathways. Overall, curcumin exerted anti-inflammatory effects in adipocytes, in part by reducing IL-6, and these effects may be linked to the upregulation of the mTOR signaling pathway, warranting additional mechanistic studies on the effects of curcumin and its metabolites on metabolic health.
Collapse
Affiliation(s)
- Tariful Islam
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA; (T.I.); (S.S.); (N.S.K.)
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA;
| | - Shane Scoggin
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA; (T.I.); (S.S.); (N.S.K.)
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA;
| | - Xiaoxia Gong
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX 79409, USA;
| | - Masoud Zabet-Moghaddam
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA;
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX 79409, USA;
| | - Nishan S. Kalupahana
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA; (T.I.); (S.S.); (N.S.K.)
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA;
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA; (T.I.); (S.S.); (N.S.K.)
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA;
| |
Collapse
|
36
|
Oh J, Ahn S, Zhou X, Lim YJ, Hong S, Kim HS. Effects of Cinnamon ( Cinnamomum zeylanicum) Extract on Adipocyte Differentiation in 3T3-L1 Cells and Lipid Accumulation in Mice Fed a High-Fat Diet. Nutrients 2023; 15:5110. [PMID: 38140369 PMCID: PMC10745629 DOI: 10.3390/nu15245110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Flavonoids and phenolic acid are two of the rich polyphenols found in cinnamon (Cinnamomum zeylanicum). The effects of cinnamon extract on the inhibition of adipocyte differentiation in 3T3-L1 fibroblast cells and prohibitory lipid accumulation in male mice fed a high-fat diet were examined. Upon treating 3T3-L1 cells with cinnamon for 3 days, the cinnamon inhibited lipid accumulation and increased gene expression levels, such as those of adiponectin and leptin. In in vivo experiments, mice were randomized into four groups after a one-week acclimation period, as follows: normal diet, normal diet + 1% cinnamon extract, high-fat diet, and high-fat diet + 1% cinnamon extract. After 14 weeks of supplementation, we found that cinnamon extract increased the expression of lipolysis-related proteins, such as AMPK, p-ACC, and CPT-1, and reduced the expression of lipid-synthesis-related proteins, such as SREBP-1c and FAS, in liver tissue. Our results show that cinnamon extract may exhibit anti-obesity effects via the inhibition of lipid synthesis and adipogenesis and the induction of lipolysis in both 3T3-L1 fibroblast cells and mice fed a high-fat diet. Accordingly, cinnamon extract may have potential anti-obesity effects.
Collapse
Affiliation(s)
| | | | | | | | | | - Hyun-Sook Kim
- Department of Food and Nutrition, College of Human Ecology, Sookmyung Women’s University, Seoul 04310, Republic of Korea; (J.O.)
| |
Collapse
|
37
|
Pelczyńska M, Miller-Kasprzak E, Piątkowski M, Mazurek R, Klause M, Suchecka A, Bucoń M, Bogdański P. The Role of Adipokines and Myokines in the Pathogenesis of Different Obesity Phenotypes-New Perspectives. Antioxidants (Basel) 2023; 12:2046. [PMID: 38136166 PMCID: PMC10740719 DOI: 10.3390/antiox12122046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/19/2023] [Accepted: 11/25/2023] [Indexed: 12/24/2023] Open
Abstract
Obesity is a characteristic disease of the twenty-first century that is affecting an increasing percentage of society. Obesity expresses itself in different phenotypes: normal-weight obesity (NWO), metabolically obese normal-weight (MONW), metabolically healthy obesity (MHO), and metabolically unhealthy obesity (MUO). A range of pathophysiological mechanisms underlie the occurrence of obesity, including inflammation, oxidative stress, adipokine secretion, and other processes related to the pathophysiology of adipose tissue (AT). Body mass index (BMI) is the key indicator in the diagnosis of obesity; however, in the case of the NWO and MONW phenotypes, the metabolic disturbances are present despite BMI being within the normal range. On the other hand, MHO subjects with elevated BMI values do not present metabolic abnormalities. The MUO phenotype involves both a high BMI value and an abnormal metabolic profile. In this regard, attention has been focused on the variety of molecules produced by AT and their role in the development of obesity. Nesfatin-1, neuregulin 4, myonectin, irisin, and brain-derived neurotrophic factor (BDNF) all seem to have protective effects against obesity. The primary mechanism underlying the action of nesfatin-1 involves an increase in insulin sensitivity and reduced food intake. Neuregulin 4 sup-presses lipogenesis, decreases lipid accumulation, and reduces chronic low-grade inflammation. Myonectin lowers the amount of fatty acids in the bloodstream by increasing their absorption in the liver and AT. Irisin stimulates the browning of white adipose tissue (WAT) and consequently in-creases energy expenditure, additionally regulating glucose metabolism. Another molecule, BDNF, has anorexigenic effects. Decorin protects against the development of hyperglycemia, but may also contribute to proinflammatory processes. Similar effects are shown in the case of visfatin and chemerin, which may predispose to obesity. Visfatin increases adipogenesis, causes cholesterol accumulation in macrophages, and contributes to the development of glucose intolerance. Chemerin induces angiogenesis, which promotes the expansion of AT. This review aims to discuss the role of adipokines and myokines in the pathogenesis of the different obesity phenotypes.
Collapse
Affiliation(s)
- Marta Pelczyńska
- Chair and Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, 84 Szamarzewskiego Street, 60-569 Poznań, Poland; (E.M.-K.); (P.B.)
| | - Ewa Miller-Kasprzak
- Chair and Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, 84 Szamarzewskiego Street, 60-569 Poznań, Poland; (E.M.-K.); (P.B.)
| | - Marcin Piątkowski
- Faculty of Medicine, Poznan University of Medical Sciences, 70 Bukowska Street, 60-812 Poznań, Poland
| | - Roksana Mazurek
- Faculty of Medicine, Poznan University of Medical Sciences, 70 Bukowska Street, 60-812 Poznań, Poland
| | - Mateusz Klause
- Faculty of Medicine, Poznan University of Medical Sciences, 70 Bukowska Street, 60-812 Poznań, Poland
| | - Anna Suchecka
- Faculty of Medicine, Poznan University of Medical Sciences, 70 Bukowska Street, 60-812 Poznań, Poland
| | - Magdalena Bucoń
- Faculty of Medicine, Poznan University of Medical Sciences, 70 Bukowska Street, 60-812 Poznań, Poland
| | - Paweł Bogdański
- Chair and Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, 84 Szamarzewskiego Street, 60-569 Poznań, Poland; (E.M.-K.); (P.B.)
| |
Collapse
|
38
|
Onishi S, Fukuda A, Matsui M, Ushiro K, Nishikawa T, Asai A, Kim SK, Nishikawa H. Association between the Suita Score and Body Composition in Japanese Adults: A Large Cross-Sectional Study. Nutrients 2023; 15:4816. [PMID: 38004210 PMCID: PMC10674627 DOI: 10.3390/nu15224816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
The purpose of this study was to clarify the relationship between the Suita score (a prediction model for the development of cardiovascular disease) and body composition in Japanese health check-up subjects (6873 men and 8685 women). The Suita score includes 8 items (age, gender, smoking, diabetes, blood pressure, low-density lipoprotein, high-density lipoprotein, and chronic kidney disease). Factors associated with the Suita score within body composition-related parameters (body mass index (BMI), waist circumference (WC), fat mass index, fat-free mass index, fat mass to fat-free mass ratio (F-FF ratio), and water mass index) as assessed by bioelectrical impedance analysis were examined. The mean age of subjects was 54.8 years in men and 52.8 years in women (p < 0.0001). The mean BMI was 23.9 kg/m2 in men and 21.8 kg/m2 in women (p < 0.0001). Diabetes mellitus was found in 1282 subjects (18.7%) among men and 816 subjects (9.4%) among women (p < 0.0001). The mean Suita score was 42.0 in men and 29.6 in women (p < 0.0001). In multivariate analysis, WC (p < 0.0001), F-FF ratio (p < 0.0001), and water mass index (p < 0.0001) were independent factors linked to the Suita score for both genders. In conclusion, body composition can be associated with the Suita score in Japanese adults receiving health check-ups.
Collapse
Affiliation(s)
- Saori Onishi
- Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Osaka, Japan (T.N.)
| | - Akira Fukuda
- Health Science Clinic, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Osaka, Japan
| | - Masahiro Matsui
- Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Osaka, Japan (T.N.)
| | - Kosuke Ushiro
- Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Osaka, Japan (T.N.)
| | - Tomohiro Nishikawa
- Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Osaka, Japan (T.N.)
| | - Akira Asai
- Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Osaka, Japan (T.N.)
| | - Soo Ki Kim
- Department of Gastroenterology, Kobe Asahi Hospital, Kobe 653-8501, Hyogo, Japan
| | - Hiroki Nishikawa
- Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Osaka, Japan (T.N.)
| |
Collapse
|
39
|
Bilska K, Dmitrzak-Węglarz M, Osip P, Pawlak J, Paszyńska E, Permoda-Pachuta A. Metabolic Syndrome and Adipokines Profile in Bipolar Depression. Nutrients 2023; 15:4532. [PMID: 37960185 PMCID: PMC10648184 DOI: 10.3390/nu15214532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Metabolic syndrome (MS) is a growing social, economic, and health problem. MS coexists with nearly half of all patients with affective disorders. This study aimed to evaluate the neurobiological parameters (clinical, anthropometric, biochemical, adipokines levels, and ultrasound of carotid arteries) and their relationship with the development of MS in patients with bipolar disorder. The study group consisted of 70 patients (50 women and 20 men) hospitalized due to episodes of depression in the course of bipolar disorders. The Hamilton Depression Rating Scale was used to assess the severity of the depression symptoms in an acute state of illness and after six weeks of treatment. The serum concentration of adipokines was determined using an ELISA method. The main finding of this study is that the following adipokines correlated with MS in the bipolar depression women group: visfatin, S100B, and leptin had a positive correlation, whereas adiponectin, leptin-receptor, and adiponectin/leptin ratio showed a negative correlation. Moreover, the adiponectin/leptin ratio showed moderate to strong negative correlation with insulin level, BMI, waist circumference, triglyceride level, treatment with metformin, and a positive moderate correlation with HDL. The adiponectin/leptin ratio may be an effective tool to assess MS in depressed female bipolar patients.
Collapse
Affiliation(s)
- Karolina Bilska
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Monika Dmitrzak-Węglarz
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | | | - Joanna Pawlak
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Elżbieta Paszyńska
- Department of Integrated Dentistry, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | | |
Collapse
|
40
|
Thaqi G, Berisha B, Pfaffl MW. Local Expression Dynamics of Various Adipokines during Induced Luteal Regression (Luteolysis) in the Bovine Corpus Luteum. Animals (Basel) 2023; 13:3221. [PMID: 37893945 PMCID: PMC10603666 DOI: 10.3390/ani13203221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
The study aimed to evaluate the mRNA expression levels of various local novel adipokines, including vaspin, adiponectin, visfatin, and resistin, along with their associated receptors, heat shock 70 protein 5, adiponectin receptor 1, and adiponectin receptor 2, in the corpus luteum (CL) during luteal regression, also known as luteolysis, in dairy cows. We selected Fleckvieh cows in the mid-luteal phase (days 8-12, control group) and administered cloprostenol (PGF analog) to experimentally induce luteolysis. We collected CL samples at different time points following PGF application: before treatment (days 8-12, control group) and at 0.5, 2, 4, 12, 24, 48, and 64 h post-treatment (n = 5) per group. The mRNA expression was measured via real-time reverse transcription polymerase chain reaction (RT-qPCR). Vaspin was characterized by high mRNA levels at the beginning of the regression stage, followed by a significant decrease 48 h and 64 h after PGF treatment. Adiponectin mRNA levels were elevated 48 h after PGF. Resistin showed upregulation 4 h post PGF application. In summary, the alterations observed in the adipokine family within experimentally induced regressing CL tissue potentially play an integral role in the local regulatory processes governing the sequence of events culminating in functional luteolysis and subsequent structural changes in the bovine ovary.
Collapse
Affiliation(s)
- Granit Thaqi
- Chair of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Weihenstephan, 85354 Munich, Germany; (B.B.); (M.W.P.)
| | - Bajram Berisha
- Chair of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Weihenstephan, 85354 Munich, Germany; (B.B.); (M.W.P.)
- Department of Animal Biotechnology, Faculty of Agriculture and Veterinary, University of Prishtina, 10000 Prishtina, Kosovo
| | - Michael W. Pfaffl
- Chair of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Weihenstephan, 85354 Munich, Germany; (B.B.); (M.W.P.)
| |
Collapse
|
41
|
Weidlinger S, Winterberger K, Pape J, Weidlinger M, Janka H, von Wolff M, Stute P. Impact of estrogens on resting energy expenditure: A systematic review. Obes Rev 2023; 24:e13605. [PMID: 37544655 DOI: 10.1111/obr.13605] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 06/13/2023] [Accepted: 06/23/2023] [Indexed: 08/08/2023]
Abstract
The fear of weight gain is one of the main reasons for women not to initiate or to early discontinue hormonal contraception or menopausal hormone therapy. Resting energy expenditure is by far the largest component and the most important determinant of total energy expenditure. Given that low resting energy expenditure is a confirmed predictive factor for weight gain and consecutively for the development of obesity, research into the influence of sex steroids on resting energy expenditure is a particularly exciting area. The objective of this systematic review was to evaluate the effects of medication with natural and synthetic estrogens on resting energy expenditure in healthy normal weight and overweight women. Through complex systematic literature searches, a total of 10 studies were identified that investigated the effects of medication with estrogens on resting energy expenditure. Our results demonstrate that estrogen administration increases resting energy expenditure by up to +208 kcal per day in the context of contraception and by up to +222 kcal per day in the context of menopausal hormone therapy, suggesting a preventive effect of circulating estrogen levels and estrogen administration on weight gain and obesity development.
Collapse
Affiliation(s)
- Susanna Weidlinger
- Department of Obstetrics and Gynecology, University Hospital of Bern, Bern, Switzerland
| | - Katja Winterberger
- Department of Obstetrics and Gynecology, University Hospital of Bern, Bern, Switzerland
| | - Janna Pape
- Department of Obstetrics and Gynecology, University Hospital of Bern, Bern, Switzerland
| | | | - Heidrun Janka
- Medical Library, University Library Bern, University of Bern, Bern, Switzerland
| | - Michael von Wolff
- Department of Obstetrics and Gynecology, University Hospital of Bern, Bern, Switzerland
| | - Petra Stute
- Department of Obstetrics and Gynecology, University Hospital of Bern, Bern, Switzerland
| |
Collapse
|
42
|
Chiang YT, Wu YY, Lin YC, Huang YY, Lu JC. Cyclodextrin-Mediated Cholesterol Depletion Induces Adiponectin Secretion in 3T3-L1 Adipocytes. Int J Mol Sci 2023; 24:14718. [PMID: 37834165 PMCID: PMC10572842 DOI: 10.3390/ijms241914718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Adipocytes store a significant amount of cholesterol and triglycerides. However, whether cholesterol modulates adipocyte function remains largely unknown. We modulated the cholesterol level in adipocytes to examine its effect on the secretion of adiponectin, an important hormone specifically secreted by adipocytes. Treating differentiated 3T3-L1 adipocytes with 4 mM methyl-β-cyclodextrin (MβCD), a molecule with a high affinity for cholesterol, rapidly depleted cholesterol in adipocytes. Interestingly, MβCD treatment increased adiponectin in the medium without affecting its intracellular level, suggesting a modulation of secretion. By contrast, cholesterol addition did not affect adiponectin secretion, suggesting that cholesterol-depletion-induced intracellular cholesterol trafficking, but not reduced cholesterol level, accounted for MβCD-induced adiponectin secretion. MβCD-induced adiponectin secretion was reduced after 10 μg/mL U18666A treatment that suppressed cholesterol transport out of late endosomes/lysosomes. Depleting Niemann-Pick type C1 (NPC1) or NPC2 proteins, which mediate endosomal/lysosomal cholesterol export, consistently reduced MβCD-induced adiponectin secretion. Furthermore, treatment with 1 μM bafilomycin A1, which neutralized acidic endosomes/lysosomes, also attenuated MβCD-induced adiponectin secretion. Finally, MβCD treatment redistributed cellular adiponectin to lower-density fractions in sucrose gradient fractionation. Our results show that MβCD-mediated cholesterol depletion elevates the secretion of adiponectin, highlighting the involvement of endosomes and lysosomes in adiponectin secretion in adipocytes.
Collapse
Affiliation(s)
- Yu-Ting Chiang
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ying-Yu Wu
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yu-Chun Lin
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yu-Yao Huang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
| | - Juu-Chin Lu
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
| |
Collapse
|
43
|
Hu JQ, Yan YH, Xie H, Feng XB, Ge WH, Zhou H, Yu LL, Sun LY, Xie Y. Targeting abnormal lipid metabolism of T cells for systemic lupus erythematosus treatment. Biomed Pharmacother 2023; 165:115198. [PMID: 37536033 DOI: 10.1016/j.biopha.2023.115198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 08/05/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease in which the immune system attacks its own tissues and organs. However, the causes of SLE remain unknown. Dyslipidemia is a common symptom observed in SLE patients and animal models and is closely correlated to disease activity. Lipid metabolic reprogramming has been considered as a hallmark of the dysfunction of T cells in patients with SLE, therefore, manipulating lipid metabolism provides a potential therapeutic target for treating SLE. A better understanding of the underlying mechanisms for the metabolic events of immune cells under pathological conditions is crucial for tuning immunometabolism to manage autoimmune diseases such as SLE. In this review, we aim to summarize the cross-link between lipid metabolism and the function of T cells as well as the underlying mechanisms, and provide light on the novel therapeutic strategies of active compounds from herbals for the treatment of SLE by targeting lipid metabolism in immune cells.
Collapse
Affiliation(s)
- Jia-Qin Hu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao Special Administrative Region of China
| | - Yan-Hua Yan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Han Xie
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao Special Administrative Region of China; The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Xue-Bing Feng
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Wei-Hong Ge
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Hua Zhou
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li-Li Yu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao Special Administrative Region of China.
| | - Ling-Yun Sun
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China.
| | - Ying Xie
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
44
|
Gupta A, Gupta P, Singh AK, Gupta V. Association of adipokines with insulin resistance and metabolic syndrome including obesity and diabetes. GHM OPEN 2023; 3:7-19. [PMID: 40143837 PMCID: PMC11933950 DOI: 10.35772/ghmo.2023.01004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 03/28/2025]
Abstract
Adipose tissue (AT) acts as a highly active endocrine organ, which secretes a wide range of adipokine hormones. In the past few years, several adipokines (leptin, adiponectin, resistin etc.) have been discovered showing metabolic consequences in relation to insulin resistance (IR), obesity and diabetes. These adipokines are considered to be an important component playing an important role in the regulation of energy metabolism. They have been shown to be involved in the pathogenesis of metabolic syndrome (MetS) and cardiac diseases. The current article provides a holistic summary of recent knowledge on adipokines and emphasizes their importance in association with IR, obesity, diabetes and MetS. Adipokines such as leptin, adiponectin, resistin and tumor necrosis factor-alpha (TNF-α) have been involved in the regulation of an array of metabolic functions and disease associated with it, e.g. appetite and energy balance of the body, suppression of atherosclerosis and liver fibrosis, obesity with type 2 diabetes (T2D) and IR. An important adipokine, Interleukin-6 (IL-6), also correlates positively with human obesity and IR and also the elevated level of IL-6 predicts development of T2D. All of these hormones have important correlation with energy homeostasis, glucose and lipid metabolism, cardiovascular function and immunity. All the possible connections have extended the biological emphasis of AT secreted adipokines as an investigator in the development of MetS, and are now no longer considered as only an energy storage site.
Collapse
Affiliation(s)
- Abhishek Gupta
- Department of Physiology, King George's Medical University, Lucknow, India
| | - Priyanka Gupta
- Department of Medicine, King George's Medical University, Lucknow, India
| | - Arun Kumar Singh
- Department of Physiology, King George's Medical University, Lucknow, India
| | - Vani Gupta
- Department of Physiology, King George's Medical University, Lucknow, India
| |
Collapse
|
45
|
Bordet S, Luaces JP, Herrera MI, Gonzalez LM, Kobiec T, Perez-Lloret S, Otero-Losada M, Capani F. Neuroprotection from protein misfolding in cerebral hypoperfusion concurrent with metabolic syndrome. A translational perspective. Front Neurosci 2023; 17:1215041. [PMID: 37650104 PMCID: PMC10463751 DOI: 10.3389/fnins.2023.1215041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/17/2023] [Indexed: 09/01/2023] Open
Abstract
Based on clinical and experimental evidence, metabolic syndrome (MetS) and type 2 diabetes (T2D) are considered risk factors for chronic cerebral hypoperfusion (CCH) and neurodegeneration. Scientific evidence suggests that protein misfolding is a potential mechanism that explains how CCH can lead to either Alzheimer's disease (AD) or vascular cognitive impairment and dementia (VCID). Over the last decade, there has been a significant increase in the number of experimental studies regarding this issue. Using several animal paradigms and different markers of CCH, scientists have discussed the extent to which MetSor T2D causes a decrease in cerebral blood flow (CBF). In addition, different models of CCH have explored how long-term reductions in oxygen and energy supply can trigger AD or VCID via protein misfolding and aggregation. Research that combines two or three animal models could broaden knowledge of the links between these pathological conditions. Recent experimental studies suggest novel neuroprotective properties of protein-remodeling factors. In this review, we present a summarized updated revision of preclinical findings, discussing clinical implications and proposing new experimental approaches from a translational perspective. We are confident that research studies, both clinical and experimental, may find new diagnostic and therapeutic tools to prevent neurodegeneration associated with MetS, diabetes, and any other chronic non-communicable disease (NCD) associated with diet and lifestyle risk factors.
Collapse
Affiliation(s)
- Sofía Bordet
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, CAECIHS, UAI-CONICET, Buenos Aires, Argentina
- Centro de Investigaciones en Psicología y Psicopedagogía (CIPP), Facultad de Psicología y Psicopedagogía, Pontificia Universidad Católica Argentina (UCA), Buenos Aires, Argentina
| | - Juan Pablo Luaces
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, CAECIHS, UAI-CONICET, Buenos Aires, Argentina
| | - Maria Ines Herrera
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, CAECIHS, UAI-CONICET, Buenos Aires, Argentina
- Centro de Investigaciones en Psicología y Psicopedagogía (CIPP), Facultad de Psicología y Psicopedagogía, Pontificia Universidad Católica Argentina (UCA), Buenos Aires, Argentina
| | - Liliana Mirta Gonzalez
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, CAECIHS, UAI-CONICET, Buenos Aires, Argentina
| | - Tamara Kobiec
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, CAECIHS, UAI-CONICET, Buenos Aires, Argentina
- Centro de Investigaciones en Psicología y Psicopedagogía (CIPP), Facultad de Psicología y Psicopedagogía, Pontificia Universidad Católica Argentina (UCA), Buenos Aires, Argentina
| | - Santiago Perez-Lloret
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Observatorio de Salud Pública, Pontificia Universidad Católica Argentina, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Matilde Otero-Losada
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, CAECIHS, UAI-CONICET, Buenos Aires, Argentina
| | - Francisco Capani
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, CAECIHS, UAI-CONICET, Buenos Aires, Argentina
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
46
|
Wiecek M, Kusmierczyk J, Szymura J, Kreiner G, Szygula Z. Whole-Body Cryotherapy Alters Circulating MicroRNA Profile in Postmenopausal Women. J Clin Med 2023; 12:5265. [PMID: 37629307 PMCID: PMC10455963 DOI: 10.3390/jcm12165265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
The incidence of metabolic syndrome (MetS) increases with age, especially in women. The role of microRNAs (miRs) in the regulation of metabolism is postulated. The aim of the study is to identify miRs that may be markers of MetS and to assess changes in miRs expression as a result of 10 and 20 whole-body cryotherapy treatments (WBC; 3 min, -120 °C) in postmenopausal women with MetS (M-60, BMI 30.56 ± 5.38 kg/m2), compared to healthy postmenopausal (H-60, BMI 25.57 ± 2.46 kg/m2) and healthy young women (H-20, BMI 22.90 ± 3.19 kg/m2). In a fasting state, before 1 WBC and after 10 WBCs, as well as 20 WBCs, the expression of miR-15a-5p, miR-21-5p, miR-23a-3p, miR-146a-5p, miR-197-3p, miR-223-3p, fasting blood glucose (FBG) and blood lipid profile were determined. miR-15a-5p and miR-21-5p were down-regulated in M-60, while miR-23a-3p and miR-197-3p were up-regulated, and miR-223-3p down-regulated in M-60 and H-60, compared to H-20. Significant positive correlations between up-regulated (mostly for miR-23-3p and miR-197-3p) and significant negative correlations between down-regulated (mostly for miR-15a-5p) miRs and markers of body composition as well as metabolic disorders were observed. After 20 WBCs, miR-15a-5p expression was up-regulated in all groups. In H-60, down-regulation of miR-197-3p expression occurred after 10 WBCs and 20 WBCs. Following 10 WBCs, FBG decreased in all groups, which intensified in M-60 post-20 WBCs. In our research, it has been shown that miR-23a-3p and miR-197-3p are accurate markers of MetS and MetS risk factors, while miR-15a-5p and miR-23a-3p are precise markers of body composition disorders. WBC is an effective treatment for up-regulating miR-15a-5p and lowering glucose levels in young and postmenopausal women and down-regulating miR-197-3p expression in postmenopausal women. It may be an adjunctive effective treatment method in MetS and hyperglycemia.
Collapse
Affiliation(s)
- Magdalena Wiecek
- Department of Physiology and Biochemistry, Faculty of Physical Education and Sport, University of Physical Education in Kraków, 31-571 Kraków, Poland;
| | - Justyna Kusmierczyk
- Department of Physiology and Biochemistry, Faculty of Physical Education and Sport, University of Physical Education in Kraków, 31-571 Kraków, Poland;
| | - Jadwiga Szymura
- Department of Clinical Rehabilitation, Faculty of Motor Rehabilitation, University of Physical Education in Kraków, 31-571 Kraków, Poland;
| | - Grzegorz Kreiner
- Department Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland;
| | - Zbigniew Szygula
- Department of Sports Medicine and Human Nutrition, Institute of Biomedical Sciences, Faculty of Physical Education and Sport, University of Physical Education in Kraków, 31-571 Kraków, Poland;
| |
Collapse
|
47
|
Zhao Z, Huang J, Zhong D, Wang Y, Che Z, Xu Y, Hong R, Qian Y, Meng Q, Yin J. Associations of three thermogenic adipokines with metabolic syndrome in obese and non-obese populations from the China plateau: the China Multi-Ethnic Cohort. BMJ Open 2023; 13:e066789. [PMID: 37491087 PMCID: PMC10373706 DOI: 10.1136/bmjopen-2022-066789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/27/2023] Open
Abstract
OBJECTIVES High altitude exposure decreases the incidence of obesity and metabolic syndrome, but increases the expression of the thermogenic adipokines (leptin, fat cell fatty acid-binding protein (A-FABP) and visfatin). This study investigated the correlation of these adipokines with obesity and metabolic syndrome (MetS) in populations residing in a plateau-specific environment. DESIGN Case-control study. SETTING We cross-sectionally analysed data from the China Multi-Ethnic Cohort. PARTICIPANTS A total of 475 obese (OB, body mass index (BMI)≥28.0 kg/m2) plateau Han people and 475 age, sex and region-matched non-obese (NO, 18.5≤BMI<24.0 kg/m2) subjects were recruited. MetS was defined according to the National Cholesterol Education Program Adult Treatment Panel III guidelines. PRIMARY AND SECONDARY OUTCOME MEASURES Data with normal distributions were expressed as the mean (Stanard Deviation, SD), and data with skewed distributions were expressed as the median (Interquartile Range, IQR). The participants were grouped and the rank-sum test, χ2 test or t-tests was used for comparing groups. Spearman correlation coefficients were estimated to assess the relationships among leptin, A-FABP, visfatin and the components of MetS in each group. RESULTS A-FABP was an independent predictor of OB (OR, 1.207; 95% CI, 1.170 to 1.245; p<0.05), ABSI (OR, 1.035; 95%CI, 1.019 to 1.052; p<0.05) and MetS (OR, 1.035; 95% CI, 1.013 to 1.057; p<0.05). Leptin was an independent predictor of MetS in the NO group. Visfatin was an independent predictor of increased ABSI, but not for OB or MetS. CONCLUSION An abnormally elevated plasma A-FABP level, but not leptin or visfatin is a potential risk factor for MetS in high-altitude populations.
Collapse
Affiliation(s)
- Zhimin Zhao
- School of Public Health, Kunming Medical University, Kunming, China
| | - Juan Huang
- School of Public Health, Kunming Medical University, Kunming, China
- Ultrasonography Department, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Dubo Zhong
- Yunnan Yunce Quality Inspection Limited Company, Kunming, China, Yunnan, Kunming, China
| | - Yanjiao Wang
- School of Public Health, Kunming Medical University, Kunming, China
| | - Zhuohang Che
- School of Public Health, Kunming Medical University, Kunming, China
| | - Yahui Xu
- School of Public Health, Kunming Medical University, Kunming, China
| | | | - Ying Qian
- School of Public Health, Kunming Medical University, Kunming, China
| | - Qiong Meng
- School of Public Health, Kunming Medical University, Kunming, China
| | - Jianzhong Yin
- School of Public Health, Kunming Medical University, Kunming, China
- Baoshan College of Traditional Chinese Medicine, Baoshan, China
| |
Collapse
|
48
|
Chen J, Liu Y, Wang H, Liang X, Ji S, Wang Y, Li X, Sun C. Polymethoxyflavone-Enriched Fraction from Ougan ( Citrus reticulata cv. Suavissima) Attenuated Diabetes and Modulated Gut Microbiota in Diabetic KK-A y Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6944-6955. [PMID: 37127840 DOI: 10.1021/acs.jafc.2c08607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Diabetes mellitus is a serious, chronic disease worldwide; yet it is largely preventable through physical activity and healthy diets. Ougan (Citrus reticulata cv. Suavissima) is a characteristic citrus variety rich in polymethoxyflavones. In the present study, the anti-diabetic effects of the polymethoxyflavone-enriched fraction from Ougan (OG-PMFs) were investigated. Diabetic KK-Ay mice were supplemented with different doses of OG-PMFs for 5 weeks. Our results demonstrated that OG-PMFs exhibited robust protective effects against diabetes symptoms in KK-Ay mice. The potential mechanisms may partially be attributed to the restoration of hepatic GLUT2 and catalase expression. Notably, OG-PMF administration significantly altered the gut microbiota composition in diabetic KK-Ay, indicated by the suppression of metabolic disease-associated genera Desulfovibrio, Lachnoclostridium, Enterorhabdus, and Ralstonia, implying that the gut microbiota might be another target for OG-PMFs to show effects. Taken together, our results provided a supplementation for the metabolic-protective effects of PMFs and highlighted that OG-PMFs hold great potential to be developed as a functional food ingredient.
Collapse
Affiliation(s)
- Jiebiao Chen
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, People's Republic of China
| | - Yang Liu
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, People's Republic of China
| | - Huixin Wang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, People's Republic of China
| | - Xiao Liang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, People's Republic of China
| | - Shiyu Ji
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, People's Republic of China
| | - Yue Wang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, People's Republic of China
| | - Xian Li
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, People's Republic of China
| | - Chongde Sun
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, People's Republic of China
| |
Collapse
|
49
|
Sobieh BH, El-Mesallamy HO, Kassem DH. Beyond mechanical loading: The metabolic contribution of obesity in osteoarthritis unveils novel therapeutic targets. Heliyon 2023; 9:e15700. [PMID: 37180899 PMCID: PMC10172930 DOI: 10.1016/j.heliyon.2023.e15700] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/16/2023] Open
Abstract
Osteoarthritis (OA) is a prevalent progressive disease that frequently coexists with obesity. For several decades, OA was thought to be the result of ageing and mechanical stress on cartilage. Researchers' perspective has been greatly transformed when cumulative findings emphasized the role of adipose tissue in the diseases. Nowadays, the metabolic effect of obesity on cartilage tissue has become an integral part of obesity research; hoping to discover a disease-modifying drug for OA. Recently, several adipokines have been reported to be associated with OA. Particularly, metrnl (meteorin-like) and retinol-binding protein 4 (RBP4) have been recognized as emerging adipokines that can mediate OA pathogenesis. Accordingly, in this review, we will summarize the latest findings concerned with the metabolic contribution of obesity in OA pathogenesis, with particular emphasis on dyslipidemia, insulin resistance and adipokines. Additionally, we will discuss the most recent adipokines that have been reported to play a role in this context. Careful consideration of these molecular mechanisms interrelated with obesity and OA will undoubtedly unveil new avenues for OA treatment.
Collapse
Affiliation(s)
- Basma H. Sobieh
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Hala O. El-Mesallamy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Faculty of Pharmacy, Sinai University, Sinai, Egypt
| | - Dina H. Kassem
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Corresponding author. Associate Professor of Biochemistry Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, street of African Union Organization, 11566, Cairo, Egypt.
| |
Collapse
|
50
|
Clemente-Suárez VJ, Redondo-Flórez L, Beltrán-Velasco AI, Martín-Rodríguez A, Martínez-Guardado I, Navarro-Jiménez E, Laborde-Cárdenas CC, Tornero-Aguilera JF. The Role of Adipokines in Health and Disease. Biomedicines 2023; 11:biomedicines11051290. [PMID: 37238961 DOI: 10.3390/biomedicines11051290] [Citation(s) in RCA: 135] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Adipokines are cell-signaling proteins secreted by adipose tissue that has been related to a low-grade state of inflammation and different pathologies. The present review aims to analyze the role of adipokines in health and disease in order to understand the important functions and effects of these cytokines. For this aim, the present review delves into the type of adipocytes and the cytokines produced, as well as their functions; the relations of adipokines in inflammation and different diseases such as cardiovascular, atherosclerosis, mental diseases, metabolic disorders, cancer, and eating behaviors; and finally, the role of microbiota, nutrition, and physical activity in adipokines is discussed. This information would allow for a better understanding of these important cytokines and their effects on body organisms.
Collapse
Affiliation(s)
| | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/Tajo s/n, 28670 Madrid, Spain
| | - Ana Isabel Beltrán-Velasco
- Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, C/del Hostal, 28248 Madrid, Spain
| | | | - Ismael Martínez-Guardado
- BRABE Group, Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, C/del Hostal, 28248 Madrid, Spain
| | | | | | | |
Collapse
|