1
|
Mondal P, Ramasamy S, Amalraj R, Anthoniraj CJ, Gokila S, Meeran SM. Physicochemical characteristics of dietary fiber polysaccharides extracted from Murraya koenigii leaves and their functional role on gut homeostasis. Int J Biol Macromol 2025; 293:139198. [PMID: 39736295 DOI: 10.1016/j.ijbiomac.2024.139198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/27/2024] [Accepted: 12/23/2024] [Indexed: 01/01/2025]
Abstract
Dietary fiber (DF) is an indigestible carbohydrate in plant foods that supports various physiological functions. This study aimed to extract the soluble and insoluble dietary fiber (DF) from the curry leaves and investigate their physicochemical properties as well as their functional role in the homeostasis of the gut microbiome. The study observed that insoluble-DF (IDF) yielded higher amounts than soluble-DF (SDF) across alkali, acid, and water extraction methods. Acid-extracted SDF showed the highest polysaccharide content (91.58 ± 1.53 %). Among IDFs, alkali-extracted IDF showed the highest polysaccharide content (81.93 ± 1.94 %). Glucose, arabinose, and xylose were identified as major monosaccharides. IDF had a larger particle size (463.5 ± 14.2 μm) compared to SDF (1.23 ± 15.55 μm), which influenced its physicochemical properties. IDF displayed better oil-holding capacity, while SDF showed superior water-holding capacity, potentially impacting glucose diffusion and cholesterol micelle formation. Furthermore, SDF and IDF promoted the growth of beneficial gut bacteria and increased production of short-chain fatty acids, which play critical roles in physiological regulation. Acid-extracted SDF restored gut homeostasis by increasing species richness and diversity, predominantly increasing beneficial bacteria and reducing pathogenic bacteria in LPS-induced dysbiotic mice. This study reveals the impact of extraction methods on the physicochemical and functional properties of curry leaves-DF, underscoring its promise as a functional food for gut health.
Collapse
Affiliation(s)
- Priya Mondal
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sumathy Ramasamy
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rajendran Amalraj
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | - Subramaniyan Gokila
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore 570020, India
| | - Syed Musthapa Meeran
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Tadese DA, Mwangi J, Luo L, Zhang H, Huang X, Michira BB, Zhou S, Kamau PM, Lu Q, Lai R. The microbiome's influence on obesity: mechanisms and therapeutic potential. SCIENCE CHINA. LIFE SCIENCES 2025; 68:657-672. [PMID: 39617855 DOI: 10.1007/s11427-024-2759-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/16/2024] [Indexed: 01/03/2025]
Abstract
In 2023, the World Obesity Atlas Federation concluded that more than 50% of the world's population would be overweight or obese within the next 12 years. At the heart of this epidemic lies the gut microbiota, a complex ecosystem that profoundly influences obesity-related metabolic health. Its multifaced role encompasses energy harvesting, inflammation, satiety signaling, gut barrier function, gut-brain communication, and adipose tissue homeostasis. Recognizing the complexities of the cross-talk between host physiology and gut microbiota is crucial for developing cutting-edge, microbiome-targeted therapies to address the global obesity crisis and its alarming health and economic repercussions. This narrative review analyzed the current state of knowledge, illuminating emerging research areas and their implications for leveraging gut microbial manipulations as therapeutic strategies to prevent and treat obesity and related disorders in humans. By elucidating the complex relationship between gut microflora and obesity, we aim to contribute to the growing body of knowledge underpinning this critical field, potentially paving the way for novel interventions to combat the worldwide obesity epidemic.
Collapse
Affiliation(s)
- Dawit Adisu Tadese
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - James Mwangi
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Luo
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Zhang
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Xiaoshan Huang
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Brenda B Michira
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengwen Zhou
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peter Muiruri Kamau
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiumin Lu
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Ren Lai
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Sonnino R, Ciccarelli G, Moffa S, Soldovieri L, Di Giuseppe G, Brunetti M, Cinti F, Di Piazza E, Gasbarrini A, Nista EC, Pontecorvi A, Giaccari A, Mezza T. Exploring nutraceutical approaches linking metabolic syndrome and cognitive impairment. iScience 2025; 28:111848. [PMID: 40008362 PMCID: PMC11850164 DOI: 10.1016/j.isci.2025.111848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025] Open
Abstract
Metabolic syndrome (MetS) and mild cognitive impairment (MCI) are interconnected conditions sharing common pathological pathways, such as inflammation and oxidative stress, leading to the concept of "metabolic-cognitive syndrome." This highlights their mutual influence and potential overlapping therapeutic strategies. Although lifestyle modifications remain essential, nutraceutical supplementation has emerged as a promising adjunct for the prevention and management of these preclinical conditions. This review examines clinical and translational evidence on commonly used nutraceuticals targeting shared pathophysiological mechanisms of MetS and MCI. By addressing inflammation, oxidative stress, and metabolic dysfunction, these supplements may offer a valuable approach to mitigating the progression and consequences of both conditions. Understanding their efficacy could provide practical tools to complement lifestyle changes, offering a more comprehensive strategy for managing metabolic-cognitive syndrome.
Collapse
Affiliation(s)
- Rebecca Sonnino
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Center for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gea Ciccarelli
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Center for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Simona Moffa
- Center for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Laura Soldovieri
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Center for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gianfranco Di Giuseppe
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Center for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Michela Brunetti
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Center for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Francesca Cinti
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Center for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Eleonora Di Piazza
- Center for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Pancreas Unit, CEMAD Digestive Diseases Center, Internal Medicine and Gastroenterology Unit, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Enrico C. Nista
- Pancreas Unit, CEMAD Digestive Diseases Center, Internal Medicine and Gastroenterology Unit, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Alfredo Pontecorvi
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Giaccari
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Center for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Teresa Mezza
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Pancreas Unit, CEMAD Digestive Diseases Center, Internal Medicine and Gastroenterology Unit, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| |
Collapse
|
4
|
Dhanasekaran D, Venkatesan M, Sabarathinam S. Efficacy of microbiome-targeted interventions in obesity management- A comprehensive systematic review. Diabetes Metab Syndr 2025; 19:103208. [PMID: 39999537 DOI: 10.1016/j.dsx.2025.103208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/13/2025] [Accepted: 02/15/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND Obesity is a global health crisis linked to numerous chronic diseases. The gut microbiome plays a crucial role in human metabolism, and emerging evidence suggests that modulating the microbiome may offer novel therapeutic avenues for obesity management. OBJECTIVE This systematic review aimed to assess the efficacy and safety of microbiome-targeted interventions, including probiotics, prebiotics, synbiotics, and fecal microbiota transplantation, in improving body composition, metabolic parameters, and inflammatory markers in overweight and obese adults. METHODS A comprehensive search of PubMed, Scopus, and ScienceDirect was conducted to identify relevant studies published between 2005 and 2023. Included studies were assessed for methodological quality and risk of bias using the Cochrane Collaboration tool. RESULTS Body composition: Most studies demonstrated significant reductions in body weight, Body mass index, and body fat percentage. METABOLIC PARAMETERS Improvements were observed in lipid profiles (reduced cholesterol, triglycerides) and glucose metabolism (improved insulin sensitivity). INFLAMMATORY MARKERS Significant reductions were observed in inflammatory markers such as Interleukins (IL-6, IL-8) and C-reactive protein. MICROBIAL COMPOSITION Interventions generally led to shifts in microbial composition, with increases in beneficial bacteria such as Bifidobacterium and Lactobacillus. ADVERSE EVENTS Adverse events were generally minimal and limited. CONCLUSION This review provides strong evidence that microbiome-targeted interventions can effectively improve body composition, metabolic parameters, and inflammatory markers in individuals with obesity. Further research is needed to optimize intervention strategies, identify specific microbial targets, and translate these findings into effective clinical applications.
Collapse
Affiliation(s)
- Dhivya Dhanasekaran
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamil Nadu, India
| | - Manojkumar Venkatesan
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamil Nadu, India
| | - Sarvesh Sabarathinam
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 602105, Tamil Nadu, India.
| |
Collapse
|
5
|
Zhang Z, Niu H, Qu Q, Guo D, Wan X, Yang Q, Mo Z, Tan S, Xiang Q, Tian X, Yang H, Liu Z. Advancements in Lactiplantibacillus plantarum: probiotic characteristics, gene editing technologies and applications. Crit Rev Food Sci Nutr 2025:1-22. [PMID: 39745813 DOI: 10.1080/10408398.2024.2448562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The exploration of microorganisms in fermented products has become a pivotal area of scientific research, primarily due to their widespread availability and profound potential to improve human health. Among these, Lactiplantibacillus plantarum (formerly known as Lactobacillus plantarum) stands out as a versatile lactic acid bacterium, prevalent across diverse ecological niches. Its appeal extends beyond its well-documented probiotic benefits to include the remarkable plasticity of its genome, which has captivated both scientific and industrial stakeholders. Despite this interest, substantial challenges persist in fully understanding and harnessing the potential of L. plantarum. This review aims to illuminate the probiotic attributes of L. plantarum, consolidate current advancements in gene editing technologies, and explore the multifaceted applications of both wild-type and genetically engineered strains.
Collapse
Affiliation(s)
- Zhiqi Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Haorui Niu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Qiu Qu
- Division of geriatric Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Dingming Guo
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xuchun Wan
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Qianqian Yang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zihao Mo
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Siyu Tan
- Department of Biotechnology, Wuhan No. 2 High School, Wuhan, China
| | - Qian Xiang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xue Tian
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hongju Yang
- Division of geriatric Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Zhi Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Cai H, Wang Q, Han X, Zhang H, Wang N, Huang Y, Yang P, Zhang R, Meng K. In Vitro Evaluation of Probiotic Activities and Anti-Obesity Effects of Enterococcus faecalis EF-1 in Mice Fed a High-Fat Diet. Foods 2024; 13:4095. [PMID: 39767037 PMCID: PMC11675756 DOI: 10.3390/foods13244095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/14/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
This research sought to assess the anti-obesity potential of Enterococcus faecalis EF-1. An extensive and robust in vitro methodology confirmed EF-1's significant potential in combating obesity, probably due to its excellent gastrointestinal tract adaptability, cholesterol-lowering property, bile salt hydrolase activity, α-glucosidase inhibition, and fatty acid absorption ability. Moreover, EF-1 exhibited antimicrobial activity against several pathogenic strains, lacked hemolytic activity, and was sensitive to all antibiotics tested. To further investigate EF-1's anti-obesity properties in vivo, a high-fat diet (HFD) was used to induce obesity in C57BL/6J mice. Treatment with EF-1 (2 × 109 CFU/day) mitigated HFD-induced body weight gain, reduced adipose tissue weight, and preserved liver function. EF-1 also ameliorated obesity-associated microbiota imbalances, such as decreasing the Firmicutes/Bacteroidetes ratio and boosting the levels of bacteria (Faecalibacterium, Mucispirillum, Desulfovibrio, Bacteroides, and Lachnospiraceae_NK4A136_group), which are responsible for the generation of short-chain fatty acids (SCFAs). Concurrently, the levels of total SCFAs were elevated. Thus, following comprehensive safety and efficacy assessments in vitro and in vivo, our results demonstrate that E. faecalis EF-1 inhibits HFD-induced obesity through the regulation of gut microbiota and enhancing SCFA production. This strain appears to be a highly promising candidate for anti-obesity therapeutics or functional foods.
Collapse
Affiliation(s)
- Hongying Cai
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.C.); (H.Z.); (Y.H.); (P.Y.)
| | - Qingya Wang
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming 650500, China; (Q.W.); (X.H.); (N.W.)
| | - Xiling Han
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming 650500, China; (Q.W.); (X.H.); (N.W.)
| | - Haiou Zhang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.C.); (H.Z.); (Y.H.); (P.Y.)
| | - Na Wang
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming 650500, China; (Q.W.); (X.H.); (N.W.)
| | - Yuyin Huang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.C.); (H.Z.); (Y.H.); (P.Y.)
| | - Peilong Yang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.C.); (H.Z.); (Y.H.); (P.Y.)
| | - Rui Zhang
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming 650500, China; (Q.W.); (X.H.); (N.W.)
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Yunnan Normal University, Kunming 650500, China
| | - Kun Meng
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.C.); (H.Z.); (Y.H.); (P.Y.)
| |
Collapse
|
7
|
Lee K, Kim HJ, Kim JY, Shim JJ, Lee JH. Synergistic Effect of Lactobacillus Mixtures and Lagerstroemia speciosa Leaf Extract in Reducing Obesity in High-Fat Diet-Fed Mice. BIOLOGY 2024; 13:1047. [PMID: 39765714 PMCID: PMC11673097 DOI: 10.3390/biology13121047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
In this study, we describe the anti-obesity effects of a novel combination of Lactobacillus mixture (Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032) and leaf extract of Lagerstroemia speciosa (L. speciosa) in mice. The administration of the probiotic mixture of HY7601 and KY1032 in combination with the leaf extract of L. speciosa significantly attenuated fat tissue formation and body weight gain in mice fed a high-fat diet. The white adipose fat mass, comprising the inguinal and epididymal fat pads, was most effectively reduced when the probiotic mixture and L. speciosa leaf extract was orally administered to the mice in combination. This combination also reduced the mRNA expression of adipogenic genes (those encoding CCAAT/enhancer-binding protein alpha, peroxisome proliferator-activated receptor gamma, and fatty acid-binding protein 4) in inguinal and epididymal white adipose tissue depots and the liver. Finally, the combination of reduced blood glucose concentrations regulated the insulin resistance of high-fat diet-fed obese mice. These findings provide insight into the mechanisms underlying the effect of this combination and suggest that using Lactobacillus mixture (HY7601 and KY1032) is as safe as microbial monotherapy, but more effective at preventing obesity.
Collapse
Affiliation(s)
| | | | - Joo Yun Kim
- R&BD Center, hy Co., Ltd., 22 Giheungdanji-ro 24 Beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (K.L.); (H.-J.K.); (J.J.S.)
| | | | - Jae Hwan Lee
- R&BD Center, hy Co., Ltd., 22 Giheungdanji-ro 24 Beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (K.L.); (H.-J.K.); (J.J.S.)
| |
Collapse
|
8
|
He G, Long H, He J, Zhu C. The Immunomodulatory Effects and Applications of Probiotic Lactiplantibacillus plantarum in Vaccine Development. Probiotics Antimicrob Proteins 2024; 16:2229-2250. [PMID: 39101975 DOI: 10.1007/s12602-024-10338-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2024] [Indexed: 08/06/2024]
Abstract
Lactiplantibacillus plantarum (previously known as Lactobacillus plantarum) is a lactic acid bacterium that exists in various niches. L. plantarum is a food-grade microorganism that is commonly considered a safe and beneficial microorganism. It is widely used in food fermentation, agricultural enhancement, and environmental protection. L. plantarum is also part of the normal flora that can regulate the intestinal microflora and promote intestinal health. Some strains of L. plantarum are powerful probiotics that induce and modulate the innate and adaptive immune responses. Due to its outstanding immunoregulatory capacities, an increasing number of studies have examined the use of probiotic L. plantarum strains as natural immune adjuvants or alternative live vaccine carriers. The present review summarizes the main immunomodulatory characteristics of L. plantarum and discusses the preliminary immunological effects of L. plantarum as a vaccine adjuvant and delivery carrier. Different methods for improving the immune capacities of recombinant vector vaccines are also discussed.
Collapse
Affiliation(s)
- Guiting He
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, 421001, Hunan, China
| | - Huanbing Long
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, 421001, Hunan, China
| | - Jiarong He
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, 421001, Hunan, China
| | - Cuiming Zhu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, 421001, Hunan, China.
| |
Collapse
|
9
|
Enache RM, Profir M, Roşu OA, Creţoiu SM, Gaspar BS. The Role of Gut Microbiota in the Onset and Progression of Obesity and Associated Comorbidities. Int J Mol Sci 2024; 25:12321. [PMID: 39596385 PMCID: PMC11595101 DOI: 10.3390/ijms252212321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Obesity, a global public health problem, is constantly increasing, so the concerns in preventing and combating it are increasingly focused on the intestinal microbiota. It was found that the microbiota is different in lean people compared to obese individuals, but the exact mechanisms by which energy homeostasis is influenced are still incompletely known. Numerous studies show the involvement of certain bacterial species in promoting obesity and associated diseases such as diabetes, hypertension, cancer, etc. Our aim is to summarize the main findings regarding the influence of several factors such as lifestyle changes, including diet and bariatric surgery, on the diversity of the gut microbiota in obese individuals. The second purpose of this paper is to investigate the potential effect of various microbiota modulation techniques on ameliorating obesity and its comorbidities. A literature search was conducted using the PubMed database, identifying articles published between 2019 and 2024. Most studies identified suggest that obesity is generally associated with alterations of the gut microbiome such as decreased microbial diversity, an increased Firmicutes-to-Bacteroidetes ratio, and increased SCFAs levels. Our findings also indicate that gut microbiota modulation techniques could represent a novel strategy in treating obesity and related metabolic diseases. Although some mechanisms (e.g., inflammation or hormonal regulation) are already considered a powerful connection between gut microbiota and obesity development, further research is needed to enhance the knowledge on this particular topic.
Collapse
Affiliation(s)
- Robert-Mihai Enache
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania;
| | - Monica Profir
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.P.); (O.A.R.)
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Oana Alexandra Roşu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.P.); (O.A.R.)
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Sanda Maria Creţoiu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.P.); (O.A.R.)
| | - Bogdan Severus Gaspar
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Surgery Clinic, Bucharest Emergency Clinical Hospital, 014461 Bucharest, Romania
| |
Collapse
|
10
|
Yun SW, Shin YJ, Ma X, Kim DH. Lactobacillus plantarum and Bifidobacterium longum Alleviate High-Fat Diet-Induced Obesity and Depression/Cognitive Impairment-like Behavior in Mice by Upregulating AMPK Activation and Downregulating Adipogenesis and Gut Dysbiosis. Nutrients 2024; 16:3810. [PMID: 39599597 PMCID: PMC11597813 DOI: 10.3390/nu16223810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objective: Long-term intake of a high-fat diet (HFD) leads to obesity and gut dysbiosis. AMP-activated protein kinase (AMPK) is a key regulator of energy metabolism. Herein, we investigated the impacts of Lactobacillus (Lactiplantibacillus) plantarum P111 and Bifidobacterium longum P121, which suppressed dexamethasone-induced adipogenesis in 3T3 L1 cells and increased lipopolysaccharide-suppressed AMPK activation in HepG2 cells, on HFD-induced obesity, liver steatosis, gut inflammation and dysbiosis, and depression/cognitive impairment (DCi)-like behavior in mice. Methods: Obesity is induced in mice by feeding with HFD. Biomarker levels were measured using immunoblotting, enzyme-linked immunosorbent assay, and immunofluorescence staining. Results: Orally administered P111, P121, or their mix LpBl decreased HFD-induced body weight gain, epididymal fat pad weight, and triglyceride (TG), total cholesterol (TC), and lipopolysaccharide levels in the blood. Additionally, they downregulated HFD-increased NF-κB activation and TNF-α expression in the liver and colon, while HFD-decreased AMPK activation was upregulated. They also suppressed HFD-induced DCi-like behavior and hippocampal NF-κB activation, NF-κB-positive cell population, and IL-1β and TNF-α levels, while increasing the hippocampal BDNF-positive cell population and BDNF level. The combination of P111 and P122 (LpBl) also improved body weight gain, liver steatosis, and DCi-like behavior. LpBl also mitigated HFD-induced gut dysbiosis: it decreased Desulfovibrionaceae, Helicobacteriaceae, Coriobacteriaceae, and Streptococcaceae populations and lipopolysaccharide production, which were positively correlated with TNF-α expression; and increased Akkermansiaceae, Bifidobacteriaceae, and Prevotellaceae populations, which were positively correlated with the BDNF expression. Conclusions: P111 and/or P121 downregulated adipogenesis, gut dysbiosis, and NF-κB activation and upregulatde AMPK activation, leading to the alleviation of obesity, liver steatosis, and DCi.
Collapse
Affiliation(s)
- Soo-Won Yun
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (S.-W.Y.); (Y.-J.S.); (X.M.)
| | - Yoon-Jung Shin
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (S.-W.Y.); (Y.-J.S.); (X.M.)
| | - Xiaoyang Ma
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (S.-W.Y.); (Y.-J.S.); (X.M.)
| | - Dong-Hyun Kim
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (S.-W.Y.); (Y.-J.S.); (X.M.)
- PBLbioLab, Inc., Seoul 03174, Republic of Korea
| |
Collapse
|
11
|
Zhang X, Wu M, Wang J, Chen J, Yu W, Pan H. [Research progress of probiotics regulating intestinal micro-ecological environment in obese patients after bariatric surgery]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:659-666. [PMID: 39289777 PMCID: PMC11528145 DOI: 10.3724/zdxbyxb-2024-0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024]
Abstract
Bariatric surgery may cause intestinal microecological environment imbalance due to changes in gastrointestinal anatomy. Some patients may have compli-cations, even regain weight. Probiotics can act on intestinal mucosa, epithelium and gut-associated lymphoid tissue to improve the intestinal microecological environment of obese patients after bariatric surgery. Probiotics can promote the production of short-chain fatty acids, stimulate intestinal cells to release glucagon-like peptide-1, peptide tyrosine-tyrosine, insulin and other endocrine hormones, affect the function of the central nervous system through the gut-brain axis, make patients after bariatric surgery feel full, and reduce blood sugar at the same time. Probiotics can produce lactic acid, acetic acid and lactase, to inhibit the growth of harmful bacteria and to improve gastrointestinal symptoms of patients after bariatric surgery. Probiotics can activate the AMP-activated protein kinase signaling pathway, improve lipid metabolism, and promote the recovery of symptom indicators of nonalcoholic fatty liver disease after bariatric surgery. Probiotics can regulate the release of neurotransmitters or metabolites by the microbiota through the gut-brain axis to affect brain activity and behavior, thus helping patients improve negative emotions after bariatric surgery. This article describes the intestinal microecological environment of obese patients and mechanism of the change after bariatric surgery and summarizes the effects and possible mechanisms of probiotics in improving the intestinal microecological environment of obese patients after bariatric surgery, to provide references for promoting the clinical application of probiotics.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- Department of Nursing, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| | - Mizhi Wu
- Department of Nursing, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Jianan Wang
- Department of Nursing, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Jionghuang Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Weihua Yu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Hongying Pan
- Department of Nursing, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| |
Collapse
|
12
|
McBurney MI, Cho CE. Understanding the role of the human gut microbiome in overweight and obesity. Ann N Y Acad Sci 2024; 1540:61-88. [PMID: 39283061 DOI: 10.1111/nyas.15215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
The gut microbiome may be related to the prevalence of overweight and obesity, but high interindividual variability of the human microbiome complicates our understanding. Obesity often occurs concomitantly with micronutrient deficiencies that impair energy metabolism. Microbiota composition is affected by diet. Host-microbiota interactions are bidirectional. We propose three pathways whereby these interactions may modulate the gut microbiome and obesity: (1) ingested compounds or derivatives affecting small intestinal transit, endogenous secretions, digestion, absorption, microbiome balance, and gut barrier function directly affect host metabolism; (2) substrate availability affecting colonic microbial composition and contact with the gut barrier; and (3) microbial end products affecting host metabolism. The quantity/concentration, duration, and/or frequency (circadian rhythm) of changes in these pathways can alter the gut microbiome, disrupt the gut barrier, alter host immunity, and increase the risk of and progression to overweight and obesity. Host-specific characteristics (e.g., genetic variations) may further affect individual sensitivity and/or resilience to diet- and microbiome-associated perturbations in the colonic environment. In this narrative review, the effects of selected interventions, including fecal microbiota transplantation, dietary calorie restriction, dietary fibers and prebiotics, probiotics and synbiotics, vitamins, minerals, and fatty acids, on the gut microbiome, body weight, and/or adiposity are summarized to help identify mechanisms of action and research opportunities.
Collapse
Affiliation(s)
- Michael I McBurney
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
- Division of Biochemical and Molecular Biology, Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts, USA
| | - Clara E Cho
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
13
|
Yang L, Wu Y, Yang J, Li Y, Zhao X, Liang T, Li L, Jiang T, Zhang T, Zhang J, Zhong H, Xie X, Wu Q. Lactiplantibacillus plantarum P470 Isolated from Fermented Chinese Chives Has the Potential to Improve In Vitro the Intestinal Microbiota and Biological Activity in Feces of Coronary Heart Disease (CHD) Patients. Nutrients 2024; 16:2945. [PMID: 39275259 PMCID: PMC11397641 DOI: 10.3390/nu16172945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/23/2024] [Accepted: 08/31/2024] [Indexed: 09/16/2024] Open
Abstract
Traditional fermented foods are known to offer cardiovascular health benefits. However, the potential of fermented Chinese chives (FCC) in reducing coronary heart disease (CHD) remains unclear. This study employed anaerobic fermentation to investigate Lactiplantibacillus plantarum (L. plantarum) P470 from FCC. The results indicated that L. plantarum P470 enhanced hydroxyl radical scavenging and exhibited anti-inflammatory effects on RAW264.7 macrophages in the fecal fermentation supernatant of CHD patients. These effects were attributed to the modulation of gut microbiota and metabolites, including short-chain fatty acids (SCFAs). Specifically, L. plantarum P470 increased the abundance of Bacteroides and Lactobacillus while decreasing Escherichia-Shigella, Enterobacter, Veillonella, Eggerthella, and Helicobacter in CHD patient fecal samples. Furthermore, L. plantarum P470 regulated the biosynthesis of unsaturated fatty acids and linoleic acid metabolism. These findings suggest that L. plantarum P470 from FCC can improve the fecal physiological status in patients with CHD by modulating intestinal microbiota, promoting SCFA production, and regulating lipid metabolism.
Collapse
Affiliation(s)
- Lingshuang Yang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yuwei Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Juan Yang
- The First Affiliated Hospital, School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou 510060, China
| | - Ying Li
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xinyu Zhao
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Tingting Liang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Longyan Li
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Tong Jiang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Tiantian Zhang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jumei Zhang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Haojie Zhong
- The First Affiliated Hospital, School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou 510060, China
| | - Xinqiang Xie
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qingping Wu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| |
Collapse
|
14
|
Zhai Z, Yang Y, Chen S, Wu Z. Long-Term Exposure to Polystyrene Microspheres and High-Fat Diet-Induced Obesity in Mice: Evaluating a Role for Microbiota Dysbiosis. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:97002. [PMID: 39226184 PMCID: PMC11370995 DOI: 10.1289/ehp13913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 07/23/2024] [Accepted: 08/08/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND Microplastics (MPs) have become a global environmental problem, emerging as contaminants with potentially alarming consequences. However, long-term exposure to polystyrene microspheres (PS-MS) and its effects on diet-induced obesity are not yet fully understood. OBJECTIVES We aimed to investigate the effect of PS-MS exposure on high-fat diet (HFD)-induced obesity and underlying mechanisms. METHODS In the present study, C57BL/6J mice were fed a normal diet (ND) or a HFD in the absence or presence of PS-MS via oral administration for 8 wk. Antibiotic depletion of the microbiota and fecal microbiota transplantation (FMT) were performed to assess the influence of PS-MS on intestinal microbial ecology. We performed 16S rRNA sequencing to dissect microbial discrepancies and investigated the dysbiosis-associated intestinal integrity and inflammation in serum. RESULTS Compared with HFD mice, mice fed the HFD with PS-MS exhibited higher body weight, liver weight, metabolic dysfunction-associated steatotic liver disease (MASLD) activity scores, and mass of white adipose tissue, as well as higher blood glucose and serum lipid concentrations. Furthermore, 16S rRNA sequencing of the fecal microbiota revealed that mice fed the HFD with PS-MS had greater α -diversity and greater relative abundances of Lachnospiraceae, Oscillospiraceae, Bacteroidaceae, Akkermansiaceae, Marinifilaceae, Deferribacteres, and Desulfovibrio, but lower relative abundances of Atopobiaceae, Bifidobacterium, and Parabacteroides. Mice fed the HFD with PS-MS exhibited lower expression of MUC2 mucin and higher levels of lipopolysaccharide and inflammatory cytokines [tumor necrosis factor-α (TNF-α ), interleukin-6 (IL-6), IL-1β , and IL-17A] in serum. Correlation analyses revealed that differences in the microbial flora of mice exposed to PS-MS were associated with obesity. Interestingly, microbiota-depleted mice did not show the same PS-MS-associated differences in Muc2 and Tjp1 expression in the distal colon, expression of inflammatory cytokines in serum, or obesity outcomes between HFD and HFD + PS-MS. Importantly, transplantation of feces from HFD + PS-MS mice to microbiota-depleted HFD-fed mice resulted in a lower expression of mucus proteins, higher expression of inflammatory cytokines, and obesity outcomes, similar to the findings in HFD + PS-MS mice. CONCLUSIONS Our findings provide a new gut microbiota-driven mechanism for PS-MS-induced obesity in HFD-fed mice, suggesting the need to reevaluate the adverse health effects of MPs commonly found in daily life, particularly in susceptible populations. https://doi.org/10.1289/EHP13913.
Collapse
Affiliation(s)
- Zhian Zhai
- Department of Companion Animal Science, State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Ying Yang
- Department of Companion Animal Science, State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Sheng Chen
- State Key Lab of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Kowloon, Hong Kong, China
- Department of Food Science and Nutrition, Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Zhenlong Wu
- Department of Companion Animal Science, State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
Lee K, Kim HJ, Kim JY, Shim JJ, Lee JH. A Mixture of Lactobacillus HY7601 and KY1032 Regulates Energy Metabolism in Adipose Tissue and Improves Cholesterol Disposal in High-Fat-Diet-Fed Mice. Nutrients 2024; 16:2570. [PMID: 39125449 PMCID: PMC11314552 DOI: 10.3390/nu16152570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024] Open
Abstract
We aimed to characterize the anti-obesity and anti-atherosclerosis effects of Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 using high-fat diet (HFD)-fed obese C57BL/6 mice. We divided the mice into control (CON), HFD, HFD with 108 CFU/kg/day probiotics (HFD + KL, HY7301:KY1032 = 1:1), and HFD with 109 CFU/kg/day probiotics (HFD + KH, HY7301:KY1032 = 1:1) groups and fed/treated them during 7 weeks. The body mass, brown adipose tissue (BAT), inguinal white adipose tissue (iWAT), and epididymal white adipose tissue (eWAT) masses and the total cholesterol and triglyceride concentrations were remarkably lower in probiotic-treated groups than in the HFD group in a dose-dependent manner. In addition, the expression of uncoupling protein 1 in the BAT, iWAT, and eWAT was significantly higher in probiotic-treated HFD mice than in the HFD mice, as demonstrated by immunofluorescence staining and Western blotting. We also measured the expression of cholesterol transport genes in the liver and jejunum and found that the expression of those encoding liver-X-receptor α, ATP-binding cassette transporters G5 and G8, and cholesterol 7α-hydroxylase were significantly higher in the HFD + KH mice than in the HFD mice. Thus, a Lactobacillus HY7601 and KY1032 mixture with 109 CFU/kg/day concentration can assist with body weight regulation through the management of lipid metabolism and thermogenesis.
Collapse
Affiliation(s)
| | | | - Joo-Yun Kim
- R&BD Center, Hy Co., Ltd., 22 Giheungdanji-ro 24 Beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (K.L.); (H.-J.K.); (J.-J.S.); (J.-H.L.)
| | | | | |
Collapse
|
16
|
Jin Y, Wang X, Chen K, Chen Y, Zhou L, Zeng Y, Zhou Y, Pan Z, Wang D, Li Z, Liang Y, Ling W, Li D. Silymarin decreases liver stiffness associated with gut microbiota in patients with metabolic dysfunction-associated steatotic liver disease: a randomized, double-blind, placebo-controlled trial. Lipids Health Dis 2024; 23:239. [PMID: 39097726 PMCID: PMC11297656 DOI: 10.1186/s12944-024-02220-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/16/2024] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND Despite centuries of traditional use of silymarin for hepatoprotection, current randomized controlled trial (RCT) studies on the effectiveness of silymarin in managing metabolic dysfunction-associated steatotic liver disease (MASLD) are limited and inconclusive, particularly when it is administered alone. The low bioavailability of silymarin highlights the possible influence of gut microbiota on the effectiveness of silymarin; however, no human studies have investigated this aspect. OBJECTIVE To determine the potential efficacy of silymarin in improving MASLD indicators and to investigate the underlying mechanisms related to gut microbiota. METHOD In this 24-week randomized, double-blind, placebo-controlled trial, 83 patients with MASLD were randomized to either placebo (n = 41) or silymarin (103.2 mg/d, n = 42). At 0, 12, and 24 weeks, liver stiffness and hepatic steatosis were assessed using FibroScan, and blood samples were gathered for biochemical detection, while faecal samples were collected at 0 and 24 weeks for 16S rRNA sequencing. RESULTS Silymarin supplementation significantly reduced liver stiffness (LSM, -0.21 ± 0.17 vs. 0.41 ± 0.17, P = 0.015) and serum levels of γ-glutamyl transpeptidase (GGT, -8.21 ± 3.01 vs. 1.23 ± 3.16, P = 0.042) and ApoB (-0.02 ± 0.03 vs. 0.07 ± 0.03, P = 0.023) but had no significant effect on the controlled attenuation parameter (CAP), other biochemical indicators (aminotransferases, total bilirubin, glucose and lipid parameters, hsCRP, SOD, and UA), physical measurements (DBP, SBP, BMI, WHR, BF%, and BMR), or APRI and FIB-4 indices. Gut microbiota analysis revealed increased species diversity and enrichment of Oscillospiraceae in the silymarin group. CONCLUSION These findings suggest that silymarin supplementation could improve liver stiffness in MASLD patients, possibly by modulating the gut microbiota. TRIAL REGISTRATION The trial was registered at the Chinese Clinical Trial Registry (ChiCTR2200059043).
Collapse
Affiliation(s)
- Yufeng Jin
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, 510080, China
| | - Xin Wang
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, 510080, China
| | - Ke Chen
- Shunde Hospital (The First People's Hospital of Shunde), Southern Medical University, Foshan, China
| | - Yu Chen
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, 510080, China
| | - Lixin Zhou
- Shunde Hospital (The First People's Hospital of Shunde), Southern Medical University, Foshan, China
| | - Yupeng Zeng
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, 510080, China
| | - Yuqing Zhou
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, 510080, China
| | - Zhijun Pan
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, 510080, China
| | - Di Wang
- BYHEALTH Institute of Nutrition & Health, Guangzhou, 510663, China
| | - Zhongxia Li
- BYHEALTH Institute of Nutrition & Health, Guangzhou, 510663, China
| | - Yongqian Liang
- Shunde Hospital (The First People's Hospital of Shunde), Southern Medical University, Foshan, China.
| | - Wenhua Ling
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China.
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, China.
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, 510080, China.
- School of Public Health and Management, Ningxia Medical University, Xingqing District, Yinchuan, China.
| | - Dan Li
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China.
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, China.
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, 510080, China.
| |
Collapse
|
17
|
Zhang Y, Wang W. Probiotics in reducing obesity by reconfiguring the gut microbiota. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:1042-1051. [PMID: 39788492 PMCID: PMC11495983 DOI: 10.11817/j.issn.1672-7347.2024.240361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Indexed: 01/05/2025]
Abstract
Obesity, as a global health crisis, is increasingly linked to intestinal microecology. Probiotics colonise the body, effectively regulating the balance of intestinal flora, while strengthening the intestinal barrier, activating the immune response, releasing beneficial substances, and maintaining micro-ecological balance. This process not only enhances the defence against pathogens, but also reduces the production of inflammatory factors and lowers the level of chronic inflammation. However, the specific process and mechanism by which probiotics influence the intestinal microecology through the immune response, improve metabolic disorders caused by obesity, and participate in weight management are not clear. Through multiple neural pathways including the 'gut-brain axis' and their direct interaction with the intestine, probiotics increase the number of beneficial bacteria in the intestine and inhibit the growth of harmful bacteria, thus effectively restructuring the balance of the intestinal flora. This restructuring of the balance can optimise the intestinal environment and enhance the efficiency of food digestion and nutrient absorption. Probiotics show positive effects on obesity management by regulating the metabolic process and reducing fat accumulation, providing individuals with a new way to control body weight and prevent obesity. Therefore, the application of probiotics is of great significance in promoting gut health and weight management.
Collapse
Affiliation(s)
- Yunuo Zhang
- Department of Endocrinology, First Affiliated Hospital of Baotou Medical College, Baotou Inner Mongolia Autonomous Region 014010, China.
| | - Wei Wang
- Department of Endocrinology, First Affiliated Hospital of Baotou Medical College, Baotou Inner Mongolia Autonomous Region 014010, China.
| |
Collapse
|
18
|
Li CP, Chen CC, Hsiao Y, Kao CH, Chen CC, Yang HJ, Tsai RY. The Role of Lactobacillus plantarum in Reducing Obesity and Inflammation: A Meta-Analysis. Int J Mol Sci 2024; 25:7608. [PMID: 39062848 PMCID: PMC11276845 DOI: 10.3390/ijms25147608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Recent research has underscored the efficacy of Lactobacillus plantarum (L. plantarum) in managing obesity among healthy adults. This meta-analysis reviewed randomized controlled trials (RCTs) from major databases up to May 2024, focusing on the effects of L. plantarum on body weight, body mass index (BMI), and metabolic parameters. This study has been registered in PROSPERO (number: CRD 42024531611). The analysis of nine studies revealed significant weight reduction and BMI decreases with L. plantarum supplementation compared to a placebo. Notably, using more than two strains together enhanced these effects. Improvements were also observed in abdominal fat and inflammatory markers such as interleukin-6 (IL-6) and high-sensitivity C-reactive protein (hs-CRP). This meta-analysis synthesizes evidence from nine RCTs to test the hypothesis that L. plantarum supplementation effectively reduces body weight and BMI in healthy adults compared to a placebo. However, variations in study designs, probiotic strains, and intervention durations call for more robust trials to confirm these benefits.
Collapse
Affiliation(s)
- Chen-Pi Li
- Department of Nursing, Tung’s Taichung MetroHarbor Hospital, Taichung 43503, Taiwan;
- Department of Public Healthy, College of Health Care and Management, Chung Shan Medical University, Taichung 40201, Taiwan;
| | - Chin-Chang Chen
- Department of Anatomy, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Medical Education, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Yao Hsiao
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.H.); (C.-H.K.)
| | - Chieh-Hsin Kao
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.H.); (C.-H.K.)
| | | | - Hao-Jan Yang
- Department of Public Healthy, College of Health Care and Management, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Ru-Yin Tsai
- Department of Anatomy, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Medical Education, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| |
Collapse
|
19
|
Lv S, Wang Z, Tao L, Zhang Y. Letter to the editor: Comment on "The effect of dairy products on liver fat and metabolic risk markers in males with abdominal obesity - A four-arm randomized controlled trial". Clin Nutr 2024; 43:1724. [PMID: 38833873 DOI: 10.1016/j.clnu.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/03/2024] [Indexed: 06/06/2024]
Affiliation(s)
- Shengxia Lv
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang Province, China
| | - Zhangcheng Wang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang Province, China
| | - Linghui Tao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang Province, China
| | - Yongsheng Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang Province, China.
| |
Collapse
|
20
|
Gryaznova M, Burakova I, Smirnova Y, Morozova P, Chirkin E, Gureev A, Mikhaylov E, Korneeva O, Syromyatnikov M. Effect of Probiotic Bacteria on the Gut Microbiome of Mice with Lipopolysaccharide-Induced Inflammation. Microorganisms 2024; 12:1341. [PMID: 39065109 PMCID: PMC11278525 DOI: 10.3390/microorganisms12071341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
The role of lipopolysaccharide (LPS) in the development of diseases is clear, but the specific mechanisms remain poorly understood. This study aimed to investigate the microbiome aberrations in the guts of mice against the background of LPS, as well as the anti-inflammatory effect of probiotic supplementation with Lactobacillus plantarum from the gut, a mix of commercial probiotic lactic acid bacteria, and Weissella confusa isolated from milk using next-generation sequencing. LPS injections were found to induce inflammatory changes in the intestinal mucosa. These morphological changes were accompanied by a shift in the microbiota. We found no significant changes in the microbiome with probiotic supplementation compared to the LPS group. However, when Lactobacillus plantarum and a mix of commercial probiotic lactic acid bacteria were used, the intestinal mucosa was restored. Weissella confusa did not contribute to the morphological changes of the intestinal wall or the microbiome. Changes in the microbiome were observed with probiotic supplementation of Lactobacillus plantarum and a mix of commercial probiotic lactic acid bacteria compared to the control group. In addition, when Lactobacillus plantarum was used, we observed a decrease in the enrichment of the homocysteine and cysteine interconversion pathways with an increase in the L-histidine degradation pathway.
Collapse
Affiliation(s)
- Mariya Gryaznova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia; (M.G.); (I.B.); (Y.S.); (P.M.); (O.K.)
| | - Inna Burakova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia; (M.G.); (I.B.); (Y.S.); (P.M.); (O.K.)
| | - Yuliya Smirnova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia; (M.G.); (I.B.); (Y.S.); (P.M.); (O.K.)
| | - Polina Morozova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia; (M.G.); (I.B.); (Y.S.); (P.M.); (O.K.)
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (E.C.); (A.G.)
| | - Egor Chirkin
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (E.C.); (A.G.)
| | - Artem Gureev
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (E.C.); (A.G.)
| | - Evgeny Mikhaylov
- FSBSI All-Russian Veterinary Research Institute of Pathology, Pharmacology and Therapy, 394061 Voronezh, Russia;
| | - Olga Korneeva
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia; (M.G.); (I.B.); (Y.S.); (P.M.); (O.K.)
| | - Mikhail Syromyatnikov
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia; (M.G.); (I.B.); (Y.S.); (P.M.); (O.K.)
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (E.C.); (A.G.)
| |
Collapse
|
21
|
Odorskaya MV, Mavletova DA, Nesterov AA, Tikhonova OV, Soloveva NA, Reznikova DA, Galanova OO, Vatlin AA, Slynko NM, Vasilieva AR, Peltek SE, Danilenko VN. The use of omics technologies in creating LBP and postbiotics based on the Limosilactobacillus fermentum U-21. Front Microbiol 2024; 15:1416688. [PMID: 38919499 PMCID: PMC11197932 DOI: 10.3389/fmicb.2024.1416688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
In recent years, there has been an increasing tendency to create drugs based on certain commensal bacteria of the human microbiota and their ingredients, primarily focusing on live biotherapeutics (LBPs) and postbiotics. The creation of such drugs, termed pharmacobiotics, necessitates an understanding of their mechanisms of action and the identification of pharmacologically active ingredients that determine their target properties. Typically, these are complexes of biologically active substances synthesized by specific strains, promoted as LBPs or postbiotics (including vesicles): proteins, enzymes, low molecular weight metabolites, small RNAs, etc. This study employs omics technologies, including genomics, proteomics, and metabolomics, to explore the potential of Limosilactobacillus fermentum U-21 for innovative LBP and postbiotic formulations targeting neuroinflammatory processes. Proteomic techniques identified and quantified proteins expressed by L. fermentum U-21, highlighting their functional attributes and potential applications. Key identified proteins include ATP-dependent Clp protease (ClpL), chaperone protein DnaK, protein GrpE, thioredoxin reductase, LysM peptidoglycan-binding domain-containing protein, and NlpC/P60 domain-containing protein, which have roles in disaggregase, antioxidant, and immunomodulatory activities. Metabolomic analysis provided insights into small-molecule metabolites produced during fermentation, revealing compounds with anti-neuroinflammatory activity. Significant metabolites produced by L. fermentum U-21 include GABA (γ-aminobutyric acid), niacin, aucubin, and scyllo-inositol. GABA was found to stabilize neuronal activity, potentially counteracting neurodegenerative processes. Niacin, essential for optimal nervous system function, was detected in vesicles and culture fluid, and it modulates cytokine production, maintaining immune homeostasis. Aucubin, an iridoid glycoside usually secreted by plants, was identified as having antioxidant properties, addressing issues of bioavailability for therapeutic use. Scyllo-inositol, identified in vesicles, acts as a chemical chaperone, reducing abnormal protein clumps linked to neurodegenerative diseases. These findings demonstrate the capability of L. fermentum U-21 to produce bioactive substances that could be harnessed in the development of pharmacobiotics for neurodegenerative diseases, contributing to their immunomodulatory, anti-neuroinflammatory, and neuromodulatory activities. Data of the HPLC-MS/MS analysis are available via ProteomeXchange with identifier PXD050857.
Collapse
Affiliation(s)
- Maya V. Odorskaya
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia
| | - Dilara A. Mavletova
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia
| | - Andrey A. Nesterov
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia
- Institute of Environmental Engineering, RUDN University, Moscow, Russia
| | | | | | - Diana A. Reznikova
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Olesya O. Galanova
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Aleksey A. Vatlin
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia
| | - Nikolai M. Slynko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Asya R. Vasilieva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Sergey E. Peltek
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Valery N. Danilenko
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia
- Brain Science Institute, Research Center of Neurology, Moscow, Russia
| |
Collapse
|
22
|
Boyajian JL, Islam P, Abosalha A, Schaly S, Thareja R, Kassab A, Arora K, Santos M, Shum-Tim C, Prakash S. Probiotics, prebiotics, synbiotics and other microbiome-based innovative therapeutics to mitigate obesity and enhance longevity via the gut-brain axis. MICROBIOME RESEARCH REPORTS 2024; 3:29. [PMID: 39421246 PMCID: PMC11480732 DOI: 10.20517/mrr.2024.05] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/18/2024] [Accepted: 05/11/2024] [Indexed: 10/19/2024]
Abstract
The global prevalence of obesity currently exceeds 1 billion people and is accompanied by an increase in the aging population. Obesity and aging share many hallmarks and are leading risk factors for cardiometabolic disease and premature death. Current anti-obesity and pro-longevity pharmacotherapies are limited by side effects, warranting the development of novel therapies. The gut microbiota plays a major role in human health and disease, with a dysbiotic composition evident in obese and aged individuals. The bidirectional communication system between the gut and the central nervous system, known as the gut-brain axis, may link obesity to unhealthy aging. Modulating the gut with microbiome-targeted therapies, such as biotics, is a novel strategy to treat and/or manage obesity and promote longevity. Biotics represent material derived from living or once-living organisms, many of which have therapeutic effects. Pre-, pro-, syn- and post-biotics may beneficially modulate gut microbial composition and function to improve obesity and the aging process. However, the investigation of biotics as next-generation therapeutics has only just begun. Further research is needed to identify therapeutic biotics and understand their mechanisms of action. Investigating the function of the gut-brain axis in obesity and aging may lead to novel therapeutic strategies for obese, aged and comorbid (e.g., sarcopenic obese) patient populations. This review discusses the interrelationship between obesity and aging, with a particular emphasis on the gut microbiome, and presents biotics as novel therapeutic agents for obesity, aging and related disease states.
Collapse
Affiliation(s)
- Jacqueline L. Boyajian
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| | - Paromita Islam
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| | - Ahmed Abosalha
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
- Pharmaceutical Technology Department, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt
| | - Sabrina Schaly
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| | - Rahul Thareja
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| | - Amal Kassab
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| | - Karan Arora
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| | - Madison Santos
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| | - Cedrique Shum-Tim
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| | - Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| |
Collapse
|
23
|
Shin SM, Park JS, Kim SB, Cho YH, Seo H, Lee HS. A 12-Week, Single-Centre, Randomised, Double-Blind, Placebo-Controlled, Parallel-Design Clinical Trial for the Evaluation of the Efficacy and Safety of Lactiplantibacillus plantarum SKO-001 in Reducing Body Fat. Nutrients 2024; 16:1137. [PMID: 38674828 PMCID: PMC11053414 DOI: 10.3390/nu16081137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
There is growing evidence linking gut microbiota to overall health, including obesity risk and associated diseases. Lactiplantibacillus plantarum SKO-001, a probiotic strain isolated from Angelica gigas, has been reported to reduce obesity by controlling the gut microbiome. In this double-blind, randomised clinical trial, we aimed to evaluate the efficacy and safety of SKO-001 in reducing body fat. We included 100 participants randomised into SKO-001 or placebo groups (1:1) for 12 weeks. Dual-energy X-ray absorptiometry was used to objectively evaluate body fat reduction. Body fat percentage (p = 0.016), body fat mass (p = 0.02), low-density lipoprotein-cholesterol levels (p = 0.025), and adiponectin levels (p = 0.023) were lower in the SKO-001 group than in the placebo group after 12 weeks of SKO-001 consumption. In the SKO-001 group, the subcutaneous fat area (p = 0.003), total cholesterol levels (p = 0.003), and leptin levels (p = 0.014) significantly decreased after 12 weeks of SKO-001 consumption compared with baseline values. Additionally, SKO-001 did not cause any severe adverse reactions. In conclusion, SKO-001 is safe and effective for reducing body fat and has the potential for further clinical testing in humans.
Collapse
Affiliation(s)
- Seon Mi Shin
- Department of Internal Medicine, College of Korean Medicine, Semyung University, Semyeong-ro 65, Jecheon-si 27136, Republic of Korea
| | - Jeong-Su Park
- Department of Preventive Medicine, College of Korean Medicine, Semyung University, Semyeong-ro 65, Jecheon-si 27136, Republic of Korea;
| | - Sang Back Kim
- Food Science R&D Center, Kolmar BNH Co., Ltd., 61, Heolleung-ro 8-gil, Seocho-gu, Seoul 06800, Republic of Korea; (S.B.K.); (Y.H.C.); (H.S.); (H.S.L.)
| | - Young Hee Cho
- Food Science R&D Center, Kolmar BNH Co., Ltd., 61, Heolleung-ro 8-gil, Seocho-gu, Seoul 06800, Republic of Korea; (S.B.K.); (Y.H.C.); (H.S.); (H.S.L.)
| | - Hee Seo
- Food Science R&D Center, Kolmar BNH Co., Ltd., 61, Heolleung-ro 8-gil, Seocho-gu, Seoul 06800, Republic of Korea; (S.B.K.); (Y.H.C.); (H.S.); (H.S.L.)
| | - Hak Sung Lee
- Food Science R&D Center, Kolmar BNH Co., Ltd., 61, Heolleung-ro 8-gil, Seocho-gu, Seoul 06800, Republic of Korea; (S.B.K.); (Y.H.C.); (H.S.); (H.S.L.)
| |
Collapse
|
24
|
Medeiros D, McMurry K, Pfeiffer M, Newsome K, Testerman T, Graf J, Silver AC, Sacchetti P. Slowing Alzheimer's disease progression through probiotic supplementation. Front Neurosci 2024; 18:1309075. [PMID: 38510467 PMCID: PMC10950931 DOI: 10.3389/fnins.2024.1309075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/30/2024] [Indexed: 03/22/2024] Open
Abstract
The lack of affordable and effective therapeutics against cognitive impairment has promoted research toward alternative approaches to the treatment of neurodegeneration. In recent years, a bidirectional pathway that allows the gut to communicate with the central nervous system has been recognized as the gut-brain axis. Alterations in the gut microbiota, a dynamic population of trillions of microorganisms residing in the gastrointestinal tract, have been implicated in a variety of pathological states, including neurodegenerative disorders such as Alzheimer's disease (AD). However, probiotic treatment as an affordable and accessible adjuvant therapy for the correction of dysbiosis in AD has not been thoroughly explored. Here, we sought to correct the dysbiosis in an AD mouse model with probiotic supplementation, with the intent of exploring its effects on disease progression. Transgenic 3xTg-AD mice were fed a control or a probiotic diet (Lactobacillus plantarum KY1032 and Lactobacillus curvatus HY7601) for 12 weeks, with the latter leading to a significant increase in the relative abundance of Bacteroidetes. Cognitive functions were evaluated via Barnes Maze trials and improvements in memory performance were detected in probiotic-fed AD mice. Neural tissue analysis of the entorhinal cortex and hippocampus of 10-month-old 3xTg-AD mice demonstrated that astrocytic and microglial densities were reduced in AD mice supplemented with a probiotic diet, with changes more pronounced in probiotic-fed female mice. In addition, elevated numbers of neurons in the hippocampus of probiotic-fed 3xTg-AD mice suggested neuroprotection induced by probiotic supplementation. Our results suggest that probiotic supplementation could be effective in delaying or mitigating early stages of neurodegeneration in the 3xTg-AD animal model. It is vital to explore new possibilities for palliative care for neurodegeneration, and probiotic supplementation could provide an inexpensive and easily implemented adjuvant clinical treatment for AD.
Collapse
Affiliation(s)
- Destynie Medeiros
- Department of Biology, University of Hartford, West Hartford, CT, United States
| | - Kristina McMurry
- Neuroscience Program, Department of Biology, University of Hartford, West Hartford, CT, United States
| | - Melissa Pfeiffer
- Neuroscience Program, Department of Biology, University of Hartford, West Hartford, CT, United States
| | - Kayla Newsome
- Department of Biology, University of Hartford, West Hartford, CT, United States
| | - Todd Testerman
- Department of Molecular Cellular Biology, UConn, Storrs, CT, United States
| | - Joerg Graf
- Department of Molecular Cellular Biology, UConn, Storrs, CT, United States
| | - Adam C. Silver
- Department of Biology, University of Hartford, West Hartford, CT, United States
| | - Paola Sacchetti
- Department of Biology, University of Hartford, West Hartford, CT, United States
| |
Collapse
|
25
|
Saadati S, Naseri K, Asbaghi O, Yousefi M, Golalipour E, de Courten B. Beneficial effects of the probiotics and synbiotics supplementation on anthropometric indices and body composition in adults: A systematic review and meta-analysis. Obes Rev 2024; 25:e13667. [PMID: 38030409 DOI: 10.1111/obr.13667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 09/10/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
Studies have suggested that probiotics and synbiotics can improve body weight and composition. However, randomized controlled trials (RCTs) demonstrated mixed results. Hence, we performed a systematic review and meta-analysis to evaluate the effectiveness of probiotics and synbiotics on body weight and composition in adults. We searched PubMed/Medline, Ovid/Medline, Scopus, ISI Web of Science, and Cochrane library up to April 2023 using related keywords. We included all RCTs investigating the effectiveness of probiotics and/or synbiotics supplementation on anthropometric indices and body composition among adults. Random-effects models were applied for performing meta-analyses. In addition, we conducted subgroup analyses and meta-regression to explore the non-linear and linear relationship between the length of follow-up and the changes in each outcome. We included a total of 200 trials with 12,603 participants in the present meta-analysis. Probiotics or synbiotics intake led to a significant decrease in body weight (weighted mean difference [WMD]: -0.91 kg; 95% CI: -1.08, -0.75; p < 0.001), body mass index (BMI) (WMD: -0.28 kg/m2 ; 95% CI: -0.36, -0.21; p < 0.001), waist circumference (WC) (WMD: -1.14 cm; 95% CI: -1.42, -0.87; p < 0.001), waist-to-hip ratio (WHR) (WMD: -0.01; 95% CI: -0.01, -0.00; p < 0.001), fat mass (FM) (WMD: -0.92 kg; 95% CI: -1.05, -0.79; p < 0.001), and percentage of body fat (%BF) (WMD: -0.68%; 95% CI: -0.94, -0.42; p < 0.001) compared to controls. There was no difference in fat-free mass (FFM) and lean body mass (LBM). Subgroup analyses indicated that probiotics or synbiotics administered as food or supplement resulted in significant changes in anthropometric indices and body composition. However, compared to controls, FM and %BF values were only reduced after probiotic consumption. Our results showed that probiotics or synbiotics have beneficial effects on body weight, central obesity, and body composition in adults and could be useful as an add on to weight loss products and medications.
Collapse
Affiliation(s)
- Saeede Saadati
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia
| | - Kaveh Naseri
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Yousefi
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elnaz Golalipour
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Barbora de Courten
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia
| |
Collapse
|
26
|
Apalowo OE, Adegoye GA, Obuotor TM. Microbial-Based Bioactive Compounds to Alleviate Inflammation in Obesity. Curr Issues Mol Biol 2024; 46:1810-1831. [PMID: 38534735 DOI: 10.3390/cimb46030119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/28/2024] Open
Abstract
The increased prevalence of obesity with several other metabolic disorders, including diabetes and non-alcoholic fatty liver disease, has reached global pandemic proportions. Lifestyle changes may result in a persistent positive energy balance, hastening the onset of these age-related disorders and consequently leading to a diminished lifespan. Although suggestions have been raised on the possible link between obesity and the gut microbiota, progress has been hampered due to the extensive diversity and complexities of the gut microbiota. Being recognized as a potential biomarker owing to its pivotal role in metabolic activities, the dysregulation of the gut microbiota can give rise to a persistent low-grade inflammatory state associated with chronic diseases during aging. This chronic inflammatory state, also known as inflammaging, induced by the chronic activation of the innate immune system via the macrophage, is controlled by the gut microbiota, which links nutrition, metabolism, and the innate immune response. Here, we present the functional roles of prebiotics, probiotics, synbiotics, and postbiotics as bioactive compounds by underscoring their putative contributions to (1) the reduction in gut hyperpermeability due to lipopolysaccharide (LPS) inactivation, (2) increased intestinal barrier function as a consequence of the upregulation of tight junction proteins, and (3) inhibition of proinflammatory pathways, overall leading to the alleviation of chronic inflammation in the management of obesity.
Collapse
Affiliation(s)
- Oladayo Emmanuel Apalowo
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Starkville, MS 39762, USA
| | - Grace Adeola Adegoye
- Department of Nutrition and Health Science, Ball State University, Muncie, IN 47306, USA
| | | |
Collapse
|
27
|
Horvath A, Zukauskaite K, Hazia O, Balazs I, Stadlbauer V. Human gut microbiome: Therapeutic opportunities for metabolic syndrome-Hype or hope? Endocrinol Diabetes Metab 2024; 7:e436. [PMID: 37771199 PMCID: PMC10781898 DOI: 10.1002/edm2.436] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/01/2023] [Accepted: 06/11/2023] [Indexed: 09/30/2023] Open
Abstract
Shifts in gut microbiome composition and metabolic disorders are associated with one another. Clinical studies and experimental data suggest a causal relationship, making the gut microbiome an attractive therapeutic goal. Diet, intake of probiotics or prebiotics and faecal microbiome transplantation (FMT) are methods to alter a person's microbiome composition. Although FMT may allow establishing a proof of concept to use microbiome modulation to treat metabolic disorders, studies show mixed results regarding the effects on metabolic parameters as well as on the composition of the microbiome. This review summarizes the current knowledge on diet, probiotics, prebiotics and FMT to treat metabolic diseases, focusing on studies that also report alterations in microbiome composition. Furthermore, clinical trial results on the effects of common drugs used to treat metabolic diseases are synopsized to highlight the bidirectional relationship between the microbiome and metabolic diseases. In conclusion, there is clear evidence that microbiome modulation has the potential to influence metabolic diseases; however, it is not possible to distinguish which intervention is the most successful. In addition, a clear commitment from all stakeholders is necessary to move forward in the direction of developing targeted interventions for microbiome modulation.
Collapse
Affiliation(s)
- Angela Horvath
- Medical University of GrazGrazAustria
- Center for Biomarker Research in Medicine (CBmed)GrazAustria
| | - Kristina Zukauskaite
- Medical University of GrazGrazAustria
- Life Sciences CentreVilnius UniversityVilniusLithuania
| | - Olha Hazia
- Medical University of GrazGrazAustria
- Center for Biomarker Research in Medicine (CBmed)GrazAustria
| | - Irina Balazs
- Medical University of GrazGrazAustria
- Center for Biomarker Research in Medicine (CBmed)GrazAustria
| | - Vanessa Stadlbauer
- Medical University of GrazGrazAustria
- Center for Biomarker Research in Medicine (CBmed)GrazAustria
| |
Collapse
|
28
|
Shah AB, Baiseitova A, Zahoor M, Ahmad I, Ikram M, Bakhsh A, Shah MA, Ali I, Idress M, Ullah R, Nasr FA, Al-Zharani M. Probiotic significance of Lactobacillus strains: a comprehensive review on health impacts, research gaps, and future prospects. Gut Microbes 2024; 16:2431643. [PMID: 39582101 PMCID: PMC11591481 DOI: 10.1080/19490976.2024.2431643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/23/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024] Open
Abstract
A rising corpus of research has shown the beneficial effects of probiotic Lactobacilli on human health, contributing to the growing popularity of these microorganisms in recent decades. The gastrointestinal and urinary tracts are home to these bacteria, which play a vital role in the microbial flora of both humans and animals. The Lactobacillus probiotic, i.e, Lactobacillus plantarum, Lactobacillus paracasei, Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus rhamnosus, Lactobacillus crispatus, Lactobacillus gasseri, Lactobacillus reuteri, and Lactobacillus bulgaricus, are highly recognized for their remarkable probiotic qualities. The current study aims to highlight the beneficial effects of probiotics in different health conditions, point out the research gap, and highlight the future directives for the safe use of these probiotics in several health issues. Most importantly, we have added the most recent literature related to the characteristics and usage of these probiotics in clinical and pre-clinical settings. Based on the above statement, we believe that this is the first report on the application of probiotics in human diseases. By providing a deeper knowledge of the complex functions these probiotics play in both human and animal health, our analysis will direct future studies and developments in this rapidly developing field.
Collapse
Affiliation(s)
- Abdul Bari Shah
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Aizhamal Baiseitova
- Division of Applied Life Science (BK21 Four), IALS, Gyeongsang National University, Jinju, Republic of Korea
| | - Muhammad Zahoor
- Department of Biochemistry, University of Malakand, Chakdara, Pakistan
| | - Ishaq Ahmad
- Department of Marine Environmental Engineering, Gyeongsang National University, Gyeongsangnam-do, Republic of Korea
| | - Muhammad Ikram
- Institute of Pharmaceutical Sciences, Khyber Medical University, Peshawar, Hayatabad, Pakistan
- Department of Oral and Maxillofacial Surgery, University of Texas Health Science Center, San Antonio, TX, USA
| | - Allah Bakhsh
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Murad Ali Shah
- Convergence Research Center for Brain Science, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Imdad Ali
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Bellaterra, Spain
- Department of Plant Biotechnology, Faculty of Pharmacy, University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Muhammad Idress
- Division of Applied Life Science (BK21 Four), IALS, Gyeongsang National University, Jinju, Republic of Korea
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fahd A. Nasr
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Mohammed Al-Zharani
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| |
Collapse
|
29
|
Gao C, Wei J, Lu C, Wang L, Dong D, Sun M. A new perspective in intestinal microecology: lifting the veil of exercise regulation of cardiometabolic diseases. Gut Microbes 2024; 16:2404141. [PMID: 39305272 PMCID: PMC11418258 DOI: 10.1080/19490976.2024.2404141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Cardiometabolic diseases (CMDs), encompassing cardiovascular and metabolic dysfunctions, characterized by insulin resistance, dyslipidemia, hepatic steatosis, and inflammation, have been identified with boosting morbidity and mortality due to the dearth of efficacious therapeutic interventions. In recent years, studies have shown that variations in gut microbiota and its own metabolites can influence the occurrence of CMDs. Intriguingly, the composition and function of the gut microbiota are susceptible to exercise patterns, thus affecting inflammatory, immune, and metabolic responses within the host. In this review, we introduce the key mechanisms of intestinal microecology involved in the onset and development of CMDs, discuss the relationship between exercise and intestinal microecology, and then analyze the role of intestinal microecology in the beneficial effects of exercise on CMDs, aiming at elucidating the gut-heart axis mechanisms of exercise mediated protective effect on CMDs, building avenues for the application of exercise in the management of CMDs.
Collapse
Affiliation(s)
- Can Gao
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, P. R. China
| | - Jinwen Wei
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, P. R. China
| | - Changxu Lu
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, P. R. China
| | - Lijie Wang
- Department of Cardiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, P. R. China
| | - Dan Dong
- College of Basic Medical Science, China Medical University, Shenyang, Liaoning, P. R. China
| | - Mingli Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, P. R. China
| |
Collapse
|
30
|
Papandreou C. Nutrition, Metabolites, and Human Health. Nutrients 2023; 15:4286. [PMID: 37836568 PMCID: PMC10574397 DOI: 10.3390/nu15194286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023] Open
Abstract
The field of metabolomics and related "omics" techniques allows for the identification of a vast array of molecules within biospecimens [...].
Collapse
Affiliation(s)
- Christopher Papandreou
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain;
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain
- Center of Environmental, Food and Toxicological Technology—(TecnATox), Rovira i Virgili University, 43201 Reus, Spain
- Department of Nutrition and Dietetics Sciences, School of Health Sciences, Hellenic Mediterranean University (HMU), 72300 Siteia, Greece
| |
Collapse
|
31
|
Ambros CL, Ehrmann MA. Distribution, inducibility, and characteristics of Latilactobacillus curvatus temperate phages. MICROBIOME RESEARCH REPORTS 2023; 2:34. [PMID: 38045928 PMCID: PMC10688831 DOI: 10.20517/mrr.2023.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/28/2023] [Accepted: 08/21/2023] [Indexed: 12/05/2023]
Abstract
Aim: Temperate phages are known to heavily impact the growth of their host, be it in a positive way, e.g., when beneficial genes are provided by the phage, or negatively when lysis occurs after prophage induction. This study provides an in-depth look into the distribution and variety of prophages in Latilactobacillus curvatus (L. curvatus). This species is found in a wide variety of ecological niches and is routinely used as a meat starter culture. Methods: Fourty five L. curvatus genomes were screened for prophages. The intact predicted prophages and their chromosomal integration loci were described. Six L. curvatus lysogens were analysed for phage-mediated lysis post induction via UV light and/or mitomycin C. Their lysates were analysed for phage particles via viral DNA sequencing and transmission electron microscopy. Results: Two hundred and six prophage sequences of any completeness were detected within L. curvatus genomes. The 50 as intact predicted prophages show high levels of genetic diversity on an intraspecies level with conserved regions mostly in the replication and head/tail gene clusters. Twelve chromosomal loci, mostly tRNA genes, were identified, where intact L. curvatus phages were integrated. The six analysed L. curvatus lysogens showed strain-dependent lysis in various degrees after induction, yet only four of their lysates appeared to contain fully assembled virions with the siphovirus morphotype. Conclusion: Our data demonstrate that L. curvatus is a (pro)phage-susceptible species, harbouring multiple intact prophages and remnant sequences thereof. This knowledge provides a basis to study phage-host interaction influencing microbial communities in food fermentations.
Collapse
Affiliation(s)
| | - Matthias A. Ehrmann
- Chair of Microbiology, School of Life Sciences, Technical University Munich (TUM), Freising 85354, Germany
| |
Collapse
|
32
|
Kim H, Yoo MS, Jeon H, Shim JJ, Park WJ, Kim JY, Lee JL. Probiotic Properties and Safety Evaluation of Lactobacillus plantarum HY7718 with Superior Storage Stability Isolated from Fermented Squid. Microorganisms 2023; 11:2254. [PMID: 37764098 PMCID: PMC10534859 DOI: 10.3390/microorganisms11092254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The aim of this study was to identify new potential probiotics with improved storage stability and to evaluate their efficacy and safety. Sixty lactic acid bacteria strains were isolated from Korean traditional fermented foods, and their survival was tested under extreme conditions. Lactobacillus plantarum HY7718 (HY7718) showed the greatest stability during storage. HY7718 also showed a stable growth curve under industrial conditions. Whole genome sequencing revealed that the HY7718 genome comprises 3.26 Mbp, with 44.5% G + C content, and 3056 annotated Protein-coding DNA sequences (CDSs). HY7718 adhered to intestinal epithelial cells and was tolerant to gastric fluids. Additionally, HY7718 exhibited no hemolytic activity and was not resistant to antibiotics, confirming that it has probiotic properties and is safe for consumption. Additionally, we evaluated its effects on intestinal health using TNF-induced Caco-2 cells. HY7718 restored the expression of tight junction proteins such as zonular occludens (ZO-1, ZO-2), occludin (OCLN), and claudins (CLDN1, CLDN4), and regulated the expression of myosin light-chain kinase (MLCK), Elk-1, and nuclear factor kappa B subunit 1 (NFKB1). Moreover, HY7718 reduced the secretion of proinflammatory cytokines such as interleukin-6 (IL-6) and IL-8, as well as reducing the levels of peroxide-induced reactive oxygen species. In conclusion, HY7718 has probiotic properties, is safe, is stable under extreme storage conditions, and exerts positive effects on intestinal cells. These results suggest that L. plantarum HY7718 is a potential probiotic for use as a functional supplement in the food industry.
Collapse
Affiliation(s)
- Hyeonji Kim
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (H.K.); (M.-S.Y.); (H.J.); (J.-J.S.)
| | - Myeong-Seok Yoo
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (H.K.); (M.-S.Y.); (H.J.); (J.-J.S.)
| | - Hyejin Jeon
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (H.K.); (M.-S.Y.); (H.J.); (J.-J.S.)
| | - Jae-Jung Shim
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (H.K.); (M.-S.Y.); (H.J.); (J.-J.S.)
| | - Woo-Jung Park
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea;
| | - Joo-Yun Kim
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (H.K.); (M.-S.Y.); (H.J.); (J.-J.S.)
| | - Jung-Lyoul Lee
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (H.K.); (M.-S.Y.); (H.J.); (J.-J.S.)
| |
Collapse
|
33
|
Shin YJ, Bae JM, Cho HR, Mahoro P, Kim SH, Han MJ, Bae MJ. Antiobesity Effects of Lactobacillus paracasei Subsp. paracasei, L. casei 431 on High-Fat Diet-Induced Obese Rats. J Med Food 2023. [PMID: 37311176 DOI: 10.1089/jmf.2022.k.0144] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023] Open
Abstract
Obesity is currently regarded as a global concern, and the key objectives of the global health strategy include its prevention and control. Probiotic supplementation can help achieve these objectives. This study aimed to assess whether a probiotic strain Lactobacillus paracasei ssp. paracasei, Lactobacillus casei 431 (henceforth, L. casei 431) possesses antiobesogenic properties. High-fat diet-induced obese Sprague-Dawley rats were treated with L. casei 431 for 10 weeks, and the outcomes were compared with those of rats treated with the antiobesity medication orlistat. Body weights, epididymal fat, and tissues from mice were assessed. Furthermore, serological and histological analyses were performed. Epididymal fat accumulation was significantly reduced in groups administered L. casei 431 and orlistat. Furthermore, L. casei 431 and orlistat treatments lowered serum alanine transaminase, aspartate aminotransferase, and triglyceride (TG) levels. Hematoxylin and eosin staining of the liver and epididymal adipose tissues showed that the L. casei 431-treated groups exhibited reduced lipid buildup and adipocyte size. Furthermore, sterol regulatory element-binding protein 1c, adipose TG lipase, and lipoprotein lipase messenger RNA (mRNA) levels were upregulated, leading to lipid oxidation and degradation, in L. casei 431-supplemented groups. Furthermore, carnitine palmitoyltransferase 1, a major factor in lipolysis, was consistently upregulated at the protein level after L. casei 431 administration. Collectively, these results demonstrate the potential of L. casei 431 in alleviating obesity in rats through optimizing lipid metabolism and some related biomarkers.
Collapse
Affiliation(s)
- Yun Jeong Shin
- Functional Food Evaluation Team, Technical Assistance Department, The Food Industry Promotional Agency of Korea, Iksan, Korea
| | - Jung-Min Bae
- Functional Food Evaluation Team, Technical Assistance Department, The Food Industry Promotional Agency of Korea, Iksan, Korea
| | - Hye-Rin Cho
- Functional Food Evaluation Team, Technical Assistance Department, The Food Industry Promotional Agency of Korea, Iksan, Korea
| | - Patience Mahoro
- Functional Food Evaluation Team, Technical Assistance Department, The Food Industry Promotional Agency of Korea, Iksan, Korea
- Department of Food Science, Human Nutrition and Obesity Research Center, Jeonbuk National University, Jeonju, Korea
| | | | | | - Min-Jung Bae
- Functional Food Evaluation Team, Technical Assistance Department, The Food Industry Promotional Agency of Korea, Iksan, Korea
| |
Collapse
|
34
|
Kadeer G, Fu W, He Y, Feng Y, Liu WH, Hung WL, Feng H, Zhao W. Effect of different doses of Lacticaseibacillus paracasei K56 on body fat and metabolic parameters in adult individuals with obesity: a pilot study. Nutr Metab (Lond) 2023; 20:16. [PMID: 36944956 PMCID: PMC10031870 DOI: 10.1186/s12986-023-00739-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/17/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Studies have shown that probiotics have an effect on reducing body fat on a strain-specific and dose-response bases. The purpose of this study was to evaluate the effect of a novel probiotic strain Lacticaseibacillus paracasei K56 on body fat and metabolic biomarkers in adult individuals with obesity. METHODS 74 adult subjects with obesity (body mass index ≥ 30 kg/m2, or percent body fat > 25% for men, percent body fat > 30% for women) were randomized into 5 groups and supplemented with different doses of K56 (groups VL_K56, L_K56, H_K56, and VH_K56: K56 capsules, 2 × 107 CFU/day, 2 × 109 CFU/day, 2 × 1010 CFU/day, 2 × 1011 CFU/day, respectively) or placebo (group Pla: placebo capsule) for 60 days. Subjects were advised to maintain their original dietary intake and physical activity. Anthropometric measurements, body composition assessment, and metabolic parameters were measured at baseline and after 60 days of intervention. RESULTS The results showed that the L_K56 group had significant decreases in percent body fat (p = 0.004), visceral fat area (p = 0.0007), total body fat mass (p = 0.018), trunk body fat mass (p = 0.003), waist circumference (p = 0.003), glycosylated hemoglobin(p = 0.002) at the end of the study compared with baseline. There were non-significant reductions in Body weight and BMI in the L_K56, H_K56, VL_K56 groups, whereas increases were observed in the placebo and VH_K56 groups compared with baseline values. In addition, K56 supplementation modulated gut microbiota characteristics and diversity indices in the L-K56 group. However, mean changes in body fat mass, visceral fat area, weight, body mass index, waist circumference and hip circumference were not significantly different between groups. CONCLUSIONS The results suggest that supplementation with different doses of Lacticaseibacillus paracasei K56 has certain effect on reducing body fat and glycosylated hemoglobin, especially at a dose of 109 CFU/day. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT04980599.
Collapse
Affiliation(s)
- Guzailinuer Kadeer
- Department of Nutrition, Hua Dong Hospital Affiliated to Fudan University, Shanghai, China
| | - Wanrui Fu
- Department of Nutrition, Hua Dong Hospital Affiliated to Fudan University, Shanghai, China
| | - Yaqi He
- Department of Nutrition, Hua Dong Hospital Affiliated to Fudan University, Shanghai, China
| | - Ying Feng
- Department of Nutrition, Hua Dong Hospital Affiliated to Fudan University, Shanghai, China.
| | - Wei-Hsein Liu
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Wei-Lian Hung
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China.
| | - Haotian Feng
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Wen Zhao
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| |
Collapse
|
35
|
Gai Z, Dong Y, Xu F, Zhang J, Yang Y, Wang Y. Changes in the gut microbiota composition of healthy young volunteers after administration of Lacticaseibacillus rhamnosus LRa05: A placebo-controlled study. Front Nutr 2023; 10:1105694. [PMID: 36998912 PMCID: PMC10043436 DOI: 10.3389/fnut.2023.1105694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
The gut microbiota promotes gastrointestinal health in humans; however, the effect of probiotics on the gut microbiota of healthy adults has not been documented clearly. This placebo-controlled study was conducted to assess the effect of Lacticaseibacillus rhamnosus LRa05 supplementation on the gut microbiota of healthy adults. The subjects (N = 100) were randomized 1:1 to receive (1) maltodextrin (placebo, CTL group) and (2) maltodextrin + strain LRa05 (1 × 1010 colony-forming units/day, LRa05 group). The duration of the intervention was 4 weeks, and changes in the gut microbiota from before to after the intervention were investigated using 16S rRNA high-throughput sequencing. In terms of alpha diversity, no significant difference in the composition of the gut microbiota was found between the LRa05 and CTL groups. 16S rRNA sequencing analysis showed that the relative abundance of Lacticaseibacillus significantly increased after supplementation with LRa05. Furthermore, a decreasing trend in the abundance of Sellimonas and a significant decrease in the salmonella infection pathway were observed in the LRa05 group compared with the CTL group. These findings indicate the potential of LRa05 to colonize the human gut and reduce the abundance of harmful bacteria in the microbiota.
Collapse
Affiliation(s)
- Zhonghui Gai
- Department of Research and Development, Wecare-Bio Probiotics (Suzhou) Co., Ltd., Suzhou, China
| | - Yao Dong
- Department of Research and Development, Wecare-Bio Probiotics (Suzhou) Co., Ltd., Suzhou, China
| | - Fei Xu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
- Henan Province Wheat-Flour Staple Food Engineering Technology Research Centre, Zhengzhou, China
- *Correspondence: Fei Xu,
| | - Junli Zhang
- Department of Research and Development, Wecare-Bio Probiotics (Suzhou) Co., Ltd., Suzhou, China
| | - Yujiao Yang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
- Henan Province Wheat-Flour Staple Food Engineering Technology Research Centre, Zhengzhou, China
| | - Yuwen Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
- Henan Province Wheat-Flour Staple Food Engineering Technology Research Centre, Zhengzhou, China
| |
Collapse
|
36
|
Danshiitsoodol N, Noda M, Kanno K, Uchida T, Sugiyama M. Plant-Derived Lactobacillus paracasei IJH-SONE68 Improves the Gut Microbiota Associated with Hepatic Disorders: A Randomized, Double-Blind, and Placebo-Controlled Clinical Trial. Nutrients 2022; 14:4492. [PMID: 36364756 PMCID: PMC9657077 DOI: 10.3390/nu14214492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 12/01/2023] Open
Abstract
Our previous clinical study has shown that the exopolysaccharide (EPS) produced by a plant-derived lactic acid bacterium, Lactobacillus paracasei IJH-SONE68, improves chronic allergy status in humans. In addition, an inhibition of visceral fat accumulation was observed following the intake of EPS during animal experimentation. In the present study, we have further evaluated the health-promoting effects of a spray-dried powder of pineapple juice that is fermented with the IJH-SONE68 strain. This was conducted in a double-blind, randomized, placebo-controlled, parallel-group clinical trial at Hiroshima University from May 2019 to July 2021. Eighty healthy volunteers at range of ages 23-70, with a body mass index between 25 and 29.99, were enrolled. After the 12 weeks of the experimental period were complete, although the average visceral fat area in both groups similarly decreased, there was no significant difference in the content of visceral fat area or in the obesity-related physical parameters in both groups. Further, we found that the serum liver function indices (AST and ALT) in the test group decreased within a statistically determined trend (p = 0.054). The fecal microflora analysis revealed, in the test group, a statistically significant increase in the relative abundance changes within Anaerostipes, which has been reported to help suppress hepatic inflammation.
Collapse
Affiliation(s)
- Narandalai Danshiitsoodol
- Department of Probiotic Science for Preventive Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan
| | - Masafumi Noda
- Department of Probiotic Science for Preventive Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan
| | - Keishi Kanno
- Department of General Internal Medicine, Hiroshima University Hospital, Kasumi 1-2-3, Minami-Ku, Hiroshima 734-8551, Japan
- Department of Clinical Pharmaceutical and Therapeutics, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan
| | - Tomoyuki Uchida
- Department of Clinical Pharmaceutical and Therapeutics, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan
| | - Masanori Sugiyama
- Department of Probiotic Science for Preventive Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan
- Department of Clinical Pharmaceutical and Therapeutics, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan
| |
Collapse
|
37
|
Yang M, Liu S, Zhang C. The Related Metabolic Diseases and Treatments of Obesity. Healthcare (Basel) 2022; 10:1616. [PMID: 36141228 PMCID: PMC9498506 DOI: 10.3390/healthcare10091616] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Obesity is a chronic disease characterized by the abnormal or excessive accumulation of body fat, affecting more than 1 billion people worldwide. Obesity is commonly associated with other metabolic disorders, such as type 2 diabetes, non-alcoholic fatty liver disease, cardiovascular diseases, chronic kidney disease, and cancers. Factors such as a sedentary lifestyle, overnutrition, socioeconomic status, and other environmental and genetic conditions can cause obesity. Many molecules and signaling pathways are involved in the pathogenesis of obesity, such as nuclear factor (NF)-κB, Toll-like receptors (TLRs), adhesion molecules, G protein-coupled receptors (GPCRs), programmed cell death 1 (PD-1)/programmed death-ligand 1 (PD-L1), and sirtuin 1 (SIRT1). Commonly used strategies of obesity management and treatment include exercise and dietary change or restriction for the early stage of obesity, bariatric surgery for server obesity, and Food and Drug Administration (FDA)-approved medicines such as semaglutide and liraglutide that can be used as monotherapy or as a synergistic treatment. In addition, psychological management, especially for patients with obesity and distress, is a good option. Gut microbiota plays an important role in obesity and its comorbidities, and gut microbial reprogramming by fecal microbiota transplantation (FMT), probiotics, prebiotics, or synbiotics shows promising potential in obesity and metabolic syndrome. Many clinical trials are ongoing to evaluate the therapeutic effects of different treatments. Currently, prevention and early treatment of obesity are the best options to prevent its progression to many comorbidities.
Collapse
Affiliation(s)
- Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA
| | - Shuai Liu
- The First Affiliated Hospital, Zhejiang University, Hangzhou 310006, China
| | - Chunye Zhang
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|