1
|
Lee-Martínez SN, Luzardo-Ocampo I, Vergara-Castañeda HA, Vasco-Leal JF, Gaytán-Martínez M, Cuellar-Nuñez ML. Native corn (Zea mays L., cv. 'Elotes Occidentales') polyphenols extract reduced total cholesterol and triglycerides levels, and decreased lipid accumulation in mice fed a high-fat diet. Biomed Pharmacother 2024; 180:117610. [PMID: 39447534 DOI: 10.1016/j.biopha.2024.117610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/07/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024] Open
Abstract
Obesity is a complex disease with numerous molecular and metabolic implications that could be prevented through proper diet and lifestyle. Native corn is a promissory underutilized plant species containing bioactive compounds that could reduce the impact of obesity. This research aimed to characterize and evaluate the anti-obesogenic effect of a polyphenols-rich extract of native corn ('Elotes Occidentales') in HFD-fed mice. The powdered extract was administered using gelatins to C57BL/6 J mice randomly divided into four groups (n:8/group) for 13 weeks: standard diet (SD) group, HFD group, HFD+200 mg extract/kg body weight (BW), and HFD+400 mg extract/kg BW/day. Ellagic acid, chlorogenic acid, rutin, and kaempferol were the most abundant phenolics (2022.44-4028.43 µg/g). Among the HFD groups, the highest dose of the extracts promoted the lowest BW gain, and fasting triglycerides and cholesterol levels. Moreover, the HFD+400 mg/kg BW group showed the lowest epididymal and subcutaneous adipose tissue weight and adipocytes' diameter and area between the HFD-treated animals. The extract administration prevented hepatic lipid accumulation. Rutin demonstrated the highest in silico binding affinity with proteins from the AMPK pathway (ACACA, SIRT1, and SREBP1) (-6.70 to -8.70 kcal/mol). Results indicated beneficial effects in alleviating obesity-associated parameters in vivo due to bioactive compounds from native maize extracts.
Collapse
Affiliation(s)
- Sarah N Lee-Martínez
- Advanced Biomedical Research Center, School of Medicine, Universidad Autónoma de Querétaro, Querétaro, Qro 76140, México
| | - Ivan Luzardo-Ocampo
- Tecnologico de Monterrey, The Institute for Obesity Research, Ave. Eugenio Garza Sada 2501 Sur, Col: Tecnológico, Monterrey, 64700 N. L., Mexico; Tecnologico de Monterrey, School of Enginering and Sciences, Av. Gral. Ramon Corona 2514, Zapopan, 45201 Jal., Mexico.
| | - Haydé A Vergara-Castañeda
- Advanced Biomedical Research Center, School of Medicine, Universidad Autónoma de Querétaro, Querétaro, Qro 76140, México
| | - Jose F Vasco-Leal
- Posgrado de Gestión Tecnológica e Innovación, Universidad Autónoma de Querétaro, Querétaro, Qro 76010, México
| | - Marcela Gaytán-Martínez
- Research and Graduate Program in Food Science, Universidad Autónoma de Querétaro, Querétaro, Qro 76010, México
| | - M Liceth Cuellar-Nuñez
- Advanced Biomedical Research Center, School of Medicine, Universidad Autónoma de Querétaro, Querétaro, Qro 76140, México.
| |
Collapse
|
2
|
Zhang Y, Xiong W, Ren Y, Huang J, Wang X, Wang O, Cai S. Preparation of Rutin-Whey Protein Pickering Emulsion and Its Effect on Zebrafish Skeletal Muscle Movement Ability. Nutrients 2024; 16:3050. [PMID: 39339650 PMCID: PMC11435083 DOI: 10.3390/nu16183050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Nutritional supplementation enriched with protein and antioxidants has been demonstrated to effectively strengthen skeletal muscle function and mitigate the risk of sarcopenia. Dietary protein has also been a common carrier to establish bioactive delivery system. Therefore, in this study, a Pickering emulsion delivery system for rutin was constructed with whey protein, and its structural characteristics, bioaccessibility, and molecular interactions were investigated. In the in vivo study, zebrafish (n = 10 in each group), which have a high genetic homology to humans, were treated with dexamethasone to induce sarcopenia symptoms and were administered with rutin, whey protein and the Pickering emulsion, respectively, for muscle movement ability evaluation, and zebrafish treated with or without dexamethasone was used as the model and the control groups, respectively. Results showed that the Pickering emulsion was homogeneous in particle size with a rutin encapsulation rate of 71.16 ± 0.15% and loading efficiency of 44.48 ± 0.11%. Rutin in the Pickering emulsion exhibited a significantly higher bioaccessibility than the free form. The interaction forces between rutin and the two components of whey proteins (α-LA and β-LG) were mainly van der Waals forces and hydrogen bonds. After treatment for 96 h, the zebrafish in Picking emulsion groups showed a significantly increased high-speed movement time and frequency, an increased level of ATP, prolonged peripheral motor nerve length, and normalized muscular histological structure compared with those of the model group (p < 0.05). The results of this study developed a new strategy for rutin utilization and provide scientific evidence for sarcopenia prevention with a food-derived resource.
Collapse
Affiliation(s)
- Yiting Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Wenyun Xiong
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yijing Ren
- NHC Key Laboratory of Public Nutrition and Health, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jian Huang
- NHC Key Laboratory of Public Nutrition and Health, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Xiaoying Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Ou Wang
- NHC Key Laboratory of Public Nutrition and Health, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
3
|
Jun L, Tao YX, Geetha T, Babu JR. Mitochondrial Adaptation in Skeletal Muscle: Impact of Obesity, Caloric Restriction, and Dietary Compounds. Curr Nutr Rep 2024; 13:500-515. [PMID: 38976215 PMCID: PMC11327216 DOI: 10.1007/s13668-024-00555-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2024] [Indexed: 07/09/2024]
Abstract
PURPOSE OF REVIEW: The global obesity epidemic has become a major public health concern, necessitating comprehensive research into its adverse effects on various tissues within the human body. Among these tissues, skeletal muscle has gained attention due to its susceptibility to obesity-related alterations. Mitochondria are primary source of energy production in the skeletal muscle. Healthy skeletal muscle maintains constant mitochondrial content through continuous cycle of synthesis and degradation. However, obesity has been shown to disrupt this intricate balance. This review summarizes recent findings on the impact of obesity on skeletal muscle mitochondria structure and function. In addition, we summarize the molecular mechanism of mitochondrial quality control systems and how obesity impacts these systems. RECENT FINDINGS: Recent findings show various interventions aimed at mitigating mitochondrial dysfunction in obese model, encompassing strategies including caloric restriction and various dietary compounds. Obesity has deleterious effect on skeletal muscle mitochondria by disrupting mitochondrial biogenesis and dynamics. Caloric restriction, omega-3 fatty acids, resveratrol, and other dietary compounds enhance mitochondrial function and present promising therapeutic opportunities.
Collapse
Affiliation(s)
- Lauren Jun
- Department of Nutritional Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Ya-Xiong Tao
- Department of Anatomy Physiology and Pharmacology, Auburn University, Auburn, AL, 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL, 36849, USA
| | - Thangiah Geetha
- Department of Nutritional Sciences, Auburn University, Auburn, AL, 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL, 36849, USA
| | - Jeganathan Ramesh Babu
- Department of Nutritional Sciences, Auburn University, Auburn, AL, 36849, USA.
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
4
|
Hong C, Li X, Zhang K, Huang Q, Li B, Xin H, Hu B, Meng F, Zhu X, Tang D, Hu C, Tao C, Li J, Cao Y, Wang H, Deng B, Wang S. Novel perspectives on autophagy-oxidative stress-inflammation axis in the orchestration of adipogenesis. Front Endocrinol (Lausanne) 2024; 15:1404697. [PMID: 38982993 PMCID: PMC11232368 DOI: 10.3389/fendo.2024.1404697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/30/2024] [Indexed: 07/11/2024] Open
Abstract
Adipose tissue, an indispensable organ, fulfils the pivotal role of energy storage and metabolism and is instrumental in maintaining the dynamic equilibrium of energy and health of the organism. Adipocyte hypertrophy and adipocyte hyperplasia (adipogenesis) are the two primary mechanisms of fat deposition. Mature adipocytes are obtained by differentiating mesenchymal stem cells into preadipocytes and redifferentiation. However, the mechanisms orchestrating adipogenesis remain unclear. Autophagy, an alternative cell death pathway that sustains intracellular energy homeostasis through the degradation of cellular components, is implicated in regulating adipogenesis. Furthermore, adipose tissue functions as an endocrine organ, producing various cytokines, and certain inflammatory factors, in turn, modulate autophagy and adipogenesis. Additionally, autophagy influences intracellular redox homeostasis by regulating reactive oxygen species, which play pivotal roles in adipogenesis. There is a growing interest in exploring the involvement of autophagy, inflammation, and oxidative stress in adipogenesis. The present manuscript reviews the impact of autophagy, oxidative stress, and inflammation on the regulation of adipogenesis and, for the first time, discusses their interactions during adipogenesis. An integrated analysis of the role of autophagy, inflammation and oxidative stress will contribute to elucidating the mechanisms of adipogenesis and expediting the exploration of molecular targets for treating obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Chun Hong
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xinming Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Kunli Zhang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Livestock Disease Prevention Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Qiuyan Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Baohong Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Haiyun Xin
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Bin Hu
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Fanming Meng
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiangxing Zhu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Dongsheng Tang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Chuanhuo Hu
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Guangxi University, Nanning, China
| | - Chenyu Tao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei, China
| | - Jianhao Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yang Cao
- Branch of Animal Husbandry, Jilin Academy of Agricultural Science, Gongzhuling, China
| | - Hai Wang
- Chinese Academy of Sciences (CAS) Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health- Hong Kong University (GIBH-HKU) Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Bo Deng
- Division of Nephrology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sutian Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| |
Collapse
|
5
|
Jun L, Knight E, Broderick TL, Al-Nakkash L, Tobin B, Geetha T, Babu JR. Moderate-Intensity Exercise Enhances Mitochondrial Biogenesis Markers in the Skeletal Muscle of a Mouse Model Affected by Diet-Induced Obesity. Nutrients 2024; 16:1836. [PMID: 38931191 PMCID: PMC11206830 DOI: 10.3390/nu16121836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/24/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Skeletal muscle is composed of bundles of muscle fibers with distinctive characteristics. Oxidative muscle fiber types contain higher mitochondrial content, relying primarily on oxidative phosphorylation for ATP generation. Notably, as a result of obesity, or following prolonged exposure to a high-fat diet, skeletal muscle undergoes a shift in fiber type toward a glycolytic type. Mitochondria are highly dynamic organelles, constantly undergoing mitochondrial biogenesis and dynamic processes. Our study aims to explore the impact of obesity on skeletal muscle mitochondrial biogenesis and dynamics and also ascertain whether the skeletal muscle fiber type shift occurs from the aberrant mitochondrial machinery. Furthermore, we investigated the impact of exercise in preserving the oxidative muscle fiber types despite obesity. Mice were subjected to a normal standard chow and water or high-fat diet with sugar water (HFS) with or without exercise training. After 12 weeks of treatment, the HFS diet resulted in a noteworthy reduction in the markers of mitochondrial content, which was recovered by exercise training. Furthermore, higher mitochondrial biogenesis markers were observed in the exercised group with a subsequent increase in the mitochondrial fission marker. In conclusion, these findings imply a beneficial impact of moderate-intensity exercise on the preservation of oxidative capacity in the muscle of obese mouse models.
Collapse
Affiliation(s)
- Lauren Jun
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA; (L.J.)
| | - Emily Knight
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA; (L.J.)
| | - Tom L. Broderick
- Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - Layla Al-Nakkash
- Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - Brielle Tobin
- The Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Thangiah Geetha
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA; (L.J.)
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
| | - Jeganathan Ramesh Babu
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA; (L.J.)
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
6
|
Nicola MA, Attaai AH, Abdel-Raheem MH, Mohammed AF, Abu-Elhassan YF. Neuroprotective effects of rutin against cuprizone-induced multiple sclerosis in mice. Inflammopharmacology 2024; 32:1295-1315. [PMID: 38512652 PMCID: PMC11006763 DOI: 10.1007/s10787-024-01442-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 01/24/2024] [Indexed: 03/23/2024]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory neurodegenerative disease of the central nervous system that injures the myelin sheath, provoking progressive axonal degeneration and functional impairments. No efficient therapy is available at present to combat such insults, and hence, novel safe and effective alternatives for MS therapy are extremely required. Rutin (RUT) is a flavonoid that exhibits antioxidant, anti-inflammatory, and neuroprotective effects in several brain injuries. The present study evaluated the potential beneficial effects of two doses of RUT in a model of pattern-III lesion of MS, in comparison to the conventional standard drug; dimethyl fumarate (DMF). Demyelination was induced in in male adult C57BL/6 mice by dietary 0.2% (w/w) cuprizone (CPZ) feeding for 6 consecutive weeks. Treated groups received either oral RUT (50 or 100 mg/kg) or DMF (15 mg/kg), along with CPZ feeding, for 6 consecutive weeks. Mice were then tested for behavioral changes, followed by biochemical analyses and histological examinations of the corpus callosum (CC). Results revealed that CPZ caused motor dysfunction, demyelination, and glial activation in demyelinated lesions, as well as significant oxidative stress, and proinflammatory cytokine elevation. Six weeks of RUT treatment significantly improved locomotor activity and motor coordination. Moreover, RUT considerably improved remyelination in the CC of CPZ + RUT-treated mice, as revealed by luxol fast blue staining and transmission electron microscopy. Rutin also significantly attenuated CPZ-induced oxidative stress and inflammation in the CC of tested animals. The effect of RUT100 was obviously more marked than either that of DMF, regarding most of the tested parameters, or even its smaller tested dose. In silico docking revealed that RUT binds tightly within NF-κB at the binding site of the protein-DNA complex, with a good negative score of -6.79 kcal/mol. Also, RUT-Kelch-like ECH-associated protein 1 (Keap1) model clarifies the possible inhibition of Keap1-Nrf2 protein-protein interaction. Findings of the current study provide evidence for the protective effect of RUT in CPZ-induced demyelination and behavioral dysfunction in mice, possibly by modulating NF-κB and Nrf2 signaling pathways. The present study may be one of the first to indicate a pro-remyelinating effect for RUT, which might represent a potential additive benefit in treating MS.
Collapse
Affiliation(s)
- Mariam A Nicola
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Assiut University, Asyût, 71526, Egypt.
| | - Abdelraheim H Attaai
- Department of Anatomy and Histology, School of Veterinary Medicine, Badr University in Assiut, New Nasser City, West of Assiut, Asyût, Egypt
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Assiut University, Asyût, 71526, Egypt
| | | | - Anber F Mohammed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Asyût, 71526, Egypt
| | - Yasmin F Abu-Elhassan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Assiut University, Asyût, 71526, Egypt
| |
Collapse
|
7
|
O'Leary MF, Jackman SR, Bowtell JL. Shatavari supplementation in postmenopausal women alters the skeletal muscle proteome and pathways involved in training adaptation. Eur J Nutr 2024; 63:869-879. [PMID: 38214710 PMCID: PMC10948523 DOI: 10.1007/s00394-023-03310-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 12/10/2023] [Indexed: 01/13/2024]
Abstract
PURPOSE Shatavari is an understudied, widely available herbal supplement. It contains steroidal saponins and phytoestrogens. We previously showed that six weeks of shatavari supplementation improved handgrip strength and increased markers of myosin contractile function. Mechanistic insights into shatavari's actions are limited. Therefore, we performed proteomics on vastus lateralis (VL) samples that remained from our original study. METHODS In a randomised double-blind trial, women (68.5 ± 6 years) ingested either placebo or shatavari (equivalent to 26,500 mg/d fresh weight) for six weeks. Tandem mass tag global proteomic analysis of VL samples was conducted (N = 7 shatavari, N = 5 placebo). Data were normalized to total peptides and scaled using a reference sample. Data were filtered using a 5% FDR. For each protein, the pre to post supplementation difference was expressed as log2 fold change. Welch's t tests with Benjamini-Hochberg corrections were performed for each protein. Pathway enrichment (PADOG, CAMERA) was interrogated in Reactome (v85). RESULTS No individual protein was significantly different between supplementation conditions. Both PADOG and CAMERA indicated that pathways related to (1) Integrin/MAPK signalling, (2) metabolism/insulin secretion; (3) cell proliferation/senescence/DNA repair/cell death; (4) haemostasis/platelets/fibrin; (5) signal transduction; (6) neutrophil degranulation and (7) chemical synapse function were significantly upregulated. CAMERA indicated pathways related to translation/amino acid metabolism, viral infection, and muscle contraction were downregulated. CONCLUSION Our analyses indicate that shatavari may support muscle adaptation responses to exercise. These data provide useful signposts for future investigation of shatavari's utility in conserving and enhancing musculoskeletal function in older age. TRIAL REGISTRATION NCT05025917 30/08/21, retrospectively registered.
Collapse
Affiliation(s)
- Mary F O'Leary
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK.
| | - Sarah R Jackman
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Joanna L Bowtell
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
8
|
Zhao XY, Wang JQ, Neely GG, Shi YC, Wang QP. Natural compounds as obesity pharmacotherapies. Phytother Res 2024; 38:797-838. [PMID: 38083970 DOI: 10.1002/ptr.8083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/20/2023] [Accepted: 11/22/2023] [Indexed: 02/15/2024]
Abstract
Obesity has become a serious global public health problem, affecting over 988 million people worldwide. Nevertheless, current pharmacotherapies have proven inadequate. Natural compounds have garnered significant attention due to their potential antiobesity effects. Over the past three decades, ca. 50 natural compounds have been evaluated for the preventive and/or therapeutic effects on obesity in animals and humans. However, variations in the antiobesity efficacies among these natural compounds have been substantial, owing to differences in experimental designs, including variations in animal models, dosages, treatment durations, and administration methods. The feasibility of employing these natural compounds as pharmacotherapies for obesity remained uncertain. In this review, we systematically summarized the antiobesity efficacy and mechanisms of action of each natural compound in animal models. This comprehensive review furnishes valuable insights for the development of antiobesity medications based on natural compounds.
Collapse
Affiliation(s)
- Xin-Yuan Zhao
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Ji-Qiu Wang
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - G Gregory Neely
- The Dr. John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life & Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Yan-Chuan Shi
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Qiao-Ping Wang
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
Li Z, Liang S, Sun H, Bao C, Li Y. Antilipogenesis Effect of Rutin-Loaded Liposomes Using a Microneedle Delivery System. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54294-54303. [PMID: 37972277 DOI: 10.1021/acsami.3c12795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Rutin, a flavonoid glycoside phytochemical compound, has a remarkable antiobesity effect. However, its therapeutic potential is hindered by its poor water solubility and low oral bioavailability. In this study, rutin was loaded into liposomes (LR) through the self-assembly of lecithin and cholesterol. It was discovered that liposomes improved the water solubility and cellular uptake of rutin in adipocytes. These rutin-loaded liposomes were then incorporated into a microneedle patch (MP) system formed by polyvinylpyrrolidone and poly(vinyl alcohol), and the MP-LR showed an increased release percentage in the adipose tissue microenvironment of pH 6.5 and achieved local delivery of rutin into adipocytes. Next, the therapeutic potentials of rutin, LR, and MP-LR were investigated in a high-fat diet (HFD)-induced obese mouse model. The MP-LR formulation decreased the weight of the HFD mice the most significantly. The antilipogenesis mechanisms of MP-LR are downregulating the lipid synthesis-related proteins (PPAR γ and C/EBP α) in adipocytes and promoting the expression of the beige adipogenesis-related proteins (UCP 1 and Cyt C). The MP systems further promote the local penetration of LR into the adipose tissue specifically, which again elevates their antiobesity effect. Overall, this study suggests that MP-delivered liposome-based formulation is a promising approach to enhance the antiobesity efficacy of antilipogenesis bioactive compounds.
Collapse
Affiliation(s)
- Zekun Li
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Shuang Liang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Huijuan Sun
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Cheng Bao
- School of Life Science, Ludong University, Yantai 264000, China
| | - Yuan Li
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
10
|
Zhumaliyeva G, Zhussupova A, Zhusupova GE, Błońska-Sikora E, Cerreto A, Omirbekova N, Zhunusbayeva Z, Gemejiyeva N, Ramazanova M, Wrzosek M, Ross SA. Natural Compounds of Salvia L. Genus and Molecular Mechanism of Their Biological Activity. Biomedicines 2023; 11:3151. [PMID: 38137372 PMCID: PMC10740457 DOI: 10.3390/biomedicines11123151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
The study of medicinal plants is important, as they are the natural reserve of potent biologically active compounds. With wide use in traditional medicine and the inclusion of several species (as parts and as a whole plant) in pharmacopeia, species from the genus Salvia L. are known for the broad spectrum of their biological activities. Studies suggest that these plants possess antioxidant, anti-inflammatory, antinociceptive, anticancer, antimicrobial, antidiabetic, antiangiogenic, hepatoprotective, cognitive and memory-enhancing effects. Phenolic acids, terpenoids and flavonoids are important phytochemicals, which are primarily responsible for the medicinal activity of Salvia L. This review collects and summarizes currently available data on the pharmacological properties of sage, outlining its principal physiologically active components, and it explores the molecular mechanism of their biological activity. Particular attention was given to the species commonly found in Kazakhstan, especially to Salvia trautvetteri Regel, which is native to this country.
Collapse
Affiliation(s)
- Gaziza Zhumaliyeva
- Department of Molecular Biology and Genetics, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050040, Kazakhstan; (G.Z.); (N.O.); (Z.Z.)
| | - Aizhan Zhussupova
- Department of Molecular Biology and Genetics, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050040, Kazakhstan; (G.Z.); (N.O.); (Z.Z.)
| | - Galiya E. Zhusupova
- Department of Chemistry and Technology of Organic Substances, Natural Compounds and Polymers, NPJSC Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050040, Kazakhstan; (G.E.Z.)
| | - Ewelina Błońska-Sikora
- Department of Pharmaceutical Sciences, Collegium Medicum, Jan Kochanowski University, 25-406 Kielce, Poland; (E.B.-S.)
| | - Antonella Cerreto
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, 00185 Rome, Italy; (A.C.)
| | - Nargul Omirbekova
- Department of Molecular Biology and Genetics, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050040, Kazakhstan; (G.Z.); (N.O.); (Z.Z.)
| | - Zhazira Zhunusbayeva
- Department of Molecular Biology and Genetics, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050040, Kazakhstan; (G.Z.); (N.O.); (Z.Z.)
| | - Nadezhda Gemejiyeva
- Institute of Botany and Phytointroduction, 36D/1 Timiryazev Str., Almaty 050040, Kazakhstan; (N.G.); (M.R.)
| | - Madina Ramazanova
- Institute of Botany and Phytointroduction, 36D/1 Timiryazev Str., Almaty 050040, Kazakhstan; (N.G.); (M.R.)
| | - Małgorzata Wrzosek
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy and Laboratory of Biochemistry and Clinical Chemistry at the Preclinical Research Center, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Samir A. Ross
- School of Pharmacy, University of Mississippi, P.O. Box 1848, University, MS 38677, USA; (S.A.R.)
- School of Pharmacy, S.D. Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan
| |
Collapse
|
11
|
Nakanishi R, Tanaka M, Nisa BU, Shimizu S, Hirabayashi T, Tanaka M, Maeshige N, Roy RR, Fujino H. Alternating current electromagnetic field exposure lessens intramyocellular lipid accumulation due to high-fat feeding via enhanced lipid metabolism in mice. PLoS One 2023; 18:e0289086. [PMID: 38011220 PMCID: PMC10681264 DOI: 10.1371/journal.pone.0289086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/11/2023] [Indexed: 11/29/2023] Open
Abstract
Long-term high-fat feeding results in intramyocellular lipid accumulation, leading to insulin resistance. Intramyocellular lipid accumulation is related to an energy imbalance between excess fat intake and fatty acid consumption. Alternating current electromagnetic field exposure has been shown to enhance mitochondrial metabolism in the liver and sperm. Therefore, we hypothesized that alternating current electromagnetic field exposure would ameliorate high-fat diet-induced intramyocellular lipid accumulation via activation of fatty acid consumption. C57BL/6J mice were either fed a normal diet (ND), a normal diet and exposed to an alternating current electromagnetic field (ND+EMF), a high-fat diet (HFD), or a high-fat diet and exposed to an alternating current electromagnetic field (HFD+EMF). Electromagnetic field exposure was administered 8 hrs/day for 16 weeks using an alternating current electromagnetic field device (max.180 mT, Hokoen, Utatsu, Japan). Tibialis anterior muscles were collected for measurement of intramyocellular lipids, AMPK phosphorylation, FAT/CD-36, and carnitine palmitoyltransferase (CPT)-1b protein expression levels. Intramyocellular lipid levels were lower in the HFD + EMF than in the HFD group. The levels of AMPK phosphorylation, FAT/CD-36, and CPT-1b protein levels were higher in the HFD + EMF than in the HFD group. These results indicate that alternating current electromagnetic field exposure decreases intramyocellular lipid accumulation via increased fat consumption.
Collapse
Affiliation(s)
- Ryosuke Nakanishi
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
- Department of Physical Therapy, Kobe International University, Kobe, Japan
| | - Masayuki Tanaka
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
- Department of Physical Therapy, Okayama Healthcare Professional University, Okayama, Japan
| | - Badur un Nisa
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Sayaka Shimizu
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Takumi Hirabayashi
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Minoru Tanaka
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
- Department of Rehabilitation Science, Osaka Health Science University, Osaka, Japan
| | - Noriaki Maeshige
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Roland R. Roy
- Brain Research Institute and Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Hidemi Fujino
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| |
Collapse
|
12
|
Zheng P, Zhang Q, Ma W, Hu R, Gu Y, Bian Z, Yang D, Chen X, Wu H. Low-dose atorvastatin protects skeletal muscle mitochondria in high-fat diet-fed mice with mitochondrial autophagy inhibition and fusion enhancement. Eur J Pharmacol 2023; 959:176085. [PMID: 37806539 DOI: 10.1016/j.ejphar.2023.176085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/15/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
Despite the great clinical benefits of statins in cardiovascular diseases, their widespread use may lead to adverse muscle reactions associated with mitochondrial dysfunction. Some studies have demonstrated that statins provide substantial improvement to skeletal muscle health in mice. Our previous study found that oral treatment with atorvastatin (Ator, 3 mg/kg) protected myocardial mitochondria in high-fat diet (HFD)-fed mice. Therefore, this study aimed to explore the influence of low-dose Ator (3 mg/kg) on mitochondria in skeletal muscle under cholesterol overload. Male C57BL/6J mice were fed a HFD for 18 weeks and orally administered Ator (3 mg/kg) during the last 12 weeks. Ator treatment had no effects on elevated serum cholesterol and glucose levels in HFD-fed mice. Serum creatine kinase levels and the cross-sectional area of muscle cells were not affected by HFD feeding or Ator treatment. Increased expression of PINK1-LC3 II (activated mitophagy), MFN2 (fusion), and PGC-1α (biogenesis) proteins was induced in the skeletal muscles of HFD-fed mice. Treatment with Ator inhibited PINK1 and LC3 II protein expression, but further promoted MFN1, MFN2, and OPA1 expression. The impairments in mitochondrial quality and morphology in HFD-fed mice were attenuated by treatment with Ator. Furthermore, Ator treatment enhanced glucose oxidation capacity and restored ATP production in the skeletal muscles of HFD-fed mice. The study reveals that low-dose Ator has a protective effect on muscle mitochondria in mice, likely through inhibiting mitophagy and enhancing mitochondrial fusion. This suggests that skeletal muscle mitochondria may be one of low-dose Ator-mediated protective targets.
Collapse
Affiliation(s)
- Peng Zheng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Qian Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Wenjing Ma
- Core Facility of The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Ran Hu
- Core Facility of The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Yilu Gu
- Department of Pathology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Zhiping Bian
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Di Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China; Core Facility of The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Xiangjian Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.
| | - Hengfang Wu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
13
|
Zargar S, Altwaijry N, Wani TA, Alkahtani HM. Evaluation of the Possible Pathways Involved in the Protective Effects of Quercetin, Naringenin, and Rutin at the Gene, Protein and miRNA Levels Using In-Silico Multidimensional Data Analysis. Molecules 2023; 28:4904. [PMID: 37446564 DOI: 10.3390/molecules28134904] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Flavonoids are secondary metabolites that are non-essential for plant growth or survival, and they also provide numerous health benefits to humans. They are antioxidants that shield plants from the ill effects of ultraviolet light, pests, and diseases. They are beneficial to health for several reasons, including lowering inflammation, boosting cardiovascular health, and lowering cancer risk. This study looked into the physicochemical features of these substances to determine the potential pharmacological pathways involved in their protective actions. Potential targets responsible for the protective effects of quercetin, naringenin, and rutin were identified with SwissADME. The associated biological processes and protein-protein networks were analyzed by using the GeneMANIA, Metascape, and STRING servers. All the flavonoids were predicted to be orally bioavailable, with more than 90% targets as enzymes, including kinases and lyases, and with common targets such as NOS2, CASP3, CASP9, CAT, BCL2, TNF, and HMOX1. TNF was shown to be a major target in over 250 interactions. To extract the "biological meanings" from the MCODE networks' constituent parts, a GO enrichment analysis was performed on each one. The most important transcription factors in gene regulation were RELA, NFKB1, PPARG, and SP1. Treatment with quercetin, naringenin, or rutin increased the expression and interaction of the microRNAs' hsa-miR-34a-5p, hsa-miR-30b-5p, hsa-let-7a-5p, and hsa-miR-26a-1-3p. The anticancer effects of hsa-miR-34a-5p have been experimentally confirmed. It also plays a critical role in controlling other cancer-related processes such as cell proliferation, apoptosis, EMT, and metastasis. This study's findings might lead to a deeper comprehension of the mechanisms responsible for flavonoids' protective effects and could present new avenues for exploration.
Collapse
Affiliation(s)
- Seema Zargar
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
| | - Nojood Altwaijry
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
| | - Tanveer A Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hamad M Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
14
|
Lee H, Kim SY, Lim Y. Annona muricate Extract Supplementation Contributes to Improve Aberrant Multi-Organ Energy Metabolism via Muscle-Brain Connectivity in Diabetic Mice. Nutrients 2023; 15:nu15112559. [PMID: 37299522 DOI: 10.3390/nu15112559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is related with the incidence of sarcopenia and cognitive impairment that reduces quality of life in the elderly. Recent evidence has demonstrated that sarcopenia is associated with cognitive dysfunction, and muscle-derived endocrine factors might contribute to cognitive function by the skeletal muscle-brain endocrine loop. This study investigated the beneficial effects of Annona muricata (AM, graviola) on multi-organ energy metabolism with muscle-brain connectivity via brain function-related myokines in mice. Body composition, fasting blood glucose level, insulin, HbA1c%, histopathological changes, and the protein levels of insulin-signaling, energy metabolism, neuroprotection, inflammation, and protein-degradation pathways were measured. AM extract (AME) treatment selectively enhanced insulin signaling in the skeletal muscle and hippocampus of T2DM mice. Furthermore, AME treatment effectively increased muscle-derived fibroblast growth factor 21 (FGF21), cathepsin-B (CTSB), irisin, brain-derived neurotrophic factor (BDNF), and liver-derived FGF21 that contribute to whole-body energy homeostasis. In particular, AME increased the levels of circulating myokines (FGF21, BDNF, irisin, and CTSB), and these were accordance with the hippocampal neurotrophic factors (BDNF and CTSB) in T2DM mice. In conclusion, we suggest that AME would be a potential nutraceutical for improving the energy metabolism associated with muscle-brain connectivity via brain function-related myokines in T2DM.
Collapse
Affiliation(s)
- Heaji Lee
- Department of Food and Nutrition, Kyung Hee University, 26 Kyunghee-Daero, Dongdaemun-Gu, Seoul 02447, Republic of Korea
| | - Sun Yeou Kim
- Gachon Institute of Pharmaceutical Science, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Yunsook Lim
- Department of Food and Nutrition, Kyung Hee University, 26 Kyunghee-Daero, Dongdaemun-Gu, Seoul 02447, Republic of Korea
| |
Collapse
|
15
|
Ticinesi A, Nouvenne A, Cerundolo N, Parise A, Meschi T. Accounting Gut Microbiota as the Mediator of Beneficial Effects of Dietary (Poly)phenols on Skeletal Muscle in Aging. Nutrients 2023; 15:nu15102367. [PMID: 37242251 DOI: 10.3390/nu15102367] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Sarcopenia, the age-related loss of muscle mass and function increasing the risk of disability and adverse outcomes in older people, is substantially influenced by dietary habits. Several studies from animal models of aging and muscle wasting indicate that the intake of specific polyphenol compounds can be associated with myoprotective effects, and improvements in muscle strength and performance. Such findings have also been confirmed in a smaller number of human studies. However, in the gut lumen, dietary polyphenols undergo extensive biotransformation by gut microbiota into a wide range of bioactive compounds, which substantially contribute to bioactivity on skeletal muscle. Thus, the beneficial effects of polyphenols may consistently vary across individuals, depending on the composition and metabolic functionality of gut bacterial communities. The understanding of such variability has recently been improved. For example, resveratrol and urolithin interaction with the microbiota can produce different biological effects according to the microbiota metabotype. In older individuals, the gut microbiota is frequently characterized by dysbiosis, overrepresentation of opportunistic pathogens, and increased inter-individual variability, which may contribute to increasing the variability of biological actions of phenolic compounds at the skeletal muscle level. These interactions should be taken into great consideration for designing effective nutritional strategies to counteract sarcopenia.
Collapse
Affiliation(s)
- Andrea Ticinesi
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11/1, 43124 Parma, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
| | - Antonio Nouvenne
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11/1, 43124 Parma, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
| | - Nicoletta Cerundolo
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
| | - Alberto Parise
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
| | - Tiziana Meschi
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11/1, 43124 Parma, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
| |
Collapse
|
16
|
Omi N, Yamamoto H, Yamaguchi T, Tsukiashi M, Yamamoto T, Tanaka R, Watanabe K, Maruki-Uchida H, Kawama T. Enzymatically modified isoquercitrin in soy protein temporarily enhanced the plasma amino-acid concentrations, antioxidant index, and plasma hormone levels: a randomized, double-blind cross-over trial. Amino Acids 2023:10.1007/s00726-023-03267-4. [PMID: 37154870 DOI: 10.1007/s00726-023-03267-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 04/10/2023] [Indexed: 05/10/2023]
Abstract
This study investigated the effects of a dietary protein supplement containing enzymatically modified isoquercitrin (EMIQ) on plasma amino-acid levels in healthy people. A randomized double-blind cross-over trial (UMIN000044791) was conducted with a sample of nine healthy individuals. These participants ingested soy protein with or without 42 mg EMIQ for 7 days after performing mild exercise. Plasma amino-acid levels were measured before ingestion and at 15, 30, 45, 60, 90, 120, 180, and 240 min after ingestion on the last day. The concentrations of total amino acids at 0 and 120 min and easily oxidized amino acids at 120 min were significantly higher in the plasma of individuals who consumed 42 mg EMIQ. Oxidative stress levels were lower and plasma testosterone levels were higher in participants who ingested soy protein with 42 mg EMIQ than in those who did not. These results suggest that daily ingestion of soy protein with 42 mg EMIQ can be useful for effective protein absorption.
Collapse
Affiliation(s)
- Naomi Omi
- Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8574, Japan.
- Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8574, Japan.
| | - Hayata Yamamoto
- Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8574, Japan
| | - Taketo Yamaguchi
- Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8574, Japan
| | - Motoki Tsukiashi
- Health Science Research Center, R&D Institute, Morinaga & Co., Ltd, 2-1-1 Shimosueyoshi, Tsurumi-Ku, Yokohama, 230-8504, Japan
| | - Takayuki Yamamoto
- Health Science Research Center, R&D Institute, Morinaga & Co., Ltd, 2-1-1 Shimosueyoshi, Tsurumi-Ku, Yokohama, 230-8504, Japan
| | - Ryo Tanaka
- Health Science Research Center, R&D Institute, Morinaga & Co., Ltd, 2-1-1 Shimosueyoshi, Tsurumi-Ku, Yokohama, 230-8504, Japan
| | - Koichi Watanabe
- Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8574, Japan
- Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8574, Japan
| | - Hiroko Maruki-Uchida
- Health Science Research Center, R&D Institute, Morinaga & Co., Ltd, 2-1-1 Shimosueyoshi, Tsurumi-Ku, Yokohama, 230-8504, Japan
| | - Toshihiro Kawama
- Health Science Research Center, R&D Institute, Morinaga & Co., Ltd, 2-1-1 Shimosueyoshi, Tsurumi-Ku, Yokohama, 230-8504, Japan
| |
Collapse
|
17
|
Chae HS, Dale O, Mir TM, Ashfaq MK, Avula B, Walker LA, Khan IA, Khan SI. Juniper Berries Regulate Diabetes and Obesity Markers Through Modulating PPAR α, PPAR γ, and LXR: In Vitro and In Vivo Effects. J Med Food 2023; 26:307-318. [PMID: 37186895 DOI: 10.1089/jmf.2022.0146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
The berries of Juniperus communis have been traditionally used for therapeutic purposes. They have been reported to possess various pharmacological effects such as anti-inflammatory, hypoglycemic and hypolipidemic activities. In this study, a methanolic extract of J. communis berries (JB) was evaluated for its effects on peroxisome proliferator-activated receptors alpha and gamma (PPARα and PPARγ), liver X receptor (LXR), glucose uptake and lipid accumulation using various cellular systems. At a concentration of 25 μg/mL, JB caused 3.77-fold activation of PPARα, 10.90-fold activation of PPARγ, and 4.43-fold activation of LXR in hepatic cells. JB inhibited (11%) the adipogenic effect induced by rosiglitazone in adipocytes and increased glucose uptake (90%) in muscle cells. In high-fat diet (HFD) fed mice, JB at a dose of 25 mg/kg body weight exhibited a 21% decrease in body weight. Fasting glucose levels in mice treated with 12.5 mg/kg of JB were significantly decreased (39%) indicating its efficacy in regulating hyperglycemia and obesity induced by HFD thus ameliorating the symptoms of type 2 diabetes. A series of energy metabolic genes, including Sirt1 (2.00-fold) and RAF1 (2.04-fold), were upregulated by JB, while rosiglitazone regulated the hepatic PPARγ only. Phytochemical analysis of JB indicated presence of a number of flavonoids and biflavonoids which seem to be responsible for the observed activity. It was concluded that JB acted as a multiple agonist of PPARα, PPARγ and LXR without the undesired effect of adipogenesis and exhibited the property of enhancing glucose uptake. The regulation of PPARα, PPARγ and LXR seems to be through Sirt1 and RAF1. In vivo results confirmed the antidiabetic and antiobesity potential of JB and indicated its utility in metabolic disorder and type 2 diabetes.
Collapse
Affiliation(s)
- Hee-Sung Chae
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi, USA
| | - Olivia Dale
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi, USA
| | - Tahir M Mir
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi, USA
| | - Mohammad K Ashfaq
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi, USA
| | - Bharathi Avula
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi, USA
| | - Larry A Walker
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi, USA
| | - Ikhlas A Khan
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi, USA
- Department of Biomolecular Sciences, School of Pharmacy, The University of Mississippi, University, Mississippi, USA
| | - Shabana I Khan
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi, USA
- Department of Biomolecular Sciences, School of Pharmacy, The University of Mississippi, University, Mississippi, USA
| |
Collapse
|
18
|
Chen S, Liu H, Zhang J, Zhou B, He X, Wang T, Wang C. Dietary rutin improves breast meat quality in heat-stressed broilers and protects mitochondria from oxidative attack via the AMPK/PINK1-Parkin pathway. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2367-2377. [PMID: 36606563 DOI: 10.1002/jsfa.12431] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/01/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND This study was conducted to investigate the effect of dietary rutin on the meat quality, antioxidant status and mitochondrial structure and function in the breast muscle of heat-stressed broilers. A total of 192 male broilers were randomly assigned into three groups and treated with normal control (CON), heat stress (34 °C, HS), and HS with 500 mg kg-1 rutin supplementation (HS + Rutin), respectively. RESULTS Dietary rutin significantly reversed HS-induced decrease in body weight, average daily feed intake, average daily gain, and feed efficiency. Rutin supplementation attenuated HS-induced impaired meat quality by decreasing the lightness, drip loss at 24 and 48 h, the peak time of free water (T22 ) and the peak area ratio of free water (P22 ), and increasing the pH24h and peak area ratio of immobilized water (P21 ). Rutin supplementation promoted superoxide dismutase, glutathione peroxidase activities and total antioxidant capacity, and decreased malondialdehyde levels compared with the HS group. Moreover, rutin attenuated HS-induced mitochondrial damage by increasing the mitochondrial DNA copy number and improving mitochondrial morphology. Dietary rutin significantly increased mitochondrial biogenesis-related mRNA (proliferator-activated γ receptor coactivator-1α [PGC-1α], nuclear respiratory factor 1 [NRF1], and mitochondrial transcription factor A [TFAM]) expression via the AMP-activated protein kinase (AMPK) signaling pathway. HS significantly increased mitophagy-related genes and proteins (Parkin, PTEN-induced putative kinase 1 [PINK1], microtubule associated protein light chain 3-II [LC3-II]) expression, and dietary rutin significantly reversed these alterations. CONCLUSION Dietary rutin attenuated the HS-induced decline in meat quality and antioxidant capacity of broilers, which may be related to inhibition of the AMPK/PINK1-Parkin signaling pathway to attenuate mitochondrial damage. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shun Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - HuiJuan Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - JiaQi Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - BinBin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - XiaoFang He
- School of Animal Science and Food Engineering, Institute of Jingling Technology, Nanjing, People's Republic of China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Chao Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| |
Collapse
|
19
|
Hah YS, Lee WK, Lee SJ, Lee SY, Seo JH, Kim EJ, Choe YI, Kim SG, Yoo JI. Rutin Prevents Dexamethasone-Induced Muscle Loss in C2C12 Myotube and Mouse Model by Controlling FOXO3-Dependent Signaling. Antioxidants (Basel) 2023; 12:639. [PMID: 36978887 PMCID: PMC10045290 DOI: 10.3390/antiox12030639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/22/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
One of the causes of sarcopenia is that homeostasis between anabolism and catabolism breaks down due to muscle metabolism changes. Rutin has shown antioxidant and anti-inflammatory effects in various diseases, but there are few studies on the effect on muscle loss with aging. The effect of rutin on muscle loss was evaluated using dexamethasone-induced muscle loss C2C12 myoblast and mouse model. In the group treated with dexamethasone, the muscle weight of gastrocnemius (GA), tibialis anterior (TA), and extensor digitorum longus (EDL) in the mouse model were significantly decreased (p < 0.0001 in GA, p < 0.0001 in TA, and p < 0.001 in EDL) but recovered (p < 0.01 in GA, p < 0.0001 in TA, and p < 0.01 in EDL) when treated with rutin. MAFbx, MuRF1, and FOXO3 protein expression of C2C12 myoblast were significantly increased (p < 0.01 in MAFbx, p < 0.01 in MuRF1, and p < 0.01 in FOXO3) when treated with dexamethasone, but it was recovered (p < 0.01 in MAFbx, p < 0.01 in MuRF1, and p < 0.01 in FOXO3) when rutin was treated. In addition, MAFbx and FOXO3 protein expression in GA of mouse model was significantly increased (p < 0.0001 in MAFbx and p < 0.001 in FOXO3) when treated with dexamethasone, but it was also recovered (p < 0.01 in MAFbx and p < 0.001 in FOXO3) when rutin was treated. The present study shows that rutin blocks the FOXO3/MAFbx and FOXO3/MuRf1 pathways to prevent protein catabolism. Therefore, rutin could be a potential agent for muscle loss such as sarcopenia through the blocking ubiquitin-proteasome pathway associated with catabolic protein degradation.
Collapse
Affiliation(s)
- Young-Sool Hah
- Department of Orthopedics, Institute of Health Sciences, Gyeongsang National University School of Medicine and Hospital, Jinju 52727, Republic of Korea
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea
| | - Won Keong Lee
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea
| | - Seung-Jun Lee
- Department of Convergence of Medical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Sang Yeob Lee
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea
| | - Jin-Hee Seo
- Crop Production Technology Research Division, National Institute of Crop Science, Rural Development Administration, Miryang 50424, Republic of Korea
| | - Eun Ji Kim
- Department of Orthopedics, Institute of Health Sciences, Gyeongsang National University School of Medicine and Hospital, Jinju 52727, Republic of Korea
| | - Yeong-In Choe
- Department of Orthopedics, Institute of Health Sciences, Gyeongsang National University School of Medicine and Hospital, Jinju 52727, Republic of Korea
| | - Sang Gon Kim
- Anti-Aging Research Group, Gyeongnam Oriental Anti-Aging Institute, Sancheong 52215, Republic of Korea
| | - Jun-Il Yoo
- Department of Orthopedic Surgery, Inha University Hospital, Incheon 22332, Republic of Korea
| |
Collapse
|
20
|
Foudah AI, Alqarni MH, Alam A, Devi S, Salkini MA, Alam P. Rutin Improves Anxiety and Reserpine-Induced Depression in Rats. Molecules 2022; 27:7313. [PMID: 36364141 PMCID: PMC9654015 DOI: 10.3390/molecules27217313] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 08/21/2023] Open
Abstract
Mental disorders have a poor clinical prognosis and account for approximately 8% of the global burden of disease. Some examples of mental disorders are anxiety and depression. Conventional antidepressants have limited efficacy in patients because their pharmacological effects wear off, and side effects increase with prolonged use. It is claimed that herbal medicine's antioxidant capacity helps regulate people's mood and provide a more substantial pharmacological effect. With this background, the purpose of this study is to investigate the effect of rutin on reserpine-induced anxiety and depression in rats. The animals were divided into groups of six rats each: normal control (water), a depression model, a rutin-treated rat model, and an amitriptyline-treated rat model. According to the results, 14 days of treatment with rutin, once daily, showed a modest antidepressant effect. This effect was mediated by increased serotonin, norepinephrine, and dopamine levels in cortical and hippocampal regions. The antioxidant and vasodilator properties of rutin may contribute to its antidepressant properties. According to this study, rutin has shown antidepressant effects by reducing antioxidant activity and acetylcholinesterase.
Collapse
Affiliation(s)
- Ahmed I Foudah
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Mohammed H Alqarni
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Sushma Devi
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Mohammad A Salkini
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
21
|
Bioactive Components in Whole Grains for the Regulation of Skeletal Muscle Function. Foods 2022; 11:foods11182752. [PMID: 36140879 PMCID: PMC9498156 DOI: 10.3390/foods11182752] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 12/03/2022] Open
Abstract
Skeletal muscle plays a primary role in metabolic health and physical performance. Conversely, skeletal muscle dysfunctions such as muscular dystrophy, atrophy and aging-related sarcopenia could lead to frailty, decreased independence and increased risk of hospitalization. Dietary intervention has become an effective approach to improving muscle health and function. Evidence shows that whole grains possess multiple health benefits compared with refined grains. Importantly, there is growing evidence demonstrating that bioactive substances derived from whole grains such as polyphenols, γ-oryzanol, β-sitosterol, betaine, octacosanol, alkylresorcinols and β-glucan could contribute to enhancing myogenesis, muscle mass and metabolic function. In this review, we discuss the potential role of whole-grain-derived bioactive components in the regulation of muscle function, emphasizing the underlying mechanisms by which these compounds regulate muscle biology. This work will contribute toward increasing awareness of nutraceutical supplementation of whole grain functional ingredients for the prevention and treatment of muscle dysfunctions.
Collapse
|
22
|
Peanut Shell Extract and Luteolin Regulate Lipid Metabolism and Induce Browning in 3T3-L1 Adipocytes. Foods 2022; 11:foods11172696. [PMID: 36076880 PMCID: PMC9455591 DOI: 10.3390/foods11172696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022] Open
Abstract
Peanut shells are agricultural waste products that require utilization. The freeze-dried ethanolic peanut shell extract (PSE) contained 10.01 ± 0.55 mg/g of luteolin (LUT) with a total polyphenol content of 18.11 ± 0.88 mg GAE/g. Thus, LUT is one of the major polyphenolic components in PSE. Although PSE displays antibacterial and neurotrophic activities, minimal research is available addressing its potential role in lipid metabolism. This study investigated the role of PSE in terms of inhibiting adipogenesis, accelerating lipolysis, and promoting lipid browning using the 3T3-L1 cell line. Without affecting cell viability, high concentrations of PSE and LUT prevented adipogenesis by reducing the mRNA levels of C/EBPα, PPARγ, and SREBP1-c, and increasing the protein levels of pACC and pAMPK. Moreover, PSE and LUT induced lipolysis by activating lipolytic proteins, and enhanced the protein expressions of the brown adipocyte-specific markers, UCP1, PGC-1α, and SIRT1 in fully differentiated 3T3-L1 adipocytes. Increased mitochondrial biosynthesis provided additional evidence in favor of these findings. Due to their anti-obesity properties, it is proposed that PSE and LUT could be used as potential dietary supplements.
Collapse
|
23
|
Enayati A, Ghojoghnejad M, Roufogalis BD, Maollem SA, Sahebkar A. Impact of Phytochemicals on PPAR Receptors: Implications for Disease Treatments. PPAR Res 2022; 2022:4714914. [PMID: 36092543 PMCID: PMC9453090 DOI: 10.1155/2022/4714914] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/10/2022] [Indexed: 11/17/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are members of the ligand-dependent nuclear receptor family. PPARs have attracted wide attention as pharmacologic mediators to manage multiple diseases and their underlying signaling targets. They mediate a broad range of specific biological activities and multiple organ toxicity, including cellular differentiation, metabolic syndrome, cancer, atherosclerosis, neurodegeneration, cardiovascular diseases, and inflammation related to their up/downstream signaling pathways. Consequently, several types of selective PPAR ligands, such as fibrates and thiazolidinediones (TZDs), have been approved as their pharmacological agonists. Despite these advances, the use of PPAR agonists is known to cause adverse effects in various systems. Conversely, some naturally occurring PPAR agonists, including polyunsaturated fatty acids and natural endogenous PPAR agonists curcumin and resveratrol, have been introduced as safe agonists as a result of their clinical evidence or preclinical experiments. This review focuses on research on plant-derived active ingredients (natural phytochemicals) as potential safe and promising PPAR agonists. Moreover, it provides a comprehensive review and critique of the role of phytochemicals in PPARs-related diseases and provides an understanding of phytochemical-mediated PPAR-dependent and -independent cascades. The findings of this research will help to define the functions of phytochemicals as potent PPAR pharmacological agonists in underlying disease mechanisms and their related complications.
Collapse
Affiliation(s)
- Ayesheh Enayati
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mobina Ghojoghnejad
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Basil D. Roufogalis
- Discipline of Pharmacology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Seyed Adel Maollem
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
24
|
Portulaca oleracea L. Extract Regulates Hepatic Cholesterol Metabolism via the AMPK/MicroRNA-33/34a Pathway in Rats Fed a High-Cholesterol Diet. Nutrients 2022; 14:nu14163330. [PMID: 36014836 PMCID: PMC9414803 DOI: 10.3390/nu14163330] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
This study examined the effect of extruded Portulaca oleracea L. extract (PE) in rats fed a high-cholesterol diet through the AMP-activated protein kinase (AMPK) and microRNA (miR)-33/34a pathway. Sprague–Dawley rats were randomized into three groups and fed either a standard diet (SD), a high-cholesterol diet containing 1% cholesterol and 0.5% cholic acid (HC), or an HC diet containing 0.8% PE for 4 weeks. PE supplementation improved serum, liver, and fecal lipid profiles. PE upregulated the expression of genes involved in cholesterol efflux and bile acids’ synthesis such as liver X receptor alpha (LXRα), ATP-binding cassette subfamily G5/G8 (ABCG5/8), and cholesterol 7 alpha-hydroxylase (CYP7A1), and downregulated farnesoid X receptor (FXR) in the liver. In addition, hepatic gene expression levels of apolipoprotein A-l (apoA-1), paraoxonase 1 (PON1), ATP-binding cassette subfamily A1/G1 (ABCA1/G1), lecithin-cholesterol acyltransferase (LCAT), and scavenger receptor class B type 1 (SR-B1), which are related to serum high-density lipoprotein cholesterol metabolism, were upregulated by PE. Furthermore, hepatic AMPK activity in the PE group was higher than in the HC group, and miR-33/34a expression levels were suppressed. These results suggest that PE improves the cholesterol metabolism by modulating AMPK activation and miR-33/34a expression in the liver.
Collapse
|
25
|
Ma B, Hao J, Xu H, Liu L, Wang W, Chen S, Wu H. Rutin promotes white adipose tissue "browning" and brown adipose tissue activation partially through the calmodulin-dependent protein kinase kinase β/AMP-activated protein kinase pathway. Endocr J 2022; 69:385-397. [PMID: 34719526 DOI: 10.1507/endocrj.ej21-0441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Promoting white adipose tissue (WAT) "browning" and brown adipose tissue (BAT) activation could contribute to increasing energy expenditure. We explored the mechanisms by which the natural compound rutin induced adipose tissue differentiation and ameliorated obesity in vivo and in vitro. 3T3-L1 preadipocytes were cultured in adipogenic differentiation media with/out rutin. Male C57BL/6 mice (n = 6) were fed a high-fat diet (HFD) for 12 weeks with/out rutin. In HFD-fed mice, rutin treatment significantly inhibited weight gain, improved the metabolic profile of plasma samples, decreased the weights of epididymal WAT (eWAT), inguina WAT (iWAT), and liver, and adipocyte size. Furthermore, rutin also increased the expression of uncoupling protein 1 (Ucp-1) and other thermogenic markers in the WAT and BAT. In 3T3-L1 cells, rutin effectively reduced the formation of lipid droplets, stimulated the expression of thermogenic markers, and reduced the expression of adipogenic genes. Additionally, rutin markedly upregulated the AMP-activated protein kinase (AMPK) pathway, and these effects were diminished by treatment with the AMPK inhibitor compound C (CC). Pretreatment with the calmodulin-dependent protein kinase kinase β (CaMKKβ) inhibitor STO-609 blocked the induction of thermogenic markers in 3T3-L1 cells by rutin. Our results indicated that rutin increased energy consumption, induced WAT "browning" and BAT activation, and thus was a promising target for the development of new therapeutic approaches to improve adipose tissue energy metabolism.
Collapse
Affiliation(s)
- Beibei Ma
- Graduate School, Shanxi Medical University, Taiyuan, 030000, Shanxi, PR China
| | - Jinhui Hao
- Department of Clinical Medicine, Fenyang College of Shanxi Medical University, Feiyang, 032200, Shanxi, PR China
| | - Hongmin Xu
- Graduate School, Shanxi Medical University, Taiyuan, 030000, Shanxi, PR China
| | - Li Liu
- Graduate School, Shanxi Medical University, Taiyuan, 030000, Shanxi, PR China
| | - Wendi Wang
- Department of Physiology, Fenyang College of Shanxi Medical University, Feiyang, 032200, Shanxi, PR China
| | - Shizhang Chen
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Feiyang, 032200, Shanxi, PR China
| | - Huiwen Wu
- Science and Technology Center, Fenyang College of Shanxi Medical University, Feiyang, 032200, Shanxi, PR China
| |
Collapse
|
26
|
Ramírez-Moreno E, Arias-Rico J, Jiménez-Sánchez RC, Estrada-Luna D, Jiménez-Osorio AS, Zafra-Rojas QY, Ariza-Ortega JA, Flores-Chávez OR, Morales-Castillejos L, Sandoval-Gallegos EM. Role of Bioactive Compounds in Obesity: Metabolic Mechanism Focused on Inflammation. Foods 2022; 11:foods11091232. [PMID: 35563955 PMCID: PMC9101148 DOI: 10.3390/foods11091232] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 02/01/2023] Open
Abstract
Obesity is a disease characterized by an inflammatory process in the adipose tissue due to diverse infiltrated immune cells, an increased secretion of proinflammatory molecules, and a decreased secretion of anti-inflammatory molecules. On the other hand, obesity increases the risk of several diseases, such as cardiovascular diseases, diabetes, and cancer. Their treatment is based on nutritional and pharmacological strategies. However, natural products are currently implemented as complementary and alternative medicine (CAM). Polyphenols and fiber are naturally compounds with potential action to reduce inflammation through several pathways and play an important role in the prevention and treatment of obesity, as well as in other non-communicable diseases. Hence, this review focuses on the recent evidence of the molecular mechanisms of polyphenols and dietary fiber, from Scopus, Science Direct, and PubMed, among others, by using key words and based on recent in vitro and in vivo studies.
Collapse
Affiliation(s)
- Esther Ramírez-Moreno
- Academic Area of Nutrition, Interdisciplinary Research Center, Institute of Health Sciences, Circuit Actopan Tilcuautla s/n, Ex hacienda La Concepción, San Agustin Tlaxiaca, Pachuca 42160, Mexico; (E.R.-M.); (Q.Y.Z.-R.); (J.A.A.-O.)
| | - José Arias-Rico
- Academic Area of Nursing; Institute of Health Sciences, Circuit Actopan Tilcuautla s/n, Ex hacienda La Concepción, San Agustin Tlaxiaca, Pachuca 42160, Mexico; (J.A.-R.); (R.C.J.-S.); (D.E.-L.); (A.S.J.-O.); (O.R.F.-C.); (L.M.-C.)
| | - Reyna Cristina Jiménez-Sánchez
- Academic Area of Nursing; Institute of Health Sciences, Circuit Actopan Tilcuautla s/n, Ex hacienda La Concepción, San Agustin Tlaxiaca, Pachuca 42160, Mexico; (J.A.-R.); (R.C.J.-S.); (D.E.-L.); (A.S.J.-O.); (O.R.F.-C.); (L.M.-C.)
| | - Diego Estrada-Luna
- Academic Area of Nursing; Institute of Health Sciences, Circuit Actopan Tilcuautla s/n, Ex hacienda La Concepción, San Agustin Tlaxiaca, Pachuca 42160, Mexico; (J.A.-R.); (R.C.J.-S.); (D.E.-L.); (A.S.J.-O.); (O.R.F.-C.); (L.M.-C.)
| | - Angélica Saraí Jiménez-Osorio
- Academic Area of Nursing; Institute of Health Sciences, Circuit Actopan Tilcuautla s/n, Ex hacienda La Concepción, San Agustin Tlaxiaca, Pachuca 42160, Mexico; (J.A.-R.); (R.C.J.-S.); (D.E.-L.); (A.S.J.-O.); (O.R.F.-C.); (L.M.-C.)
| | - Quinatzin Yadira Zafra-Rojas
- Academic Area of Nutrition, Interdisciplinary Research Center, Institute of Health Sciences, Circuit Actopan Tilcuautla s/n, Ex hacienda La Concepción, San Agustin Tlaxiaca, Pachuca 42160, Mexico; (E.R.-M.); (Q.Y.Z.-R.); (J.A.A.-O.)
| | - José Alberto Ariza-Ortega
- Academic Area of Nutrition, Interdisciplinary Research Center, Institute of Health Sciences, Circuit Actopan Tilcuautla s/n, Ex hacienda La Concepción, San Agustin Tlaxiaca, Pachuca 42160, Mexico; (E.R.-M.); (Q.Y.Z.-R.); (J.A.A.-O.)
| | - Olga Rocío Flores-Chávez
- Academic Area of Nursing; Institute of Health Sciences, Circuit Actopan Tilcuautla s/n, Ex hacienda La Concepción, San Agustin Tlaxiaca, Pachuca 42160, Mexico; (J.A.-R.); (R.C.J.-S.); (D.E.-L.); (A.S.J.-O.); (O.R.F.-C.); (L.M.-C.)
| | - Lizbeth Morales-Castillejos
- Academic Area of Nursing; Institute of Health Sciences, Circuit Actopan Tilcuautla s/n, Ex hacienda La Concepción, San Agustin Tlaxiaca, Pachuca 42160, Mexico; (J.A.-R.); (R.C.J.-S.); (D.E.-L.); (A.S.J.-O.); (O.R.F.-C.); (L.M.-C.)
| | - Eli Mireya Sandoval-Gallegos
- Academic Area of Nutrition, Interdisciplinary Research Center, Institute of Health Sciences, Circuit Actopan Tilcuautla s/n, Ex hacienda La Concepción, San Agustin Tlaxiaca, Pachuca 42160, Mexico; (E.R.-M.); (Q.Y.Z.-R.); (J.A.A.-O.)
- Correspondence:
| |
Collapse
|
27
|
Belgacem A, Senejoux F, Felgines C, Fraisse D, Bitri L, Khemiri I. Anti-obesity effects of the n-butanol fraction of the methanolic leaf extract of Artemisia campestris from Tunisian pharmacopeia in male Wistar rats. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2022; 19:365-373. [PMID: 35460338 DOI: 10.1515/jcim-2022-0018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/14/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES This study aimed to investigate the effect of the n-butanol fraction of the methanol leaf extract of Artemisia campestris (BFAC), growing wild in the arid zone of Tunisia, on induced obesity in male Wistar rats. METHODS The total phenolic content and antioxidant capacity of the BFAC were estimated. The main phenolic composition of the BFAC was determined using the high-performance chromatography system coupled with a diode array detector technics. Five groups of rats received either a standard diet (SD group), a high-fat diet (HFD group), or an HFD supplemented with oral administration of BFAC for eight weeks. RESULTS The BFAC showed higher phenolic content and antioxidant potential than the total leaf methanol extract. Chlorogenic acid, rutin, and dicaffeoylquinic acids were identified in the BFAC. HFD increased body and relative liver weights, as well as serum and hepatic levels of triglycerides and total cholesterol, compared to SD. HFD generated significant oxidative stress in the liver by increasing lipid peroxidation and reducing glutathione-S-transferase, catalase, and glutathione peroxidase activities, compared to SD. These HFD-altered parameters were restored to normal values by oral treatment with the BFAC. CONCLUSIONS These findings give first evidence about the antiobesity efficacy of A. campestris. Such a study would enhance existing information and promote the use of this species.
Collapse
Affiliation(s)
- Amel Belgacem
- Department of Biology, Research Unit of Physiology of Regulatory Systems and Adaptations, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - François Senejoux
- University of Clermont Auvergne, University of Auvergne, Clermont-Ferrand, France.,INRA, UMR 1019, Clermont-Ferrand, France
| | - Catherine Felgines
- University of Clermont Auvergne, University of Auvergne, Clermont-Ferrand, France.,INRA, UMR 1019, Clermont-Ferrand, France
| | - Didier Fraisse
- University of Clermont Auvergne, University of Auvergne, Clermont-Ferrand, France.,INRA, UMR 1019, Clermont-Ferrand, France
| | - Lotfi Bitri
- Department of Biology, Research Unit of Physiology of Regulatory Systems and Adaptations, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Ikram Khemiri
- Department of Biology, Research Unit of Physiology of Regulatory Systems and Adaptations, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
28
|
Ko H, Kim C, Lee MS, Chang E, Kim CT, Kim Y. High Hydrostatic Pressure Extract of Mulberry Leaf Attenuated Obesity-Induced Inflammation in Rats. J Med Food 2022; 25:251-260. [PMID: 35320014 DOI: 10.1089/jmf.2021.k.0113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Low-grade inflammation might be a link between obesity and obesity-associated metabolic dysfunction, including diabetes, hepatic steatosis, and other health complications. This study investigated whether the supplementation of high hydrostatic pressure extract of mulberry (Morus alba L.) leaves (HML) to obese rats could counteract obesity-related inflammation. Three-week-old male Sprague-Dawley rats were separated into three groups as follows: (a) a normal diet, (b) 45% high-fat (HF) diet, and HF diet containing 0.4% HML (c) or 0.8% HML (d) (IACUC No. 17-033). After 14 weeks of HML supplementation, adipose tissue mass, mRNA expression of adipogenic genes, such as aP2, peroxisome proliferator-activated receptor γ (PPARγ), and sterol regulatory element binding protein 1c (SREBP1c), and macrophage recruitment were significantly decreased in HF-fed obese rats. Serum concentrations of nitric oxide and mRNA levels of arginase1 (Arg1), CD11c, and inducible nitric oxide synthase (iNOS) involved in adipose tissue macrophage M1 polarization were also significantly reduced by HML. Moreover, HML alleviated the serum and hepatic lipid profiles and reduced hepatic lipogenic gene expression of acetyl-CoA carboxylase (ACC), cluster of differentiation 36 (CD36), CPT1, fatty acid synthase (FAS), stearoyl-CoA desaturase (SCD1), and SREBP1c, and inflammation-associated genes, including IL1β, interleukin 6 (IL6), and tumor necrosis factor α (TNFα). Serum IL6 and TNFα levels were remarkedly suppressed in the 0.8% HML group. These results suggested that the favorable effect of HML on obesity-associated inflammation might be related in part to the decrease in adipose tissue and hepatic fat deposition and inflammation.
Collapse
Affiliation(s)
- Hyunmi Ko
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Korea
| | - Chaemin Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Korea
| | - Mak-Soon Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Korea
| | - Eugene Chang
- Department of Food and Nutrition, Gangneung-Wonju National University, Gangneung-si, Korea
| | | | - Yangha Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Korea.,Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Korea
| |
Collapse
|
29
|
Salleh SZ, Hamid AA, Jaafar AH, Abdul Majid ND, Saari N, Halim HH, Ismail A, Abdul Razis AF, Ramli NS, Pak Dek MS. Ergogenic property of Morinda citrifolia L. leaf extract affects energy metabolism in obese Sprague Dawley rats. J Food Biochem 2021; 46:e14027. [PMID: 34914111 DOI: 10.1111/jfbc.14027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 12/11/2022]
Abstract
Ergogenic property is the ability to enhance capacity for physical activities through efficient production of energy and is potentially beneficial in weight management for the obese. In this study, ergogenic property of Morinda citrifolia leaf's extract (MCL) was evaluated using AMP-activated protein kinase (AMPK) activity and high fat diet-induced obese rats. Findings from the study showed that MCL demonstrated ergogenic activity via enhancement of AMPK activity using L6 skeletal muscle cell line. Interestingly, the result also revealed that rats treated with the intermediate dosage of MCL experienced the lowest % weight gain. The rats fed the highest dose of 200 mg/kg BW MCL demonstrated the longest swimming time of approximately three times that of green tea and caffeine-fed rats. The highest dose fed rats were also found to have lower glucose and lactate levels, suggesting that energy metabolism was more effective in these rats. In addition, lactate dehydrogenase and creatinine kinase activities, the muscle injury indicators, were found to be the lowest in rats fed the highest MCL dose. The same effect was not seen in rats fed either caffeine or green tea, indicating that MCL treatment is may be protective of the rats' muscles. It was also shown that MCL consisted of various flavonoids with epicatechin, catechin, and quercetin that may be responsible for the effects measured. In conclusion, improvements were seen in rats fed MCL in terms of weight management, endurance capacity, energy metabolism, and muscle injury parameters. PRACTICAL APPLICATIONS: Results of the study revealed that Morinda citrifolia leaf has great potential to be used as functional ingredient in the development of designer food/drink as ergogenic aid for both obese and non-obese individuals. Morinda citrifolia leaf could help in the weight management of obese people and enhance endurance capacity and energy metabolism in active individuals.
Collapse
Affiliation(s)
- Syafiq Zikri Salleh
- Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Azizah Abdul Hamid
- Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Ahmad Haniff Jaafar
- Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Nor Diana Abdul Majid
- Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Nazamid Saari
- Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hani Hafeeza Halim
- Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Amin Ismail
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Ahmad Faizal Abdul Razis
- Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Nurul Shazini Ramli
- Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mohd Sabri Pak Dek
- Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
30
|
Abd-Elhakim YM, El Sharkawy NI, El Bohy KM, Hassan MA, Gharib HSA, El-Metwally AE, Arisha AH, Imam TS. Iprodione and/or chlorpyrifos exposure induced testicular toxicity in adult rats by suppression of steroidogenic genes and SIRT1/TERT/PGC-1α pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:56491-56506. [PMID: 34060014 DOI: 10.1007/s11356-021-14339-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
There is cumulative evidence that iprodione (IPR) fungicide and chlorpyrifos (CPF) insecticide are endocrine disruptors that can evoke reproductive toxicity. Yet, the underlying mechanisms are still unclear. Besides, the outcomes of their co-exposure to male sexual behavior and male fertility are still unknown. The effects of IPR (200 mg/kg b.wt) and CPF (7.45 mg/kg b.wt) single or mutual exposure for 65 days on sexual behavior, sex hormones, testicular enzymes, testis, and accessory sex gland histomorphometric measurements, apoptosis, and oxidative stress biomarkers were investigated. In addition, expression of nuclear receptor subfamily group A (NR5A1), 17β-hydroxysteroid dehydrogenase (HSD17B3), silent information regulator type-1 (SIRT1), telomerase reverse transcriptase (TERT), and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) genes has been assessed. Our results revealed that the individual or concurrent IPR and CPF exposure significantly disturb the sexual behavior, semen characteristics, testicular enzymes, and male hormones level. Oxidative stress caused by IPR and CPF activates apoptosis by inducing Caspase-3 and reducing Bcl-2. Downregulation of HSD17B3, NR5A1, and SIRT1/TERT/PGC-1α pathway was evident. Of note, most of these disturbances were exaggerated in rats co-exposed to IPR and CPF compared to IPR or CPF alone. Conclusively, our findings verified that IPR and CPF possibly damage the male reproductive system, and concurrent exposure should be avoided.
Collapse
Affiliation(s)
- Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Nabela I El Sharkawy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Khlood M El Bohy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mona A Hassan
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| | - Heba S A Gharib
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Abeer E El-Metwally
- Department of Pathology, Animal Reproduction Research Institute, Giza, Egypt
| | - Ahmed Hamed Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Cairo, Egypt
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Sharkia, Zagazig, Egypt
| | - Tamer S Imam
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
31
|
Zhou J, Zhang J, Li J, Guan Y, Shen T, Li F, Li X, Yang X, Hu W. Ginsenoside F2 Suppresses Adipogenesis in 3T3-L1 Cells and Obesity in Mice via the AMPK Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9299-9312. [PMID: 34342980 DOI: 10.1021/acs.jafc.1c03420] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ginsenoside F2 (GF2) is a protopanaxdiol saponin from Panax ginseng leaves and possesses many potential pharmacological properties. GF2 may prevent obesity by directly binding to the peroxisome proliferator-activated receptor-γ (PPARγ) and inhibiting adipocyte differentiation. However, the mechanism by which GF2 alleviates obesity is unknown. We therefore explored the anti-adipogenesis and anti-obesity effects of GF2 in vitro and in vivo. GF2 inhibited differentiation and reduced the triglyceride (TG) content of 3T3-L1 preadipocytes in the early stage of adipogenesis. Administration of GF2 (50 and 100 mg/kg) to obese mice for 4 weeks reduced the body weight gain, weight of adipose tissues, adipocyte size, and total cholesterol, TG, and AST levels in serum. RNA sequencing and real-time quantitative PCR indicated that GF2 decreased the expression levels of adipokines, including PPARγ, fatty acid synthase, and adiponectin. KEGG enrichment and western blot analyses demonstrated that GF2 accelerated the phosphorylation of AMPK and ACC in vitro and in vivo. Moreover, GF2 promoted the biosynthesis of mitochondria in 3T3-L1 adipocytes and increased the expression of antioxidant enzymes such as SOD and GSH-Px in the liver of obese mice. Therefore, GF2 suppressed adipogenesis and obesity by regulating the expression of adipokines and activating the AMPK pathway. Hence, the findings suggest that GF2 may have potential therapeutic implications to treat obesity.
Collapse
Affiliation(s)
- Jing Zhou
- School of Life Sciences, Huaiyin Normal University, Huai'an 223300, China
- College of Food Science and Pharmacology, Xinjiang Agricultural University, Urumqi 830052, China
| | - Ji Zhang
- School of Life Sciences, Huaiyin Normal University, Huai'an 223300, China
| | - Jiayi Li
- School of Life Sciences, Huaiyin Normal University, Huai'an 223300, China
| | - Yiqiu Guan
- School of Life Sciences, Huaiyin Normal University, Huai'an 223300, China
| | - Ting Shen
- School of Life Sciences, Huaiyin Normal University, Huai'an 223300, China
| | - Fu Li
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- Chengdu PhytoElite Bio-Technology Company Limited, Chengdu 610213, China
| | - Xueqin Li
- Department of General Practice, The Affiliated Huaian NO. 1 People's Hospital of Nanjing Medical University, Huai'an 223300, China
| | - Xiaojun Yang
- College of Food Science and Pharmacology, Xinjiang Agricultural University, Urumqi 830052, China
| | - Weicheng Hu
- School of Life Sciences, Huaiyin Normal University, Huai'an 223300, China
- College of Food Science and Pharmacology, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
32
|
Jin H, Oh HJ, Kim J, Lee KP, Han X, Lee OH, Lee BY. Effects of Ecklonia stolonifera extract on the obesity and skeletal muscle regeneration in high-fat diet-fed mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
33
|
Choonong R, Jabsanthia J, Waewaram V, Panjanghan K, Putalun W. Comparative study of callus culture and leaves of
Thunbergia laurifolia
for their bioactive constituents and the activation of AMPK and GLUT‐dependent glucose uptake on rat skeletal muscle (L6) cells. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Jakkrit Jabsanthia
- Faculty of Pharmaceutical Sciences Khon Kaen University Khon Kaen Thailand
| | - Varinda Waewaram
- Faculty of Pharmaceutical Sciences Khon Kaen University Khon Kaen Thailand
| | | | - Waraporn Putalun
- Faculty of Pharmaceutical Sciences Khon Kaen University Khon Kaen Thailand
| |
Collapse
|
34
|
Auxtero MD, Chalante S, Abade MR, Jorge R, Fernandes AI. Potential Herb-Drug Interactions in the Management of Age-Related Cognitive Dysfunction. Pharmaceutics 2021; 13:124. [PMID: 33478035 PMCID: PMC7835864 DOI: 10.3390/pharmaceutics13010124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/25/2022] Open
Abstract
Late-life mild cognitive impairment and dementia represent a significant burden on healthcare systems and a unique challenge to medicine due to the currently limited treatment options. Plant phytochemicals have been considered in alternative, or complementary, prevention and treatment strategies. Herbals are consumed as such, or as food supplements, whose consumption has recently increased. However, these products are not exempt from adverse effects and pharmacological interactions, presenting a special risk in aged, polymedicated individuals. Understanding pharmacokinetic and pharmacodynamic interactions is warranted to avoid undesirable adverse drug reactions, which may result in unwanted side-effects or therapeutic failure. The present study reviews the potential interactions between selected bioactive compounds (170) used by seniors for cognitive enhancement and representative drugs of 10 pharmacotherapeutic classes commonly prescribed to the middle-aged adults, often multimorbid and polymedicated, to anticipate and prevent risks arising from their co-administration. A literature review was conducted to identify mutual targets affected (inhibition/induction/substrate), the frequency of which was taken as a measure of potential interaction. Although a limited number of drugs were studied, from this work, interaction with other drugs affecting the same targets may be anticipated and prevented, constituting a valuable tool for healthcare professionals in clinical practice.
Collapse
Affiliation(s)
- Maria D. Auxtero
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| | - Susana Chalante
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| | - Mário R. Abade
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| | - Rui Jorge
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
- Polytechnic Institute of Santarém, School of Agriculture, Quinta do Galinheiro, 2001-904 Santarém, Portugal
- CIEQV, Life Quality Research Centre, IPSantarém/IPLeiria, Avenida Dr. Mário Soares, 110, 2040-413 Rio Maior, Portugal
| | - Ana I. Fernandes
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| |
Collapse
|
35
|
Exendin-4 Ameliorates Cardiac Remodeling in Experimentally Induced Myocardial Infarction in Rats by Inhibiting PARP1/NF-κB Axis in A SIRT1-Dependent Mechanism. Cardiovasc Toxicol 2021; 20:401-418. [PMID: 32193876 DOI: 10.1007/s12012-020-09567-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Sirt1 is a potent inhibitor of both poly(ADP-ribose) polymerases1 (PARP1) and NF-kB. This study investigated the cardioprotective effect of exendin-4 on cardiac function and remodeling in rats after an expreimentally-induced myocardial infarction (MI) and explored if this protection involves SIRT1/PARP1 axis. Rats were divided into five groups (n = 10/each): sham, sham + exendin-4 (25 nmol/kg/day i.p.), MI (induced by LAD occlusion), MI + exendin-4, and sham + exendin-4 + EX527 (5 mg/2×/week) (a SIRT1 inhibitor). All treatments were given for 6 weeks post the induction of MI. In sham-operated and MI-induced rats, exendin-4 significantly upregulated Bcl-2 levels, enhanced activity, mRNA, and levels of SIRT1, inhibited activity, mRNA, and levels of PARP1, and reduced ROS generation and PARP1 acetylation. In MI-treated rats, these effects were associated with improved cardiac architectures and LV function, reduced collagen deposition, and reduced mRNA and total levels of TNF-α and IL-6, as well as, the activation of NF-κB p65. In addition, exendin-4 inhibited the interaction of PARP1 with p300, TGF-β1, Smad3, and NF-κB p65 and signficantly reduced mRNA and protein levels of collagen I/III and protein levels of MMP2/9. In conclusion, exendin-4 is a potent cardioprotective agent that prevents post-MI inflammation and cardiac remodeling by activating SIRT1-induced inhibition of PARP1.
Collapse
|
36
|
Wu W, Li Z, Qin F, Qiu J. Anti-diabetic effects of the soluble dietary fiber from tartary buckwheat bran in diabetic mice and their potential mechanisms. Food Nutr Res 2021; 65:4998. [PMID: 33613154 PMCID: PMC7869439 DOI: 10.29219/fnr.v65.4998] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/21/2020] [Accepted: 11/20/2020] [Indexed: 12/16/2022] Open
Abstract
Background Tartary buckwheat has beneficial effects on glucose and lipid metabolism of patients with type 2 diabetes mellitus. However, the physiological effects of a soluble dietary fiber (SDF) from tartary buckwheat have rarely been studied, especially in vivo. Objective This study aimed to examine the hypoglycemic and hypolipidemic effects of SDF from tartary buckwheat bran on high-fat diet/streptozotocin-induced diabetic mice. Design The SDF of tartary buckwheat bran was collected according to the Association of Official Analytical Chemists method 991.43. Diabetic mice were treated with high-fat diets supplemented with 0.5, 1, and 2% SDF for 8 weeks. Parameters related to glucose and lipid metabolism and relevant mechanisms, including the excretion of short-chain fatty acids and the glycemic signaling pathway in the liver, were investigated. In addition, the structural characterization of a purified polysaccharide from SDF of tartary buckwheat bran was illustrated. Result Supplementation with SDF in the diet resulted in reduced levels of fasting blood glucose, improved oral glucose tolerance, increased levels of liver glycogen and insulin, as well as improved lipid profiles in both the serum and liver, in diabetic mice. The amelioration of glucose and lipid metabolism by SDF was accompanied by an increase in the short-chain fatty acid levels in the cecum and co-regulated by hepatic adenosine-5′-monophosphate-activated protein kinase (AMPK) phosphorylation. A neutral tartary buckwheat polysaccharide with an average molecular weight of 19.6 kDa was purified from the SDF, which consisted mainly of glucose with α-glycosidic bonds. Conclusions The SDF of tartary buckwheat bran exhibits hypoglycemic and hypolipidemic effects in diabetic mice, contributing to the anti-diabetic mechanisms of tartary buckwheat.
Collapse
Affiliation(s)
- Weijing Wu
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian, China
| | - Zaigui Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Haidian, Beijing, China
| | - Fei Qin
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, Fujian, China
| | - Ju Qiu
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Haidian, Beijing, China
| |
Collapse
|
37
|
Wang Y, Yang SH, Zhong K, Jiang T, Zhang M, Kwan HY, Su T. Network Pharmacology-Based Strategy for the Investigation of the Anti-Obesity Effects of an Ethanolic Extract of Zanthoxylum bungeanum Maxim. Front Pharmacol 2020; 11:572387. [PMID: 33364948 PMCID: PMC7751641 DOI: 10.3389/fphar.2020.572387] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/21/2020] [Indexed: 12/18/2022] Open
Abstract
Network pharmacology is considered as the next paradigm in drug discovery. In an era when obesity has become global epidemic, network pharmacology becomes an ideal tool to discover novel herbal-based therapeutics with effective anti-obesity effects. Zanthoxylum bungeanum Maxim (ZBM) is a medicinal herb. The mature pericarp of ZBM is used for disease treatments and as spice for cooking. Here, we used the network pharmacology approach to investigate whether ZBM possesses anti-obesity effects and reveal the underlying mechanism of action. We first built up drug–ingredient–gene symbol–disease network and protein–protein interaction network of the ZBM-related obesity targets, followed by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. The results highlight apoptosis as a promising signaling pathway that mediates the anti-obesity effects of ZBM. Molecular docking also reveals quercetin, a compound in ZBM has the highest degree of connections in the compound-target network and has direct bindings with the apoptotic markers. Furthermore, the apoptotic effects of ZBM are further validated in 3T3-L1 adipocytes and in the high-fat diet–induced obesity mouse model. These findings not only suggest ZBM can be developed as potential anti-obesity therapeutics but also demonstrate the application of network pharmacology for the discovery of herbal-based therapeutics for disease treatments.
Collapse
Affiliation(s)
- Ying Wang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Song Hong Yang
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Keying Zhong
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ting Jiang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mi Zhang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hiu Yee Kwan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Tao Su
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
38
|
Eom J, Thomas SS, Sung NY, Kim DS, Cha YS, Kim KA. Abeliophyllum distichum Ameliorates High-Fat Diet-Induced Obesity in C57BL/6J Mice by Upregulating the AMPK Pathway. Nutrients 2020; 12:nu12113320. [PMID: 33138026 PMCID: PMC7692136 DOI: 10.3390/nu12113320] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 12/23/2022] Open
Abstract
The use of natural compounds as anti-obesity agents has been gaining attention over the past few years. Abeliophyllum distichum Nakai is endemic to Korea. In the present study, an A. distichum leaf extract (AE) was analyzed for its anti-obesity effects in mice fed a high-fat diet. Seven-week-old male C57BL/6J mice were divided into five groups, namely, normal diet (ND), high-fat diet (HD), HD + Garcinia (GE300), HD + AE low dose (AE100), and HD + AE high dose (AE300). After 8 weeks of the experimental period, treatment with AE reduced body weight and ameliorated high-fat diet-induced changes in serum lipid levels. Histological analysis revealed that treatment with AE decreased lipid accumulation in the liver and brown adipose tissue. Also, AE reduced the adipocyte size in epididymal fat. The reduction in adipose tissue mass in the AE-treated groups was clearly visible in micro-computed tomography images. The expression levels of lipogenic genes, such as PPARγ, C/EBPα, ACC, and FAS, were significantly reduced in the AE300 group. The levels of p-AMPK and p-ACC were increased in the AE300 group compared to the HD group, indicating that the anti-obesity effect of AE was mediated through the AMPK pathway.
Collapse
Affiliation(s)
- Ji Eom
- Division of Natural Product Research, Korea Prime Pharmacy Co., Ltd., Gwangju 61473, Korea; (J.E.); (N.-Y.S.); (D.-S.K.)
| | - Shalom Sara Thomas
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju 54896, Korea; (S.S.T.); (Y.-S.C.)
| | - Nak-Yun Sung
- Division of Natural Product Research, Korea Prime Pharmacy Co., Ltd., Gwangju 61473, Korea; (J.E.); (N.-Y.S.); (D.-S.K.)
| | - Dong-Sub Kim
- Division of Natural Product Research, Korea Prime Pharmacy Co., Ltd., Gwangju 61473, Korea; (J.E.); (N.-Y.S.); (D.-S.K.)
| | - Youn-Soo Cha
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju 54896, Korea; (S.S.T.); (Y.-S.C.)
- Obesity Research Center, Jeonbuk National University, Jeonju 54896, Korea
| | - Kyung-Ah Kim
- Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Korea
- Correspondence: ; Tel.: +82-42-821-6832
| |
Collapse
|
39
|
Rufino AT, Costa VM, Carvalho F, Fernandes E. Flavonoids as antiobesity agents: A review. Med Res Rev 2020; 41:556-585. [PMID: 33084093 DOI: 10.1002/med.21740] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/02/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022]
Abstract
Obesity is a global health problem that affects all age groups in both developing and developed countries. In recent years, the prevalence of overweight and obesity has reached pandemic levels, resulting in a dramatic increase in the incidence of various comorbidities, such as cardiovascular diseases, type 2 diabetes, and cancer, consequently leading to massive health and socioeconomic burdens. Together with lifestyle changes, antiobesity pharmacotherapy is gaining momentum as an adjunctive treatment. However, the available pharmacological approaches have limited use owing to either significant adverse effects or low efficacy. Over the years, natural products have been an important source of lead compounds for drug discovery. Among these, flavonoids are associated with important biological effects and health-promoting activities. In this review, we discuss the modulatory effects of flavonoids on obesity and their potential mechanisms of action. The literature strongly suggests that most common flavonoids demonstrate a pronounced effect on obesity as shown by their ability to lower body weight, fat mass, and plasma triglycerides/cholesterol, both in in vitro and in vivo models. The impact of flavonoids on obesity can be observed through different mechanisms: reducing food intake and fat absorption, increasing energy expenditure, modulating lipid metabolism, or regulating gut microbiota profile. A better understanding of the known antiobesity mechanisms of flavonoids will enable their potential use to treat this medical condition. Therefore, this review focuses on the putative biological mechanisms through which flavonoids may prevent or treat obesity and highlights new perspectives on future pharmacological use.
Collapse
Affiliation(s)
- Ana T Rufino
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Vera M Costa
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
40
|
Lins TLBG, Gouveia BB, Barberino RS, Silva RLS, Monte APO, Pinto JGC, Campinho DSP, Palheta RC, Matos MHT. Rutin prevents cisplatin-induced ovarian damage via antioxidant activity and regulation of PTEN and FOXO3a phosphorylation in mouse model. Reprod Toxicol 2020; 98:209-217. [PMID: 33031932 DOI: 10.1016/j.reprotox.2020.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
The aims of the present study were to evaluate the protective effects of rutin during cisplatin-induced ovarian toxicity in mice and to verify the possible involvement of the phosphatase and tension homolog (PTEN)/Forkhead box O3a (FOXO3a) pathway in the rutin actions. Mice received saline solution (control, 0.15 M, i.p.) or cisplatin (5 mg/Kg body weight, i.p.) or they were pretreated with N-acetylcysteine (positive control; 150 mg/Kg of body weight [p.o.]) or with rutin (10, 30 or 50 mg/Kg body weight, p.o.) before cisplatin (5 mg/Kg body weight, i.p.) once daily for 3 days. Next, the ovaries were harvested and destined to histological (follicular morphology and activation), immunohistochemical (cell proliferation and apoptosis) and fluorescence (reactive oxygen species [ROS], glutathione [GSH] and mitochondrial activity) analyses. Moreover, the expression of phosphorylated PTEN (p-PTEN) and FOXO3a (p-FOXO3a) were evaluated to investigate a molecular mechanism by which rutin would prevent the cisplatin-induced ovarian damage. The results showed that pretreatment with N-acetylcysteine or 10 mg/Kg rutin before cisplatin preserved the percentage of normal follicles and cell proliferation, reduced apoptosis and ROS levels and increased active mitochondria and GSH levels compared to the cisplatin treatment (P < 0.05). Cisplatin treatment increased p-PTEN and decreased p-FOXO3a expression in follicles, which was prevented by 10 mg/kg rutin. In conclusion, treatment with 10 mg/Kg rutin has the potential to protect the ovarian follicles against cisplatin-induced toxicity through its antioxidant effects and PTEN/FOXO3a pathway.
Collapse
Affiliation(s)
- Thae Lanne B G Lins
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, 56300-990, Petrolina, PE, Brazil
| | - Bruna B Gouveia
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, 56300-990, Petrolina, PE, Brazil
| | - Ricássio S Barberino
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, 56300-990, Petrolina, PE, Brazil
| | - Regina L S Silva
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, 56300-990, Petrolina, PE, Brazil
| | - Alane P O Monte
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, 56300-990, Petrolina, PE, Brazil
| | - Joisyleide G C Pinto
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, 56300-990, Petrolina, PE, Brazil
| | - Daniela S P Campinho
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, 56300-990, Petrolina, PE, Brazil
| | - Raimundo C Palheta
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Federal University of São Francisco Valley, 56300-990, Petrolina, PE, Brazil
| | - Maria H T Matos
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, 56300-990, Petrolina, PE, Brazil.
| |
Collapse
|
41
|
Khare R, Upmanyu N, Shukla T, Jain V, Jha M. Compendium of Salvia officinalis: An Overview. CURRENT TRADITIONAL MEDICINE 2020. [DOI: 10.2174/2215083805666190723095043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The medicinal plants have enormous commercial potential throughout the globe.
In the herbal boom worldwide, it is estimated that high quality phyto-medicinals will provide
safe and effective medication. In India, Ayurveda, Siddha, Unani etc. consist of large number
of herbal remedies, being used from ancient times. Many plant species containing active
constituents that have a direct pharmacological action on the body. This plant Sage (Salvia
officinalis Linn) is historically well known from the early 1960s till now by its therapeutic
and culinary applications due to its high economic value. The plant is reported to contain alkaloids,
triterpenoid, steroids, Phenolic compounds and essential oils. Sage plant is a rich
source of antioxidant properties, for this reason sage has found increasing application in food
industry. The core purpose of this review is to emphasize the origin, morphology, Phytochemistry
and pharmacological aspects of Sage (Salvia officinalis Linn).
Collapse
Affiliation(s)
- Ruchi Khare
- School of Pharmacy and Research, People's University, Bhopal (M.P.) 462037, India
| | - Neeraj Upmanyu
- School of Pharmacy and Research, People's University, Bhopal (M.P.) 462037, India
| | - Tripti Shukla
- School of Pharmacy and Research, People's University, Bhopal (M.P.) 462037, India
| | - Vishal Jain
- University Institute of Pharmacy, Pt. Ravi Shankar Shukla University, Raipur (C.G.) 492010, India
| | - Megha Jha
- Pinnacle Biomedical Research Institute, Bhopal (M.P.) 462003, India
| |
Collapse
|
42
|
High-altitude chronic hypoxia ameliorates obesity-induced non-alcoholic fatty liver disease in mice by regulating mitochondrial and AMPK signaling. Life Sci 2020; 252:117633. [DOI: 10.1016/j.lfs.2020.117633] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 12/18/2022]
|
43
|
Cao K, Lv W, Hu S, Gao J, Liu J, Feng Z. Punicalagin Activates AMPK/PGC-1α/Nrf2 Cascade in Mice: The Potential Protective Effect against Prenatal Stress. Mol Nutr Food Res 2020; 64:e2000312. [PMID: 32475051 DOI: 10.1002/mnfr.202000312] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/20/2020] [Indexed: 12/11/2022]
Abstract
SCOPE Prenatal stress is closely associated with poor health outcomes for offspring, yet the specific mechanisms and effective interventions remain limited. METHODS AND RESULTS In the present study, both male and female rat offspring exposed to prenatal restraint stress (PRS) are confirmed to have impaired spatial learning and memory, accompanied by reduced AMP-activated protein kinase (AMPK) activity and decreased protein expression of mitochondrial biogenesis and antioxidant pathways in the hippocampus. Interestingly, a deficiency in the AMPK cascade also occurs in liver, heart, and adipose tissues, suggesting that the systemic deactivation of AMPK in the offspring is potentially attributed to increased maternal glucocorticoid levels under PRS. Punicalagin (PU), a major ellagitannin in pomegranate, is found to effectively induce mitochondrial biogenesis and phase II enzymes through activation of AMPK in both HT22 and primary hippocampal neurons, thereby inhibiting glutamate-induced cell viability and mitochondrial membrane potential loss. Meanwhile, the activation of AMPK cascade is also confirmed in mice administrated with PU for three days. CONCLUSIONS Altogether, these results indicate that the systemic deficiency of the AMPK cascade can be the key factor that contributes to poor outcomes of PRS, and PU may be used as an effective maternal nutritional intervention.
Collapse
Affiliation(s)
- Ke Cao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Weiqiang Lv
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Shaoqin Hu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Jing Gao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.,Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Zhihui Feng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.,Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| |
Collapse
|
44
|
Eid RA, Khalil MA, Alkhateeb MA, Eleawa SM, Zaki MSA, El-Kott AF, Al-Shraim M, El-Sayed F, Eldeen MA, Bin-Meferij MM, Awaji KME, Shatoor AS. Exendin-4 Attenuates Remodeling in the Remote Myocardium of Rats After an Acute Myocardial Infarction by Activating β-Arrestin-2, Protein Phosphatase 2A, and Glycogen Synthase Kinase-3 and Inhibiting β-Catenin. Cardiovasc Drugs Ther 2020; 35:1095-1110. [PMID: 32474680 DOI: 10.1007/s10557-020-07006-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE This study tested if the protective anti-remodeling effect of GLP-1 agonist Exendin-4 after an acute myocardial infarction (MI) in rats involves inhibition of the Wnt1/β-catenin signaling pathway. METHODS Rats were divided into sham, sham + Exendin-4 (10 μg/day, i.p), MI, and MI + Exendin-4. MI was introduced to rats by permanent left anterior descending coronary artery (LAD) ligation. RESULTS On day 7 post-infraction, MI rats showed LV dysfunction with higher serum levels of cardiac markers. Their remote myocardia showed increased mRNA and protein levels of collagen I/III with higher levels of reactive oxygen species (ROS) and inflammatory cytokines, as well as protein levels of Wnt1, phospho-Akt, transforming growth factor (TGF-β1), Smad, phospho-Smad3, α-SMA, caspase-3, and Bax. They also showed higher protein levels of phospho-glycogen synthase kinase-3β (p-GSK3β), as well as total, phosphorylated, and nuclear β-catenin with a concomitant decrease in the levels of cyclic adenosine monophosphate (cAMP), mRNA of manganese superoxide dismutase (MnSOD), and protein levels of Bcl-2, β-arrestin-2, and protein phosphatase-2 (PP2A). Administration of Exendin-4 to MI rats reduced the infarct size and reversed the aforementioned signaling molecules without altering protein levels of TGF-1β and Wnt1 or Akt activation. Interestingly, Exendin-4 increased mRNA levels of MnSOD, protein levels of β-arrestin-2 and PP2A, and β-catenin phosphorylation but reduced the phosphorylation of GSK3β and Smad3, and total β-catenin levels in the LV of control rats. CONCLUSION Exendin-4 inhibits the remodeling in the remote myocardium of rats following acute MI by attenuating β-catenin activation and activating β-arrestin-2, PP2A, and GSK3β. Graphical Abstract A graphical abstract that illustrates the mechanisms by which Exendin-4 inhibits cardiac remodeling in remote myocardium of left ventricle MI-induced rats. Mechanisms are assumed to occur in the cardiomyocytes and/or other resident cells such as fibroblast. Β-catenin activation and nuclear translocation are associated with increased synthesis of inflammatory cytokines and transforming growth factor β-1 (TGF-β1). GSK3β is inhibited by phosphorylation at Ser9. Under normal conditions, β-catenin is degraded in the cytoplasm by the active GSK3β-dependent degradation complex (un-phosphorylated) which usually phosphorylates β-catenin at Ser33/37/Thr41. After MI, TGF-β1, and Wnt 1 levels are significantly increased, the overproduction of Wnt1 induces β-catenin stabilization and nuclear translocation through increasing the phosphorylation of disheveled (DVL) protein which in turn phosphorylates and inhibits GSK3β. TGF-β1 stimulates the phosphorylation of Smad-3 and subsequent nuclear translocation to activate the transcription of collage 1/III and α-smooth muscle actin (α-SMA). Besides, TGF-β1 stabilizes cytoplasmic β-catenin levels indirectly by phosphorylation of Akt at Thr308-induced inhibition of GSK3β by increasing phosphorylation of Ser9. Exendin-4, and possibly through G protein-coupled receptors (GPCRs), increases levels of cAMP and upregulates β-arrestin-2 levels. Both can result in a positive inotropic effect. Besides, β-arrestin-2 can stimulate PP2A to dephosphorylation Smad3 (inhibition) and GSK3β (activation), thus reduces fibrosis and prevents the activation of β-catenin and collagen deposition.
Collapse
Affiliation(s)
- Refaat A Eid
- Department of Pathology, College of Medicine, King Khalid University, P.O. 641, Abha, 61421, Saudi Arabia.
| | - Mohammad Adnan Khalil
- Department of Basic Medical Sciences, Faculty of Medicine, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Mahmoud A Alkhateeb
- Department of Basic Medical Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Samy M Eleawa
- Department of Applied Medical Sciences, College of Health Sciences, PAAET, Shuwaikh, Kuwait
| | - Mohamed Samir Ahmed Zaki
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia.,Department of Histology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Attalla Farag El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia.,Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Mubarak Al-Shraim
- Department of Pathology, College of Medicine, King Khalid University, P.O. 641, Abha, 61421, Saudi Arabia
| | - Fahmy El-Sayed
- Department of Pathology, College of Medicine, King Khalid University, P.O. 641, Abha, 61421, Saudi Arabia
| | - Muhammad Alaa Eldeen
- Department of Biology, Physiology Section, Faculty of Science, Zagazig University, Zagazig, Egypt
| | | | - Khalid M E Awaji
- Clinical laboratories Department, Asser Central Hospital, Abha, Saudi Arabia
| | - Abdullah S Shatoor
- Department of Clinical Cardiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
45
|
Huang Y, Zhu X, Chen K, Lang H, Zhang Y, Hou P, Ran L, Zhou M, Zheng J, Yi L, Mi M, Zhang Q. Resveratrol prevents sarcopenic obesity by reversing mitochondrial dysfunction and oxidative stress via the PKA/LKB1/AMPK pathway. Aging (Albany NY) 2020; 11:2217-2240. [PMID: 30988232 PMCID: PMC6519996 DOI: 10.18632/aging.101910] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/04/2019] [Indexed: 02/07/2023]
Abstract
Background: The concept of sarcopenic obesity refers to low muscle mass coupled with high adiposity in older adults. Sarcopenic obesity is a new medical challenge that imposes tremendous financial burdens on healthcare authorities worldwide. This study investigated the effects of resveratrol on high-fat diet-induced sarcopenic obesity in aged rats and palmitate acid-induced muscle atrophy in L6 myotubes and explored the underlying mechanisms. Results: In vivo, resveratrol prevented muscle loss and myofiber size decrease, improved grip strength and abolished excessive fat accumulation. In vitro, resveratrol inhibited the palmitate acid-mediated reductions in myosin heavy chain content and myotube diameter. Moreover, resveratrol ameliorated mitochondrial dysfunction and oxidative stress, leading to an improvement in protein metabolism and contributing to the prevention of muscle atrophy. Furthermore, the protective effects of resveratrol on mitochondrial function, oxidative stress and muscle atrophy were abolished by PKA siRNA, LKB1 siRNA and AMPK siRNA transfection in vitro. Conclusions: Resveratrol prevented high-fat diet-induced muscle atrophy in aged rats by reversing mitochondrial dysfunction and oxidative stress, which was partially mediated by the PKA/LKB1/AMPK pathway. These findings indicate that resveratrol might have potential uses for the prevention and treatment of sarcopenic obesity.
Collapse
Affiliation(s)
- Yujie Huang
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Shapingba District, Chongqing 400038, P. R. China
| | - Xiaohui Zhu
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Shapingba District, Chongqing 400038, P. R. China
| | - Ka Chen
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Shapingba District, Chongqing 400038, P. R. China
| | - Hedong Lang
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Shapingba District, Chongqing 400038, P. R. China
| | - Yong Zhang
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Shapingba District, Chongqing 400038, P. R. China
| | - Pengfei Hou
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Shapingba District, Chongqing 400038, P. R. China
| | - Li Ran
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Shapingba District, Chongqing 400038, P. R. China
| | - Min Zhou
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Shapingba District, Chongqing 400038, P. R. China
| | - Jiawei Zheng
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Shapingba District, Chongqing 400038, P. R. China
| | - Long Yi
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Shapingba District, Chongqing 400038, P. R. China
| | - Mantian Mi
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Shapingba District, Chongqing 400038, P. R. China
| | - Qianyong Zhang
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Shapingba District, Chongqing 400038, P. R. China
| |
Collapse
|
46
|
Ahmad B, Serpell CJ, Fong IL, Wong EH. Molecular Mechanisms of Adipogenesis: The Anti-adipogenic Role of AMP-Activated Protein Kinase. Front Mol Biosci 2020; 7:76. [PMID: 32457917 PMCID: PMC7226927 DOI: 10.3389/fmolb.2020.00076] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/03/2020] [Indexed: 12/24/2022] Open
Abstract
Obesity is now a widespread disorder, and its prevalence has become a critical concern worldwide, due to its association with common co-morbidities like cancer, cardiovascular diseases and diabetes. Adipose tissue is an endocrine organ and therefore plays a critical role in the survival of an individual, but its dysfunction or excess is directly linked to obesity. The journey from multipotent mesenchymal stem cells to the formation of mature adipocytes is a well-orchestrated program which requires the expression of several genes, their transcriptional factors, and signaling intermediates from numerous pathways. Understanding all the intricacies of adipogenesis is vital if we are to counter the current epidemic of obesity because the limited understanding of these intricacies is the main barrier to the development of potent therapeutic strategies against obesity. In particular, AMP-Activated Protein Kinase (AMPK) plays a crucial role in regulating adipogenesis – it is arguably the central cellular energy regulation protein of the body. Since AMPK promotes the development of brown adipose tissue over that of white adipose tissue, special attention has been given to its role in adipose tissue development in recent years. In this review, we describe the molecular mechanisms involved in adipogenesis, the role of signaling pathways and the substantial role of activated AMPK in the inhibition of adiposity, concluding with observations which will support the development of novel chemotherapies against obesity epidemics.
Collapse
Affiliation(s)
- Bilal Ahmad
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | | | - Isabel Lim Fong
- Department of Paraclinical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, Kota Samarahan, Malaysia
| | - Eng Hwa Wong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| |
Collapse
|
47
|
Gong G, Huang J, Yang Y, Qi B, Han G, Zheng Y, He H, Chan K, Tsim KW, Dong TT. Saussureae Involucratae Herba (Snow Lotus): Review of Chemical Compositions and Pharmacological Properties. Front Pharmacol 2020; 10:1549. [PMID: 32009958 PMCID: PMC6971814 DOI: 10.3389/fphar.2019.01549] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 11/29/2019] [Indexed: 01/07/2023] Open
Abstract
Saussureae Involucratae Herba is the dried ground part of Saussurea involucrata (Kar. et Kir.) Sch.-Bip, which is also named as “Snow lotus” and being used in traditional Uyghur and/or Chinese medicine. This rare herb can be found at 4,000 m elevation in western part of Tianshan Mountain, Xinjiang China. According to China Pharmacopoeia (2015), the major pharmaceutical values of “Snow lotus” (Xuě liánhuā in Chinese) are alleviating rheumatoid arthritis, accelerating blood circulation and mitigating other “cold” syndromes. Traditionally, the clinical application of “Snow lotus” includes the treatments in inflammation-associated disorder, blood circulation acceleration and heat and dampness elimination. Recent studies suggested that “Snow lotus” possessed therapeutic effects associating with anti-cancer, anti-oxidation, adipogenesis suppression and neuroprotection activities, which were proposed to be related with its bioactive constitutes, i.e. acacetin, hispidulin, and rutin. In the present review, we aim to summarize pharmacological effects and underlying cell signaling pathways of “Snow lotus” in treating various medical problems.
Collapse
Affiliation(s)
- Guowei Gong
- Department of Biological Engineering, Zunyi Medical University, Zhuhai, China
| | - Jing Huang
- College of Environmental and Biological Engineering, Putian University, Putian, China
| | - Yang Yang
- Department of Biological Engineering, Zunyi Medical University, Zhuhai, China
| | - Baohui Qi
- Department of Biological Engineering, Zunyi Medical University, Zhuhai, China
| | - Guangyi Han
- Gansu Institute for Drug Control, Lanzhou, China
| | - Yuzhong Zheng
- Department of Biology, Hanshan Normal University, Chaozhou, China
| | - Huan He
- Department of Biological Engineering, Zunyi Medical University, Zhuhai, China
| | - Kelvin Chan
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Karl Wk Tsim
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China.,Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| | - Tina Tx Dong
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China.,Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| |
Collapse
|
48
|
Song K, Zhang Y, Ga Q, Bai Z, Ge RL. Increased Insulin Sensitivity by High-Altitude Hypoxia in Mice with High-Fat Diet-Induced Obesity Is Associated with Activated AMPK Signaling and Subsequently Enhanced Mitochondrial Biogenesis in Skeletal Muscles. Obes Facts 2020; 13:455-472. [PMID: 32966981 PMCID: PMC7670386 DOI: 10.1159/000508112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 04/20/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND This study aimed to investigate whether and how high altitude-associated ambient hypoxia affects insulin sensitivity in mice fed a high-fat diet (HFD). METHODS Mice were randomly divided into a control group (with normal diet feeding and low-altitude housing), LA/HFD group (with HFD feeding and low-altitude housing), and HA/HFD group (with HFD feeding and high-altitude housing). RESULTS After 8 weeks, mice in the HA/HFD group showed improved insulin sensitivity-related indices compared with the LA/HFD group. In mice residing in a low-altitude region, HFD significantly impaired mitochondrial respiratory function and mitochondrial DNA content in skeletal muscles, which was partially reversed in mice in the HA/HFD group. In addition, the fatty acid oxidation-related enzyme gene CPT1 (carnitine palmitoyltransferase 1) and genes related to mitochondrial biogenesis such as peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), nuclear respiratory factor 1 (NRF1), and mitochondrial transcription factor A (Tfam) were upregulated in the skeletal muscles of mice housed at high altitude, in comparison to in the LA/HFD group. Furthermore, AMPK (adenosine monophosphate-activated protein kinase) signaling was activated in the skeletal muscles, as evidenced by a higher expression of phosphorylated AMPK (p-AMPK) and protein kinase B (p-AKT) in the HA/HFD group than in the LA/HFD group. CONCLUSION Our study suggests that high-altitude hypoxia improves insulin sensitivity in mice fed an HFD, which is associated with AMPK activation in the skeletal muscle and consequently enhanced mitochondrial biogenesis and fatty acid oxidation. This work provides a molecular explanation for why high altitude is associated with a reduced incidence of insulin resistance in the obese population.
Collapse
Affiliation(s)
- Kang Song
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China,
- Key Laboratory for Application of High Altitude Medicine in Qinghai Province, Xining, China,
- Department of Endocrinology, Qinghai Provincial People's Hospital, Xining, China,
| | - Yifan Zhang
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
- Key Laboratory for Application of High Altitude Medicine in Qinghai Province, Xining, China
| | - Qin Ga
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
- Key Laboratory for Application of High Altitude Medicine in Qinghai Province, Xining, China
| | - Zhenzhong Bai
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
- Key Laboratory for Application of High Altitude Medicine in Qinghai Province, Xining, China
| | - Ri-Li Ge
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
- Key Laboratory for Application of High Altitude Medicine in Qinghai Province, Xining, China
| |
Collapse
|
49
|
Kim SY, Lee MS, Chang E, Jung S, Ko H, Lee E, Lee S, Kim CT, Kim IH, Kim Y. Tartary Buckwheat Extract Attenuated the Obesity-Induced Inflammation and Increased Muscle PGC-1a/SIRT1 Expression in High Fat Diet-Induced Obese Rats. Nutrients 2019; 11:nu11030654. [PMID: 30889894 PMCID: PMC6471111 DOI: 10.3390/nu11030654] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/13/2019] [Accepted: 03/13/2019] [Indexed: 02/07/2023] Open
Abstract
Obesity is intimately related to a chronic inflammatory state, with augmentation of macrophage infiltration and pro-inflammatory cytokine secretion in white adipose tissue (WAT) and mitochondrial dysfunction in skeletal muscle. The specific aim of this study is to evaluate effects of tartary buckwheat extract (TB) on obesity-induced adipose tissue inflammation and muscle peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α/sirtulin 1 (SIRT1) pathway in rats fed a high-fat diet. Sprague-Dawley rats were divided into four groups and fed either a normal diet (NOR), 45% high-fat diet (HF), HF + low dose of TB (TB-L; 5 g/kg diet), or HF + high dose of TB (TB-H; 10 g/kg diet) for 13 weeks. TB significantly reduced adipose tissue mass with decreased adipogenic gene expression of PPAR-γ and aP2. Serum nitric oxide levels and adipose tissue macrophage M1 polarization gene markers, such as iNOS, CD11c, and Arg1, and pro-inflammatory gene expression, including TNF-α, IL-6, and MCP-1, were remarkably downregulated in the TB-L and TB-H groups. Moreover, TB supplementation increased gene expression of PGC-1α and SIRT1, involved in muscle biogenesis and function. These results suggested that TB might attenuate obesity-induced inflammation and mitochondrial dysfunction by modulating adipose tissue inflammation and the muscle PGC-1α/SIRT1 pathway.
Collapse
Affiliation(s)
- Seog-Young Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea.
| | - Mak-Soon Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea.
| | - Eugene Chang
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea.
| | - Sunyoon Jung
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea.
| | - Hyunmi Ko
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea.
| | - Eunyoung Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea.
| | - Soojin Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea.
| | - Chong-Tai Kim
- R&D Center, EastHill Corporation, Gwonseon-gu, Suwon-si, Gyeonggi-do 16642, Korea.
| | - In-Hwan Kim
- Department of Integrated Biomedical and Life Sciences, Korea University, Seoul 02841, Korea.
| | - Yangha Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|
50
|
Rutin Attenuates Vancomycin-Induced Nephrotoxicity by Ameliorating Oxidative Stress, Apoptosis, and Inflammation in Rats. Antimicrob Agents Chemother 2018; 63:AAC.01545-18. [PMID: 30397060 DOI: 10.1128/aac.01545-18] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 10/25/2018] [Indexed: 01/12/2023] Open
Abstract
Nephrotoxicity is the major limiting factor for the clinical use of vancomycin (VCM) for treatment of serious infections caused by multiresistant Gram-positive bacteria. This study investigated the renal protective activity of rutin in a rat model of VCM-induced kidney injury in male Wistar rats. VCM administered intraperitoneally at 200 mg/kg twice daily for 7 successive days resulted in significant elevation of blood urea nitrogen and creatinine, as well as urinary N-acetyl-β-D-glucosaminidase. Coadministration of VCM with oral rutin at 150 mg/kg significantly reduced these markers of kidney damage. Rutin also significantly attenuated VCM-induced oxidative stress, inflammatory cell infiltration, apoptosis, and decreased interleukin-1β and tumor necrosis factor alpha levels (all P < 0.05 or 0.01) in kidneys. Renal recovery from VCM injury was achieved by rutin through increases in Nrf2 and HO-1 and a decrease in NF-κB expression. Our results demonstrated a protective effect of rutin on VCM-induced kidney injury through suppression of oxidative stress, apoptosis, and downregulation of the inflammatory response. This study highlights a role for oral rutin as an effective intervention to ameliorate nephrotoxicity in patients undergoing VCM therapy.
Collapse
|