1
|
Silva DS, de Vries C, Rovisco J, Serra S, Kaminska M, Mydel P, Lundberg K, da Silva JAP, Baptista IP. The impact of periodontitis and periodontal treatment on rheumatoid arthritis outcomes: an exploratory clinical trial. Rheumatology (Oxford) 2025; 64:1679-1688. [PMID: 39002123 DOI: 10.1093/rheumatology/keae358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/25/2024] [Accepted: 06/18/2024] [Indexed: 07/15/2024] Open
Abstract
OBJECTIVE Studies suggest RA patients could benefit from periodontal treatment. However, published data are inconsistent, and there is a need for better-controlled research. Our study aims to address these limitations. METHODS In this exploratory randomized delayed-start study, 22 RA patients with moderate/severe periodontitis were subjected to full-mouth debridement. Periodontal and rheumatological assessments, including measuring anti-cyclic citrullinated peptide 2 (CCP2) IgG levels, were performed at baseline (V1), 2 months (V2) and 6 months (V3) after steps 1 and 2 of periodontal therapy. Primary outcome was changes in DAS for 28 joints (DAS28) between V2 and V1. Secondary outcomes were changes in other rheumatological or periodontal clinical parameters (V2 or V3-V1). RESULTS RA disease activity was significantly higher in RA patients with severe periodontitis compared with moderate periodontitis at baseline, with significant positive correlations between several rheumatological and periodontal parameters. After periodontal treatment, RA patients with severe, but not moderate, periodontitis demonstrated significant improvements in DAS28 (ΔV2-V1, P = 0.042; ΔV3-V1, P = 0.001) and significant reduction in anti-CCP2 IgG levels at V3 (P = 0.032). CONCLUSION Periodontal treatment is locally effective in patients with RA and impacts RA disease activity and anti-CCP2 antibody levels in patients with severe periodontitis. Hence, our data suggest that periodontal assessment and treatment should be integrated in the management of RA patients within a treat-to-target strategy. TRIAL REGISTRATION isrctn.com, http://www.isrctn.com, ISRCTN 17950307.
Collapse
Affiliation(s)
- Daniela S Silva
- Periodontology Institute, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CIMAGO, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Charlotte de Vries
- Department of Medicine Solna, Division of Rheumatology, Karolinska Institute, Solna, Stockholm, Sweden
| | - João Rovisco
- Rheumatology Department, Centro Hospitalar e Universitário de Coimbra EPE, Coimbra, Portugal
| | - Sara Serra
- Rheumatology Department, Centro Hospitalar e Universitário de Coimbra EPE, Coimbra, Portugal
| | - Marta Kaminska
- Broegelmann Research Laboratory, Department of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | - Piotr Mydel
- Broegelmann Research Laboratory, Department of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
- Department of Microbiology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Karin Lundberg
- Department of Medicine Solna, Division of Rheumatology, Karolinska Institute, Solna, Stockholm, Sweden
| | - José António P da Silva
- Rheumatology Department, Centro Hospitalar e Universitário de Coimbra EPE, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Isabel P Baptista
- Periodontology Institute, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CIMAGO, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
2
|
Fei C, Eriksson K, Fei G, Delgado Zambrano LF, Syed S, Lindström C, Ericson M, Mohammadi M, Tsilingaridis G, Guenifi A, Holmdahl R, Jansson L, Yucel-Lindberg T. Comparative Analysis of Salivary and Serum Inflammatory Mediator Profiles in Patients With Rheumatoid Arthritis and Periodontitis. Mediators Inflamm 2025; 2025:7739833. [PMID: 40151315 PMCID: PMC11949604 DOI: 10.1155/mi/7739833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/24/2025] [Indexed: 03/29/2025] Open
Abstract
Background: Periodontitis (PD) and rheumatoid arthritis (RA) are chronic inflammatory conditions, characterized by dysregulated immune response and excessive production of inflammatory mediators. The oral disease PD is triggered by periodontal pathogens, leading to the destruction of tissues surrounding the teeth, whereas RA is a systemic autoimmune disease primarily affecting the joints. The objective of this study was to investigate the prevalence of PD and map the profile of salivary and serum inflammatory mediators of patients with RA, with respect to periodontal severity (PD stage II and PD stage III/IV). Methods: For this cross-sectional cohort study, 62 patients diagnosed with RA were recruited. All participants underwent a full-mouth dental examination. Levels of various inflammatory mediators, including tumor necrosis factor (TNF) superfamily proteins, interferon (IFN) family proteins, regulatory T cell (Treg) cytokines, and matrix metalloproteinases were determined in saliva and serum samples from each participant using a human inflammation multiplex immunoassay panel. Results: In the current RA cohort, all participants were diagnosed with PD, of which 35.5% were classified as PD stage II and 64.5% as PD stages III/IV. Inflammatory mediator levels were significantly higher in both saliva and serum samples from patients with RA and PD stages III/IV, compared to those with RA and stage II within the same cohort. These included higher serum levels of sCD30, IL-10, IL-19, osteopontin and elevated salivary levels of BAFF/TNFSF13B and IFN-α2. Additionally, APRIL/TNFSF13 levels were increased in both saliva and serum. Conclusions: Among the studied patients with RA, the majority exhibited severe PD (stage III/IV), underscoring the importance of periodontal prophylaxis and treatment for this group of patients. Higher levels of inflammatory mediators were observed in both saliva and serum in those with PD stages III/IV, suggesting a potential link between the severity of PD and systemic inflammation in RA. Further research is needed to explore the clinical implications of these findings.
Collapse
Affiliation(s)
- Carina Fei
- Department of Dental Medicine, Division of Pediatric Dentistry, Karolinska Institutet, Huddinge, Sweden
| | - Kaja Eriksson
- Department of Dental Medicine, Division of Pediatric Dentistry, Karolinska Institutet, Huddinge, Sweden
| | - Guozhong Fei
- Center for Rheumatology, Academic Specialist Centre, Stockholm, Sweden
- Rheumatology Unit, Karolinska University Hospital, Huddinge, Sweden
| | - Luis Fernando Delgado Zambrano
- Department of Dental Medicine, Division of Pediatric Dentistry, Karolinska Institutet, Huddinge, Sweden
- Department of Gene Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Shigufta Syed
- Department of Dental Medicine, Division of Pediatric Dentistry, Karolinska Institutet, Huddinge, Sweden
| | - Caroline Lindström
- Department of Dental Medicine, Division of Pediatric Dentistry, Karolinska Institutet, Huddinge, Sweden
| | - Martina Ericson
- Department of Dental Medicine, Division of Pediatric Dentistry, Karolinska Institutet, Huddinge, Sweden
| | - Mehrad Mohammadi
- Department of Dental Medicine, Division of Periodontology, Karolinska Institutet, Huddinge, Sweden
| | - Georgios Tsilingaridis
- Department of Dental Medicine, Division of Pediatric Dentistry, Karolinska Institutet, Huddinge, Sweden
- Center of Pediatric Oral Health Research, Stockholm, Sweden
| | - Amel Guenifi
- Center for Rheumatology, Academic Specialist Centre, Stockholm, Sweden
| | - Rikard Holmdahl
- Department of Medical Biochemistry and Biophysics, Division of Medical Inflammation Research, Karolinska Institutet, Stockholm, Sweden
| | - Leif Jansson
- Department of Dental Medicine, Division of Periodontology, Karolinska Institutet, Huddinge, Sweden
- Folktandvården Eastmaninstitutet, Stockholm, Sweden
| | - Tülay Yucel-Lindberg
- Department of Dental Medicine, Division of Pediatric Dentistry, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
3
|
Kaluç N, Bertorello S, Tombul OK, Baldi S, Nannini G, Bartolucci G, Niccolai E, Amedei A. Gut-lung microbiota dynamics in mice exposed to Nanoplastics. NANOIMPACT 2024; 36:100531. [PMID: 39447839 DOI: 10.1016/j.impact.2024.100531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/20/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Concern has grown over potential health effects of micro- and nanoplastics (M/NPs) exposure. There is significant interest in understanding their impact on animal and human microbiota due to its crucial role in preserving health, as research in this area is rapidly advancing. We conducted a sub-chronic exposure study involving 12 male mice, divided into two groups: a control group (n = 6) and a PET-NPs exposure group (n = 6). PET-NPs, administered by oral gavage at a dose of 0.5 mg/day in 0.1 ml/mice, were given daily for 28 days. Microbiota analyses were performed on lung, colon, oral cavity, and stool samples using 16S rRNA sequencing. Additionally, fecal short and medium-chain fatty acids were analyzed by GC/MS. No significant changes were observed in the fecal and oral microbiome of the treated mice, nor in the fecal fatty acid levels. However, there were prominent alterations in the colon, characterized by increased abundance of Gram-negative bacteria belonging to Veillonella and Prevotella genera, and of amino acid metabolism pathways, coupled with a decrease in Lactobacillus. PET-NPs ingestion caused unexpected alterations in the lung microbiome with an increase in the Pseudomonas and changes in microbial energy metabolism and nitrogen utilization. This study provides insights into the differential impact of PET-NPs exposure on various microbiome niches.
Collapse
Affiliation(s)
- Nur Kaluç
- Department of Medical Biology, University of Health Sciences, Istanbul, Turkey.
| | - Sara Bertorello
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| | - Oğuz Kaan Tombul
- Experimental Animal Application and Research Center, Maltepe University, İstanbul, Turkey.
| | - Simone Baldi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| | - Giulia Nannini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| | - Gianluca Bartolucci
- Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy.
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Laboratorio Congiunto MIA-LAB (Microbiome-Immunity Axis research for a Circular Health), University of Florence, Italy; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Florence, Italy.
| |
Collapse
|
4
|
Zhang Y, Liu M, Ma H, Zhang X, Li N, Chen X, Cheng Y, Li H, Xie Q, Gu J, Zhao B, Ren X, Wang X. Effect of impacted mandibular third molar extraction on periodontal microbiota and clinical parameters of adjacent teeth: A randomized clinical trial. J Craniomaxillofac Surg 2024; 52:937-947. [PMID: 39003214 DOI: 10.1016/j.jcms.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/03/2024] [Accepted: 06/08/2024] [Indexed: 07/15/2024] Open
Abstract
It is urgently necessary to clarify the effect of extraction of impacted mandibular third molar (IMTM) on the periodontal tissue of adjacent second molars (ASMs). In this study, the ASM periodontal condition and pathogenic microbes were assessed before IMTM extraction and at 1, 4, 8 and 12 weeks postoperatively. Based on the inclusion and exclusion criteria, our study revealed that IMTM extractions adversely affected distal - periodontal probing depth (dPPD), attachment loss (dAL), plaque index (dPLI) and bleeding on probing (dBOP) within 8 weeks, but these indices gradually normalize after 12 weeks. The subgingival pathogens near the ASMs distal surface, Porphyromonas and Pseudomonas, were significantly increased postoperatively. Moreover, relevance of ASMs clinical indices and subgingival microbes after IMTM extractions was found. In contrast to the situation in chronic periodontitis, the effects of IMTM extraction on dPPD, dAL, dPLI and dBOP of ASMs were mainly correlated with Pseudomonas. Additionally, while the IMTM extractions have adverse distal periodontal indices of ASMs within 8 weeks and increase subgingival pathogens, the modified triangular flap (MTF) had fewer distal periodontal indices and less Pseudomonas. Compared to the traditional envelope flap and triangular flap, the MTF benefits the periodontal health, which could be considered as the priority option for IMTM extractions.
Collapse
Affiliation(s)
- Yuan Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China
| | - Meixian Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China
| | - Huanhuan Ma
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China
| | - Xiaoxuan Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China
| | - Na Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China
| | - Xiaohang Chen
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yongfeng Cheng
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China
| | - Huifei Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China
| | - Qingpeng Xie
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China
| | - Jiawen Gu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China
| | - Bin Zhao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China.
| | - Xiuyun Ren
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China.
| | - Xing Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China.
| |
Collapse
|
5
|
Rosier BT, Johnston W, Carda-Diéguez M, Simpson A, Cabello-Yeves E, Piela K, Reilly R, Artacho A, Easton C, Burleigh M, Culshaw S, Mira A. Nitrate reduction capacity of the oral microbiota is impaired in periodontitis: potential implications for systemic nitric oxide availability. Int J Oral Sci 2024; 16:1. [PMID: 38177101 PMCID: PMC10767001 DOI: 10.1038/s41368-023-00266-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/13/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024] Open
Abstract
The reduction of nitrate to nitrite by the oral microbiota has been proposed to be important for oral health and results in nitric oxide formation that can improve cardiometabolic conditions. Studies of bacterial composition in subgingival plaque suggest that nitrate-reducing bacteria are associated with periodontal health, but the impact of periodontitis on nitrate-reducing capacity (NRC) and, therefore, nitric oxide availability has not been evaluated. The current study aimed to evaluate how periodontitis affects the NRC of the oral microbiota. First, 16S rRNA sequencing data from five different countries were analyzed, revealing that nitrate-reducing bacteria were significantly lower in subgingival plaque of periodontitis patients compared with healthy individuals (P < 0.05 in all five datasets with n = 20-82 samples per dataset). Secondly, subgingival plaque, saliva, and plasma samples were obtained from 42 periodontitis patients before and after periodontal treatment. The oral NRC was determined in vitro by incubating saliva with 8 mmol/L nitrate (a concentration found in saliva after nitrate-rich vegetable intake) and compared with the NRC of 15 healthy individuals. Salivary NRC was found to be diminished in periodontal patients before treatment (P < 0.05) but recovered to healthy levels 90 days post-treatment. Additionally, the subgingival levels of nitrate-reducing bacteria increased after treatment and correlated negatively with periodontitis-associated bacteria (P < 0.01). No significant effect of periodontal treatment on the baseline saliva and plasma nitrate and nitrite levels was found, indicating that differences in the NRC may only be revealed after nitrate intake. Our results suggest that an impaired NRC in periodontitis could limit dietary nitrate-derived nitric oxide levels, and the effect on systemic health should be explored in future studies.
Collapse
Affiliation(s)
- Bob T Rosier
- Department of Genomics and Health, FISABIO Foundation, Center for Advanced Research in Public Health, Valencia, Spain
| | - William Johnston
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
- Oral Sciences, University of Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Miguel Carda-Diéguez
- Department of Genomics and Health, FISABIO Foundation, Center for Advanced Research in Public Health, Valencia, Spain
| | - Annabel Simpson
- Sport and Physical Activity Research Institute, University of the West of Scotland, Blantyre, Scotland
| | - Elena Cabello-Yeves
- Department of Genomics and Health, FISABIO Foundation, Center for Advanced Research in Public Health, Valencia, Spain
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), Valencia, Spain
| | - Krystyna Piela
- Oral Sciences, University of Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Robert Reilly
- Oral Sciences, University of Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Alejandro Artacho
- Department of Genomics and Health, FISABIO Foundation, Center for Advanced Research in Public Health, Valencia, Spain
| | - Chris Easton
- Sport and Physical Activity Research Institute, University of the West of Scotland, Blantyre, Scotland
| | - Mia Burleigh
- Sport and Physical Activity Research Institute, University of the West of Scotland, Blantyre, Scotland
| | - Shauna Culshaw
- Oral Sciences, University of Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Alex Mira
- Department of Genomics and Health, FISABIO Foundation, Center for Advanced Research in Public Health, Valencia, Spain.
- CIBER Center for Epidemiology and Public Health, Madrid, Spain.
| |
Collapse
|
6
|
Zhang Y, Hou B, Liu T, Wu Y, Wang Z. Probiotics improve polystyrene microplastics-induced male reproductive toxicity in mice by alleviating inflammatory response. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115248. [PMID: 37441951 DOI: 10.1016/j.ecoenv.2023.115248] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/03/2023] [Accepted: 07/09/2023] [Indexed: 07/15/2023]
Abstract
As a new type of environmental pollutant, microplastics have been garnered increasing attention, especially in regard to their effects on the reproductive system. However, researchers have yet to report whether prevention and treatment measures exist for reproductive injury caused by microplastics. The aim of this study was therefore to explore the mechanism of spermatogenic injury induced by polystyrene microplastics (PS-MPs) and the intervention effect of probiotics based on the gut microbiota-testis axis. Mice were orally exposed for 35 days to 5 µm of PS-MPs with a gavage dose was 0.1 mg/day, and the intervention group was given probiotics (Lactobacillus, Bifidobacterium longum, and Enterococcus) orally. Fecal samples were then subjected to 16 S rRNA sequencing analysis, and sperm motion was analyzed by a Hamilton-Thorne Sperm analyzer. The results showed that PS-MPs exposed mice had significant spermatogenic dysfunction and testicular inflammation. In addition, the intestinal microbial structure of exposed mice changed significantly; the abundance of Lactobacillus decreased, and the abundance of Prevotella increased. Furthermore, with fecal microbiota transplantation, the recipient mice showed a significant decrease in sperm quality. However, probiotics supplementation helped inhibit the activation of IL-17A signaling driven by gut microbes, thereby alleviating the inflammatory response and improving sperm quality decline caused by PS-MPs. These results may provide a scientific basis for further understanding of the mechanism of male reproductive damage caused by environmental pollutants such as microplastics and for novel reproductive damage intervention measures.
Collapse
Affiliation(s)
- Yecui Zhang
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Baolian Hou
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Tao Liu
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yanling Wu
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zhiping Wang
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
7
|
Ahmadi P, Mahmoudi M, Kheder RK, Faraj TA, Mollazadeh S, Abdulabbas HS, Esmaeili SA. Impacts of Porphyromonas gingivalis periodontitis on rheumatoid arthritis autoimmunity. Int Immunopharmacol 2023; 118:109936. [PMID: 37098654 DOI: 10.1016/j.intimp.2023.109936] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/08/2023] [Accepted: 02/22/2023] [Indexed: 03/17/2023]
Abstract
In RA patients' synovial sites, citrullinated RA-related antigens such as type II collagens, fibrin (ogen), vimentin, and α-enolase could be targeted by ACCPAs. Since ACCPA production can be initiated a long time before RA sign appearance, primary auto-immunization against these citrullinated proteins can be originated from extra-articular sites. It has been shown that there is a significant association between P. gingivalis periodontitis, anti- P. gingivalis antibodies, and RA. P. gingivalis gingipains (Rgp, Kgp) can degrade proteins such as fibrin and α-enolase into some peptides in the form of Arg in the C-terminal which is converted to citrulline by PPAD. Also, PPAD can citrullinate type II collagen and vimentins (SA antigen). P. gingivalis induces inflammation and chemoattraction of immune cells such as neutrophils and macrophages through the increase of C5a (gingipain C5 convertase-like activity) and SCFA secretion. Besides, this microorganism stimulates anoikis, a special type of apoptosis, and NETosis, an antimicrobial form of neutrophil death, leading to the release of PAD1-4, α-enolase, and vimentin from apoptotic cells into the periodontal site. In addition, gingipains can degrade macrophages CD14 and decrease their ability in apoptotic cell removal. Gingipains also can cleave IgGs in the Fc region and transform them into rheumatoid factor (RF) antigens. In the present study, the effects of P. gingivalis on rheumatoid arthritis autoimmune response have been reviewed, which could attract practical insight both in bench and clinic.
Collapse
Affiliation(s)
- Parisa Ahmadi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramiar Kamal Kheder
- Medical Laboratory Science Department, College of Science, University of Raparin, Rania, Sulaymaniyah, Iraq; Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq
| | - Tola Abdulsattar Faraj
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq; Department of Basic Sciences, College of Medicine, Hawler Medical University, Erbil, Iraq
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research center north Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hadi Sajid Abdulabbas
- Continuous Education Department, Faculty of Dentistry, University of Al-Ameed, Karbala 56001, Iraq
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Huang X, Huang X, Huang Y, Zheng J, Lu Y, Mai Z, Zhao X, Cui L, Huang S. The oral microbiome in autoimmune diseases: friend or foe? J Transl Med 2023; 21:211. [PMID: 36949458 PMCID: PMC10031900 DOI: 10.1186/s12967-023-03995-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/15/2023] [Indexed: 03/24/2023] Open
Abstract
The human body is colonized by abundant and diverse microorganisms, collectively known as the microbiome. The oral cavity has more than 700 species of bacteria and consists of unique microbiome niches on mucosal surfaces, on tooth hard tissue, and in saliva. The homeostatic balance between the oral microbiota and the immune system plays an indispensable role in maintaining the well-being and health status of the human host. Growing evidence has demonstrated that oral microbiota dysbiosis is actively involved in regulating the initiation and progression of an array of autoimmune diseases.Oral microbiota dysbiosis is driven by multiple factors, such as host genetic factors, dietary habits, stress, smoking, administration of antibiotics, tissue injury and infection. The dysregulation in the oral microbiome plays a crucial role in triggering and promoting autoimmune diseases via several mechanisms, including microbial translocation, molecular mimicry, autoantigen overproduction, and amplification of autoimmune responses by cytokines. Good oral hygiene behaviors, low carbohydrate diets, healthy lifestyles, usage of prebiotics, probiotics or synbiotics, oral microbiota transplantation and nanomedicine-based therapeutics are promising avenues for maintaining a balanced oral microbiome and treating oral microbiota-mediated autoimmune diseases. Thus, a comprehensive understanding of the relationship between oral microbiota dysbiosis and autoimmune diseases is critical for providing novel insights into the development of oral microbiota-based therapeutic approaches for combating these refractory diseases.
Collapse
Affiliation(s)
- Xiaoyan Huang
- Department of Preventive Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, No.366 Jiangnan Da Dao Nan, Guangzhou, 510280, China
| | - Xiangyu Huang
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, No.366 Jiangnan Da Dao Nan, Guangzhou, 510280, China
| | - Yi Huang
- Department of Preventive Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, No.366 Jiangnan Da Dao Nan, Guangzhou, 510280, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Ye Lu
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, Guangzhou, 510280, China
| | - Zizhao Mai
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Xinyuan Zhao
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, No.366 Jiangnan Da Dao Nan, Guangzhou, 510280, China.
| | - Li Cui
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, Guangzhou, 510280, China.
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, CA, 90095, USA.
| | - Shaohong Huang
- Department of Preventive Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, No.366 Jiangnan Da Dao Nan, Guangzhou, 510280, China.
| |
Collapse
|
9
|
Paterson M, Johnston W, Sherriff A, Culshaw S. Periodontal instrumentation technique: an exploratory analysis of clinical outcomes and financial aspects. Br Dent J 2023:10.1038/s41415-022-5405-1. [PMID: 36624308 PMCID: PMC9838345 DOI: 10.1038/s41415-022-5405-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/31/2022] [Indexed: 01/11/2023]
Abstract
Objective This exploratory post hoc analysis sought to investigate clinical outcomes comparing non-surgical treatment for periodontal disease using exclusively hand instruments, exclusively ultrasonic instruments or a combination approach. Differences in time efficiency and equipment use with each treatment method were evaluated.Methods In total, 55 patients with periodontitis were treated across two studies (randomised controlled trial and cohort study) with non-surgical periodontal therapy using hand instruments (HI), ultrasonic instruments (UI) or a combination approach (CI). All patients were re-evaluated 90 days after treatment. Clinical parameters, time taken and financial implications of non-surgical periodontal therapy were explored with a descriptive analysis within this post hoc analysis.Results There were no clinically relevant differences in clinical parameters across all groups at day 90. Inter-group comparisons showed no clinically relevant differences in treatment outcome between groups. UI required less time on average to complete treatment compared to HI. UI provided using a half mouth approach had fewest overall episodes of expenditure and lowest maintenance costs.Conclusions Comparison of clinical outcomes between HI, UI and CI yielded no clinically relevant differences. When comparing HI and UI, UI had a shorter treatment time on average. Full mouth treatment was associated with the least patient visits. UI was least costly on a recurring basis.
Collapse
Affiliation(s)
- Michael Paterson
- Oral Sciences, Glasgow Dental Hospital and School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK.
| | - William Johnston
- Oral Sciences, Glasgow Dental Hospital and School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Andrea Sherriff
- Community Oral Health, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Shauna Culshaw
- Oral Sciences, Glasgow Dental Hospital and School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| |
Collapse
|
10
|
章 可, 孙 妍, 潘 乙. [Developments in Research on the Relationship Between Porphyromonas gingivalis and Non-Oral Diseases]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:20-26. [PMID: 36647638 PMCID: PMC10409047 DOI: 10.12182/20230160509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Indexed: 01/18/2023]
Abstract
Porphyromonas gingivalis ( P. gingivalis) is a common periodontal pathogen. Recently, there has been increasing evidence suggesting that P. gingivalis is not only a common pathogen in the oral cavity, but is also closely associated with non-oral diseases, including inflammatory bowel disease, cancer, cardiovascular diseases, Alzheimer's disease, rheumatoid arthritis, diabetes mellitus, premature birth and non-alcoholic hepatitis, etc. Herein, we reviewed the developments in recent years in research on the relationship between P. gingivalis, a periodontal pathogen, and non-oral diseases, which will help determine whether P. gingivalis could be used as an auxiliary diagnostic biomarker or a potential therapeutic target for these non-oral diseases, thus contributing to the development of treatment strategies for the relevant diseases.
Collapse
Affiliation(s)
- 可可 章
- 温州医科大学口腔医学院·附属口腔医院 (温州 325000)School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, China
| | - 妍 孙
- 温州医科大学口腔医学院·附属口腔医院 (温州 325000)School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, China
| | - 乙怀 潘
- 温州医科大学口腔医学院·附属口腔医院 (温州 325000)School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
11
|
Chojnacka-Purpurowicz J, Wygonowska E, Placek W, Owczarczyk-Saczonek A. Cyclosporine-induced gingival overgrowth-Review. Dermatol Ther 2022; 35:e15912. [PMID: 36208445 DOI: 10.1111/dth.15912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/17/2022] [Accepted: 10/06/2022] [Indexed: 11/29/2022]
Abstract
Drug-induced gingival overgrowth (DIGO) is an undesirable effect resulting from the therapy of one of the three groups of drugs: phenytoin, calcium channel blockers, and cyclosporine A (CsA). It is caused by a fibrous overgrowth leading to gingivitis, periodontitis, and even tooth loss. Possible consequences include tooth decay worsening, pain and difficulty in eating, bleeding gums, and bad breath. The pathomechanism of the hypertrophy is unknown, but there is a correlation between insufficient oral hygiene and the severity of this phenomenon. The gender and age predilection of gingival hyperplasia as a result of CsA therapy is also noticeable. It is most common in children and adolescents of the male sex. The beneficial effect of the removal of tartar and local irritants in reducing the above symptoms has been demonstrated. One of the treatments for DIGO is conventional gingivectomy. The paper is a review article about cyclosporine-induced gingival hyperplasia.
Collapse
Affiliation(s)
- Joanna Chojnacka-Purpurowicz
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, The University of Warmia and Mazury, Olsztyn, Poland
| | - Ewa Wygonowska
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, The University of Warmia and Mazury, Olsztyn, Poland
| | - Waldemar Placek
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, The University of Warmia and Mazury, Olsztyn, Poland
| | - Agnieszka Owczarczyk-Saczonek
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, The University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
12
|
Batool F, Gegout PY, Stutz C, White B, Kolodziej A, Benkirane-Jessel N, Petit C, Huck O. Lenabasum Reduces Porphyromonas gingivalis-Driven Inflammation. Inflammation 2022; 45:1752-1764. [PMID: 35274214 DOI: 10.1007/s10753-022-01658-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 01/05/2023]
Abstract
The aim of this study was to evaluate the potential anti-inflammatory and anti-resorptive effects of lenabasum in the context of Porphyromonas gingivalis (Pg)-induced inflammation. Lenabasum or ajulemic acid (1',1'-dimethylheptyl-THC-11-oic-acid), a synthetic analog of THC-11-oic acid, has already demonstrated anti-inflammatory properties for the treatment of several inflammatory diseases. In vitro, the cytocompatibility of lenabasum was evaluated in human oral epithelial cells (EC), oral fibroblasts and osteoblasts by metabolic activity assay. The effect of lenabasum (5 µM) treatment of Pg-LPS- and P. gingivalis-infected EC on the pro- and anti-inflammatory markers was studied through RTqPCR. In vivo, lenabasum was injected subcutaneously in a P. gingivalis-induced calvarial abscess mouse model to assess its pro-healing effect. Concentrations of lenabasum up to 5 µM were cytocompatible in all cell types. Treatment of Pg-LPS and Pg-infected EC with lenabasum (5 µM; 6 h) reduced the gene expression of TNF-α, COX-2, NF-κB, and RANKL, whereas it increased the expression of IL-10 and resolvin E1 receptor respectively (p < 0.05). In vivo, the Pg-elicited inflammatory lesions' clinical size was significantly reduced by lenabasum injection (30 µM) vs untreated controls (45%) (p < 0.05). Histomorphometric analysis exhibited improved quantity and quality of bone (with reduced lacunae) and significantly reduced calvarial soft tissue inflammatory score in mice treated with lenabasum (p < 0.05). Tartrate-resistant acid phosphatase activity assay (TRAP) also demonstrated decreased osteoclastic activity in the treatment group compared to that in the controls. Lenabasum showed promising anti-inflammatory and pro-resolutive properties in the management of Pg-elicited inflammation, and thus, its potential as adjuvant periodontal treatment should be further investigated.
Collapse
Affiliation(s)
- Fareeha Batool
- Faculté de Chirurgie-Dentaire, Université de Strasbourg, 8 rue Sainte-Elisabeth, 67000, Strasbourg, France.,UMR 1260, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM (French National Institute of Health and Medical Research), Regenerative Nanomedicine, Strasbourg, France
| | - Pierre-Yves Gegout
- Faculté de Chirurgie-Dentaire, Université de Strasbourg, 8 rue Sainte-Elisabeth, 67000, Strasbourg, France
| | - Céline Stutz
- Faculté de Chirurgie-Dentaire, Université de Strasbourg, 8 rue Sainte-Elisabeth, 67000, Strasbourg, France.,UMR 1260, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM (French National Institute of Health and Medical Research), Regenerative Nanomedicine, Strasbourg, France
| | | | | | - Nadia Benkirane-Jessel
- UMR 1260, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM (French National Institute of Health and Medical Research), Regenerative Nanomedicine, Strasbourg, France
| | - Catherine Petit
- Faculté de Chirurgie-Dentaire, Université de Strasbourg, 8 rue Sainte-Elisabeth, 67000, Strasbourg, France.,UMR 1260, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM (French National Institute of Health and Medical Research), Regenerative Nanomedicine, Strasbourg, France.,Pôle de Médecine Et Chirurgie Bucco-Dentaire, Hôpitaux Universitaires de Strasbourg, 67000, Strasbourg, France
| | - Olivier Huck
- Faculté de Chirurgie-Dentaire, Université de Strasbourg, 8 rue Sainte-Elisabeth, 67000, Strasbourg, France. .,UMR 1260, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM (French National Institute of Health and Medical Research), Regenerative Nanomedicine, Strasbourg, France. .,Pôle de Médecine Et Chirurgie Bucco-Dentaire, Hôpitaux Universitaires de Strasbourg, 67000, Strasbourg, France.
| |
Collapse
|
13
|
Salhi L, Rijkschroeff P, Van Hede D, Laine ML, Teughels W, Sakalihasan N, Lambert F. Blood Biomarkers and Serologic Immunological Profiles Related to Periodontitis in Abdominal Aortic Aneurysm Patients. Front Cell Infect Microbiol 2022; 11:766462. [PMID: 35096635 PMCID: PMC8798408 DOI: 10.3389/fcimb.2021.766462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Periodontitis is a chronic inflammatory gum disease associated with systemic diseases such as cardiovascular diseases. AIM To investigate the association of systemic blood biomarkers, C-reactive protein (CRP), levels of lipopolysaccharide (LPS), and IgG levels against periodontal pathogens Aggregatibacter actinomycetemcomitans (Aa) and Porphyromonas gingivalis (Pg) with the stability, based on the aortic diameter, the growth rate and the eligibility for surgical intervention, of patients with abdominal aortic aneurysm (AAA). METHODS Patients with stable AAA (n = 30) and unstable AAA (n = 31) were recruited. The anti-A. actinomycetemcomitans and anti-P. gingivalis IgG levels were analyzed by ELISA, the LPS analysis was performed by using the limulus amebocyte lysate (LAL) test, and plasma levels of CRP were determined using an immune turbidimetric method. The association between these blood systemic biomarkers, AAA features, periodontal clinical parameters and oral microbial profiles were explored. Regression models were used to test the relationship between variables. RESULTS The presence of antibodies against Pg and Aa, LPS and high CRP concentrations were found in all AAA patients. The IgG levels were similar in patients with stable and unstable AAA (both for Aa and Pg). Among investigated blood biomarkers, only CRP was associated with AAA stability. The amount of LPS in saliva, supra, and subgingival plaque were significantly associated with the systemic LPS (p <0.05). CONCLUSIONS This post-hoc study emphasizes the presence of antibodies against Pg and Aa, LPS and high CRP concentrations in all AAA patients. The presence of Pg in saliva and subgingival plaque was significantly associated with the blood LPS levels. For further studies investigating periodontitis and systemic diseases, specific predictive blood biomarkers should be considered instead of the use of antibodies alone.
Collapse
Affiliation(s)
- Leila Salhi
- Department of Periodontology, Buccal Surgery and Implantology, Faculty of Medicine, Liège, Belgium
| | - Patrick Rijkschroeff
- Department of Periodontology , Academic Centre for Dentistry Amsterdam, Vrije Universiteit (VU) Amsterdam, Amsterdam, Netherlands
| | - Dorien Van Hede
- Department of Periodontology, Buccal Surgery and Implantology, Faculty of Medicine, Liège, Belgium
| | - Marja L. Laine
- Department of Periodontology , Academic Centre for Dentistry Amsterdam, Vrije Universiteit (VU) Amsterdam, Amsterdam, Netherlands
| | - Wim Teughels
- Department of Oral Health Sciences, KU Leuven & Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - Natzi Sakalihasan
- Department of Cardiovascular and Thoracic Surgery, Faculty of Medicine, Liège, Belgium
| | - France Lambert
- Department of Periodontology, Buccal Surgery and Implantology, Faculty of Medicine, Liège, Belgium
| |
Collapse
|
14
|
Ding N, Luo M, Wen YH, Li RY, Bao QY. The Effects of Non-Surgical Periodontitis Therapy on the Clinical Features and Serological Parameters of Patients Suffering from Rheumatoid Arthritis as Well as Chronic Periodontitis. J Inflamm Res 2022; 15:177-185. [PMID: 35046692 PMCID: PMC8760992 DOI: 10.2147/jir.s326896] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/09/2021] [Indexed: 01/22/2023] Open
Affiliation(s)
- Nan Ding
- Department of Stomatology, Beijing LuHe Hospital, Capital Medical University, Beijing, 101149, People’s Republic of China
- Correspondence: Nan Ding Department of Stomatology, Beijing LuHe Hospital, Capital Medical University, No. 82 of Xinhua South Road, Tongzhou District, Beijing, 101149, People’s Republic of ChinaTel/Fax +86 10 69543901 Email
| | - Mei Luo
- Department of Central Laboratory, Beijing LuHe Hospital, Capital Medical University, Beijing, 101149, People’s Republic of China
| | - Ya-Hui Wen
- Department of Internal Medicine, Beijing LuHe Hospital, Capital Medical University, Beijing, 101149, People’s Republic of China
| | - Rong-Yin Li
- Department of Stomatology, Beijing LuHe Hospital, Capital Medical University, Beijing, 101149, People’s Republic of China
| | - Qi-Yan Bao
- Department of Stomatology, Beijing LuHe Hospital, Capital Medical University, Beijing, 101149, People’s Republic of China
| |
Collapse
|
15
|
Berthelot JM, Bandiaky ON, Le Goff B, Amador G, Chaux AG, Soueidan A, Denis F. Another Look at the Contribution of Oral Microbiota to the Pathogenesis of Rheumatoid Arthritis: A Narrative Review. Microorganisms 2021; 10:59. [PMID: 35056507 PMCID: PMC8778040 DOI: 10.3390/microorganisms10010059] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 12/17/2022] Open
Abstract
Although autoimmunity contributes to rheumatoid arthritis (RA), several lines of evidence challenge the dogma that it is mainly an autoimmune disorder. As RA-associated human leukocyte antigens shape microbiomes and increase the risk of dysbiosis in mucosae, RA might rather be induced by epigenetic changes in long-lived synovial presenting cells, stressed by excessive translocations into joints of bacteria from the poorly cultivable gut, lung, or oral microbiota (in the same way as more pathogenic bacteria can lead to "reactive arthritis"). This narrative review (i) lists evidence supporting this scenario, including the identification of DNA from oral and gut microbiota in the RA synovium (but in also healthy synovia), and the possibility of translocation through blood, from mucosae to joints, of microbiota, either directly from the oral cavity or from the gut, following an increase of gut permeability worsened by migration within the gut of oral bacteria such as Porphyromonas gingivalis; (ii) suggests other methodologies for future works other than cross-sectional studies of periodontal microbiota in cohorts of patients with RA versus controls, namely, longitudinal studies of oral, gut, blood, and synovial microbiota combined with transcriptomic analyses of immune cells in individual patients at risk of RA, and in overt RA, before, during, and following flares of RA.
Collapse
Affiliation(s)
- Jean-Marie Berthelot
- Rheumatology Unit, Nantes University Hospital, Place Alexis Ricordeau, CEDEX 01, 44093 Nantes, France; (J.-M.B.); (B.L.G.)
| | - Octave Nadile Bandiaky
- Division of Fixed Prosthodontics, University of Nantes, 1 Place Alexis Ricordeau, 44042 Nantes, France;
| | - Benoit Le Goff
- Rheumatology Unit, Nantes University Hospital, Place Alexis Ricordeau, CEDEX 01, 44093 Nantes, France; (J.-M.B.); (B.L.G.)
| | - Gilles Amador
- Department of Dental Public Health, Faculty of Dental Surgery, University of Nantes, 44093 Nantes, France;
- Nantes Teaching Hospital, 44000 Nantes, France;
| | - Anne-Gaelle Chaux
- Nantes Teaching Hospital, 44000 Nantes, France;
- Department of Oral Surgery, Faculty of Dental Surgery, University of Nantes, 44000 Nantes, France
| | - Assem Soueidan
- Department of Periodontology, Faculty of Dental Surgery, UIC 11, Rmes U1229, CHU de Nantes, 44000 Nantes, France;
| | - Frederic Denis
- Department of Dental Public Health, Faculty of Dental Surgery, University of Nantes, 44093 Nantes, France;
- Tours Teaching Hospital, 37000 Tours, France
| |
Collapse
|
16
|
Stensvold CR, Nielsen M, Baraka V, Lood R, Fuursted K, Nielsen HV. Entamoeba gingivalis: epidemiology, genetic diversity and association with oral microbiota signatures in North Eastern Tanzania. J Oral Microbiol 2021; 13:1924598. [PMID: 34104347 PMCID: PMC8143617 DOI: 10.1080/20002297.2021.1924598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Entamoeba gingivalis has been associated with periodontal diseases. Baseline data from the background population, which could help delimit the role of the parasite in health and disease, remain limited. Objective To describe epidemiological features, genetic diversity, and associations with oral microbiome signatures of E. gingivalis colonisation in Tanzanians with non-oral/non-dental diseases. Methods DNAs from 92 oral washings from 52 participants were subject to metabarcoding of ribosomal genes. DNA sequences were identified to genus level and submitted to oral microbiota diversity analyses. Results Sixteen (31%) of the 52 study participants were E. gingivalis-positive, with no difference in positivity rate according to gender or age. Only one subtype (ST1) was found. Individuals testing positive for E. gingivalis had higher oral microbiota alpha diversity than those testing negative (P = 0.03). Eight of the top-ten most common bacterial genera were shared between the two groups (Alloprevotella, Fusobacterium, Gemella, Haemophilus, Neisseria, Porphyromonas, Prevotella, Streptococcus, and Veillonella). Meanwhile, E. gingivalis carriers and non-carriers were more likely to have Aggregatibacter and Rothia, respectively, among the top-ten most common genera. Conclusion About one third of the cohort carried E. gingivalis ST1, and carriers had higher oral microbiome diversity and were more predominantly colonized by Aggregatibacter.
Collapse
Affiliation(s)
| | - Michelle Nielsen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen S, Denmark
| | - Vito Baraka
- Department of Biomedical Sciences, National Institute for Medical Research, Tanga Centre, United Republic of Tanzania
| | - Rolf Lood
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Kurt Fuursted
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen S, Denmark
| | - Henrik Vedel Nielsen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen S, Denmark
| |
Collapse
|