1
|
Shang Y, He Y, Zhang X, He W, Hua H, Ye F, Zhou X, Li Y, Zhong W, Wu G, Jiang W. Optimization of Immunotherapy Strategies Based on Spatiotemporal Heterogeneity of Tumour-Associated Tissue-Resident Memory T Cells. Immunology 2025; 175:123-133. [PMID: 40114407 PMCID: PMC12052439 DOI: 10.1111/imm.13924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/26/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025] Open
Abstract
Tissue-resident memory T cells (TRMs) reside in peripheral tissues and provide rapid immune defence against local infection and tumours. Tumour-associated TRMs share common tissue-resident features and formation mechanisms, representing some unique subsets of tumour-infiltrating lymphocytes (TILs). However, differences in the tumour microenvironment(TME) and tumour evolution stage result in TRMs exhibiting temporal and spatial heterogeneity of phenotype and function not only at different stages, before and after treatment, but also between tumours originating from different tissues, primary and metastatic cancer, and tumour and adjacent normal tissue. The infiltration of TRMs is often associated with immunotherapy response and favourable prognosis; however, due to different definitions, it has been shown that some subtypes of TRMs can also have a negative impact. Therefore, it is crucial to precisely characterise the TRM subpopulations that can influence the therapeutic efficacy and clinical prognosis of various solid tumours. Here, we review the spatiotemporal heterogeneity of tumour-associated TRMs, as well as the differences in their impact on clinical outcomes. We also explore the relationship between TRMs and immune checkpoint blockade (ICB) and TIL therapy, providing insights into potential new targets and strategies for immunotherapy.
Collapse
Affiliation(s)
- Yile Shang
- Department of Colorectal Surgery, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- College of MedicineZhejiang UniversityHangzhouChina
| | - Yinjun He
- College of MedicineZhejiang UniversityHangzhouChina
| | - Xiang Zhang
- Department of Colorectal Surgery, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Wenguang He
- Department of Radiology, First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Hanju Hua
- Department of Colorectal Surgery, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Feng Ye
- Department of Colorectal Surgery, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xile Zhou
- Department of Colorectal Surgery, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yandong Li
- Department of Colorectal Surgery, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Weixiang Zhong
- Department of Pathology, First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Guosheng Wu
- Department of Colorectal Surgery, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Weiqin Jiang
- Department of Colorectal Surgery, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
2
|
Yochum ZA, Braun DA. Immunotherapy for Renal Cell Carcinoma-What More is to Come? Target Oncol 2025; 20:467-483. [PMID: 40208564 DOI: 10.1007/s11523-025-01143-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2025] [Indexed: 04/11/2025]
Abstract
The treatment of renal cell carcinoma (RCC), a malignancy that is typically chemoresistant, has drastically evolved with the introduction of vascular endothelial growth factor receptor tyrosine kinase inhibitors (VEGFR TKIs) and immune checkpoint inhibitors (ICIs). The introduction of ICI-based regimens has significantly improved outcomes for patients with metastatic RCC. Currently, first-line therapy for patients with metastatic RCC involves multiple ICI-based regimens, either dual ICIs (with anti-cytotoxic T-lymphocyte-associated protein 4 (anti-CTLA- 4) and anti-programmed cell death- 1 (PD- 1) therapies) or anti-PD- 1 therapy in combination with VEGFR TKIs. Despite improving patient outcomes with ICI-based regimens, durable responses remain uncommon, highlighting the need for innovative treatment strategies. In this review, we highlight the current standard of care ICI-based regimens followed by ongoing clinical trials with novel combinations of existing FDA-approved agents and targets. We also discuss novel immunotherapies currently in clinical trials, which aim to improve antitumor T cell immunity either by improving T cell activation or T cell navigation to the tumor microenvironment. The incorporation of these novel therapies offers the potential to improve RCC patient outcomes, particularly by enhancing the durability of treatment responses.
Collapse
Affiliation(s)
- Zachary A Yochum
- Section of Medical Oncology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Center of Molecular and Cellular Oncology, Yale Cancer Center, New Haven, CT, USA
| | - David A Braun
- Section of Medical Oncology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA.
- Center of Molecular and Cellular Oncology, Yale Cancer Center, New Haven, CT, USA.
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA.
- Department of Urology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
3
|
Rezazadeh‐Gavgani E, Majidazar R, Lotfinejad P, Kazemi T, Shamekh A. Immune Checkpoint Molecules: A Review on Pathways and Immunotherapy Implications. Immun Inflamm Dis 2025; 13:e70196. [PMID: 40243372 PMCID: PMC12004596 DOI: 10.1002/iid3.70196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 03/12/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Today, treating cancer patients with monoclonal antibodies (mAbs), by targeting immune checkpoints, is one of the most outstanding immunotherapeutic methods. Immune checkpoints are special molecules having regulatory role in immune system responses. Once these molecules are presented on cancer cells, these cells will be capable of evading the immune system through their own specific pathways. This Evasion can be prevented by counterbalancing immune system responses with immune checkpoints related antibodies. AIMS The current study aimed to highlight immunotherapy and its methods, describe the immune checkpoints pathways, outline the immune checkpoint inhibitors (ICIs), and recent advances in this field, and sketch an outlook on the best treatment options for the most prevalent cancers. MATERIALS & METHODS This research implemented a narrative review method. A comprehensive literature review on the history, molecular and cellular biology, and the clinical aspects of immune checkpoint molecules was performed to illustrate the pathways involved in various cancers. Also, currently-available and future potential immunotherapies targeting these pathways were extracted from the searched studies. RESULTS The immune checkpoint family consists of many molecules, including CTLA-4, PD-1, PD-L1, LAG-3, TIM-3, and TIGIT. Attempts to modify these molecules in cancer treatment led to the development of therapeutic monoclonal antibodies. Most of these antibodies have entered clinical studies and some of them have been approved by the Food and Drug Administration (FDA) to be used in cancer patients' treatment plans. DISCUSSION With these novel treatments and the combination therapies they offer, there is also hope for better treatment outcomes for the previously untreatable metastatic cancers. In spite of the beneficial aspects of immune checkpoint therapy, similar to other treatments, they may cause side effects in some patients. Therefore, more studies are needed to reduce the probable side effects and uncover their underlying mechanism. CONCLUSION Based on the data shown in this review, there is still a lack of knowledge about the complete properties of ICIs and the possible combination therapies that we may be able to implement to achieve a better treatment response in cancer patients.
Collapse
Affiliation(s)
| | - Reza Majidazar
- Student Research CommitteeTabriz University of Medical SciencesTabrizIran
| | - Parisa Lotfinejad
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
- Department of ImmunologyTabriz University of Medical SciencesTabrizIran
| | - Tohid Kazemi
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
- Department of ImmunologyTabriz University of Medical SciencesTabrizIran
| | - Ali Shamekh
- Student Research CommitteeTabriz University of Medical SciencesTabrizIran
- Aging Research InstituteTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
4
|
Li G, Li S, Jiang Y, Chen T, An Z. Unleashing the Power of immune Checkpoints: A new strategy for enhancing Treg cells depletion to boost antitumor immunity. Int Immunopharmacol 2025; 147:113952. [PMID: 39764997 DOI: 10.1016/j.intimp.2024.113952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/29/2025]
Abstract
Regulatory T (Treg) cells, immunosuppressive CD4+ T cells, can impede anti-tumor immunity, complicating cancer treatment. Since their discovery, numerous studies have been dedicated to understand Treg cell biology, with a focus on checkpoint pathways' role in their generation and function. Immune checkpoints, such as PD-1/PD-L1, CTLA-4, TIGIT, TIM-3, and OX40, are pivotal in controlling Treg cell expansion and activity in the tumor microenvironment (TME), affecting their ability to suppress immune responses. This review examines the complex relationship between these checkpoints and Tregs in the TME, and how they influence tumor immunity. We also discuss the therapeutic potential of targeting these checkpoints to enhance anti-tumor immunity, including the use of immune checkpoint blockade (ICB) therapies and novel approaches such as CCR8-targeted therapies. Understanding the interaction between immune checkpoints and Treg cells can lead to more effective immunotherapeutic strategies, such as combining CCR8-targeted therapies with immune checkpoint inhibitors, to improve patient outcomes in cancer treatment.
Collapse
Affiliation(s)
- Guoxin Li
- Department of Oral Biology, School and Hospital of Stomatology, Jilin University, Changchun, China; Key Laboratory of Tooth Development and Bone Remodeling of Jilin Province, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Siqi Li
- Department of Oral Biology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Yilin Jiang
- Department of Oral Biology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Tao Chen
- Department of Oral Biology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhengwen An
- Department of Oral Biology, School and Hospital of Stomatology, Jilin University, Changchun, China; Key Laboratory of Tooth Development and Bone Remodeling of Jilin Province, School and Hospital of Stomatology, Jilin University, Changchun, China.
| |
Collapse
|
5
|
Nakamura M, Tanaka Y, Hakoda K, Ohira M, Kobayashi T, Kurachi K, Tamura K, Ohdan H. Antitumor effects of natural killer cells derived from gene-engineered human-induced pluripotent stem cells on hepatocellular carcinoma. Cancer Immunol Immunother 2025; 74:99. [PMID: 39904787 PMCID: PMC11794780 DOI: 10.1007/s00262-025-03940-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 01/01/2025] [Indexed: 02/06/2025]
Abstract
Mortality and recurrence rates of hepatocellular carcinoma (HCC) remain high despite the use of various treatment methods. Recently, cell-based immunotherapy using natural killer (NK) cells has attracted considerable attention in cancer immunotherapy. NK cells generated from induced pluripotent stem cells (iPSCs) are a new option for use as an NK cell resource. The eNK cells (HLCN061, developed by HEALIOS K.K.) are human iPSC-derived NK cells differentiated from clinical-grade iPSCs in which IL-15, CCR2B, CCL19, CD16a, and NKG2D have been introduced. In this study, we aimed to evaluate the potential of eNK cell therapy for HCC treatment. The analysis of eNK cells for cell surface and intracellular molecules revealed that antitumor-related surface molecules (TRAIL, CD226, and CD16) and intracellular cytotoxic factors (perforin, granzyme B, TNFα, and IFNγ) were highly expressed. In addition, eNK cells exhibited high cytotoxicity against HCC cell lines (HepG2, HuH7, and SNU-423), which are sensitive to NKG2D, TRAIL, and CD226. The TRAIL and perforin/granzyme B pathways are largely involved in this cytotoxic mechanism, as indicated by the reduction in cytotoxicity induced by TRAIL inhibitory antibodies and concanamycin A, which inhibits perforin/granzyme B-mediated cytotoxicity. Our data suggest that eNK cells, whose functions have been enhanced by genetic engineering, have the potential to improve HCC treatment.
Collapse
Affiliation(s)
- Mayuna Nakamura
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Yuka Tanaka
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan.
| | - Keishi Hakoda
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Masahiro Ohira
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Tsuyoshi Kobayashi
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | | | | | - Hideki Ohdan
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
6
|
Guo P, Zhong L, Wang T, Luo W, Zhou A, Cao D. NK cell-based immunotherapy for hepatocellular carcinoma: Challenges and opportunities. Scand J Immunol 2025; 101:e13433. [PMID: 39934640 DOI: 10.1111/sji.13433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/22/2024] [Accepted: 01/01/2025] [Indexed: 02/13/2025]
Abstract
Hepatocellular carcinoma (HCC) remains one of the most challenging malignancies globally, characterized by significant heterogeneity, late-stage diagnosis, and resistance to treatment. In recent years, the advent of immune-checkpoint blockades (ICBs) and targeted immune cell therapies has marked a substantial advancement in HCC treatment. However, the clinical efficacy of these existing therapies is still limited, highlighting the urgent need for new breakthroughs. Natural killer (NK) cells, a subset of the innate lymphoid cell family, have shown unique advantages in the anti-tumour response. With increasing evidence suggesting the crucial role of dysfunctional NK cells in the pathogenesis and progression of HCC, considerable efforts have been directed toward exploring NK cells as a potential therapeutic target for HCC. In this review, we will provide an overview of the role of NK cells in normal liver immunity and in HCC, followed by a detailed discussion of various NK cell-based immunotherapies and their potential applications in HCC treatment.
Collapse
Affiliation(s)
- Pei Guo
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Liyuan Zhong
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Tao Wang
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weijia Luo
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Aiqiang Zhou
- Guangzhou Hospital of Integrated Chinese and Western Medicine, Guangzhou, Guangdong, P.R China
| | - Deliang Cao
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
7
|
Li S, Pan Y, Ye R, Wang Y, Li L. Immune checkpoints in B-cell Lymphoma: Still an Unmet challenge from Basic research to clinical practice. Int Immunopharmacol 2025; 146:113717. [PMID: 39673995 DOI: 10.1016/j.intimp.2024.113717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/24/2024] [Accepted: 11/24/2024] [Indexed: 12/16/2024]
Abstract
In the last decade, advancements in immunotherapy knowledge have highlighted CTLA-4, PD-1, LAG-3, TIM-3, and TIGIT, decisive immune checkpoints exhibiting within the tumor microenvironment (TME), as fundamental objects for cancer immunotherapy. The widespread clinical use of immune checkpoint inhibitors (ICls), employing PD-1/PD-L1 or CTLA-4 antibodies to obstruct crucial checkpoint regulators, is noted in treating B-cell lymphoma patients. Nevertheless, the prolonged advantages of the currently employed treatments against CTLA-4, PD-1, and PD-L1 are uncommon among patients. Thus, recent focus has been progressively moved to additional immune checkpoints on T cells, like LAG-3, TIM-3, and TIGIT, which are now seen as reassuring targets for treatment and broadly acknowledged. There are several types of immunecheckpoint molecules expressed by T cells, and inhibitors targeting immune checkpoints can revive and amplify the immune response of T lymphocytes against tumors, a crucial aspect in lymphoma therapy. However, there is little knowledge about their regulation. Herein, we discuss the anti-tumor effects and functions of ICIs in controlling T-cell activity, as well as the progress in combined application with other immunotherapies.
Collapse
Affiliation(s)
- Sijia Li
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, PR China
| | - Yuanyuan Pan
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, PR China
| | - Ruyu Ye
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, PR China
| | - Yu Wang
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, PR China
| | - Li Li
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, PR China.
| |
Collapse
|
8
|
Maurer K, Park CY, Mani S, Borji M, Raths F, Gouin KH, Penter L, Jin Y, Zhang JY, Shin C, Brenner JR, Southard J, Krishna S, Lu W, Lyu H, Abbondanza D, Mangum C, Olsen LR, Lawson MJ, Fabani M, Neuberg DS, Bachireddy P, Glezer EN, Farhi SL, Li S, Livak KJ, Ritz J, Soiffer RJ, Wu CJ, Azizi E. Coordinated immune networks in leukemia bone marrow microenvironments distinguish response to cellular therapy. Sci Immunol 2025; 10:eadr0782. [PMID: 39854478 DOI: 10.1126/sciimmunol.adr0782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 12/18/2024] [Indexed: 01/26/2025]
Abstract
Understanding how intratumoral immune populations coordinate antitumor responses after therapy can guide treatment prioritization. We systematically analyzed an established immunotherapy, donor lymphocyte infusion (DLI), by assessing 348,905 single-cell transcriptomes from 74 longitudinal bone marrow samples of 25 patients with relapsed leukemia; a subset was evaluated by both protein- and transcriptome-based spatial analysis. In acute myeloid leukemia (AML) DLI responders, we identified clonally expanded ZNF683+ CD8+ cytotoxic T lymphocytes with in vitro specificity for patient-matched AML. These cells originated primarily from the DLI product and appeared to coordinate antitumor immune responses through interaction with diverse immune cell types within the marrow microenvironment. Nonresponders lacked this cross-talk and had cytotoxic T lymphocytes with elevated TIGIT expression. Our study identifies recipient bone marrow microenvironment differences as a determinant of an effective antileukemia response and opens opportunities to modulate cellular therapy.
Collapse
Affiliation(s)
- Katie Maurer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Cameron Y Park
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10027, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Shouvik Mani
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10027, USA
- Department of Computer Science, Columbia University, New York, NY 10027, USA
| | - Mehdi Borji
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | | | - Livius Penter
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Hematology, Oncology, and Tumorimmunology, Campus Virchow Klinikum, Berlin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Yinuo Jin
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10027, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Jia Yi Zhang
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10027, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Crystal Shin
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10027, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - James R Brenner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Jackson Southard
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sachi Krishna
- Spatial Technology Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Wesley Lu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Haoxiang Lyu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Domenic Abbondanza
- Spatial Technology Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA
| | - Chanell Mangum
- Spatial Technology Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Lars Rønn Olsen
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | | | | | - Donna S Neuberg
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Pavan Bachireddy
- Department of Hematopoietic Biology & Malignancy, MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Samouil L Farhi
- Spatial Technology Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Shuqiang Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kenneth J Livak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jerome Ritz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Robert J Soiffer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Elham Azizi
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10027, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Department of Computer Science, Columbia University, New York, NY 10027, USA
| |
Collapse
|
9
|
Ghaneialvar H, Jahani S, Hashemi E, Khalilzad MA, Falahi S, Rashidi MA, Majidpoor J, Najafi S. Combining anti-checkpoint immunotherapies and cancer vaccines as a novel strategy in oncological therapy: A review. Hum Immunol 2025; 86:111209. [PMID: 39662393 DOI: 10.1016/j.humimm.2024.111209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/17/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024]
Abstract
The field of cancer immunotherapy has experienced remarkable advancements in the treatment of human cancers over recent decades. Therapeutic cancer vaccines have been employed to elicit antitumor immune responses through the generation of specific reactions against tumor-associated antigens. Although preclinical studies have demonstrated hopeful results and at least one product is approved for clinical use, the overall efficacy of cancer vaccines remains restricted. The co-administration of anti-checkpoint antibodies alongside cancer vaccines is proposed as a potential strategy to enhance the clinical efficacy of immunotherapies. Among the various anti-checkpoint agents, monoclonal antibodies targeting CD127, OX40, and CD40 have been further investigated in combined administration with cancer vaccines, demonstrating a synergistic impact on disease outcomes in both animal models and human subjects. This combinational approach has been shown to suppress tumor regression, improve survival rates, and promote the efficacy of cancer vaccines via multiple mechanisms, including the augmentation of generation, activation, and expansion of CD8+ T cells, as well as the production of tumor-inhibitory cytokines. Importantly, the impact of the concurrent administration of anti-checkpoint agents and cancer vaccines surpass those observed with the sole vaccine, indicating that this strategy may offer significant advantages for clinical application in cancer patients. In this review, we aim to provide a comprehensive overview of the significance and therapeutic potential of the combined administration of checkpoint agonist/antagonist antibodies and cancer vaccines for human tumors.
Collapse
Affiliation(s)
- Hori Ghaneialvar
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Saleheh Jahani
- Department of Pathology, School of Medicine, University of California, San Diego, USA
| | - Elham Hashemi
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Shahab Falahi
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Mohammad Amin Rashidi
- Department of Occupational Health and Safety, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamal Majidpoor
- Department of Anatomy, Faculty of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran.
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Huang X, Pawge G, Snicer CE, Hsiao CHC, Wiemer AJ. PVR exposure influences the activation, adhesion, and protein expression of human CD8+ T cells, including the CD96-mediated transfer of PVR. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:55-71. [PMID: 40073261 DOI: 10.1093/jimmun/vkae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/23/2024] [Indexed: 03/14/2025]
Abstract
Poliovirus receptor (PVR) ligands have gained attention as immunotherapy targets, yet their regulation remains unclear. Here, we examine the impact of PVR exposure on primary human CD8+ T cells. We used flow cytometry and Western blot analysis to quantify expression of PVR and its ligands in naïve and effector T cells and used adhesion assays and enzyme-linked immunosorbent assay (ELISA) to assess the impact of PVR on T cell adhesion and cytokine production. Stimulation with phytohemagglutinin P strongly increased DNAM-1 expression and caused a less robust and more variable increase in TIGIT expression. Exposure to PVR-Fc enhanced the CD8+ T cell adhesion to ICAM-1-coated plates in a dose-dependent manner, while exposure to PVR-expressing K32 cells mildly decreased CD8+ T cell interferon γ release. However, PVR exposure strongly decreased the expression of DNAM-1, TIGIT, and CD96. The reduction of DNAM-1, TIGIT, and CD96 induced by PVR was dominant to the increase caused by T cell receptor signaling. The impact of PVR on their expression was completely abolished by the Q63R and F128R point mutations of PVR, while DNAM-1 was partially rescued by inhibitors of Src and protein kinase C. Additionally, PVR exposure along with T cell receptor signaling promoted the transfer of surface proteins including PVR from K32 cells to CD8+ T cells. This PVR transfer was mediated by the IgV domain of PVR and CD96 on CD8+ T cells and required cellular contact. Our findings collectively demonstrate that PVR engagement has a mild antagonistic effect on interferon γ production but strongly impacts CD8+ T cell adhesion and protein expression.
Collapse
MESH Headings
- Humans
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Adhesion/immunology
- Lymphocyte Activation/immunology
- Receptors, Virus/metabolism
- Receptors, Virus/immunology
- Receptors, Virus/genetics
- T Lineage-Specific Activation Antigen 1
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Antigens, Differentiation, T-Lymphocyte/immunology
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/immunology
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Interferon-gamma/metabolism
- Cells, Cultured
Collapse
Affiliation(s)
- Xueting Huang
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
| | - Girija Pawge
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
| | - Christina E Snicer
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
| | | | - Andrew J Wiemer
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
11
|
Dummer R, Robert C, Scolyer RA, Taube JM, Tetzlaff MT, Menzies AM, Hill A, Grob JJ, Portnoy DC, Lebbe C, Khattak MA, Cohen J, Bar-Sela G, Mehmi I, Shapira-Frommer R, Meyer N, Webber AL, Ren Y, Fukunaga-Kalabis M, Krepler C, Long GV. Neoadjuvant anti-PD-1 alone or in combination with anti-TIGIT or an oncolytic virus in resectable stage IIIB-D melanoma: a phase 1/2 trial. Nat Med 2025; 31:144-151. [PMID: 39775043 PMCID: PMC11750705 DOI: 10.1038/s41591-024-03411-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 11/12/2024] [Indexed: 01/11/2025]
Abstract
Neoadjuvant immunotherapies have shown antitumor activity in melanoma. Substudy 02C of the global, rolling-arm, phase 1/2, adaptive-design KEYMAKER-U02 trial is evaluating neoadjuvant pembrolizumab (anti-PD-1) alone or in combination, followed by adjuvant pembrolizumab, for stage IIIB-D melanoma. Here we report results from the first three arms: pembrolizumab plus vibostolimab (anti-TIGIT), pembrolizumab plus gebasaxturev (coxsackievirus A21) and pembrolizumab monotherapy. Pathologic complete responses occurred in 10 of 26 patients (38%) with pembrolizumab plus vibostolimab, 7 of 25 (28%) with pembrolizumab plus gebasaxturev and 6 of 15 (40%) with pembrolizumab monotherapy. Major pathologic responses occurred in 13 (50%), 10 (40%) and 7 (47%) patients, respectively. Safety was manageable. Treatment-related adverse events occurred in 24 of 26 patients (92%) with pembrolizumab plus vibostolimab, 21 of 25 (84%) with pembrolizumab plus gebasaxturev and 12 of 15 (80%) with pembrolizumab monotherapy; grade 3 or 4 treatment-related adverse events occurred in 2 (8%), 7 (28%) and 1 (7%) patient in each arm, respectively. No deaths due to adverse events occurred. Exploratory objective responses per RECIST v1.1 were observed in 13 (50%), 8 (32%) and 4 (27%) patients, in each arm, respectively. In a post hoc analysis, scores for tumor mutational burden and an 18-gene T cell-inflamed gene expression profile were generally higher in patients with major pathologic response. Longer follow-up will provide insight into the incremental benefit of combining neoadjuvant pembrolizumab with other therapies in stage IIIB-D melanoma. ClinicalTrials.gov registration: NCT04303169 .
Collapse
Affiliation(s)
| | | | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney; Faculty of Medicine and Health, The University of Sydney; Royal Prince Alfred Hospital and NSW Health Pathology; Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Janis M Taube
- Johns Hopkins Bloomberg-Kimmel Institute for Cancer Immunotherapy, Baltimore, MD, USA
| | | | - Alexander M Menzies
- Melanoma Institute Australia, The University of Sydney; Faculty of Medicine and Health, The University of Sydney; and Mater and Royal North Shore Hospitals, Sydney, New South Wales, Australia
| | - Andrew Hill
- Tasman Health Care, Southport, Queensland, Australia
| | | | - David C Portnoy
- West Cancer Center and Research Institute, Germantown, TN, USA
| | - Celeste Lebbe
- Université Paris Cité, Dermato-Oncology and CIC Hôpital Saint-Louis AP-HP, Cancer Institute AP-HP Nord-Université Paris Cité, Paris, France
| | - Muhammad A Khattak
- Fiona Stanley Hospital and Edith Cowan University, Perth, Western Australia, Australia
| | - Jonathan Cohen
- Sharett Institute of Oncology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Gil Bar-Sela
- Emek Medical Center, Afula, Israel
- Technion-Israel Institute of Technology, Haifa, Israel
| | - Inderjit Mehmi
- Angeles Clinic and Research Institute, a Cedars-Sinai affiliate, Los Angeles, CA, USA
| | | | - Nicolas Meyer
- Dermatology, Clinique Médipole Garonne, Toulouse, France
| | | | | | | | | | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney; Faculty of Medicine and Health, The University of Sydney; and Mater and Royal North Shore Hospitals, Sydney, New South Wales, Australia
| |
Collapse
|
12
|
Nagano T, Takada K, Hashinokuchi A, Matsudo K, Kinoshita F, Akamine T, Kohno M, Shimokawa M, Takenaka T, Oda Y, Yoshizumi T. Clinical significance of CD155 expression in surgically resected lung squamous cell carcinoma. Int J Clin Oncol 2025; 30:62-71. [PMID: 39441454 DOI: 10.1007/s10147-024-02640-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Cluster of differentiation 155 (CD155) is expressed in many tumor types. CD155 is involved in the immune avoidance of tumor cells and contributes to tumor development and progression. Therefore, CD155 is a novel target for cancer immunotherapy. The clinical significance of CD155 expression in lung squamous cell carcinoma (LUSC) has not been fully elucidated. MATERIALS AND METHODS We performed a retrospective analysis of 264 patients with surgically resected LUSC. Immunohistochemistry was used to evaluate CD155 expression. The association of CD155 expression with clinicopathological features and clinical outcomes was assessed. We also analyzed the relationship between CD155 expression and programmed cell death-ligand 1 (PD-L1) expression and tumor-infiltrating lymphocytes. RESULTS Among the 264 patients, 137 patients (51.9%) were classified in the high CD155 expression group. High CD155 expression was significantly associated with pleural invasion, vascular invasion, PD-L1 positivity, and high CD3, CD4, and CD8 expressions. In multivariate analysis, the presence of pleural invasion and PD-L1 positivity were independent predictors of high CD155 expression. Kaplan-Meier curve analysis showed that high CD155 expression was significantly associated with shorter disease-free survival and overall survival. In multivariate analysis, high CD155 expression was an independent poor prognostic factor for overall survival, but not for disease-free survival. Subgroup analyses revealed that the prognostic effect of CD155 expression was observed in the PD-L1 positive group but not the PD-L1 negative group. CONCLUSION Our analysis revealed that high CD155 expression significantly predicted poor prognosis in patients with surgically resected LUSC, especially in patients with PD-L1-positive tumors.
Collapse
Affiliation(s)
- Taichi Nagano
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuki Takada
- Department of Surgery, Saiseikai Fukuoka General Hospital, 1-3-46 Tenjin, Chuo-ku, Fukuoka, 810-0001, Japan.
| | - Asato Hashinokuchi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kyoto Matsudo
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Fumihiko Kinoshita
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takaki Akamine
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mikihiro Kohno
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mototsugu Shimokawa
- Department of Biostatistics, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Tomoyoshi Takenaka
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
13
|
Williams CJM, Peddle AM, Kasi PM, Seligmann JF, Roxburgh CS, Middleton GW, Tejpar S. Neoadjuvant immunotherapy for dMMR and pMMR colorectal cancers: therapeutic strategies and putative biomarkers of response. Nat Rev Clin Oncol 2024; 21:839-851. [PMID: 39317818 DOI: 10.1038/s41571-024-00943-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 09/26/2024]
Abstract
Approximately 15% of locally advanced colorectal cancers (CRC) have DNA mismatch repair deficiency (dMMR), resulting in high microsatellite instability and a high tumour mutational burden. These cancers are frequently sensitive to therapy with immune-checkpoint inhibitors (ICIs) in the metastatic setting. This sensitivity seems to be even more pronounced in locally advanced disease, and organ preservation has become a realistic aim in ongoing clinical trials involving patients with dMMR rectal cancer. By contrast, metastatic CRCs with proficient DNA mismatch repair (pMMR) are generally resistant to ICIs, although a proportion of locally advanced pMMR tumours seem to have a high degree of sensitivity to ICIs. In this Review, we describe the current and emerging clinical evidence supporting the use of neoadjuvant ICIs in patients with dMMR and pMMR CRC, and the potential advantages (based on a biological rationale) of such an approach. We discuss how neoadjuvant 'window-of-opportunity' trials are being leveraged to progress biomarker discovery and we provide an overview of potential predictive biomarkers of response to ICIs, exploring the challenges faced when evaluating such biomarkers in biopsy-derived samples. Lastly, we describe how these discoveries might be used to drive a rational approach to trialling novel immunotherapeutic strategies in patients with pMMR CRC, with the ultimate aim of disease eradication and the generation of long-term immunosurveillance.
Collapse
Affiliation(s)
| | | | - Pashtoon M Kasi
- Department of Gastrointestinal Oncology, City of Hope Orange County Lennar Foundation Cancer Center, Irvine, CA, USA
| | - Jenny F Seligmann
- Division of Oncology, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | | | - Gary W Middleton
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | | |
Collapse
|
14
|
Wang C, Han H, Cheng F, Wang H, Wang J, Lv C, Jiang S, Peng Y, Zhao X. Clinical significance and potential mechanism of AEBP1 in glioblastoma. J Neuropathol Exp Neurol 2024; 83:1020-1029. [PMID: 39190880 DOI: 10.1093/jnen/nlae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024] Open
Abstract
Glioblastomas (GBM), the most common primary brain tumor, lack accurate prognostic markers and have a poor prognosis. Our study was designed to identify effective biomarkers for GBM prognosis analysis and development of precise treatments. Differentially expressed genes (DEGs) between GBM patients and controls were analyzed from the Xena database and GEPIA. Based on the screened DEGs, univariate COX and LASSO regression analysis were performed to identify the most relevant genes associated with GBM prognosis. Genes highly expressed in GBM patients were selected to construct receiver operating characteristic analysis and enrichment analysis was constructed on groups of high and low expression of adipocyte enhancer-binding protein 1 (AEBP1). CIBERSORT, ssGSEA and ESTIMATE were used to perform immune infiltration analysis. About 3297 DEGs were identified using data from Xena database; 8 prognostic genes were identified. AEBP1, which plays a role in neuronal differentiation and development, was positively correlated in GBMs with immune infiltration; its high expression in cancer patients is associated with short overall survival and advanced tumor staging. This study suggests that AEBP1 could serve as a prognostic marker for GBMs and that patients with high expression may have a better response to immunotherapy.
Collapse
Affiliation(s)
- Chengcheng Wang
- Department of Dermatology, Xingtai People's Hospital, Xingtai, China
| | - Huan Han
- Department of Hematology, Xingtai People's Hospital, Xingtai, China
| | - Fang Cheng
- Department of Dermatology, Xingtai People's Hospital, Xingtai, China
| | - Hao Wang
- Department of Neurosurgery, Xingtai People's Hospital, Xingtai, China
| | - Junlong Wang
- Department of Dermatology, Xingtai People's Hospital, Xingtai, China
| | - Chong Lv
- Department of Dermatology, Xingtai People's Hospital, Xingtai, China
| | - Shibin Jiang
- Department of Dermatology, Xingtai People's Hospital, Xingtai, China
| | - Yan Peng
- Department of Dermatology, Shahe City People's Hospital, Xingtai, China
| | - Xiaoling Zhao
- Department of Oncology, Xingtai People's Hospital, Xingtai, China
| |
Collapse
|
15
|
Li CL, Ma XY, Yi P. Bispecific Antibodies, Immune Checkpoint Inhibitors, and Antibody-Drug Conjugates Directing Antitumor Immune Responses: Challenges and Prospects. Cell Biochem Funct 2024; 42:e70011. [PMID: 39463028 DOI: 10.1002/cbf.70011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/27/2024] [Accepted: 10/13/2024] [Indexed: 10/29/2024]
Abstract
Tumor immunotherapy includes bispecific antibodies (BsAbs), immune checkpoint inhibitors (ICIs), vaccines, and adoptive cell immunotherapy. BsAbs belong to the family of antibodies that can specifically target two or more different antigens and are a promising option for tumor immunotherapy. Immune checkpoints are antibodies targeting PD-1, PD-L1, and CTLA4 and have demonstrated remarkable therapeutic efficacy in the treatment of hematological and solid tumors, whose combination therapies have been shown to synergistically enhance the antitumor effects of BsAbs. In addition, the clinical efficacy of existing monoclonal antibodies targeting PD-1 (e.g., ipilimumab, nivolumab, pembrolizumab, and cemiplimab) and PD-L1 (e.g., atezolizumab, avelumab, and durvalumab) could also be enhanced by conjugation to small drugs as antibody-drug conjugates (ADCs). The development of truly effective therapies for patients with treatment-resistant cancers can be achieved by optimizing the various components of ADCs.
Collapse
Affiliation(s)
- Chen Lu Li
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Yuan Ma
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Yi
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Yamada Y, Miyoshi H, Takeuchi M, Nakashima K, Yamada K, Kato T, Tanaka K, Kohno K, Imaizumi Y, Miyazaki Y, Ohshima K. TIGIT expression on neoplastic cells is a poor prognostic factor for adult T-cell leukaemia/lymphoma. Pathology 2024; 56:993-999. [PMID: 39266421 DOI: 10.1016/j.pathol.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/02/2024] [Accepted: 06/02/2024] [Indexed: 09/14/2024]
Abstract
Adult T-cell leukaemia/lymphoma (ATLL) is an aggressive peripheral T-cell neoplasm with a poor prognosis. T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domains (TIGIT) is an immune checkpoint receptor expressed on T and natural killer cells. Although increased TIGIT expression in the tumour microenvironment is associated with poor prognosis in various neoplasms, its relevance in ATLL remains unknown. Herein, we investigated the clinicopathological impact of TIGIT expression on ATLL using immunohistochemistry. TIGIT expression was detected in 21 of 84 patients (25%). A partial association between the clinical features and immune checkpoint molecules and the expression of TIGIT was found including sIL-2R, CD86 and GITR. TIGIT-positive patients [median survival time (MST) 8.9 months, 95% confidence interval (CI) 7.7-15.6] had inferior overall survival compared with TIGIT-negative patients (MST 18.7 months, 95% CI 12.0-36.4) (p=0.0124]. TIGIT expression maintained its prognostic value for overall survival in both univariate and multivariate analyses [hazard ratio (HR) 1.909; 95% CI 1.044-3.488; p=0.0356]. Further studies are required to clarify the clinical and biological significance of TIGIT expression in patients with ATLL.
Collapse
Affiliation(s)
- Yuichi Yamada
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan; Department of Hematology, Atomic Bomb Disease and Hibakusha Medicine Unit, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Department of Hematology, Nagasaki University Hospital, Nagasaki, Japan
| | - Hiroaki Miyoshi
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan.
| | - Mai Takeuchi
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Kazutaka Nakashima
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Kyohei Yamada
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Takeharu Kato
- Department of Hematology, Nagasaki University Hospital, Nagasaki, Japan
| | - Ken Tanaka
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan
| | - Kei Kohno
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Yoshitaka Imaizumi
- Department of Hematology, National Hospital Organization Nagasaki Medical Center, Omura, Japan
| | - Yasushi Miyazaki
- Department of Hematology, Atomic Bomb Disease and Hibakusha Medicine Unit, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Department of Hematology, Nagasaki University Hospital, Nagasaki, Japan; Department of Hematology, Atomic Bomb Disease and Hibakusha Medicine Unit, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Koichi Ohshima
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
17
|
Srisantitham J, Suwanpitak S, Thongsin N, Wattanapanitch M. Generation of a homozygous TIGIT gene knockout (TIGIT -/-) human iPSC line (MUSIi001-A-3) using CRISPR/Cas9 system. Stem Cell Res 2024; 81:103601. [PMID: 39476616 DOI: 10.1016/j.scr.2024.103601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/21/2024] [Indexed: 12/15/2024] Open
Abstract
Adoptive cell therapy for solid cancers involves enhancing and reinfusing immune cells to target tumor cells. The advancement of induced pluripotent stem cell technology enables the generation of immune cell products like T and NK cells for ACT. However, the expression of inhibitory receptors, such as TIGIT, may limit the functionality of these immune effector cells. In this study, we generated a homozygousTIGITgene knockout iPSC line to potentially prevent inhibitory signaling and exhaustion, thereby creating potent "off-the-shelf" immune cell products for cellular immunotherapy applications. This approach could offer a new frontier in the fight against solid tumors.
Collapse
Affiliation(s)
- Jakkrapatra Srisantitham
- Siriraj Center for Regenerative Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Siriwal Suwanpitak
- Siriraj Center for Regenerative Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nontaphat Thongsin
- Siriraj Center for Regenerative Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Methichit Wattanapanitch
- Siriraj Center for Regenerative Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
18
|
Franzese O. Tumor Microenvironment Drives the Cross-Talk Between Co-Stimulatory and Inhibitory Molecules in Tumor-Infiltrating Lymphocytes: Implications for Optimizing Immunotherapy Outcomes. Int J Mol Sci 2024; 25:12848. [PMID: 39684559 DOI: 10.3390/ijms252312848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
This review explores some of the complex mechanisms underlying antitumor T-cell response, with a specific focus on the balance and cross-talk between selected co-stimulatory and inhibitory pathways. The tumor microenvironment (TME) fosters both T-cell activation and exhaustion, a dual role influenced by the local presence of inhibitory immune checkpoints (ICs), which are exploited by cancer cells to evade immune surveillance. Recent advancements in IC blockade (ICB) therapies have transformed cancer treatment. However, only a fraction of patients respond favorably, highlighting the need for predictive biomarkers and combination therapies to overcome ICB resistance. A crucial aspect is represented by the complexity of the TME, which encompasses diverse cell types that either enhance or suppress immune responses. This review underscores the importance of identifying the most critical cross-talk between inhibitory and co-stimulatory molecules for developing approaches tailored to patient-specific molecular and immune profiles to maximize the therapeutic efficacy of IC inhibitors and enhance clinical outcomes.
Collapse
Affiliation(s)
- Ornella Franzese
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
19
|
Jo Y, Sim HI, Yun B, Park Y, Jin HS. Revisiting T-cell adhesion molecules as potential targets for cancer immunotherapy: CD226 and CD2. Exp Mol Med 2024; 56:2113-2126. [PMID: 39349829 PMCID: PMC11541569 DOI: 10.1038/s12276-024-01317-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/26/2024] [Accepted: 07/04/2024] [Indexed: 10/03/2024] Open
Abstract
Cancer immunotherapy aims to initiate or amplify immune responses that eliminate cancer cells and create immune memory to prevent relapse. Immune checkpoint inhibitors (ICIs), which target coinhibitory receptors on immune effector cells, such as CTLA-4 and PD-(L)1, have made significant strides in cancer treatment. However, they still face challenges in achieving widespread and durable responses. The effectiveness of anticancer immunity, which is determined by the interplay of coinhibitory and costimulatory signals in tumor-infiltrating immune cells, highlights the potential of costimulatory receptors as key targets for immunotherapy. This review explores our current understanding of the functions of CD2 and CD226, placing a special emphasis on their potential as novel agonist targets for cancer immunotherapy. CD2 and CD226, which are present mainly on T and NK cells, serve important functions in cell adhesion and recognition. These molecules are now recognized for their costimulatory benefits, particularly in the context of overcoming T-cell exhaustion and boosting antitumor responses. The importance of CD226, especially in anti-TIGIT therapy, along with the CD2‒CD58 axis in overcoming resistance to ICI or chimeric antigen receptor (CAR) T-cell therapies provides valuable insights into advancing beyond the current barriers of cancer immunotherapy, underscoring their promise as targets for novel agonist therapy.
Collapse
Affiliation(s)
- Yunju Jo
- Chemical and Biological Integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Hye-In Sim
- Chemical and Biological Integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Bohwan Yun
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Yoon Park
- Chemical and Biological Integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea.
| | - Hyung-Seung Jin
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| |
Collapse
|
20
|
Orrapin S, Moonmuang S, Udomruk S, Yongpitakwattana P, Pruksakorn D, Chaiyawat P. Unlocking the tumor-immune microenvironment in osteosarcoma: insights into the immune landscape and mechanisms. Front Immunol 2024; 15:1394284. [PMID: 39359731 PMCID: PMC11444963 DOI: 10.3389/fimmu.2024.1394284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/19/2024] [Indexed: 10/04/2024] Open
Abstract
Osteosarcoma has a unique tumor microenvironment (TME), which is characterized as a complex microenvironment comprising of bone cells, immune cells, stromal cells, and heterogeneous vascular structures. These elements are intricately embedded in a mineralized extracellular matrix, setting it apart from other primary TMEs. In a state of normal physiological function, these cell types collaborate in a coordinated manner to maintain the homeostasis of the bone and hematopoietic systems. However, in the pathological condition, i.e., neoplastic malignancies, the tumor-immune microenvironment (TIME) has been shown to promote cancer cells proliferation, migration, apoptosis and drug resistance, as well as immune escape. The intricate and dynamic system of the TIME in osteosarcoma involves crucial roles played by various infiltrating cells, the complement system, and exosomes. This complexity is closely associated with tumor cells evading immune surveillance, experiencing uncontrolled proliferation, and facilitating metastasis. In this review, we elucidate the intricate interplay between diverse cell populations in the osteosarcoma TIME, each contributing uniquely to tumor progression. From chondroblastic and osteoblastic osteosarcoma cells to osteoclasts, stromal cells, and various myeloid and lymphoid cell subsets, the comprehensive single-cell analysis provides a detailed roadmap of the complex osteosarcoma ecosystem. Furthermore, we summarize the mutations, epigenetic mechanisms, and extracellular vesicles that dictate the immunologic landscape and modulate the TIME of osteosarcoma. The perspectives of the clinical implementation of immunotherapy and therapeutic approaches for targeting immune cells are also intensively discussed.
Collapse
Affiliation(s)
- Santhasiri Orrapin
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sutpirat Moonmuang
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
| | - Sasimol Udomruk
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Petlada Yongpitakwattana
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Dumnoensun Pruksakorn
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Parunya Chaiyawat
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
21
|
Ding S, Zhao P, Song S, Yang Y, Peng C, Chang X, Liu C. A novel enzyme-linked immunosorbent assay tool to evaluate plasma soluble CD226 in primary Sjögren's syndrome. Anal Biochem 2024; 692:115573. [PMID: 38768695 DOI: 10.1016/j.ab.2024.115573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
CD226 is an important receptor constitutively expressed on most immune cells, performing vital functions in immune responses. However, the levels of soluble CD226 (sCD226) and its roles in primary Sjögren syndrome (pSS) remain unclear. In this study, we developed two novel mouse anti-human CD226 monoclonal antibodies (mAbs) and established a novel sandwich enzyme-linked immunosorbent assay (ELISA) system, which proved to be highly effective in detecting human sCD226. We then analyzed the expression of sCD226 in the plasma of pSS patients. Our results showed that the levels of sCD226 were significantly lower in patients with pSS compared to healthy controls. The significant decline was also observed in active group and the patients with high levels of IgG or positive anti-SSB. Additionally, reduced sCD226 was found to be negatively correlated with the disease activity of pSS and several clinical manifestations, including arthralgia, fatigue, decayed tooth and interstitial lung disease (ILD). Furthermore, receiver operator characteristics (ROC) curve analysis showed that sCD226 displayed outstanding capacity in discriminating pSS and predicting the disease activity. Altogether, plasma sCD226 emerges as a promising candidate for diagnostic markers in the context of pSS.
Collapse
Affiliation(s)
- Sisi Ding
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Ping Zhao
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
| | - Saizhe Song
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Yanhong Yang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Cheng Peng
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Xin Chang
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| | - Cuiping Liu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| |
Collapse
|
22
|
Douka S, Papamoschou V, Raimo M, Mastrobattista E, Caiazzo M. Harnessing the Power of NK Cell Receptor Engineering as a New Prospect in Cancer Immunotherapy. Pharmaceutics 2024; 16:1143. [PMID: 39339180 PMCID: PMC11434712 DOI: 10.3390/pharmaceutics16091143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Natural killer (NK) cells have recently gained popularity as an alternative for cancer immunotherapy. Adoptive cell transfer employing NK cells offers a safer therapeutic option compared to T-cell-based therapies, due to their significantly lower toxicity and the availability of diverse autologous and allogeneic NK cell sources. However, several challenges are associated with NK cell therapies, including limited in vivo persistence, the immunosuppressive and hostile tumor microenvironment (TME), and the lack of effective treatments for solid tumors. To address these limitations, the modification of NK cells to stably produce cytokines has been proposed as a strategy to enhance their persistence and proliferation. Additionally, the overexpression of activating receptors and the blockade of inhibitory receptors can restore the NK cell functions hindered by the TME. To further improve tumor infiltration and the elimination of solid tumors, innovative approaches focusing on the enhancement of NK cell chemotaxis through the overexpression of chemotactic receptors have been introduced. This review highlights the latest advancements in preclinical and clinical studies investigating the engineering of activating, inhibitory, and chemotactic NK cell receptors; discusses recent progress in cytokine manipulation; and explores the potential of combining the chimeric antigen receptor (CAR) technology with NK cell receptors engineering.
Collapse
Affiliation(s)
- Stefania Douka
- Pharmaceutics Division, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Vasilis Papamoschou
- Pharmaceutics Division, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Monica Raimo
- Glycostem Therapeutics B.V., Kloosterstraat 9, 5349 AB Oss, The Netherlands;
| | - Enrico Mastrobattista
- Pharmaceutics Division, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Massimiliano Caiazzo
- Pharmaceutics Division, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
| |
Collapse
|
23
|
Jiang P, Jing S, Sheng G, Jia F. The basic biology of NK cells and its application in tumor immunotherapy. Front Immunol 2024; 15:1420205. [PMID: 39221244 PMCID: PMC11361984 DOI: 10.3389/fimmu.2024.1420205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Natural Killer (NK) cells play a crucial role as effector cells within the tumor immune microenvironment, capable of identifying and eliminating tumor cells through the expression of diverse activating and inhibitory receptors that recognize tumor-related ligands. Therefore, harnessing NK cells for therapeutic purposes represents a significant adjunct to T cell-based tumor immunotherapy strategies. Presently, NK cell-based tumor immunotherapy strategies encompass various approaches, including adoptive NK cell therapy, cytokine therapy, antibody-based NK cell therapy (enhancing ADCC mediated by NK cells, NK cell engagers, immune checkpoint blockade therapy) and the utilization of nanoparticles and small molecules to modulate NK cell anti-tumor functionality. This article presents a comprehensive overview of the latest advances in NK cell-based anti-tumor immunotherapy, with the aim of offering insights and methodologies for the clinical treatment of cancer patients.
Collapse
Affiliation(s)
- Pan Jiang
- Department of General Medicine, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Department of Infectious Diseases, Jingzhou First People’s Hospital, Jingzhou, China
| | - Shaoze Jing
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Gaohong Sheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fajing Jia
- Department of General Medicine, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
24
|
Cheng W, Kang K, Zhao A, Wu Y. Dual blockade immunotherapy targeting PD-1/PD-L1 and CTLA-4 in lung cancer. J Hematol Oncol 2024; 17:54. [PMID: 39068460 PMCID: PMC11283714 DOI: 10.1186/s13045-024-01581-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
Cancer immunotherapies, represented by immune checkpoint inhibitors (ICIs), have reshaped the treatment paradigm for both advanced non-small cell lung cancer and small cell lung cancer. Programmed death receptor-1/programmed death receptor ligand-1 (PD-1/PD-L1) and cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) are some of the most common and promising targets in ICIs. Compared to ICI monotherapy, which occasionally demonstrates treatment resistance and limited efficacy, the dual blockade immunotherapy targeting PD-1/PD-L1 and CTLA-4 operates at different stages of T cell activation with synergistically enhancing immune responses against cancer cells. This emerging dual therapy heralds a new direction for cancer immunotherapy, which, however, may increase the risk of drug-related adverse reactions while improving efficacy. Previous clinical trials have explored combination therapy strategy of anti-PD-1/PD-L1 and anti-CTLA-4 agents in lung cancer, yet its efficacy remains to be unclear with the inevitable incidence of immune-related adverse events. The recent advent of bispecific antibodies has made this sort of dual targeting more feasible, aiming to alleviate toxicity without compromising efficacy. Thus, this review highlights the role of dual blockade immunotherapy targeting PD-1/PD-L1 and CTLA-4 in treating lung cancer, and further elucidates its pre-clinical mechanisms and current advancements in clinical trials. Besides, we also provide novel insights into the potential combinations of dual blockade therapies with other strategies to optimize the future treatment mode for lung cancer.
Collapse
Affiliation(s)
- Weishi Cheng
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Kai Kang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ailin Zhao
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Yijun Wu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
25
|
Fang T, Chen G. Non-viral vector-based genome editing for cancer immunotherapy. Biomater Sci 2024; 12:3068-3085. [PMID: 38716572 DOI: 10.1039/d4bm00286e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Despite the exciting promise of cancer immunotherapy in the clinic, immune checkpoint blockade therapy and T cell-based therapies are often associated with low response rates, intrinsic and adaptive immune resistance, and systemic side effects. CRISPR-Cas-based genome editing appears to be an effective strategy to overcome these unmet clinical needs. As a safer delivery platform for the CRISPR-Cas system, non-viral nanoformulations have been recently explored to target tumor cells and immune cells, aiming to improve cancer immunotherapy on a gene level. In this review, we summarized the efforts of non-viral vector-based CRISPR-Cas-mediated genome editing in tumor cells and immune cells for cancer immunotherapy. Their design rationale and specific applications were highlighted.
Collapse
Affiliation(s)
- Tianxu Fang
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada.
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Guojun Chen
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada.
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada
| |
Collapse
|
26
|
Sun J, Zhang X, Xue L, Cheng L, Zhang J, Chen X, Shen Z, Li K, Wang L, Huang C, Song J. Structural insights into the unique pH-responsive characteristics of the anti-TIGIT therapeutic antibody Ociperlimab. Structure 2024; 32:550-561.e5. [PMID: 38460520 DOI: 10.1016/j.str.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/28/2023] [Accepted: 02/13/2024] [Indexed: 03/11/2024]
Abstract
TIGIT is mainly expressed on T cells and is an inhibitory checkpoint receptor that binds to its ligand PVR in the tumor microenvironment. Anti-TIGIT monoclonal antibodies (mAbs) such as Ociperlimab and Tiragolumab block the TIGIT-PVR interaction and are in clinical development. However, the molecular blockade mechanism of these mAbs remains elusive. Here, we report the crystal structures of TIGIT in complex with Ociperlimab_Fab and Tiragolumab_Fab revealing that both mAbs bind TIGIT with a large steric clash with PVR. Furthermore, several critical epitopic residues are identified. Interestingly, the binding affinity of Ociperlimab toward TIGIT increases approximately 17-fold when lowering the pH from 7.4 to 6.0. Our structure shows a strong electrostatic interaction between ASP103HCDR3 and HIS76TIGIT explaining the pH-responsive mechanism of Ociperlimab. In contrast, Tiragolumab does not show an acidic pH-dependent binding enhancement. Our results provide valuable information that could help to improve the efficacy of therapeutic antibodies for cancer treatment.
Collapse
MESH Headings
- Hydrogen-Ion Concentration
- Humans
- Models, Molecular
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/chemistry
- Crystallography, X-Ray
- Protein Binding
- Antibodies, Monoclonal/chemistry
- Binding Sites
- Antibodies, Monoclonal, Humanized/chemistry
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/immunology
Collapse
Affiliation(s)
- Jian Sun
- Department of Biologics, BeiGene (Beijing) Co., Ltd, Beijing, China
| | - Xiangxiang Zhang
- Department of Biologics, BeiGene (Beijing) Co., Ltd, Beijing, China
| | - Liu Xue
- Department of Biologics, BeiGene (Beijing) Co., Ltd, Beijing, China
| | - Liang Cheng
- Department of Biologics, BeiGene (Beijing) Co., Ltd, Beijing, China
| | - Jing Zhang
- Department of Biologics, BeiGene (Beijing) Co., Ltd, Beijing, China
| | - Xin Chen
- Department of Translational Science, BeiGene (Beijing) Co., Ltd, Beijing, China
| | - Zhirong Shen
- Department of Translational Science, BeiGene (Beijing) Co., Ltd, Beijing, China
| | - Kang Li
- Department of Biologics, BeiGene (Beijing) Co., Ltd, Beijing, China
| | - Lai Wang
- Department of Biology, BeiGene (Beijing) Co., Ltd, Beijing, China
| | - Chichi Huang
- Department of Biologics, BeiGene (Beijing) Co., Ltd, Beijing, China
| | - Jing Song
- Department of Biologics, BeiGene (Beijing) Co., Ltd, Beijing, China.
| |
Collapse
|
27
|
Zhou X, Li Y, Zhang X, Li B, Jin S, Wu M, Zhou X, Dong Q, Du J, Zhai W, Wu Y, Qiu L, Li G, Qi Y, Zhao W, Gao Y. Hemin blocks TIGIT/PVR interaction and induces ferroptosis to elicit synergistic effects of cancer immunotherapy. SCIENCE CHINA. LIFE SCIENCES 2024; 67:996-1009. [PMID: 38324132 DOI: 10.1007/s11427-023-2472-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/23/2023] [Indexed: 02/08/2024]
Abstract
The immune checkpoint TIGIT/PVR blockade exhibits significant antitumor effects through activation of NK and CD8+ T cell-mediated cytotoxicity. Immune checkpoint blockade (ICB) could induce tumor ferroptosis through IFN-γ released by immune cells, indicating the synergetic effects of ICB with ferroptosis in inhibiting tumor growth. However, the development of TIGIT/PVR inhibitors with ferroptosis-inducing effects has not been explored yet. In this study, the small molecule Hemin that could bind with TIGIT to block TIGIT/PVR interaction was screened by virtual molecular docking and cell-based blocking assay. Hemin could effectively restore the IL-2 secretion from Jurkat-hTIGIT cells. Hemin reinvigorated the function of CD8+ T cells to secrete IFN-γ and the elevated IFN-γ could synergize with Hemin to induce ferroptosis in tumor cells. Hemin inhibited tumor growth by boosting CD8+ T cell immune response and inducing ferroptosis in CT26 tumor model. More importantly, Hemin in combination with PD-1/PD-L1 blockade exhibited more effective antitumor efficacy in anti-PD-1 resistant B16 tumor model. In summary, our finding indicated that Hemin blocked TIGIT/PVR interaction and induced tumor cell ferroptosis, which provided a new therapeutic strategy to combine immunotherapy and ferroptosis for cancer treatment.
Collapse
Affiliation(s)
- Xiaowen Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yang Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiangrui Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Beibei Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Shengzhe Jin
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Menghan Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiuman Zhou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen Campus, Shenzhen, 518107, China
| | - Qingyu Dong
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jiangfeng Du
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenjie Zhai
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yahong Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Lu Qiu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen Campus, Shenzhen, 518107, China
| | - Guodong Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuanming Qi
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenshan Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yanfeng Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen Campus, Shenzhen, 518107, China.
| |
Collapse
|
28
|
Noh SU, Lim J, Shin SW, Kim Y, Park WY, Batinic-Haberle I, Choi C, Park W. Single-Cell Profiling Reveals Immune-Based Mechanisms Underlying Tumor Radiosensitization by a Novel Mn Porphyrin Clinical Candidate, MnTnBuOE-2-PyP 5+ (BMX-001). Antioxidants (Basel) 2024; 13:477. [PMID: 38671924 PMCID: PMC11047573 DOI: 10.3390/antiox13040477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Manganese porphyrins reportedly exhibit synergic effects when combined with irradiation. However, an in-depth understanding of intratumoral heterogeneity and immune pathways, as affected by Mn porphyrins, remains limited. Here, we explored the mechanisms underlying immunomodulation of a clinical candidate, MnTnBuOE-2-PyP5+ (BMX-001, MnBuOE), using single-cell analysis in a murine carcinoma model. Mice bearing 4T1 tumors were divided into four groups: control, MnBuOE, radiotherapy (RT), and combined MnBuOE and radiotherapy (MnBuOE/RT). In epithelial cells, the epithelial-mesenchymal transition, TNF-α signaling via NF-кB, angiogenesis, and hypoxia-related genes were significantly downregulated in the MnBuOE/RT group compared with the RT group. All subtypes of cancer-associated fibroblasts (CAFs) were clearly reduced in MnBuOE and MnBuOE/RT. Inhibitory receptor-ligand interactions, in which epithelial cells and CAFs interacted with CD8+ T cells, were significantly lower in the MnBuOE/RT group than in the RT group. Trajectory analysis showed that dendritic cells maturation-associated markers were increased in MnBuOE/RT. M1 macrophages were significantly increased in the MnBuOE/RT group compared with the RT group, whereas myeloid-derived suppressor cells were decreased. CellChat analysis showed that the number of cell-cell communications was the lowest in the MnBuOE/RT group. Our study is the first to provide evidence for the combined radiotherapy with a novel Mn porphyrin clinical candidate, BMX-001, from the perspective of each cell type within the tumor microenvironment.
Collapse
Affiliation(s)
- Sun Up Noh
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, Republic of Korea; (S.U.N.); (S.-W.S.); (Y.K.)
- Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Jinyeong Lim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Republic of Korea; (J.L.); (W.-Y.P.)
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Sung-Won Shin
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, Republic of Korea; (S.U.N.); (S.-W.S.); (Y.K.)
| | - Yeeun Kim
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, Republic of Korea; (S.U.N.); (S.-W.S.); (Y.K.)
| | - Woong-Yang Park
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Republic of Korea; (J.L.); (W.-Y.P.)
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA;
| | - Changhoon Choi
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, Republic of Korea; (S.U.N.); (S.-W.S.); (Y.K.)
| | - Won Park
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, Republic of Korea; (S.U.N.); (S.-W.S.); (Y.K.)
- Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| |
Collapse
|
29
|
Cheng L, Chen L, Shi Y, Gu W, Ding W, Zheng X, Liu Y, Jiang J, Zheng Z. Efficacy and safety of bispecific antibodies vs. immune checkpoint blockade combination therapy in cancer: a real-world comparison. Mol Cancer 2024; 23:77. [PMID: 38627681 PMCID: PMC11020943 DOI: 10.1186/s12943-024-01956-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/07/2024] [Indexed: 04/19/2024] Open
Abstract
Emerging tumor immunotherapy methods encompass bispecific antibodies (BSABs), immune checkpoint inhibitors (ICIs), and adoptive cell immunotherapy. BSABs belong to the antibody family that can specifically recognize two different antigens or epitopes on the same antigen. These antibodies demonstrate superior clinical efficacy than monoclonal antibodies, indicating their role as a promising tumor immunotherapy option. Immune checkpoints are also important in tumor immunotherapy. Programmed cell death protein-1 (PD-1) is a widely acknowledged immune checkpoint target with effective anti-tumor activity. PD-1 inhibitors have demonstrated notable therapeutic efficacy in treating hematological and solid tumors; however, more than 50% of patients undergoing this treatment exhibit a poor response. However, ICI-based combination therapies (ICI combination therapies) have been demonstrated to synergistically increase anti-tumor effects and immune response rates. In this review, we compare the clinical efficacy and side effects of BSABs and ICI combination therapies in real-world tumor immunotherapy, aiming to provide evidence-based approaches for clinical research and personalized tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Linyan Cheng
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Lujun Chen
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China
- Institute for Cell Therapy of Soochow University, Changzhou, China
| | - Yuan Shi
- Laboratory of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Weiying Gu
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Weidong Ding
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao Zheng
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China.
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China.
- Institute for Cell Therapy of Soochow University, Changzhou, China.
| | - Yan Liu
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China.
| | - Jingting Jiang
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China.
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China.
- Institute for Cell Therapy of Soochow University, Changzhou, China.
| | - Zhuojun Zheng
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China.
| |
Collapse
|
30
|
Moussa P, Kurzrock R, Nishizaki D, Miyashita H, Lee S, Nikanjam M, Pabla S, Nesline MK, Ko H, Conroy JM, DePietro P, Sicklick JK, Kato S. Transcriptomic analysis of GITR and GITR ligand reveals cancer immune heterogeneity with implications for GITR targeting. Am J Cancer Res 2024; 14:1634-1648. [PMID: 38726288 PMCID: PMC11076267 DOI: 10.62347/eced5481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/27/2024] [Indexed: 05/12/2024] Open
Abstract
Glucocorticoid-induced tumor necrosis factor related protein (GITR) is a transmembrane protein expressed mostly on CD25+CD4+ regulatory T-cells (Tregs) and upregulated on all T-cells upon activation. It is a T-cell co-stimulatory receptor and has demonstrated promising anti-tumor activity in pre-clinical studies. To date, however, the efficacy of GITR agonism has been discouraging in clinical trials. This study explores GITR and GITR ligand (GITR-L) ribonucleic acid (RNA) expression in solid tumors in an attempt to delineate causes for variable responses to GITR agonists. RNA expression levels of 514 patients with a variety of cancer types were normalized to internal housekeeping gene profiles and ranked as percentiles. 99/514 patients (19.3%) had high GITR expression (defined as ≥ 75th percentile). Breast and lung cancer had the highest proportion of patients with high GITR expression (39% and 35%, respectively). The expression of concomitant high GITR and low-moderate GITR-L expression (defined as <75th percentile) was present in 31% and 30% of patients with breast and lung cancer respectively. High GITR expression also showed a significant independent association with high RNA expression of other immune modulator proteins, namely, PD-L1 immunohistochemistry (IHC) ≥1 (odds ratio (OR) 2.15, P=0.008), CTLA4 (OR=2.17, P=0.05) and OX40 high RNA expression (OR=2.64, P=0.001). Overall, these results suggest that breast and lung cancer have a high proportion of patients with a GITR and GITR-L RNA expression profile that merits further investigation in GITR agonism studies. The association of high GITR expression with high CTLA4 and OX40 RNA expression, as well as positive PD-L1 IHC, provides a rationale for a combination approach targeting these specific immune modulator proteins in patients whose tumors show such co-expression.
Collapse
Affiliation(s)
- Peter Moussa
- Department of Medicine, Division of Hematology-Oncology, Moores Cancer Center, UC San DiegoLa Jolla, CA, The United States
| | - Razelle Kurzrock
- Department of Medicine, Division of Hematology-Oncology, MCW Cancer Center and Genomic Sciences and Precision Medicine Center, Medical College of WisconsinMilwaukee, WI, The United States
| | - Daisuke Nishizaki
- Department of Medicine, Division of Hematology-Oncology, Moores Cancer Center, UC San DiegoLa Jolla, CA, The United States
| | - Hirotaka Miyashita
- Department of Medicine, Division of Hematology-Oncology, Dartmouth Cancer CenterLebanon, NH, The United States
| | - Suzanna Lee
- Department of Medicine, Division of Hematology-Oncology, Moores Cancer Center, UC San DiegoLa Jolla, CA, The United States
| | - Mina Nikanjam
- Department of Medicine, Division of Hematology-Oncology, Moores Cancer Center, UC San DiegoLa Jolla, CA, The United States
| | | | | | - Heidi Ko
- Labcorp OncologyDurham, NC, The United States
| | | | | | - Jason K Sicklick
- Department of Surgery, Division of Surgical Oncology, UC San DiegoSan Diego, CA, The United States
- Department of Pharmacology, UC San DiegoSan Diego, CA, The United States
- Structural and Functional Genomics Program, Moores Cancer Center, UC San DiegoLa Jolla, CA, The United States
| | - Shumei Kato
- Department of Medicine, Division of Hematology-Oncology, Moores Cancer Center, UC San DiegoLa Jolla, CA, The United States
| |
Collapse
|
31
|
Vázquez-Reyes A, Zambrano-Zaragoza JF, Agraz-Cibrián JM, Ayón-Pérez MF, Gutiérrez-Silerio GY, Del Toro-Arreola S, Alejandre-González AG, Ortiz-Martínez L, Haramati J, Tovar-Ocampo IC, Victorio-De los Santos M, Gutiérrez-Franco J. Genetic Variant of DNAM-1 rs763361 C>T Is Associated with Ankylosing Spondylitis in a Mexican Population. Curr Issues Mol Biol 2024; 46:2819-2826. [PMID: 38666906 PMCID: PMC11048971 DOI: 10.3390/cimb46040176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024] Open
Abstract
DNAM-1 (CD226) is an activating receptor expressed in CD8+ T cells, NK cells, and monocytes. It has been reported that two SNPs in the DNAM-1 gene, rs763361 C>T and rs727088 G>A, have been associated with different autoimmune diseases; however, the role of DNAM-1 in ankylosing spondylitis has been less studied. For this reason, we focused on the study of these two SNPs in association with ankylosing spondylitis. For this, 34 patients and 70 controls were analyzed using endpoint PCR with allele-specific primers. Our results suggest that rs763361 C>T is involved as a possible protective factor under the CT co-dominant model (OR = 0.34, 95% CI = 0.13-0.88, p = 0.022) and the CT + TT dominant model (OR = 0.39, 95% CI = 0.17-0.90, p = 0.025), while rs727088 G>A did not show an association with the disease in any of the inheritance models. When analyzing the relationships of the haplotypes, we found that the T + A haplotype (OR = 0.31, 95% CI = 0.13-0.73, p = 0.0083) is a protective factor for developing the disease. In conclusion, the CT and CT + TT variants of rs763361 C>T and the T + A haplotype were considered as protective factors for developing ankylosing spondylitis.
Collapse
Affiliation(s)
- Alejandro Vázquez-Reyes
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas (UACQByF), Universidad Autónoma de Nayarit, Tepic 63000, Nayarit, Mexico; (A.V.-R.)
| | - José Francisco Zambrano-Zaragoza
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas (UACQByF), Universidad Autónoma de Nayarit, Tepic 63000, Nayarit, Mexico; (A.V.-R.)
| | - Juan Manuel Agraz-Cibrián
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas (UACQByF), Universidad Autónoma de Nayarit, Tepic 63000, Nayarit, Mexico; (A.V.-R.)
| | - Miriam Fabiola Ayón-Pérez
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas (UACQByF), Universidad Autónoma de Nayarit, Tepic 63000, Nayarit, Mexico; (A.V.-R.)
| | - Gloria Yareli Gutiérrez-Silerio
- Laboratorio de Endocrinología y Nutrición, Departamento de Investigación Biomédica, Faculta de Medicina, Universidad Autónoma de Querétaro, Querétaro 76140, Querétaro, Mexico
| | - Susana Del Toro-Arreola
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Alan Guillermo Alejandre-González
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Liliana Ortiz-Martínez
- Clínica de Reumatología, Servicio de Medicina Interna, Instituto Mexicano del Seguro Social (IMSS), Tepic 63000, Nayarit, Mexico
| | - Jesse Haramati
- Laboratorio de Inmunobiología, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Iris Celeste Tovar-Ocampo
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas (UACQByF), Universidad Autónoma de Nayarit, Tepic 63000, Nayarit, Mexico; (A.V.-R.)
| | - Marcelo Victorio-De los Santos
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas (UACQByF), Universidad Autónoma de Nayarit, Tepic 63000, Nayarit, Mexico; (A.V.-R.)
| | - Jorge Gutiérrez-Franco
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas (UACQByF), Universidad Autónoma de Nayarit, Tepic 63000, Nayarit, Mexico; (A.V.-R.)
| |
Collapse
|
32
|
Vincze SR, Jaswal AP, Frederico SC, Nisnboym M, Li B, Xiong Z, Sever RE, Sneiderman CT, Rodgers M, Day KE, Latoche JD, Foley LM, Hitchens TK, Frederick R, Patel RB, Hadjipanayis CG, Raphael I, Nedrow JR, Edwards WB, Kohanbash G. ImmunoPET imaging of TIGIT in the glioma microenvironment. Sci Rep 2024; 14:5305. [PMID: 38438420 PMCID: PMC10912309 DOI: 10.1038/s41598-024-55296-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 02/22/2024] [Indexed: 03/06/2024] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor. Currently, there are few effective treatment options for GBM beyond surgery and chemo-radiation, and even with these interventions, median patient survival remains poor. While immune checkpoint inhibitors (ICIs) have demonstrated therapeutic efficacy against non-central nervous system cancers, ICI trials for GBM have typically had poor outcomes. TIGIT is an immune checkpoint receptor that is expressed on activated T-cells and has a role in the suppression of T-cell and Natural Killer (NK) cell function. As TIGIT expression is reported as both prognostic and a biomarker for anti-TIGIT therapy, we constructed a molecular imaging agent, [89Zr]Zr-DFO-anti-TIGIT (89Zr-αTIGIT), to visualize TIGIT in preclinical GBM by immunoPET imaging. PET imaging and biodistribution analysis of 89Zr-αTIGIT demonstrated uptake in the tumor microenvironment of GBM-bearing mice. Blocking antibody and irrelevant antibody tracer studies demonstrated specificity of 89Zr-αTIGIT with significance at a late time point post-tracer injection. However, the magnitude of 89Zr-αTIGIT uptake in tumor, relative to the IgG tracer was minimal. These findings highlight the features and limitations of using 89Zr-αTIGIT to visualize TIGIT in the GBM microenvironment.
Collapse
Affiliation(s)
- Sarah R Vincze
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ambika P Jaswal
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stephen C Frederico
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michal Nisnboym
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurology, Tel-Aviv Sourasky Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Bo Li
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zujian Xiong
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - ReidAnn E Sever
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Chaim T Sneiderman
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mikayla Rodgers
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Kathryn E Day
- In Vivo Imaging Facility, University of Pittsburgh Medical Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Joseph D Latoche
- In Vivo Imaging Facility, University of Pittsburgh Medical Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Lesley M Foley
- In Vivo Imaging Facility, University of Pittsburgh Medical Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - T Kevin Hitchens
- In Vivo Imaging Facility, University of Pittsburgh Medical Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robin Frederick
- In Vivo Imaging Facility, University of Pittsburgh Medical Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Ravi B Patel
- Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Costas G Hadjipanayis
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Itay Raphael
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jessie R Nedrow
- In Vivo Imaging Facility, University of Pittsburgh Medical Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | - W Barry Edwards
- Department of Biochemistry, University of Missouri, Columbia, MO, USA.
| | - Gary Kohanbash
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
33
|
Maurer K, Park CY, Mani S, Borji M, Penter L, Jin Y, Zhang JY, Shin C, Brenner JR, Southard J, Krishna S, Lu W, Lyu H, Abbondanza D, Mangum C, Olsen LR, Neuberg DS, Bachireddy P, Farhi SL, Li S, Livak KJ, Ritz J, Soiffer RJ, Wu CJ, Azizi E. Coordinated Immune Cell Networks in the Bone Marrow Microenvironment Define the Graft versus Leukemia Response with Adoptive Cellular Therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.09.579677. [PMID: 38405900 PMCID: PMC10888840 DOI: 10.1101/2024.02.09.579677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Understanding how intra-tumoral immune populations coordinate to generate anti-tumor responses following therapy can guide precise treatment prioritization. We performed systematic dissection of an established adoptive cellular therapy, donor lymphocyte infusion (DLI), by analyzing 348,905 single-cell transcriptomes from 74 longitudinal bone-marrow samples of 25 patients with relapsed myeloid leukemia; a subset was evaluated by protein-based spatial analysis. In acute myelogenous leukemia (AML) responders, diverse immune cell types within the bone-marrow microenvironment (BME) were predicted to interact with a clonally expanded population of ZNF683 + GZMB + CD8+ cytotoxic T lymphocytes (CTLs) which demonstrated in vitro specificity for autologous leukemia. This population, originating predominantly from the DLI product, expanded concurrently with NK and B cells. AML nonresponder BME revealed a paucity of crosstalk and elevated TIGIT expression in CD8+ CTLs. Our study highlights recipient BME differences as a key determinant of effective anti-leukemia response and opens new opportunities to modulate cell-based leukemia-directed therapy.
Collapse
|
34
|
Yamakawa M, Rexach JE. Cell States and Interactions of CD8 T Cells and Disease-Enriched Microglia in Human Brains with Alzheimer's Disease. Biomedicines 2024; 12:308. [PMID: 38397909 PMCID: PMC10886701 DOI: 10.3390/biomedicines12020308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/05/2024] [Accepted: 01/13/2024] [Indexed: 02/25/2024] Open
Abstract
Alzheimer's disease (AD) is a multi-stage neurodegenerative disorder characterized by beta-amyloid accumulation, hyperphosphorylated Tau deposits, neurodegeneration, neuroinflammation, and cognitive impairment. Recent studies implicate CD8 T cells as neuroimmune responders to the accumulation of AD pathology in the brain and potential contributors to toxic neuroinflammation. However, more evidence is needed to understand lymphocytes in disease, including their functional states, molecular mediators, and interacting cell types in diseased brain tissue. The scarcity of lymphocytes in brain tissue samples has limited the unbiased profiling of disease-associated cell types, cell states, drug targets, and relationships to common AD genetic risk variants based on transcriptomic analyses. However, using recent large-scale, high-quality single-nuclear sequencing datasets from over 84 Alzheimer's disease and control cases, we leverage single-nuclear RNAseq data from 800 lymphocytes collected from 70 individuals to complete unbiased molecular profiling. We demonstrate that effector memory CD8 T cells are the major lymphocyte subclass enriched in the brain tissues of individuals with AD dementia. We define disease-enriched interactions involving CD8 T cells and multiple brain cell subclasses including two distinct microglial disease states that correlate, respectively, to beta-amyloid and tau pathology. We find that beta-amyloid-associated microglia are a major hub of multicellular cross-talk gained in disease, including interactions involving both vulnerable neuronal subtypes and CD8 T cells. We reproduce prior reports that amyloid-response microglia are depleted in APOE4 carriers. Overall, these human-based studies provide additional support for the potential relevance of effector memory CD8 T cells as a lymphocyte population of interest in AD dementia and provide new candidate interacting partners and drug targets for further functional study.
Collapse
Affiliation(s)
| | - Jessica E. Rexach
- Department of Neurology, University of California Los Angeles, Los Angeles, CA 90095, USA;
| |
Collapse
|
35
|
Tang G, Ding G, Wu G, Wang X, Wang T, Zou Q, Sun K, Wu J. Low expression of PRRG2 in kidney renal clear cell carcinoma: an immune infiltration-associated prognostic biomarker. Discov Oncol 2024; 15:9. [PMID: 38227081 DOI: 10.1007/s12672-024-00864-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/11/2024] [Indexed: 01/17/2024] Open
Abstract
OBJECTIVE This study aims to explore the prognostic significance of Proline-rich γ-carboxyglutamic acid protein 2 (PRRG2) in Kidney Renal Clear Cell Carcinoma (KIRC), a prevalent and deadly cancer, and its association with immune cell infiltration, a key strategy in developing effective biomarkers. METHODS The study meticulously elucidated the prognostic significance and potential role of PRRG2 in KIRC, correlating its expression with patient sex, age, metastasis, and pathological stage. Utilizing Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA), the involvement of PRRG2 in immune response was investigated. The association between PRRG2 expression and immune cell infiltration was also scrutinized. Ultimately, cellular and tissue identity were confirmed via immunohistochemical staining and quantitative real-time PCR. RESULTS The study elucidates a notable decrease in PRRG2 expression in KIRC patients, correlating with demographic factors, metastasis, and pathological staging, and portending an unfavorable prognosis. Bioinformatic analyses underscore PRRG2's role in immune response, with its expression significantly tied to immune cell infiltration and marker expression. CONCLUSION PRRG2 may potentially impact prognosis in KIRC patients by regulating immune infiltration, thus rendering PRRG2 a promising candidate prognostic biomarker for KIRC-associated immune infiltration.
Collapse
Affiliation(s)
- Gonglin Tang
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 East Yuhuangding Road, Yantai, 264000, Shandong, China
| | - Guixin Ding
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 East Yuhuangding Road, Yantai, 264000, Shandong, China
| | - Gang Wu
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 East Yuhuangding Road, Yantai, 264000, Shandong, China
| | - Xiaofeng Wang
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 East Yuhuangding Road, Yantai, 264000, Shandong, China
| | - Tianqi Wang
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 East Yuhuangding Road, Yantai, 264000, Shandong, China
| | - Qingsong Zou
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 East Yuhuangding Road, Yantai, 264000, Shandong, China
| | - Kai Sun
- Urology Department, Shandong Provincial Hospital, Shandong University, Jinan, 250021, China.
| | - Jitao Wu
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 East Yuhuangding Road, Yantai, 264000, Shandong, China.
| |
Collapse
|
36
|
Wan Q, Huang J, Xiao Q, Zhang Z, Zhang Z, Huang L, Deng Y, Deng B, Zhao H, Zhong Y, Liu D. Astragalus Polysaccharide Alleviates Ulcerative Colitis by Regulating the Balance of mTh17/mTreg Cells through TIGIT/CD155 Signaling. Molecules 2024; 29:241. [PMID: 38202824 PMCID: PMC10780736 DOI: 10.3390/molecules29010241] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
The balance between memory Th17 cells (mTh17) and memory Treg cells (mTreg) plays a key role in the pathogenesis of ulcerative colitis (UC), and TIGIT signaling is involved in the differentiation of mTh17/mTreg cells. Astragalus polysaccharide (APS) has good immunomodulatory and anti-inflammatory effects. Here, the regulatory effects and potential mechanisms of APS on mTh17/mTreg cells in UC are explored. A UC model was induced with dextran sulfate sodium (DSS) and treated simultaneously with APS (200 mg/kg/day) for 10 days. After APS treatment, the mice showed a significant increase in colonic length and a significant decrease in colonic weight, colonic weight index and colonic weight/colonic length, and more intact mucosa and lighter inflammatory cell infiltration. Notably, APS significantly down-regulated the percentages of Th17 (CD4+CCR6+), cmTh17 (CD4+CCR7+CCR6+) and emTh17 (CD4+CCR7-CCR6+) cells and significantly up-regulated the percentages of cmTreg (CD4+CCR7+Foxp3+) and emTreg (CD4+CCR7-Foxp3+) cells in the mesenteric lymph nodes of the colitis mice. Importantly, APS reversed the expression changes in the TIGIT molecule on mTh17/mTreg cells in the colitis mice with fewer CD4+CCR6+TIGIT+, CD4+CCR7-CCR6+TIGIT+ and CD4+CCR7-CCR6+TIGIT+ cells and more CD4+Foxp3+TIGIT+, CD4+CCR7-Foxp3+TIGIT+ and CD4+CCR7-Foxp3+TIGIT+ cells. Meanwhile, APS significantly inhibited the protein expression of the TIGIT ligands CD155, CD113 and CD112 and downstream proteins PI3K and AKT in the colon tissues of the colitis mice. In conclusion, APS effectively alleviated DSS-induced UC in mice by regulating the balance between mTh17/mTreg cells, which was mainly achieved through regulation of the TIGIT/CD155 signaling pathway.
Collapse
Affiliation(s)
- Qi Wan
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (Q.W.); (J.H.); (Z.Z.); (Z.Z.); (L.H.)
| | - Jiaqi Huang
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (Q.W.); (J.H.); (Z.Z.); (Z.Z.); (L.H.)
| | - Qiuping Xiao
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China;
| | - Zeyun Zhang
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (Q.W.); (J.H.); (Z.Z.); (Z.Z.); (L.H.)
| | - Zheyan Zhang
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (Q.W.); (J.H.); (Z.Z.); (Z.Z.); (L.H.)
| | - Li Huang
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (Q.W.); (J.H.); (Z.Z.); (Z.Z.); (L.H.)
| | - Yifei Deng
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (Y.D.); (B.D.); (H.Z.)
| | - Bailing Deng
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (Y.D.); (B.D.); (H.Z.)
| | - Haimei Zhao
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (Y.D.); (B.D.); (H.Z.)
| | - Youbao Zhong
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (Q.W.); (J.H.); (Z.Z.); (Z.Z.); (L.H.)
- Laboratory Animal Research Center for Science and Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Duanyong Liu
- Formula-Pattern Research Center, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| |
Collapse
|
37
|
Nishizawa N, Shimajiri S, Oyama R, Manabe T, Nemoto Y, Matsumiya H, Honda Y, Taira A, Takenaka M, Kuroda K, Tanaka F. Prognostic factors of resected pathological stage I lung adenocarcinoma: evaluating subtypes and PD-L1/CD155 expression. Sci Rep 2023; 13:21687. [PMID: 38065981 PMCID: PMC10709433 DOI: 10.1038/s41598-023-47888-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
We aimed to compare the prognostic impacts of adenocarcinoma subtypes, programmed death-ligand I (PD-L1), and CD155 expression on patients with resected pathological stage (p-stage) I lung adenocarcinoma. In total, 353 patients with completely resected p-stage I lung adenocarcinomas were retrospectively reviewed. The expression levels of PD-L1 and CD155 in tumour cells from each adenocarcinoma subtype were evaluated using several clinicopathological and histological features, such as the presence of a micropapillary pattern. A total of 52 patients (14.7%) had PD-L1-positive tumours, whereas 128 patients (36.3%) had CD155-positive tumours, with a tumour proportion score of 5% for both PD-L1 and CD155 expression. Compared with patients with other adenocarcinoma subtypes, those with solid-predominant adenocarcinomas were significantly more positive for PD-L1 and CD155. Multivariate analysis showed that PD-L1 expression status was significantly associated with progression-free survival and overall survival, whereas CD155 expression and the presence of a micropapillary pattern were not significantly associated with either parameter. Patients with PD-L1-positive tumours had poorer prognoses than those with CD155-positive tumours. Moreover, PD-L1 and CD155 were significantly expressed in solid-predominant adenocarcinomas. The results of this study suggest that immune checkpoint inhibitors can be used as adjuvants in the treatment of patients with p-stage I adenocarcinoma.
Collapse
Grants
- 18K08806, 19K09293, 19K16786, and 20K97688 Japan Society for the Promotion of Science
- 18K08806, 19K09293, 19K16786, and 20K97688 Japan Society for the Promotion of Science
- 18K08806, 19K09293, 19K16786, and 20K97688 Japan Society for the Promotion of Science
- 18K08806, 19K09293, 19K16786, and 20K97688 Japan Society for the Promotion of Science
- 18K08806, 19K09293, 19K16786, and 20K97688 Japan Society for the Promotion of Science
- 18K08806, 19K09293, 19K16786, and 20K97688 Japan Society for the Promotion of Science
- 18K08806, 19K09293, 19K16786, and 20K97688 Japan Society for the Promotion of Science
- 18K08806, 19K09293, 19K16786, and 20K97688 Japan Society for the Promotion of Science
- 18K08806, 19K09293, 19K16786, and 20K97688 Japan Society for the Promotion of Science
- 18K08806, 19K09293, 19K16786, and 20K97688 Japan Society for the Promotion of Science
- 18K08806, 19K09293, 19K16786, and 20K97688 Japan Society for the Promotion of Science
- UOEH R3 Research Grant for Promotion of Occupational Health by the University of Occupational and Environmental Health
- UOEH R3 Research Grant for Promotion of Occupational Health by the University of Occupational and Environmental Health
- UOEH R3 Research Grant for Promotion of Occupational Health by the University of Occupational and Environmental Health
- UOEH R3 Research Grant for Promotion of Occupational Health by the University of Occupational and Environmental Health
- UOEH R3 Research Grant for Promotion of Occupational Health by the University of Occupational and Environmental Health
- UOEH R3 Research Grant for Promotion of Occupational Health by the University of Occupational and Environmental Health
- UOEH R3 Research Grant for Promotion of Occupational Health by the University of Occupational and Environmental Health
- UOEH R3 Research Grant for Promotion of Occupational Health by the University of Occupational and Environmental Health
- UOEH R3 Research Grant for Promotion of Occupational Health by the University of Occupational and Environmental Health
- UOEH R3 Research Grant for Promotion of Occupational Health by the University of Occupational and Environmental Health
- UOEH R3 Research Grant for Promotion of Occupational Health by the University of Occupational and Environmental Health
Collapse
Affiliation(s)
- Natsumasa Nishizawa
- Second Department of Surgery, University of Occupational and Environmental Health, Japan, 1-1, Iseigaoka, Yahatanishiku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Shohei Shimajiri
- Second Department of Pathology, University of Occupational and Environmental Health, Japan, 1-1, Iseigaoka, Yahatanishiku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Rintaro Oyama
- Second Department of Surgery, University of Occupational and Environmental Health, Japan, 1-1, Iseigaoka, Yahatanishiku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Takehiko Manabe
- Second Department of Surgery, University of Occupational and Environmental Health, Japan, 1-1, Iseigaoka, Yahatanishiku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Yukiko Nemoto
- Second Department of Surgery, University of Occupational and Environmental Health, Japan, 1-1, Iseigaoka, Yahatanishiku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Hiroki Matsumiya
- Second Department of Surgery, University of Occupational and Environmental Health, Japan, 1-1, Iseigaoka, Yahatanishiku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Yohei Honda
- Second Department of Surgery, University of Occupational and Environmental Health, Japan, 1-1, Iseigaoka, Yahatanishiku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Akihiro Taira
- Second Department of Surgery, University of Occupational and Environmental Health, Japan, 1-1, Iseigaoka, Yahatanishiku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Masaru Takenaka
- Second Department of Surgery, University of Occupational and Environmental Health, Japan, 1-1, Iseigaoka, Yahatanishiku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Koji Kuroda
- Second Department of Surgery, University of Occupational and Environmental Health, Japan, 1-1, Iseigaoka, Yahatanishiku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Fumihiro Tanaka
- Second Department of Surgery, University of Occupational and Environmental Health, Japan, 1-1, Iseigaoka, Yahatanishiku, Kitakyushu, Fukuoka, 807-8555, Japan.
| |
Collapse
|
38
|
Zhao P, Cheng W, Liu C, Peng C, Shen Y, Yang Y, Sun C, Chang X, Wu J. Increased proportion of CD226 + CD14 + monocytes correlates with clinical features and laboratory parameters in patients with primary Sjögren's syndrome. Int J Rheum Dis 2023; 26:2460-2469. [PMID: 37792570 DOI: 10.1111/1756-185x.14936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/06/2023]
Abstract
OBJECTIVES CD226 is widely expressed on the surface of immune cells as a co-stimulatory receptor, which is involved in the development of many autoimmune diseases. The purpose of this study was to investigate the proportion of CD226 on CD14 + monocytes in the peripheral circulation of patients with primary Sjögren's syndrome (pSS) and the clinical significance of pSS. METHODS The proportion of CD226 on the surface of CD14 + monocytes was measured by flow cytometry in 45 pSS patients and 25 healthy controls (HC). The correlations between the proportion of CD226 + CD14 + monocytes and the clinical features and laboratory parameters of pSS were analyzed. Meanwhile, we analyzed the change in proportion of CD226 + CD14 + monocytes before and after treatment, and the clinical significance of pSS was evaluated. RESULTS The proportion of CD226 on CD14 + monocytes markedly increased in pSS patients compared to HC (p < .01). We found the proportion of CD226 + CD14 + monocytes was positively correlated with the disease activity and severity of pSS patients. The proportion of CD226 + CD14 + monocytes in pSS patients with decayed tooth, fatigue, interstitial lung disease (ILD), low WBC, high IgG, anti-Ro60, and anti-SSB positive increased compared to that in negative patients (p < .05). Furthermore, the proportion of CD226 + CD14 + monocytes was significantly higher in active patients than in nonactive patients (p < .01). Additionally, the proportion of CD226 + CD14 + monocytes decreased in seven pSS patients after treatment (p < .01). CONCLUSION Our study suggested that an increased CD226 proportion on CD14 + monocytes was associated with the clinical manifestations, disease activity, and prognosis of pSS patients. CD226+ CD14 + monocytes may present a potential target and a biomarker for the prognosis and therapy of pSS patients.
Collapse
Affiliation(s)
- Ping Zhao
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Rheumatology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Wei Cheng
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Dermatology, Changsu NO2 People's Hospital, Changshu, Suzhou, China
| | - Cuiping Liu
- Jiangsu Key Laboratory of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Cheng Peng
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yu Shen
- Jiangsu Key Laboratory of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yanhong Yang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chao Sun
- Department of Rheumatology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xin Chang
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian Wu
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
39
|
Ma P, Sun W. Integrated single-cell and bulk sequencing analyses with experimental validation identify the prognostic and immunological implications of CD226 in pan-cancer. J Cancer Res Clin Oncol 2023; 149:14597-14617. [PMID: 37580402 DOI: 10.1007/s00432-023-05268-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/09/2023] [Indexed: 08/16/2023]
Abstract
PURPOSE CD226 (DNAM-1) is an activating receptor mainly expressed in CD8 + and NK cells. CD226 deficiency and blockade have been shown to impair tumor suppression, while enhanced CD226 expression positively correlated with the increased efficacy of immune checkpoint blockade (ICB) therapies. However, the detailed function and role of CD226 in pan-cancer are largely unknown and require further in-depth investigation. Therefore, this study aims to investigate the biological functions of CD226, its role in tumor immunity, and its potential to predict prognosis and immunotherapy response in pan-cancer. METHODS By taking advantage of single-cell and bulk sequencing analyses, we analyzed the expression profile of CD226, its correlation with patient prognosis, immune infiltration level, immune-related genes, tumor heterogeneity, and stemness in pan-cancer. We also investigated the biological functions of CD226 using gene set enrichment analysis (GSEA) and evaluated its predictive value in response to immunotherapy and small-molecule targeted drugs. In addition, we validated the expression of CD226 in tumor-infiltrating CD8 + and NK cells and studied its association with their functions using a murine B16F10 melanoma model. RESULTS CD226 exhibited differential expression across most tumor types, and its elevated expression was associated with improved clinical outcomes in multiple cancer types. CD226 is closely correlated with numerous tumor-infiltrating immune cells, tumor stemness, and heterogeneity in most cancers. Furthermore, based on single-cell sequencing analysis, CD226 expression was found to be higher on effector CD4 + T cells than naïve CD4 + T cells, and its expression level was decreased in exhausted CD8 + T cells relative to effector CD8 + T cells in multiple cancer types. Additionally, flow cytometric analysis demonstrated that CD226 was highly correlated with the function of tumor-infiltrating NK and CD8 + T cells in murine B16F10 melanoma. Moreover, GSEA analysis revealed that CD226 was closely associated with T cell activation, natural killer cell mediated immunity, natural killer cell-mediated cytotoxicity, and T cell receptor signaling pathway. Finally, CD226 showed promising predictive potential for responsiveness to both ICB therapies and various small-molecule targeted drugs. CONCLUSION CD226 has shown great potential as an innovative biomarker for predicting patient prognosis, immune infiltration levels, and the function of tumor-infiltrating CD8 + T cells, as well as immunotherapy response. Additionally, our findings suggest that the optimal modification of CD226 expression and function, combined with current ICBs, could be a promising strategy for tumor immunotherapy.
Collapse
Affiliation(s)
- Peng Ma
- Department of Gastroenterology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei Province, People's Republic of China
| | - Weili Sun
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada.
- Montreal Clinical Research Institute (IRCM), 110 Pine Ave W, Montreal, QC, H2W 1R7, Canada.
| |
Collapse
|
40
|
Taghiloo S, Asgarian-Omran H. Current Approaches of Immune Checkpoint Therapy in Chronic Lymphocytic Leukemia. Curr Treat Options Oncol 2023; 24:1408-1438. [PMID: 37561383 DOI: 10.1007/s11864-023-01129-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2023] [Indexed: 08/11/2023]
Abstract
OPINION STATEMENT Increasing understanding of the complex interaction between leukemic and immune cells, which is responsible for tumor progression and immune evasion, has paved the way for the development of novel immunotherapy approaches in chronic lymphocytic leukemia (CLL). One of the well-known immune escape mechanisms of tumor cells is the up-regulation of immune checkpoint molecules. In recent years, targeting immune checkpoint receptors is the most clinically effective immunotherapeutic strategy for cancer treatment. In this regard, various immune checkpoint blockade (ICB) drugs are currently been investigating for their potential effects on improving anti-tumor immune response and clinical efficacy in the hematological malignancies; however, their effectiveness in patients with CLL has shown less remarkable success, and ongoing research is focused on identifying strategies to enhance the efficacy of ICB in CLL.
Collapse
Affiliation(s)
- Saeid Taghiloo
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Asgarian-Omran
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
- Gastrointestinal Cancer Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
41
|
Zhou R, Chen S, Wu Q, Liu L, Wang Y, Mo Y, Zeng Z, Zu X, Xiong W, Wang F. CD155 and its receptors in cancer immune escape and immunotherapy. Cancer Lett 2023; 573:216381. [PMID: 37660884 DOI: 10.1016/j.canlet.2023.216381] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/15/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
In recent years, there have been multiple breakthroughs in cancer immunotherapy, with immune checkpoint inhibitors becoming the most promising treatment strategy. However, available drugs are not always effective. As an emerging immune checkpoint molecule, CD155 has become an important target for immunotherapy. This review describes the structure and function of CD155, its receptors TIGIT, CD96, and CD226, and summarizes that CD155 expressed by tumor cells can upregulate its expression through the DNA damage response pathway and Ras-Raf-MEK-ERK signaling pathway. This review also elaborates the mechanism of immune escape after binding CD155 to its receptors TIGIT, CD96, and CD226, and summarizes the current progress of immunotherapy research regarding CD155 and its receptors. Besides, it also discusses the future direction of checkpoint immunotherapy.
Collapse
Affiliation(s)
- Ruijia Zhou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shiyin Chen
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiwen Wu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lingyun Liu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Yian Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yongzhen Mo
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xuyu Zu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Fuyan Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
42
|
Roque K, Ruiz R, Mas L, Pozza DH, Vancini M, Silva Júnior JA, de Mello RA. Update in Immunotherapy for Advanced Non-Small Cell Lung Cancer: Optimizing Treatment Sequencing and Identifying the Best Choices. Cancers (Basel) 2023; 15:4547. [PMID: 37760516 PMCID: PMC10526179 DOI: 10.3390/cancers15184547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/09/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
The introduction of immunotherapy has brought about a paradigm shift in the management of advanced non-small cell lung cancer (NSCLC). It has not only significantly improved the prognosis of patients but has also become a cornerstone of treatment, particularly in those without oncogenic driver mutations. Immune checkpoint inhibitors (ICIs) play a crucial role in the treatment of lung cancer and can be classified into two main groups: Anti-cytotoxic T lymphocyte antigen-4 (Anti-CTLA-4) and anti-T-cell receptor programmed cell death-1 or its ligand (Anti-PD-1 and Anti-PD-L1). Certainly, the landscape of approved first line immunotherapeutic approaches has expanded to encompass monotherapy, immunotherapy-exclusive protocols, and combinations with chemotherapy. The complexity of decision-making in this realm arises due to the absence of direct prospective comparisons. However, a thorough analysis of the long-term efficacy and safety data derived from pivotal clinical trials can offer valuable insights into optimizing treatment for different patient subsets. Moreover, ongoing research is investigating emerging biomarkers and innovative therapeutic strategies that could potentially refine the current treatment approach even further. In this comprehensive review, our aim is to highlight the latest advances in immunotherapy for advanced NSCLC, including the mechanisms of action, efficacy, safety profiles, and clinical significance of ICI.
Collapse
Affiliation(s)
- Katia Roque
- Discipline of Medical Oncology, Post-Graduation Programme in Medicine, Faculty of Medicine, Nine of July University (UNINOVE), São Paulo 04101-000, Brazil (J.A.S.J.)
- Department of Medical Oncology, Instituto Nacional de Enfermedades Neoplásicas, Angamos Este Av., 2520, Lima 15023, Peru; (R.R.); (L.M.)
- Faculty of Medicine, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
- Faculty of Medicine, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru
| | - Rossana Ruiz
- Department of Medical Oncology, Instituto Nacional de Enfermedades Neoplásicas, Angamos Este Av., 2520, Lima 15023, Peru; (R.R.); (L.M.)
- Escuela Profesional de Medicina Humana-Filial Ica, Universidad Privada San Juan Bautista, Ica 15067, Peru
| | - Luis Mas
- Department of Medical Oncology, Instituto Nacional de Enfermedades Neoplásicas, Angamos Este Av., 2520, Lima 15023, Peru; (R.R.); (L.M.)
- Faculty of Medicine, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
- Department of Medical Oncology, Oncosalud-AUNA, Av. Guardia Civil 571-San Borja, Lima 15036, Peru
| | - Daniel Humberto Pozza
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal
- i3S—Institute for Research and Innovation in Health and IBMC, University of Porto, 4200-319 Porto, Portugal
| | - Marina Vancini
- Discipline of Medical Oncology, Post-Graduation Programme in Medicine, Faculty of Medicine, Nine of July University (UNINOVE), São Paulo 04101-000, Brazil (J.A.S.J.)
| | - José Antônio Silva Júnior
- Discipline of Medical Oncology, Post-Graduation Programme in Medicine, Faculty of Medicine, Nine of July University (UNINOVE), São Paulo 04101-000, Brazil (J.A.S.J.)
| | - Ramon Andrade de Mello
- Discipline of Medical Oncology, Post-Graduation Programme in Medicine, Faculty of Medicine, Nine of July University (UNINOVE), São Paulo 04101-000, Brazil (J.A.S.J.)
- Oxford Cancer Centre, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
- Department of Oncology, University of Oxford, Oxford OX1 2JD, UK
| |
Collapse
|
43
|
Wang R, Song S, Qin J, Yoshimura K, Peng F, Chu Y, Li Y, Fan Y, Jin J, Dang M, Dai E, Pei G, Han G, Hao D, Li Y, Chatterjee D, Harada K, Pizzi MP, Scott AW, Tatlonghari G, Yan X, Xu Z, Hu C, Mo S, Shanbhag N, Lu Y, Sewastjanow-Silva M, Fouad Abdelhakeem AA, Peng G, Hanash SM, Calin GA, Yee C, Mazur P, Marsden AN, Futreal A, Wang Z, Cheng X, Ajani JA, Wang L. Evolution of immune and stromal cell states and ecotypes during gastric adenocarcinoma progression. Cancer Cell 2023; 41:1407-1426.e9. [PMID: 37419119 PMCID: PMC10528152 DOI: 10.1016/j.ccell.2023.06.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 04/10/2023] [Accepted: 06/12/2023] [Indexed: 07/09/2023]
Abstract
Understanding tumor microenvironment (TME) reprogramming in gastric adenocarcinoma (GAC) progression may uncover novel therapeutic targets. Here, we performed single-cell profiling of precancerous lesions, localized and metastatic GACs, identifying alterations in TME cell states and compositions as GAC progresses. Abundant IgA+ plasma cells exist in the premalignant microenvironment, whereas immunosuppressive myeloid and stromal subsets dominate late-stage GACs. We identified six TME ecotypes (EC1-6). EC1 is exclusive to blood, while EC4, EC5, and EC2 are highly enriched in uninvolved tissues, premalignant lesions, and metastases, respectively. EC3 and EC6, two distinct ecotypes in primary GACs, associate with histopathological and genomic characteristics, and survival outcomes. Extensive stromal remodeling occurs in GAC progression. High SDC2 expression in cancer-associated fibroblasts (CAFs) is linked to aggressive phenotypes and poor survival, and SDC2 overexpression in CAFs contributes to tumor growth. Our study provides a high-resolution GAC TME atlas and underscores potential targets for further investigation.
Collapse
Affiliation(s)
- Ruiping Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shumei Song
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jiangjiang Qin
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China
| | - Katsuhiro Yoshimura
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Fuduan Peng
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yanshuo Chu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yuan Li
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang 110001, China
| | - Yibo Fan
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jiankang Jin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Minghao Dang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Enyu Dai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guangsheng Pei
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guangchun Han
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dapeng Hao
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yating Li
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Deyali Chatterjee
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kazuto Harada
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Melissa Pool Pizzi
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ailing W Scott
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ghia Tatlonghari
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xinmiao Yan
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhiyuan Xu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Can Hu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Shaowei Mo
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Namita Shanbhag
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yang Lu
- Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Matheus Sewastjanow-Silva
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ahmed Adel Fouad Abdelhakeem
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guang Peng
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - George A Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cassian Yee
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pawel Mazur
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Autumn N Marsden
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang 110001, China
| | - Xiangdong Cheng
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences (GSBS), Houston, TX 77030, USA.
| |
Collapse
|
44
|
Tang L, Sha M, Guo T, Lu H, Qian J, Shao Q, Ye J. Expression and Clinical Significance of TIGIT in Primary Breast Cancer. Int J Gen Med 2023; 16:2405-2417. [PMID: 37333881 PMCID: PMC10275376 DOI: 10.2147/ijgm.s407725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/04/2023] [Indexed: 06/20/2023] Open
Abstract
Purpose The roles of T cell immunoreceptor with Ig and ITIM domains (TIGIT) in the diagnosis of primary breast cancer (PBC) are still unclear. This study was designed to investigate the expression of TIGIT in PBC patients, with an aim to analyze its diagnostic value in PBC. Patients and Methods We first explore the expression of TIGIT in cancer patients based on TCGA database, and then we analyzed its correlation with clinicopathological features. Afterwards, we compared the protein and mRNA expressions of TIGIT in two BC cell lines (MCF-7 and MDA-MB-231) and normal breast epithelial cell line (MCF-10A). Subsequently, 56 PBC female patients admitted to the Taizhou People's Hospital from October 2018 to June 2021 were included in this study. Flow cytometry was used to detect TIGIT level on peripheral blood CD3+ T cells of PBC patients and healthy controls. TIGIT expression in PBC tissues was detected by immunohistochemistry (IHC) and immunofluorescence staining. Results TCGA database showed that compared with adjacent tissues, TIGIT was significantly upregulated in tumor tissues. High TIGIT expression was positively correlated with tumor stage and negatively correlated with recurrence free survival (RFS) and overall survival (OS). TIGIT level in BC cell lines, peripheral blood and tumor tissues of PBC patients was significantly higher than that of control (P < 0.05). TIGIT level was correlated with age (P < 0.05), rather than tumor size, pathological type, lymph node metastasis, ER, PR, HER-2, and P53. ROC curve showed that the optimal critical value of peripheral blood TIGIT for BC screening was 23.38%. Postoperative TIGIT level in peripheral blood was significantly decreased compared to the preoperative TIGIT level (P < 0.05). Conclusion TIGIT was upregulated in PBC and was correlated with age. It may be a potential target for the diagnosis and immunotherapy of PBC.
Collapse
Affiliation(s)
- Limin Tang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Min Sha
- Department of Central Laboratory, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, People’s Republic of China
| | - Ting Guo
- Department of Central Laboratory, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, People’s Republic of China
| | - Huimin Lu
- Department of Central Laboratory, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, People’s Republic of China
| | - Jingyu Qian
- Department of Central Laboratory, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, People’s Republic of China
| | - Qixiang Shao
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Jun Ye
- Department of Central Laboratory, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, People’s Republic of China
| |
Collapse
|
45
|
Chu X, Tian W, Wang Z, Zhang J, Zhou R. Co-inhibition of TIGIT and PD-1/PD-L1 in Cancer Immunotherapy: Mechanisms and Clinical Trials. Mol Cancer 2023; 22:93. [PMID: 37291608 DOI: 10.1186/s12943-023-01800-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/02/2023] [Indexed: 06/10/2023] Open
Abstract
Over the past decade, immune checkpoint inhibitors (ICIs) have emerged as a revolutionary cancer treatment modality, offering long-lasting responses and survival benefits for a substantial number of cancer patients. However, the response rates to ICIs vary significantly among individuals and cancer types, with a notable proportion of patients exhibiting resistance or showing no response. Therefore, dual ICI combination therapy has been proposed as a potential strategy to address these challenges. One of the targets is TIGIT, an inhibitory receptor associated with T-cell exhaustion. TIGIT has diverse immunosuppressive effects on the cancer immunity cycle, including the inhibition of natural killer cell effector function, suppression of dendritic cell maturation, promotion of macrophage polarization to the M2 phenotype, and differentiation of T cells to regulatory T cells. Furthermore, TIGIT is linked with PD-1 expression, and it can synergize with PD-1/PD-L1 blockade to enhance tumor rejection. Preclinical studies have demonstrated the potential benefits of co-inhibition of TIGIT and PD-1/PD-L1 in enhancing anti-tumor immunity and improving treatment outcomes in several cancer types. Several clinical trials are underway to evaluate the safety and efficacy of TIGIT and PD-1/PD-L1 co-inhibition in various cancer types, and the results are awaited. This review provides an overview of the mechanisms of TIGIT and PD-1/PD-L1 co-inhibition in anti-tumor treatment, summarizes the latest clinical trials investigating this combination therapy, and discusses its prospects. Overall, co-inhibition of TIGIT and PD-1/PD-L1 represents a promising therapeutic approach for cancer treatment that has the potential to improve the outcomes of cancer patients treated with ICIs.
Collapse
Affiliation(s)
- Xianjing Chu
- Department of Oncology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, China
| | - Wentao Tian
- Department of Oncology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, China
| | - Ziqi Wang
- Department of Oncology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, China
| | - Jing Zhang
- Department of Oncology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, China
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, P.R. China.
| |
Collapse
|
46
|
Wang YC, Cao Y, Pan C, Zhou Z, Yang L, Lusis AJ. Intestinal cell type-specific communication networks underlie homeostasis and response to Western diet. J Exp Med 2023; 220:213924. [PMID: 36880999 PMCID: PMC10038833 DOI: 10.1084/jem.20221437] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/14/2022] [Accepted: 02/10/2023] [Indexed: 03/08/2023] Open
Abstract
The small intestine plays a key role in immunity and mediates inflammatory responses to high fat diets. We have used single-cell RNA-sequencing (scRNA-seq) and statistical modeling to examine gaps in our understanding of the dynamic properties of intestinal cells and underlying cellular mechanisms. Our scRNA-seq and flow cytometry studies of different layers of intestinal cells revealed new cell subsets and modeled developmental trajectories of intestinal intraepithelial lymphocytes, lamina propria lymphocytes, conventional dendritic cells, and enterocytes. As compared to chow-fed mice, a high-fat high-sucrose (HFHS) "Western" diet resulted in the accumulation of specific immune cell populations and marked changes to enterocytes nutrient absorption function. Utilizing ligand-receptor analysis, we profiled high-resolution intestine interaction networks across all immune cell and epithelial structural cell types in mice fed chow or HFHS diets. These results revealed novel interactions and communication hubs among intestinal cells, and their potential roles in local as well as systemic inflammation.
Collapse
Affiliation(s)
- Yu-Chen Wang
- Department of Medicine, Division of Cardiology, University of California, Los Angeles , Los Angeles, CA, USA
| | - Yang Cao
- Department of Medicine, Division of Cardiology, University of California, Los Angeles , Los Angeles, CA, USA
| | - Calvin Pan
- Department of Medicine, Division of Cardiology, University of California, Los Angeles , Los Angeles, CA, USA
| | - Zhiqiang Zhou
- Department of Medicine, Division of Cardiology, University of California, Los Angeles , Los Angeles, CA, USA
| | - Lili Yang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles , Los Angeles, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, Los Angeles , Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, the David Geffen School of Medicine, University of California, Los Angeles , Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles , Los Angeles, CA, USA
| | - Aldons J Lusis
- Department of Medicine, Division of Cardiology, University of California, Los Angeles , Los Angeles, CA, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles , Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine at UCLA , Los Angeles, CA, USA
| |
Collapse
|
47
|
Zhang X, Jiang D, Li S, Zhang X, Zheng W, Cheng B. A signature-based classification of lung adenocarcinoma that stratifies tumor immunity. Front Oncol 2023; 12:1023833. [PMID: 36713530 PMCID: PMC9878554 DOI: 10.3389/fonc.2022.1023833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/14/2022] [Indexed: 01/13/2023] Open
Abstract
Background Immune-related subgroup classification in immune checkpoint blockade (ICB) therapy is largely inconclusive in lung adenocarcinoma (LUAD). Materials and methods First, the single-sample Gene Set Enrichment Analysis (ssGSEA) and K-means algorithms were used to identify immune-based subtypes for the LUAD cohort based on the immunogenomic profiling of 29 immune signatures from The Cancer Genome Atlas (TCGA) database (n = 504). Second, we examined the prognostic and predictive value of immune-based subtypes using bioinformatics analysis. Survival analysis and additional COX proportional hazards regression analysis were conducted for LUAD. Then, the immune score, tumor-infiltrating immune cells (TIICs), and immune checkpoint expression of the three subtypes were analyzed. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) of the differentially expressed genes (DEGs) between three immune-based subtypes were subsequently analyzed for functional enrichment pathways. Result A total of three immune-based subtypes with distinct immune signatures have been identified for LUAD and designated as cluster 1 (C1), cluster 2 (C2), and cluster 3 (C3). Patients in C3 had higher stromal, immune, and ESTIMATE scores, whereas those in C1 had the opposite. Patients in C1 had an enrichment of macrophages M0 and activation of dendritic cells, whereas tumors in C3 had an enrichment of CD8+ T cells, activation of CD4+ memory T cells, and macrophages M1. C3 had a higher immune cell infiltration and a better survival prognosis than other subtypes. Furthermore, patients in C3 had higher expression levels of immune checkpoint proteins such as PD-L1, PD1, CTLA4, LAG3, IDO1, and HAVCR2. No significant differences were found in cluster TMB scores. We also found that immune-related pathways were enriched in C3. Conclusion LUAD subtypes based on immune signatures may aid in the development of novel treatment strategies for LUAD.
Collapse
|
48
|
Zhao Y, Wang Z, Shi X, Liu T, Yu W, Ren X, Zhao H. Effect of Chemotherapeutics on In Vitro Immune Checkpoint Expression in Non-Small Cell Lung Cancer. Technol Cancer Res Treat 2023; 22:15330338231202307. [PMID: 37728201 PMCID: PMC10515539 DOI: 10.1177/15330338231202307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/03/2023] [Accepted: 07/28/2023] [Indexed: 09/21/2023] Open
Abstract
Objectives: Immune checkpoint (ICP) expression in tumor cells could directly or indirectly affect the results of immunotherapy. ICP ligands on tumor cells usually bind their immune cell receptors to inhibit the activity, resulting in tumor immune escape. Thus, the purpose of this study was to ascertain the impact of various chemotherapeutic drugs on ICP expression in non-small cell lung cancer (NSCLC) cell lines with different pathological subtypes to provide a basis for the development of a superior regimen of chemotherapy combined with ICP blockade. Methods: Several first-line chemotherapy agents (cisplatin, carboplatin, paclitaxel, gemcitabine, vinorelbine, and pemetrexed) were selected to treat different NSCLC cell lines (squamous carcinoma H1703, adenocarcinoma A549, and large cell cancer H460) for 72 hours, and then the changes in ICP expression in the tumor cells were observed through flow cytometry. Results: Cisplatin, carboplatin, and paclitaxel upregulated the expressions of programmed cell death ligand 1 (PD-L1) and programmed cell death ligand 2 (PD-L2) in A549 and H460 cell lines. Meanwhile, vinorelbine and pemetrexed upregulated PD-L1 and PD-L2 in H1703, A549, and H460 cell lines. Paclitaxel, gemcitabine, vinorelbine, and pemetrexed significantly upregulated the expressions of both galectin-9 and high-mobility group box protein 1 (HMGB1) in the A549 cell line. Cisplatin and paclitaxel significantly upregulated the expressions of major histocompatibility complex-II (MHC-II), galectin-3, α-synuclein, and fibrinogen-like protein 1 (FGL1) in A549 and H460 cell lines. In addition, cisplatin and vinorelbine significantly upregulated the expressions of both CD155 and CD112 in the H460 cell line. Vinorelbine upregulated MHC-I in all three cell lines. Conclusion: Chemotherapy agents have different effects on the expression of ICP ligands in tumor cells with different pathological types, and this may affect the efficacy of combined immunotherapy. These results provide a theoretical basis for further selection and optimization of the combination of chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Yu Zhao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Zhe Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Xiuhuan Shi
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Ting Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Wenwen Yu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Xiubao Ren
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Haihe Laboratory of Cell Ecosystem, Tianjin, China
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Hua Zhao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Haihe Laboratory of Cell Ecosystem, Tianjin, China
| |
Collapse
|
49
|
Diong SJJ, Jashnani A, Drake AW, Bee C, Findeisen F, Dollinger G, Wang F, Rajpal A, Strop P, Lee PS. Biophysical characterization of PVR family interactions and therapeutic antibody recognition to TIGIT. MAbs 2023; 15:2253788. [PMID: 37675979 PMCID: PMC10486284 DOI: 10.1080/19420862.2023.2253788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/08/2023] Open
Abstract
The clinical successes of immune checkpoint blockade have invigorated efforts to activate T cell-mediated responses against cancer. Targeting members of the PVR family, consisting of inhibitory receptors TIGIT, CD96, and CD112R, has been an active area of clinical investigation. In this study, the binding interactions and molecular assemblies of the PVR family receptors and ligands have been assessed in vitro. Furthermore, the anti-TIGIT monoclonal antibody BMS-986207 crystal structure in complex with TIGIT was determined and shows that the antibody binds an epitope that is commonly targeted by the CD155 ligand as well as other clinical anti-TIGIT antibodies. In contrast to previously proposed models, where TIGIT outcompetes costimulatory receptor CD226 for binding to CD155 due to much higher affinity (nanomolar range), our data rather suggest that PVR family members all engage in interactions with relatively weak affinity (micromolar range), including TIGIT and CD155 interactions. Thus, TIGIT and other PVR inhibitory receptors likely elicit immune suppression via increased surface expression rather than inherent differences in affinity. This work provides an improved foundational understanding of the PVR family network and mechanistic insight into therapeutic antibody intervention.
Collapse
Affiliation(s)
- SJ J. Diong
- Discovery Biologics, Bristol Myers Squibb, Redwood City, CA, USA
| | - Aarti Jashnani
- Discovery Biologics, Bristol Myers Squibb, Redwood City, CA, USA
| | - Andrew W. Drake
- Discovery Biologics, Bristol Myers Squibb, Redwood City, CA, USA
| | - Christine Bee
- Biochemistry and Biophysics, Merck, South San Francisco, CA, USA
| | - Felix Findeisen
- Discovery Biologics, Bristol Myers Squibb, Redwood City, CA, USA
| | - Gavin Dollinger
- Discovery Biologics, Bristol Myers Squibb, Redwood City, CA, USA
| | - Feng Wang
- Large Molecule Drug Discovery, Genentech Research and Early Development, South San Francisco, CA, USA
| | - Arvind Rajpal
- Large Molecule Drug Discovery, Genentech Research and Early Development, South San Francisco, CA, USA
| | - Pavel Strop
- Research, Tallac Therapeutics, Burlingame, CA, USA
| | - Peter S. Lee
- Antibody Engineering, AbbVie, South San Francisco, CA, USA
| |
Collapse
|
50
|
Jin S, Zhang Y, Zhou F, Chen X, Sheng J, Zhang J. TIGIT: A promising target to overcome the barrier of immunotherapy in hematological malignancies. Front Oncol 2022; 12:1091782. [PMID: 36605439 PMCID: PMC9807865 DOI: 10.3389/fonc.2022.1091782] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Immune evasion through up-regulating checkpoint inhibitory receptors on T cells plays an essential role in tumor initiation and progression. Therefore, immunotherapy, including immune checkpoint inhibitor targeting programmed cell death protein 1 (PD-1) and chimeric antigen receptor T cell (CAR-T) therapy, has become a promising strategy for hematological malignancies. T cell immunoreceptor with immunoglobulin and ITIM domain (TIGIT) is a novel checkpoint inhibitory receptor expressed on immune cells, including cytotoxic T cells, regulatory T cells, and NK cells. TIGIT participates in immune regulation via binding to its ligand CD155. Blockage of TIGIT has provided evidence of considerable efficacy in solid tumors in preclinical research and clinical trials, especially when combined with PD-1 inhibition. However, the mechanism and function of TIGIT in hematological malignancies have not been comprehensively studied. In this review, we focus on the role of TIGIT in hematological malignancies and discuss therapeutic strategies targeting TIGIT, which may provide a promising immunotherapy target for hematological malignancies.
Collapse
Affiliation(s)
- Shenhe Jin
- Department of Hematology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ye Zhang
- Department of Hematology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Fengping Zhou
- Department of Hematology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaochang Chen
- Department of Hematology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jianpeng Sheng
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Jin Zhang
- Department of Hematology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|