1
|
Pierret A, Magra K, Lopez H, Kauffmann T, Denhez C, Abdellah I, Werlé C, Vasseur A. Lithium zincate-enabled divergent one-pot dual C-C bond formation in thiophenes. Chem Commun (Camb) 2025; 61:6296-6299. [PMID: 40172013 DOI: 10.1039/d5cc01079a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
We present a lithium zincate-enabled, divergent one-pot synthesis for regioselective dual C-C bond formation in thiophenes. By modifying the zinc coordination environment, a single set of reagents (ZnCl2, R1Li, and diethyl (5-halo)thenylphosphate) was found to generate two distinct products. This approach extends the versatility of lithium organozincates to regioselective CAr(sp2)-Cthienyl(sp2) and Cthenyl(sp3)-CAr(sp2) couplings without requiring transition metals and/or arenes pre-activated with a boronic acid.
Collapse
Affiliation(s)
| | - Kevin Magra
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France.
| | - Hugo Lopez
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France.
| | | | - Clément Denhez
- Université de Reims Champagne Ardenne, CNRS, ICMR UMR 7312, 51097 Reims, France
| | | | - Christophe Werlé
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France.
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34 - 36, 45470 Mülheim an der Ruhr, Germany.
| | | |
Collapse
|
2
|
Sharma A, Sharma PK, Kompella UB. Lotilaner for Demodex Blepharitis: The Journey from Veterinary Use to Human Medicine. J Ocul Pharmacol Ther 2025. [PMID: 40080410 DOI: 10.1089/jop.2024.0145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025] Open
Abstract
In 2023, Xdemvy® (0.25% lotilaner ophthalmic solution) was approved by the U.S. FDA for treating Demodex blepharitis in humans. This article reviews lotilaner's history, physicochemical properties, pharmacokinetics, pharmacology, clinical outcomes, and other indications for which it is being evaluated clinically. Furthermore, the article discusses Demodex blepharitis, alternative treatments used in the clinic to ameliorate its symptoms, and other drugs in development. Prior to its approval in humans, lotilaner found extensive application in treating parasitic infections in cats and dogs. Lotilaner was previously approved in 2017 as an oral veterinary medicine (Credelio®) for canines to treat demodicosis, other mite infections, and tick infections. Lotilaner belongs to the isoxazoline class of drugs and is a potent arthropod-selective gamma-aminobutyric acid-gated chloride ion channel inhibitor. Like several other drugs in the isoxazoline class, lotilaner has a long plasma half-life and high plasma protein binding of about 99.9%. When used as indicated, lotilaner treats infested Demodex blepharitis in 42 days, with its antiparasitic action starting within 24 h. Furthermore, lotilaner is also being evaluated for its efficacy in other conditions such as Lyme disease and dry eye disease. Other products evaluated for treating Demodex blepharitis include ivermectin eye ointment, ivermectin-metronidazole gel, permethrin cream, terpinen-4-ol wipes, and hypochlorous acid spray. Along with these, azithromycin eye drop, azithromycin/loteprednol eye drop, and other treatments are being evaluated for treating blepharitis. Other drugs from the isoxazoline drug class including afoxolaner, sarolaner, and fluralaner, could also be potentially explored for human use.
Collapse
Affiliation(s)
- Akanksha Sharma
- CU Diabetes and Endocrinology Clinical Trial Program, Rocky Mountain Regional VA Medical Center, Division of Endocrinology, Metabolism & Diabetes, University of Colorado, Aurora, Colorado, USA
| | - Pankaj Kumar Sharma
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Uday B Kompella
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
3
|
Khalaf HS, Abdel-Aziz MS, Radwan MAA, Sediek AA. Synthesis, Biological Evaluation, and Molecular Docking Studies of Indole-Based Heterocyclic Scaffolds as Potential Antibacterial Agents. Chem Biodivers 2025; 22:e202402325. [PMID: 39433506 DOI: 10.1002/cbdv.202402325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 10/23/2024]
Abstract
Indole-based heterocyclic scaffolds have become increasingly important in medicinal chemistry due to their notable pharmacological and biological properties. Their role in the discovery and development of innovative drugs for treating various diseases highlights their value. This study aimed to synthesize C3-indole derivatives linked to various heterocyclic scaffolds, including thiophenes, thiazolidine-4-ones, and 1,3,4-thiadiazoles, via the reaction of ethylthioacetanilide 2 with different α-haloketones.The structures of the target compounds were established using 1H and 13C nuclear magnetic resonance spectroscopy, mass spectrometry, infrared spectroscopy, and elemental analysis. The synthesized compounds were tested for antimicrobial activity against different microbes: S. aureus ATCC 6538 (Gram-positive bacteria), E. coli ATCC 25933 (Gram-negative bacteria), C. albicans ATCC 10231 (yeast), and fungi (A. niger NRRL-A326). Thiophene 6a, thiazolidine-4-one 8, and compound 10d exhibited the highest antimicrobial activities. The molecular docking study showed that compounds 2, 4, 6a, and 6c had good binding energy and favorable binding modes of interactions with the DNA gyrase B enzymes (PDB: 3 U2D) and (PDB: 1S14). The results showed that the NH group of the indole in compounds 2 and 4, together with the nitrile group (CN), played an important role in inhibiting DNA gyrase B of S. aureus, PDB: 3 U2D. Furthermore, the NH of the indole ring, together with the ethylamino group of compound 2, was crucial in inhibiting DNA gyrase B of E. coli, PDB: 1S14. These findings may encourage researchers to develop more effective C3-indole derivatives in their search for antimicrobial drugs.
Collapse
Affiliation(s)
- Hemat S Khalaf
- Department of Photochemistry, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Mohamed S Abdel-Aziz
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza, Egypt
| | - Mohamed A A Radwan
- Applied Organic Chemistry Department, National Research Centre, Dokki, 12622, Egypt
| | - Ashraf A Sediek
- Chemical Industries Institute, National Research Centre, Dokki, Giza, 12622, Egypt
| |
Collapse
|
4
|
Rodrigues RRL, de Sousa JMS, Dos Santos ALS, de Souza VMR, Machado YAA, de Lima Nunes TA, da Silva MV, de Araújo-Nobre AR, de Araújo RSA, Mendonça Junior FJB, Veras LMDC, Rodrigues KADF. Evaluation of SB-83, a 2-amino-thiophene derivative, against Leishmania species that cause visceral leishmaniasis. Int Immunopharmacol 2025; 148:114106. [PMID: 39862638 DOI: 10.1016/j.intimp.2025.114106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/06/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
Visceral leishmaniasis is a systemic disease that affects various internal organs and represents the most severe and fatal form of leishmaniasis. Conventional treatment presents significant challenges, such as prolonged management in hospital settings, high toxicity, and an increasing growing number of cases of resistance. In previous studies, our research group demonstrated the effective and selective activity of the 2-amino-thiophene derivative SB-83 in preclinical models of cutaneous leishmaniasis. Given the urgent need for new therapeutic alternatives for visceral leishmaniasis, and considering our previous promising results for SB-83, this study investigated the antileishmanial activity of the compound on the etiological agents of visceral leishmaniasis. SB-83 demonstrated efficacy in inhibiting the growth of promastigote forms of Leishmania (Leishmania) infantum (IC50 = 7.46 µM) and Leishmania (Leishmania) donovani (IC50 = 9.84 µM). In the cytotoxicity evaluation, in RAW 264.7 macrophages, the compound revealed a CC50 = 52.27 µM, being more toxic to the parasite, and respective selectivity indices (SI) of 7 and 5.31 against the previously mentioned species. Atomic force microscopy analysis showed that the compound causes alterations in surface roughness, formation of englobulations, and accumulation of lipids, all of which are indicative of cell death by apoptosis. This was confirmed by flow cytometry, which showed an increase in the number of cells labeled with Annexin V-FITC+/IP-, indicating apoptosis. SB-83 showed even greater efficacy against intramacrophagic amastigote forms (EC50 = 2.91 µM), which was associated with structural changes, such as increased lysosomal volume, and cellular mechanisms, including elevated levels of cytokines TNF-α and IL-12, reactive oxygen and nitrogen species, and reduced levels of cytokines IL-10 and IL-6, as well as decreased arginase activity. The results allow us to conclude that the 2-amino-thiophene derivative SB-83 is a promising compound for development of new treatments against visceral leishmaniasis.
Collapse
Affiliation(s)
- Raiza Raianne Luz Rodrigues
- Infectious Diseases Laboratory, Campus Ministro Reis Velloso, Federal University of Parnaíba Delta, 64202-020 Parnaíba, PI, Brazil
| | - Julyanne Maria Saraiva de Sousa
- Infectious Diseases Laboratory, Campus Ministro Reis Velloso, Federal University of Parnaíba Delta, 64202-020 Parnaíba, PI, Brazil
| | - Airton Lucas Sousa Dos Santos
- Infectious Diseases Laboratory, Campus Ministro Reis Velloso, Federal University of Parnaíba Delta, 64202-020 Parnaíba, PI, Brazil
| | - Vanessa Maria Rodrigues de Souza
- Infectious Diseases Laboratory, Campus Ministro Reis Velloso, Federal University of Parnaíba Delta, 64202-020 Parnaíba, PI, Brazil
| | - Yasmim Alves Aires Machado
- Infectious Diseases Laboratory, Campus Ministro Reis Velloso, Federal University of Parnaíba Delta, 64202-020 Parnaíba, PI, Brazil
| | - Thaís Amanda de Lima Nunes
- Laboratory of Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, 38025-180 Uberaba, MG, Brazil
| | - Marcos Vinícius da Silva
- Laboratory of Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, 38025-180 Uberaba, MG, Brazil
| | - Alyne Rodrigues de Araújo-Nobre
- Biodiversity and Biotechnology Research Center, Campus Ministro Reis Velloso, Federal University of Parnaíba Delta, 64202-020 Parnaíba, PI, Brazil
| | - Rodrigo Santos Aquino de Araújo
- Laboratory of Synthesis and Drug Delivery, Department of Biological Sciences, State University of Paraíba, 58071-160 João Pessoa, PB, Brazil
| | | | - Leiz Maria da Costa Veras
- Biodiversity and Biotechnology Research Center, Campus Ministro Reis Velloso, Federal University of Parnaíba Delta, 64202-020 Parnaíba, PI, Brazil
| | | |
Collapse
|
5
|
Fayed EA, El-Sebaey SA, Ebrahim MA, Abu-Elfotuh K, El-Sayed Mansour R, Mohamed EK, Hamdan AME, Al-Subaie FT, Albalawi GS, Albalawi TM, Hamdan AM, Mohammed AA, Ramsis TM. Discovery of novel bicyclic and tricyclic cyclohepta[b]thiophene derivatives as multipotent AChE and BChE inhibitors, in-Vivo and in-Vitro assays, ADMET and molecular docking simulation. Eur J Med Chem 2025; 284:117201. [PMID: 39731791 DOI: 10.1016/j.ejmech.2024.117201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/21/2024] [Accepted: 12/21/2024] [Indexed: 12/30/2024]
Abstract
Alzheimer's disease (AD) is primarily caused by oxidative stress, hyperphosphorylated τ-protein aggregation, and amyloid-β deposition. Changes in dopaminergic and serotoninergic neurotransmitter pathways are linked to certain symptoms of AD. Derivatives of bicyclic and tricyclic cyclohepta[b]thiophene were developed to identify new potential candidates as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors for the treatment of AD. All synthesized compounds exhibited AChE inhibition with IC50 values below 15 μM, while all compounds exhibited BChE inhibition with IC50 values below 25 μM. Compounds 9 and 12 exhibited AChE inhibitory activities with IC50 values of 0.51 μM and 0.55 μM, respectively. Compounds 5 and 9 demonstrated excellent inhibitory activity against BChE with IC50 values of 2.9 μM and 2.48 μM, respectively. Compounds 9, 13, and 14 were found to be the most active in terms of the decrease in the escape latency time, with values comparable to that of Donepezil. Compounds 10, 11, and 12 exhibited promising effects on learning and memory. Compounds 5, 10, 11, and 12 exhibited promising SAP values of 70.67 %, 71.5 %, 74.33 % and 73.83 %, respectively. Other biomarkers were evaluated in rat brains including TAC, MDA, SOD, BDNF, IL-β and TNF-α. Fundamental features of ADMET have been computed in-silico for synthesized compounds. Molecular docking was performed to confirm the binding of the novel compounds to the targets.
Collapse
Affiliation(s)
- Eman A Fayed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11754, Egypt.
| | - Samiha Ahmed El-Sebaey
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11754, Egypt
| | - Maha A Ebrahim
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11754, Egypt
| | - Karema Abu-Elfotuh
- Department of Clinical Pharmacy, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11754, Egypt; College of Pharmacy, Al-Ayen Iraqi University, Thi-Qar, 64001, Iraq
| | - Reda El-Sayed Mansour
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11754, Egypt
| | - Ehsan Khedre Mohamed
- Department of Biochemistry, Egyptian DRUG AUTHORITY (EDA), Formerly National Organization of Drug Control and Research (NODCAR), Giza, Egypt
| | - Ahmed M E Hamdan
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia; Prince Fahad bin Sultan Chair for Biomedical Research, University of Tabuk, Saudi Arabia
| | | | | | | | - Amira M Hamdan
- Oceanography Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Asmaa A Mohammed
- Department Pharmacology and Toxicology, Faculty of Pharmacy Girls Al-Azhar University, Cairo, 11754, Egypt
| | - Triveena M Ramsis
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sinai University, Kantara Branch, Ismailia, 41636, Egypt
| |
Collapse
|
6
|
Abd El-Mawgoud HK, AboulMagd AM, Shaker AMM, Hemdan MM, Hassaballah AI, Farag PS. Synthesis of tetra-substituted thiophene derivatives as potential Hits combating antibiotic resistant bacteria ESKAPE. Bioorg Chem 2025; 155:108101. [PMID: 39809117 DOI: 10.1016/j.bioorg.2024.108101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/15/2024] [Accepted: 12/24/2024] [Indexed: 01/16/2025]
Abstract
The escalating prevalence of antibiotic-resistant bacteria has led to a serious global public health problem; therefore, there is an urgent need for the development of structurally innovative antibacterial agents. In our study, different series of tetra-substituted thiophene derivatives were designed and synthesized by multi-component reactions (MCRs) in moderate to excellent yields. Some of the designed final compounds were synthesized by both microwave assisted method and traditional synthesis. Thirteen compounds were evaluated against antibiotic resistance bacteria ESKAPE, among which compounds 11, 13 and 17 showed the most potent inhibitory activities against multidrug-resistant Enterococcus faecalis with MIC (minimum inhibitory concentration) values as low as 15.62, 7.61 and 15.62 µg/mL, respectively. Two potent candidates 11 and 13 not only showed rapid bactericidal properties and impeded E. faecalis biofilm formation to effectually relieve the development of drug resistance, but also performed low toxicity toward human normal cells. Moreover, time dependent killing assay was performed that showed the reduction of the concentration of bacteria by 5.0 Log (CFU/mL) within 6 h, stronger than reference drug, ampicillin at the same concentration. Additionally, mechanistic investigation demonstrated that both compounds 11 and 13 could exert inhibitory activity against DHPS with IC50 value of 1.73 and 4.67 µM, respectively and against DNA gyrase enzyme with IC50 value of 0.07 and 0.04 µM, respectively. Moreover, the cytotoxic activity of the most active compound was crucial to be determined that showed IC50 value of 75.42 µM. Molecular docking indicated that the binding of both compounds 11 and 13 to DHPS and DNA gyrase enzymes could hinder their function. These results can provide novel structures of antibacterial drugs chemically different from currently known antibiotics and broaden prospects for the development of effective antibiotics against antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Heba K Abd El-Mawgoud
- Chemistry Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Heliopolis, 11767 Cairo, Egypt.
| | - Asmaa M AboulMagd
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nahda University (NUB), Beni-Suef, Egypt.
| | - Ahmed M M Shaker
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nile Valley University, Fayoum 63518, Egypt
| | - Magdy M Hemdan
- Chemistry Department, Faculty of Science, Ain Shams University, Abbasia, 11566 Cairo, Egypt
| | - Aya I Hassaballah
- Chemistry Department, Faculty of Science, Ain Shams University, Abbasia, 11566 Cairo, Egypt
| | - Paula S Farag
- Chemistry Department, Faculty of Science, Ain Shams University, Abbasia, 11566 Cairo, Egypt
| |
Collapse
|
7
|
Lin Z, Gupta JK, Maqbool M, Kumar K, Sharma A, Wahi N. The Therapeutic Management of Chemical and Herbal Medications on Uric Acid Levels and Gout: Modern and Traditional Wisdom. Pharmaceuticals (Basel) 2024; 17:1507. [PMID: 39598418 PMCID: PMC11597706 DOI: 10.3390/ph17111507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Gout is a chronic inflammatory condition characterized by elevated uric acid levels in the blood, which can precipitate acute gout attacks in individuals with genetic susceptibility, existing medical conditions, and dietary influences. Genetic predispositions, comorbid medical conditions, nutritional choices, and environmental factors increasingly recognize the multifactorial etiology of the disease. Methods: Recent research has highlighted the potential of phytochemicals, particularly flavonoids, saponins, and alkaloids, to manage hyperuricemia (HUA) and its associated complications. Results: Plant's natural compounds have garnered attention for their anti-inflammatory, antioxidant, and uric acid-lowering properties, suggesting their role in alternative and complementary medicine. Phytochemicals have demonstrated promise in mitigating gout symptoms and potentially modifying the disease course by addressing different aspects of hyperuricemia and inflammation. Herbal remedies, with their complex phytochemical profiles, offer a unique advantage by potentially complementing conventional pharmacological treatments. The integration of herbal therapies with standard medications could lead to enhanced therapeutic outcomes through synergistic effects, optimizing disease management, and improving patient quality of life. Conclusions: This review examines the current understanding of the multifaceted etiology of gout, explores the role of phytochemicals in managing hyperuricemia, and discusses the potential benefits of combining herbal remedies with conventional treatments to improve patient care and therapeutic efficacy.
Collapse
Affiliation(s)
- Zhijian Lin
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China;
| | - Jeetendra Kumar Gupta
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University Mathura, Chaumuhan 281406, India
| | - Mohsin Maqbool
- Department of Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Ansari Nagar East, New Delhi 110029, India
| | - Krishan Kumar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Ayushi Sharma
- Institute of Molecular Biology, Academia Sinica, Taipei City 115, Taiwan
| | - Nitin Wahi
- Pathfinder Research and Training Foundation, Gr. Noida 201308, India;
| |
Collapse
|
8
|
Thakur S, Kumar D, Jaiswal S, Goel KK, Rawat P, Srivastava V, Dhiman S, Jadhav HR, Dwivedi AR. Medicinal chemistry-based perspectives on thiophene and its derivatives: exploring structural insights to discover plausible druggable leads. RSC Med Chem 2024:d4md00450g. [PMID: 39601022 PMCID: PMC11588141 DOI: 10.1039/d4md00450g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/27/2024] [Indexed: 11/29/2024] Open
Abstract
Thiophene is a privileged pharmacophore in medicinal chemistry owing to its diversified biological attributes. The thiophene moiety has been ranked 4th in the US FDA drug approval of small drug molecules, with around 7 drug approvals over the last decade. The present review covers USFDA-approved drugs possessing a thiophene ring system. Our analysis reveals that 26 drugs possessing thiophene nuclei have been approved under different pharmacological classes. The review further covers reported thiophene and its substituted analogues with diverse biological activities, including anti-diabetic, anticancer, anti-inflammatory, anticonvulsant, and antioxidant activity. Besides, a section is dedicated to appreciating the implications of structural bioinformatics in drug discovery. Additionally, the manuscript delves into structure-activity relationship studies to explore the chemical groups responsible for eliciting potential therapeutic activities. The review may provide invaluable insights for researchers working with thiophene nuclei in developing novel analogues with greater efficacy and fewer side effects.
Collapse
Affiliation(s)
- Shikha Thakur
- Pharmaceutical Chemistry Laboratory, Department of Pharmacy, Birla Institute of Technology and Sciences Pilani Pilani Campus, Vidya Vihar Pilani - 333031 RJ India
| | - Devendra Kumar
- School of Pharmacy, Narsee Monjee Institute of Management Studies (NMIMS) Dist. Dhule Maharashtra India
| | - Shivani Jaiswal
- Institute of Pharmaceutical Research, GLA University Mathura, 17 Km Stone, National Highway, Delhi-Mathura Road, P.O. Chaumuha Mathura-281406 Uttar Pradesh India
| | - Kapil Kumar Goel
- Department of Pharmaceutical Sciences, Gurukul Kangri (Deemed to Be University) Haridwar 249404 Uttarakhand India
| | - Pramod Rawat
- Graphic Era (Deemed to be University) Clement Town Dehradun-248002 India
- Graphic Era Hill University Clement Town Dehradun-248002 India
| | - Vivek Srivastava
- Amity Institute of Pharmacy Amity University Lucknow Campus Uttar Pradesh India
| | - Sonia Dhiman
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University Rajpura 140401 Punjab India
| | - Hemant R Jadhav
- Pharmaceutical Chemistry Laboratory, Department of Pharmacy, Birla Institute of Technology and Sciences Pilani Pilani Campus, Vidya Vihar Pilani - 333031 RJ India
| | - Ashish Ranjan Dwivedi
- Department of Medicinal Chemistry, GITAM School of Pharmacy, GITAM (deemed to be) University Hyderabad India
| |
Collapse
|
9
|
Kosmalski T, Kołodziejska R, Przybysz M, Szeleszczuk Ł, Pawluk H, Mądra-Gackowska K, Studzińska R. The Application of Green Solvents in the Synthesis of S-Heterocyclic Compounds-A Review. Int J Mol Sci 2024; 25:9474. [PMID: 39273421 PMCID: PMC11395059 DOI: 10.3390/ijms25179474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Cyclic organic compounds containing sulfur atoms constitute a large group, and they play an important role in the chemistry of heterocyclic compounds. They are valuable intermediates for the synthesis of other compounds or biologically active compounds themselves. The synthesis of heterocyclic compounds poses a major challenge for organic chemists, especially in the context of applying the principles of "green chemistry". This work is a review of the methods of synthesis of various S-heterocyclic compounds using green solvents such as water, ionic liquids, deep eutectic solvents, glycerol, ethylene glycol, polyethylene glycol, and sabinene. The syntheses of five-, six-, and seven-membered heterocyclic compounds containing a sulfur atom or atoms, as well as those with other heteroatoms and fused-ring systems, are described. It is shown that using green solvents determines the attractiveness of conditions for many reactions; for others, such use constitutes a real compromise between efficiency and mild reaction conditions.
Collapse
Affiliation(s)
- Tomasz Kosmalski
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 2 Jurasza Str., 85-089 Bydgoszcz, Poland
| | - Renata Kołodziejska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza Str., 85-092 Bydgoszcz, Poland
| | - Monika Przybysz
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 2 Jurasza Str., 85-089 Bydgoszcz, Poland
| | - Łukasz Szeleszczuk
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-093 Warsaw, Poland
| | - Hanna Pawluk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza Str., 85-092 Bydgoszcz, Poland
| | - Katarzyna Mądra-Gackowska
- Department of Geriatrics, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 Skłodowskiej Curie Str., 85-094 Bydgoszcz, Poland
| | - Renata Studzińska
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 2 Jurasza Str., 85-089 Bydgoszcz, Poland
| |
Collapse
|
10
|
Yang S, Zhu Y, Shi Y, Su S, Liang H, Li S, Wu Z, Miao J, Chen Y, Zhang X, Wang X. Screening of NSAIDs library identifies Tinoridine as a novel ferroptosis inhibitor for potential intervertebral disc degeneration therapy. Free Radic Biol Med 2024; 221:245-256. [PMID: 38806104 DOI: 10.1016/j.freeradbiomed.2024.05.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 05/30/2024]
Abstract
Low back pain (LBP) may profoundly impact the quality of life across the globe, and intervertebral disc degeneration (IVDD) is the major cause of LBP; however, targeted pharmaceutical interventions for IVDD are still lacking. Ferroptosis is a novel form of iron-dependent programmed cell death. Studies have showed that ferroptosis may closely associate with IVDD; thus, targeting ferroptosis may have great potential for IVDD therapy. Non-steroidal anti-inflammatory drugs (NSAIDs) are the first-line medications for LBP, while nuclear factor-erythroid 2-related factor-2 (Nrf2) is a key inhibitory protein for ferroptosis. In the current study, we conducted a molecular docking screening between NSAIDs library and Nrf2 protein. Tinoridine was shown to have a high binding affinity to Nrf2. The in vitro study in nucleus pulposus (NP) cells showed that Tinoridine may promote the expression and activity of Nrf2, it may also rescue RSL3-induced ferroptosis in NP cells. Knockdown of Nrf2 reverses the protective effect of Tinoridine on RSL3-induced ferroptosis in NP cells, suggesting that the inhibitory effect of Tinoridine on ferroptosis is through Nrf2. In vivo study demonstrated that Tinoridine may attenuate the progression of IVDD in rats. As NSAIDs are already clinically used for LBP therapy, the current study supports Tinoridine's application from the view of ferroptosis inhibition.
Collapse
Affiliation(s)
- Shu Yang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yuxuan Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yifeng Shi
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Shenkai Su
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Haibo Liang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Sunlong Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zhouwei Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiansen Miao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yuli Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
11
|
Nayab S, Jan K, Kim SH, Kim SH, Shams DF, Son Y, Yoon M, Lee H. Insight into the inhibitory potential of metal complexes supported by ( E)-2-morpholino- N-(thiophen-2-ylmethylene)ethanamine: synthesis, structural properties, biological evaluation and docking studies. Dalton Trans 2024; 53:11295-11309. [PMID: 38898716 DOI: 10.1039/d4dt00362d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
A thiophene-derived Schiff base ligand (E)-2-morpholino-N-(thiophen-2-ylmethylene)ethanamine was used for the synthesis of M(II) complexes, [TEM(M)X2] (M = Co, Cu, Zn; X = Cl; M = Cd, X = Br). Structural characterization of the synthesized complexes revealed distorted tetrahedral geometry around the M(II) center. In vitro investigation of the synthesized ligand and its M(II) complexes showed considerable anti-urease and leishmanicidal potential. The synthesized complexes also exhibited a significant inhibitory effect on urease, with IC50 values in the range of 3.50-8.05 μM. In addition, the docking results were consistent with the experimental results. A preliminary study of human colorectal cancer (HCT), hepatic cancer (HepG2), and breast cancer (MCF-7) cell lines showed marked anticancer activities of these complexes.
Collapse
Affiliation(s)
- Saira Nayab
- Department of Chemistry, Shaheed Benazir Bhutto University, Sheringal Dir (U) 18050, Khyber Pakhtunkhwa, Islamic Republic of Pakistan
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea.
| | - Kalsoom Jan
- Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, MA 01851, USA
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01851, USA
| | - Seung-Hyeon Kim
- BK21 FOUR KNU Creative BioResearch Group, School of Life Science, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea
| | - Sa-Hyun Kim
- BK21 FOUR KNU Creative BioResearch Group, School of Life Science, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea
| | - Dilawar Farhan Shams
- Department of Environmental Chemistry, Abdul Wali Khan University Maradan, Khyber Pakhtunkhwa, Islamic Republic of Pakistan
| | - Younghu Son
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea.
| | - Minyoung Yoon
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea.
| | - Hyosun Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea.
| |
Collapse
|
12
|
Yennawar HP, Mal TK, Olsen MA, Lagalante AF, Louca EM, Gavalis AD, Silverberg LJ. Synthesis and crystal structures of two racemic 2-heteroaryl-3-phenyl-2,3-di-hydro-4 H-pyrido[3,2- e][1,3]thia-zin-4-ones. Acta Crystallogr E Crystallogr Commun 2024; 80:699-703. [PMID: 38974155 PMCID: PMC11223699 DOI: 10.1107/s2056989024005103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 05/29/2024] [Indexed: 07/09/2024]
Abstract
3-Phenyl-2-(thio-phen-3-yl)-2,3-di-hydro-4H-pyrido[3,2-e][1,3]thia-zin-4-one (C17H12N2OS2, 1) and 2-(1H-indol-3-yl)-3-phenyl-2,3-di-hydro-4H-pyrido[3,2-e][1,3]thia-zin-4-one 0.438-hydrate (C21H15N3OS·0.438H2O, 2) crystallize in space groups P21/n and C2/c, respectively. The asymmetric unit in each case is comprised of two parent mol-ecules, albeit of mixed chirality in the case of 1 and of similar chirality in 2 with the enanti-omers occupying the neighboring asymmetric units. Structure 2 also has water mol-ecules (partial occupancies) that form continuous channels along the b -axis direction. The thia-zine rings in both structures exhibit an envelope conformation. Inter-molecular inter-actions in 1 are defined only by C-H⋯O and C-H⋯N hydrogen bonds between crystallographically independent mol-ecules. In 2, hydrogen bonds of the type N-H⋯O between independent mol-ecules and C-H⋯N(π) type, and π-π stacking inter-actions between the pyridine rings of symmetry-related mol-ecules are observed.
Collapse
Affiliation(s)
- Hemant P. Yennawar
- Department of Biochemistry and Molecular Biology Pennsylvania State University University Park PA 16802 USA
| | - Tapas K. Mal
- Department of Chemistry The Pennsylvania State University University Park PA 16802 USA
| | - Mark A. Olsen
- Mendel Science Center Villanova University, 800 Lancaster Avenue Villanova PA 19085 USA
| | - Anthony F. Lagalante
- Mendel Science Center Villanova University, 800 Lancaster Avenue Villanova PA 19085 USA
| | - Evelyn M. Louca
- Pennsylvania State University, Schuylkill Campus, 200 University Drive, Schuylkill Haven, PA 17972, USA
| | - Aloura D. Gavalis
- Pennsylvania State University, Schuylkill Campus, 200 University Drive, Schuylkill Haven, PA 17972, USA
| | - Lee J. Silverberg
- Pennsylvania State University, Schuylkill Campus, 200 University Drive, Schuylkill Haven, PA 17972, USA
| |
Collapse
|
13
|
de Carvalho Bertozo L, Tadeu HC, Sebastian A, Maszota-Zieleniak M, Samsonov SA, Ximenes VF. Role for Carboxylic Acid Moiety in NSAIDs: Favoring the Binding at Site II of Bovine Serum Albumin. Mol Pharm 2024; 21:2501-2511. [PMID: 38574292 DOI: 10.1021/acs.molpharmaceut.4c00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
The molecular structures of nonsteroidal anti-inflammatory drugs (NSAIDs) vary, but most contain a carboxylic acid functional group (RCOOH). This functional group is known to be related to the mechanism of cyclooxygenase inhibition and also causes side effects, such as gastrointestinal bleeding. This study proposes a new role for RCOOH in NSAIDs: facilitating the interaction at the binding site II of serum albumins. We used bovine serum albumin (BSA) as a model to investigate the interactions with ligands at site II. Using dansyl-proline (DP) as a fluorescent site II marker, we demonstrated that only negatively charged NSAIDs such as ibuprofen (IBP), naproxen (NPX), diflunisal (DFS), and ketoprofen (KTP) can efficiently displace DP from the albumin binding site. We confirmed the importance of RCOO by neutralizing IBP and NPX through esterification, which reduced the displacement of DP. The competition was also monitored by stopped-flow experiments. While IBP and NPX displaced DP in less than 1 s, the ester derivatives were ineffective. We also observed a higher affinity of negatively charged NSAIDs using DFS as a probe and ultrafiltration experiments. Molecular docking simulations showed an essential salt bridge between the positively charged residues Arg409 and Lys413 with RCOO-, consistent with the experimental findings. We performed a ligand dissociation pathway and corresponding energy analysis by applying molecular dynamics. The dissociation of NPX showed a higher free energy barrier than its ester. Apart from BSA, we conducted some experimental studies with human serum albumin, and similar results were obtained, suggesting a general effect for other mammalian serum albumins. Our findings support that the RCOOH moiety affects not only the mechanism of action and side effects but also the pharmacokinetics of NSAIDs.
Collapse
Affiliation(s)
- Luiza de Carvalho Bertozo
- Department of Chemistry, Faculty of Sciences, UNESP─São Paulo State University, Bauru 17033-360, São Paulo, Brazil
| | - Hugo Cesar Tadeu
- Department of Chemistry, Faculty of Sciences, UNESP─São Paulo State University, Bauru 17033-360, São Paulo, Brazil
| | - Anila Sebastian
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | | | - Sergey A Samsonov
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Valdecir Farias Ximenes
- Department of Chemistry, Faculty of Sciences, UNESP─São Paulo State University, Bauru 17033-360, São Paulo, Brazil
| |
Collapse
|
14
|
Hayat C, Subramaniyan V, Alamri MA, Wong LS, Khalid A, Abdalla AN, Afridi SG, Kumarasamy V, Wadood A. Identification of new potent NLRP3 inhibitors by multi-level in-silico approaches. BMC Chem 2024; 18:76. [PMID: 38637900 PMCID: PMC11027297 DOI: 10.1186/s13065-024-01178-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/02/2024] [Indexed: 04/20/2024] Open
Abstract
Nod-like receptor protein 3 (NLRP-3), is an intracellular sensor that is involved in inflammasome activation, and the aberrant expression of NLRP3 is responsible for diabetes mellitus, its complications, and many other inflammatory diseases. NLRP3 is considered a promising drug target for novel drug design. Here, a pharmacophore model was generated from the most potent inhibitor, and its validation was performed by the Gunner-Henry scoring method. The validated pharmacophore was used to screen selected compounds databases. As a result, 646 compounds were mapped on the pharmacophore model. After applying Lipinski's rule of five, 391 hits were obtained. All the hits were docked into the binding pocket of target protein. Based on docking scores and interactions with binding site residues, six compounds were selected potential hits. To check the stability of these compounds, 100 ns molecular dynamic (MD) simulations were performed. The RMSD, RMSF, DCCM and hydrogen bond analysis showed that all the six compounds formed stable complex with NLRP3. The binding free energy with the MM-PBSA approach suggested that electrostatic force, and van der Waals interactions, played a significant role in the binding pattern of these compounds. Thus, the outcomes of the current study could provide insights into the identification of new potential NLRP3 inflammasome inhibitors against diabetes and its related disorders.
Collapse
Affiliation(s)
- Chandni Hayat
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Mardan, 23200, Pakistan
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India.
| | - Mubarak A Alamri
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, 71800, Nilai, Malaysia
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, 45142, Jazan, Saudi Arabia.
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Sahib Gul Afridi
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Mardan, 23200, Pakistan
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000, Cheras, Kuala Lumpur, Malaysia.
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Mardan, 23200, Pakistan.
| |
Collapse
|
15
|
Fernández-Rubio C, Rubio-Hernández M, Alcolea V, Burguete-Mikeo A, Nguewa PA, Pérez-Silanes S. Promising aryl selenoate derivatives as antileishmanial agents and their effects on gene expression. Antimicrob Agents Chemother 2024; 68:e0155923. [PMID: 38497616 PMCID: PMC10994822 DOI: 10.1128/aac.01559-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/20/2024] [Indexed: 03/19/2024] Open
Abstract
Leishmaniasis remains one of the main public health problems worldwide, with special incidence in the poorest populations. Selenium and its derivatives can be potent therapeutic options against protozoan parasites. In this work, 17 aryl selenoates were synthesized and screened against three species of Leishmania (Leishmania major, Leishmania amazonensis, and Leishmania infantum). Initial screening in promastigotes showed L. infantum species was more sensitive to selenoderivatives than the others. The lead Se-(2-selenocyanatoethyl) thiophene-2-carboselenoate (16) showed a half-maximal effective concentration of 3.07 µM and a selectivity index > 32.57 against L. infantum promastigotes. It was also the most effective of all 17 compounds, decreasing the infection ratio by 90% in L. infantum-infected macrophages with amastigotes at 10 µM. This aryl selenoate did not produce a hemolytic effect on human red blood cells at the studied doses (10-100 µM). Furthermore, the gene expression of infected murine macrophages related to cell death, the cell cycle, and the selenoprotein synthesis pathway in amastigotes was altered, while no changes were observed in their murine homologs, supporting the specificity of Compound 16 against the parasite. Therefore, this work reveals the possible benefits of selenoate derivatives for the treatment of leishmaniasis.
Collapse
Affiliation(s)
- Celia Fernández-Rubio
- ISTUN Institute of Tropical Health, Department of Microbiology and Parasitology, Universidad de Navarra, IdiSNA (Navarra Institute for Health Research), Navarra, Spain
| | - Mercedes Rubio-Hernández
- ISTUN Institute of Tropical Health, Department of Pharmaceutical Sciences, Universidad de Navarra, IdiSNA (Navarra Institute for Health Research), Pamplona, Spain
| | - Verónica Alcolea
- ISTUN Institute of Tropical Health, Department of Pharmaceutical Sciences, Universidad de Navarra, IdiSNA (Navarra Institute for Health Research), Pamplona, Spain
| | - Aroia Burguete-Mikeo
- ISTUN Institute of Tropical Health, Department of Microbiology and Parasitology, Universidad de Navarra, IdiSNA (Navarra Institute for Health Research), Navarra, Spain
| | - Paul A. Nguewa
- ISTUN Institute of Tropical Health, Department of Microbiology and Parasitology, Universidad de Navarra, IdiSNA (Navarra Institute for Health Research), Navarra, Spain
| | - Silvia Pérez-Silanes
- ISTUN Institute of Tropical Health, Department of Pharmaceutical Sciences, Universidad de Navarra, IdiSNA (Navarra Institute for Health Research), Pamplona, Spain
| |
Collapse
|
16
|
Metwally HM, Younis NM, Abdel-Latif E, El-Rayyes A. New thiazole, thiophene and 2-pyridone compounds incorporating dimethylaniline moiety: synthesis, cytotoxicity, ADME and molecular docking studies. BMC Chem 2024; 18:52. [PMID: 38486282 PMCID: PMC10941513 DOI: 10.1186/s13065-024-01136-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 02/05/2024] [Indexed: 03/17/2024] Open
Abstract
Various sets of thiazole, thiophene, and 2-pyridone ring structures containing a dimethylaniline component were synthesized. Substituted thiazoles 2-3 and thiophenes 5-7 were produced by reacting thiocarbamoyl compound 4 with α-halogenated reagents in different basic conditions. Also, a series of 2-pyridone derivatives 9a-f substituted with dimethylaniline was synthesized through Michael addition of malononitrile to α,β-unsaturated nitrile derivatives 8a-f. The synthesized products were structurally proven by spectroscopic methods such as IR, 1H NMR, 13C NMR, and MS data. Furthermore, the anti-cancer efficacy of the compounds was assessed using the MTT assay on two cell lines: hepatocellular carcinoma (HepG-2) and breast cancer (MDA-MB-231). The results showed the highest growth inhibition for derivatives 2, 6, 7, and 9c, which were further examined for their IC50 values. The IC50 for compound 2 showed equipotent activity (IC50 = 1.2 µM) against the HepG-2 cell line compared to Doxorubicin (IC50 = 1.1 µM). Compounds 2, 6, 7 and 9c showed very good ADME assessments for further drug administration. Moreover, the PASS theoretical prediction for the compounds showed high antimitotic and antineoplastic activities for compounds 2, 6, 7, and 9c, as well as potent inhibition activity for the insulysin enzyme (IDE). Molecular docking stimulations were performed on CDK1/CyclinB1/CKS2 (PDB ID: 4y72) and BPTI (PDB ID: 2ra3). When docked into (PDB ID: 4y72), all of the tested compounds showed considerable inhibition, and the 2-pyridone derivative 9d had the maximum binding affinity (- 8.1223 kcal/mol). While thiophene derivative 6 offered the maximum binding affinity (- 7.5094 kcal/mol) when docked into (PDB ID: 2ra3).
Collapse
Affiliation(s)
- Heba M Metwally
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
| | - Norhan M Younis
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Ehab Abdel-Latif
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Ali El-Rayyes
- Department of Chemistry, Faculty of Science, Northern Border University, 1321, Arar, Saudi Arabia.
| |
Collapse
|
17
|
Khadri MJN, Ramu R, Simha NA, Khanum SA. Synthesis, molecular docking, analgesic, anti-inflammatory, and ulcerogenic evaluation of thiophene-pyrazole candidates as COX, 5-LOX, and TNF-α inhibitors. Inflammopharmacology 2024; 32:693-713. [PMID: 37985602 DOI: 10.1007/s10787-023-01364-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/02/2023] [Indexed: 11/22/2023]
Abstract
The thiophene bearing pyrazole derivatives (7a-j) were synthesized and examined for their in vitro cyclooxygenase, 5-lipoxygenase, and tumour inducing factor-α inhibitory activities followed by the in vivo analgesic, anti-inflammatory, and ulcerogenic evaluations. The synthesized series (7a-j) were characterized using 1H NMR, 13C NMR, FT-IR, and mass spectral analysis. Initially, the compounds (7a-j) were evaluated for their in vitro cyclooxygenase, 5-lipoxygenase, and tumour inducing factor-α inhibitory activities and the compound (7f) with two phenyl substituents in the pyrazole ring and chloro substituent in the thiophene ring and the compound (7g) with two phenyl substituents in the pyrazole ring and bromo substituent in the thiophene ring were observed as potent compounds among the series. The compounds (7f and 7g) with effective in vitro potentials were further analyzed for analgesic, anti-inflammatory, and ulcerogenic evaluations. Also, to ascertain the binding affinities of compounds (7a-j), docking assessments were carried out and the ligand (7f) with the highest binding affinity was docked to know the interactions of the ligand with amino acids of target proteins.
Collapse
Affiliation(s)
- M J Nagesh Khadri
- Department of Chemistry, Yuvaraja's College (Autonomous), University of Mysore, Mysuru, Karnataka, 570005, India
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education & Research, Mysuru, Karnataka, 570015, India
| | - N Akshaya Simha
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education & Research, Mysuru, Karnataka, 570015, India
| | - Shaukath Ara Khanum
- Department of Chemistry, Yuvaraja's College (Autonomous), University of Mysore, Mysuru, Karnataka, 570005, India.
| |
Collapse
|
18
|
Shehab WS, Elsayed DA, Abdel Hamid AM, Assy MG, Mouneir SM, Hamed EO, Mousa SM, El-Bassyouni GT. CuO nanoparticles for green synthesis of significant anti-Helicobacter pylori compounds with in silico studies. Sci Rep 2024; 14:1608. [PMID: 38238369 PMCID: PMC10796945 DOI: 10.1038/s41598-024-51708-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
Helicobacter pylori (H. pylori) is a universal health intimidation as mentioned by the World Health Organization. The primary causal agent linked to a number of illnesses, including inflammation and the development of stomach ulcers, is Helicobacter pylori. Since, H. pylori develops antibiotic resistance quickly, current H. pylori treatment approaches are becoming less effective. Our research aims to highlight novel formulation antibiotics using CuO-NPs as catalysts and studied their activity as anti-helicobacter pylori supported by computational studies (POM analysis and molecular docking) software. They were designed for anti-Helicobacter Pylori action. All compounds revealed a bactericidal effect better than the reference McFarland standards.
Collapse
Grants
- STDF Open access funding provided by Te Science, Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB).
- STDF Open access funding provided by Te Science, Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB).
- STDF Open access funding provided by Te Science, Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB).
- STDF Open access funding provided by Te Science, Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB).
- STDF Open access funding provided by Te Science, Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB).
- STDF Open access funding provided by Te Science, Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB).
- STDF Open access funding provided by Te Science, Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB).
- STDF Open access funding provided by Te Science, Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB).
- STDF Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB)., STDF
- STDF Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB)., STDF
- STDF Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB)., STDF
- STDF Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB)., STDF
- STDF Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB)., STDF
- STDF Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB)., STDF
- STDF Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB)., STDF
- STDF Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB)., STDF
- Zagazig University
Collapse
Affiliation(s)
- Wesam S Shehab
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Doaa A Elsayed
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Atef M Abdel Hamid
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed G Assy
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Samar M Mouneir
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Cairo, 12211, Egypt
| | - Eman O Hamed
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Sahar M Mousa
- Inorganic Chemistry Department, National Research Centre, 33 El-Buhouth St., Dokki, Cairo, 12622, Egypt
| | - Gehan T El-Bassyouni
- Ceramics and Building Materials Department, National Research Centre, 33 El-Buhouth St., Dokki, Cairo, 12622, Egypt
| |
Collapse
|
19
|
Saeed K, Rafiq M, Khalid M, Hussain A, Siddique F, Hanif M, Hussain S, Mahmood K, Ameer N, Ahmed MM, Ali Khan M, Yaqub M, Jabeen M. Synthesis, characterization, computational assay and anti-inflammatory activity of thiosemicarbazone derivatives: Highly potent and efficacious for COX inhibitors. Int Immunopharmacol 2024; 126:111259. [PMID: 37992446 DOI: 10.1016/j.intimp.2023.111259] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Multiple studies in the literature have demonstrated that synthetic compounds containing heterocyclic rings possess a reparative potential against acute and chronic inflammation. In the present study, two novel thiosemicarbazone derivatives based on l-ethyl-6-(thiophen-2-yl)indoline-2,3-dione with different phenyl substituted thiosemicarbazides were synthesized by condensation reaction and the structures of proposed target compounds (KP-2 and KP-5) were confirmed by UV-VIS, FTIR, 1H-NMR and 13C-NMR. In-vitro anti-inflammatory behavior of KP-2 and KP-5 was confirmed by bovine serum albumin (BSA) and ovine serum albumin (OSA) analysis. Acute and chronic anti-inflammatory potential of synthesized compounds were evaluated by using carrageenan and complete Freund's adjuvant (CFA) as inflammation-inducing agents, respectively. Inhibition of pro-inflammatory mediators and prevention of protein denaturation owing to synchronization of more electronegative flouro-groups substituted on phenyl rings along with heterocyclic indoline ring provides anti-inflammatory effects and are corroborated by radiological, histopathological analysis. Additional support was provided through density functional theory (DFT) and molecular docking. KP-5 exhibited excellent lead-likeness based on its physicochemical parameters, making it a viable drug candidate. The synthesized compounds also showed promising ADMET properties, enhancing their potential as therapeutic agents. These findings emphasize the pivotal role of new compounds for drug design and development.
Collapse
Affiliation(s)
- Kinza Saeed
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Rafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Ajaz Hussain
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Farhan Siddique
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakariya University Multan, Pakistan
| | - Muhammad Hanif
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Saghir Hussain
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Khalid Mahmood
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Nabeela Ameer
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | | | - Muhammad Ali Khan
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Yaqub
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Mehreen Jabeen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakariya University Multan, Pakistan
| |
Collapse
|
20
|
Chahal G, Monga J, Rani I, Saini S, Devgun M, Husain A, Lal Khokra S. Pyrazoles as Anti-inflammatory and Analgesic Agents: In-vivo and In-silico Studies. Antiinflamm Antiallergy Agents Med Chem 2024; 23:39-51. [PMID: 38828869 DOI: 10.2174/0118715230275741231207115011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 06/05/2024]
Abstract
BACKGROUND Pyrazole is a well-known nucleus in the pharmacy field with a wide range of other activities in addition to anti-inflammatory and analgesic, i.e., anticonvulsant, antiviral, and anticancer activities. There are well-known marketed drugs having pyrazole moiety as celecoxib, and lonazolac as COX-II inhibitors. AIMS We aim to synthesize better anti-inflammatory than existing ones. Thiophene is also known for its analgesic and anti-inflammatory action. Thus, the fusion of both gives better anti-inflammatory agents. In the present studies, derivatives from two series of pyrazole were prepared by reacting substituted chalcone (3a-3f) derivatives prepared from 2-acetyl thiophene. They substituted aromatic aldehydes with phenyl hydrazine to form (5a-5f) and with 2, 4-dinitro phenyl hydrazine giving compounds (6a-6f) separately. METHODS Purified and characterized pyrazoles have been analyzed for in-vivo analgesic and anti-inflammatory activities by using standard methods. Compounds 5e, 5f, and 6d were proved to be potent analgesics and series (5a-5f) was found to have anti-inflammatory action, which was further validated using docking and ADME studies. RESULTS The ADME profile of synthesized compounds was found to be satisfactory. CONCLUSION The synthesized compounds can serve as lead for further drug designing.
Collapse
Affiliation(s)
- Geeta Chahal
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119, India
- Ch. Devi Lal College of Pharmacy, Jagadhri, 135003, India
| | - Jyoti Monga
- Ch. Devi Lal College of Pharmacy, Jagadhri, 135003, India
| | - Isha Rani
- Spurthy College of Pharmacy, Marasur Gate, Bengaluru, 562106, Karnataka, India
| | - Shubham Saini
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119, India
| | - Manish Devgun
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119, India
| | - Asif Husain
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110064, India
| | - Sukhbir Lal Khokra
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119, India
| |
Collapse
|
21
|
Liang YH, Shu P, Li YL, Li M, Ye ZH, Chu S, Du ZY, Dong CZ, Meunier B, Chen HX. GDU-952, a novel AhR agonist ameliorates skin barrier abnormalities and immune dysfunction in DNFB-induced atopic dermatitis in mice. Biochem Pharmacol 2023; 217:115835. [PMID: 37778446 DOI: 10.1016/j.bcp.2023.115835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is widely expressed in the skin. It controls immune-mediated skin responses to various external environmental signals, promote terminal differentiation of epidermal keratinocytes and participates the maintenance of the skin barrier function. As a therapeutic target, AhR activation modulates many diseases progression driven by immune/inflammatory processes such as atopic dermatitis (AD) and psoriasis. In this study, we revealed that GDU-952 is a novel AhR agonist, which is able to decreases IgE serum levels, to inhibit pro-inflammatory cytokines such as IL-6 and TNF-α and to induce immunoregulatory effects through restoring Th1/Th2 immune balance and promoting CD4+FOXP3+regulatory T (Treg) populations in AD skin lesions. Furthermore, GDU-952 can strengthen the skin barrier function through upregulating epidermal differentiation-related and tight junction proteins. This may alleviate AD symptoms, such as dermatitis scores, epidermal hyperplasia and mast cell infiltration. These results offer a rationale for further preclinical/clinical studies to evaluate the possible use of GDU-952 in the management of AD.
Collapse
Affiliation(s)
- Ye-Hao Liang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Peng Shu
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen, PR China
| | - Yong-Liang Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Menggeng Li
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen, PR China
| | - Zi-Heng Ye
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Shanpeng Chu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Zhi-Yun Du
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Chang-Zhi Dong
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China; Université Paris Cité, ITODYS, UMR 7086 CNRS, 75013 Paris, France
| | - Bernard Meunier
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China; Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, 31077 Toulouse Cedex, France
| | - Hui-Xiong Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China; Chemistry of RNA, Nucleosides, Peptides and Heterocycles, CNRS UMR8601, Université Paris Cité, UFR Biomédicale, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France.
| |
Collapse
|
22
|
Mlostoń G, Celeda M, Palusiak M. Higher-order [8+2]-cycloadditions of tropothione with levoglucosenone (LGO) and structurally similar exo-cyclic enones derived from cyrene. Carbohydr Res 2023; 529:108844. [PMID: 37210942 DOI: 10.1016/j.carres.2023.108844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/09/2023] [Accepted: 05/14/2023] [Indexed: 05/23/2023]
Abstract
Levoglucosenone (LGO) and structurally similar exo-cyclic enones derived from cyrene (dihydrolevoglucosenone) react with tropothione following the higher-order [8 + 2]-cycloaddition pathway. Reactions were performed at room temperature in CH2Cl2 solutions in absence of any activating reagent. Whereas reaction of tropothione with LGO occurred with complete stereoselectivity, leading to a single, sterically favored exo cycloadduct, identified as polycylic thiophene derivative, reactions performed with exo-cyclic enones yielded in some instances mixtures of two isomeric exo and endo cycloadducts, derived from spiro-tetrahydrothiophene as major and minor components, respectively, of the studied reaction mixtures. Exo and endo [8 + 2] cycloadducts differ in absolute configuration at the newly created chiral centers. Structures of exo and endo cycloadducts were confirmed by single crystal X-ray diffraction analysis.
Collapse
Affiliation(s)
- Grzegorz Mlostoń
- Department of Organic & Applied Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, PL-91-403, Lodz, Poland.
| | - Małgorzata Celeda
- Department of Organic & Applied Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, PL-91-403, Lodz, Poland
| | - Marcin Palusiak
- Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163/165, PL-90-236, Lodz, Poland
| |
Collapse
|
23
|
Paškevičius T, Lapinskaitė R, Stončius S, Sadzevičienė R, Judžentienė A, Labanauskas L. Palladium-Catalyzed Synthesis of Cyclopropylthiophenes and Their Derivatization. Molecules 2023; 28:molecules28093770. [PMID: 37175178 PMCID: PMC10180236 DOI: 10.3390/molecules28093770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
The cyclopropylthiophene moiety has attracted the attention of the scientific community for its potential pharmaceutical applications. However, synthesis of the compounds containing this framework remains challenging, has rarely been reported and remains unresolved. Here we provide optimized syntheses for cyclopropylthiophenes and their derivatives, containing carbonyl, acetyl, carboxylic acid, methyl carboxylate, nitrile, bromide and sulfonyl chloride moieties.
Collapse
Affiliation(s)
- Tomas Paškevičius
- Department of Organic Chemistry, Center for Physical Sciences and Technology (FTMC), Akademijos g. 7, LT-08412 Vilnius, Lithuania
| | - Ringailė Lapinskaitė
- Department of Organic Chemistry, Center for Physical Sciences and Technology (FTMC), Akademijos g. 7, LT-08412 Vilnius, Lithuania
| | - Sigitas Stončius
- Department of Organic Chemistry, Center for Physical Sciences and Technology (FTMC), Akademijos g. 7, LT-08412 Vilnius, Lithuania
| | - Rita Sadzevičienė
- Department of Organic Chemistry, Center for Physical Sciences and Technology (FTMC), Akademijos g. 7, LT-08412 Vilnius, Lithuania
| | - Asta Judžentienė
- Department of Organic Chemistry, Center for Physical Sciences and Technology (FTMC), Akademijos g. 7, LT-08412 Vilnius, Lithuania
| | - Linas Labanauskas
- Department of Organic Chemistry, Center for Physical Sciences and Technology (FTMC), Akademijos g. 7, LT-08412 Vilnius, Lithuania
| |
Collapse
|
24
|
Sung B, Kim HK, Baek AR, Yang BW, Kim YH, Choi G, Park HJ, Kim M, Lee J, Chang Y. Nonsteroidal Anti-Inflammatory Drug Conjugated with Gadolinium (III) Complex as an Anti-Inflammatory MRI Agent. Int J Mol Sci 2023; 24:ijms24076870. [PMID: 37047841 PMCID: PMC10095586 DOI: 10.3390/ijms24076870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Studies have been actively conducted to ensure that gadolinium-based contrast agents for magnetic resonance imaging (MRI) are accompanied by various biological functions. A new example is the anti-inflammatory theragnostic MRI agent to target inflammatory mediators for imaging diagnosis and to treat inflammatory diseases simultaneously. We designed, synthesized, and characterized a Gd complex of 1,4,7-tris(carboxymethylaza) cyclododecane-10-azaacetylamide (DO3A) conjugated with a nonsteroidal anti-inflammatory drug (NSAID) that exerts the innate therapeutic effect of NSAIDs and is also applicable in MRI diagnostics. Gd-DO3A-fen (0.1 mmol/kg) was intravenously injected into the turpentine oil-induced mouse model, with Gd-DO3A-BT as a control group. In the in vivo MRI experiment, the contrast-to-noise ratio (CNR) was higher and persisted longer than that with Gd-DO3A-BT; specifically, the CNR difference was almost five times at 2 h after injection. Gd-DO3A-fen had a binding affinity (Ka) of 6.68 × 106 M-1 for the COX-2 enzyme, which was 2.1-fold higher than that of fenbufen, the original NSAID. In vivo evaluation of anti-inflammatory activity was performed in two animal models. In the turpentine oil-induced model, the mRNA expression levels of inflammatory parameters such as COX-2, TNF-α, IL-1β, and IL-6 were reduced, and in the carrageenan-induced edema model, swelling was suppressed by 72% and there was a 2.88-fold inhibition compared with the saline group. Correlation analysis between in vitro, in silico, and in vivo studies revealed that Gd-DO3A-fen acts as an anti-inflammatory theragnostic agent by directly binding to COX-2.
Collapse
Affiliation(s)
- Bokyung Sung
- Department of Medical & Biological Engineering, Kyungpook National University, Jung-gu, Daegu 41944, Republic of Korea
| | - Hee-Kyung Kim
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Dong-gu, Daegu 41061, Republic of Korea
| | - Ah-Rum Baek
- Institute of Biomedical Engineering Research, Kyungpook National University, Jung-gu, Daegu 41566, Republic of Korea
| | - Byeong-Woo Yang
- Department of Medical & Biological Engineering, Kyungpook National University, Jung-gu, Daegu 41944, Republic of Korea
| | - Yeoun-Hee Kim
- R&D Center, Etnova Therapeutics Corp., Gwonseon-gu, Suwon-si 13120, Republic of Korea
| | - Garam Choi
- R&D Center, Etnova Therapeutics Corp., Gwonseon-gu, Suwon-si 13120, Republic of Korea
| | - Hyun-Jin Park
- R&D Center, Etnova Therapeutics Corp., Gwonseon-gu, Suwon-si 13120, Republic of Korea
| | - Minsup Kim
- Department of Biotechnology and Bioinformatics, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City 30019, Republic of Korea
| | - Jongmin Lee
- Department of Radiology, Kyungpook National University Hospital, Jung-gu, Daegu 41944, Republic of Korea
| | - Yongmin Chang
- Department of Radiology, Kyungpook National University Hospital, Jung-gu, Daegu 41944, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Jung-gu, Daegu 41944, Republic of Korea
| |
Collapse
|
25
|
Anwer KE, Sayed GH, Kozakiewicz-Piekarz A, Ramadan RM. Novel annulated thiophene derivatives: Synthesis, spectroscopic, X-ray, Hirshfeld surface analysis, DFT, biological, cytotoxic and molecular docking studies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
26
|
Mikhail DS, El-Nassan HB, Mahmoud ST, Fahim SH. Nonacidic thiophene-based derivatives as potential analgesic and design, synthesis, biological evaluation, and metabolic stability study. Drug Dev Res 2022; 83:1739-1757. [PMID: 36074734 DOI: 10.1002/ddr.21992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/23/2022] [Accepted: 08/02/2022] [Indexed: 12/29/2022]
Abstract
Nonsteroidal anti-inflammatory drugs represent one of the most popularly used classes of drugs. However, their long-term administration is associated with various side effects including gastrointestinal ulceration. One of the major reasons of NSAIDs ulcerogenicity is direct damage of the epithelial lining cells by the acidic moieties present in many drugs. Another drawback for this acidic group is its rapid metabolism and clearance through Phase II conjugation. Three series of thiophene and thienopyrimidine derivatives were designed and synthesized as nonacidic anti-inflammatory agents. In vivo testing of their analgesic activity indicated that compounds 2b and 7a-d showed higher PI values than that of the positive control drugs, indomethacin and celecoxib. The latter compounds 2b and 7a-d were subjected to further anti-inflammatory activity testing where they showed comparable percentage edema inhibition to that of indomethacin and celecoxib. Compounds 2b, 7a, 7c, and 7d inhibited PGE2 synthesis by 61.10%-74.54% (71.47% for indomethacin, and 80.11% for celecoxib). The same compounds inhibited the expression of rat mPGES-1 and cPGES3 by 74%-83% (77% for indomethacin, and 82% for celecoxib) and 48%-70% (62% for indomethacin, and 70% for celecoxib), respectively. The stability of the most active compound 2b in Nonenzymatic gastrointestinal fluids and in human plasma was tested. Additionally, studying the metabolic stability of compound 2b in S9 rat liver fraction showed that it displayed a slow in vitro clearance with half-life time 1.5-fold longer than indomethacin. The metabolites of 2b were predicted via UPLC-MS/MS. In silico ADMET profiling study was also included.
Collapse
Affiliation(s)
- Demiana S Mikhail
- Department, of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hala B El-Nassan
- Department, of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Sally T Mahmoud
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Samar H Fahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
27
|
Olennikov DN. The Ethnopharmacological Uses, Metabolite Diversity, and Bioactivity of Rhaponticum uniflorum ( Leuzea uniflora): A Comprehensive Review. Biomolecules 2022; 12:1720. [PMID: 36421734 PMCID: PMC9687929 DOI: 10.3390/biom12111720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/12/2022] [Accepted: 11/18/2022] [Indexed: 01/11/2024] Open
Abstract
Rhaponticum uniflorum (L.) DC. (syn. Leuzea uniflora (L.) Holub) is a plant species of the Compositae (Asteraceae) family that is widely used in Asian traditional medicines in China, Siberia, and Mongolia as an anti-inflammatory and stimulant remedy. Currently, R. uniflorum is of scientific interest to chemists, biologists, and pharmacologists, and this review includes information from the scientific literature from 1991 to 2022. The study of the chemodiversity of R. uniflorum revealed the presence of 225 compounds, including sesquiterpenes, ecdysteroids, triterpenes, sterols, thiophenes, hydroxycinnamates, flavonoids, lignans, nucleosides and vitamins, alkanes, fatty acids, and carbohydrates. The most studied groups of substances are phenolics (76 compounds) and triterpenoids (69 compounds). Information on the methods of chromatographic analysis of selected compounds, as well as on the quantitative content of some components in various organs of R. uniflorum, is summarized in this work. It has been shown that the extracts and some compounds of R. uniflorum have a wide range of biological activities, including anti-inflammatory, antitumor, immunostimulatory, anxiolytic, stress-protective, actoprotective, antihypoxic, anabolic, hepatoprotective, inhibition of PPARγ receptors, anti-atherosclerotic, and hypolipidemic. Published research on the metabolites and bioactivity of R. uniflorum does not include clinical studies of extracts and pure compounds; therefore, an accurate study of this traditional medicinal plant is needed.
Collapse
Affiliation(s)
- Daniil N Olennikov
- Laboratory of Biomedical Research, Institute of General and Experimental Biology, Siberian Division, Russian Academy of Science, Sakh'yanovoy Street 6, 670047 Ulan-Ude, Russia
| |
Collapse
|
28
|
Shukla G, Raghuvanshi K, Singh MS. Regio- and Chemoselective Access to Dihydrothiophenes and Thiophenes via Halogenation/Intramolecular C(sp 2)-H Thienation of α-Allyl Dithioesters at Room Temperature. J Org Chem 2022; 87:13935-13944. [PMID: 36205379 DOI: 10.1021/acs.joc.2c01617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An operationally simple, practical, and efficient cascade approach employing α-allyl dithioesters and NBS/NIS has been achieved to access a series of dihydrothiophenes and thiophenes containing diverse functional groups of different electronic and steric natures in good to excellent yields at room temperature in open air. The reaction proceeds via the electrophilic addition of a halogen source (NBS/NIS) to an allylic double bond, followed by intramolecular regio- and chemoselective S-cyclization. This protocol avoids potential toxicity and tedious work-up conditions, and features easy synthesis from readily available starting materials under catalyst-free conditions. Furthermore, 4,5-dihydrothiophenes were aromatized to thiophenes by treatment with KOH in DMF at room temperature. A probable mechanism for the formation of dihydrothiophenes and thiophenes from α-allyl dithioesters has been suggested. Notably, a large-scale experiment and the transformations of products indicated the potential utility of this reaction compared to competing processes for the synthesis of 4,5-dihydrothiophenes and thiophenes.
Collapse
Affiliation(s)
- Gaurav Shukla
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Utta Pradesh 221005, India
| | - Keshav Raghuvanshi
- Coal to Hydrogen Energy for Sustainable Solutions (CHESS) Research Group, CSIR-Central Institute for Mining and Fuel Research (CSIR-CIMFR), Dhanbad, Jharkhand 828119, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Maya Shankar Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Utta Pradesh 221005, India
| |
Collapse
|
29
|
Mlakić M, Odak I, Faraho I, Talić S, Bosnar M, Lasić K, Barić D, Škorić I. New naphtho/thienobenzo-triazoles with interconnected anti-inflammatory and cholinesterase inhibitory activity. Eur J Med Chem 2022; 241:114616. [PMID: 35870364 DOI: 10.1016/j.ejmech.2022.114616] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/26/2022]
Abstract
New 1,2,3-triazolo(thieno)stilbenes were synthesized by Wittig reaction and photochemically transformed to corresponding substituted thienobenzo/naphtho-triazoles in high isolated yields. They were prepared to study the acetyl- and butyrylcholinesterase inhibition associated with the inhibition of TNFα cytokine production and anti-inflammatory activity. The best experimental results were achieved with the allyl-thienobenzotriazole and isopropyl, p-methoxybenzyl, and hydroxybutyl substituted naphthotriazoles bearing additional chloro or methoxy groups. The allyl-thienobenzotriazole photoproduct is twice as potent an inhibitor of eqBChE compared to the standard galantamine. At the same time, this compound strongly inhibited TNFα production in PBMCs in response to the LPS stimulus. The complexes between selected compounds with the active site of BChE and AChE are assessed by docking, providing insight into the stabilizing interactions between the potential inhibitor and the active site.
Collapse
Affiliation(s)
- Milena Mlakić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10 000, Zagreb, Croatia
| | - Ilijana Odak
- Department of Chemistry, Faculty of Science and Education, University of Mostar, Matice hrvatske bb, 88 000, Mostar, Bosnia and Herzegovina
| | - Ivan Faraho
- Pharmacology in vitro, Selvita Ltd., Prilaz baruna Filipovića 29, HR-10 000, Zagreb, Croatia.
| | - Stanislava Talić
- Department of Chemistry, Faculty of Science and Education, University of Mostar, Matice hrvatske bb, 88 000, Mostar, Bosnia and Herzegovina
| | - Martina Bosnar
- Pharmacology in vitro, Selvita Ltd., Prilaz baruna Filipovića 29, HR-10 000, Zagreb, Croatia
| | - Kornelija Lasić
- Teva api Chemical R&D, Pliva, Prilaz Baruna Filipovića 25, HR-10 000, Zagreb, Croatia
| | - Danijela Barić
- Group for Computational Life Sciences, Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10 000, Zagreb, Croatia
| | - Irena Škorić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10 000, Zagreb, Croatia.
| |
Collapse
|
30
|
Xie Y, Liu Y, Sun J, Zheng L. Synthesis of mitochondria-targeted ferulic acid amide derivatives with antioxidant, anti-inflammatory activities and inducing mitophagy. Bioorg Chem 2022; 127:106037. [PMID: 35863132 DOI: 10.1016/j.bioorg.2022.106037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 11/18/2022]
Abstract
The seventeen ferulic acid amide derivatives were synthesized by coupling mitochondrial carrier coumarin-3-carboxamide with acrylic acids. The results of cellular antioxidant activity and inhibitory effects on NO production against LPS-stimulated RAW264.7 macrophages indicated four compounds (8c, 8d, 9c, 9d) showed the higher dual-activities of antioxidant and anti-inflammatory. The structure-activity relationship was deduced. In regard to mechanism research, the most potent compound 8d which mainly distributed in mitochondria suppressed the secretion of inflammatory cytokines IL-6 and TNF-α, enhancing mitophagy to alleviate inflammatory response. Besides, the dual-activities were diminished by removal of coumarin carrier in 8d, suggesting the enrichment in mitochondria might be important for activities. This study showed that development of mitochondria-targeted antioxidants could be a feasible strategy to resist inflammation.
Collapse
Affiliation(s)
- Yu Xie
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yongpeng Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Jing Sun
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Lifang Zheng
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
31
|
TiO2 nanoparticle as catalyst for an efficient green one-pot synthesis of 1H-3-Indolyl Derivatives as significant antiviral activity. Bioorg Chem 2022; 124:105805. [DOI: 10.1016/j.bioorg.2022.105805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/04/2022] [Accepted: 04/08/2022] [Indexed: 12/27/2022]
|
32
|
Çakmak Ş, Demircioğlu Z, Uzun S, Veyisoğlu A, Yakan H, Ersanli CC. Synthesis, X-ray structure, antimicrobial activity, DFT and molecular docking studies of N-(thiophen-2-ylmethyl)thiophene-2-carboxamide. ACTA CRYSTALLOGRAPHICA SECTION C STRUCTURAL CHEMISTRY 2022; 78:390-397. [DOI: 10.1107/s2053229622006283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/14/2022] [Indexed: 11/10/2022]
Abstract
In the present study, N-(thiophen-2-ylmethyl)thiophene-2-carboxamide, C10H9NOS2, (I), was obtained by the reaction of thiophene-2-carbonyl chloride and thiophen-2-ylmethanamine. Characterization of (I) was carried out using X-ray diffraction, spectroscopic techniques and elemental analyses. The DFT/B3LYP/6-311++G(d,p) theoretical level was successfully applied to calculate the optimized geometry and the local and global chemical activity parameters. The results obtained show good agreement between the experimental and theoretical geometrical parameters. The local and global chemical activity parameters were examined to determine the electrophilic and nucleophilic sites in (I). The natural bond orbital (NBO) analysis of (I) gives an efficient methodology for investigating the inter- and intramolecular bonding, as well as giving a convenient basis for investigating charge transfer or conjugative interactions in molecular systems. Also, the antimicrobial activity of (I) was investigated against eight microorganisms using the microdilution method and it is found to have an effective antibacterial activity. In addition, molecular docking studies were calculated in order to understand the nature of the binding of (I) with a lung cancer protein (PDB entry 1x2j).
Collapse
|
33
|
Auld N, Flood K, Kesharwani T, Cavnar PJ. A study on the cellular and cytotoxic effects of S and Se heterocycles on the myeloid leukemia cell line PLB-985. PHOSPHORUS SULFUR 2022; 197:876-884. [PMID: 36970371 PMCID: PMC10035560 DOI: 10.1080/10426507.2022.2085272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This paper describes the synthesis of several halogenated S and Se heterocycles and tests their biological activity by measuring the effects on the myeloid leukemia cell line, PLB-985 cells. We report that select compounds exhibit significant increases in mitochondria membrane potential and increased oxidative stress in PLB-985 cells. Our results contribute to the foundational knowledge of different S and Se containing compounds and their possible impacts on human cells.
Collapse
Affiliation(s)
- Niccole Auld
- Department of Biology, University of West Florida, Pensacola, FL, USA
| | - Krystal Flood
- Department of Biology, University of West Florida, Pensacola, FL, USA
| | - Tanay Kesharwani
- Department of Chemistry, University of West Florida, Pensacola, FL, USA
| | - Peter J. Cavnar
- Department of Biology, University of West Florida, Pensacola, FL, USA
| |
Collapse
|
34
|
Synthesis and Structure Determination of 2-Cyano-3-(1-phenyl-3-(thiophen-2-yl)-1H-pyrazol-4-yl)acrylamide. MOLBANK 2022. [DOI: 10.3390/m1372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
2-Cyano-3-(1-phenyl-3-(thiophen-2-yl)-1H-pyrazol-4-yl)acrylamide (3) was synthesized in 90% yield from condensation of equimolar equivalents of 1-phenyl-3-(thiophen-2-yl)-1H-pyrazole-4-carbaldehyde (1) and 2-cyanoacetamide (2) in boiling ethanol under basic condition for 45 min. The structure of 3 was determined using NMR spectroscopy and single crystal X-ray diffraction.
Collapse
|
35
|
Kumari C, Goswami A. Access to 5‐Substituted 3‐Aminofuran/Thiophene‐2‐Carboxylates from Bifunctional Alkynenitriles. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chandresh Kumari
- Department of Chemistry Indian Institute of Technology Ropar Nangal Road Rupnagar Punjab 140001 India
| | - Avijit Goswami
- Department of Chemistry Indian Institute of Technology Ropar Nangal Road Rupnagar Punjab 140001 India
| |
Collapse
|
36
|
Lee S, Park CS, Yoon H. Nanoparticulate Photoluminescent Probes for Bioimaging: Small Molecules and Polymers. Int J Mol Sci 2022; 23:4949. [PMID: 35563340 PMCID: PMC9100005 DOI: 10.3390/ijms23094949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/22/2022] Open
Abstract
Recent interest in research on photoluminescent molecules due to their unique properties has played an important role in advancing the bioimaging field. In particular, small molecules and organic dots as probes have great potential for the achievement of bioimaging because of their desirable properties. In this review, we provide an introduction of probes consisting of fluorescent small molecules and polymers that emit light across the ultraviolet and near-infrared wavelength ranges, along with a brief summary of the most recent techniques for bioimaging. Since photoluminescence probes emitting light in different ranges have different goals and targets, their respective strategies also differ. Diverse and novel strategies using photoluminescence probes against targets have gradually been introduced in the related literature. Among recent papers (published within the last 5 years) on the topic, we here concentrate on the photophysical properties and strategies for the design of molecular probes, with key examples of in vivo photoluminescence research for practical applications. More in-depth studies on these probes will provide key insights into how to control the molecular structure and size/shape of organic probes for expanded bioimaging research and applications.
Collapse
Affiliation(s)
- Sanghyuck Lee
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea;
| | - Chul Soon Park
- Drug Manufacturing Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea;
| | - Hyeonseok Yoon
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea;
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| |
Collapse
|
37
|
Dawoud NTA, El-Fakharany EM, Abdallah AE, El-Gendi H, Lotfy DR. Synthesis, and docking studies of novel heterocycles incorporating the indazolylthiazole moiety as antimicrobial and anticancer agents. Sci Rep 2022; 12:3424. [PMID: 35236889 PMCID: PMC8891364 DOI: 10.1038/s41598-022-07456-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/15/2022] [Indexed: 12/17/2022] Open
Abstract
The current study was directed toward developing a new series of fused heterocycles incorporating indazolylthiazole moiety. The newly synthesized compounds were characterized through elemental analysis and spectral data (IR, 1H-NMR, 13C-NMR, and Mass Spectrometry). The cytotoxic effect of the newly synthesized compounds was evaluated against normal human cells (HFB-4) and cancer cell lines (HepG-2 and Caco-2). Among the synthesized compounds, derivatives 4, and 6 revealed a significant selective antitumor activity, in a dose-dependent manner, against both HepG-2 and Caco-2 cell lines, with lower risk toward HFB-4 cells (normal cells). Derivative 8 revealed the maximum antitumor activity toward both tumor cell lines, with an SI value of about 26 and IC50 value of about 5.9 μg/mL. The effect of these derivatives (8, 4, and 6) upon the expression of 5 tumor regulating genes was studied through quantitative real-time PCR, where its interaction with these genes was simulated through the molecular docking study. Furthermore, the antimicrobial activity results revealed that compounds 2, 7, 8, and 9 have a potential antimicrobial activity, with maximum broad-spectrum activity through compound 3 against the three tested pathogens: Streptococcus mutans, Pseudomonas aeruginosa, and Candida albicans. The newly prepared compounds also revealed anti-biofilm formation activity with maximum activity against Streptococcus mutans, Pseudomonas aeruginosa, and Candida albicans, respectively.
Collapse
Affiliation(s)
- Nadia T A Dawoud
- Chemistry Department, Faculty of Science, Girl's, Al-Azhar University, Nasr City, Cairo, Egypt.
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute GEBRI, City of Scientific Research and Technological Applications, New Borg El Arab, Alexandria, 21934, Egypt.
| | - Abdallah E Abdallah
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Hamada El-Gendi
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, New Borg El Arab, Alexandria, 21934, Egypt
| | - Doaa R Lotfy
- Chemistry Department, Faculty of Science, Girl's, Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
38
|
Design, synthesis, anti-inflammatory evaluation and molecular docking of novel thiophen-2-ylmethylene-based derivatives as potential TNF-α production inhibitors. Bioorg Chem 2022; 122:105726. [DOI: 10.1016/j.bioorg.2022.105726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/27/2022] [Accepted: 03/06/2022] [Indexed: 01/05/2023]
|
39
|
Ibrahim SRM, Omar AM, Bagalagel AA, Diri RM, Noor AO, Almasri DM, Mohamed SGA, Mohamed GA. Thiophenes-Naturally Occurring Plant Metabolites: Biological Activities and In Silico Evaluation of Their Potential as Cathepsin D Inhibitors. PLANTS (BASEL, SWITZERLAND) 2022; 11:539. [PMID: 35214871 PMCID: PMC8877444 DOI: 10.3390/plants11040539] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/03/2022] [Accepted: 02/12/2022] [Indexed: 05/03/2023]
Abstract
Naturally, thiophenes represent a small family of natural metabolites featured by one to five thiophene rings. Numerous plant species belonging to the family Asteraceae commonly produce thiophenes. These metabolites possessed remarkable bioactivities, including antimicrobial, antiviral, anti-inflammatory, larvicidal, antioxidant, insecticidal, cytotoxic, and nematicidal properties. The current review provides an update over the past seven years for the reported natural thiophene derivatives, including their sources, biosynthesis, spectral data, and bioactivities since the last review published in 2015. Additionally, with the help of the SuperPred webserver, an AI (artificial intelligence) tool, the potential drug target for the compounds was predicted. In silico studies were conducted for Cathepsin D with thiophene derivatives, including ADMET (drug absorption/distribution/metabolism/excretion/and toxicity) properties prediction, molecular docking for the binding interaction, and molecular dynamics to evaluate the ligand-target interaction stability under simulated physiological conditions.
Collapse
Affiliation(s)
- Sabrin R. M. Ibrahim
- Department of Chemistry, Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Abdelsattar M. Omar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Alaa A. Bagalagel
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.B.); (R.M.D.); (A.O.N.); (D.M.A.)
| | - Reem M. Diri
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.B.); (R.M.D.); (A.O.N.); (D.M.A.)
| | - Ahmad O. Noor
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.B.); (R.M.D.); (A.O.N.); (D.M.A.)
| | - Diena M. Almasri
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.B.); (R.M.D.); (A.O.N.); (D.M.A.)
| | | | - Gamal A. Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
40
|
Sano S, Nakao M, Toguchi M, Horikoshi K, Kitaike S. Synthesis of Novel 2,3-Disubstituted Thiophenes via Tandem Thia-Michael/Aldol Reaction of Allenyl Esters. HETEROCYCLES 2022. [DOI: 10.3987/com-21-14575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
41
|
Tan SL, Cardoso LNF, de Souza MVN, Wardell SMSV, Wardell JL, Tiekink ERT. Experimental and computational evidence for stabilising parallel, offset π[C(O)N(H)NC]⋯π(phenyl) interactions in acetohydrazide derivatives. CrystEngComm 2022. [DOI: 10.1039/d1ce01492g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stabilising π[C(O)N(H)NC]⋯π(phenyl) interactions are described.
Collapse
Affiliation(s)
- Sang Loon Tan
- Research Centre for Crystalline Materials, School of Medical and Life Sciences, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Laura N. F. Cardoso
- Instituto de Tecnologia em Fármacos Farmanguinhos, FIOCRUZ Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, Brazil
| | - Marcus V. N. de Souza
- Instituto de Tecnologia em Fármacos Farmanguinhos, FIOCRUZ Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, Brazil
| | | | - James L. Wardell
- Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen, AB24 3UE, Scotland, UK
| | - Edward R. T. Tiekink
- Research Centre for Crystalline Materials, School of Medical and Life Sciences, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| |
Collapse
|