1
|
Mahapatra AD, Paul I, Dasgupta S, Roy O, Sarkar S, Ghosh T, Basu S, Chattopadhyay D. Antiviral Potential and In Silico Insights of Polyphenols as Sustainable Phytopharmaceuticals: A Comprehensive Review. Chem Biodivers 2025; 22:e202401913. [PMID: 39648847 DOI: 10.1002/cbdv.202401913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/23/2024] [Accepted: 12/06/2024] [Indexed: 12/10/2024]
Abstract
Polyphenols, particularly flavonoids, are reported to have health-promoting, disease-preventing abilities and several polyphenols having a wide spectrum of antiviral activities can be explored for preventive and/or therapeutic purposes. We have compiled the updated literature of diverse polyphenols active against common viral diseases, including herpes, hepatitis, influenza, rota and SARS-corona-viruses. The antiviral activity of bioactive polyphenols depends on the hydroxyl and ester groups of polyphenol molecules, as compounds with five or more hydroxyl groups and three specific methoxy groups showed antiviral potential, like anti-rabies activity. This comprehensive review will explore selective polyphenols isolated from common ethnomedicinal or food plants. Comparing bioactivities of structurally related polyphenols and using bioinformatics studies, we have explored the three most promising phyto-antivirals, including chrysin, resveratrol and quercetin, available in many foods and medicinal plants. Quercetin showed a maximum interaction score with human genes. We also explore the intricate structure-activity relationship between these polyphenols and pathogenic viruses with their mechanisms of antiviral action in selected virus models. Here, we report the promising potential of some phyto-polyphenols in the management of viral diseases through an in-depth analysis of the structure and bioactivity of these compounds.
Collapse
Affiliation(s)
| | - Indrani Paul
- Department of Biotechnology, Brainware University, Barasat, Kolkata, India
| | - Sanjukta Dasgupta
- Department of Biotechnology, Brainware University, Barasat, Kolkata, India
- Center for Multidisciplinary Research & Innovations, Brainware University, Barasat, Kolkata, India
| | - Oliva Roy
- Department of Biotechnology, Brainware University, Barasat, Kolkata, India
| | - Srinjoy Sarkar
- Department of Biotechnology, Brainware University, Barasat, Kolkata, India
| | - Tusha Ghosh
- Department of Biotechnology, Brainware University, Barasat, Kolkata, India
| | - Sayantan Basu
- Department of Biotechnology, Brainware University, Barasat, Kolkata, India
| | - Debprasad Chattopadhyay
- School of Life Sciences, Swami Vivekananda University, Barrackpore, Kolkata, India
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, India
| |
Collapse
|
2
|
Faruque M, Siraj MA, Zilani MNH, Das AK, Anisuzzman M, Islam MM. Investigating small molecules in propolis as Nipah virus glycoprotein (NiV-G) inhibitors through molecular interaction studies. Heliyon 2025; 11:e42595. [PMID: 40051842 PMCID: PMC11883394 DOI: 10.1016/j.heliyon.2025.e42595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/08/2025] [Accepted: 02/09/2025] [Indexed: 03/09/2025] Open
Abstract
Despite the significant fatality rates associated with Nipah virus (NiV) outbreaks in South Asia, including Bangladesh, and India, till today, there is no approved medications to treat it. In this context, small molecules in propolis were computationally screened through pharmacokinetic and toxicity studies followed by molecular docking and dynamics simulation with Nipah virus glycoprotein (NiV-G protein) to assess their anti-Nipah potential. A thorough literature analysis was performed to identify antiviral compounds in propolis from a pool of 84 experimental articles. Following ADMET analysis, 27 molecules out of 34 were docked against NiV-G and compared with a control ligand, ribavirin, which is an investigational drug against Nipah. The molecular docking revealed that bauer-7-en-3β-yl acetate (BA) and moronic acid (MA) bound more strongly to the active site of NiV-G than ribavirin and other ligands. Investigation of root-mean-square deviation (RMSD), root mean square fluctuations (RMSF), radius of gyration (Rg), solvent accessible surface area (SASA), molecular surface area (MolSA), binding free energy (MM-PBSA), the complexity of hydrogen bonds (HBs), and secondary structure of ligand-target interactions for 100 ns by molecular dynamics (MD) simulation study further supported the docked complex's stability and compactness. Therefore, the in silico molecular interaction analysis reports that both molecules may be the possible candidates against Nipah infection.
Collapse
Affiliation(s)
- Muaz Faruque
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
| | - Md Afjalus Siraj
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
- Department of Pharmacy, Faculty of Health Sciences, Gono Bishwabidyalay, Dhaka, 1344, Bangladesh
| | - Md Nazmul Hasan Zilani
- Department of Pharmacy, Jashore University of Science & Technology, Jashore, 7408, Bangladesh
| | - Asish Kumar Das
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
| | - Md Anisuzzman
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
| | - Md Monirul Islam
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
| |
Collapse
|
3
|
Bildziukevich U, Černá L, Trylčová J, Kvasnicová M, Rárová L, Šaman D, Lovecká P, Weber J, Wimmer Z. Amides of moronic acid and morolic acid with the tripeptides MAG and GAM targeting antimicrobial, antiviral and cytotoxic effects. RSC Med Chem 2025; 16:801-811. [PMID: 39568596 PMCID: PMC11575580 DOI: 10.1039/d4md00742e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/24/2024] [Indexed: 11/22/2024] Open
Abstract
A series of amides of selected plant triterpenoids, moronic acid and morolic acid, with the tripeptides MAG and GAM, was designed and synthesized. Two required tripeptides 5 and 10 were synthesized by a step-wise chain elongation of the ethyl esters of either glycine or l-methionine at their N-terminus using Boc-protected amino acids in each step. The tripeptides 5 and 10 were used for the synthesis of 13-23, the derivatives of moronic acid (11) and morolic acid (12), to get a series of amide derivatives of the less frequently studied triterpenoids 11 and 12. The target compounds, and their intermediates, were subjected to an investigation of their antimicrobial, antiviral and cytotoxic activity. Selectivity of the pharmacological effects was found. Generally, the target compounds inhibited only the G+ microorganisms. Compound 16 inhibited Staphylococcus aureus (I = 99.6%; c = 62.5 μM) and Enterococcus faecalis (I = 85%; c = 250 μM). Several compounds showed moderate antiviral effects, both anti-HIV-1, 19 (EC50 = 57.0 ± 4.1 μM, CC50 > 100 μM), 20 (EC50 = 17.8 ± 2.1 μM, CC50 = 41.0 ± 5.2 μM) and 23 (EC50 = 12.6 ± 0.82 μM, CC50 = 38.0 ± 4.2 μM), and anti-HSV-1, 22 (EC50 = 27.7 ± 3.5 μM, CC50 > 100 μM) and 23 (EC50 = 30.9 ± 3.3 μM, CC50 > 100 μM). The target compounds showed no cytotoxicity in cancer cells, however, several of their intermediates were cytotoxic. Compound 21 showed cytotoxicity in HeLa (IC50 = 7.9 ± 2.1 μM), G-361 (IC50 = 8.0 ± 0.6 μM) and MCF7 (IC50 = 8.6 ± 0.2 μM) cancer cell lines, while being non-toxic in normal fibroblasts (BJ; IC50 > 50 μM).
Collapse
Affiliation(s)
- Uladzimir Bildziukevich
- Institute of Experimental Botany of the Czech Academy of Sciences, Isotope Laboratory Vídeňská 1083 14220 Prague 4 Czech Republic
| | - Lucie Černá
- Department of Biochemistry and Microbiology, University of Chemistry and Technology in Prague Technická 5 16628 Prague 6 Czech Republic
| | - Jana Trylčová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo náměstí 2 16610 Prague 6 Czech Republic
| | - Marie Kvasnicová
- Laboratory of Growth Regulators, Faculty of Science, Palacký University, and Institute of Experimental Botany of the Czech Academy of Sciences Šlechtitelů 27 CZ-77900 Olomouc Czech Republic
- Department of Experimental Biology, Faculty of Science, Palacký University Šlechtitelů 27 CZ-77900 Olomouc Czech Republic
| | - Lucie Rárová
- Laboratory of Growth Regulators, Faculty of Science, Palacký University, and Institute of Experimental Botany of the Czech Academy of Sciences Šlechtitelů 27 CZ-77900 Olomouc Czech Republic
- Department of Experimental Biology, Faculty of Science, Palacký University Šlechtitelů 27 CZ-77900 Olomouc Czech Republic
| | - David Šaman
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo náměstí 2 16610 Prague 6 Czech Republic
| | - Petra Lovecká
- Department of Biochemistry and Microbiology, University of Chemistry and Technology in Prague Technická 5 16628 Prague 6 Czech Republic
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo náměstí 2 16610 Prague 6 Czech Republic
| | - Zdeněk Wimmer
- Institute of Experimental Botany of the Czech Academy of Sciences, Isotope Laboratory Vídeňská 1083 14220 Prague 4 Czech Republic
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology in Prague Technická 5 16628 Prague 6 Czech Republic
| |
Collapse
|
4
|
Lopes RP, Máximo Vaz MA, Ferreira FL, Sousa GFD, Magalhães CLDB, Vieira-Filho SA, Siqueira Ferreira JM, Tótola AH, Duarte LP, Carlos de Magalhães J. Potent antiviral action detected in Tontelea micrantha extracts against Alphavirus chikungunya. Drug Dev Ind Pharm 2025; 51:102-110. [PMID: 39754533 DOI: 10.1080/03639045.2024.2449130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/09/2024] [Accepted: 12/28/2024] [Indexed: 01/06/2025]
Abstract
BACKGROUND Tontelea micrantha, a notable plant species, has garnered interest for its medicinal properties, including anti-inflammatory, antibacterial and antiviral effects. A vaccine for Chikungunia virus is still under evaluation and no specific antiviral drug has been licensed to date. OBJECTIVE The work investigated antiviral activity of ethyl acetate (EAEF) and methanolic (EMF) extracts from T. micrantha leaves in mammalian cells exposed to Alphavirus chikungunya (CHIKV). METHODS The cytotoxicity, antiviral activity, selectivity index, effect on viral gene expression, virus production, and mechanisms of action were evaluated. RESULTS EAEF and EMF extracts showed anti-CHIKV effects at non-cytotoxic concentrations, with CC50 above 300 μg/mL, EC50 of 18 and 43 μg/mL respectively, and selectivity Index above 4. These concentrations drastically reduce viral yields and CHIKV gene expression and have shown activity both directly on viral particles and at different stages of the viral cycle. CONCLUSION EAEF and EMF showed robust antiviral activity against CHIKV, making them promising candidates for the development of anti-CHIKV drugs.
Collapse
Affiliation(s)
- Ranieli Paiva Lopes
- Laboratory of Virology and Cellular Technology, Department of Chemistry, Biotechnology, and Bioprocess Engineering, Universidade Federal de São João del-Rei, Ouro Branco, Brazil
| | - Millena Alves Máximo Vaz
- Laboratory of Virology and Cellular Technology, Department of Chemistry, Biotechnology, and Bioprocess Engineering, Universidade Federal de São João del-Rei, Ouro Branco, Brazil
| | | | | | | | | | | | - Antônio Helvécio Tótola
- Laboratory of Virology and Cellular Technology, Department of Chemistry, Biotechnology, and Bioprocess Engineering, Universidade Federal de São João del-Rei, Ouro Branco, Brazil
| | - Lucienir Pains Duarte
- Department of Chemistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - José Carlos de Magalhães
- Laboratory of Virology and Cellular Technology, Department of Chemistry, Biotechnology, and Bioprocess Engineering, Universidade Federal de São João del-Rei, Ouro Branco, Brazil
| |
Collapse
|
5
|
Shuai E, Xiao S, Huang J, Zeng Z, Liu S, Tan J, Zhang H, Cai W. Screening of anti-inflammatory active components in Sabia schumanniana Diels by affinity ultrafiltration and UHPLC-Q-Exactive Orbitrap mass spectrometry. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118845. [PMID: 39306211 DOI: 10.1016/j.jep.2024.118845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/08/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sabia schumanniana Diels is a traditional botanical used to treat lumbago and arthralgia. However, there has been limited research on the pharmacological effects of its chemical components. AIM OF THE STUDY This study aimed to rapidly screen for anti-inflammatory compounds in Sabia schumanniana Diels. MATERIALS AND METHODS An affinity ultrafiltration method based on UHPLC-Q-Exactive Orbitrap MS was established to rapidly screen and identify cyclooxygenase-2 (COX-2) receptor ligands. The reliability of this method was verified by molecular docking analysis and experiments with RAW264.7 cells. RESULTS Seventeen ligands were identified from Sabia schumanniana Diels using affinity ultrafiltration. Molecular docking results indicated that these ligands specifically docked with COX-2. Among them, N-nornuciferine exhibited notable anti-inflammatory activity. CONCLUSIONS The combination of affinity ultrafiltration and UHPLC-Q-Exactive Orbitrap MS is an effective and precise method for screening anti-inflammatory compounds. This study provides a foundation for further research on Sabia schumanniana Diels and offers guidance for its potential clinical applications.
Collapse
Affiliation(s)
- E Shuai
- School of Pharmacy, Weifang Medical University, Weifang, 261000, China
| | - Shunli Xiao
- School of Pharmaceutical Sciences, Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, 418000, China
| | - Jin Huang
- School of Pharmaceutical Sciences, Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, 418000, China
| | - Zihui Zeng
- School of Pharmaceutical Sciences, Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, 418000, China
| | - Siqiong Liu
- School of Pharmaceutical Sciences, Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, 418000, China
| | - Jingjing Tan
- School of Pharmaceutical Sciences, Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, 418000, China
| | - He Zhang
- School of Pharmaceutical Sciences, Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, 418000, China
| | - Wei Cai
- School of Pharmaceutical Sciences, Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, 418000, China.
| |
Collapse
|
6
|
Lin YF, Lai HC, Lin CS, Hung PY, Kan JY, Chiu SW, Lu CH, Petrova SF, Baltina L, Lin CW. Discovery of Potent Dengue Virus NS2B-NS3 Protease Inhibitors Among Glycyrrhizic Acid Conjugates with Amino Acids and Dipeptides Esters. Viruses 2024; 16:1926. [PMID: 39772233 PMCID: PMC11680386 DOI: 10.3390/v16121926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 01/30/2025] Open
Abstract
This study investigated a library of known and novel glycyrrhizic acid (GL) conjugates with amino acids and dipeptide esters, as inhibitors of the DENV NS2B-NS3 protease. We utilized docking algorithms to evaluate the interactions of these GL derivatives with key residues (His51, Asp75, Ser135, and Gly153) within 10 Å of the DENV-2 NS2B-NS3 protease binding pocket (PDB ID: 2FOM). It was found that compounds 11 and 17 exhibited unique binding patterns, forming hydrogen bonds with Asp75, Tyr150, and Gly153. Based on the molecular docking data, conjugates 11 with L-glutamic acid dimethyl ester, 17 with β-alanine ethyl ester, and 19 with aminoethantic acid methyl ester were further demonstrated as potent inhibitors of DENV-2 NS3 protease, with IC50 values below 1 μM, using NS3-mediated cleavage assay. Compound 11 was the most potent, with EC50 values of 0.034 μM for infectivity, 0.042 μM for virus yield, and a selective index over 2000, aligning with its strong NS3 protease inhibition. Compound 17 exhibited better NS3 protease inhibition than compound 19 but showed weaker effects on infectivity and virus yield. While all compounds strongly inhibited viral infectivity post-entry, compound 19 also blocked viral entry. This study provided valuable insights into the interactions between active GL derivatives and DENV-2 NS2B-NS3 protease, offering a comprehensive framework for identifying lead compounds for further drug optimization and design as NS2B-NS3 protease inhibitors against DENV.
Collapse
Affiliation(s)
- Yu-Feng Lin
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 41354, Taiwan;
| | - Hsueh-Chou Lai
- Division of Hepato-Gastroenterology, Department of Internal Medicine, China Medical University Hospital, Taichung 404327, Taiwan;
- School of Chinese Medicine, China Medical University, Taichung 404328, Taiwan
| | - Chen-Sheng Lin
- Division of Gastroenterology, Kuang Tien General Hospital, Taichung 433401, Taiwan;
| | - Ping-Yi Hung
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404328, Taiwan; (P.-Y.H.); (J.-Y.K.)
| | - Ju-Ying Kan
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404328, Taiwan; (P.-Y.H.); (J.-Y.K.)
- The Ph.D. Program of Biotechnology and Biomedical Industry, China Medical University, Taichung 404328, Taiwan
| | - Shih-Wen Chiu
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan; (S.-W.C.); (C.-H.L.)
| | - Chih-Hao Lu
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan; (S.-W.C.); (C.-H.L.)
| | - Svetlana F. Petrova
- Ufa Institute of Chemistry, Ufa Federal Research Centre of RAS, Ufa 450054, Russia;
| | - Lidia Baltina
- Ufa Institute of Chemistry, Ufa Federal Research Centre of RAS, Ufa 450054, Russia;
| | - Cheng-Wen Lin
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 41354, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404328, Taiwan; (P.-Y.H.); (J.-Y.K.)
- The Ph.D. Program of Biotechnology and Biomedical Industry, China Medical University, Taichung 404328, Taiwan
| |
Collapse
|
7
|
Raza SHA, Zhong R, Li X, Pant SD, Shen X, BinMowyna MN, Luo L, Lei H. Ganoderma lucidum triterpenoids investigating their role in medicinal applications and genomic protection. J Pharm Pharmacol 2024; 76:1535-1551. [PMID: 39450753 DOI: 10.1093/jpp/rgae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024]
Abstract
OBJECTIVES Ganoderma lucidum (GL) is a white rot fungus widely used for its pharmacological properties and health benefits. GL consists of several biological components, including polysaccharides, sterols, and triterpenoids. Triterpenoids are often found in GL in the form of lanostane-type triterpenoids with quadrilateral carbon structures. KEY FINDINGS The study revealed that triterpenoids have diverse biological properties and can be categorized based on their functional groups. Triterpenoids derived from GL have shown potential medicinal applications. They can disrupt the cell cycle by inhibiting β-catenin or protein kinase C activity, leading to anti-cancer, anti-inflammatory, and anti-diabetic effects. They can also reduce the production of inflammatory cytokines, thus mitigating inflammation. Additionally, triterpenoids have been found to enhance the immune system's defenses against various health conditions. They possess antioxidant, antiparasitic, anti-hyperlipidemic, and antimicrobial activities, making them suitable for pharmaceutical applications. Furthermore, triterpenoids are believed to afford radioprotection to DNA, protecting it from radiation damage. SUMMARY This review focuses on the types of triterpenoids isolated from GL, their synthesis pathways, and their chemical structures. Additionally, it highlights the pharmacological characteristics of triterpenoids derived from GL, emphasizing their significant role in various therapeutic applications and health benefits for both humans and animals.
Collapse
Affiliation(s)
- Sayed Haidar Abbas Raza
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Ruimin Zhong
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - Xiangmei Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Sameer D Pant
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Mona N BinMowyna
- College of Education, Shaqra University, Shaqra 11911, Saudi Arabia
| | - Lin Luo
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
8
|
Zareena B, Jeelani SUY, Khadim A, Ali A, Uddin J, Sarker SD, Rainer M, Khalifa SAM, El-Seedi HR, Ramzan M, Musharraf SG. Development of a Tandem Mass Spectral Library for the Detection of Triterpenoids in Plant Metabolome Based on Reference Standards. PLANTS (BASEL, SWITZERLAND) 2024; 13:3278. [PMID: 39683071 DOI: 10.3390/plants13233278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024]
Abstract
Plant triterpenoids represent a diverse group of secondary metabolites and are thought to be valuable for therapeutic applications. For drug development, lead optimization, better knowledge of biological pathways, and high-throughput detection of secondary metabolites in plant extracts are crucial. This paper describes a qualitative method for the rapid and accurate identification of various triterpenoids in plant extracts using the LC-HR-ESI-MS/MS tool in combination with the data-dependent acquisition (DD) approach. A total of 44 isolated, purified, and characterized triterpenoids were analyzed. HR-MS spectra and tandem mass spectra (MS/MS) of each compound were recorded in the positive ionization mode in two different sets of collisional energies, i.e., (25-62.5 eV), and fixed collisional energies (10, 20, 30, and 40 eV). As a result, three triterpenoids were identified in all plant extracts using the retention time, high-resolution mass spectra, and/or MS/MS spectra. The developed method will be helpful with other plant extracts/botanicals, as well as in the search for new triterpenoids in the kingdom Plantae.
Collapse
Affiliation(s)
- Bibi Zareena
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Syed Usama Y Jeelani
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Adeeba Khadim
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Arslan Ali
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Jalal Uddin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Satyajit D Sarker
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building Byrom Street, Liverpool L3 3AF, UK
| | - Matthias Rainer
- Institute for Analytical Chemistry and Radiochemistry, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Shaden A M Khalifa
- Neurology and Psychiatry Department, Capio Saint Göran's Hospital, Sankt Göransplan 1, 112 19 Stockholm, Sweden
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Hesham R El-Seedi
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Muhammad Ramzan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Syed Ghulam Musharraf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
9
|
Tolmacheva I, Eroshenko D, Chernyshova I, Nazarov M, Lavrik O, Grishko V. Synthesis of furanotriterpenoids from betulin and evaluation of Tyrosyl-DNA phosphodiesterase 1 (Tdp1) inhibitory properties of new semi-synthetic triterpenoids. Eur J Med Chem 2024; 276:116724. [PMID: 39079310 DOI: 10.1016/j.ejmech.2024.116724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/11/2024]
Abstract
For the first time, a synthetic route for preparing lupane and oleanane derivatives with a hydrogenated furan ring as a cycle A of triterpene scaffold is described. Most of the synthesized compounds, furanoterpenoids and their synthetic intermediates, were non-toxic against the tested cancer and non-cancerous cell lines, and evinced significant inhibitory activity with IC50 1.0-9.0 μM in the tyrosyl-DNA phosphodiesterase 1 (Tdp1) inhibition test. Lupane derivatives - 1-oxime 7, 1,10-seco-hydroxynitrile 11 and furanoterpenoid 14 - were selected as those expected to be the most promising compounds. The results of molecular modeling evinced the strongest binding of compound 11 to the active site of Tdp1 compared to the reference drug. Simultaneously, only compound 11 at subtoxic concentration (10 μM) produced a synergetic effect on the topotecan activity against HeLa-V cells.
Collapse
Affiliation(s)
- Irina Tolmacheva
- Perm Federal Scientific Centre, Institute of Technical Chemistry UB RAS, Academician Korolev St. 3, 614013, Perm, Russia
| | - Daria Eroshenko
- Perm Federal Scientific Centre, Institute of Technical Chemistry UB RAS, Academician Korolev St. 3, 614013, Perm, Russia
| | - Irina Chernyshova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, 630090, Novosibirsk, Russia
| | - Mikhail Nazarov
- Perm Federal Scientific Centre, Institute of Technical Chemistry UB RAS, Academician Korolev St. 3, 614013, Perm, Russia
| | - Olga Lavrik
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, 630090, Novosibirsk, Russia
| | - Victoria Grishko
- Perm Federal Scientific Centre, Institute of Technical Chemistry UB RAS, Academician Korolev St. 3, 614013, Perm, Russia.
| |
Collapse
|
10
|
Dhanasekaran S, Selvadoss PP, Manoharan SS, Jeyabalan S, Yaraguppi DA, Choudhury AA, Rajeswari VD, Ramanathan G, Thamaraikani T, Sekar M, Subramaniyan V, Shing WL. Regulation of NS5B Polymerase Activity of Hepatitis C Virus by Target Specific Phytotherapeutics: An In-Silico Molecular Dynamics Approach. Cell Biochem Biophys 2024; 82:2473-2492. [PMID: 39042185 DOI: 10.1007/s12013-024-01359-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2024] [Indexed: 07/24/2024]
Abstract
Chronic hepatitis caused by the hepatitis C virus (HCV) is closely linked with the advancement of liver disease. The research hypothesis suggests that the NS5B enzyme (non-structural 5B protein) of HCV plays a pivotal role in facilitating viral replication within host cells. Hence, the objective of the present investigation is to identify the binding interactions between the structurally diverse phytotherapeutics and those of the catalytic residue of the target NS5B polymerase protein. Results of our docking simulations reveal that compounds such as arjunolic acid, sesamin, arjungenin, astragalin, piperic acid, piperidine, piperine, acalyphin, adhatodine, amyrin, anisotine, apigenin, cuminaldehyde, and curcumin exhibit a maximum of three interactions with the catalytic residues (Asp 220, Asp 318, and Asp 319) present on the Hepatitis C virus NS5B polymerase of HCV. Molecular dynamic simulation, particularly focusing on the best binding lead compound, arjunolic acid (-8.78 kcal/mol), was further extensively analyzed using RMSD, RMSF, Rg, and SASA techniques. The results of the MD simulation confirm that the NS5B-arjunolic acid complex becomes increasingly stable from 20 to 100 ns. The orientation of both arjunolic acid and sofosbuvir triphosphate (standard) within the active site was investigated through DCCM, PCA, and FEL analysis, indicating highly stable interactions of the lead arjunolic acid with the catalytic region of the NS5B enzyme. The findings of our current investigation suggest that bioactive therapeutics like arjunolic acid could serve as promising candidates for limiting the NS5B polymerase activity of the hepatitis C virus, offering hope for the future of HCV treatment.
Collapse
Affiliation(s)
- Sivaraman Dhanasekaran
- Department of Biotechnology, School of Energy Technology, Pandit Deendayal Energy University, Knowledge Corridor, Raisan Village, PDPU Road, Gandhinagar, Gujarat, 382426, India.
| | - Pradeep Pushparaj Selvadoss
- Department of Biotechnology, School of Energy Technology, Pandit Deendayal Energy University, Knowledge Corridor, Raisan Village, PDPU Road, Gandhinagar, Gujarat, 382426, India
| | - Solomon Sundar Manoharan
- Department of Biotechnology, School of Energy Technology, Pandit Deendayal Energy University, Knowledge Corridor, Raisan Village, PDPU Road, Gandhinagar, Gujarat, 382426, India
| | - Srikanth Jeyabalan
- Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, 600116, India
| | | | | | - V Devi Rajeswari
- Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | | | | | - Mahendran Sekar
- Monash University, Bandar Sunway, Subang Jaya, Selangor, 47500, Malaysia
| | | | - Wong Ling Shing
- INTI International University, Nilai, Negeri Sembilan, 71800, Malaysia
| |
Collapse
|
11
|
Szoka L, Stocki M, Isidorov V. Dammarane-Type 3,4- seco-Triterpenoid from Silver Birch ( Betula pendula Roth) Buds Induces Melanoma Cell Death by Promotion of Apoptosis and Autophagy. Molecules 2024; 29:4091. [PMID: 39274939 PMCID: PMC11397366 DOI: 10.3390/molecules29174091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
Despite unquestionable advances in therapy, melanoma is still characterized by a high mortality rate. For years, high expectations have been raised by compounds of natural origin as a component of pharmacotherapy, particularly by triterpenes found in the bark of birch trees. In this study, 3,4-seco-dammara-4(29),20(21),24(25)-trien-3-oic acid (SDT) was isolated from buds of silver birch and its mechanisms of cell death induction, including apoptosis and autophagy, were determined. Cytotoxicity of SDT was evaluated by the cell viability test and clonogenic assay, whereas induction of apoptosis and autophagy was determined by annexin V staining and Western blot. The results revealed dose- and time-dependent reductions in viability of melanoma cells. Treatment of cells for 48 h led to an increase in the percentage of annexin V-positive cells, activation of caspase-8, caspase-9, and caspase-3, and cleavage of PARP, confirming apoptosis. Simultaneously, it was found that SDT increased the level of autophagy marker LC3-II and initiator of autophagy beclin-1. Pretreatment of cells with caspase-3 inhibitor or autophagy inhibitor significantly reduced the cytotoxicity of SDT and revealed that both apoptosis and autophagy contribute to a decrease in cell viability. These findings suggest that 3,4-seco-dammaranes may become a promising group of natural compounds for searching for anti-melanoma agents.
Collapse
Affiliation(s)
- Lukasz Szoka
- Department of Medicinal Chemistry, Medical University of Bialystok, 15-222 Białystok, Poland
| | - Marcin Stocki
- Institute of Forest Sciences, Białystok University of Technology, 15-351 Białystok, Poland
| | - Valery Isidorov
- Institute of Forest Sciences, Białystok University of Technology, 15-351 Białystok, Poland
| |
Collapse
|
12
|
Jin Y, Zhou P, Huang S, Shao C, Huang D, Su X, Yang R, Jiang J, Wu J. Cucurbitacin B Inhibits the Proliferation of WPMY-1 Cells and HPRF Cells via the p53/MDM2 Axis. Int J Mol Sci 2024; 25:9333. [PMID: 39273281 PMCID: PMC11395236 DOI: 10.3390/ijms25179333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Modern research has shown that Cucurbitacin B (Cu B) possesses various biological activities such as liver protection, anti-inflammatory, and anti-tumor effects. However, the majority of research has primarily concentrated on its hepatoprotective effects, with limited attention devoted to exploring its potential impact on the prostate. Our research indicates that Cu B effectively inhibits the proliferation of human prostate stromal cells (WPMY-1) and fibroblasts (HPRF), while triggering apoptosis in prostate cells. When treated with 100 nM Cu B, the apoptosis rates of WPMY-1 and HPRF cells reached 51.73 ± 5.38% and 26.83 ± 0.40%, respectively. In addition, the cell cycle assay showed that Cu B had a G2/M phase cycle arrest effect on WPMY-1 cells. Based on RNA-sequencing analysis, Cu B might inhibit prostate cell proliferation via the p53 signaling pathway. Subsequently, the related gene and protein expression levels were measured using quantitative real-time PCR (RT-qPCR), immunocytochemistry (ICC), and enzyme-linked immunosorbent assays (ELISA). Our results mirrored the regulation of tumor protein p53 (TP53), mouse double minute-2 (MDM2), cyclin D1 (CCND1), and thrombospondin 1 (THBS1) in Cu B-induced prostate cell apoptosis. Altogether, Cu B may inhibit prostate cell proliferation and correlate to the modulation of the p53/MDM2 signaling cascade.
Collapse
Affiliation(s)
- Yangtao Jin
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (Y.J.); (P.Z.); (S.H.); (C.S.); (D.H.); (X.S.); (R.Y.); (J.J.)
- Department of Pharmacology & Toxicology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Ping Zhou
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (Y.J.); (P.Z.); (S.H.); (C.S.); (D.H.); (X.S.); (R.Y.); (J.J.)
- Department of Pharmacology & Toxicology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Sisi Huang
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (Y.J.); (P.Z.); (S.H.); (C.S.); (D.H.); (X.S.); (R.Y.); (J.J.)
- Department of Pharmacology & Toxicology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Congcong Shao
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (Y.J.); (P.Z.); (S.H.); (C.S.); (D.H.); (X.S.); (R.Y.); (J.J.)
- Department of Pharmacology & Toxicology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Dongyan Huang
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (Y.J.); (P.Z.); (S.H.); (C.S.); (D.H.); (X.S.); (R.Y.); (J.J.)
- Department of Pharmacology & Toxicology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Xin Su
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (Y.J.); (P.Z.); (S.H.); (C.S.); (D.H.); (X.S.); (R.Y.); (J.J.)
- Department of Pharmacology & Toxicology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Rongfu Yang
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (Y.J.); (P.Z.); (S.H.); (C.S.); (D.H.); (X.S.); (R.Y.); (J.J.)
- Department of Pharmacology & Toxicology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Juan Jiang
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (Y.J.); (P.Z.); (S.H.); (C.S.); (D.H.); (X.S.); (R.Y.); (J.J.)
- Department of Pharmacology & Toxicology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Jianhui Wu
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (Y.J.); (P.Z.); (S.H.); (C.S.); (D.H.); (X.S.); (R.Y.); (J.J.)
- Department of Pharmacology & Toxicology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| |
Collapse
|
13
|
Kim H, Kang Y, Kim S, Park D, Heo SY, Yoo JS, Choi I, N MPA, Ahn JW, Yang JS, Bak N, Kim KK, Lee JY, Choi YK. The host protease KLK5 primes and activates spike proteins to promote human betacoronavirus replication and lung inflammation. Sci Signal 2024; 17:eadn3785. [PMID: 39163389 DOI: 10.1126/scisignal.adn3785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/03/2024] [Accepted: 08/01/2024] [Indexed: 08/22/2024]
Abstract
Coronaviruses rely on host proteases to activate the viral spike protein, which facilitates fusion with the host cell membrane and the release of viral genomic RNAs into the host cell cytoplasm. The distribution of specific host proteases in the host determines the host, tissue, and cellular tropism of these viruses. Here, we identified the kallikrein (KLK) family member KLK5 as a major host protease secreted by human airway cells and exploited by multiple human betacoronaviruses. KLK5 cleaved both the priming (S1/S2) and activation (S2') sites of spike proteins from various human betacoronaviruses in vitro. In contrast, KLK12 and KLK13 displayed preferences for either the S2' or S1/S2 site, respectively. Whereas KLK12 and KLK13 worked in concert to activate SARS-CoV-2 and MERS-CoV spike proteins, KLK5 by itself efficiently activated spike proteins from several human betacoronaviruses, including SARS-CoV-2. Infection of differentiated human bronchial epithelial cells (HBECs) with human betacoronaviruses induced an increase in KLK5 that promoted virus replication. Furthermore, ursolic acid and other related plant-derived triterpenoids that inhibit KLK5 effectively suppressed the replication of SARS-CoV, MERS-CoV, and SARS-CoV-2 in HBECs and mitigated lung inflammation in mice infected with MERS-CoV or SARS-CoV-2. We propose that KLK5 is a pancoronavirus host factor and a promising therapeutic target for current and future coronavirus-induced diseases.
Collapse
Affiliation(s)
- Hyunjoon Kim
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Yeonglim Kang
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Semi Kim
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Dongbin Park
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Seo-Young Heo
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Ji-Seung Yoo
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science, Daejeon 34126, Republic of Korea
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Isaac Choi
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Monford Paul Abishek N
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Jae-Woo Ahn
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Jeong-Sun Yang
- Center for Emerging Virus Research, National Institute of Infectious Diseases, Korea National Institute of Health (KNIH), 187 Osongsaengmyeong2-ro, Heungdeok-gu, Cheongju-si, Chungbuk 28160, Republic of Korea
| | - Nayeon Bak
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science, Daejeon 34126, Republic of Korea
- Department of Metabiohealth, Sungkyun Convergence Institute, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Metabiohealth, Sungkyun Convergence Institute, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Joo-Yeon Lee
- Center for Emerging Virus Research, National Institute of Infectious Diseases, Korea National Institute of Health (KNIH), 187 Osongsaengmyeong2-ro, Heungdeok-gu, Cheongju-si, Chungbuk 28160, Republic of Korea
| | - Young Ki Choi
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science, Daejeon 34126, Republic of Korea
- Department of Metabiohealth, Sungkyun Convergence Institute, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
14
|
Fontana G, Badalamenti N, Bruno M, Maggi F, Dell’Annunziata F, Capuano N, Varcamonti M, Zanfardino A. Biological Properties of Oleanolic Acid Derivatives Bearing Functionalized Side Chains at C-3. Int J Mol Sci 2024; 25:8480. [PMID: 39126048 PMCID: PMC11312724 DOI: 10.3390/ijms25158480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/27/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Triterpene acids are a class of pentacyclic natural carboxylic compounds endowed with a variety of biological activities including antitumor, antimicrobial, and hepatoprotective effects. In this work, several oleanolic acid derivatives were synthesized by structurally modifying them on the C-3 position. All synthesized derivatives were evaluated for possible antibacterial and antiviral activity, and among all the epimers, 6 and 7 demonstrated the best biological activities. Zone-of-inhibition analyses were conducted against two strains, E. coli as a Gram-negative and S. aureus as a Gram-positive model. Subsequently, experiments were performed using the microdilution method to determine the minimum inhibitory concentration (MIC). The results showed that only the derivative with reduced hydrogen bonding ability on ring A possesses remarkable activity toward E. coli. The conversion from acid to methyl ester implies a loss of activity, probably due to a reduced affinity with the bacterial membrane. Before the antiviral activity, the cytotoxicity of triterpenes was evaluated through a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Samples 6 and 7 showed less than 50% cytotoxicity at 0.625 and 1 mg/mL, respectively. The antiviral activity against SARS-CoV-2 and PV-1 did not indicate that triterpene acids had any inhibitory capacity in the sub-toxic concentration range.
Collapse
Affiliation(s)
- Gianfranco Fontana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (G.F.); (N.B.); (M.B.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Natale Badalamenti
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (G.F.); (N.B.); (M.B.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Maurizio Bruno
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (G.F.); (N.B.); (M.B.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
- Centro Interdipartimentale di Ricerca “Riutilizzo Bio-Based degli Scarti da Matrici Agroalimentari” (RIVIVE), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Filippo Maggi
- Chemistry Interdisciplinary Project (ChIP) Research Center, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Federica Dell’Annunziata
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (F.D.); (N.C.)
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Nicoletta Capuano
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (F.D.); (N.C.)
| | - Mario Varcamonti
- Department of Biology, University of Naples, Federico II, Via Cinthia, 80126 Naples, Italy; (M.V.); (A.Z.)
| | - Anna Zanfardino
- Department of Biology, University of Naples, Federico II, Via Cinthia, 80126 Naples, Italy; (M.V.); (A.Z.)
| |
Collapse
|
15
|
Ali S, Ali U, Safi K, Naz F, Jan MI, Iqbal Z, Ali T, Ullah R, Bari A. In silico homology modeling of dengue virus non-structural 4B (NS4B) protein and its molecular docking studies using triterpenoids. BMC Infect Dis 2024; 24:688. [PMID: 38987682 PMCID: PMC11238477 DOI: 10.1186/s12879-024-09578-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Dengue fever has become a significant worldwide health concern, because of its high morbidity rate and the potential for an increase in mortality rates due to lack of adequate treatment. There is an immediate need for the development of effective medication for dengue fever. METHODS Homology modeling of dengue virus (DENV) non-structural 4B (NS4B) protein was performed by SWISS-MODEL to predict the 3D structure of the protein. Structure validation was conducted using PROSA, PROCHECK, Ramachandran plot, and VERIFY-3D. MOE software was used to find out the in-Silico inhibitory potential of the five triterpenoids against the DENV-NS4B protein. RESULTS The SWISS-MODEL was employed to predict the three-dimensional protein structure of the NS4B protein. Through molecular docking, it was found that the chosen triterpenoid NS4B protein had a high binding affinity interaction. It was observed that the NS4B protein binding energy for 15-oxoursolic acid, betulinic acid, ursolic acid, lupeol, and 3-o-acetylursolic acid were - 7.18, - 7.02, - 5.71, - 6.67 and - 8.00 kcal/mol, respectively. CONCLUSIONS NS4B protein could be a promising target which showed good interaction with tested triterpenoids which can be developed as a potential antiviral drug for controlling dengue virus pathogenesis by inhibiting viral replication. However, further investigations are necessary to validate and confirm their efficacy.
Collapse
Affiliation(s)
- Sajid Ali
- Department of Chemistry, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa, Pakistan.
| | - Usman Ali
- Department of Chemistry, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa, Pakistan
| | - Khushboo Safi
- Department of Chemistry, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa, Pakistan
| | - Falak Naz
- Department of Chemistry, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Ishtiaq Jan
- Department of Chemistry, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Zafar Iqbal
- College of Medicine, King Saud University, P.O.Box 7805, Riyadh, 11472, Kingdom of Saudi Arabia
| | - Tahir Ali
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, PR China
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Ahmed Bari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| |
Collapse
|
16
|
Triaa N, Znati M, Ben Jannet H, Bouajila J. Biological Activities of Novel Oleanolic Acid Derivatives from Bioconversion and Semi-Synthesis. Molecules 2024; 29:3091. [PMID: 38999041 PMCID: PMC11243203 DOI: 10.3390/molecules29133091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/17/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
Oleanolic acid (OA) is a vegetable chemical that is present naturally in a number of edible and medicinal botanicals. It has been extensively studied by medicinal chemists and scientific researchers due to its biological activity against a wide range of diseases. A significant number of researchers have synthesized a variety of analogues of OA by modifying its structure with the intention of creating more potent biological agents and improving its pharmaceutical properties. In recent years, chemical and enzymatic techniques have been employed extensively to investigate and modify the chemical structure of OA. This review presents recent advancements in medical chemistry for the structural modification of OA, with a special focus on the biotransformation, semi-synthesis and relationship between the modified structures and their biopharmaceutical properties.
Collapse
Affiliation(s)
- Nahla Triaa
- Medicinal Chemistry and Natural Products Team, Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Faculty of Science of Monastir, University of Monastir, Avenue of Environment, Monastir 5019, Tunisia; (N.T.); (M.Z.)
- Laboratoire de Génie Chimique, Université Paul Sabatier, CNRS, INPT, UPS, 31062 Toulouse, France
| | - Mansour Znati
- Medicinal Chemistry and Natural Products Team, Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Faculty of Science of Monastir, University of Monastir, Avenue of Environment, Monastir 5019, Tunisia; (N.T.); (M.Z.)
| | - Hichem Ben Jannet
- Medicinal Chemistry and Natural Products Team, Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Faculty of Science of Monastir, University of Monastir, Avenue of Environment, Monastir 5019, Tunisia; (N.T.); (M.Z.)
| | - Jalloul Bouajila
- Laboratoire de Génie Chimique, Université Paul Sabatier, CNRS, INPT, UPS, 31062 Toulouse, France
| |
Collapse
|
17
|
Guo Y, Han Z, Zhang J, Lu Y, Li C, Liu G. Development of a high-speed and ultrasensitive UV/Vis-CM for detecting total triterpenes in traditional Chinese medicine and its application. Heliyon 2024; 10:e32239. [PMID: 38882362 PMCID: PMC11180301 DOI: 10.1016/j.heliyon.2024.e32239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024] Open
Abstract
This study proposes a novel colorimetric method based on the ultraviolet/visible spectrophotometry-colorimetric method (UV/Vis-CM) for detecting and quantifying total triterpenoids in traditional Chinese medicine. By incorporating the colourants 2-hydroxy-5-methylbenzaldehyde and concentrated sulfuric acid, triterpenoid compounds colour development became more sensitive, and the detection accuracy was significantly improved. 2-hydroxy-5-methylbenzaldehyde and concentrated sulfuric acid were incorporated in a 1:3 vol ratio at room temperature to react with the total triterpenes for 25 min, incorporated to an ice bath for 5 min, and then detected at the optimal absorption wavelength. The accuracy and reliability of this method were verified by comparison with high-performance liquid chromatography and four other colorimetric methods. Additionally, this approach has the advantages of not requiring heating during operation, high sensitivity, short usage time, low solvent usage, and low equipment costs. This study not only offers a reliable method for detecting total triterpenes in traditional Chinese medicine but also offers a rapid detection tool for on-site testing and large-scale screening, laying a foundation for the modernization of traditional Chinese medicine research, quality control, and drug development.
Collapse
Affiliation(s)
- Yuanyuan Guo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhe Han
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Jingwei Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yue Lu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Chunfeng Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Guiyan Liu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
18
|
Baltina L, Karimova E, Nugumanov T, Petrova S, Gabdrakhmanova S, Khisamutdinova R. Synthesis, modification and biological activity of 2,3-indoles of Glycyrrhetinic acid. Nat Prod Res 2024:1-6. [PMID: 38454327 DOI: 10.1080/14786419.2024.2326844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
The synthesis of 2,3-indoles of Glycyrrhetinic acid (GLA) and its methyl ester was carried out by the Fischer reaction. Reductive transformations of GLA methyl ester 2,3-indole 3a were carried out to obtain 11-deoxo- and 9,12-diene analogs. N-methylation of 2,3-indole 3a gave N-methyl-indole-11-oxo-18β-olean-12-en-30-oic acid. The antiulcer and anti-inflammatory activity of 2,3-indole 3a was studied in rats and mice. It was found, compound 3a exhibied a pronounced antiulcer activity in the indomethacin model of ulcers in rats and anti-inflammatory activity in the carrageenan model of acute edoema in mice, at a dose of 50 mg/kg. This is the first report of anti-ulcer and anti-inflammatory activities of 2,3-indolo-GLA derivatives.
Collapse
Affiliation(s)
- Lidia Baltina
- Ufa Institute of Chemistry, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russian Federation
| | - Elza Karimova
- Ufa Institute of Chemistry, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russian Federation
| | - Timur Nugumanov
- Ufa Institute of Chemistry, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russian Federation
| | - Svetlana Petrova
- Ufa Institute of Chemistry, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russian Federation
| | - Svetlana Gabdrakhmanova
- Ufa Institute of Chemistry, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russian Federation
| | - Regina Khisamutdinova
- Ufa Institute of Chemistry, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russian Federation
| |
Collapse
|
19
|
Borgo J, Wagner MS, Laurella LC, Elso OG, Selener MG, Clavin M, Bach H, Catalán CAN, Bivona AE, Sepúlveda CS, Sülsen VP. Plant Extracts and Phytochemicals from the Asteraceae Family with Antiviral Properties. Molecules 2024; 29:814. [PMID: 38398567 PMCID: PMC10891539 DOI: 10.3390/molecules29040814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/28/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Asteraceae (Compositae), commonly known as the sunflower family, is one of the largest plant families in the world and includes several species with pharmacological properties. In the search for new antiviral candidates, an in vitro screening against dengue virus (DENV) was performed on a series of dichloromethane and methanolic extracts prepared from six Asteraceae species, including Acmella bellidioides, Campuloclinium macrocephalum, Grindelia pulchella, Grindelia chiloensis, Helenium radiatum, and Viguiera tuberosa, along with pure phytochemicals isolated from Asteraceae: mikanolide (1), eupatoriopicrin (2), eupahakonenin B (3), minimolide (4), estafietin (5), 2-oxo-8-deoxyligustrin (6), santhemoidin C (7), euparin (8), jaceidin (9), nepetin (10), jaceosidin (11), eryodictiol (12), eupatorin (13), and 5-demethylsinensetin (14). Results showed that the dichloromethane extracts of C. macrocephalum and H. radiatum and the methanolic extracts prepared from C. macrocephalum and G. pulchella were highly active and selective against DENV-2, affording EC50 values of 0.11, 0.15, 1.80, and 3.85 µg/mL, respectively, and SIs of 171.0, 18.8, >17.36, and 64.9, respectively. From the pool of phytochemicals tested, compounds 6, 7, and 8 stand out as the most active (EC50 = 3.7, 3.1, and 6.8 µM, respectively; SI = 5.9, 6.7, and >73.4, respectively). These results demonstrate that Asteraceae species and their chemical constituents represent valuable sources of new antiviral molecules.
Collapse
Affiliation(s)
- Jimena Borgo
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), CONICET-Universidad de Buenos Aires, Junín 956, Piso 2, Buenos Aires C1113AAD, Argentina; (J.B.); (L.C.L.)
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Piso 2, Buenos Aires C1113AAD, Argentina; (O.G.E.); (M.G.S.); (M.C.)
| | - Mariel S. Wagner
- Laboratorio de Estrategias Antivirales, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Int. Güiraldes 2160, Piso 4, Buenos Aires C1428EGA, Argentina;
| | - Laura C. Laurella
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), CONICET-Universidad de Buenos Aires, Junín 956, Piso 2, Buenos Aires C1113AAD, Argentina; (J.B.); (L.C.L.)
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Piso 2, Buenos Aires C1113AAD, Argentina; (O.G.E.); (M.G.S.); (M.C.)
| | - Orlando G. Elso
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Piso 2, Buenos Aires C1113AAD, Argentina; (O.G.E.); (M.G.S.); (M.C.)
- Unidad de Microanálisis y Métodos Físicos Aplicados a Química Orgánica (UMYMFOR), Facultad de Ciencias Exactas y Naturales, CONICET-Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Piso 3, Buenos Aires C1428EGA, Argentina
| | - Mariana G. Selener
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Piso 2, Buenos Aires C1113AAD, Argentina; (O.G.E.); (M.G.S.); (M.C.)
| | - María Clavin
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Piso 2, Buenos Aires C1113AAD, Argentina; (O.G.E.); (M.G.S.); (M.C.)
| | - Hernán Bach
- Instituto Nacional de Tecnología Agropecuaria (INTA) Gobernador Guillermo Udaondo 1695 Estación Experimental Agropecuaria Área Metropolitana de Buenos Aires, EEA AMBA Udaondo, Villa Udaondo B1713AAW, Buenos Aires Province, Argentina;
| | - César A. N. Catalán
- Instituto de Química Orgánica, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, San Miguel de Tucumán T4000INI, Tucumán Province, Argentina;
| | - Augusto E. Bivona
- Instituto de Estudios de la Inmunidad Humoral Prof. Ricardo A. Margni (IDEHU), CONICET-Universidad de Buenos Aires, Junín 956, Piso 4, Buenos Aires C1113AAD, Argentina;
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), CONICET-Universidad de Buenos Aires, Paraguay 2155, Piso 13, Buenos Aires C1121ABG, Argentina
| | - Claudia S. Sepúlveda
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Int. Güiraldes 2160, Piso 4, Buenos Aires C1428EGA, Argentina
| | - Valeria P. Sülsen
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), CONICET-Universidad de Buenos Aires, Junín 956, Piso 2, Buenos Aires C1113AAD, Argentina; (J.B.); (L.C.L.)
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Piso 2, Buenos Aires C1113AAD, Argentina; (O.G.E.); (M.G.S.); (M.C.)
| |
Collapse
|
20
|
Li H, Xie W, Gao X, Geng Z, Gao J, Ma G, Liu X, Han S, Chen Y, Wen X, Bi Y, Zhang L. Design and synthesis of novel hederagonic acid analogs as potent anti-inflammatory compounds capable of protecting against LPS-induced acute lung injury. Eur J Med Chem 2024; 263:115941. [PMID: 38000214 DOI: 10.1016/j.ejmech.2023.115941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/05/2023] [Accepted: 11/05/2023] [Indexed: 11/26/2023]
Abstract
Acute lung injury (ALI) presents a significant clinical challenge due to its high mortality rates and the lack of effective treatment strategies. The most effective approaches to treating ALI include disrupting inflammatory cascades and associated inflammatory damage within the lung. Hederagenin was utilized as a core skeleton to design and synthesize 33 hederagonic acid derivatives. Among these derivatives, compound 29 demonstrated potent anti-inflammatory activity without inducing cytotoxicity, inhibiting nitric oxide (NO) release by 78-86 %. Detailed structure-activity relationship studies and the reverse virtual screening of ALI-related targets revealed that compound 29 exhibits a high affinity for the STING protein. Mechanistic studies revealed that compound 29 suppresses macrophage activation, inhibits the nuclear translocation of IRF3 and p65, and disrupts the STING/IRF3/NF-κB signaling pathway, thereby attenuating the inflammatory response. The in vivo administration of compound 29 was sufficient to protect against lipopolysaccharide (LPS)-induced ALI by suppressing the production of inflammatory mediators, including IL-6, TNF-α, and IFN-β, thereby preserving lung tissue integrity. These results substantiate the anti-inflammatory efficacy of compound 29, both in vitro and in vivo, indicating its potential as a promising lead compound in ALI treatment strategies.
Collapse
Affiliation(s)
- Haixia Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Wenbin Xie
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Xiaojin Gao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Zhiyuan Geng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Jing Gao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Gongshan Ma
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Xuanyu Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Song Han
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Yinchao Chen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Xiaomei Wen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Yi Bi
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China.
| | - Leiming Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China; School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, PR China.
| |
Collapse
|
21
|
Petrova A, Tretyakova E, Khusnutdinova E, Kazakova O, Slita A, Zarubaev V, Ma X, Jin H, Xu H, Xiao S. Antiviral opportunities of Mannich bases derived from triterpenic N-propargylated indoles. Chem Biol Drug Des 2024; 103:e14370. [PMID: 37802645 DOI: 10.1111/cbdd.14370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/15/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
Oleanolic and glycyrrhetic acids alkyne derivatives were synthesized as a result of propargylation of the indole NH-group condensed with the triterpene A-ring, the following aminomethylation led to a series of Mannich bases. The synthesized compounds were tested for their potential inhibition of influenza A/PuertoRico/8/34 (H1N1) virus in Madin-Darby canine kidney (MDCK) cell culture and SARS-CoV-2 pseudovirus in baby hamster kidney-21-human angiotensin-converting enzyme 2 (BHK-21-hACE2) cells. Mannich bases of oleanolic and glycyrrhetic acids N-propargylated indoles 7, 8, and 12 were the most efficacious against influenza virus A with IC50 7-10 μM together with a low toxicity (CC50 > 145 μM) and high selectivity index SI value 20. Indolo-oleanolic acid morpholine amide Mannich base holding N-methylpiperazine moiety 9 showed anti-SARS-CoV-2 pseudovirus activity with EC50 value of 14.8 μM. Molecular docking and dynamics modeling investigated the binding mode of the compounds 7 and 12 into the binding pocket of influenza A virus M2 protein and compound 9 into the RBD domain of SARS-CoV-2 spike glycoprotein.
Collapse
Affiliation(s)
| | | | | | - Oxana Kazakova
- Ufa Institute of Chemistry UFRC RAS, Ufa, Russian Federation
| | - Alexander Slita
- Department of Virology, St. Petersburg Pasteur Institute of Epidemiology and Microbiology, Experimental Virology Laboratory, St. Petersburg, Russian Federation
| | - Vladimir Zarubaev
- Department of Virology, St. Petersburg Pasteur Institute of Epidemiology and Microbiology, Experimental Virology Laboratory, St. Petersburg, Russian Federation
| | - Xinyuan Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Huan Xu
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Sulong Xiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|
22
|
Wimmerová M, Bildziukevich U, Wimmer Z. Selected Plant Triterpenoids and Their Derivatives as Antiviral Agents. Molecules 2023; 28:7718. [PMID: 38067449 PMCID: PMC10707653 DOI: 10.3390/molecules28237718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/08/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
The results of the most recent investigation of triterpenoid-based antiviral agents namely in the HIV-1 and HSV-1 treatment were reviewed and summarized. Several key historical achievements are included to stress consequences and continuity in this research. Most of the agents studied belong to a series of compounds derived from betulin or betulinic acid, and their synthetic derivative is called bevirimat. A termination of clinical trials of bevirimat in Phase IIb initiated a search for more successful compounds partly derived from bevirimat or designed independently of bevirimat structure. Surprisingly, a majority of bevirimat mimics are derivatives of betulinic acid, while other plant triterpenoids, such as ursolic acid, oleanolic acid, glycyrrhetinic acid, or other miscellaneous triterpenoids, are relatively rarely involved in a search for a novel antiviral agent. Therefore, this review article is divided into three parts based on the leading triterpenoid core structure.
Collapse
Affiliation(s)
- Martina Wimmerová
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology in Prague, Technická 5, 16028 Prague, Czech Republic;
- Isotope Laboratory, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220 Prague, Czech Republic;
| | - Uladzimir Bildziukevich
- Isotope Laboratory, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220 Prague, Czech Republic;
| | - Zdeněk Wimmer
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology in Prague, Technická 5, 16028 Prague, Czech Republic;
- Isotope Laboratory, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220 Prague, Czech Republic;
| |
Collapse
|
23
|
Galewski PJ, Majumdar R, Lebar MD, Strausbaugh CA, Eujayl IA. Combined Omics Approaches Reveal Distinct Mechanisms of Resistance and/or Susceptibility in Sugar Beet Double Haploid Genotypes at Early Stages of Beet Curly Top Virus Infection. Int J Mol Sci 2023; 24:15013. [PMID: 37834460 PMCID: PMC10573692 DOI: 10.3390/ijms241915013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023] Open
Abstract
Sugar beet is susceptible to Beet curly top virus (BCTV), which significantly reduces yield and sugar production in the semi-arid growing regions worldwide. Sources of genetic resistance to BCTV is limited and control depends upon insecticide seed treatments with neonicotinoids. Through double haploid production and genetic selection, BCTV resistant breeding lines have been developed. Using BCTV resistant (R) [KDH13; Line 13 and KDH4-9; Line 4] and susceptible (S) [KDH19-17; Line 19] lines, beet leafhopper mediated natural infection, mRNA/sRNA sequencing, and metabolite analyses, potential mechanisms of resistance against the virus and vector were identified. At early infection stages (2- and 6-days post inoculation), examples of differentially expressed genes highly up-regulated in the 'R' lines (vs. 'S') included EL10Ac5g10437 (inhibitor of trypsin and hageman factor), EL10Ac6g14635 (jasmonate-induced protein), EL10Ac3g06016 (ribosome related), EL10Ac2g02812 (probable prolyl 4-hydroxylase 10), etc. Pathway enrichment analysis showed differentially expressed genes were predominantly involved with peroxisome, amino acids metabolism, fatty acid degradation, amino/nucleotide sugar metabolism, etc. Metabolite analysis revealed significantly higher amounts of specific isoflavonoid O-glycosides, flavonoid 8-C glycosides, triterpenoid, and iridoid-O-glycosides in the leaves of the 'R' lines (vs. 'S'). These data suggest that a combination of transcriptional regulation and production of putative antiviral metabolites might contribute to BCTV resistance. In addition, genome divergence among BCTV strains differentially affects the production of small non-coding RNAs (sncRNAs) and small peptides which may potentially affect pathogenicity and disease symptom development.
Collapse
Affiliation(s)
- Paul J. Galewski
- Northwest Irrigation and Soils Research Laboratory, United States Department of Agriculture—Agricultural Research Service, Kimberly, ID 83341, USA; (P.J.G.); (C.A.S.); (I.A.E.)
- Plant Germplasm Introduction and Testing Research Unit, United States Department of Agriculture—Agricultural Research Service, Pullman, WA 99164, USA
| | - Rajtilak Majumdar
- Northwest Irrigation and Soils Research Laboratory, United States Department of Agriculture—Agricultural Research Service, Kimberly, ID 83341, USA; (P.J.G.); (C.A.S.); (I.A.E.)
| | - Matthew D. Lebar
- Food and Feed Safety Research Unit, Southern Regional Research Center, United States Department of Agriculture—Agricultural Research Service, New Orleans, LA 70179, USA;
| | - Carl A. Strausbaugh
- Northwest Irrigation and Soils Research Laboratory, United States Department of Agriculture—Agricultural Research Service, Kimberly, ID 83341, USA; (P.J.G.); (C.A.S.); (I.A.E.)
| | - Imad A. Eujayl
- Northwest Irrigation and Soils Research Laboratory, United States Department of Agriculture—Agricultural Research Service, Kimberly, ID 83341, USA; (P.J.G.); (C.A.S.); (I.A.E.)
| |
Collapse
|
24
|
Alom MM, Bonna RP, Islam A, Alom MW, Rahman ME, Faruqe MO, Khalekuzzaman M, Zaman R, Islam MA. Unveiling Neuroprotective Potential of Spice Plant-Derived Compounds against Alzheimer's Disease: Insights from Computational Studies. Int J Alzheimers Dis 2023; 2023:8877757. [PMID: 37744007 PMCID: PMC10516701 DOI: 10.1155/2023/8877757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/26/2023] [Accepted: 08/26/2023] [Indexed: 09/26/2023] Open
Abstract
Alzheimer's disease (AD) is a serious threat to the global health care system and is brought on by a series of factors that cause neuronal dysfunction and impairment in memory and cognitive decline. This study investigated the therapeutic potential of phytochemicals that belong to the ten regularly used spice plants, based on their binding affinity with AD-associated proteins. Comprehensive docking studies were performed using AutoDock Vina in PyRx followed by molecular dynamic (MD) simulations using AMBER 14. The docking study of the chosen molecules revealed the binding energies of their interactions with the target proteins, while MD simulations were carried out to verify the steadiness of bound complexes. Through the Lipinski filter and admetSAR analysis, the chosen compounds' pharmacokinetic characteristics and drug likeness were also examined. The pharmacophore mapping study was also done and analyzed for best selected molecules. Additionally, principal component analysis (PCA) was used to examine how the general motion of the protein changed. The results showed quercetin and myricetin to be potential inhibitors of AChE and alpha-amyrin and beta-chlorogenin to be potential inhibitors of BuChE, exhibiting best binding energies comparable to those of donepezil, used as a positive control. The multiple descriptors from the simulation study, root mean square deviation (RMSD), root mean square fluctuation (RMSF), hydrogen bond, radius of gyration (Rg), and solvent-accessible surface areas (SASA), confirm the stable nature of the protein-ligand complexes. Molecular mechanic Poisson-Boltzmann surface area (MM-PBSA) binding free energy calculations indicated the energetically favorable binding of the ligands to the protein. Finally, according to pharmacokinetic properties and drug likeness, characteristics showed that quercetin and myricetin for AChE and alpha-amyrin and beta-chlorogenin for BuChE were found to be the most effective agents for treating the AD.
Collapse
Affiliation(s)
- Md. Murshid Alom
- Professor O.I Joarder DNA and Chromosome Research Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Rejwana Parvin Bonna
- Professor O.I Joarder DNA and Chromosome Research Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Ariful Islam
- Professor O.I Joarder DNA and Chromosome Research Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md. Wasim Alom
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md. Ekhtiar Rahman
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md Omar Faruqe
- Department of Computer Science and Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md. Khalekuzzaman
- Professor O.I Joarder DNA and Chromosome Research Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Rashed Zaman
- Professor O.I Joarder DNA and Chromosome Research Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md. Asadul Islam
- Professor O.I Joarder DNA and Chromosome Research Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| |
Collapse
|
25
|
Chianese A, Gravina C, Morone MV, Ambrosino A, Formato M, Palma F, Foglia F, Nastri BM, Zannella C, Esposito A, De Filippis A, Piccolella S, Galdiero M, Pacifico S. Lavandula austroapennina: Assessment of the Antiviral Activity of Lipophilic Extracts from Its Organs. Viruses 2023; 15:1648. [PMID: 37631991 PMCID: PMC10457779 DOI: 10.3390/v15081648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/23/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
In a framework aimed at the recovery and enhancement of medicinal plants endemic to the territory of the Cilento and Vallo di Diano National Park, Lavandula austroapennina N.G. Passal., Tundis and Upson has aroused interest. An insight into the chemical composition of the corolla, calyx, leaf, stem, and root organs was carried out following ultrasound-assisted maceration in n-hexane. The obtained lipophilic extracts were explored using ultra-high-performance chromatography coupled to high-resolution mass spectrometry (UHPLC-ESI-QqTOF-MS/MS). The extracts from the different organs varied in their relative content of fatty acids, ursanes, and oleanane-type triterpenes. In particular, the oleanolic acid content appeared to increase in the order of corolla < leaf < stem. An MTT assay was performed to verify the possible cytotoxicity of the organ extracts of L. austroapennina at a concentration ranging from 12.5 to 400 µg/mL on the Vero CCL-81 cell line. Antiviral activity against herpes simplex virus type 1 (HSV-1), alpha human coronavirus 229E (HCoV-229E), and poliovirus type 1 (PV-1) was evaluated via a plaque reduction assay in the same cellular model. All the extracts did not show cytotoxic effects after 2 and 24 h exposure times, and the antiviral efficacy was particularly important for the stem extract, capable of completely inhibiting the tested viruses at low doses. The antiviral activity in a non-enveloped virus PV-1 allowed the assertion that the extracts from the organs of L. austroapennina, and especially the stem extract, interfered directly with the viral envelope. This study underlines how much knowledge of a territory's medicinal plant heritage is a harbinger of promising discoveries in the health field.
Collapse
Affiliation(s)
- Annalisa Chianese
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (M.V.M.); (A.A.); (F.P.); (F.F.); (B.M.N.); (C.Z.); (A.D.F.)
| | - Claudia Gravina
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (C.G.); (M.F.); (A.E.); (S.P.)
| | - Maria Vittoria Morone
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (M.V.M.); (A.A.); (F.P.); (F.F.); (B.M.N.); (C.Z.); (A.D.F.)
| | - Annalisa Ambrosino
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (M.V.M.); (A.A.); (F.P.); (F.F.); (B.M.N.); (C.Z.); (A.D.F.)
| | - Marialuisa Formato
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (C.G.); (M.F.); (A.E.); (S.P.)
| | - Francesca Palma
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (M.V.M.); (A.A.); (F.P.); (F.F.); (B.M.N.); (C.Z.); (A.D.F.)
| | - Francesco Foglia
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (M.V.M.); (A.A.); (F.P.); (F.F.); (B.M.N.); (C.Z.); (A.D.F.)
| | - Bianca Maria Nastri
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (M.V.M.); (A.A.); (F.P.); (F.F.); (B.M.N.); (C.Z.); (A.D.F.)
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (M.V.M.); (A.A.); (F.P.); (F.F.); (B.M.N.); (C.Z.); (A.D.F.)
| | - Assunta Esposito
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (C.G.); (M.F.); (A.E.); (S.P.)
| | - Anna De Filippis
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (M.V.M.); (A.A.); (F.P.); (F.F.); (B.M.N.); (C.Z.); (A.D.F.)
| | - Simona Piccolella
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (C.G.); (M.F.); (A.E.); (S.P.)
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (M.V.M.); (A.A.); (F.P.); (F.F.); (B.M.N.); (C.Z.); (A.D.F.)
| | - Severina Pacifico
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (C.G.); (M.F.); (A.E.); (S.P.)
| |
Collapse
|
26
|
Triterpenic Acid Amides as Potential Inhibitors of the SARS-CoV-2 Main Protease. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010303. [PMID: 36615498 PMCID: PMC9822074 DOI: 10.3390/molecules28010303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023]
Abstract
Although the incidence and mortality of SARS-CoV-2 infection has been declining during the pandemic, the problem related to designing novel antiviral drugs that could effectively resist viruses in the future remains relevant. As part of our continued search for chemical compounds that are capable of exerting an antiviral effect against the SARS-CoV-2 virus, we studied the ability of triterpenic acid amides to inhibit the SARS-CoV-2 main protease. Molecular modeling suggested that the compounds are able to bind to the active site of the main protease via non-covalent interactions. The FRET-based enzyme assay was used to reveal that compounds 1e and 1b can inhibit the SARS-CoV-2 main protease at micromolar concentrations.
Collapse
|