1
|
Hadri SH, Riaz A, Abid J, Shaheen R, Nadeem S, Ghumman Z, Naeem H. Emerging nanostructure-based strategies for breast cancer therapy: innovations, challenges, and future directions. Med Oncol 2025; 42:188. [PMID: 40307624 DOI: 10.1007/s12032-025-02743-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 04/23/2025] [Indexed: 05/02/2025]
Abstract
Breast cancer, one of the leading causes of cancer-associated deaths, is responsible for the majority of cases of cancer in women globally. Traditional therapies used for the treatment of cancer have some challenges such as low cellular absorption, multidrug resistance, and limited bioavailability. Current innovations in nanotechnology, such as nanoliposomes, silver nanoparticles, gold nanoparticles, and carbon nanotubes, provide a promising approach to deal with these limitations. Nanostructures encapsulating anticancer agents such as doxorubicin, curcumin, paclitaxel, erlotinib, and docetaxel enhance the therapeutic efficacy of these agents and promote targeted drug delivery. Curcumin-loaded amorphous calcium carbonate nanoparticles encapsulating lipids and L-arginine exhibit higher cytotoxicity than free curcumin. Gold nanoparticles can also enhance treatment efficacy by specifically destroying tumor cells when used in photothermal therapy. This review focus on the abilities of nanoparticles to induce oxidative stress, prevent proliferation, and trigger apoptosis in cancer cells. Further research should focus on optimizing these nanoparticles to enhance the targeted drug delivery and address multi-drug resistance. Our review underscores recent developments in nanostructures, their therapeutic potential, and the challenges that need to be addressed for more effective breast cancer treatment.
Collapse
Affiliation(s)
- Saqib Hussain Hadri
- Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Atiya Riaz
- Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan.
| | - Jaisha Abid
- Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Rameeza Shaheen
- Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Samreen Nadeem
- Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Zainab Ghumman
- Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Hammad Naeem
- Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| |
Collapse
|
2
|
Santhosh PB, Hristova-Panusheva K, Petrov T, Stoychev L, Krasteva N, Genova J. Femtosecond Laser-Induced Photothermal Effects of Ultrasmall Plasmonic Gold Nanoparticles on the Viability of Human Hepatocellular Carcinoma HepG2 Cells. Cells 2024; 13:2139. [PMID: 39768227 PMCID: PMC11675025 DOI: 10.3390/cells13242139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/06/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Laser-induced photothermal therapy using gold nanoparticles (AuNPs) has emerged as a promising approach to cancer therapy. However, optimizing various laser parameters is critical for enhancing the photothermal conversion efficacy of plasmonic nanomaterials. In this regard, the present study investigates the photothermal effects of dodecanethiol-stabilized hydrophobic ultrasmall spherical AuNPs (TEM size 2.2 ± 1.1 nm), induced by a 343 nm wavelength ultrafast femtosecond-pulse laser with a low intensity (0.1 W/cm2) for 5 and 10 min, on the cell morphology and viability of human hepatocellular carcinoma (HepG2) cells treated in vitro. The optical microscopy images showed considerable alteration in the overall morphology of the cells treated with AuNPs and irradiated with laser light. Infrared thermometer measurements showed that the temperature of the cell medium treated with AuNPs and exposed to the laser increased steadily from 22 °C to 46 °C and 48.5 °C after 5 and 10 min, respectively. The WST-1 assay results showed a significant reduction in cell viability, demonstrating a synergistic therapeutic effect of the femtosecond laser and AuNPs on HepG2 cells. The obtained results pave the way to design a less expensive, effective, and minimally invasive photothermal approach to treat cancers with reduced side effects.
Collapse
Affiliation(s)
- Poornima Budime Santhosh
- Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, 1784 Sofia, Bulgaria; (P.B.S.); (T.P.); (L.S.)
- Central Laboratory of Solar Energy and New Energy Sources, Tzarigradsko Chaussee 72, 1784 Sofia, Bulgaria
| | - Kamelia Hristova-Panusheva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.21, 1113 Sofia, Bulgaria (N.K.)
| | - Todor Petrov
- Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, 1784 Sofia, Bulgaria; (P.B.S.); (T.P.); (L.S.)
- Faculty of Applied Mathematics and Informatics, Technical University of Sofia, 8, Kliment Ohridski St, 1000 Sofia, Bulgaria
| | - Lyubomir Stoychev
- Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, 1784 Sofia, Bulgaria; (P.B.S.); (T.P.); (L.S.)
| | - Natalia Krasteva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.21, 1113 Sofia, Bulgaria (N.K.)
| | - Julia Genova
- Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, 1784 Sofia, Bulgaria; (P.B.S.); (T.P.); (L.S.)
| |
Collapse
|
3
|
Jayeoye TJ, Panghiyangani R, Singh S, Muangsin N. Quercetin Reduced and Stabilized Gold Nanoparticle/Al 3+: A Rapid, Sensitive Optical Detection Nanoplatform for Fluoride Ion. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1967. [PMID: 39683356 DOI: 10.3390/nano14231967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024]
Abstract
In this contribution, facile synthesis of gold nanoparticles (AuNPs) at ambient conditions is reported based on the use of the polyphenolic compound quercetin (QT) as the reducing and stabilizing agent at room temperature (RT). Under alkali-induced pH adjustment of QT solution and stirring conditions at RT, QT could quickly reduce gold salt (Au3+) into its nanoparticle form (Au0), resulting in the formation of a sparkling red color colloidal solution (AuNPs) with an absorption maximum at 520 nm. Further, Fourier transform infrared spectroscopy (FTIR) was employed to showcase the role of QT in the nanomaterial's synthesis process. The formed QT-AuNPs responded swiftly to Al3+ charging with color perturbation from red to grayish-purple, coupled with an absorption spectra red shift, owing to Al3+-induced aggregation of QT-AuNPs. However, when fluoride ion (F-) was pre-mixed with an optimized Al3+ concentration, reversed color changes from grayish-purple to red were observed with a blue shift in the absorption spectra. Simply put, F- formed a complex with Al3+, thus preventing Al3+-induced aggregation of QT-AuNPs. The analytical response A520/A650 was linear with F- concentration ranging from 25.0 to 250.0 µM and 250.0-600.0 µM, with a detection limit of 7.5 µM. The developed QT-AuNPs/Al3+ detection probe was selective to only F- charging, in comparison with other possible interfering anions. Real sample potentiality of the developed sensor was demonstrated on tap water samples, toothpaste, and fluoride-rich mouthwash, with reliable accuracy.
Collapse
Affiliation(s)
- Titilope John Jayeoye
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Roselina Panghiyangani
- Department of Biomedic, Faculty of Medicine, Universitas Lambung Mangkurat, Kota Banjarmasin 70123, Indonesia
| | - Sudarshan Singh
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nongnuj Muangsin
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
4
|
Rousseau C, Vuong QL, Gossuin Y, Maes B, Rosolen G. Concurrent photothermal therapy and nuclear magnetic resonance imaging with plasmonic-magnetic nanoparticles: A numerical study. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 257:108453. [PMID: 39426140 DOI: 10.1016/j.cmpb.2024.108453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND AND OBJECTIVE Theranostics is the combination of the diagnostic and therapeutic phases. Here we focus on simultaneous use of photothermal therapy and magnetic resonance imaging, employing a contrast-photothermal agent that converts incident light into heat and affects the transverse relaxation time, a key magnetic resonance imaging parameter. Our work considers a gold-magnetite nanoshell platform to gauge the feasibility of magnetic resonance imaging monitoring of the heating associated with phototherapy, by studying the modification of the transverse relaxation rate induced by laser illumination of a solution containing these hybrid nanoparticles. METHODS We simulate a system composed of an aqueous solution with hybrid nanoshells under continuous laser irradiation, enabling the evaluation of spatial variations of the transverse relaxation rate within the sample. We work with the hybrid nanoshell platform comprising a metal/gold shell for thermoplasmonic effects and a magnetite core for magnetic resonance imaging contrast enhancement. The optical properties of the nanoshells are first obtained through simulations using the finite element method. Next, the heating generated by the laser illumination is calculated by numerical integration. Finally, the transverse relaxation rate is obtained through the application of an analytical model. Additionally, we conduct an optimization of the nanoshell geometry to fulfill requirements of both magnetic resonance imaging and phototherapy techniques. RESULTS Our findings demonstrate a narrow range of nanoshell sizes exhibiting both a plasmonic absorption peak in the human biological window and a high response to laser illumination of the transverse relaxation rate. Furthermore, the illumination can induce up to a 30% modification in transverse relaxation rate compared to the non-illuminated scenario in this range of nanoshell sizes. CONCLUSIONS In this work we establish the numerical understanding of the interplay between phototherapy and nuclear magnetic resonance imaging when employed concurrently. This allows magnetic resonance imaging monitoring of the heating associated with phototherapy.
Collapse
Affiliation(s)
- C Rousseau
- Micro- and Nanophotonic Materials Group, Research Institute for Materials Science and Engineering, University of Mons, 20 Place du Parc, B-7000 Mons, Belgium.
| | - Q L Vuong
- Biomedical Physics Unit, University of Mons, 20 Place du Parc, B-7000 Mons, Belgium
| | - Y Gossuin
- Biomedical Physics Unit, University of Mons, 20 Place du Parc, B-7000 Mons, Belgium
| | - B Maes
- Micro- and Nanophotonic Materials Group, Research Institute for Materials Science and Engineering, University of Mons, 20 Place du Parc, B-7000 Mons, Belgium
| | - G Rosolen
- Micro- and Nanophotonic Materials Group, Research Institute for Materials Science and Engineering, University of Mons, 20 Place du Parc, B-7000 Mons, Belgium
| |
Collapse
|
5
|
Faghani-Eskandarkolaei P, Heli H, Akbari N, Koohi-Hosseinabadi O, Sari Aslani F, Sattarahmady N. Antibacterial and anti-biofilm activities of gold-curcumin nanohybrids and its polydopamine form upon photo-sonotherapy of Staphylococcus aureus infected implants: In vitro and animal model studies. Int J Biol Macromol 2024; 282:137430. [PMID: 39528199 DOI: 10.1016/j.ijbiomac.2024.137430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/27/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Implant-related infections are among the major post-surgery problems, and treatment of these infections is challenging due to the formation of biofilms by microorganisms such as Staphylococcus aureus. Herein, a novel gold-curcumin nanohybrid (GCNH) was synthesized for the first time and characterized. GCNH had a band gap energy of 2.41 eV, a zeta potential of -15 mV, and comprised uniform spherical particles with a mean diameter of 8 ± 2 nm. The biological macromolecule of polydopamine was then coated on GCNH to prepare a gold-curcumin-polydopamine nanohybrid (GCDNH). The nanohybrids were employed as novel dual photo-sonosensitizers for bacterial eradication by near-infrared (NIR) light and ultrasound (US) irradiations. GCNH and GCDNH represented photothermal conversion efficiencies of 26 and 32 %, respectively, and GCDNH represented a hemolysis rate of 2.3 % under both near-infrared (NIR) light and ultrasound (US) irradiations. NIR light and US irradiations (photo-sonotherapy) of Staphylococcus aureus using GCDNH depicted anti-bacterial and anti-biofilm efficiencies of 98 and 99 %, respectively, in synergistic manners, which are higher or as high as other sensitizers reported previously. The mechanism of photo-sonotherapy was related to generation of high levels of reactive oxygen species (ROS), and protein and nucleic acid leakages. In an in vivo infection model, NIR light and US irradiations annihilated Staphylococcus aureus on GCDNH-covered implants with high efficiency, without causing damage to normal tissues.
Collapse
Affiliation(s)
- P Faghani-Eskandarkolaei
- Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - H Heli
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - N Akbari
- Department of Microbiology, Faculty of Science, Arak Branch, Islamic Azad University, Arak, Iran
| | - O Koohi-Hosseinabadi
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
| | - F Sari Aslani
- Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - N Sattarahmady
- Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
6
|
Huang S, Xiang H, Lv J, Guo Y, Xu L. Propelling gold nanozymes: catalytic activity and biosensing applications. Anal Bioanal Chem 2024; 416:5915-5932. [PMID: 38748246 DOI: 10.1007/s00216-024-05334-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 10/26/2024]
Abstract
Recently, gold nanomaterials have been rapidly developed owing to their high stability, good biocompatibility, and multifunctionality. The unique catalytic activity of gold nanomaterials has driven the emergence of the concept for a "gold nanozyme." Understanding the characteristics of gold nanozymes is crucial for improving their catalytic performance as well as expanding their applications. In this review, we provide an overview of the intrinsic enzyme-like activities of gold nanozymes, including peroxidase-, catalase-, superoxide dismutase-, and glucose oxidase-like activities, and the catalytic mechanisms involved. In addition, strategies for modulating the catalytic activity of gold nanozymes and their applications in biosensing were discussed in detail. Moreover, we highlight the current challenges of gold nanozymes and look forward to attracting more attention for propelling the developments in this field.
Collapse
Affiliation(s)
- Sijun Huang
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin, 130012, China
| | - Henglong Xiang
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin, 130012, China
| | - Jiachen Lv
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin, 130012, China
| | - Yi Guo
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin, 130012, China.
| | - Li Xu
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin, 130012, China.
| |
Collapse
|
7
|
Dong W, Liu S, Li S, Wang Z. Cell reprogramming therapy for Parkinson's disease. Neural Regen Res 2024; 19:2444-2455. [PMID: 38526281 PMCID: PMC11090434 DOI: 10.4103/1673-5374.390965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/23/2023] [Accepted: 10/08/2023] [Indexed: 03/26/2024] Open
Abstract
Parkinson's disease is typically characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Many studies have been performed based on the supplementation of lost dopaminergic neurons to treat Parkinson's disease. The initial strategy for cell replacement therapy used human fetal ventral midbrain and human embryonic stem cells to treat Parkinson's disease, which could substantially alleviate the symptoms of Parkinson's disease in clinical practice. However, ethical issues and tumor formation were limitations of its clinical application. Induced pluripotent stem cells can be acquired without sacrificing human embryos, which eliminates the huge ethical barriers of human stem cell therapy. Another widely considered neuronal regeneration strategy is to directly reprogram fibroblasts and astrocytes into neurons, without the need for intermediate proliferation states, thus avoiding issues of immune rejection and tumor formation. Both induced pluripotent stem cells and direct reprogramming of lineage cells have shown promising results in the treatment of Parkinson's disease. However, there are also ethical concerns and the risk of tumor formation that need to be addressed. This review highlights the current application status of cell reprogramming in the treatment of Parkinson's disease, focusing on the use of induced pluripotent stem cells in cell replacement therapy, including preclinical animal models and progress in clinical research. The review also discusses the advancements in direct reprogramming of lineage cells in the treatment of Parkinson's disease, as well as the controversy surrounding in vivo reprogramming. These findings suggest that cell reprogramming may hold great promise as a potential strategy for treating Parkinson's disease.
Collapse
Affiliation(s)
- Wenjing Dong
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Shuyi Liu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Shangang Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Zhengbo Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| |
Collapse
|
8
|
Wang H, Wang X, Wang L, Wang H, Zhang Y. Plant‐Derived Phytochemicals and Their Nanoformulations for Inducing Programed Cell Death in Cancer. ADVANCED THERAPEUTICS 2024; 7. [DOI: 10.1002/adtp.202400197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Indexed: 01/05/2025]
Abstract
AbstractPhytochemicals are a diverse class of compounds found in various plant‐based foods and beverages that have displayed the capacity to exert powerful anticancer effects through the induction of programed cell death (PCD) in malignancies. PCD is a sophisticated process that maintains in upholding tissue homeostasis and eliminating injured or neoplastic cells. Phytochemicals have shown the potential to induce PCD in malignant cells through various mechanisms, including modulation of cell signaling pathways, regulation of reactive oxygen species (ROS), and interaction with critical targets in cells such as DNA. Moreover, recent studies have suggested that nanomaterials loaded with phytochemicals may enhance cell death in tumors, which can also stimulate antitumor immunity. In this review, a comprehensive overview of the current understanding of the anticancer effects of phytochemicals and their potential as a promising approach to cancer therapy, is provided. The impacts of phytochemicals such as resveratrol, curcumin, apigenin, quercetin, and some approved plant‐derived drugs, such as taxanes on the regulation of some types of PCD, including apoptosis, pyroptosis, anoikis, autophagic cell death, ferroptosis, and necroptosis, are discussed. The underlying mechanisms and the potential of nanomaterials loaded with phytochemicals to enhance PCD in tumors are also explained.
Collapse
Affiliation(s)
- Haoyu Wang
- Medical College Xijing University Xi'an Shaanxi 710123 China
- Department of Orthopedics The Second Affiliated Hospital Xi'an Jiaotong University Xi'an Shaanxi 710004 China
| | - Xiaoyang Wang
- Department of Orthopedics The Second Affiliated Hospital Xi'an Jiaotong University Xi'an Shaanxi 710004 China
| | - Long Wang
- Medical College Xijing University Xi'an Shaanxi 710123 China
| | - Haifan Wang
- Department of Orthopedics The Second Affiliated Hospital Xi'an Jiaotong University Xi'an Shaanxi 710004 China
| | - Yuxing Zhang
- Medical College Xijing University Xi'an Shaanxi 710123 China
| |
Collapse
|
9
|
Hlapisi N, Songca SP, Ajibade PA. Capped Plasmonic Gold and Silver Nanoparticles with Porphyrins for Potential Use as Anticancer Agents-A Review. Pharmaceutics 2024; 16:1268. [PMID: 39458600 PMCID: PMC11510308 DOI: 10.3390/pharmaceutics16101268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Photothermal therapy (PTT) and photodynamic therapy (PDT) are potential cancer treatment methods that are minimally invasive with high specificity for malignant cells. Emerging research has concentrated on the application of metal nanoparticles encapsulated in porphyrin and their derivatives to improve the efficacy of these treatments. Gold and silver nanoparticles have distinct optical properties and biocompatibility, which makes them efficient materials for PDT and PTT. Conjugation of these nanoparticles with porphyrin derivatives increases their light absorption and singlet oxygen generation that create a synergistic effect that increases phototoxicity against cancer cells. Porphyrin encapsulation with gold or silver nanoparticles improves their solubility, stability, and targeted tumor delivery. This paper provides comprehensive review on the design, functionalization, and uses of plasmonic silver and gold nanoparticles in biomedicine and how they can be conjugated with porphyrins for synergistic therapeutic effects. Furthermore, it investigates this dual-modal therapy's potential advantages and disadvantages and offers perspectives for future prospects. The possibility of developing gold, silver, and porphyrin nanotechnology-enabled biomedicine for combination therapy is also examined.
Collapse
Affiliation(s)
| | | | - Peter A. Ajibade
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa; (N.H.); (S.P.S.)
| |
Collapse
|
10
|
Kim J, Choi S, Kim C, Kim J, Park B. Review on Photoacoustic Monitoring after Drug Delivery: From Label-Free Biomarkers to Pharmacokinetics Agents. Pharmaceutics 2024; 16:1240. [PMID: 39458572 PMCID: PMC11510789 DOI: 10.3390/pharmaceutics16101240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
Photoacoustic imaging (PAI) is an emerging noninvasive and label-free method for capturing the vasculature, hemodynamics, and physiological responses following drug delivery. PAI combines the advantages of optical and acoustic imaging to provide high-resolution images with multiparametric information. In recent decades, PAI's abilities have been used to determine reactivity after the administration of various drugs. This study investigates photoacoustic imaging as a label-free method of monitoring drug delivery responses by observing changes in the vascular system and oxygen saturation levels across various biological tissues. In addition, we discuss photoacoustic studies that monitor the biodistribution and pharmacokinetics of exogenous contrast agents, offering contrast-enhanced imaging of diseased regions. Finally, we demonstrate the crucial role of photoacoustic imaging in understanding drug delivery mechanisms and treatment processes.
Collapse
Affiliation(s)
- Jiwoong Kim
- Departments of Electrical Engineering, Convergence IT Engineering, Medical Science and Engineering, Mechanical Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Cheongam-ro 77, Nam-gu, Pohang 37673, Republic of Korea; (J.K.); (S.C.); (C.K.)
| | - Seongwook Choi
- Departments of Electrical Engineering, Convergence IT Engineering, Medical Science and Engineering, Mechanical Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Cheongam-ro 77, Nam-gu, Pohang 37673, Republic of Korea; (J.K.); (S.C.); (C.K.)
| | - Chulhong Kim
- Departments of Electrical Engineering, Convergence IT Engineering, Medical Science and Engineering, Mechanical Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Cheongam-ro 77, Nam-gu, Pohang 37673, Republic of Korea; (J.K.); (S.C.); (C.K.)
| | - Jeesu Kim
- Departments of Cogno-Mechatronics Engineering and Optics & Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Byullee Park
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
11
|
Park S, Nguyen VP, Wang X, Paulus YM. Gold Nanoparticles for Retinal Molecular Optical Imaging. Int J Mol Sci 2024; 25:9315. [PMID: 39273264 PMCID: PMC11395175 DOI: 10.3390/ijms25179315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/03/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024] Open
Abstract
The incorporation of gold nanoparticles (GNPs) into retinal imaging signifies a notable advancement in ophthalmology, offering improved accuracy in diagnosis and patient outcomes. This review explores the synthesis and unique properties of GNPs, highlighting their adjustable surface plasmon resonance, biocompatibility, and excellent optical absorption and scattering abilities. These features make GNPs advantageous contrast agents, enhancing the precision and quality of various imaging modalities, including photoacoustic imaging, optical coherence tomography, and fluorescence imaging. This paper analyzes the unique properties and corresponding mechanisms based on the morphological features of GNPs, highlighting the potential of GNPs in retinal disease diagnosis and management. Given the limitations currently encountered in clinical applications of GNPs, the approaches and strategies to overcome these limitations are also discussed. These findings suggest that the properties and efficacy of GNPs have innovative applications in retinal disease imaging.
Collapse
Affiliation(s)
- Sumin Park
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA;
| | - Van Phuc Nguyen
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA;
- Department of Ophthalmology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA;
| | - Yannis M. Paulus
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA;
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA;
- Department of Ophthalmology, Johns Hopkins University, Baltimore, MD 21287, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
12
|
Verdin A, Malherbe C, Eppe G. Designing SERS nanotags for profiling overexpressed surface markers on single cancer cells: A review. Talanta 2024; 276:126225. [PMID: 38749157 DOI: 10.1016/j.talanta.2024.126225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 06/14/2024]
Abstract
This review focuses on the chemical design and the use of Surface-Enhanced Raman Scattering (SERS)-active nanotags for measuring surface markers that can be overexpressed at the surface of single cancer cells. Indeed, providing analytical tools with true single-cell measurements capabilities is capital, especially since cancer research is increasingly leaning toward single-cell analysis, either to guide treatment decisions or to understand complex tumor behaviour including the single-cell heterogeneity and the appearance of treatment resistance. Over the past two decades, SERS nanotags have triggered significant interest in the scientific community owing their advantages over fluorescent tags, mainly because SERS nanotags resist photobleaching and exhibit sharper signal bands, which reduces possible spectral overlap and enables the discrimination between the SERS signals and the autofluorescence background from the sample itself. The extensive efforts invested in harnessing SERS nanotags for biomedical purposes, particularly in cancer research, highlight their potential as the next generation of optical labels for single-cell studies. The review unfolds in two main parts. The first part focuses on the structure of SERS nanotags, detailing their chemical composition and the role of each building block of the tags. The second part explores applications in measuring overexpressed surface markers on single-cells. The latter encompasses studies using single nanotags, multiplexed measurements, quantitative information extraction, monitoring treatment responses, and integrating phenotype measurements with SERS nanotags on single cells isolated from complex biological matrices. This comprehensive review anticipates SERS nanotags to persist as a pivotal technology in advancing single-cell analytical methods, particularly in the context of cancer research and personalized medicine.
Collapse
Affiliation(s)
- Alexandre Verdin
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Belgium.
| | - Cedric Malherbe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Belgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Belgium
| |
Collapse
|
13
|
Qureshi S, Anjum S, Hussain M, Sheikh A, Gupta G, Almoyad MAA, Wahab S, Kesharwani P. A recent insight of applications of gold nanoparticles in glioblastoma multiforme therapy. Int J Pharm 2024; 660:124301. [PMID: 38851411 DOI: 10.1016/j.ijpharm.2024.124301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/22/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
The application of gold nanoparticles (AuNPs) in cancer therapy, particularly targeted therapy of glioblastoma multiforme (GBM), is an up-and-coming field of research that has gained much interest in recent years. GBM is a life-threatening malignant tumour of the brain that currently has a 95 % death rate with an average of 15 months of survival. AuNPs have proven to have wide clinical implications and compelling therapeutic potential in many researches, specifically in GBM treatment. It was found that the reason why AuNPs were highly desired for GBM treatment was due to their unique properties that diversified the applications of AuNPs further to include imaging, diagnosis, and photothermal therapy. These properties include easy synthesis, biocompatibility, and surface functionalization. Various studies also underscored the ability of AuNPs to cross the blood-brain-barrier and selectively target tumour cells while displaying no major safety concerns which resulted in better therapy results. We attempt to bring together some of these studies in this review and provide a comprehensive overview of safety evaluations and current and potential applications of AuNPs in GBM therapy that may result in AuNP-mediated therapy to be the new gold standard for GBM treatment.
Collapse
Affiliation(s)
- Saima Qureshi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Samiah Anjum
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Muzammil Hussain
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Garima Gupta
- Graphic Era Hill University, Dehradun 248002, India; School of Allied Medical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Mohammad Ali Abdullah Almoyad
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India. https://scholar.google.com/citations?user=DJkvOAQAAAAJ&hl=en
| |
Collapse
|
14
|
Boselli L, Castagnola V, Armirotti A, Benfenati F, Pompa PP. Biomolecular Corona of Gold Nanoparticles: The Urgent Need for Strong Roots to Grow Strong Branches. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306474. [PMID: 38085683 DOI: 10.1002/smll.202306474] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/20/2023] [Indexed: 04/13/2024]
Abstract
Gold nanoparticles (GNPs) are largely employed in diagnostics/biosensors and are among the most investigated nanomaterials in biology/medicine. However, few GNP-based nanoformulations have received FDA approval to date, and promising in vitro studies have failed to translate to in vivo efficacy. One key factor is that biological fluids contain high concentrations of proteins, lipids, sugars, and metabolites, which can adsorb/interact with the GNP's surface, forming a layer called biomolecular corona (BMC). The BMC can mask prepared functionalities and target moieties, creating new surface chemistry and determining GNPs' biological fate. Here, the current knowledge is summarized on GNP-BMCs, analyzing the factors driving these interactions and the biological consequences. A partial fingerprint of GNP-BMC analyzing common patterns of composition in the literature is extrapolated. However, a red flag is also risen concerning the current lack of data availability and regulated form of knowledge on BMC. Nanomedicine is still in its infancy, and relying on recently developed analytical and informatic tools offers an unprecedented opportunity to make a leap forward. However, a restart through robust shared protocols and data sharing is necessary to obtain "stronger roots". This will create a path to exploiting BMC for human benefit, promoting the clinical translation of biomedical nanotools.
Collapse
Affiliation(s)
- Luca Boselli
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, Genova, 16163, Italy
| | - Valentina Castagnola
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova, 16132, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, Genova, 16132, Italy
| | - Andrea Armirotti
- Analytical Chemistry Lab, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova, 16132, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, Genova, 16132, Italy
| | - Pier Paolo Pompa
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, Genova, 16163, Italy
| |
Collapse
|
15
|
Shen M, Cao Q, Zhang M, Jing H, Zhao Z. Research progress of inorganic metal nanomaterials in biological imaging and photothermal therapy. SCIENTIA SINICA CHIMICA 2024; 54:160-181. [DOI: 10.1360/ssc-2023-0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
16
|
Tehrani Nejad S, Rahimi R, Najafi M, Rostamnia S. Sustainable Gold Nanoparticle (Au-NP) Growth within Interspaces of Porphyrinic Zirconium-Based Metal-Organic Frameworks: Green Synthesis of PCN-224/Au-NPs and Its Anticancer Effect on Colorectal Cancer Cells Assay. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3162-3170. [PMID: 38194287 DOI: 10.1021/acsami.3c15398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
In this work, a simple green synthesis method of the novel metal-organic framework (MOF) nanocomposite PCN-224/Au-NPs (Au-NPs = gold nanoparticles) is described. In this regard, initially, PCN-224 was synthesized. Afterward, in a single-step, one-pot procedure, under visible-light irradiation, Au-NPs were fabricated on PCN-224. The cytotoxicity effect of the synthesized PCN-224/Au-NPs nanocomposite was investigated in human colon cancer cells. Determination of the apoptosis induction was done by the Annexin- V/propidium iodide flow cytometry method. Besides, to ascertain the biocompatibility of the synthesized sample, the cytotoxicity of PCN-224/Au-NPs was evaluated on the human embryonic kidney (HEK)-293 cell line. The substantial anticancer activity with the biocompatibility of the structure, the green facile synthesis, and the MOF surface of the synthesized nanocomposite make it special for utilization in therapeutic applications.
Collapse
Affiliation(s)
- Sajedeh Tehrani Nejad
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Rahmatollah Rahimi
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Mina Najafi
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Sadegh Rostamnia
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
17
|
Lin X, Li LJ, Guo HYX, Li R, Feng J. Preparation of 3D nano silver trees/sea urchin-like gold and SERS detection of uric acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123464. [PMID: 37837927 DOI: 10.1016/j.saa.2023.123464] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/16/2023] [Accepted: 09/25/2023] [Indexed: 10/16/2023]
Abstract
In this paper, 3D nano-silver trees/sea urchin-like gold Surface Enhanced Raman Spectroscopy (SERS) substrates were prepared by chemical reduction method, characterized by SEM, EDS, UV-Vis and XRD et.al, and the preparation process was optimized using Rhodamine B (RB) as the Raman signal molecule. The SERS characteristics of Uric Acid on this substrate were investigated and the results showed that the SERS substrate had a Raman enhancement factor of 1.9 × 107 for RB, and also had a significant Raman enhancement effect on Uric Acid. The SERS intensity (ISERS) at 1400 cm-1 showed a good linear relationship with the logarithm value of uric acid concentration (log C) between the range of 5 × 10-4 M to 1 × 10-7 M. The linear fitting equation was ISERS = 890 (log C) + 8066 (R2 = 0.983), and the LOD = 2.8 × 10-8 M. The spiked test was performed in human serum with recoveries ranging from 82.86% to 125.13% and RSD (n = 3) < 3.5%.
Collapse
Affiliation(s)
- Xin Lin
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 505006, Guangxi, PR China
| | - Li-Jun Li
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 505006, Guangxi, PR China.
| | - He-Yuan-Xi Guo
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 505006, Guangxi, PR China
| | - Rui Li
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 505006, Guangxi, PR China
| | - Jun Feng
- School of Medicine, Guangxi University of Science and Technology, Liuzhou 545005, Guangxi, PR China.
| |
Collapse
|
18
|
Kumar PPP, Lim DK. Photothermal Effect of Gold Nanoparticles as a Nanomedicine for Diagnosis and Therapeutics. Pharmaceutics 2023; 15:2349. [PMID: 37765317 PMCID: PMC10534847 DOI: 10.3390/pharmaceutics15092349] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Gold nanoparticles (AuNPs) have received great attention for various medical applications due to their unique physicochemical properties. AuNPs with tunable optical properties in the visible and near-infrared regions have been utilized in a variety of applications such as in vitro diagnostics, in vivo imaging, and therapeutics. Among the applications, this review will pay more attention to recent developments in diagnostic and therapeutic applications based on the photothermal (PT) effect of AuNPs. In particular, the PT effect of AuNPs has played an important role in medical applications utilizing light, such as photoacoustic imaging, photon polymerase chain reaction (PCR), and hyperthermia therapy. First, we discuss the fundamentals of the optical properties in detail to understand the background of the PT effect of AuNPs. For diagnostic applications, the ability of AuNPs to efficiently convert absorbed light energy into heat to generate enhanced acoustic waves can lead to significant enhancements in photoacoustic signal intensity. Integration of the PT effect of AuNPs with PCR may open new opportunities for technological innovation called photonic PCR, where light is used to enable fast and accurate temperature cycling for DNA amplification. Additionally, beyond the existing thermotherapy of AuNPs, the PT effect of AuNPs can be further applied to cancer immunotherapy. Controlled PT damage to cancer cells triggers an immune response, which is useful for obtaining better outcomes in combination with immune checkpoint inhibitors or vaccines. Therefore, this review examines applications to nanomedicine based on the PT effect among the unique optical properties of AuNPs, understands the basic principles, the advantages and disadvantages of each technology, and understands the importance of a multidisciplinary approach. Based on this, it is expected that it will help understand the current status and development direction of new nanoparticle-based disease diagnosis methods and treatment methods, and we hope that it will inspire the development of new innovative technologies.
Collapse
Affiliation(s)
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea;
- Department of Integrative Energy Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Brain Science Institute, Korea Institute of Science and Technology (KIST), 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| |
Collapse
|
19
|
Sowmiya P, Dhas TS, Inbakandan D, Anandakumar N, Nalini S, Suganya KSU, Remya RR, Karthick V, Kumar CMV. Optically active organic and inorganic nanomaterials for biological imaging applications: A review. Micron 2023; 172:103486. [PMID: 37262930 DOI: 10.1016/j.micron.2023.103486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/30/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023]
Abstract
Recent advancements in the field of nanotechnology have enabled targeted delivery of drug agents in vivo with minimal side effects. The use of nanoparticles for bio-imaging has revolutionized the field of nanomedicine by enabling non-invasive targeting and selective delivery of active drug moieties in vivo. Various inorganic nanomaterials like mesoporous silica nanoparticles, gold nanoparticles, magnetite nanoparticles graphene-based nanomaterials etc., have been created for multimodal therapies with varied multi-imaging modalities. These nanomaterials enable us to overcome the disadvantages of conventional imaging contrast agents (organic dyes) such as lack of stability in vitro and in vivo, high reactivity, low-quantum yield and poor photo stability. Inorganic nanomaterials can be easily fabricated, functionalised and modified as per requirements. Recently, advancements in synthesis techniques, such as the ability to generate molecules and construct supramolecular structures for specific functionalities, have boosted the usage of engineered nanomaterials. Their intrinsic physicochemical properties are unique and they possess excellent biocompatibility. Inorganic nanomaterial research has developed as the most actively booming research fields in biotechnology and biomedicine. Inorganic nanomaterials like gold nanoparticles, magnetic nanoparticles, mesoporous silica nanoparticles, graphene-based nanomaterials and quantum dots have shown excellent use in bioimaging, targeted drug delivery and cancer therapies. Biocompatibility of nanomaterials is an important aspect for the evolution of nanomaterials in the bench to bedside transition. The conduction of thorough and meticulous study for safety and efficacy in well-designed clinical trials is absolutely necessary to determine the functional and structural relationship between the engineered nanomaterial and its toxicity. In this article an attempt is made to throw some light on the current scenario and developments made in the field of nanomaterials in bioimaging.
Collapse
Affiliation(s)
- P Sowmiya
- Centre for Ocean Research (DST- FIST Sponsored Centre), MoES-Earth Science and Technology Cell, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - T Stalin Dhas
- Centre for Ocean Research (DST- FIST Sponsored Centre), MoES-Earth Science and Technology Cell, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India.
| | - D Inbakandan
- Centre for Ocean Research (DST- FIST Sponsored Centre), MoES-Earth Science and Technology Cell, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - N Anandakumar
- Department of Education, The Gandhigram Rural Institute, Dindigul 624302, Tamil Nadu, India
| | - S Nalini
- Department of Microbiology, Shree Rahavendra Arts and Science College, Keezhamoongiladi, Chidambaram 608102, Tamil Nadu, India
| | - K S Uma Suganya
- Department of Biotechnology and Biochemical Engineering, Sree Chitra Thirunal College of Engineering, Pappanamcode, Thiruvananthapuram 695018, Kerala, India
| | - R R Remya
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai 600073, Tamil Nadu, India
| | - V Karthick
- Centre for Ocean Research (DST- FIST Sponsored Centre), MoES-Earth Science and Technology Cell, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - C M Vineeth Kumar
- Centre for Ocean Research (DST- FIST Sponsored Centre), MoES-Earth Science and Technology Cell, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| |
Collapse
|
20
|
Ge-Zhang S, Cai T, Song M. Life in biophotovoltaics systems. FRONTIERS IN PLANT SCIENCE 2023; 14:1151131. [PMID: 37615025 PMCID: PMC10444202 DOI: 10.3389/fpls.2023.1151131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/03/2023] [Indexed: 08/25/2023]
Abstract
As the most suitable potential clean energy power generation technology, biophotovoltaics (BPV) not only inherits the advantages of traditional photovoltaics, such as safety, reliability and no noise, but also solves the disadvantages of high pollution and high energy consumption in the manufacturing process, providing new functions of self-repair and natural degradation. The basic idea of BPV is to collect light energy and generate electric energy by using photosynthetic autotrophs or their parts, and the core is how these biological materials can quickly and low-loss transfer electrons to the anode through mediators after absorbing light energy and generating electrons. In this mini-review, we summarized the biological materials widely used in BPV at present, mainly cyanobacteria, green algae, biological combinations (using multiple microorganisms in the same BPV system) and isolated products (purified thylakoids, chloroplasts, photosystem I, photosystem II), introduced how researchers overcome the shortcomings of low photocurrent output of BPV, pointed out the limitations that affected the development of BPV' biological materials, and put forward reasonable assumptions accordingly.
Collapse
Affiliation(s)
| | - Taoyang Cai
- Aulin College, Northeast Forestry University, Harbin, China
| | - Mingbo Song
- College of Forestry, Northeast Forestry University, Harbin, China
| |
Collapse
|
21
|
Theodorou IG, Mpekris F, Papagiorgis P, Panagi M, Kalli M, Potamiti L, Kyriacou K, Itskos G, Stylianopoulos T. Gold Nanobipyramids for Near-Infrared Fluorescence-Enhanced Imaging and Treatment of Triple-Negative Breast Cancer. Cancers (Basel) 2023; 15:3693. [PMID: 37509354 PMCID: PMC10378199 DOI: 10.3390/cancers15143693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
There is an imminent need for novel strategies for the diagnosis and treatment of aggressive triple-negative breast cancer (TNBC). Cell-targeted multifunctional nanomaterials hold great potential, as they can combine precise early-stage diagnosis with local therapeutic delivery to specific cell types. In this study, we used mesoporous silica (MS)-coated gold nanobipyramids (MS-AuNBPs) for fluorescence imaging in the near-infrared (NIR) biological window, along with targeted TNBC treatment. Our MS-AuNBPs, acting partly as light amplification components, allow considerable metal-enhanced fluorescence for a NIR dye conjugated to their surfaces compared to the free dye. Fluorescence analysis confirms a significant increase in the dye's modified quantum yield, indicating that MS-AuNBPs can considerably increase the brightness of low-quantum-yield NIR dyes. Meanwhile, we tested the chemotherapeutic efficacy of MS-AuNBPs in TNBC following the loading of doxorubicin within the MS pores and functionalization to target folate receptor alpha (FRα)-positive cells. We show that functionalized particles target FRα-positive cells with significant specificity and have a higher potency than free doxorubicin. Finally, we demonstrate that FRα-targeted particles induce stronger antitumor effects and prolong overall survival compared to the clinically applied non-targeted nanotherapy, Doxil. Together with their excellent biocompatibility measured in vitro, this study shows that MS-AuNBPs are promising tools to detect and treat TNBCs.
Collapse
Affiliation(s)
- Ioannis G Theodorou
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 1678, Cyprus
| | - Fotios Mpekris
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 1678, Cyprus
| | - Paris Papagiorgis
- Experimental Condensed Matter Physics Laboratory, Department of Physics, University of Cyprus, Nicosia 1678, Cyprus
| | - Myrofora Panagi
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 1678, Cyprus
| | - Maria Kalli
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 1678, Cyprus
| | - Louiza Potamiti
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| | - Kyriacos Kyriacou
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| | - Grigorios Itskos
- Experimental Condensed Matter Physics Laboratory, Department of Physics, University of Cyprus, Nicosia 1678, Cyprus
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 1678, Cyprus
| |
Collapse
|
22
|
Zarharan H, Bagherian M, Shah Rokhi A, Ramezani Bajgiran R, Yousefi E, Heravian P, Niazi Khazrabig M, Es-haghi A, Taghavizadeh Yazdi ME. The anti-angiogenesis and antioxidant activity of chitosan-mediated synthesized selenium-gold nanostructure. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
|
23
|
Lee S, Kim S, Kim D, You J, Kim JS, Kim H, Park J, Song J, Choi I. Spatiotemporally controlled drug delivery via photothermally driven conformational change of self-integrated plasmonic hybrid nanogels. J Nanobiotechnology 2023; 21:191. [PMID: 37316900 DOI: 10.1186/s12951-023-01935-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/18/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Spatiotemporal regulation is one of the major considerations for developing a controlled and targeted drug delivery system to treat diseases efficiently. Light-responsive plasmonic nanostructures take advantage due to their tunable optical and photothermal properties by changing size, shape, and spatial arrangement. RESULTS In this study, self-integrated plasmonic hybrid nanogels (PHNs) are developed for spatiotemporally controllable drug delivery through light-driven conformational change and photothermally-boosted endosomal escape. PHNs are easily synthesized through the simultaneous integration of gold nanoparticles (GNPs), thermo-responsive poly (N-isopropyl acrylamide), and linker molecules during polymerization. Wave-optic simulations reveal that the size of the PHNs and the density of the integrated GNPs are crucial factors in modulating photothermal conversion. Several linkers with varying molecular weights are inserted for the optimal PHNs, and the alginate-linked PHN (A-PHN) achieves more than twofold enhanced heat conversion compared with others. Since light-mediated conformational changes occur transiently, drug delivery is achieved in a spatiotemporally controlled manner. Furthermore, light-induced heat generation from cellular internalized A-PHNs enables pinpoint cytosolic delivery through the endosomal rupture. Finally, the deeper penetration for the enhanced delivery efficiency by A-PHNs is validated using multicellular spheroid. CONCLUSION This study offers a strategy for synthesizing light-responsive nanocarriers and an in-depth understanding of light-modulated site-specific drug delivery.
Collapse
Affiliation(s)
- Seungki Lee
- Department of Life Science, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-Gu, Seoul, 02504, Republic of Korea
| | - Subeen Kim
- Department of Mechanical Engineering, Hanbat National University, 125 Dongseodaero, Yuseong-Gu, Daejeon, 34158, Republic of Korea
| | - Doyun Kim
- Department of Life Science, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-Gu, Seoul, 02504, Republic of Korea
| | - Jieun You
- Department of Life Science, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-Gu, Seoul, 02504, Republic of Korea
| | - Ji Soo Kim
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, 1 Gwanakro, Gwanak-Gu, Seoul, 08826, Republic of Korea
| | - Hakchun Kim
- Department of Life Science, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-Gu, Seoul, 02504, Republic of Korea
| | - Jungwon Park
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, 1 Gwanakro, Gwanak-Gu, Seoul, 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Jihwan Song
- Department of Mechanical Engineering, Hanbat National University, 125 Dongseodaero, Yuseong-Gu, Daejeon, 34158, Republic of Korea.
| | - Inhee Choi
- Department of Life Science, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-Gu, Seoul, 02504, Republic of Korea.
- Department of Applied Chemistry, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-Gu, Seoul, 02504, Republic of Korea.
| |
Collapse
|
24
|
Tumor microenvironment-triggered intratumoral in-situ biosynthesis of inorganic nanomaterials for precise tumor diagnostics. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
25
|
Chang Y, Lee S, Kim J, Kim C, Shim HS, Lee SE, Park HJ, Kim J, Lee S, Lee YK, Park S, Yoo J. Gene Therapy Using Efficient Direct Lineage Reprogramming Technology for Neurological Diseases. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101680. [PMID: 37242096 DOI: 10.3390/nano13101680] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
Gene therapy is an innovative approach in the field of regenerative medicine. This therapy entails the transfer of genetic material into a patient's cells to treat diseases. In particular, gene therapy for neurological diseases has recently achieved significant progress, with numerous studies investigating the use of adeno-associated viruses for the targeted delivery of therapeutic genetic fragments. This approach has potential applications for treating incurable diseases, including paralysis and motor impairment caused by spinal cord injury and Parkinson's disease, and it is characterized by dopaminergic neuron degeneration. Recently, several studies have explored the potential of direct lineage reprogramming (DLR) for treating incurable diseases, and highlighted the advantages of DLR over conventional stem cell therapy. However, application of DLR technology in clinical practice is hindered by its low efficiency compared with cell therapy using stem cell differentiation. To overcome this limitation, researchers have explored various strategies such as the efficiency of DLR. In this study, we focused on innovative strategies, including the use of a nanoporous particle-based gene delivery system to improve the reprogramming efficiency of DLR-induced neurons. We believe that discussing these approaches can facilitate the development of more effective gene therapies for neurological disorders.
Collapse
Affiliation(s)
- Yujung Chang
- Laboratory of Regenerative Medicine for Neurodegenerative Disease, Stand Up Therapeutics, Hannamdaero 98, Seoul 04418, Republic of Korea
- Department of Molecular Biology, Nuturn Science, Sinsadong 559-8, Seoul 06037, Republic of Korea
| | - Sungwoo Lee
- Department of Chemistry, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si 16419, Republic of Korea
| | - Jieun Kim
- Department of Bio-Health Technology, College of Biomedical Science, Kangwon National University, 1 Kangwondeahak-gil, Chuncheon 24341, Republic of Korea
| | - Chunggoo Kim
- Laboratory of Regenerative Medicine for Neurodegenerative Disease, Stand Up Therapeutics, Hannamdaero 98, Seoul 04418, Republic of Korea
| | - Hyun Soo Shim
- Laboratory of Regenerative Medicine for Neurodegenerative Disease, Stand Up Therapeutics, Hannamdaero 98, Seoul 04418, Republic of Korea
| | - Seung Eun Lee
- Research Animal Resource Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hyeok Ju Park
- Database Laboratory, Department of Computer Science and Engineering, Dongguk University-Seoul, Pildong-ro 1-gil 30, Jung-gu, Seoul 04620, Republic of Korea
| | - Jeongwon Kim
- Department of Chemistry, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si 16419, Republic of Korea
| | - Soohyun Lee
- Department of Chemistry, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si 16419, Republic of Korea
| | - Yong Kyu Lee
- Database Laboratory, Department of Computer Science and Engineering, Dongguk University-Seoul, Pildong-ro 1-gil 30, Jung-gu, Seoul 04620, Republic of Korea
| | - Sungho Park
- Department of Chemistry, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si 16419, Republic of Korea
| | - Junsang Yoo
- Laboratory of Regenerative Medicine for Neurodegenerative Disease, Stand Up Therapeutics, Hannamdaero 98, Seoul 04418, Republic of Korea
| |
Collapse
|
26
|
Zuhrotun A, Oktaviani DJ, Hasanah AN. Biosynthesis of Gold and Silver Nanoparticles Using Phytochemical Compounds. Molecules 2023; 28:molecules28073240. [PMID: 37050004 PMCID: PMC10096681 DOI: 10.3390/molecules28073240] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Gold and silver nanoparticles are nanoparticles that have been widely used in various fields and have shown good benefits. The method of nanoparticle biosynthesis utilizing plant extracts, also known as green synthesis, has become a promising method considering the advantages it has compared to other synthesis methods. This review aims to give an overview of the phytochemical compounds in plants used in the synthesis of gold and silver nanoparticles, the nanoparticle properties produced using plant extracts based on the concentration and structure of phytochemical compounds, and their applications. Phytochemical compounds play an important role as reducing agents and stabilizers in the stages of the synthesis of nanoparticles. Polyphenol compounds, reducing sugars, and proteins are the main phytochemical compounds that are responsible for the synthesis of gold and silver nanoparticles. The concentration of phytochemical compounds affects the physical properties, stability, and activity of nanoparticles. This is important to know to be able to overcome limitations in controlling the physical properties of the nanoparticles produced. Based on structure, the phytochemical compounds that have ortho-substituted hydroxyl result in a smaller size and well-defined shape, which can lead to greater activity and stability. Furthermore, the optimal condition of the biosynthesis process is required to gain a successful reaction that includes setting the metal ion concentration, temperature, reaction time, and pH.
Collapse
Affiliation(s)
- Ade Zuhrotun
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang KM 21 Jatinangor, Bandung 45363, Indonesia
| | - Dede Jihan Oktaviani
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang KM 21 Jatinangor, Bandung 45363, Indonesia
| | - Aliya Nur Hasanah
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang KM 21 Jatinangor, Bandung 45363, Indonesia
| |
Collapse
|
27
|
Blaškovičová J, Vyskočil V, Augustín M, Purdešová A. Ethanol and NaCl-Induced Gold Nanoparticle Aggregation Toxicity toward DNA Investigated with a DNA/GCE Biosensor. SENSORS (BASEL, SWITZERLAND) 2023; 23:3425. [PMID: 37050486 PMCID: PMC10098750 DOI: 10.3390/s23073425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/13/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Engineered nanomaterials are becoming increasingly common in commercial and consumer products and pose a serious toxicological threat. Exposure of human organisms to nanomaterials can occur by inhalation, oral intake, or dermal transport. Together with the consumption of alcohol in the physiological environment of the body containing NaCl, this has raised concerns about the potentially harmful effects of ingested nanomaterials on human health. Although gold nanoparticles (AuNPs) exhibit great potential for various biomedical applications, there is some inconsistency in the case of the unambiguous genotoxicity of AuNPs due to differences in their shape, size, solubility, and exposure time. A DNA/GCE (DNA/glassy carbon electrode) biosensor was used to study ethanol (EtOH) and NaCl-induced gold nanoparticle aggregation genotoxicity under UV light in this study. The genotoxic effect of dispersed and aggregated negatively charged gold nanoparticles AuNP1 (8 nm) and AuNP2 (30 nm) toward salmon sperm double-stranded dsDNA was monitored by cyclic and square-wave voltammetry (CV, SWV). Electrochemical impedance spectroscopy (EIS) was used for a surface study of the biosensor. The aggregation of AuNPs was monitored by UV-vis spectroscopy. AuNP1 aggregates formed by 30% v/v EtOH and 0.15 mol·L-1 NaCl caused the greatest damage to the biosensor DNA layer.
Collapse
Affiliation(s)
- Jana Blaškovičová
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Vlastimil Vyskočil
- UNESCO Laboratory of Environmental Electrochemistry, Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague, Czech Republic
| | - Michal Augustín
- UNESCO Laboratory of Environmental Electrochemistry, Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague, Czech Republic
| | - Andrea Purdešová
- Department of Chemistry, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Nám. J. Herdu 2, 917 01 Trnava, Slovakia
| |
Collapse
|
28
|
Lee J, Kim K, Kwon IC, Lee KY. Intracellular Glucose-Depriving Polymer Micelles for Antiglycolytic Cancer Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207342. [PMID: 36524460 DOI: 10.1002/adma.202207342] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/07/2022] [Indexed: 06/17/2023]
Abstract
A new anticancer strategy to exploit abnormal metabolism of cancer cells rather than to merely control the drug release or rearrange the tumor microenvironment is reported. An antiglycolytic amphiphilic polymer, designed considering the unique metabolism of cancer cells (Warburg effect) and aimed at the regulation of glucose metabolism, is synthesized through chemical conjugation between glycol chitosan (GC) and phenylboronic acid (PBA). GC-PBA derivatives form stable micellar structures under physiological conditions and respond to changes in glucose concentration. Once the micelles accumulate at the tumor site, intracellular glucose capture occurs, and the resultant energy deprivation through the inhibition of aerobic glycolysis remarkably suppresses tumor growth without significant side effects in vivo. This strategy highlights the need to develop safe and effective cancer treatment without the use of conventional anticancer drugs.
Collapse
Affiliation(s)
- Jangwook Lee
- Department of Bioengineering and Institute of Nano Science and Technology, Hanyang University, Seoul, 04763, Republic of Korea
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Kwangmeyung Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Ick Chan Kwon
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Kuen Yong Lee
- Department of Bioengineering and Institute of Nano Science and Technology, Hanyang University, Seoul, 04763, Republic of Korea
| |
Collapse
|
29
|
Han S, Ninjbadgar T, Kang M, Kim C, Kim J. Recent Advances in Photoacoustic Agents for Theranostic Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:695. [PMID: 36839061 PMCID: PMC9964871 DOI: 10.3390/nano13040695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Photoacoustic agents are widely used in various theranostic applications. By evaluating the biodistribution obtained from photoacoustic images, the effectiveness of theranostic agents in terms of their delivery efficiency and treatment responses can be analyzed. Through this study, we evaluate and summarize the recent advances in photoacoustic-guided phototherapy, particularly in photothermal and photodynamic therapy. This overview can guide the future directions for theranostic development. Because of the recent applications of photoacoustic imaging in clinical trials, theranostic agents with photoacoustic monitoring have the potential to be translated into the clinical world.
Collapse
Affiliation(s)
- Seongyi Han
- Departments of Cogno-Mechatronics Engineering and Optics & Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Tsedendamba Ninjbadgar
- Departments of Cogno-Mechatronics Engineering and Optics & Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Mijeong Kang
- Departments of Cogno-Mechatronics Engineering and Optics & Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Chulhong Kim
- Departments of Convergence IT Engineering, Mechanical Engineering, and Electrical Engineering, School of Interdisciplinary Bioscience and Bioengineering, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jeesu Kim
- Departments of Cogno-Mechatronics Engineering and Optics & Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
30
|
Gold nanoparticles-based photothermal therapy for breast cancer. Photodiagnosis Photodyn Ther 2023; 42:103312. [PMID: 36731732 DOI: 10.1016/j.pdpdt.2023.103312] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/01/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023]
Abstract
AuNPs-mediated photothermal therapy (PTT) is gaining popularity in both laboratory research and medical applications. It has proven clear advantages in breast cancer therapy over conventional thermal ablation because of its easily-tuned features of irradiation light with inside hyperthermia ability. Notwithstanding this significant progress, the therapeutic potential of AuNPs-mediated PTT in cancer treatments is still impeded by several challenges, including inherent non-specificity, low photothermal conversion effectiveness, and the limitation of excitation light tissue penetration. Given the rapid progress of AuNPs-mediated PTT, we present a comprehensive overview of significant breakthroughs in the recent advancements of AuNPs for PTT, focusing on breast cancer cells. With the improvement of chemical synthesis technology, AuNPs of various sizes and shapes with desired properties can be synthesized, allowing breast cancer targeting and treatment. In this study, we summarized the different sizes and features of four major types of AuNPs in this review: Au nanospheres, Au nanocages, Au nanoshells, and Au nanorods, and explored their benefits and drawbacks in PTT. We also discussed the diagnostic, bioconjugation, targeting, and cellular uptake of AuNPs, which could improve the performance of AuNP-based PTT. Besides that, potential challenges and future developments of AuNP-mediated PTT for clinical applications are discussed. AuNP-mediated PTT is expected to become a highly promising avenue in cancer treatment in the near future.
Collapse
|
31
|
Zhang C, Zhao J, Wang W, Geng H, Wang Y, Gao B. Current advances in the application of nanomedicine in bladder cancer. Biomed Pharmacother 2023; 157:114062. [PMID: 36469969 DOI: 10.1016/j.biopha.2022.114062] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/03/2022] Open
Abstract
Bladder cancer is the most common malignant tumor of the urinary system, however there are several shortcomings in current diagnostic and therapeutic measures. In terms of diagnosis, the diagnostic tools currently available are not sufficiently sensitive and specific, and imaging is poor, leading to misdiagnosis and missed diagnoses, which can delay treatment. In terms of treatment, current treatment options include surgery, chemotherapy, immunotherapy, gene therapy, and other emerging treatments, as well as combination therapies. However, the main reasons for poor efficacy and side effects during treatment are the lack of specificity and targeting, improper dose control of drugs and photosensitizers, damage to normal cells while attacking cancer cells, and difficulty in delivering siRNA to cancer cells. Nanomedicine is an emerging approach. Among the many nanotechnologies applied in the medical field, nanocarrier-assisted drug delivery systems have attracted extensive research interest due to their great translational value. Well-designed nanoparticles can deliver agents or drugs to specific cell types within target organs through active targeting or passive targeting (enhanced permeability and retention), which allows for imaging, diagnosis, as well as treatment of cancer. This paper reviews advances in the application of various nanocarriers and their advantages and drawbacks, with a focus on their use in the diagnosis and treatment of bladder cancer.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Jiang Zhao
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Weihao Wang
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun 130021, China
| | - Huanhuan Geng
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yinzhe Wang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Baoshan Gao
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
32
|
Rehman M, Ihsan A, Iftikhar M, Anwar M, Khalid Q. Gold nanoshells for imaging and photothermal ablation of cancer. Nanomedicine (Lond) 2023. [DOI: 10.1016/b978-0-12-818627-5.00005-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
33
|
Oliveira BB, Ferreira D, Fernandes AR, Baptista PV. Engineering gold nanoparticles for molecular diagnostics and biosensing. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1836. [PMID: 35932114 DOI: 10.1002/wnan.1836] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/22/2022] [Accepted: 07/13/2022] [Indexed: 01/31/2023]
Abstract
Advances in nanotechnology and medical science have spurred the development of engineered nanomaterials and nanoparticles with particular focus on their applications in biomedicine. In particular, gold nanoparticles (AuNPs) have been the focus of great interest, due to their exquisite intrinsic properties, such as ease of synthesis and surface functionalization, tunable size and shape, lack of acute toxicity and favorable optical, electronic, and physicochemical features, which possess great value for application in biodetection and diagnostics purposes, including molecular sensing, photoimaging, and application under the form of portable and simple biosensors (e.g., lateral flow immunoassays that have been extensively exploited during the current COVID-19 pandemic). We shall discuss the main properties of AuNPs, their synthesis and conjugation to biorecognition moieties, and the current trends in sensing and detection in biomedicine and diagnostics. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > In Vitro Nanoparticle-Based Sensing Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Beatriz B Oliveira
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal.,i4HB, Associate Laboratory-Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Daniela Ferreira
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal.,i4HB, Associate Laboratory-Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Alexandra R Fernandes
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal.,i4HB, Associate Laboratory-Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Pedro Viana Baptista
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal.,i4HB, Associate Laboratory-Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
34
|
Negm A, Howlader MMR, Belyakov I, Bakr M, Ali S, Irannejad M, Yavuz M. Materials Perspectives of Integrated Plasmonic Biosensors. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7289. [PMID: 36295354 PMCID: PMC9611134 DOI: 10.3390/ma15207289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/02/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
With the growing need for portable, compact, low-cost, and efficient biosensors, plasmonic materials hold the promise to meet this need owing to their label-free sensitivity and deep light-matter interaction that can go beyond the diffraction limit of light. In this review, we shed light on the main physical aspects of plasmonic interactions, highlight mainstream and future plasmonic materials including their merits and shortcomings, describe the backbone substrates for building plasmonic biosensors, and conclude with a brief discussion of the factors affecting plasmonic biosensing mechanisms. To do so, we first observe that 2D materials such as graphene and transition metal dichalcogenides play a major role in enhancing the sensitivity of nanoparticle-based plasmonic biosensors. Then, we identify that titanium nitride is a promising candidate for integrated applications with performance comparable to that of gold. Our study highlights the emerging role of polymer substrates in the design of future wearable and point-of-care devices. Finally, we summarize some technical and economic challenges that should be addressed for the mass adoption of plasmonic biosensors. We believe this review will be a guide in advancing the implementation of plasmonics-based integrated biosensors.
Collapse
Affiliation(s)
- Ayman Negm
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada
- Department of Electronics and Communications Engineering, Cairo University, Giza 12613, Egypt
| | - Matiar M. R. Howlader
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Ilya Belyakov
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Mohamed Bakr
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Shirook Ali
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada
- School of Mechanical and Electrical Engineering Technology, Sheridan College, Brampton, ON L6Y 5H9, Canada
| | | | - Mustafa Yavuz
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
35
|
Miola M, Multari C, Vernè E. Iron Oxide-Au Magneto-Plasmonic Heterostructures: Advances in Their Eco-Friendly Synthesis. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7036. [PMID: 36234377 PMCID: PMC9573543 DOI: 10.3390/ma15197036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
In recent years, nanotechnologies have attracted considerable interest, especially in the biomedical field. Among the most investigated particles, magnetic based on iron oxides and Au nanoparticles gained huge interest for their magnetic and plasmonic properties, respectively. These nanoparticles are usually produced starting from processes and reagents that can be the cause of potential human health and environmental concerns. For this reason, there is a need to develop simple, green, low-cost, and non-toxic synthesis methods and reagents. This review aims at providing an overview of the most recently developed processes to produce iron oxide magnetic nanoparticles, Au nanoparticles, and their magneto-plasmonic heterostructures using eco-friendly approaches, focusing the attention on the microorganisms and plant-assisted syntheses and showing the first results of the development of magneto-plasmonic heterostructures.
Collapse
|
36
|
A Gold Nanoparticle Bioconjugate Delivery System for Active Targeted Photodynamic Therapy of Cancer and Cancer Stem Cells. Cancers (Basel) 2022; 14:cancers14194558. [PMID: 36230480 PMCID: PMC9559518 DOI: 10.3390/cancers14194558] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/11/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer stem cells (CSCs), also called tumor-initiating cells, are a subpopulation of cancer cells believed to be the leading cause of cancer initiation, growth, metastasis, and recurrence. Presently there are no effective treatments targeted at eliminating CSCs. Hence, an urgent need to develop measures to target CSCs to eliminate potential recurrence and metastasis associated with CSCs. Cancer stem cells have inherent and unique features that differ from other cancer cells, which they leverage to resist conventional therapies. Targeting such features with photodynamic therapy (PDT) could be a promising treatment for drug-resistant cancer stem cells. Photodynamic therapy is a light-mediated non-invasive treatment modality. However, PDT alone is unable to eliminate cancer stem cells effectively, hence the need for a targeted approach. Gold nanoparticle bioconjugates with PDT could be a potential approach for targeted photodynamic therapy of cancer and CSCs. This approach has the potential for enhanced drug delivery, selective and specific attachment to target tumor cells/CSCs, as well as the ability to efficiently generate ROS. This review examines the impact of a smart gold nanoparticle bioconjugate coupled with a photosensitizer (PS) in promoting targeted PDT of cancer and CSC.
Collapse
|
37
|
Siddique S, Chow JCL. Recent Advances in Functionalized Nanoparticles in Cancer Theranostics. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2826. [PMID: 36014691 PMCID: PMC9416120 DOI: 10.3390/nano12162826] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 05/21/2023]
Abstract
Cancer theranostics is the combination of diagnosis and therapeutic approaches for cancer, which is essential in personalized cancer treatment. The aims of the theranostics application of nanoparticles in cancer detection and therapy are to reduce delays in treatment and hence improve patient care. Recently, it has been found that the functionalization of nanoparticles can improve the efficiency, performance, specificity and sensitivity of the structure, and increase stability in the body and acidic environment. Moreover, functionalized nanoparticles have been found to possess a remarkable theranostic ability and have revolutionized cancer treatment. Each cancer treatment modality, such as MRI-guided gene therapy, MRI-guided thermal therapy, magnetic hyperthermia treatment, MRI-guided chemotherapy, immunotherapy, photothermal and photodynamic therapy, has its strengths and weaknesses, and combining modalities allows for a better platform for improved cancer control. This is why cancer theranostics have been investigated thoroughly in recent years and enabled by functionalized nanoparticles. In this topical review, we look at the recent advances in cancer theranostics using functionalized nanoparticles. Through understanding and updating the development of nanoparticle-based cancer theranostics, we find out the future challenges and perspectives in this novel type of cancer treatment.
Collapse
Affiliation(s)
- Sarkar Siddique
- Department of Physics, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
| | - James C L Chow
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1X6, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
38
|
Bloise N, Strada S, Dacarro G, Visai L. Gold Nanoparticles Contact with Cancer Cell: A Brief Update. Int J Mol Sci 2022; 23:7683. [PMID: 35887030 PMCID: PMC9325171 DOI: 10.3390/ijms23147683] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/02/2022] [Accepted: 07/09/2022] [Indexed: 12/10/2022] Open
Abstract
The fine-tuning of the physicochemical properties of gold nanoparticles has facilitated the rapid development of multifunctional gold-based nanomaterials with diagnostic, therapeutic, and therapeutic applications. Work on gold nanoparticles is increasingly focusing on their cancer application. This review provides a summary of the main biological effects exerted by gold nanoparticles on cancer cells and highlights some critical factors involved in the interaction process (protein corona, tumor microenvironment, surface functionalization). The review also contains a brief discussion of the application of gold nanoparticles in target discovery.
Collapse
Affiliation(s)
- Nora Bloise
- Department of Molecular Medicine, Centre for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, 27100 Pavia, Italy; (S.S.); (L.V.)
- Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, 27100 Pavia, Italy
| | - Silvia Strada
- Department of Molecular Medicine, Centre for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, 27100 Pavia, Italy; (S.S.); (L.V.)
| | - Giacomo Dacarro
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy;
| | - Livia Visai
- Department of Molecular Medicine, Centre for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, 27100 Pavia, Italy; (S.S.); (L.V.)
- Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, 27100 Pavia, Italy
| |
Collapse
|
39
|
El-Deeb NM, Khattab SM, Abu-Youssef MA, Badr AMA. Green synthesis of novel stable biogenic gold nanoparticles for breast cancer therapeutics via the induction of extrinsic and intrinsic pathways. Sci Rep 2022; 12:11518. [PMID: 35798780 PMCID: PMC9262950 DOI: 10.1038/s41598-022-15648-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
Biosynthesis of gold nanoparticles (AuNPs) using algal polysaccharides is a simple, low-cost, and an eco-friendly approach. In the current study, different concentrations of Arthospira platensis exopolysaccharides (EPS) were used to synthetize AuNPs via the reduction of gold ions. The biologically synthesized AuNPs (AuNPs1, AuNPs2, AuNPs3) were prepared in 3 different forms through the utilization of three different ratios of EPS-reducing agents. AuNPs analysis confirmed the spherical shape of the EPS-coated AuNPs. Furthermore, AuNPs prepared by EPS and l-ascorbic acid (AuNPs3) showed more stability than the AuNPs colloidal solution that was prepared using only l-ascorbic acid. Analysis of the antimicrobial effects of AuNPs showed that E. coli was the most sensitive bacterial species for AuNPs3 and AuNPs1 with inhibition percentages of 88.92 and 83.13%, respectively. Also, safety assay results revealed that AuNPs3 was the safest biogenic AuNPs for the tested noncancerous cell line. The anticancer assays of the biogenic AuNPs1, AuNPs2, and AuNPs3 against MCF-7 cell line indicated that this cell line was the most sensitive cell line to all treatments and it showed inhibition percentages of 66.2%, 57.3%, and 70.2% to the three tested AuNPs, respectively. The AuNPs also showed abilities to arrest MCF-7 cells in the S phase (77.34%) and increased the cellular population in the sub G0 phase. Gene expression analysis showed that AuNPs3 down regulated Bcl2, Ikapα, and Survivn genes in MCF-7 treated-cells. Also, transmission electron microscopy (TEM) analysis of MCf-7 cells revealed that AuNPs 3 and AuNPs2 were localized in cell vacuoles, cytoplasm, and perinuclear region.
Collapse
Affiliation(s)
- Nehal M El-Deeb
- Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), P.O. Box 21934, New Borg El-Arab City, Alexandria, Egypt. .,Pharmaceutical and Fermentation Industries Development Center, City of Scientific Research and Technological Applications (SRTA-City), P.O. Box 21934, New Borg El-Arab City, Alexandria, Egypt.
| | - Sara M Khattab
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria, 21321, Egypt
| | - Morsy A Abu-Youssef
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria, 21321, Egypt
| | - Ahmed M A Badr
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria, 21321, Egypt
| |
Collapse
|
40
|
Minh Ngo H, Drobnyh E, Sukharev M, Khuong Vo Q, Zyss J, Ledoux‐Rak I. High Yield Synthesis and Quadratic Nonlinearities of Gold Nanoprisms in Solution: the Role of Corner Sharpness. Isr J Chem 2022. [DOI: 10.1002/ijch.202200009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hoang Minh Ngo
- Laboratoire Lumière, Matière et Interfaces UMR 8537 Ecole Normale Supérieure Paris-Saclay CentraleSupélec CNRS Université Paris-Saclay 91190 Gif-sur-Yvette France
| | - Elena Drobnyh
- College of Integrative Science and Arts Arizona State University Mesa Arizona 85212 USA
| | - Maxim Sukharev
- College of Integrative Science and Arts Arizona State University Mesa Arizona 85212 USA
- Department of Physics Arizona State University Tempe Arizona 85287 USA
| | - Quoc Khuong Vo
- Faculty of Chemistry Ho Chi Minh City University of Science Vietnam National University 227 Nguyen Van Cu Street, Ward 4, District 5 Ho Chi Minh City 70000 Vietnam
| | - Joseph Zyss
- Laboratoire Lumière, Matière et Interfaces UMR 8537 Ecole Normale Supérieure Paris-Saclay CentraleSupélec CNRS Université Paris-Saclay 91190 Gif-sur-Yvette France
| | - Isabelle Ledoux‐Rak
- Laboratoire Lumière, Matière et Interfaces UMR 8537 Ecole Normale Supérieure Paris-Saclay CentraleSupélec CNRS Université Paris-Saclay 91190 Gif-sur-Yvette France
| |
Collapse
|
41
|
Delille F, Pu Y, Lequeux N, Pons T. Designing the Surface Chemistry of Inorganic Nanocrystals for Cancer Imaging and Therapy. Cancers (Basel) 2022; 14:2456. [PMID: 35626059 PMCID: PMC9139368 DOI: 10.3390/cancers14102456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 12/27/2022] Open
Abstract
Inorganic nanocrystals, such as gold, iron oxide and semiconductor quantum dots, offer promising prospects for cancer diagnostics, imaging and therapy, due to their specific plasmonic, magnetic or fluorescent properties. The organic coating, or surface ligands, of these nanoparticles ensures their colloidal stability in complex biological fluids and enables their functionalization with targeting functions. It also controls the interactions of the nanoparticle with biomolecules in their environment. It therefore plays a crucial role in determining nanoparticle biodistribution and, ultimately, the imaging or therapeutic efficiency. This review summarizes the various strategies used to develop optimal surface chemistries for the in vivo preclinical and clinical application of inorganic nanocrystals. It discusses the current understanding of the influence of the nanoparticle surface chemistry on its colloidal stability, interaction with proteins, biodistribution and tumor uptake, and the requirements to develop an optimal surface chemistry.
Collapse
Affiliation(s)
- Fanny Delille
- Laboratoire de Physique et d’Etude des Matériaux, Ecole Supérieure de Physique et Chimie Industrielle, Université PSL (Paris Sciences & Lettres), Centre National de Recherche Scientifique, 75005 Paris, France; (F.D.); (Y.P.); (N.L.)
- Laboratoire de Physique et d’Etude des Matériaux, Centre National de Recherche Scientifique, Sorbonne Université, 75005 Paris, France
| | - Yuzhou Pu
- Laboratoire de Physique et d’Etude des Matériaux, Ecole Supérieure de Physique et Chimie Industrielle, Université PSL (Paris Sciences & Lettres), Centre National de Recherche Scientifique, 75005 Paris, France; (F.D.); (Y.P.); (N.L.)
- Laboratoire de Physique et d’Etude des Matériaux, Centre National de Recherche Scientifique, Sorbonne Université, 75005 Paris, France
| | - Nicolas Lequeux
- Laboratoire de Physique et d’Etude des Matériaux, Ecole Supérieure de Physique et Chimie Industrielle, Université PSL (Paris Sciences & Lettres), Centre National de Recherche Scientifique, 75005 Paris, France; (F.D.); (Y.P.); (N.L.)
- Laboratoire de Physique et d’Etude des Matériaux, Centre National de Recherche Scientifique, Sorbonne Université, 75005 Paris, France
| | - Thomas Pons
- Laboratoire de Physique et d’Etude des Matériaux, Ecole Supérieure de Physique et Chimie Industrielle, Université PSL (Paris Sciences & Lettres), Centre National de Recherche Scientifique, 75005 Paris, France; (F.D.); (Y.P.); (N.L.)
- Laboratoire de Physique et d’Etude des Matériaux, Centre National de Recherche Scientifique, Sorbonne Université, 75005 Paris, France
| |
Collapse
|
42
|
Shipunova VO, Belova MM, Kotelnikova PA, Shilova ON, Mirkasymov AB, Danilova NV, Komedchikova EN, Popovtzer R, Deyev SM, Nikitin MP. Photothermal Therapy with HER2-Targeted Silver Nanoparticles Leading to Cancer Remission. Pharmaceutics 2022; 14:1013. [PMID: 35631598 PMCID: PMC9145338 DOI: 10.3390/pharmaceutics14051013] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/30/2022] [Accepted: 05/05/2022] [Indexed: 11/17/2022] Open
Abstract
Nanoparticles exhibiting the localized surface plasmon resonance (LSPR) phenomenon are promising tools for diagnostics and cancer treatment. Among widely used metal nanoparticles, silver nanoparticles (Ag NPs) possess the strongest light scattering and surface plasmon strength. However, the therapeutic potential of Ag NPs has until now been underestimated. Here we show targeted photothermal therapy of solid tumors with 35 nm HER2-targeted Ag NPs, which were produced by the green synthesis using an aqueous extract of Lavandula angustifolia Mill. Light irradiation tests demonstrated effective hyperthermic properties of these NPs, namely heating by 10 °C in 10 min. To mediate targeted cancer therapy, Ag NPs were conjugated to the scaffold polypeptide, affibody ZHER2:342, which recognizes a clinically relevant oncomarker HER2. The conjugation was mediated by the PEG linker to obtain Ag-PEG-HER2 nanoparticles. Flow cytometry tests showed that Ag-PEG-HER2 particles successfully bind to HER2-overexpressing cells with a specificity comparable to that of full-size anti-HER2 IgGs. A confocal microscopy study showed efficient internalization of Ag-PEG-HER2 into cells in less than 2 h of incubation. Cytotoxicity assays demonstrated effective cell death upon exposure to Ag-PEG-HER2 and irradiation, caused by the production of reactive oxygen species. Xenograft tumor therapy with Ag-PEG-HER2 particles in vivo resulted in full primary tumor regression and the prevention of metastatic spread. Thus, for the first time, we have shown that HER2-directed plasmonic Ag nanoparticles are effective sensitizers for targeted photothermal oncotherapy.
Collapse
Affiliation(s)
- Victoria O. Shipunova
- Department of Nanobiomedicine, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia; (M.M.B.); (M.P.N.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia; (P.A.K.); (O.N.S.); (A.B.M.); (S.M.D.)
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701 Dolgoprudny, Russia;
| | - Mariia M. Belova
- Department of Nanobiomedicine, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia; (M.M.B.); (M.P.N.)
| | - Polina A. Kotelnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia; (P.A.K.); (O.N.S.); (A.B.M.); (S.M.D.)
| | - Olga N. Shilova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia; (P.A.K.); (O.N.S.); (A.B.M.); (S.M.D.)
| | - Aziz B. Mirkasymov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia; (P.A.K.); (O.N.S.); (A.B.M.); (S.M.D.)
| | - Natalia V. Danilova
- Faculty of Medicine, Lomonosov Moscow State University, 27/1 Lomonosovsky Ave., 119192 Moscow, Russia;
| | - Elena N. Komedchikova
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701 Dolgoprudny, Russia;
| | - Rachela Popovtzer
- Faculty of Engineering, Institute of Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel;
| | - Sergey M. Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia; (P.A.K.); (O.N.S.); (A.B.M.); (S.M.D.)
| | - Maxim P. Nikitin
- Department of Nanobiomedicine, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia; (M.M.B.); (M.P.N.)
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701 Dolgoprudny, Russia;
| |
Collapse
|
43
|
Kim H, Kim E, Choi C, Yeo WH. Advances in Soft and Dry Electrodes for Wearable Health Monitoring Devices. MICROMACHINES 2022; 13:mi13040629. [PMID: 35457934 PMCID: PMC9029742 DOI: 10.3390/mi13040629] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 01/20/2023]
Abstract
Electrophysiology signals are crucial health status indicators as they are related to all human activities. Current demands for mobile healthcare have driven considerable interest in developing skin-mounted electrodes for health monitoring. Silver-Silver chloride-based (Ag-/AgCl) wet electrodes, commonly used in conventional clinical practice, provide excellent signal quality, but cannot monitor long-term signals due to gel evaporation and skin irritation. Therefore, the focus has shifted to developing dry electrodes that can operate without gels and extra adhesives. Compared to conventional wet electrodes, dry ones offer various advantages in terms of ease of use, long-term stability, and biocompatibility. This review outlines a systematic summary of the latest research on high-performance soft and dry electrodes. In addition, we summarize recent developments in soft materials, biocompatible materials, manufacturing methods, strategies to promote physical adhesion, methods for higher breathability, and their applications in wearable biomedical devices. Finally, we discuss the developmental challenges and advantages of various dry electrodes, while suggesting research directions for future studies.
Collapse
Affiliation(s)
- Hyeonseok Kim
- Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Atlanta, GA 30332, USA; (H.K.); (E.K.); (C.C.)
- IEN Center for Human-Centric Interfaces and Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Eugene Kim
- Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Atlanta, GA 30332, USA; (H.K.); (E.K.); (C.C.)
| | - Chanyeong Choi
- Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Atlanta, GA 30332, USA; (H.K.); (E.K.); (C.C.)
| | - Woon-Hong Yeo
- Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Atlanta, GA 30332, USA; (H.K.); (E.K.); (C.C.)
- IEN Center for Human-Centric Interfaces and Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Neural Engineering Center, Institute for Materials, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Correspondence: ; Tel.: +1-404-385-5710
| |
Collapse
|
44
|
Wang P, Zhang L, Zhang Z, Wang S, Yao C. Influence of Parameters on Photodynamic Therapy of Au@TiO 2-HMME Core-Shell Nanostructures. NANOMATERIALS 2022; 12:nano12081358. [PMID: 35458066 PMCID: PMC9032932 DOI: 10.3390/nano12081358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 11/18/2022]
Abstract
Photodynamic therapy (PDT) is a promising tumor therapy and has been proven to be an effective, safe and minimally invasive technique. Hematoporphyrin monomethyl ether (HMME) mediated PDT has been used in clinical treatment of port wine stain (PWS) due to its single component, high yield of singlet oxygen and short light-sensitive period. However, as an amphiphilic photosensitizer, HMME is easy to aggregate due to the presence of a hydrophobic group, which undesirably reduced its generation of singlet oxygen and bioavailability. In this study, we synthesized the stable conjugate of Au@TiO2 core-shell nanostructure with HMME, and the influence of different factors on PTD efficiency were studied. The results showed that the nanostructure had higher PTD efficiency for KB cells than that of HMME. The irradiation wavelength, gold nanoparticle shape and the shell thickness are all important factors for KB cell PDT.
Collapse
|
45
|
Souza BNRF, Ribeiro ERFR, da Silva de Barros AO, Pijeira MSO, Kenup-Hernandes HO, Ricci-Junior E, Diniz Filho JFS, dos Santos CC, Alencar LMR, Attia MF, Gemini-Piperni S, Santos-Oliveira R. Nanomicelles of Radium Dichloride [ 223Ra]RaCl 2 Co-Loaded with Radioactive Gold [ 198Au]Au Nanoparticles for Targeted Alpha-Beta Radionuclide Therapy of Osteosarcoma. Polymers (Basel) 2022; 14:1405. [PMID: 35406278 PMCID: PMC9002948 DOI: 10.3390/polym14071405] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 12/20/2022] Open
Abstract
Alpha and beta particulate radiation are used for non-treated neoplasia, due to their ability to reach and remain in tumor sites. Radium-223 (223Ra), an alpha emitter, promotes localized cytotoxic effects, while radioactive gold (198Au), beta-type energy, reduces radiation in the surrounding tissues. Nanotechnology, including several radioactive nanoparticles, can be safely and effectively used in cancer treatment. In this context, this study aims to analyze the antitumoral effects of [223Ra]Ra nanomicelles co-loaded with radioactive gold nanoparticles ([198Au]AuNPs). For this, we synthesize and characterize nanomicelles, as well as analyze some parameters, such as particle size, radioactivity emission, dynamic light scattering, and microscopic atomic force. [223Ra]Ra nanomicelles co-loaded with [198Au]AuNPs, with simultaneous alpha and beta emission, showed no instability, a mean particle size of 296 nm, and a PDI of 0.201 (±0.096). Furthermore, nanomicelles were tested in an in vitro cytotoxicity assay. We observed a significant increase in tumor cell death using combined alpha and beta therapy in the same formulation, compared with these components used alone. Together, these results show, for the first time, an efficient association between alpha and beta therapies, which could become a promising tool in the control of tumor progression.
Collapse
Affiliation(s)
- Bárbara Nayane Rosário Fernandes Souza
- Argonauta Nuclear Reactor Center, Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rio de Janeiro 21941-906, Brazil; (B.N.R.F.S.); (E.R.F.R.R.); (A.O.d.S.d.B.); (M.S.O.P.)
| | - Elisabete Regina Fernandes Ramos Ribeiro
- Argonauta Nuclear Reactor Center, Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rio de Janeiro 21941-906, Brazil; (B.N.R.F.S.); (E.R.F.R.R.); (A.O.d.S.d.B.); (M.S.O.P.)
| | - Aline Oliveira da Silva de Barros
- Argonauta Nuclear Reactor Center, Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rio de Janeiro 21941-906, Brazil; (B.N.R.F.S.); (E.R.F.R.R.); (A.O.d.S.d.B.); (M.S.O.P.)
| | - Martha Sahylí Ortega Pijeira
- Argonauta Nuclear Reactor Center, Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rio de Janeiro 21941-906, Brazil; (B.N.R.F.S.); (E.R.F.R.R.); (A.O.d.S.d.B.); (M.S.O.P.)
| | - Hericka Oliveira Kenup-Hernandes
- Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rio de Janeiro 21941-906, Brazil;
| | - Eduardo Ricci-Junior
- DEFARMED Laboratory, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-900, Brazil;
| | - Joel Félix Silva Diniz Filho
- Laboratory of Biophysics and Nanosystems, Department of Physics, Federal University of Maranhão, São Luís 65080-805, Brazil; (J.F.S.D.F.); (C.C.d.S.); (L.M.R.A.)
| | - Clenilton Costa dos Santos
- Laboratory of Biophysics and Nanosystems, Department of Physics, Federal University of Maranhão, São Luís 65080-805, Brazil; (J.F.S.D.F.); (C.C.d.S.); (L.M.R.A.)
| | - Luciana Magalhães Rebelo Alencar
- Laboratory of Biophysics and Nanosystems, Department of Physics, Federal University of Maranhão, São Luís 65080-805, Brazil; (J.F.S.D.F.); (C.C.d.S.); (L.M.R.A.)
| | - Mohamed F. Attia
- Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Sara Gemini-Piperni
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Ralph Santos-Oliveira
- Argonauta Nuclear Reactor Center, Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rio de Janeiro 21941-906, Brazil; (B.N.R.F.S.); (E.R.F.R.R.); (A.O.d.S.d.B.); (M.S.O.P.)
- Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, Zona Oeste State University, Rio de Janeiro 23070-200, Brazil
| |
Collapse
|
46
|
Cao L, Wu Y, Shan Y, Tan B, Liao J. A Review: Potential Application and Outlook of Photothermal Therapy in Oral Cancer Treatment. Biomed Mater 2022; 17. [PMID: 35235924 DOI: 10.1088/1748-605x/ac5a23] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/02/2022] [Indexed: 11/11/2022]
Abstract
As one of the most common malignant tumors, oral cancer threatens people's health worldwide. However, traditional therapies, including surgery, radiotherapy, and chemotherapy can't meet the requirement of cancer cure. Photothermal therapy (PTT) has attracted widespread attentions for its advantages of the noninvasive process, few side effects, and promising tumor ablation. Up to now, three types of photothermal agents (PTAs) have been widely employed in oral cancer therapies, which involve metallic materials, carbon-based materials, and organic materials. Previous research mainly introduced hybrid materials due to benefits from the synergistic effect of multiple functions. In this review, we present the advancement of each type PTAs for oral cancer treatment in recent years. In each part, we introduce the properties and synthesis of each PTA, summarize the current studies, and analyze their potential applications. Furthermore, we discuss the status quo and the deficiencies hindering the clinical application of PTT, based on which gives the perspective of its future developing directions.
Collapse
Affiliation(s)
- Liren Cao
- Sichuan University, NO. 14, Section 3, Renming Road, Chengdu, 610041, CHINA
| | - Yongzhi Wu
- Sichuan University, NO. 14, Section 3, Renming Road, Chengdu, 610041, CHINA
| | - Yue Shan
- Sichuan University, NO. 14, Section 3, Renming Road, Chengdu, 610041, CHINA
| | - Bowen Tan
- Sichuan University, NO. 14, Section 3, Renming Road, Chengdu, 610041, CHINA
| | - Jinfeng Liao
- Sichuan University, NO. 14, Section 3, Renming Road, Chengdu, 610041, CHINA
| |
Collapse
|
47
|
Paskeh MDA, Entezari M, Clark C, Zabolian A, Ranjbar E, Farahani MV, Saleki H, Sharifzadeh SO, Far FB, Ashrafizadeh M, Samarghandian S, Khan H, Ghavami S, Zarrabi A, Łos MJ. Targeted regulation of autophagy using nanoparticles: New insight into cancer therapy. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166326. [DOI: 10.1016/j.bbadis.2021.166326] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/31/2021] [Accepted: 12/11/2021] [Indexed: 12/12/2022]
|
48
|
Henson JC, Brickell A, Kim JW, Jensen H, Mehta JL, Jensen M. PEGylated Gold Nanoparticle Toxicity in Cardiomyocytes: Assessment of Size, Concentration, and Time Dependency. IEEE Trans Nanobioscience 2022; 21:387-394. [PMID: 35201990 DOI: 10.1109/tnb.2022.3154438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Gold Nanoparticles (GNPs) have shown promising capabilities for use in many in-vivo applications such as gene and drug delivery, photothermal ablation of tumors, and tracking in many imaging modalities. Yet GNPs have thus far had limited use in cardiovascular medicine. Polyethylene glycol functionalized (PEGylated) GNPs have been extensively studied in a wide array of in vitro and in vivo models with results showing no apparent toxicity, but to our knowledge an investigation has never been performed to determine direct cardiomyocyte toxicity. In this study, we assessed if PEGylated GNPs exhibited direct toxicity to a primary culture of neonatal rat cardiomyocytes in order to establish PEGylated GNPs for potential future use in cardiovascular medicine applications. We present novel results that demonstrate both a particle size and concentration dependent relationship on cell viability. Cell viability was found to be significantly enhanced for many concentrations and sizes as compared to the control and increased linearly as a function of particle diameter. Additionally, viability increased in a parabolically dependent manner as a function of decreasing particle concentration. These new results could advance understanding of nanoparticle-cell interactions and lead to the development of new applications involving the use of gold nanoparticles in cardiovascular medicine.
Collapse
|
49
|
Păduraru DN, Ion D, Niculescu AG, Mușat F, Andronic O, Grumezescu AM, Bolocan A. Recent Developments in Metallic Nanomaterials for Cancer Therapy, Diagnosing and Imaging Applications. Pharmaceutics 2022; 14:435. [PMID: 35214167 PMCID: PMC8874382 DOI: 10.3390/pharmaceutics14020435] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer continues to represent a global health concern, imposing an ongoing need to research for better treatment alternatives. In this context, nanomedicine seems to be the solution to existing problems, bringing unprecedented results in various biomedical applications, including cancer therapy, diagnosing, and imaging. As numerous studies have uncovered the advantageous properties of various nanoscale metals, this review aims to present metal-based nanoparticles that are most frequently employed for cancer applications. This paper follows the description of relevant nanoparticles made of metals, metal derivatives, hybrids, and alloys, further discussing in more detail their potential applications in cancer management, ranging from the delivery of chemotherapeutics, vaccines, and genes to ablative hyperthermia therapies and theranostic platforms.
Collapse
Affiliation(s)
- Dan Nicolae Păduraru
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.N.P.); (D.I.); (F.M.); (O.A.); (A.B.)
- Emergency University Hospital of Bucharest, 050098 Bucharest, Romania
| | - Daniel Ion
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.N.P.); (D.I.); (F.M.); (O.A.); (A.B.)
- Emergency University Hospital of Bucharest, 050098 Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Florentina Mușat
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.N.P.); (D.I.); (F.M.); (O.A.); (A.B.)
- Emergency University Hospital of Bucharest, 050098 Bucharest, Romania
| | - Octavian Andronic
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.N.P.); (D.I.); (F.M.); (O.A.); (A.B.)
- Emergency University Hospital of Bucharest, 050098 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 50044 Bucharest, Romania
| | - Alexandra Bolocan
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.N.P.); (D.I.); (F.M.); (O.A.); (A.B.)
- Emergency University Hospital of Bucharest, 050098 Bucharest, Romania
| |
Collapse
|
50
|
Zhang S, Xie F, Li K, Zhang H, Yin Y, Yu Y, Lu G, Zhang S, Wei Y, Xu K, Wu Y, Jin H, Xiao L, Bao L, Xu C, Li Y, Lu Y, Gao J. Gold nanoparticle-directed autophagy intervention for antitumor immunotherapy via inhibiting tumor-associated macrophage M2 polarization. Acta Pharm Sin B 2022; 12:3124-3138. [PMID: 35865102 PMCID: PMC9293675 DOI: 10.1016/j.apsb.2022.02.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/05/2022] [Accepted: 01/20/2022] [Indexed: 11/01/2022] Open
|