1
|
Abdelsalam AM, Balash A, Khedr SM, Amin MU, Engelhardt KH, Preis E, Bakowsky U. Improved Photodynamic Therapy of Hepatocellular Carcinoma via Surface-Modified Protein Nanoparticles. Pharmaceutics 2025; 17:370. [PMID: 40143033 PMCID: PMC11944767 DOI: 10.3390/pharmaceutics17030370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/28/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Background: Photodynamic therapy (PDT) has evolved as a reliable therapeutic modality for cancer. However, the broad application of the technique is still limited because of poor bioavailability and the non-selective distribution of photosensitizers within host tissues. Herein, zein, a natural corn protein, was functionalized with glycyrrhetinic acid (GA) and polyethylene glycol (Z-PEG-GA) as a targeting platform for liver cancer cells. Parietin, as novel photosensitizer, was successfully encapsulated into zein via nanoprecipitation and used for the therapy of hepatocellular carcinoma. Methods: The in vitro phototoxicity of Z-PEG-GA nanoparticles and their non-functionalized control (Z-PEG) were assessed against hepatocellular carcinoma (HepG2 cells) and the In vivo biodistribution was determined in an adult male CD-1 Swiss albino mice model. Results: The formulated Z-PEG and Z-PEG-GA showed spherical shapes with average sizes of 82.8 and 94.7 nm for unloaded nanoparticles, respectively, and 109.7 and 111.5 nm for loaded nanoparticles carrying more than 70% of parietin, and Quantum yield measurements show that parietin's photodynamic potential is conserved. Moreover, parietin-loaded Z-PEG-GA exhibited three-fold higher toxicity against liver cancer cells than its non-functionalized control and attained more than an eleven-fold enhancement in the generated intracellular reactive oxygen species (ROS) at a 9 J/cm2 radiant exposure. The generated intracellular ROS led to mitochondrial disruption and the release of cytochrome c. In vivo biodistribution studies revealed that fluorescence signals of Z-PEG-GA can persist in the excised animal liver for up to 24 h post-administration. Conclusions: Consequently, tailored zein can hold great potential for delivering several hydrophobic photosensitizers in anticancer PDT.
Collapse
Affiliation(s)
- Ahmed M. Abdelsalam
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch Straße 4, 35037 Marburg, Germany; (A.M.A.); (M.U.A.); (K.H.E.); (E.P.)
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Amir Balash
- Department of Pharmaceutical Chemistry, University of Marburg, Marbacher Weg 10, 35032 Marburg, Germany;
| | - Shaimaa M. Khedr
- Pharmaceutical and Fermentation Industries Development Center (PFIDC), City of Scientific Research and Technology Applications (SRTA-City), New Borg El Arab 21111, Egypt;
| | - Muhammad Umair Amin
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch Straße 4, 35037 Marburg, Germany; (A.M.A.); (M.U.A.); (K.H.E.); (E.P.)
| | - Konrad H. Engelhardt
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch Straße 4, 35037 Marburg, Germany; (A.M.A.); (M.U.A.); (K.H.E.); (E.P.)
| | - Eduard Preis
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch Straße 4, 35037 Marburg, Germany; (A.M.A.); (M.U.A.); (K.H.E.); (E.P.)
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch Straße 4, 35037 Marburg, Germany; (A.M.A.); (M.U.A.); (K.H.E.); (E.P.)
| |
Collapse
|
2
|
Fukushima H, Furusawa A, Okada R, Fujii Y, Choyke PL, Kobayashi H. Antitumor host immunity enhanced by near-infrared photoimmunotherapy. Cancer Sci 2025; 116:572-580. [PMID: 39663860 PMCID: PMC11875768 DOI: 10.1111/cas.16427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024] Open
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a novel antitumor therapy that selectively kills cancer cells by NIR light-triggered photochemical reaction of IRDye700DX within Ab-photoabsorber conjugates (APCs). NIR-PIT induces immunogenic cell death, causing immune cell migration between the tumor and tumor-draining lymph nodes, and expanding multiclonal tumor-infiltrating CD8+ T cells. Crucially, the cytotoxic effects of NIR-PIT are limited to cancer cells, sparing immune cells such as antigen-presenting cells and T cells, which are key players in boosting antitumor host immunity. By modifying the Ab used in APC synthesis, NIR-PIT can be repurposed to target and deplete noncancerous immunosuppressive cells including regulatory T cells, myeloid-derived suppressor cells, and cancer-associated fibroblasts in the tumor microenvironment. Immunosuppressive cell targeted NIR-PIT strongly potentiates antitumor host immunity, including the induction of abscopal effects and the development of immune memory. Furthermore, antitumor immune responses and therapeutic efficacy are synergistically enhanced when NIR-PIT is combined with other immune-activating treatments, such as interleukin-15 and immune checkpoint inhibitors. These new findings make NIR-PIT a valuable tool in the evolving landscape of cancer immunotherapy. This review explains the role of NIR-PIT in activating antitumor host immunity.
Collapse
Affiliation(s)
- Hiroshi Fukushima
- Molecular Imaging Branch, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
- Department of UrologyInstitute of Science TokyoTokyoJapan
| | - Aki Furusawa
- Molecular Imaging Branch, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| | - Ryuhei Okada
- Molecular Imaging Branch, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
- Department of Head and Neck SurgeryInstitute of Science TokyoTokyoJapan
| | - Yasuhisa Fujii
- Department of UrologyInstitute of Science TokyoTokyoJapan
| | - Peter L. Choyke
- Molecular Imaging Branch, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| |
Collapse
|
3
|
Krylova LV, Otvagin VF, Gribova GP, Kuzmina NS, Fedotova EA, Zelepukin IV, Nyuchev AV, Kustov AV, Morshnev PK, Berezin DB, Koifman MO, Vatsadze SZ, Balalaeva IV, Fedorov AY. Developing Chlorin/Arylaminoquinazoline Conjugates with Nanomolar Activity for Targeted Photodynamic Therapy: Design, Synthesis, SAR, and Biological Evaluation. J Med Chem 2025; 68:1901-1923. [PMID: 39743785 DOI: 10.1021/acs.jmedchem.4c02643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
In this report, we developed novel chlorin/arylaminoquinazoline conjugates for targeted photodynamic therapy of cancer. The synthesized photosensitizers consisted of chlorin-e6 metallocomplexes (Zn, In, or Pd) conjugated with arylaminoquinazoline ligands with high affinity for epidermal growth factor receptors (EGFR). Additionally, the selectivity and antitumor properties of the conjugates were investigated in the EGFR-expressing A431 human tumor cell line in vitro. Among the tested molecules, the In-containing conjugate effectively inhibited tumor cell proliferation at nanomolar concentrations, a rare property for conventional photosensitizers. In in vivo experiments, the conjugates rapidly accumulated at the tumor site in nude mice bearing A431 xenograft tumors. Subsequent distribution analysis among different tissues was carried out using fluorescence imaging and elemental analysis. Finally, we demonstrated that the most promising In-containing conjugate was capable of inhibiting xenograft tumor growth in mice through combinational therapy. This therapeutic approach, combined with the conjugate's confirmed safety profile, highlights its potential for effective and safe cancer treatment.
Collapse
Affiliation(s)
- Lubov V Krylova
- Lobachevsky State University of Nizhny Novgorod, Gagarina av. 23, Nizhny Novgorod 603950, Russian Federation
| | - Vasilii F Otvagin
- Lobachevsky State University of Nizhny Novgorod, Gagarina av. 23, Nizhny Novgorod 603950, Russian Federation
| | - Galina P Gribova
- Lobachevsky State University of Nizhny Novgorod, Gagarina av. 23, Nizhny Novgorod 603950, Russian Federation
| | - Natalia S Kuzmina
- Lobachevsky State University of Nizhny Novgorod, Gagarina av. 23, Nizhny Novgorod 603950, Russian Federation
| | - Ekaterina A Fedotova
- Lobachevsky State University of Nizhny Novgorod, Gagarina av. 23, Nizhny Novgorod 603950, Russian Federation
| | - Ivan V Zelepukin
- Uppsala University, Dag Hammarskjölds väg, 20751 85 Uppsala, Sweden
| | - Alexander V Nyuchev
- Lobachevsky State University of Nizhny Novgorod, Gagarina av. 23, Nizhny Novgorod 603950, Russian Federation
| | - Andrey V Kustov
- G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo 153045, Russian Federation
| | - Philipp K Morshnev
- G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo 153045, Russian Federation
| | - Dmitry B Berezin
- Institute of Macroheterocyclic Compounds, Ivanovo State University of Chemistry and Technology, Ivanovo 153012, Russian Federation
| | - Mikhail O Koifman
- Institute of Macroheterocyclic Compounds, Ivanovo State University of Chemistry and Technology, Ivanovo 153012, Russian Federation
| | - Sergey Z Vatsadze
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., Moscow 119991, Russian Federation
| | - Irina V Balalaeva
- Lobachevsky State University of Nizhny Novgorod, Gagarina av. 23, Nizhny Novgorod 603950, Russian Federation
| | - Alexey Yu Fedorov
- Lobachevsky State University of Nizhny Novgorod, Gagarina av. 23, Nizhny Novgorod 603950, Russian Federation
| |
Collapse
|
4
|
Costantini PE, Saporetti R, Iencharelli M, Flammini S, Montrone M, Sanità G, De Felice V, Mattioli EJ, Zangoli M, Ulfo L, Nigro M, Rossi T, Di Giosia M, Esposito E, Di Maria F, Tino A, Tortiglione C, Danielli A, Calvaresi M. Phage-Templated Synthesis of Targeted Photoactive 1D-Thiophene Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2405832. [PMID: 39498689 PMCID: PMC11707577 DOI: 10.1002/smll.202405832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/11/2024] [Indexed: 11/07/2024]
Abstract
Thiophene-based nanoparticles (TNPs) are promising therapeutic and imaging agents. Here, using an innovative phage-templated synthesis, a strategy able to bypass the current limitations of TNPs in nanomedicine applications is proposed. The phage capsid is decorated with oligothiophene derivatives, transforming the virus in a 1D-thiophene nanoparticle (1D-TNP). A precise control of the shape/size of the nanoparticles is obtained exploiting the well-defined morphology of a refactored filamentous M13 phage, engineered by phage display to selectively recognize the Epidermal Growth Factor Receptor (EGFR). The tropism of the phage is maintained also after the bioconjugation of the thiophene molecules on its capsid. Moreover, the 1D-TNP proved highly fluorescent and photoactive, generating reactive oxygen species through both type I and type II mechanisms. The phototheranostic properties of this platform are investigated on biosystems presenting increasing complexity levels, from in vitro cancer cells in 2D and 3D architectures, to the in vivo tissue-like model organism Hydra vulgaris. The phage-templated 1D-TNP showed photocytotoxicity at picomolar concentrations, and the ability to deeply penetrate 3D spheroids and Hydra tissues. Collectively the results indicate that phage-templated synthesis of organic nanoparticles represents a general strategy, exploitable in many diagnostic and therapeutic fields based on targeted imaging and light mediated cell ablation.
Collapse
Affiliation(s)
- Paolo Emidio Costantini
- Dipartimento di Farmacia e BiotecnologieAlma Mater Studiorum, Università di BolognaVia Francesco Selmi 3Bologna40126Italy
- IRCCS Azienda Ospedaliero‐Universitaria di BolognaBologna40138Italy
| | - Roberto Saporetti
- Dipartimento di Chimica “Giacomo CiamicianAlma Mater StudiorumUniversità di BolognaVia Francesco Selmi, 2Bologna40126Italy
| | - Marika Iencharelli
- Istituto di Scienze Applicate e Sistemi IntelligentiConsiglio Nazionale delle RicercheVia Campi Flegrei 34Pozzuoli80078Italy
| | - Soraia Flammini
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF)Consiglio Nazionale delle RicercheVia Piero Gobetti, 101Bologna40129Italy
| | - Maria Montrone
- Dipartimento di Chimica “Giacomo CiamicianAlma Mater StudiorumUniversità di BolognaVia Francesco Selmi, 2Bologna40126Italy
| | - Gennaro Sanità
- Istituto di Scienze Applicate e Sistemi IntelligentiConsiglio Nazionale delle RicercheVia Campi Flegrei 34Pozzuoli80078Italy
| | - Vittorio De Felice
- Istituto di Scienze Applicate e Sistemi IntelligentiConsiglio Nazionale delle RicercheVia Campi Flegrei 34Pozzuoli80078Italy
| | - Edoardo Jun Mattioli
- IRCCS Azienda Ospedaliero‐Universitaria di BolognaBologna40138Italy
- Dipartimento di Chimica “Giacomo CiamicianAlma Mater StudiorumUniversità di BolognaVia Francesco Selmi, 2Bologna40126Italy
| | - Mattia Zangoli
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF)Consiglio Nazionale delle RicercheVia Piero Gobetti, 101Bologna40129Italy
| | - Luca Ulfo
- Dipartimento di Farmacia e BiotecnologieAlma Mater Studiorum, Università di BolognaVia Francesco Selmi 3Bologna40126Italy
| | - Michela Nigro
- Dipartimento di Farmacia e BiotecnologieAlma Mater Studiorum, Università di BolognaVia Francesco Selmi 3Bologna40126Italy
| | - Tommaso Rossi
- Dipartimento di Farmacia e BiotecnologieAlma Mater Studiorum, Università di BolognaVia Francesco Selmi 3Bologna40126Italy
| | - Matteo Di Giosia
- IRCCS Azienda Ospedaliero‐Universitaria di BolognaBologna40138Italy
- Dipartimento di Chimica “Giacomo CiamicianAlma Mater StudiorumUniversità di BolognaVia Francesco Selmi, 2Bologna40126Italy
| | - Emanuela Esposito
- Istituto di Scienze Applicate e Sistemi IntelligentiConsiglio Nazionale delle RicercheVia Campi Flegrei 34Pozzuoli80078Italy
| | - Francesca Di Maria
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF)Consiglio Nazionale delle RicercheVia Piero Gobetti, 101Bologna40129Italy
| | - Angela Tino
- Istituto di Scienze Applicate e Sistemi IntelligentiConsiglio Nazionale delle RicercheVia Campi Flegrei 34Pozzuoli80078Italy
| | - Claudia Tortiglione
- Istituto di Scienze Applicate e Sistemi IntelligentiConsiglio Nazionale delle RicercheVia Campi Flegrei 34Pozzuoli80078Italy
| | - Alberto Danielli
- Dipartimento di Farmacia e BiotecnologieAlma Mater Studiorum, Università di BolognaVia Francesco Selmi 3Bologna40126Italy
- IRCCS Azienda Ospedaliero‐Universitaria di BolognaBologna40138Italy
| | - Matteo Calvaresi
- IRCCS Azienda Ospedaliero‐Universitaria di BolognaBologna40138Italy
- Dipartimento di Chimica “Giacomo CiamicianAlma Mater StudiorumUniversità di BolognaVia Francesco Selmi, 2Bologna40126Italy
| |
Collapse
|
5
|
Werłos M, Barzowska-Gogola A, Pucelik B, Repetowski P, Warszyńska M, Dąbrowski JM. One Change, Many Benefits: A Glycine-Modified Bacteriochlorin with NIR Absorption and a Type I Photochemical Mechanism for Versatile Photodynamic Therapy. Int J Mol Sci 2024; 25:13132. [PMID: 39684841 DOI: 10.3390/ijms252313132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Difluorinated sulfonamide porphyrin (F2PGly) and bacteriochlorin (F2BGly), modified by glycine residues, were synthesized and evaluated for photodynamic therapy (PDT). F₂PGly exhibits superior stability and singlet oxygen generation efficiency but features a low-intensity band in the red range (λmax = 639 nm). In contrast, F2BGly shows a favorable, red-shifted absorption spectrum (λmax = 746 nm) that aligns well with phototherapeutic window, facilitating deeper tissue penetration. Moreover, it demonstrates reasonable photostability, necessary for the efficient generation of both singlet oxygen (type II) and oxygen-centered radicals (type I mechanism) which contributes to enhanced therapeutic efficacy. Importantly, the glycine modifications in F2BGly enhance its uptake in MCF-7 cells, known for their resistance to PDT due to efflux transport proteins like LAT1, showing great potential in the cancer cell-targeted PDT. The glycine groups potentially enable F2BGly to bypass these barriers, resulting in increased intracellular accumulation and more effective Reactive Oxygen Species (ROS) generation under illumination. In vivo studies indicated promising vascular-targeted PDT results, with real-time fluorescence imaging used to monitor photosensitizer distribution prior to irradiation. These findings suggest that F2BGly is a promising photosensitizer candidate with enhanced cancer cell selectivity and photodynamic efficiency, meriting further exploration in targeted PDT applications for multiple types of cancers.
Collapse
Affiliation(s)
- Mateusz Werłos
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland
- Chemistry Department, Selvita, Podole 69, 30-394 Kraków, Poland
| | - Agata Barzowska-Gogola
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland
- Łukasiewicz Research Network, Kraków Institute of Technology, 30-418 Kraków, Poland
| | - Barbara Pucelik
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland
- Łukasiewicz Research Network, Kraków Institute of Technology, 30-418 Kraków, Poland
| | - Paweł Repetowski
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Kraków, Poland
| | - Marta Warszyńska
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Kraków, Poland
| | | |
Collapse
|
6
|
Mi L, Yan YJ, Li MY, Xu T, Namulinda T, Meerovich GA, Reshetov IV, Kogan EA, Atassi Y, Chen ZL. Synthesis and evaluation of 5,15-diaryltetrabenzoporphyrins as photosensitizers for photo-diagnosis and photodynamic activity of tumors. Bioorg Chem 2024; 151:107710. [PMID: 39146762 DOI: 10.1016/j.bioorg.2024.107710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Photodynamic therapy (PDT) is a well-established treatment modality, typically conducted with single-wavelength irradiation, which may not always be optimal for varying tumor locations and sizes. To address this, photosensitizers with absorption wavelengths ranging from 550 to 760 nm are being explored. Herein, a series of 5,15-diaryltetrabenzoporphyrins (Ar2TBPs) were synthesized. All compounds displayed obvious absorption at 550-700 nm (especially at ∼668 nm), intense fluorescence, efficient generation of singlet oxygen and good photodynamic antitumor effects. Notably, compound I3 (5,15-bis[(4-carboxymethoxy)phenyl]tetrabenzoporphyrin) showed excellent cytotoxicity against Eca-109 cell line upon red light irradiation, with an IC50 value of 0.45 μM, and phototherapeutic index of 25.8. Flow cytometry revealed that I3 could induce distinct cell apoptosis. In vivo studies revealed that compound I3 selectively accumulated at tumor site and exhibited outstanding PDT effect with antitumor activity under single-time administration and light irradiation, and revealed more efficiency than the clinical photosensitizer Verteporfin. These findings underscore the considerable promise of I3 as a robust theranostic agent, offering capabilities in real-time fluorescence imaging and serving as a potent photosensitizer for personalized and precise photodynamic therapy of tumors.
Collapse
Affiliation(s)
- Le Mi
- Department of Pharmaceutical Science and Technology, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Yi-Jia Yan
- Department of Pharmacy, Huadong Hospital, Fudan University, Shanghai 200040, China; Shanghai Xianhui Pharmaceutical Co., Ltd., Shanghai 201620, China
| | - Man-Yi Li
- Department of Pharmaceutical Science and Technology, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Tao Xu
- Department of Pharmaceutical Science and Technology, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Tabbisa Namulinda
- Department of Pharmaceutical Science and Technology, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Gennady A Meerovich
- General Physics Institute of Russian Academy of Sciences, Moscow 119435, Russia
| | - Igor V Reshetov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119992, Russia
| | - Evgeniy A Kogan
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119992, Russia
| | - Yomen Atassi
- Department of Applied Physics, Materials Science Laboratory, Higher Institute for Applied Science and Technology, Damascus 31983, Syria
| | - Zhi-Long Chen
- Department of Pharmaceutical Science and Technology, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; Department of Pharmacy, Huadong Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
7
|
Lu J, Yu C, Du K, Chen S, Huang S. Targeted delivery of cisplatin magnetic nanoparticles for diagnosis and treatment of nasopharyngeal carcinoma. Colloids Surf B Biointerfaces 2024; 245:114252. [PMID: 39317040 DOI: 10.1016/j.colsurfb.2024.114252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/04/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
Rapid advances in nanotechnology are paving the way for innovative breakthroughs in overcoming the current limitations in the clinical treatment of cancer and other prevalent diseases plaguing mankind. Magnetic nanoparticles composed of iron oxide (Fe3O4) are a novel class of nanoparticles that are receiving increasing attention in the field of cancer therapy. To address the inherent limitations, bare Fe3O4 can be functionalized, polymerized, assembled, or combined with other functional materials to produce a range of smart nanoplatforms suitable for tumor therapy. In this paper, we present a unique multifunctional therapeutic nanoplatform centered on aldehyde-oxidized sodium alginate-stabilized iron oxide nanoparticles (NPs) designed for T2-weighted magnetic resonance (MR) imaging. Sodium alginate oxide and ferric oxide nanoparticles were prepared respectively, and the two particles were mixed in a certain molar ratio to form a complex, which was coupled to target polypeptide GE11 by Schiff base reaction, and finally supported by cisplatin through coordination complexation. The prepared magnetic nanoparticles (hereinafter referred to as GE11-CDDP-ASA@Fe3O4) have an average diameter of 152.9 nm, and have good colloidal stability and cytocompatibility. The distinctive structure and composition of GE11-CDDP-ASA@Fe3O4 contribute to its excellent MRI imaging performance, positioning it as a nano platform suitable for enhancing the efficacy of combination therapy in tumor treatment. This is of great significance for translational nanomedicine applications.
Collapse
Affiliation(s)
- Jing Lu
- School of Gongli Hospital Medical Technology, University of Shanghai for Science and Technology, Shanghai, China
| | - Chaosheng Yu
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Kun Du
- School of Gongli Hospital Medical Technology, University of Shanghai for Science and Technology, Shanghai, China
| | - Shuaijun Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | | |
Collapse
|
8
|
Yin WH, Li PY, Huang HH, Feng L, Liu SH, Liu X, Bai FQ. Porphyrin photosensitizer molecules as effective medicine candidates for photodynamic therapy: electronic structure information aided design. RSC Adv 2024; 14:29368-29383. [PMID: 39285886 PMCID: PMC11404311 DOI: 10.1039/d4ra05585c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024] Open
Abstract
Traditional photosensitizers (PS) in photodynamic therapy (PDT) have restricted tissue penetrability of light and a lack of selectivity for tumor cells, which diminishes the efficiency of PDT. Our aim is to effectively screen porphyrin-based PS medication through computational simulations of large-scale design and screening of PDT candidates via a precise description of the state of the light-stimulated PS molecule. Perylene-diimide (PDI) shows an absorption band in the near-infrared region (NIR) and a great photostability. Meanwhile, the insertion of metal can enhance tumor targeting. Therefore, on the basis of the original porphyrin PS segments, a series of metalloporphyrin combined with PDI and additional allosteric Zn-porphyrin-PDI systems were designed and investigated. Geometrical structures, frontier molecular orbitals, ultraviolet-visible (UV-vis) absorption spectra, adiabatic electron affinities (AEA), especially the triplet excited states and spin-orbit coupling matrix elements (SOCME) of these expanded D-A porphyrin were studied in detail using the density functional theory (DFT) and time-dependent density functional theory (TDDFT) methods. PS candidates, conforming type I or II mechanism for PDT, have been researched carefully by molecular docking which targeted Factor-related apoptosis (Fas)/Fas ligand (Fasl) mediated signaling pathway. It was found that porphyrin-PDI, Fe2-porphyrin-PDI, Zn-porphyrin-PDI, Mg-porphyrin-PDI, Zn-porphyrin combined with PDI through single bond (compound 1), and two acetylenic bonds (compound 2) in this work would be proposed as potential PS candidates for PDT process. This study was expected to provide PS candidates for the development of novel medicines in PDT.
Collapse
Affiliation(s)
- Wei-Huang Yin
- Department of Stomatology, China-Japan Union Hospital of Jilin University Changchun Jilin 130033 P. R. China
| | - Peng-Yuan Li
- Institute of Theoretical Chemistry and College of Chemistry, Jilin University Changchun 130023 P. R. China
| | - Hou-Hou Huang
- Institute of Theoretical Chemistry and College of Chemistry, Jilin University Changchun 130023 P. R. China
| | - Lu Feng
- Institute of Theoretical Chemistry and College of Chemistry, Jilin University Changchun 130023 P. R. China
| | - Shu-Hui Liu
- Institute of Theoretical Chemistry and College of Chemistry, Jilin University Changchun 130023 P. R. China
| | - Xin Liu
- Department of Stomatology, China-Japan Union Hospital of Jilin University Changchun Jilin 130033 P. R. China
| | - Fu-Quan Bai
- Institute of Theoretical Chemistry and College of Chemistry, Jilin University Changchun 130023 P. R. China
| |
Collapse
|
9
|
Reviansyah FH, Putra DRD, Supriatna JA, Takarini V, Komariah M. Green Dentistry in Oral Cancer Treatment Using Biosynthesis Superparamagnetic Iron Oxide Nanoparticles: A Systematic Review. Cancer Manag Res 2024; 16:1231-1245. [PMID: 39282609 PMCID: PMC11402364 DOI: 10.2147/cmar.s477791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
Oral cancer is a worldwide health issue with high incidence and mortality, demands an effective treatment to improve patient prognosis. Superparamagnetic iron oxide nanoparticles (SPIONs) emerged as a candidate for oral cancer treatment due to their unique attributes, enabling a synergistic combination with its drug-delivery capabilities and hyperthermia when exposed to magnetic fields. SPIONs can be synthesized using biopolymers from agricultural waste like lignin from paddy, which produce biogenic nano iron oxide with superparamagnetic and antioxidant effects. In addition, lignin also acts as a stabilizing agent in creating SPIONs. This study aimed to explore how agricultural waste could be used to prepare SPIONs using the green synthesis method and to evaluate its potential for oral cancer specifically focusing on its effectiveness, side effects, biocompatibility, and toxicity. A systematic review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses protocol. PubMed, EBSCO, and Scopus databases were exploited in the selection of articles published within the last decade. This study quality assessment uses OHAT for critical appraisal tools. Only 10 studies met the inclusion criteria. The findings suggest that the use of agricultural waste in the preparation of SPIONs not only holds potency for oral cancer treatment through drug delivery and hyperthermia but also aligns with the concept of green dentistry. SPIONs as a treatment modality for oral cancer have demonstrated notable effectiveness and versatility. This study provides robust evidence supporting green dentistry by using agricultural waste in the preparation and formulation of SPIONs for managing oral cancer. Its multifunctional nature and ability to enhance treatment efficacy while minimizing adverse effects on healthy tissues highlights the potency of SPION-based oral cancer treatments.
Collapse
Affiliation(s)
| | | | | | - Veni Takarini
- Department of Dental Materials and Technology, Faculty of Dentistry, Padjadjaran University, Bandung, 40132, Indonesia
- Oral Biomaterials Research Centre, Faculty of Dentistry, Padjadjaran University, Bandung, 40132, Indonesia
| | - Maria Komariah
- Department of Fundamental Nursing, Faculty of Nursing, Padjadjaran University, Bandung, 40132, Indonesia
| |
Collapse
|
10
|
Aebisher D, Woźnicki P, Czarnecka-Czapczyńska M, Dynarowicz K, Szliszka E, Kawczyk-Krupka A, Bartusik-Aebisher D. Molecular Determinants for Photodynamic Therapy Resistance and Improved Photosensitizer Delivery in Glioma. Int J Mol Sci 2024; 25:8708. [PMID: 39201395 PMCID: PMC11354549 DOI: 10.3390/ijms25168708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Gliomas account for 24% of all the primary brain and Central Nervous System (CNS) tumors. These tumors are diverse in cellular origin, genetic profile, and morphology but collectively have one of the most dismal prognoses of all cancers. Work is constantly underway to discover a new effective form of glioma therapy. Photodynamic therapy (PDT) may be one of them. It involves the local or systemic application of a photosensitive compound-a photosensitizer (PS)-which accumulates in the affected tissues. Photosensitizer molecules absorb light of the appropriate wavelength, initiating the activation processes leading to the formation of reactive oxygen species and the selective destruction of inappropriate cells. Research focusing on the effective use of PDT in glioma therapy is already underway with promising results. In our work, we provide detailed insights into the molecular changes in glioma after photodynamic therapy. We describe a number of molecules that may contribute to the resistance of glioma cells to PDT, such as the adenosine triphosphate (ATP)-binding cassette efflux transporter G2, glutathione, ferrochelatase, heme oxygenase, and hypoxia-inducible factor 1. We identify molecular targets that can be used to improve the photosensitizer delivery to glioma cells, such as the epithelial growth factor receptor, neuropilin-1, low-density lipoprotein receptor, and neuropeptide Y receptors. We note that PDT can increase the expression of some molecules that reduce the effectiveness of therapy, such as Vascular endothelial growth factor (VEGF), glutamate, and nitric oxide. However, the scientific literature lacks clear data on the effects of PDT on many of the molecules described, and the available reports are often contradictory. In our work, we highlight the gaps in this knowledge and point to directions for further research that may enhance the efficacy of PDT in the treatment of glioma.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland
| | - Paweł Woźnicki
- English Division Science Club, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland;
| | - Magdalena Czarnecka-Czapczyńska
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Batorego 15 Street, 41-902 Bytom, Poland;
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of The University of Rzeszów, 35-310 Rzeszów, Poland;
| | - Ewelina Szliszka
- Department of Microbiology and Immunology, Medical University of Silesia, Poniatowskiego 15, 40-055 Katowice, Poland;
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Batorego 15 Street, 41-902 Bytom, Poland;
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland;
| |
Collapse
|
11
|
Giugliano G, Gajo M, Marforio TD, Zerbetto F, Mattioli EJ, Calvaresi M. Identification of Potential Drug Targets of Calix[4]arene by Reverse Docking. Chemistry 2024; 30:e202400871. [PMID: 38777795 DOI: 10.1002/chem.202400871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
Calixarenes are displaying great potential for the development of new drug delivery systems, diagnostic imaging, biosensing devices and inhibitors of biological processes. In particular, calixarene derivatives are able to interact with many different enzymes and function as inhibitors. By screening of the potential drug target database (PDTD) with a reverse docking procedure, we identify and discuss a selection of 100 proteins that interact strongly with calix[4]arene. We also discover that leucine (23.5 %), isoleucine (11.3 %), phenylalanines (11.3 %) and valine (9.5 %) are the most frequent binding residues followed by hydrophobic cysteines and methionines and aromatic histidines, tyrosines and tryptophanes. Top binders are peroxisome proliferator-activated receptors that already are targeted by commercial drugs, demonstrating the practical interest in calix[4]arene. Nuclear receptors, potassium channel, several carrier proteins, a variety of cancer-related proteins and viral proteins are prominent in the list. It is concluded that calix[4]arene, which is characterized by facile access, well-defined conformational characteristics, and ease of functionalization at both the lower and higher rims, could be a potential lead compound for the development of enzyme inhibitors and theranostic platforms.
Collapse
Affiliation(s)
- Giulia Giugliano
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126, Bologna, Italy E-Mail
| | - Margherita Gajo
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126, Bologna, Italy E-Mail
| | - Tainah Dorina Marforio
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126, Bologna, Italy E-Mail
| | - Francesco Zerbetto
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126, Bologna, Italy E-Mail
| | - Edoardo Jun Mattioli
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126, Bologna, Italy E-Mail
| | - Matteo Calvaresi
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126, Bologna, Italy E-Mail
| |
Collapse
|
12
|
Liu T, Yao W, Sun W, Yuan Y, Liu C, Liu X, Wang X, Jiang H. Components, Formulations, Deliveries, and Combinations of Tumor Vaccines. ACS NANO 2024; 18:18801-18833. [PMID: 38979917 DOI: 10.1021/acsnano.4c05065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Tumor vaccines, an important part of immunotherapy, prevent cancer or kill existing tumor cells by activating or restoring the body's own immune system. Currently, various formulations of tumor vaccines have been developed, including cell vaccines, tumor cell membrane vaccines, tumor DNA vaccines, tumor mRNA vaccines, tumor polypeptide vaccines, virus-vectored tumor vaccines, and tumor-in-situ vaccines. There are also multiple delivery systems for tumor vaccines, such as liposomes, cell membrane vesicles, viruses, exosomes, and emulsions. In addition, to decrease the risk of tumor immune escape and immune tolerance that may exist with a single tumor vaccine, combination therapy of tumor vaccines with radiotherapy, chemotherapy, immune checkpoint inhibitors, cytokines, CAR-T therapy, or photoimmunotherapy is an effective strategy. Given the critical role of tumor vaccines in immunotherapy, here, we look back to the history of tumor vaccines, and we discuss the antigens, adjuvants, formulations, delivery systems, mechanisms, combination therapy, and future directions of tumor vaccines.
Collapse
Affiliation(s)
- Tengfei Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Wenyan Yao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Wenyu Sun
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Yihan Yuan
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Chen Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| |
Collapse
|
13
|
Li Z, Lu J, Li X. Recent Progress in Thermally Activated Delayed Fluorescence Photosensitizers for Photodynamic Therapy. Chemistry 2024; 30:e202401001. [PMID: 38742479 DOI: 10.1002/chem.202401001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
Photodynamic therapy (PDT) is a rapidly growing discipline that is expected to become an encouraging noninvasive therapeutic strategy for cancer treatment. In the PDT process, an efficient intersystem crossing (ISC) process for photosensitizers from the singlet excited state (S1) to the triplet excited state (T1) is critical for the formation of cytotoxic reactive oxygen species and improvement of PDT performance. Thermally activated delayed fluorescence (TADF) molecules featuring an extremely small singlet-triplet energy gap and an efficient ISC process represent an enormous breakthrough for the PDT process. Consequently, the development of advanced TADF photosensitizers has become increasingly crucial and pressing. The most recent developments in TADF photosensitizers aimed at enhancing PDT efficiency for bio-applications are presented in this review. TADF photosensitizers with water dispersibility, targeting ability, activatable ability, and two-photon excitation properties are highlighted. Furthermore, the future challenges and perspectives of TADF photosensitizers in PDT are proposed.
Collapse
Affiliation(s)
- Ziqi Li
- State Key Laboratory of Clean and Efficient Coal Utilization, Tai Yuan, Taiyuan University of Technology, Taiyuan, 030024, P.R. China
| | - Jianjun Lu
- State Key Laboratory of Clean and Efficient Coal Utilization, Tai Yuan, Taiyuan University of Technology, Taiyuan, 030024, P.R. China
| | - Xuping Li
- State Key Laboratory of Clean and Efficient Coal Utilization, Tai Yuan, Taiyuan University of Technology, Taiyuan, 030024, P.R. China
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot, 010020, P.R. China
| |
Collapse
|
14
|
Aebisher D, Przygórzewska A, Bartusik-Aebisher D. The Latest Look at PDT and Immune Checkpoints. Curr Issues Mol Biol 2024; 46:7239-7257. [PMID: 39057071 PMCID: PMC11275601 DOI: 10.3390/cimb46070430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Photodynamic therapy (PDT) can not only directly eliminate cancer cells, but can also stimulate antitumor immune responses. It also affects the expression of immune checkpoints. The purpose of this review is to collect, analyze, and summarize recent news about PDT and immune checkpoints, along with their inhibitors, and to identify future research directions that may enhance the effectiveness of this approach. A search for research articles published between January 2023 and March 2024 was conducted in PubMed/MEDLINE. Eligibility criteria were as follows: (1) papers describing PDT and immune checkpoints, (2) only original research papers, (3) only papers describing new reports in the field of PDT and immune checkpoints, and (4) both in vitro and in vivo papers. Exclusion criteria included (1) papers written in a language other than Polish or English, (2) review papers, and (3) papers published before January 2023. 24 papers describing new data on PDT and immune checkpoints have been published since January 2023. These included information on the effects of PDT on immune checkpoints, and attempts to associate PDT with ICI and with other molecules to modulate immune checkpoints, improve the immunosuppressive environment of the tumor, and resolve PDT-related problems. They also focused on the development of new nanoparticles that can improve the delivery of photosensitizers and drugs selectively to the tumor. The effect of PDT on the level of immune checkpoints and the associated activity of the immune system has not been fully elucidated further, and reports in this area are divergent, indicating the complexity of the interaction between PDT and the immune system. PDT-based strategies have been shown to have a beneficial effect on the delivery of ICI to the tumor. The utility of PDT in enhancing the induction of the antitumor response by participating in the triggering of immunogenic cell death, the exposure of tumor antigens, and the release of various alarm signals that together promote the activation of dendritic cells and other components of the immune system has also been demonstrated, with the result that PDT can enhance the antitumor immune response induced by ICI therapy. PDT also enables multifaceted regulation of the tumor's immunosuppressive environment, as a result of which ICI therapy has the potential to achieve better antitumor efficacy. The current review has presented evidence of PDT's ability to modulate the level of immune checkpoints and the effectiveness of the association of PDT with ICIs and other molecules in inducing an effective immune response against cancer cells. However, these studies are at an early stage and many more observations need to be made to confirm their efficacy. The new research directions indicated may contribute to the development of further strategies.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College, The Rzeszów University, 35-959 Rzeszów, Poland
| | - Agnieszka Przygórzewska
- English Division Science Club, Medical College of The Rzeszów University, 35-025 Rzeszów, Poland;
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of The Rzeszów University, 35-025 Rzeszów, Poland;
| |
Collapse
|
15
|
Cui X, Yuan H, Chen X, Meng Q, Zhang C. Newly Designed Quasi-intrinsic Photosensitizers for Fluorescence Image-Guided Two-Photon Photodynamic Therapy with Type I/II Photoreactions. J Med Chem 2024; 67:8902-8912. [PMID: 38815214 DOI: 10.1021/acs.jmedchem.4c00191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
In this work, a set of quasi-intrinsic photosensitizers are theoretically proposed based on the 2-amino-8-(1'-β-d-2'-deoxyribofuranosyl)-imidazo[1,2-α]-1,3,5-triazin-4(8H)-one (P), which could pair with the 6-amino-5-nitro-3-(1'-β-d-2'-deoxyribofuranosyl)-2(1H)-pyridone (Z) and keep the essential structural characters of nucleic acid. It is revealed that the ring expansion and electron-donating/electron-withdrawing substitution bring enhanced two-photon absorption and bright photoluminescence of these monomers, thereby facilitating the selective excitation and tumor localization through fluorescence imaging. However, instead of undergoing radiative transition (S1 → S0), the base pairing induced fluorescence quenching and rapid intersystem crossing (S1 → Tn) are observed and characterized by the reduced singlet-triplet energy gaps and large spin-orbit coupling values. To ensure the phototherapeutic properties of the considered base pairs in long-lived T1 state, we examined the vertical electron affinity as well as vertical ionization potential for production of superoxide anions via Type I photoreaction, and their required T1 energy (0.98 eV) to generate singlet oxygen 1O2 via Type II mechanism.
Collapse
Affiliation(s)
- Xixi Cui
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, P. R. China
| | - Hongxiu Yuan
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, P. R. China
| | - Xiaolin Chen
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, P. R. China
| | - Qingtian Meng
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, P. R. China
| | - Changzhe Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, P. R. China
| |
Collapse
|
16
|
Wu W, Luo C, Zhu C, Cai Z, Liu J. A Novel Boron Dipyrromethene-Erlotinib Conjugate for Precise Photodynamic Therapy against Liver Cancer. Int J Mol Sci 2024; 25:6421. [PMID: 38928126 PMCID: PMC11203698 DOI: 10.3390/ijms25126421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/27/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Photodynamic Therapy (PDT) is recognized for its exceptional effectiveness as a promising cancer treatment method. However, it is noted that overexposure to the dosage and sunlight in traditional PDT can result in damage to healthy tissues, due to the low tumor selectivity of currently available photosensitizers (PSs). To address this challenge, we introduce herein a new strategy where the small molecule-targeted agent, erlotinib, is integrated into a boron dipyrromethene (BODIPY)-based PS to form conjugate 6 to enhance the precision of PDT. This conjugate demonstrates optical absorption, fluorescence emission, and singlet oxygen generation efficiency comparable to the reference compound 7, which lacks erlotinib. In vitro studies reveal that, after internalization, conjugate 6 predominantly accumulates in the lysosomes of HepG2 cells, exhibiting significant photocytotoxicity with an IC50 value of 3.01 µM. A distinct preference for HepG2 cells over HELF cells is observed with conjugate 6 but not with compound 7. In vivo experiments further confirm that conjugate 6 has a specific affinity for tumor tissues, and the combination treatment of conjugate 6 with laser illumination can effectively eradicate H22 tumors in mice with outstanding biosafety. This study presents a novel and potential PS for achieving precise PDT against cancer.
Collapse
Affiliation(s)
- Wenqiang Wu
- China State Institute of Pharmaceutical Industry, Pudong New Area, Shanghai 201203, China;
| | - Chengmiao Luo
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry, Fuzhou University, Fuzhou 350108, China; (C.L.); (C.Z.)
| | - Chunhui Zhu
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry, Fuzhou University, Fuzhou 350108, China; (C.L.); (C.Z.)
| | - Zhengyan Cai
- China State Institute of Pharmaceutical Industry, Pudong New Area, Shanghai 201203, China;
| | - Jianyong Liu
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry, Fuzhou University, Fuzhou 350108, China; (C.L.); (C.Z.)
- State Key Laboratory of Photocatalysis on Energy and Environment & National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
17
|
Stoup N, Liberelle M, Lebègue N, Van Seuningen I. Emerging paradigms and recent progress in targeting ErbB in cancers. Trends Pharmacol Sci 2024; 45:552-576. [PMID: 38797570 DOI: 10.1016/j.tips.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/29/2024]
Abstract
The epidermal growth factor receptor (EGFR) family is a class of transmembrane proteins, highly regarded as anticancer targets due to their pivotal role in various malignancies. Standard cancer treatments targeting the ErbB receptors include tyrosine kinase inhibitors (TKIs) and monoclonal antibodies (mAbs). Despite their substantial survival benefits, the achievement of curative outcomes is hindered by acquired resistance. Recent advancements in anti-ErbB approaches, such as inhibitory peptides, nanobodies, targeted-protein degradation strategies, and bispecific antibodies (BsAbs), aim to overcome such resistance. More recently, emerging insights into the cell surface interactome of the ErbB family open new avenues for modulating ErbB signaling by targeting specific domains of ErbB partners. Here, we review recent progress in ErbB targeting and elucidate emerging paradigms that underscore the significance of EGF domain-containing proteins (EDCPs) as new ErbB-targeting pathways.
Collapse
Affiliation(s)
- Nicolas Stoup
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Maxime Liberelle
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - LiNC -Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Nicolas Lebègue
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - LiNC -Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Isabelle Van Seuningen
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France.
| |
Collapse
|
18
|
Jahandar-Lashaki S, Farajnia S, Faraji-Barhagh A, Hosseini Z, Bakhtiyari N, Rahbarnia L. Phage Display as a Medium for Target Therapy Based Drug Discovery, Review and Update. Mol Biotechnol 2024:10.1007/s12033-024-01195-6. [PMID: 38822912 DOI: 10.1007/s12033-024-01195-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Phage libraries are now amongst the most prominent approaches for the identification of high-affinity antibodies/peptides from billions of displayed phages in a specific library through the biopanning process. Due to its ability to discover potential therapeutic candidates that bind specifically to targets, phage display has gained considerable attention in targeted therapy. Using this approach, peptides with high-affinity and specificity can be identified for potential therapeutic or diagnostic use. Furthermore, phage libraries can be used to rapidly screen and identify novel antibodies to develop immunotherapeutics. The Food and Drug Administration (FDA) has approved several phage display-derived peptides and antibodies for the treatment of different diseases. In the current review, we provided a comprehensive insight into the role of phage display-derived peptides and antibodies in the treatment of different diseases including cancers, infectious diseases and neurological disorders. We also explored the applications of phage display in targeted drug delivery, gene therapy, and CAR T-cell.
Collapse
Affiliation(s)
- Samaneh Jahandar-Lashaki
- Medical Biotechnology Department, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safar Farajnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Aref Faraji-Barhagh
- Medical Biotechnology Department, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Hosseini
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Nasim Bakhtiyari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Rahbarnia
- Infectious and Tropical Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
19
|
Li X, Yu D, Wang Q, Chen Y, Jiang H. Elucidating the molecular mechanisms of pterostilbene against cervical cancer through an integrated bioinformatics and network pharmacology approach. Chem Biol Interact 2024; 396:111058. [PMID: 38761877 DOI: 10.1016/j.cbi.2024.111058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Pterostilbene (PTE), a natural phenolic compound, has exhibited promising anticancer properties in the preclinical treatment of cervical cancer (CC). This study aims to comprehensively investigate the potential targets and mechanisms underlying PTE's anticancer effects in CC, thereby providing a theoretical foundation for its future clinical application and development. To accomplish this, we employed a range of methodologies, including network pharmacology, bioinformatics, and computer simulation, with specific techniques such as WGCNA, PPI network construction, ROC curve analysis, KM survival analysis, GO functional enrichment, KEGG pathway enrichment, molecular docking, MDS, and single-gene GSEA. Utilizing eight drug target prediction databases, we have identified a total of 532 potential targets for PTE. By combining CC-related genes from the GeneCards disease database with significant genes derived from WGCNA analysis of the GSE63514 dataset, we obtained 7915 unique CC-related genes. By analyzing the intersection of the 7915 CC-related genes and the 2810 genes that impact overall survival time in CC, we identified 690 genes as crucial for CC. Through the use of a Venn diagram, we discovered 36 overlapping targets shared by PTE and CC. We have constructed a PPI network and identified 9 core candidate targets. ROC and KM curve analyses subsequently revealed IL1B, EGFR, IL1A, JUN, MYC, MMP1, MMP3, and ANXA5 as the key targets modulated by PTE in CC. GO and KEGG pathway enrichment analyses indicated significant enrichment of these key targets, primarily in the MAPK and IL-17 signaling pathways. Molecular docking analysis verified the effective binding of PTE to all nine key targets. MDS results showed that the protein-ligand complex between MMP1 and PTE was the most stable among the nine targets. Additionally, GSEA enrichment analysis suggested a potential link between elevated MMP1 expression and the activation of the IL-17 signaling pathway. In conclusion, our study has identified key targets and uncovered the molecular mechanism behind PTE's anticancer activity in CC, establishing a firm theoretical basis for further exploration of PTE's pharmacological effects in CC therapy.
Collapse
Affiliation(s)
- Xiang Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150000, China
| | - Dequan Yu
- Department of Radiation Oncology, Tangdu Hospital, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, 710038, China
| | - Qiming Wang
- Department of Radiation Oncology, Tangdu Hospital, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, 710038, China
| | - Yating Chen
- Department of Clinical Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Hanbing Jiang
- Department of Radiation Oncology, Tangdu Hospital, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, 710038, China.
| |
Collapse
|
20
|
Yu L, Zhang M, He J, Sun X, Ni P. A nanomedicine composed of polymer-ss-DOX and polymer-Ce6 prodrugs with monoclonal antibody targeting effect for anti-tumor chemo-photodynamic synergetic therapy. Acta Biomater 2024; 179:272-283. [PMID: 38460931 DOI: 10.1016/j.actbio.2024.02.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/07/2024] [Accepted: 02/29/2024] [Indexed: 03/11/2024]
Abstract
Anticancer drugs used for systemic chemotherapy often exhibit off-target toxicity and uncontrolled drug release due to their lack of targeting. To improve the bioavailability of drugs and reduce side effects, we have developed a mixed micelle of nanomedicine composed of two prodrugs with surface modified monoclonal antibody for cancer therapy. In this system, Nimotuzumab was used as targeting ligands of the mixed micelles (named as DCMMs) that is composed of polymer-doxorubicin prodrug (abbreviated as PEG-b-P(GMA-ss-DOX)) and maleimide polyethylene glycol-chlorin e6 (abbreviated as Mal-PEG-Ce6). The mixed micelles modified with Nimotuzumab (named as NTZ-DCMMs) bind to overexpressed EGFR receptors on Hepatoma-22 (H22) cells. Disulfide bonds in PEG-b-P(GMA-ss-DOX) are disrupted in tumor microenvironment, inducing the reduction-responsive release of DOX and leading to tumor cell apoptosis. Simultaneously, Chlorin e6 (Ce6) produced plenty of singlet oxygen (1O2) under laser irradiation to kill tumor cells. In vivo biological distribution and antineoplastic effect experiments demonstrate that NTZ-DCMMs enhanced drug enrichment at tumor sites through targeting function of antibody, dramatically suppressing tumor growth and mitigating cardiotoxicity of drugs. All results prove that NTZ-DCMMs have the ability to actively target H22 cells and quickly respond to tumor microenvironment, which is expected to become an intelligent and multifunctional drug delivery carrier for efficient chemotherapy and photodynamic therapy of hepatoma. STATEMENT OF SIGNIFICANCE: Anticancer drugs used for systemic chemotherapy often exhibit off-target toxicity due to their lack of targeting. Therefore, it's necessary to develop effective, targeted, and collaborative treatment strategies. We construct a mixed micelle of nanomedicine based on two polymer prodrugs and modified with monoclonal antibody on surface for cancer therapy. Under the tumor cell microenvironment, the disulfide bonds of polymer-ss-DOX were broken, effectively triggering DOX release. The photosensitizer Ce6 could generate a large amount of ROS under light, which synergistically promotes tumor cell apoptosis. By coupling antibodies to the hydrophilic segments of polymer micelles, drugs can be specifically delivered. Compared with monotherapy, the combination of chemotherapy and photodynamic therapy can significantly enhance the therapeutic effect of liver cancer.
Collapse
Affiliation(s)
- Liang Yu
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, 215123, PR China
| | - Mingzu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, 215123, PR China
| | - Jinlin He
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, 215123, PR China
| | - Xingwei Sun
- Intervention Department, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, PR China.
| | - Peihong Ni
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, 215123, PR China.
| |
Collapse
|
21
|
Fukushima H, Takao S, Furusawa A, Valera Romero V, Gurram S, Kato T, Okuyama S, Kano M, Choyke PL, Kobayashi H. Near-infrared photoimmunotherapy targeting Nectin-4 in a preclinical model of bladder cancer. Cancer Lett 2024; 585:216606. [PMID: 38272345 PMCID: PMC10923129 DOI: 10.1016/j.canlet.2023.216606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/05/2023] [Accepted: 12/16/2023] [Indexed: 01/27/2024]
Abstract
Enfortumab vedotin (EV), an antibody-drug conjugate (ADC) that targets Nectin-4, has shown promising results in the treatment of bladder cancer. However, multiple resistance mechanisms that are unique to ADCs limit the therapeutic potential of EV in clinical practice. Here, we developed and tested a Nectin-4-targeted near-infrared photoimmunotherapy (NIR-PIT) that utilizes the same target as EV but utilizes a distinct cytotoxic and immunotherapeutic pathway in preclinical models of bladder cancer. NIR-PIT was effective in vitro against luminal subtype human bladder cancer cell lines (RT4, RT112, MGH-U3, SW780, and HT1376-luc), but not against other subtype cell lines (UMUC3 and T24). In vivo, the tumor site was clearly visible by Nectin-4-IR700 fluorescence 24 h after its administration, suggesting the potential as an intraoperative imaging modality. NIR-PIT significantly suppressed tumor growth and prolonged survival in SW780 and RT112 xenograft models. Weekly treatment with NIR-PIT further improved tumor control in RT112 xenograft models. The effectiveness of NIR-PIT was also confirmed in HT1376-luc orthotopic xenograft models. Histological analysis verified that NIR-PIT induced a significant pathologic response. Taken together, Nectin-4-targeted NIR-PIT shows promise as a treatment for luminal subtype bladder cancers.
Collapse
Affiliation(s)
- Hiroshi Fukushima
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Seiichiro Takao
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Aki Furusawa
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Vladimir Valera Romero
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Sandeep Gurram
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Takuya Kato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Shuhei Okuyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Makoto Kano
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Peter L Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
22
|
Viana Cabral F, Quilez Alburquerque J, Roberts HJ, Hasan T. Shedding Light on Chemoresistance: The Perspective of Photodynamic Therapy in Cancer Management. Int J Mol Sci 2024; 25:3811. [PMID: 38612619 PMCID: PMC11011502 DOI: 10.3390/ijms25073811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
The persistent failure of standard chemotherapy underscores the urgent need for innovative and targeted approaches in cancer treatment. Photodynamic therapy (PDT) has emerged as a promising photochemistry-based approach to address chemoresistance in cancer regimens. PDT not only induces cell death but also primes surviving cells, enhancing their susceptibility to subsequent therapies. This review explores the principles of PDT and discusses the concept of photodynamic priming (PDP), which augments the effectiveness of treatments like chemotherapy. Furthermore, the integration of nanotechnology for precise drug delivery at the right time and location and PDT optimization are examined. Ultimately, this study highlights the potential and limitations of PDT and PDP in cancer treatment paradigms, offering insights into future clinical applications.
Collapse
Affiliation(s)
- Fernanda Viana Cabral
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (F.V.C.); (J.Q.A.); (H.J.R.)
| | - Jose Quilez Alburquerque
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (F.V.C.); (J.Q.A.); (H.J.R.)
| | - Harrison James Roberts
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (F.V.C.); (J.Q.A.); (H.J.R.)
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (F.V.C.); (J.Q.A.); (H.J.R.)
- Division of Health Sciences and Technology, Massachusetts Institute of Technology, Harvard University, Cambridge, MA 02139, USA
| |
Collapse
|
23
|
Turrini E, Ulfo L, Costantini PE, Saporetti R, Di Giosia M, Nigro M, Petrosino A, Pappagallo L, Kaltenbrunner A, Cantelli A, Pellicioni V, Catanzaro E, Fimognari C, Calvaresi M, Danielli A. Molecular engineering of a spheroid-penetrating phage nanovector for photodynamic treatment of colon cancer cells. Cell Mol Life Sci 2024; 81:144. [PMID: 38494579 PMCID: PMC10944812 DOI: 10.1007/s00018-024-05174-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 03/19/2024]
Abstract
Photodynamic therapy (PDT) represents an emerging strategy to treat various malignancies, including colorectal cancer (CC), the third most common cancer type. This work presents an engineered M13 phage retargeted towards CC cells through pentavalent display of a disulfide-constrained peptide nonamer. The M13CC nanovector was conjugated with the photosensitizer Rose Bengal (RB), and the photodynamic anticancer effects of the resulting M13CC-RB bioconjugate were investigated on CC cells. We show that upon irradiation M13CC-RB is able to impair CC cell viability, and that this effect depends on i) photosensitizer concentration and ii) targeting efficiency towards CC cell lines, proving the specificity of the vector compared to unmodified M13 phage. We also demonstrate that M13CC-RB enhances generation and intracellular accumulation of reactive oxygen species (ROS) triggering CC cell death. To further investigate the anticancer potential of M13CC-RB, we performed PDT experiments on 3D CC spheroids, proving, for the first time, the ability of engineered M13 phage conjugates to deeply penetrate multicellular spheroids. Moreover, significant photodynamic effects, including spheroid disruption and cytotoxicity, were readily triggered at picomolar concentrations of the phage vector. Taken together, our results promote engineered M13 phages as promising nanovector platform for targeted photosensitization, paving the way to novel adjuvant approaches to fight CC malignancies.
Collapse
Affiliation(s)
- Eleonora Turrini
- Dipartimento di Scienze per la Qualità della Vita (QUVI), Alma Mater Studiorum, Università Di Bologna, C.So D'Augusto, 237, 47921, Rimini, Italy
| | - Luca Ulfo
- Dipartimento di Farmacia e Biotecnologie (FaBiT), Alma Mater Studiorum, Università Di Bologna, Via Francesco Selmi 3, 40126, Bologna, Italy
| | - Paolo Emidio Costantini
- Dipartimento di Farmacia e Biotecnologie (FaBiT), Alma Mater Studiorum, Università Di Bologna, Via Francesco Selmi 3, 40126, Bologna, Italy
| | - Roberto Saporetti
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum, Università Di Bologna, Via Francesco Selmi 2, 40126, Bologna, Italy
| | - Matteo Di Giosia
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum, Università Di Bologna, Via Francesco Selmi 2, 40126, Bologna, Italy
| | - Michela Nigro
- Dipartimento di Farmacia e Biotecnologie (FaBiT), Alma Mater Studiorum, Università Di Bologna, Via Francesco Selmi 3, 40126, Bologna, Italy
| | - Annapaola Petrosino
- Dipartimento di Farmacia e Biotecnologie (FaBiT), Alma Mater Studiorum, Università Di Bologna, Via Francesco Selmi 3, 40126, Bologna, Italy
| | - Lucia Pappagallo
- Dipartimento di Farmacia e Biotecnologie (FaBiT), Alma Mater Studiorum, Università Di Bologna, Via Francesco Selmi 3, 40126, Bologna, Italy
| | - Alena Kaltenbrunner
- Dipartimento di Farmacia e Biotecnologie (FaBiT), Alma Mater Studiorum, Università Di Bologna, Via Francesco Selmi 3, 40126, Bologna, Italy
| | - Andrea Cantelli
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum, Università Di Bologna, Via Francesco Selmi 2, 40126, Bologna, Italy
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza" Unit of Bologna, Bologna, Italy
| | - Valentina Pellicioni
- Dipartimento di Scienze per la Qualità della Vita (QUVI), Alma Mater Studiorum, Università Di Bologna, C.So D'Augusto, 237, 47921, Rimini, Italy
| | - Elena Catanzaro
- Cell Death Investigation and Therapy (CDIT) Laboratory, Department of Human Structure and Repair, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Carmela Fimognari
- Dipartimento di Scienze per la Qualità della Vita (QUVI), Alma Mater Studiorum, Università Di Bologna, C.So D'Augusto, 237, 47921, Rimini, Italy
| | - Matteo Calvaresi
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum, Università Di Bologna, Via Francesco Selmi 2, 40126, Bologna, Italy.
- Interdepartmental Center for Industrial Research (CIRI-SDV), Health Sciences and Technologies, University of Bologna, Bologna, Italy.
| | - Alberto Danielli
- Dipartimento di Farmacia e Biotecnologie (FaBiT), Alma Mater Studiorum, Università Di Bologna, Via Francesco Selmi 3, 40126, Bologna, Italy.
- Interdepartmental Center for Industrial Research (CIRI-SDV), Health Sciences and Technologies, University of Bologna, Bologna, Italy.
| |
Collapse
|
24
|
Ma YR, Gao W, Wang HQ, Zhao PS, Zhang YX, Wei FH, Jiang H, Zhang JB, Yuan B, Gao F. EGF-driven EGFR/miR-27b-3p/FOXO1 promotes rat FSH synthesis and secretion. FASEB J 2024; 38:e23469. [PMID: 38358361 DOI: 10.1096/fj.202301970r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/04/2024] [Accepted: 01/23/2024] [Indexed: 02/16/2024]
Abstract
The adenopituitary secretes follicle-stimulating hormone (FSH), which plays a crucial role in regulating the growth, development, and reproductive functions of organisms. Investigating the process of FSH synthesis and secretion can offer valuable insights into potential areas of focus for reproductive research. Epidermal growth factor (EGF) is a significant paracrine/autocrine factor within the body, and studies have demonstrated its ability to stimulate FSH secretion in animals. However, the precise mechanisms that regulate this action are still poorly understood. In this research, in vivo and in vitro experiments showed that the activation of epidermal growth factor receptor (EGFR) by EGF induces the upregulation of miR-27b-3p and that miR-27b-3p targets and inhibits Foxo1 mRNA expression, resulting in increased FSH synthesis and secretion. In summary, this study elucidates the precise molecular mechanism through which EGF governs the synthesis and secretion of FSH via the EGFR/miR-27b-3p/FOXO1 pathway.
Collapse
Affiliation(s)
- Yi-Ran Ma
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Wei Gao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Hao-Qi Wang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Pei-Sen Zhao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Yu-Xin Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Fan-Hao Wei
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Hao Jiang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Jia-Bao Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Fei Gao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| |
Collapse
|
25
|
Li XT, Peng SY, Feng SM, Bao TY, Li SZ, Li SY. Recent Progress in Phage-Based Nanoplatforms for Tumor Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307111. [PMID: 37806755 DOI: 10.1002/smll.202307111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/18/2023] [Indexed: 10/10/2023]
Abstract
Nanodrug delivery systems have demonstrated a great potential for tumor therapy with the development of nanotechnology. Nonetheless, traditional drug delivery systems are faced with issues such as complex synthetic procedures, low reproducibility, nonspecific distribution, impenetrability of biological barrier, systemic toxicity, etc. In recent years, phage-based nanoplatforms have attracted increasing attention in tumor treatment for their regular structure, fantastic carrying property, high transduction efficiency and biosafety. Notably, therapeutic or targeting peptides can be expressed on the surface of the phages through phage display technology, enabling the phage vectors to possess multifunctions. As a result, the drug delivery efficiency on tumor will be vastly improved, thereby enhancing the therapeutic efficacy while reducing the side effects on normal tissues. Moreover, phages can overcome the hindrance of biofilm barrier to elicit antitumor effects, which exhibit great advantages compared with traditional synthetic drug delivery systems. Herein, this review not only summarizes the structure and biology of the phages, but also presents their potential as prominent nanoplatforms against tumor in different pathways to inspire the development of effective nanomedicine.
Collapse
Affiliation(s)
- Xiao-Tong Li
- Department of Anesthesiology, the Second Clinical School of Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Shu-Yi Peng
- Department of Anesthesiology, the Second Clinical School of Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Shao-Mei Feng
- Department of Anesthesiology, the Second Clinical School of Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Ting-Yu Bao
- Department of Clinical Medicine, the Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Sheng-Zhang Li
- Department of Clinical Medicine, the Second Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Shi-Ying Li
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| |
Collapse
|
26
|
Ling J, Gu R, Liu L, Chu R, Wu J, Zhong R, Ye S, Liu J, Fan S. Versatile Design of Organic Polymeric Nanoparticles for Photodynamic Therapy of Prostate Cancer. ACS MATERIALS AU 2024; 4:14-29. [PMID: 38221923 PMCID: PMC10786136 DOI: 10.1021/acsmaterialsau.3c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 01/16/2024]
Abstract
Radical prostatectomy is a primary treatment option for localized prostate cancer (PCa), although high rates of recurrence are commonly observed postsurgery. Photodynamic therapy (PDT) has demonstrated efficacy in treating nonmetastatic localized PCa with a low incidence of adverse events. However, its limited efficacy remains a concern. To address these issues, various organic polymeric nanoparticles (OPNPs) loaded with photosensitizers (PSs) that target prostate cancer have been developed. However, further optimization of the OPNP design is necessary to maximize the effectiveness of PDT and improve its clinical applicability. This Review provides an overview of the design, preparation, methodology, and oncological aspects of OPNP-based PDT for the treatment of PCa.
Collapse
Affiliation(s)
- Jiacheng Ling
- Department
of Urology, The First Affiliated Hospital
of Anhui Medical University, Institute of Urology & Anhui Province
Key Laboratory of Genitourinary Diseases, Anhui Medical University, 218 Jixi Road, Hefei 230022, China
| | - Rongrong Gu
- College
of Science & School of Plant Protection, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Lulu Liu
- School
of Resources and Environment, Anhui Agricultural
University, 130 Changjiang
West Road, Hefei 230036, China
| | - Ruixi Chu
- College
of Science & School of Plant Protection, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Junchao Wu
- Department
of Urology, The First Affiliated Hospital
of Anhui Medical University, Institute of Urology & Anhui Province
Key Laboratory of Genitourinary Diseases, Anhui Medical University, 218 Jixi Road, Hefei 230022, China
| | - Rongfang Zhong
- Department
of Urology, The First Affiliated Hospital
of Anhui Medical University, Institute of Urology & Anhui Province
Key Laboratory of Genitourinary Diseases, Anhui Medical University, 218 Jixi Road, Hefei 230022, China
| | - Sheng Ye
- College
of Science & School of Plant Protection, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Jian Liu
- Inner
Mongolia University Hohhot, Inner
Mongolia 010021, China
- Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- DICP-Surrey
Joint Centre for Future Materials, Department of Chemical and Process
Engineering and Advanced Technology Institute, University of Surrey, Guilford,
Surrey GU27XH, U.K.
| | - Song Fan
- Department
of Urology, The First Affiliated Hospital
of Anhui Medical University, Institute of Urology & Anhui Province
Key Laboratory of Genitourinary Diseases, Anhui Medical University, 218 Jixi Road, Hefei 230022, China
| |
Collapse
|
27
|
Menotti L, Vannini A. Oncolytic Viruses in the Era of Omics, Computational Technologies, and Modeling: Thesis, Antithesis, and Synthesis. Int J Mol Sci 2023; 24:17378. [PMID: 38139207 PMCID: PMC10743452 DOI: 10.3390/ijms242417378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Oncolytic viruses (OVs) are the frontier therapy for refractory cancers, especially in integration with immunomodulation strategies. In cancer immunovirotherapy, the many available "omics" and systems biology technologies generate at a fast pace a challenging huge amount of data, where apparently clashing information mirrors the complexity of individual clinical situations and OV used. In this review, we present and discuss how currently big data analysis, on one hand and, on the other, simulation, modeling, and computational technologies, provide invaluable support to interpret and integrate "omic" information and drive novel synthetic biology and personalized OV engineering approaches for effective immunovirotherapy. Altogether, these tools, possibly aided in the future by artificial intelligence as well, will allow for the blending of the information into OV recombinants able to achieve tumor clearance in a patient-tailored way. Various endeavors to the envisioned "synthesis" of turning OVs into personalized theranostic agents are presented.
Collapse
Affiliation(s)
- Laura Menotti
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| | | |
Collapse
|
28
|
Zhang Q, Zhang N, Xiao H, Wang C, He L. Small Antibodies with Big Applications: Nanobody-Based Cancer Diagnostics and Therapeutics. Cancers (Basel) 2023; 15:5639. [PMID: 38067344 PMCID: PMC10705070 DOI: 10.3390/cancers15235639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 02/13/2025] Open
Abstract
Monoclonal antibodies (mAbs) have exhibited substantial potential as targeted therapeutics in cancer treatment due to their precise antigen-binding specificity. Despite their success in tumor-targeted therapies, their effectiveness is hindered by their large size and limited tissue permeability. Camelid-derived single-domain antibodies, also known as nanobodies, represent the smallest naturally occurring antibody fragments. Nanobodies offer distinct advantages over traditional mAbs, including their smaller size, high stability, lower manufacturing costs, and deeper tissue penetration capabilities. They have demonstrated significant roles as both diagnostic and therapeutic tools in cancer research and are also considered as the next generation of antibody drugs. In this review, our objective is to provide readers with insights into the development and various applications of nanobodies in the field of cancer treatment, along with an exploration of the challenges and strategies for their prospective clinical trials.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Q.Z.); (C.W.)
| | - Nan Zhang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, China;
| | - Han Xiao
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou 730030, China;
| | - Chen Wang
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Q.Z.); (C.W.)
| | - Lian He
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Q.Z.); (C.W.)
| |
Collapse
|
29
|
Petrosino A, Saporetti R, Starinieri F, Sarti E, Ulfo L, Boselli L, Cantelli A, Morini A, Zadran SK, Zuccheri G, Pasquini Z, Di Giosia M, Prodi L, Pompa PP, Costantini PE, Calvaresi M, Danielli A. A modular phage vector platform for targeted photodynamic therapy of Gram-negative bacterial pathogens. iScience 2023; 26:108032. [PMID: 37822492 PMCID: PMC10563061 DOI: 10.1016/j.isci.2023.108032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/04/2023] [Accepted: 09/21/2023] [Indexed: 10/13/2023] Open
Abstract
Growing antibiotic resistance has encouraged the revival of phage-inspired antimicrobial approaches. On the other hand, photodynamic therapy (PDT) is considered a very promising research domain for the protection against infectious diseases. Yet, very few efforts have been made to combine the advantages of both approaches in a modular, retargetable platform. Here, we foster the M13 bacteriophage as a multifunctional scaffold, enabling the selective photodynamic killing of bacteria. We took advantage of the well-defined molecular biology of M13 to functionalize its capsid with hundreds of photo-activable Rose Bengal sensitizers and contemporarily target this light-triggerable nanobot to specific bacterial species by phage display of peptide targeting moieties fused to the minor coat protein pIII of the phage. Upon light irradiation of the specimen, the targeted killing of diverse Gram(-) pathogens occurred at subnanomolar concentrations of the phage vector. Our findings contribute to the development of antimicrobials based on targeted and triggerable phage-based nanobiotherapeutics.
Collapse
Affiliation(s)
- Annapaola Petrosino
- Dipartimento di Farmacia e Biotecnologie (FaBiT) – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy
| | - Roberto Saporetti
- Dipartimento di Chimica “Giacomo Ciamician” – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy
| | - Francesco Starinieri
- Dipartimento di Farmacia e Biotecnologie (FaBiT) – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy
| | - Edoardo Sarti
- Dipartimento di Farmacia e Biotecnologie (FaBiT) – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy
| | - Luca Ulfo
- Dipartimento di Farmacia e Biotecnologie (FaBiT) – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy
| | - Luca Boselli
- Nanobiointeractions and Nanodiagnostics Laboratory, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
| | - Andrea Cantelli
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza" Unit of Bologna, Italy
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Andrea Morini
- Dipartimento di Farmacia e Biotecnologie (FaBiT) – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy
| | - Suleman Khan Zadran
- Dipartimento di Farmacia e Biotecnologie (FaBiT) – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy
| | - Giampaolo Zuccheri
- Dipartimento di Farmacia e Biotecnologie (FaBiT) – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy
- CIRI SDV – Centro Interdipartimentale Scienze della Vita - Alma Mater Studiorum - Università di Bologna, Via Tolara di Sopra, 41/E - 40064 Ozzano dell'Emilia (BO), Italy
| | - Zeno Pasquini
- Infectious Diseases Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy
| | - Matteo Di Giosia
- Dipartimento di Chimica “Giacomo Ciamician” – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy
| | - Luca Prodi
- Dipartimento di Chimica “Giacomo Ciamician” – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy
- CIRI SDV – Centro Interdipartimentale Scienze della Vita - Alma Mater Studiorum - Università di Bologna, Via Tolara di Sopra, 41/E - 40064 Ozzano dell'Emilia (BO), Italy
| | - Pier Paolo Pompa
- Nanobiointeractions and Nanodiagnostics Laboratory, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
| | - Paolo Emidio Costantini
- Dipartimento di Farmacia e Biotecnologie (FaBiT) – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy
| | - Matteo Calvaresi
- Dipartimento di Chimica “Giacomo Ciamician” – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy
- CIRI SDV – Centro Interdipartimentale Scienze della Vita - Alma Mater Studiorum - Università di Bologna, Via Tolara di Sopra, 41/E - 40064 Ozzano dell'Emilia (BO), Italy
| | - Alberto Danielli
- Dipartimento di Farmacia e Biotecnologie (FaBiT) – Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy
- CIRI SDV – Centro Interdipartimentale Scienze della Vita - Alma Mater Studiorum - Università di Bologna, Via Tolara di Sopra, 41/E - 40064 Ozzano dell'Emilia (BO), Italy
| |
Collapse
|
30
|
Sorrin AJ, Zhou K, May K, Liu C, McNaughton K, Rahman I, Liang BJ, Rizvi I, Roque DM, Huang HC. Transient fluid flow improves photoimmunoconjugate delivery and photoimmunotherapy efficacy. iScience 2023; 26:107221. [PMID: 37520715 PMCID: PMC10372742 DOI: 10.1016/j.isci.2023.107221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/01/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023] Open
Abstract
Circulating drugs in the peritoneal cavity is an effective strategy for advanced ovarian cancer treatment. Photoimmunotherapy, an emerging modality with potential for the treatment of ovarian cancer, involves near-infrared light activation of antibody-photosensitizer conjugates (photoimmunoconjugates) to generate cytotoxic reactive oxygen species. Here, a microfluidic cell culture model is used to study how fluid flow-induced shear stress affects photoimmunoconjugate delivery to ovarian cancer cells. Photoimmunoconjugates are composed of the antibody, cetuximab, conjugated to the photosensitizer, and benzoporphyrin derivative. Longitudinal tracking of photoimmunoconjugate treatment under flow conditions reveals enhancements in subcellular photosensitizer accumulation. Compared to static conditions, fluid flow-induced shear stress at 0.5 and 1 dyn/cm2 doubled the cellular delivery of photoimmunoconjugates. Fluid flow-mediated treatment with three different photosensitizer formulations (benzoporphyrin derivative, photoimmunoconjugates, and photoimmunoconjugate-coated liposomes) led to enhanced phototoxicity compared to static conditions. This study confirms the fundamental role of fluid flow-induced shear stress in the anti-cancer effects of photoimmunotherapy.
Collapse
Affiliation(s)
- Aaron J. Sorrin
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Keri Zhou
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Katherine May
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Cindy Liu
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Kathryn McNaughton
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Idrisa Rahman
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Barry J. Liang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Imran Rizvi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, North Carolina State University, Raleigh, NC 27599, USA
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dana M. Roque
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Huang-Chiao Huang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
31
|
Zhang Y, Zhao Z, Li W, Tang Y, Wang S. Mechanism of Taxanes in the Treatment of Lung Cancer Based on Network Pharmacology and Molecular Docking. Curr Issues Mol Biol 2023; 45:6564-6582. [PMID: 37623233 PMCID: PMC10453041 DOI: 10.3390/cimb45080414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/26/2023] Open
Abstract
Taxanes are natural compounds for the treatment of lung cancer, but the molecular mechanism behind the effects is unclear. In the present study, through network pharmacology and molecular docking, the mechanism of the target and pathway of taxanes in the treatment of lung cancer was studied. The taxanes targets were determined by PubChem database, and an effective compounds-targets network was constructed. The GeneCards database was used to determine the disease targets of lung cancer, and the intersection of compound targets and disease targets was obtained. The Protein-Protein Interaction (PPI) network of the intersection targets was analyzed, and the PPI network was constructed by Cytoscape 3.6.0 software. The hub targets were screened according to the degree value, and the binding activity between taxanes and hub targets was verified by molecular docking. The results showed that eight taxane-active compounds and 444 corresponding targets were screened out, and 131 intersection targets were obtained after mapping with lung cancer disease targets. The hub targets obtained by PPI analysis were TP53, EGFR, and AKT1. Gene Ontology (GO) biological function enrichment analysis obtained 1795 biological process (BP) terms, 101 cellular component (CC) terms, and 164 molecular function (MF) terms. There were 179 signaling pathways obtained by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Twenty signaling pathways were screened out, mainly pathways in cancer, proteoglycans in cancer pathway, microRNAs in cancer pathway, and so on. Molecular docking shows that the binding energies of eight taxanes with TP53, EGFR, and AKT1 targets were less than -8.8 kcal/mol, taxanes acts on TP53, EGFR, and AKT1 targets through pathways in cancer, proteoglycans in cancer pathway and microRNAs in cancer pathway, and plays a role in treating lung cancer in biological functions such as protein binding, enzyme binding, and identical protein binding.
Collapse
Affiliation(s)
| | | | | | | | - Shujie Wang
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China; (Y.Z.); (Z.Z.); (W.L.); (Y.T.)
| |
Collapse
|
32
|
Moret F, Varchi G. Drug Delivery in Photodynamic Therapy. Pharmaceutics 2023; 15:1784. [PMID: 37513971 PMCID: PMC10385038 DOI: 10.3390/pharmaceutics15071784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 07/30/2023] Open
Abstract
Photodynamic therapy (PDT) has gained prominence as a non-invasive and selective treatment option for solid tumors and non-oncological diseases [...].
Collapse
Affiliation(s)
- Francesca Moret
- Department of Biology, University of Padova, 35100 Padova, Italy
| | - Greta Varchi
- Institute for the Organic Synthesis and Photoreactivity, Italian National Research Council, 40121 Bologna, Italy
| |
Collapse
|
33
|
Shishparenok AN, Furman VV, Zhdanov DD. DNA-Based Nanomaterials as Drug Delivery Platforms for Increasing the Effect of Drugs in Tumors. Cancers (Basel) 2023; 15:2151. [PMID: 37046816 PMCID: PMC10093432 DOI: 10.3390/cancers15072151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
DNA nanotechnology has significantly advanced and might be used in biomedical applications, drug delivery, and cancer treatment during the past few decades. DNA nanomaterials are widely used in biomedical research involving biosensing, bioimaging, and drug delivery since they are remarkably addressable and biocompatible. Gradually, modified nucleic acids have begun to be employed to construct multifunctional DNA nanostructures with a variety of architectural designs. Aptamers are single-stranded nucleic acids (both DNAs and RNAs) capable of self-pairing to acquire secondary structure and of specifically binding with the target. Diagnosis and tumor therapy are prospective fields in which aptamers can be applied. Many DNA nanomaterials with three-dimensional structures have been studied as drug delivery systems for different anticancer medications or gene therapy agents. Different chemical alterations can be employed to construct a wide range of modified DNA nanostructures. Chemically altered DNA-based nanomaterials are useful for drug delivery because of their improved stability and inclusion of functional groups. In this work, the most common oligonucleotide nanomaterials were reviewed as modern drug delivery systems in tumor cells.
Collapse
Affiliation(s)
- Anastasiya N. Shishparenok
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia
| | - Vitalina V. Furman
- Center of Chemical Engineering, ITMO University, Kronverkskiy Prospekt 49A, 197101 St. Petersburg, Russia
| | - Dmitry D. Zhdanov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia
- Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| |
Collapse
|
34
|
Sioud M, Zhang Q. Precision Killing of M2 Macrophages with Phage-Displayed Peptide-Photosensitizer Conjugates. Cancers (Basel) 2023; 15:cancers15072009. [PMID: 37046671 PMCID: PMC10093000 DOI: 10.3390/cancers15072009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Among the immunosuppressive cells recruited to the tumor microenvironment, macrophages are particularly abundant and involved in angiogenesis, metastasis, and resistance to current cancer therapies. A strategy that simultaneously targets tumor cells and macrophages, particularly pro-tumoral M2 macrophages, would have significant clinical impact for various types of solid malignancies. By the use of phage display technology, we have recently developed a synthetic peptide, named NW, which binds to M1 and M2 macrophages with high affinity. Additional affinity selection on M2 macrophages identified only dominant peptides whose binding motifs are similar to that of the NW peptide. To reduce the frequency of selecting such dominating peptides, the peptide library was affinity selected on M2 macrophages blocked with NW peptide. This approach resulted in the selection of peptides that bind to M2, but not M1 macrophages. To explore the therapeutic potential of the selected peptides, the M13 phage-displayed peptides were conjugated to the photosensitizer IR700, which has been used for cancer photoimmunotherapy. The phage displaying a dominant peptide (SPILWLNAPPWA) killed both M1 and M2 macrophages, while those displaying the M2-specific peptides killed M2 macrophages only upon near-infrared light exposure. A significant fraction of the M2 macrophages were also killed with the untargeted M13 phage-IR700 conjugates. Hence, M2 macrophages can also be selectively targeted by the wild type M13 phage, which displayed a significant tropism to these cells. The benefits of this photoimmunotherapy include an automatic self-targeting ability of the wild type M13 phage, and the option of genetic manipulation of the phage genome to include tumor targeting peptides, allowing the killing of both M2 macrophages and cancer cells.
Collapse
Affiliation(s)
- Mouldy Sioud
- Department of Cancer Immunology, Division of Cancer Medicine, Oslo University Hospital, Radiumhospitalet, Ullernchausseen 70, 0379 Oslo, Norway
- Correspondence:
| | - Qindong Zhang
- Department of Cancer Immunology, Division of Cancer Medicine, Oslo University Hospital, Radiumhospitalet, Ullernchausseen 70, 0379 Oslo, Norway
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Blindern, 0316 Oslo, Norway
| |
Collapse
|
35
|
Identification of Blood Transport Proteins to Carry Temoporfin: A Domino Approach from Virtual Screening to Synthesis and In Vitro PDT Testing. Pharmaceutics 2023; 15:pharmaceutics15030919. [PMID: 36986780 PMCID: PMC10056000 DOI: 10.3390/pharmaceutics15030919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Temoporfin (mTHPC) is one of the most promising photosensitizers used in photodynamic therapy (PDT). Despite its clinical use, the lipophilic character of mTHPC still hampers the full exploitation of its potential. Low solubility in water, high tendency to aggregate, and low biocompatibility are the main limitations because they cause poor stability in physiological environments, dark toxicity, and ultimately reduce the generation of reactive oxygen species (ROS). Applying a reverse docking approach, here, we identified a number of blood transport proteins able to bind and disperse monomolecularly mTHPC, namely apohemoglobin, apomyoglobin, hemopexin, and afamin. We validated the computational results synthesizing the mTHPC-apomyoglobin complex (mTHPC@apoMb) and demonstrated that the protein monodisperses mTHPC in a physiological environment. The mTHPC@apoMb complex preserves the imaging properties of the molecule and improves its ability to produce ROS via both type I and type II mechanisms. The effectiveness of photodynamic treatment using the mTHPC@apoMb complex was then demonstrated in vitro. Blood transport proteins can be used as molecular “Trojan horses” in cancer cells by conferring mTHPC (i) water solubility, (ii) monodispersity, and (iii) biocompatibility, ultimately bypassing the current limitations of mTHPC.
Collapse
|
36
|
Dissecting the Interactions between Chlorin e6 and Human Serum Albumin. Molecules 2023; 28:molecules28052348. [PMID: 36903592 PMCID: PMC10005744 DOI: 10.3390/molecules28052348] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Chlorin e6 (Ce6) is among the most used sensitizers in photodynamic (PDT) and sonodynamic (SDT) therapy; its low solubility in water, however, hampers its clinical exploitation. Ce6 has a strong tendency to aggregate in physiological environments, reducing its performance as a photo/sono-sensitizer, as well as yielding poor pharmacokinetic and pharmacodynamic properties. The interaction of Ce6 with human serum albumin (HSA) (i) governs its biodistribution and (ii) can be used to improve its water solubility by encapsulation. Here, using ensemble docking and microsecond molecular dynamics simulations, we identified the two Ce6 binding pockets in HSA, i.e., the Sudlow I site and the heme binding pocket, providing an atomistic description of the binding. Comparing the photophysical and photosensitizing properties of Ce6@HSA with respect to the same properties regarding the free Ce6, it was observed that (i) a red-shift occurred in both the absorption and emission spectra, (ii) a maintaining of the fluorescence quantum yield and an increase of the excited state lifetime was detected, and (iii) a switch from the type II to the type I mechanism in a reactive oxygen species (ROS) production, upon irradiation, took place.
Collapse
|
37
|
Eun Shin H, Wook Oh S, Park W. Hybrid Nanovesicle of Chimeric Antigen Receptor (CAR)-engineered Cell-Derived Vesicle and Drug-Encapsulated Liposome for Effective Cancer Treatment. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
38
|
Greco G, Ulfo L, Turrini E, Marconi A, Costantini PE, Marforio TD, Mattioli EJ, Di Giosia M, Danielli A, Fimognari C, Calvaresi M. Light-Enhanced Cytotoxicity of Doxorubicin by Photoactivation. Cells 2023; 12:cells12030392. [PMID: 36766734 PMCID: PMC9913797 DOI: 10.3390/cells12030392] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
The combination of photodynamic therapy with chemotherapy (photochemotherapy, PCT) can lead to additive or synergistic antitumor effects. Usually, two different molecules, a photosensitizer (PS) and a chemotherapeutic drug are used in PCT. Doxorubicin is one of the most successful chemotherapy drugs. Despite its high efficacy, two factors limit its clinical use: severe side effects and the development of chemoresistance. Doxorubicin is a chromophore, able to absorb light in the visible range, making it a potential PS. Here, we exploited the intrinsic photosensitizing properties of doxorubicin to enhance its anticancer activity in leukemia, breast, and epidermoid carcinoma cells, upon irradiation. Light can selectively trigger the local generation of reactive oxygen species (ROS), following photophysical pathways. Doxorubicin showed a concentration-dependent ability to generate peroxides and singlet oxygen upon irradiation. The underlying mechanisms leading to the increase in its cytotoxic activity were intracellular ROS generation and the induction of necrotic cell death. The nuclear localization of doxorubicin represents an added value for its use as a PS. The use of doxorubicin in PCT, simultaneously acting as a chemotherapeutic agent and a PS, may allow (i) an increase in the anticancer effects of the drug, and (ii) a decrease in its dose, and thus, its dose-related adverse effects.
Collapse
Affiliation(s)
- Giulia Greco
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna,40126 Bologna, Italy
| | - Luca Ulfo
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum—Università di Bologna, 40126 Bologna, Italy
| | - Eleonora Turrini
- Dipartimento di Scienze per la Qualità della Vita, Alma Mater Studiorum—Università di Bologna, 47921 Rimini, Italy
| | - Alessia Marconi
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna,40126 Bologna, Italy
| | - Paolo Emidio Costantini
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum—Università di Bologna, 40126 Bologna, Italy
| | - Tainah Dorina Marforio
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna,40126 Bologna, Italy
| | - Edoardo Jun Mattioli
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna,40126 Bologna, Italy
| | - Matteo Di Giosia
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna,40126 Bologna, Italy
| | - Alberto Danielli
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum—Università di Bologna, 40126 Bologna, Italy
| | - Carmela Fimognari
- Dipartimento di Scienze per la Qualità della Vita, Alma Mater Studiorum—Università di Bologna, 47921 Rimini, Italy
- Correspondence: (C.F.); (M.C.)
| | - Matteo Calvaresi
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna,40126 Bologna, Italy
- Correspondence: (C.F.); (M.C.)
| |
Collapse
|
39
|
Xiong J, Xue EY, Wu Q, Lo PC, Ng DKP. A tetrazine-responsive isonitrile-caged photosensitiser for site-specific photodynamic therapy. J Control Release 2023; 353:663-674. [PMID: 36503072 DOI: 10.1016/j.jconrel.2022.12.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
We report herein a versatile and efficient bioorthogonal strategy to actualise targeted delivery and site-specific activation of photosensitisers for precise antitumoural photodynamic therapy. The strategy involved the use of an isonitrile-caged distyryl boron dipyrromethene-based photosensitiser, labelled as NC-DSBDP, of which the photoactivities could be specifically activated upon conversion of the meso ester substituent to carboxylate initiated by the [4 + 1] cycloaddition with a tetrazine derivative. By using two tetrazines conjugated with a galactose moiety or the GE11 peptide, labelled as gal-Tz and GE11-Tz, we could selectively label the cancer cells overexpressed with the asialoglycoprotein receptor and the epidermal growth factor receptor respectively. Upon encountering the internalised NC-DSBDP, these tetrazines triggered the "ester-to-carboxylate" transformation of this compound, activating its fluorescence and reactive oxygen species generation inside the target cells. The bioorthogonal activation was also demonstrated in vivo, leading to effective photo-eradication of the tumour in nude mice.
Collapse
Affiliation(s)
- Junlong Xiong
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Evelyn Y Xue
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Qianqian Wu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Pui-Chi Lo
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Dennis K P Ng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| |
Collapse
|
40
|
Mattioli EJ, Ulfo L, Marconi A, Pellicioni V, Costantini PE, Marforio TD, Di Giosia M, Danielli A, Fimognari C, Turrini E, Calvaresi M. Carrying Temoporfin with Human Serum Albumin: A New Perspective for Photodynamic Application in Head and Neck Cancer. Biomolecules 2022; 13:biom13010068. [PMID: 36671454 PMCID: PMC9855801 DOI: 10.3390/biom13010068] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022] Open
Abstract
Temoporfin (mTHPC) is approved in Europe for the photodynamic treatment of head and neck squamous cell carcinoma (HNSCC). Although it has a promising profile, its lipophilic character hampers the full exploitation of its potential due to high tendency of aggregation and a reduced ROS generation that compromise photodynamic therapy (PDT) efficacy. Moreover, for its clinical administration, mTHPC requires the presence of ethanol and propylene glycol as solvents, often causing adverse effects in the site of injection. In this paper we explored the efficiency of a new mTHPC formulation that uses human serum albumin (HSA) to disperse the photosensitizer in solution (mTHPC@HSA), investigating its anticancer potential in two HNSCC cell lines. Through a comprehensive characterization, we demonstrated that mTHPC@HSA is stable in physiological environment, does not aggregate, and is extremely efficient in PDT performance, due to its high singlet oxygen generation and the high dispersion as monomolecular form in HSA. This is supported by the computational identification of the specific binding pocket of mTHPC in HSA. Moreover, mTHPC@HSA-PDT induces cytotoxicity in both HNSCC cell lines, increasing intracellular ROS generation and the number of γ-H2AX foci, a cellular event involved in the global response to cellular stress. Taken together these results highlight the promising phototoxic profile of the complex, prompting further studies to assess its clinical potential.
Collapse
Affiliation(s)
- Edoardo Jun Mattioli
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy
| | - Luca Ulfo
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy
| | - Alessia Marconi
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy
| | - Valentina Pellicioni
- Dipartimento di Scienze per la Qualità della Vita, Alma Mater Studiorum—Università di Bologna, Corso d’Augusto 237, 47921 Rimini, Italy
| | - Paolo Emidio Costantini
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy
| | - Tainah Dorina Marforio
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy
| | - Matteo Di Giosia
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy
| | - Alberto Danielli
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy
| | - Carmela Fimognari
- Dipartimento di Scienze per la Qualità della Vita, Alma Mater Studiorum—Università di Bologna, Corso d’Augusto 237, 47921 Rimini, Italy
| | - Eleonora Turrini
- Dipartimento di Scienze per la Qualità della Vita, Alma Mater Studiorum—Università di Bologna, Corso d’Augusto 237, 47921 Rimini, Italy
- Correspondence: (E.T.); (M.C.)
| | - Matteo Calvaresi
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy
- Correspondence: (E.T.); (M.C.)
| |
Collapse
|
41
|
EGFR-Targeted Cellular Delivery of Therapeutic Nucleic Acids Mediated by Boron Clusters. Int J Mol Sci 2022; 23:ijms232314793. [PMID: 36499115 PMCID: PMC9740766 DOI: 10.3390/ijms232314793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
New boron carriers with high boron content and targeted cancer-cell delivery are considered the first choice for boron neutron capture therapy (BNCT) for cancer treatment. Previously, we have shown that composites of antisense oligonucleotide and boron clusters are functional nanoparticles for the downregulation of expression of epidermal growth factor receptor (EGFR) and can be loaded into EGFR-overexpressing cancer cells without a transfection factor. In this study, we hypothesize that free cellular uptake is mediated by binding and activation of the EGFR by boron clusters. Proteomic analysis of proteins pulled-down from various EGFR-overexpressing cancer cells using short oligonucleotide probes, conjugated to 1,2-dicarba-closo-dodecaborane (1,2-DCDDB, [C2B10H12]) and [(3,3'-Iron-1,2,1',2'-dicarbollide)-] (FESAN, [Fe(C2B9H11)2]-), evidenced that boron cage binds to EGFR subdomains. Moreover, inductively coupled plasma mass spectrometry (ICP MS) and fluorescence microscopy analyses confirmed that FESANs-highly decorated B-ASOs were efficiently delivered and internalized by EGFR-overexpressing cells. Antisense reduction of EGFR in A431 and U87-MG cells resulted in decreased boron accumulation compared to control cells, indicating that cellular uptake of B-ASOs is related to EGFR-dependent internalization. The data obtained suggest that EGFR-mediated cellular uptake of B-ASO represents a novel strategy for cellular delivery of therapeutic nucleic acids (and possibly other medicines) conjugated to boron clusters.
Collapse
|
42
|
A phthalocyanine-based photosensitizer for effectively combating triple negative breast cancer with enhanced photodynamic anticancer activity and immune response. Eur J Med Chem 2022; 241:114644. [PMID: 35939997 DOI: 10.1016/j.ejmech.2022.114644] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 01/01/2023]
Abstract
Although photodynamic therapy (PDT) has attracted great interest, the photosensitizers in clinical had weak inhibition on metastasis and invasion of cancers. Additionally the immune response induced by PDT was insufficient to eradicate cancer. Herein, indoximod, an inhibitor of indoleamine 2,3-dioxygenase (IDO), is introduced to concatenate with zinc phthalocyanines (ZnPc) for effectively overcoming above inadequacy. Due to indoximod moiety, photosensitizer 1-MT-Pc can obtain enhanced intracellular uptake and high reactive oxygen species (ROS) generation. More impressively, 1-MT-Pc can achieve remarkable photocytotoxicity towards TNBC cells and negligible damage to normal cells. Meanwhile, 1-MT-Pc effectively inhibits metastasis and invasion of TNBC cells. Importantly, 1-MT-Pc exhibit elevated inhibitory effect on 4T1 tumor by enhanced PDT and immunotherapy.
Collapse
|
43
|
Ivanova-Radkevich VI. Biochemical Basis of Selective Accumulation and Targeted Delivery of Photosensitizers to Tumor Tissues. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1226-1242. [PMID: 36509715 DOI: 10.1134/s0006297922110025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The method of photodynamic therapy for treatment of malignant neoplasms is based on the selective of accumulation of photosensitizers in the tumor tissue. Insufficient selectivity of photosensitizers in relation to pathologically altered tissues and generalized distribution throughout the body leads to the development of severe toxic effects, including skin phototoxicity. The mechanisms underlying selectivity of photosensitizers for tumor tissue include selective binding to blood proteins and lipoproteins (considering that the number of receptors for those is increased on tumor cell membranes), uptake by macrophages, better solubility at low pH (acidic pH is characteristic of tumor cells), and other mechanisms. At present, increase in the efficiency of photodynamic therapy is largely associated with the additional targeting of photosensitizers to tumor tissues. Targeted delivery strategies are based on the differences in metabolism and gene expression profiles between the tumor and healthy cells. There are differences in expression of receptors, proteases, or transmembrane transporters in these cells. In particular, accelerated metabolism in many types of tumors leads to overexpression of receptors for epidermal growth factor, folic acid, transferrin, and a number of other compounds. This review considers biochemical basis for the selective accumulation of various classes of photosensitizers in tumors (chlorins, phthalocyanines, 5-aminolevulinic acid derivatives, etc.) and discusses various strategies of targeted delivery with emphasis on conjugation of photosensitizers with the receptor ligands overexpressed in tumor cells.
Collapse
|
44
|
Cantelli A, Malferrari M, Mattioli EJ, Marconi A, Mirra G, Soldà A, Marforio TD, Zerbetto F, Rapino S, Di Giosia M, Calvaresi M. Enhanced Uptake and Phototoxicity of C 60@albumin Hybrids by Folate Bioconjugation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193501. [PMID: 36234629 PMCID: PMC9565331 DOI: 10.3390/nano12193501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 06/12/2023]
Abstract
Fullerenes are considered excellent photosensitizers, being highly suitable for photodynamic therapy (PDT). A lack of water solubility and low biocompatibility are, in many instances, still hampering the full exploitation of their potential in nanomedicine. Here, we used human serum albumin (HSA) to disperse fullerenes by binding up to five fullerene cages inside the hydrophobic cavities. Albumin was bioconjugated with folic acid to specifically address the folate receptors that are usually overexpressed in several solid tumors. Concurrently, tetramethylrhodamine isothiocyanate, TRITC, a tag for imaging, was conjugated to C60@HSA in order to build an effective phototheranostic platform. The in vitro experiments demonstrated that: (i) HSA disperses C60 molecules in a physiological environment, (ii) HSA, upon C60 binding, maintains its biological identity and biocompatibility, (iii) the C60@HSA complex shows a significant visible-light-induced production of reactive oxygen species, and (iv) folate bioconjugation improves both the internalization and the PDT-induced phototoxicity of the C60@HSA complex in HeLa cells.
Collapse
|
45
|
Tumor Cell-Specific Retention and Photodynamic Action of Erlotinib-Pyropheophorbide Conjugates. Int J Mol Sci 2022; 23:ijms231911081. [PMID: 36232384 PMCID: PMC9569946 DOI: 10.3390/ijms231911081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
To enhance uptake of photosensitizers by epithelial tumor cells by targeting these to EGFR, pyropheophorbide derivatives were synthesized that had erlotinib attached to different positions on the macrocycle. Although the addition of erlotinib reduced cellular uptake, several compounds showed prolonged cellular retention and maintained photodynamic efficacy. The aim of this study was to identify whether erlotinib moiety assists in tumor targeting through interaction with EGFR and whether this interaction inhibits EGFR kinase activity. The activity of the conjugates was analyzed in primary cultures of human head and neck tumor cells with high-level expression of EGFR, and in human carcinomas grown as xenografts in mice. Uptake of erlotinib conjugates did not correlate with cellular expression of EGFR and none of the compounds exerted EGFR-inhibitory activity. One derivative with erlotinib at position 3, PS-10, displayed enhanced tumor cell-specific retention in mitochondria/ER and improved PDT efficacy in a subset of tumor cases. Moreover, upon treatment of the conjugates with therapeutic light, EGFR-inhibitory activity was recovered that attenuated EGFR signal-dependent tumor cell proliferation. This finding suggests that tumor cell-specific deposition of erlotinib-pyropheophorbides, followed by light triggered release of EGFR-inhibitory activity, may improve photodynamic therapy by attenuating tumor growth that is dependent on EGFR-derived signals.
Collapse
|
46
|
Kadkhoda J, Tarighatnia A, Nader ND, Aghanejad A. Targeting mitochondria in cancer therapy: Insight into photodynamic and photothermal therapies. Life Sci 2022; 307:120898. [PMID: 35987340 DOI: 10.1016/j.lfs.2022.120898] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 10/15/2022]
Abstract
Mitochondria are critical multifunctional organelles in cells that generate power, produce reactive oxygen species, and regulate cell survival. Mitochondria that are dysfunctional are eliminated via mitophagy as a way to protect cells under moderate stress and physiological conditions. However, mitophagy is a double-edged sword and can trigger cell death under severe stresses. By targeting mitochondria, photodynamic (PD) and photothermal (PT) therapies may play a role in treating cancer. These therapeutic modalities alter mitochondrial membrane potential, thereby affecting respiratory chain function and generation of reactive oxygen species promotes signaling pathways for cell death. In this regard, PDT, PTT, various mitochondrion-targeting agents and therapeutic methods could have exploited the vital role of mitochondria as the doorway to regulated cell death. Targeted mitochondrial therapies would provide an excellent opportunity for effective mitochondrial injury and accurate tumor erosion. Herein, we summarize the recent progress on the roles of PD and PT treatments in regulating cancerous cell death in relation to mitochondrial targeting and the signaling pathways involved.
Collapse
Affiliation(s)
- Jamileh Kadkhoda
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Tarighatnia
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Nader D Nader
- Department of Anesthesiology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, United States of America
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
47
|
Shi X, Chen D, Liu G, Zhang H, Wang X, Wu Z, Wu Y, Yu F, Xu Q. Application of Elastin-Like Polypeptide in Tumor Therapy. Cancers (Basel) 2022; 14:cancers14153683. [PMID: 35954346 PMCID: PMC9367306 DOI: 10.3390/cancers14153683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Elastin-like Polypeptide (ELP) are widely applied in protein purification, drug delivery, tissue engineering, and even tumor therapy. Recent studies show that usage of ELP has made great progress in combination with peptide drugs or antibody drugs. The combination of ELP and photosensitizer in cancer therapy or imaging has made more progress and needs to be summarized. In this review, we summarize the specific application of ELP in cancer therapy, especially the latest developments in the combined use of ELP with photosensitizers. We seek to provide the most recent understanding of ELP and its new application in combination with Photosensitizer. Abstract Elastin-like polypeptides (ELPs) are stimulus-responsive artificially designed proteins synthesized from the core amino acid sequence of human tropoelastin. ELPs have good biocompatibility and biodegradability and do not systemically induce adverse immune responses, making them a suitable module for drug delivery. Design strategies can equip ELPs with the ability to respond to changes in temperature and pH or the capacity to self-assemble into nanoparticles. These unique tunable biophysicochemical properties make ELPs among the most widely studied biopolymers employed in protein purification, drug delivery, tissue engineering and even in tumor therapy. As a module for drug delivery and as a carrier to target tumor cells, the combination of ELPs with therapeutic drugs, antibodies and photo-oxidation molecules has been shown to result in improved pharmacokinetic properties (prolonged half-life, drug targeting, cell penetration and controlled release) while restricting the cytotoxicity of the drug to a confined infected site. In this review, we summarize the latest developments in the application methods of ELP employed in tumor therapy, with a focus on its conjugation with peptide drugs, antibodies and photosensitizers.
Collapse
Affiliation(s)
- Xianggang Shi
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; (X.S.); (D.C.); (Y.W.)
| | - Dongfeng Chen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; (X.S.); (D.C.); (Y.W.)
| | - Guodong Liu
- Department of Gastroenterology, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Suqian 223800, China; (G.L.); (H.Z.); (X.W.)
| | - Hailing Zhang
- Department of Gastroenterology, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Suqian 223800, China; (G.L.); (H.Z.); (X.W.)
| | - Xiaoyan Wang
- Department of Gastroenterology, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Suqian 223800, China; (G.L.); (H.Z.); (X.W.)
| | - Zhi Wu
- Jiangsu Key Laboratory of High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225306, China;
| | - Yan Wu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; (X.S.); (D.C.); (Y.W.)
| | - Feng Yu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; (X.S.); (D.C.); (Y.W.)
- Correspondence: (F.Y.); (Q.X.); Tel.: +86-139-5292-3250 (F.Y.); +86-159-5281-6017 (Q.X.)
| | - Qinggang Xu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; (X.S.); (D.C.); (Y.W.)
- Correspondence: (F.Y.); (Q.X.); Tel.: +86-139-5292-3250 (F.Y.); +86-159-5281-6017 (Q.X.)
| |
Collapse
|
48
|
Fukushima H, Turkbey B, Pinto PA, Furusawa A, Choyke PL, Kobayashi H. Near-Infrared Photoimmunotherapy (NIR-PIT) in Urologic Cancers. Cancers (Basel) 2022; 14:2996. [PMID: 35740662 PMCID: PMC9221010 DOI: 10.3390/cancers14122996] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022] Open
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a novel molecularly-targeted therapy that selectively kills cancer cells by systemically injecting an antibody-photoabsorber conjugate (APC) that binds to cancer cells, followed by the application of NIR light that drives photochemical transformations of the APC. APCs are synthesized by selecting a monoclonal antibody that binds to a receptor on a cancer cell and conjugating it to IRDye700DX silica-phthalocyanine dye. Approximately 24 h after APC administration, NIR light is delivered to the tumor, resulting in nearly-immediate necrotic cell death of cancer cells while causing no harm to normal tissues. In addition, NIR-PIT induces a strong immunologic effect, activating anti-cancer immunity that can be further boosted when combined with either immune checkpoint inhibitors or immune suppressive cell-targeted (e.g., regulatory T cells) NIR-PIT. Currently, a global phase III study of NIR-PIT in recurrent head and neck squamous cell carcinoma is ongoing. The first APC and NIR laser systems were approved for clinical use in September 2020 in Japan. In the near future, the clinical applications of NIR-PIT will expand to other cancers, including urologic cancers. In this review, we provide an overview of NIR-PIT and its possible applications in urologic cancers.
Collapse
Affiliation(s)
- Hiroshi Fukushima
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute (NIH), Bethesda, MD 20892, USA; (H.F.); (B.T.); (A.F.); (P.L.C.)
| | - Baris Turkbey
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute (NIH), Bethesda, MD 20892, USA; (H.F.); (B.T.); (A.F.); (P.L.C.)
| | - Peter A. Pinto
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute (NIH), Bethesda, MD 20892, USA;
| | - Aki Furusawa
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute (NIH), Bethesda, MD 20892, USA; (H.F.); (B.T.); (A.F.); (P.L.C.)
| | - Peter L. Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute (NIH), Bethesda, MD 20892, USA; (H.F.); (B.T.); (A.F.); (P.L.C.)
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute (NIH), Bethesda, MD 20892, USA; (H.F.); (B.T.); (A.F.); (P.L.C.)
| |
Collapse
|
49
|
Reptiles as Promising Sources of Medicinal Natural Products for Cancer Therapeutic Drugs. Pharmaceutics 2022; 14:pharmaceutics14040874. [PMID: 35456708 PMCID: PMC9025323 DOI: 10.3390/pharmaceutics14040874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/14/2022] Open
Abstract
Natural products have historically played an important role as a source of therapeutic drugs for various diseases, and the development of medicinal natural products is still a field with high potential. Although diverse drugs have been developed for incurable diseases for several decades, discovering safe and efficient anticancer drugs remains a formidable challenge. Reptiles, as one source of Asian traditional medicines, are known to possess anticancer properties and have been used for a long time without a clarified scientific background. Recently, it has been reported that extracts, crude peptides, sera, and venom isolated from reptiles could effectively inhibit the survival and proliferation of various cancer cells. In this article, we summarize recent studies applying ingredients derived from reptiles in cancer therapy and discuss the difficulties and prospective development of natural product research.
Collapse
|
50
|
He X, Hu N, Yang S, Yang Z, Hu L, Wang X, Wen N. Nimotuzumab shows an additive effect to inhibit cell growth of ALA-PDT treated oral cancer cells. Photodiagnosis Photodyn Ther 2022; 38:102817. [PMID: 35331955 DOI: 10.1016/j.pdpdt.2022.102817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/13/2022] [Accepted: 03/17/2022] [Indexed: 12/17/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is characterized by severe functional impairment and a poor prognosis. The epidermal growth factor receptor (EGFR) is highly expressed in OSCC and is a promising target for cancer therapy. In addition, aminolevulinic acid-induced photodynamic therapy (ALA-PDT) has produced robust clinical effects and showed some advantages over radiotherapy in oral cancer. Here, an EGFR inhibitor, nimotuzumab, was administered to 2 OSCC cell lines, CAL-27 and SCC-25, treated with ALA-PDT. Cell growth, apoptosis, and reactive oxygen species (ROS) generation were used to measure the antitumor activity of the combination therapy. The in vivo effect of nimotuzumab plus ALA-PDT was done using a mouse OSCC xenograft model (SCC-25). EGFR expression was further compared by Western blotting in different groups. We observed that nimotuzumab combined with ALA-PDT could enhance inhibition of OSCC cell growth in vitro and in vivo. We also observed an enhanced effect after combination on cell apoptosis in CAL-27 and SCC-25 cells. Furthermore, combined therapy significantly reduced the protein expression levels of EGFR in vitro. However, we observed that nimotuzumab plus ALA-PDT did not increase ROS generation substantially in OSCC cells compared to the ALA-PDT group alone. These observations indicate that nimotuzumab combined with ALA-PDT has valuable applications for OSCC treatment.
Collapse
Affiliation(s)
- Xin He
- Medical school of Chinese PLA, Beijing 1000853, China; Institute of Stomatology, The first Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Nan Hu
- Institute of Stomatology, The first Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Shuo Yang
- Institute of Stomatology, The first Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhen Yang
- Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Lulu Hu
- Arrail Dental Group, Beijing 100081, China
| | - Xing Wang
- Foshan (Southern China) Institute for New Materials, Foshan 528220, China.
| | - Ning Wen
- Institute of Stomatology, The first Medical Center, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|