1
|
Gao X, Tang X, Tu Z, Yu J, Bao Y, Long G, Sheu WC, Wu H, Liu J, Zhou J. Tertiary amine modification enables triterpene nanoparticles to target the mitochondria and treat glioblastoma via pyroptosis induction. Biomaterials 2025; 317:123035. [PMID: 39731842 PMCID: PMC11827167 DOI: 10.1016/j.biomaterials.2024.123035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 12/03/2024] [Accepted: 12/18/2024] [Indexed: 12/30/2024]
Abstract
Glioblastoma (GBM), the most common primary brain tumor, lacks effective treatments. Emerging evidence suggests mitochondria as a promising therapeutic target, albeit successfully targeting represents a major challenge. Recently, we discovered a group of triterpenes that can self-assemble into nanoparticles (NPs) for cancer treatment. However, unmodified triterpene NPs lack affinity for mitochondria. In this study, using oleanolic acid (OA) as an example, we demonstrated that tertiary amine modification enabled triterpene NPs to selectively target the mitochondria through interaction with translocase of outer mitochondrial membrane 70 (TOM70) leading to effective killing of GBM cells via pyroptosis. We showed that the NPs could be engineered for preferentially penetrating brain tumors through surface conjugation of iRGD, and treatment with the resulting NPs significantly prolonged the survival of tumor-bearing mice. We found that the efficacy could be further improved by encapsulating lonidamine, a mitochondrial hexokinase inhibitor. Furthermore, the observed mitochondria targeting effect through tertiary amine modification could be extended to other triterpenes, including lupeol and glycyrrhetinic acid. Collectively, this study reveals a novel strategy for targeting the mitochondria through tertiary amine modification of triterpenes, offering a promising avenue for the effective treatment of GBM.
Collapse
Affiliation(s)
- Xingchun Gao
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Xiangjun Tang
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Zewei Tu
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Jiang Yu
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Youmei Bao
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Gretchen Long
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Wendy C Sheu
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06510, USA
| | - Haoan Wu
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Jia Liu
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Jiangbing Zhou
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, 06510, USA.
| |
Collapse
|
2
|
Sanchez-Aranguren L, Al Tahan MA, Uppal M, Juvale P, Marwah MK. Mitochondrial-targeted liposome-based drug delivery - therapeutic potential and challenges. J Drug Target 2025; 33:575-586. [PMID: 39620468 DOI: 10.1080/1061186x.2024.2437440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/10/2024]
Abstract
Liposomes, as nanocarriers for therapeutics, are a prominent focus in translational medicine. Given their biocompatibility, liposomes are suitable drug delivery systems rendering highly efficient therapeutic outcomes with minimal off-site toxicity. In different scenarios of human disease, it is essential not only to maintain therapeutic drug levels but also to target them to the appropriate intracellular compartment. Mitochondria regulate cellular signalling, calcium balance, and energy production, playing a crucial role in various human diseases. The notion of focusing on mitochondria for targeted drug delivery was proposed several decades ago, yet the practical application of this idea and its translation to clinical use is still in development. Mitochondrial-targeted liposomes offer an alternative to standard drug delivery systems, potentially reducing off-target interactions, side effects, and drug dosage or frequency. To advance this field, it is imperative to integrate various disciplines such as efficient chemical design, pharmacology, pharmaceutics, and cell biology. This review summarises scientific advances in the design, development and characterisation of novel liposome-based drug delivery systems targeting the mitochondria while revisiting their translational potential.
Collapse
Affiliation(s)
- Lissette Sanchez-Aranguren
- College of Health and Life Sciences, Aston Medical School, Aston University, Birmingham, UK
- Translational Medicine Research Group, Aston Medical School, Aston University, Birmingham, UK
| | - Mohamad Anas Al Tahan
- College of Health and Life Sciences, Aston Medical School, Aston University, Birmingham, UK
- Translational Medicine Research Group, Aston Medical School, Aston University, Birmingham, UK
| | - Muhammad Uppal
- College of Health and Life Sciences, Aston Medical School, Aston University, Birmingham, UK
| | - Parag Juvale
- College of Health and Life Sciences, Aston Medical School, Aston University, Birmingham, UK
| | - Mandeep Kaur Marwah
- College of Health and Life Sciences, Aston Medical School, Aston University, Birmingham, UK
- Translational Medicine Research Group, Aston Medical School, Aston University, Birmingham, UK
| |
Collapse
|
3
|
Thompson AD, Hurtado KA, Janda J, Scholpa NE, Rohrer B, Schnellmann RG. MC16 promotes mitochondrial biogenesis and ameliorates acute and diabetic nephropathy. Br J Pharmacol 2025; 182:1912-1929. [PMID: 39887970 DOI: 10.1111/bph.17440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/28/2024] [Accepted: 09/10/2024] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND AND PURPOSE Kidney disease (KD) is a leading cause of mortality worldwide, affecting 〉10% of the global population. Two of the most common causes of KD are diabetes and acute kidney injury (AKI), both of which induce mitochondrial dysfunction resulting in renal proximal tubular damage/necrosis. Thus, pharmacological induction of mitochondrial biogenesis (MB) may provide a therapeutic strategy to block the onset/progression of KD. Here, we evaluated the pharmacological and potential therapeutic effects of a novel MB-inducing oxindole agent, MC16. EXPERIMENTAL APPROACH Primary cultures of rabbit renal proximal tubule cells (RPTCs) were used to evaluate the cellular signalling and MB-inducing effects of MC16. Mice were used to determine the MB-inducing effects of MC16 in vivo, and the metabolic effects of MC16 on the renal cortical metabolome. Mouse models of AKI and diabetic kidney disease (DKD) were used to demonstrate the therapeutic potential of MC16 to ameliorate acute and diabetic nephropathy. KEY RESULTS MC16 activated the PI3K-AKT-eNOS-FOXO1 axis and induced MB in RPTCs. MC16 induced MB and altered the renal cortical metabolome of mice. MC16 accelerated renal recovery, reduced vascular permeability, and diminished mitochondrial dysfunction following AKI. MC16 decreased diabetes-induced renal swelling, improved renal and mitochondrial function, and diminished interstitial fibrosis in DKD mouse models. CONCLUSION AND IMPLICATIONS MC16 is a novel compound that induces MB and ameliorates acute and diabetic nephropathy in mice. This study underscores that targeting MB following the onset of renal/metabolic insults may provide a therapeutic strategy to mitigate the onset and/or progression of KD.
Collapse
Affiliation(s)
- Austin D Thompson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
- U.S. Department of Veterans Affairs, Southern Arizona VA Health Care System, Tucson, Arizona, USA
- Southwest Environmental Health Science Center, University of Arizona, Tucson, Arizona, USA
| | - Kevin A Hurtado
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
- Southwest Environmental Health Science Center, University of Arizona, Tucson, Arizona, USA
| | - Jaroslav Janda
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
| | - Natalie E Scholpa
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
- U.S. Department of Veterans Affairs, Southern Arizona VA Health Care System, Tucson, Arizona, USA
| | - Baerbel Rohrer
- MitoChem Therapeutics, Inc., Charleston, South Carolina, USA
- Department of Ophthalmology, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
- U.S. Department of Veterans Affairs, Ralph H Johnson VA Health Care System, Charleston, South Carolina, USA
| | - Rick G Schnellmann
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
- U.S. Department of Veterans Affairs, Southern Arizona VA Health Care System, Tucson, Arizona, USA
- Southwest Environmental Health Science Center, University of Arizona, Tucson, Arizona, USA
- MitoChem Therapeutics, Inc., Charleston, South Carolina, USA
| |
Collapse
|
4
|
Famurewa AC, Akhigbe RE, George MY, Adekunle YA, Oyedokun PA, Akhigbe TM, Fatokun AA. Mechanisms of ferroptotic and non-ferroptotic organ toxicity of chemotherapy: protective and therapeutic effects of ginger, 6-gingerol and zingerone in preclinical studies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4747-4778. [PMID: 39636404 PMCID: PMC11985630 DOI: 10.1007/s00210-024-03623-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Chemotherapy (CT) is one of the flagship options for the treatment of cancers worldwide. It involves the use of cytotoxic anticancer agents to kill or inhibit the proliferation of cancer cells. However, despite its clinical efficacy, CT triggers side effect toxicities in several organs, which may impact cancer patient's quality of life and treatment outcomes. While the side effect toxicity is consistent with non-ferroptotic mechanisms involving oxidative stress, inflammation, mitochondrial impairment and other aberrant signalling leading to apoptosis and necroptosis, recent studies show that ferroptosis, a non-apoptotic, iron-dependent cell death pathway, is also involved in the pathophysiology of CT organ toxicity. CT provokes organ ferroptosis via system Xc-/GPX-4/GSH/SLC7A11 axis depletion, ferritinophagy, iron overload, lipid peroxidation and upregulation of ferritin-related proteins. Cisplatin (CP) and doxorubicin (DOX) are common CT drugs indicated to induce ferroptosis in vitro and in vivo. Studies have explored natural preventive and therapeutic strategies using ginger rhizome and its major bioactive compounds, 6-gingerol (6G) and zingerone (ZG), to combat mechanisms of CT side effect toxicity. Ginger extract, 6G and ZG mitigate non-ferroptotic oxidative inflammation, apoptosis and mitochondrial dysfunction mechanisms of CT side effect toxicity, but their effects on CT-induced ferroptosis remain unclear. Systematic investigations are, therefore, needed to unfold the roles of ginger, 6G and ZG on ferroptosis involved in CT side effect toxicity, as they are potential natural agents for the prevention of CT toxicity. This review reveals the ferroptotic and non-ferroptotic toxicity mechanisms of CT and the protective mechanisms of ginger, 6G and ZG against CT-induced, ferroptotic and non-ferroptotic organ toxicities.
Collapse
Affiliation(s)
- Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University Ndufu-Alike, Ikwo, Nigeria.
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK.
| | - Roland E Akhigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
| | - Mina Y George
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Yemi A Adekunle
- Department of Pharmaceutical and Medicinal Chemistry, College of Pharmacy, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Precious A Oyedokun
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
| | - Tunmise M Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
- Breeding and Genetics Unit, Department of Agronomy, Osun State University, Osogbo, Osun State, Nigeria
| | - Amos A Fatokun
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| |
Collapse
|
5
|
Zhao X, Wu G, Tao X, Dong D, Liu J. Targeted mitochondrial therapy for pancreatic cancer. Transl Oncol 2025; 54:102340. [PMID: 40048984 PMCID: PMC11928980 DOI: 10.1016/j.tranon.2025.102340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/05/2025] [Accepted: 02/27/2025] [Indexed: 03/18/2025] Open
Abstract
Pancreatic cancer (PC) is a highly invasive tumor characterized by delayed diagnosis, rapid progress, and resistance to chemotherapy. Mitochondria, as the "power chamber" of cells, not only play a central role in energy metabolism but also participate in the production of reactive oxygen species (ROS), calcium signaling, regulation, and differentiation of the cell cycle. The abnormal activity of mitochondria is closely related to the development of PC. In this paper, we discussed the key role of mitochondria in PC, including mitochondrial DNA, mitochondrial biogenesis, mitochondrial dynamics, metabolic regulation, ROS generation, and mitochondrial-dependent apoptosis. We elaborated on the importance of these mitochondrial mechanisms in the development of PC and emphasized the potential of targeted mitochondrial therapy strategies for these mechanisms in the treatment of PC. In addition, this article also reviews the latest developments in innovative drug carriers such as cell-penetrating peptides, nucleic acid aptamers, and nanomaterials, which can achieve precise localization of mitochondria and drug delivery. Therefore, this article comprehensively analyzed the important role of mitochondria in the treatment of PC and clarified the effectiveness and necessity of targeting mitochondria in the treatment of PC.
Collapse
Affiliation(s)
- Xinya Zhao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China; College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Guoyu Wu
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xufeng Tao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Deshi Dong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Jing Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| |
Collapse
|
6
|
Thompson AD, Victor Santiago Raj P, Scholpa NE, Schnellmann RG. Repurposing mitochondria-targeted therapeutics for kidney diseases. Kidney Int 2025; 107:617-627. [PMID: 39855593 PMCID: PMC12013279 DOI: 10.1016/j.kint.2024.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/29/2024] [Accepted: 12/09/2024] [Indexed: 01/27/2025]
Abstract
The kidney is one of the most metabolically demanding organs in the human body and requires a large amount of energy, in the form of adenosine triphosphate (ATP), to perform and maintain normal kidney functions. To meet this energy demand, proximal tubule cells within the nephron segments of the renal cortex are mitochondrially dense with high oxygen consumption rates. Mitochondria are complex organelles involved in diverse cellular and molecular functions, including the production of ATP, calcium homeostasis, and phospholipid regulation. Mitochondrial dysfunction is critical in the onset and progression of kidney disease. Dysfunctional renal mitochondria have been linked with alterations in redox homeostasis, impaired bioenergetics, oxidative stress, and inflammation, all of which result in renal cell injury and death, as well as fibrotic accumulation in kidney injury and disease. As such, interest in the development and/or repurposing of mitochondria-targeted therapeutics for the potential treatment of kidney diseases has recently surged. Although novel therapeutics and promising new drug targets have been identified, drug repurposing for kidney diseases offers numerous advantages over traditional drug discovery initiatives, including reduced cost, time of therapeutic development, and preclinical testing, in addition to known pharmacokinetics/pharmacodynamics and safety profiles. Here, we provide an overview of mitochondrial dysfunction in the context of kidney injury and disease and shed light on promising mitochondria-targeted therapeutic agents that display repurposing potential for the restoration of kidney function and/or acceleration of renal recovery.
Collapse
Affiliation(s)
- Austin D Thompson
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA; Southern Arizona VA Health Care System, Tucson, Arizona, USA; Southwest Environmental Health Science Center, University of Arizona, Tucson, Arizona, USA
| | - Paul Victor Santiago Raj
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
| | - Natalie E Scholpa
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA; Southern Arizona VA Health Care System, Tucson, Arizona, USA
| | - Rick G Schnellmann
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA; Southern Arizona VA Health Care System, Tucson, Arizona, USA; Southwest Environmental Health Science Center, University of Arizona, Tucson, Arizona, USA.
| |
Collapse
|
7
|
de Oliveira THC, Gonçalves GKN. Liver ischemia reperfusion injury: Mechanisms, cellular pathways, and therapeutic approaches. Int Immunopharmacol 2025; 150:114299. [PMID: 39961215 DOI: 10.1016/j.intimp.2025.114299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/28/2025] [Accepted: 02/11/2025] [Indexed: 03/03/2025]
Abstract
Liver ischemia-reperfusion injury (LIRI) is a critical challenge in liver transplantation, resection, and trauma surgeries, leading to significant hepatic damage due to oxidative stress, inflammation, and mitochondrial dysfunction. This review explores the cellular and molecular mechanisms underlying LIRI, focusing on ATP depletion, mitochondrial dysfunction, and the involvement of reactive oxygen species (ROS). Inflammatory pathways, including the activation of nuclear factor-kappa B (NF-κB) and the NLRP3 inflammasome, as well as pro-inflammatory cytokines such as TNF-α and IL-1β, play a crucial role in exacerbating tissue damage. Various types of cell death, including necrosis, apoptosis, necroptosis, pyroptosis, ferroptosis and cuproptosis are also discussed. Therapeutic interventions targeting these mechanisms, such as antioxidants, anti-inflammatories, mitochondrial protectors, and signaling modulators, have shown promise in pre-clinical studies. However, translating these findings into clinical practice faces challenges due to the limitations of animal models and the complexity of human responses. Emerging therapies, such as RNA-based treatments, genetic editing, and stem cell therapies, offer potential breakthroughs in LIRI management. This review highlights the need for further research and the development of innovative therapeutic approaches to improve clinical outcomes.
Collapse
|
8
|
Pradeepkiran JA, Islam MA, Sehar U, Reddy AP, Vijayan M, Reddy PH. Impact of diet and exercise on mitochondrial quality and mitophagy in Alzheimer's disease. Ageing Res Rev 2025; 108:102734. [PMID: 40120948 DOI: 10.1016/j.arr.2025.102734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/26/2024] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder that affects millions of people worldwide. It is characterized by the accumulation of beta-amyloid and phosphorylated tau, synaptic damage, and mitochondrial abnormalities in the brain, leading to the progressive loss of cognitive function and memory. In AD, emerging research suggests that lifestyle factors such as a healthy diet and regular exercise may play a significant role in delaying the onset and progression of the disease. Mitochondria are often referred to as the powerhouse of the cell, as they are responsible for producing the energy to cells, including neurons to maintain cognitive function. Our article elaborates on how mitochondrial quality and function decline with age and AD, leading to an increase in oxidative stress and a decrease in ATP production. Decline in mitochondrial quality can impair cellular functions contributing to the development and progression of disease with the loss of neuronal functions in AD. This article also covered mitophagy, the process by which damaged or dysfunctional mitochondria are selectively removed from the cell to maintain cellular homeostasis. Impaired mitophagy has been implicated in the progression and pathogenesis of AD. We also discussed the impact of impaired mitophagy implicated in AD, as the accumulation of damaged mitochondria can lead to increased oxidative stress. We expounded how dietary interventions and exercise can help to improve mitochondrial quality, and mitochondrial function and enhance mitophagy in AD. A diet rich in antioxidants, polyphenols, and mitochondria-targeted small molecules has been shown to enhance mitochondrial function and protect against oxidative stress, particularly in neurons with aged and mild cognitively impaired subjects and AD patients. Promoting a healthy lifestyle, mainly balanced diet and regular exercise that support mitochondrial health, in an individual can potentially delay the onset and progression of AD. In conclusion, a healthy diet and regular exercise play a crucial role in maintaining mitochondrial quality and mitochondrial function, in turn, enhancing mitophagy and synaptic activities that delay AD in the elderly populations.
Collapse
Affiliation(s)
| | - Md Ariful Islam
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Arubala P Reddy
- Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX, USA
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
9
|
Mohamed HRH, Elberry YA, Magdy H, Ismail M, Michael M, Eltayeb N, Safwat G. Erbium oxide nanoparticles induce potent cell death, genomic instability and ROS-mitochondrial dysfunction-mediated apoptosis in U937 lymphoma cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03962-x. [PMID: 40072553 DOI: 10.1007/s00210-025-03962-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025]
Abstract
Erbium oxide nanoparticles (Er2O3-NPs) have attracted significant attention for their unique physicochemical properties, including high surface area, biocompatibility, and stability. However, the impact of Er2O3-NPs on lymphoma cells (LCs) has not been explored, making this an innovative avenue for exploration. Therefore, the current study aimed to explore the influence of Er2O3-NPs on cell viability, genomic and mitochondrial DNA integrity, reactive oxygen species (ROS) generation and apoptosis induction in human U937 LCs. Er2O3-NPs were characterized using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The effect of Er2O3-NPs on cell viability and genomic DNA integrity was estimated after 48 h using the WST-1 cytotoxicity and alkaline Comet assays, respectively. The generation level of reactive oxygen species (ROS) and mitochondrial membrane potential were also analyzed. Flow Cytometry was used to assess apoptosis induction and quantitative RT-PCR was conducted to measure the apoptotic (p53), anti-apoptotic (Bcl2), and mitochondrial (ND3) gene expression. Our results demonstrated the purity and well distribution of Er2O3-NPs and revealed that Er2O3-NPs induce strong cytotoxicity on U937 cells, as evidenced by a concentration-dependent reduction in cell viability with an IC50 value of 3.20 µg/ml. Exposure of U937 LCs to the IC50 concentration (3.20 µg/ml) of Er2O3-NPs promoted excessive ROS generation, leading to dramatic damage to genomic DNA and mitochondrial membrane potential, as well as marked dysregulation of apoptotic (p53), anti-apoptotic (Bcl2) and mitochondrial ND3 gene expression. This cascade of events triggered both apoptosis and necrosis in Er2O3-NPs-treated U937 LCs. In conclusion, these findings highlight the strong in vitro cytotoxic potential of Er2O3-NPs against highly aggressive U937 LCs, mediated by excessive ROS production, which leads to severe genomic DNA and mitochondrial membrane damage, as well as profound alterations in apoptotic, anti-apoptotic and mitochondrial gene expression. Future research is needed to further investigate the potential use of Er2O3-NPs in treating lymphoma and to optimize their therapeutic efficacy.
Collapse
Affiliation(s)
- Hanan R H Mohamed
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt.
| | - Yusuf Ahmed Elberry
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), 6th of October City, Egypt
| | - Hagar Magdy
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), 6th of October City, Egypt
| | - Maryam Ismail
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), 6th of October City, Egypt
| | - Maivel Michael
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), 6th of October City, Egypt
| | - Nourhan Eltayeb
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), 6th of October City, Egypt
| | - Gehan Safwat
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), 6th of October City, Egypt
| |
Collapse
|
10
|
Rinaldi R, Laurino S, Salvia R, Russi S, De Stefano F, Galasso R, Sgambato A, Scieuzo C, Falco G, Falabella P. Biological Activity of Peptide Fraction Derived from Hermetia illucens L. (Diptera: Stratiomyidae) Larvae Haemolymph on Gastric Cancer Cells. Int J Mol Sci 2025; 26:1885. [PMID: 40076512 PMCID: PMC11899352 DOI: 10.3390/ijms26051885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/15/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Gastric cancer (GC) is one of the leading causes of cancer-related mortality worldwide, characterised by poor prognosis and limited responsiveness to chemotherapy. There is a need for new and more effective anticancer agents. Antimicrobial peptides (AMPs) represent a promising class of biomolecules for this purpose. Naturally occurring in the innate immune system, these peptides can also exert cytotoxic effects against cancer cells, earning them the designation of "anticancer peptides" (ACPs). They have the potential to be a viable support for current chemotherapy schedules due to their selectivity against cancer cells and minor propensity to induce chemoresistance in cells. Insects are an excellent source of AMPs. Among them, due to its ability to thrive in hostile and microorganism-rich environments, we isolated a peptide fraction from Hermetia illucens L. (Diptera: Stratiomyidae) haemolymph to evaluate a possible anticancer activity. We tested Peptide Fractions (PFs) against AGS and KATO III gastric cancer cell lines. Data obtained indicated that PFs, especially those resulting from Escherichia coli and Micrococcus flavus infection (to boost immune response), were able to inhibit tumour cell growth by inducing apoptosis or cell cycle arrest in a cell line-specific manner. These results support further investigation into the use of antimicrobial peptides produced from insects as possible anticancer agents.
Collapse
Affiliation(s)
- Roberta Rinaldi
- Department of Basic and Applied Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.R.); (R.S.); (F.D.S.)
| | - Simona Laurino
- Centro di Riferimento Oncologico della Basilicata IRCCS (IRCCS-CROB), 85028 Rionero in Vulture, Italy; (S.L.); (S.R.); (R.G.)
| | - Rosanna Salvia
- Department of Basic and Applied Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.R.); (R.S.); (F.D.S.)
- Spinoff XFlies S.R.L, University of Basilicata, Via Dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Sabino Russi
- Centro di Riferimento Oncologico della Basilicata IRCCS (IRCCS-CROB), 85028 Rionero in Vulture, Italy; (S.L.); (S.R.); (R.G.)
| | - Federica De Stefano
- Department of Basic and Applied Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.R.); (R.S.); (F.D.S.)
| | - Rocco Galasso
- Centro di Riferimento Oncologico della Basilicata IRCCS (IRCCS-CROB), 85028 Rionero in Vulture, Italy; (S.L.); (S.R.); (R.G.)
| | - Alessandro Sgambato
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Multiplex Spatial Profiling Facility, Fondazione Policlinico Universitario ‘Agostino Gemelli’ IRCCS, 00136 Rome, Italy
| | - Carmen Scieuzo
- Department of Basic and Applied Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.R.); (R.S.); (F.D.S.)
- Spinoff XFlies S.R.L, University of Basilicata, Via Dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Geppino Falco
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy;
| | - Patrizia Falabella
- Department of Basic and Applied Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.R.); (R.S.); (F.D.S.)
- Spinoff XFlies S.R.L, University of Basilicata, Via Dell’Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
11
|
Lucchetti D, Rinaldi R, Artemi G, Salvia R, De Stefano F, Scieuzo C, Falabella P, Sgambato A. Peptide Fractions Extracted from the Hemolymph of Hermetia illucens Inhibit Growth and Motility and Enhance the Effects of Traditional Chemotherapeutics in Human Colorectal Cancer Cells. Int J Mol Sci 2025; 26:1891. [PMID: 40076518 PMCID: PMC11899838 DOI: 10.3390/ijms26051891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Cancer is a leading cause of death worldwide, characterized by uncontrolled cell growth and multiple mutations. Chemotherapy is often associated with harmful side effects, and cancer cells may become resistant through various mechanisms. New approaches, which are able to address both the toxicity and resistance issues of chemotherapy, are of primary importance in cancer research. Antimicrobial peptides (AMPs), naturally occurring molecules in the innate immune system of all living organisms, have a wide spectrum of cytotoxic activities against cancer cells and could be a promising alternative to actual chemotherapeutics. Here, we tested peptide fractions, rich in AMPs, extracted from the hemolymph of the larvae of the insect Hermetia illucens on the HT29 and HCT116 human colorectal cancer cells, observing cell growth inhibition by cell accumulation in the G2/M phase and increased apoptosis. Furthermore, the peptide extract induced a significant cytoskeleton reorganization, resulting in reduced motility. These effects were more evident with the peptide fractions obtained from the Escherichia coli-infected larvae. The peptide fractions also enhanced the effects of traditional chemotherapeutics. Overall, the results obtained suggest the presence of biologically active molecules in the hemolymph of H. illucens larvae, confirming that insect-derived peptides are a promising research area in oncology.
Collapse
Affiliation(s)
- Donatella Lucchetti
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.L.); (G.A.)
- Multiplex Spatial Profiling Facility, Fondazione Policlinico Universitario ‘Agostino Gemelli’ IRCCS, 00136 Rome, Italy
| | - Roberta Rinaldi
- Department of Basic and Applied Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.R.); (R.S.); (F.D.S.); (C.S.)
- Centro di Riferimento Oncologico della Basilicata IRCCS (IRCCS-CROB), 85028 Rionero in Vulture, Italy
| | - Giulia Artemi
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.L.); (G.A.)
| | - Rosanna Salvia
- Department of Basic and Applied Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.R.); (R.S.); (F.D.S.); (C.S.)
- Spinoff XFlies S.R.L., University of Basilicata, Via Dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Federica De Stefano
- Department of Basic and Applied Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.R.); (R.S.); (F.D.S.); (C.S.)
| | - Carmen Scieuzo
- Department of Basic and Applied Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.R.); (R.S.); (F.D.S.); (C.S.)
- Spinoff XFlies S.R.L., University of Basilicata, Via Dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Patrizia Falabella
- Department of Basic and Applied Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.R.); (R.S.); (F.D.S.); (C.S.)
- Spinoff XFlies S.R.L., University of Basilicata, Via Dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Alessandro Sgambato
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.L.); (G.A.)
- Multiplex Spatial Profiling Facility, Fondazione Policlinico Universitario ‘Agostino Gemelli’ IRCCS, 00136 Rome, Italy
| |
Collapse
|
12
|
Belenichev I, Popazova O, Bukhtiyarova N, Ryzhenko V, Pavlov S, Suprun E, Oksenych V, Kamyshnyi O. Targeting Mitochondrial Dysfunction in Cerebral Ischemia: Advances in Pharmacological Interventions. Antioxidants (Basel) 2025; 14:108. [PMID: 39857442 PMCID: PMC11760872 DOI: 10.3390/antiox14010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
The study of mitochondrial dysfunction has become increasingly pivotal in elucidating the pathophysiology of various cerebral pathologies, particularly neurodegenerative disorders. Mitochondria are essential for cellular energy metabolism, regulation of reactive oxygen species (ROS), calcium homeostasis, and the execution of apoptotic processes. Disruptions in mitochondrial function, driven by factors such as oxidative stress, excitotoxicity, and altered ion balance, lead to neuronal death and contribute to cognitive impairments in several brain diseases. Mitochondrial dysfunction can arise from genetic mutations, ischemic events, hypoxia, and other environmental factors. This article highlights the critical role of mitochondrial dysfunction in the progression of neurodegenerative diseases and discusses the need for targeted therapeutic strategies to attenuate cellular damage, restore mitochondrial function, and enhance neuroprotection.
Collapse
Affiliation(s)
- Igor Belenichev
- Department of Pharmacology and Medical Formulation with Course of Normal Physiology, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine;
| | - Olena Popazova
- Department of Histology, Cytology and Embryology, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Nina Bukhtiyarova
- Department of Clinical Laboratory Diagnostics, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Victor Ryzhenko
- Department of Medical and Pharmaceutical Informatics and Advanced Technologies, Zaporizhzhia State Medical University, 69000 Zaporizhzhia, Ukraine
| | - Sergii Pavlov
- Department of Clinical Laboratory Diagnostics, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Elina Suprun
- The State Institute of Neurology, Psychiatry and Narcology of the National Academy of Medical Sciences of Ukraine, 46 Academician Pavlov Street, 61076 Kharkov, Ukraine
| | | | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology and Immunology, I. Horbachevsky Ternopil State Medical University, 46001 Ternopil, Ukraine;
| |
Collapse
|
13
|
Brand T, Baumgarten BT, Denzinger S, Reinders Y, Kleindl M, Schanbacher C, Funk F, Gedik N, Jabbasseh M, Kleinbongard P, Dudek J, Szendroedi J, Tolstik E, Schuh K, Krüger M, Dobrev D, Cuello F, Sickmann A, Schmitt JP, Lorenz K. From Ca 2+ dysregulation to heart failure: β-adrenoceptor activation by RKIP postpones molecular damages and subsequent cardiac dysfunction in mice carrying mutant PLN R9C by correction of aberrant Ca 2+-handling. Pharmacol Res 2025; 211:107558. [PMID: 39742932 DOI: 10.1016/j.phrs.2024.107558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/23/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
Impaired cardiomyocyte Ca2+ handling is a central hallmark of heart failure (HF), which causes contractile dysfunction and arrhythmias. However, the underlying molecular mechanisms and the precise contribution of defects in Ca2+-cycling regulation in the development of HF are still not completely resolved. Here, we used transgenic mice that express a human mutation in the cardiomyocyte Ca2+-regulator phospholamban (PLNR9C-tg) causing severe HF due to a reduction in Ca2+ reuptake into the sarco(endo)plasmic reticulum (SR). PLNR9C-induced HF is a rapidly progressing condition characterized by prominent Ca2+ cycling and relaxation defects and premature death of mutation carriers. We found that endoplasmic reticulum (ER) and mitochondrial function are affected even before transition to overt HF. Early correction of aberrant Ca2+ cycling by cardiac expression of the Raf kinase inhibitor protein (RKIP), an endogenous activator of β-adrenoceptors (βAR), delayed the cellular alterations, functional failure and prolonged lifespan. Our study highlights the importance of early and persistent correction of Ca2 + dynamics, not only for excitation/contraction coupling, but also for the prevention of rather irreparable events on cardiac energetics and ER stress adaptations. The latter may even impede with later onset of Ca2+-related therapeutic interventions and should gain more focus for HF treatment.
Collapse
Affiliation(s)
- Theresa Brand
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, Würzburg 97078, Germany
| | - Bettina Tanitha Baumgarten
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Str. 11, Dortmund 44139, Germany
| | - Sabrina Denzinger
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, Würzburg 97078, Germany
| | - Yvonne Reinders
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Str. 11, Dortmund 44139, Germany
| | - Miriam Kleindl
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Str. 11, Dortmund 44139, Germany
| | - Constanze Schanbacher
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, Würzburg 97078, Germany
| | - Florian Funk
- Institute of Pharmacology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany; Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Nilgün Gedik
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Hufelandstr. 55, Essen 45122, Germany
| | - Mahmood Jabbasseh
- Institute of Pharmacology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany; Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Hufelandstr. 55, Essen 45122, Germany
| | - Jan Dudek
- Comprehensive Heart Failure Center, University Hospital of Würzburg, Am Schwarzenberg 15, Würzburg 97078, Germany
| | - Julia Szendroedi
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Elen Tolstik
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Str. 11, Dortmund 44139, Germany
| | - Kai Schuh
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Martina Krüger
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany; Institute of Cardiovascular Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Germany; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, United States; Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Quebec, Canada
| | - Friederike Cuello
- DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Germany; Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Str. 11, Dortmund 44139, Germany
| | - Joachim P Schmitt
- Institute of Pharmacology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany; Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany.
| | - Kristina Lorenz
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, Würzburg 97078, Germany; Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Str. 11, Dortmund 44139, Germany; Comprehensive Heart Failure Center, University Hospital of Würzburg, Am Schwarzenberg 15, Würzburg 97078, Germany.
| |
Collapse
|
14
|
Li J, Lv HQ, Wu F, Li XE. Fluorescent Polymer Nanocomposites as Novel Drug-Loading and Targeted Delivery Nanocarriers for Glioma Therapy by Modulating ERBB4. J Fluoresc 2024:10.1007/s10895-024-04078-w. [PMID: 39693013 DOI: 10.1007/s10895-024-04078-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024]
Abstract
Gliomas are the most common type of tumor in the human central nervous system, characterized by high aggressiveness, elevated mortality, and poor prognosis. Therefore, developing new therapeutic strategies is crucial for improving glioma treatment. Temozolomide (TMZ) is widely used in glioma therapy due to its excellent ability to penetrate the blood-brain barrier. In this study, we synthesized HA-PEG@ICG using hyaluronic acid (HA) and polyethylene glycol (PEG), modified with the fluorescent compound indocyanine green (ICG), and thoroughly characterized the product's structure. Subsequently, compound 1 and TMZ were co-loaded onto this carrier to construct a synergistic drug delivery system (HA-PEG@ICG@1@TMZ). Additionally, we evaluated the inhibitory effects and mechanisms of HA-PEG@ICG@1@TMZ on glioma cell proliferation. Our study lays the foundation for further exploration of TMZ-based therapies for glioma treatment.
Collapse
Affiliation(s)
- Jian Li
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Department of Neurosurgery, Heze Third People's Hospital, Heze, Shandong, China
| | - Hui-Qing Lv
- Department of Oncology, Shandong Provincial Hospital, Jinan, Shandong, China
| | - Fei Wu
- Department of Neurosurgery, Heze Third People's Hospital, Heze, Shandong, China
| | - Xue-En Li
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
15
|
Kubat GB, Ulger O, Atalay O, Fatsa T, Turkel I, Ozerklig B, Celik E, Ozenc E, Simsek G, Tuncer M. The effects of exercise and mitochondrial transplantation alone or in combination against Doxorubicin-induced skeletal muscle atrophy. J Muscle Res Cell Motil 2024; 45:233-251. [PMID: 38822935 DOI: 10.1007/s10974-024-09676-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/22/2024] [Indexed: 06/03/2024]
Abstract
Doxorubicin (DOX) is a chemotherapy drug used to treat various types of cancer, but it is associated with significant side effects such as skeletal muscle atrophy. Exercise has been found to prevent skeletal muscle atrophy through the modulation of mitochondrial pathways. Mitochondrial transplantation (MT) may mitigate toxicity, neurological disorders, kidney and liver injury, and skeletal muscle atrophy. The objective of this study was to evaluate the effects of MT, exercise, and MT with exercise on DOX-induced skeletal muscle atrophy. Male Sprague Dawley rats were randomly assigned to the following groups: control, DOX, MT with DOX, exercise with DOX, and exercise with MT and DOX. A 10-day treadmill running exercise and MT (6.5 µg/100 µL) to tibialis anterior (TA) muscle were administered prior to a single injection of DOX (20 mg/kg). Our data showed that exercise and MT with exercise led to an increase in cross-sectional area of the TA muscle. Exercise, MT and MT with exercise reduced inflammation and maintained mitochondrial enzyme activity. Additionally, exercise and MT have been shown to regulate mitochondrial fusion/fission. Our findings revealed that exercise and MT with exercise prevented oxidative damage. Furthermore, MT and MT with exercise decreased apoptosis and MT with exercise triggered mitochondrial biogenesis. These findings demonstrate the importance of exercise in the prevention of skeletal muscle atrophy and emphasize the significant benefits of MT with exercise. To the best of our knowledge, this is the first study to demonstrate the therapeutic effects of MT with exercise in DOX-induced skeletal muscle atrophy.
Collapse
Affiliation(s)
- Gokhan Burcin Kubat
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, Ankara, Turkey.
- Gulhane Training and Research Hospital, University of Health Sciences, Ankara, Turkey.
| | - Oner Ulger
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, Ankara, Turkey
- Gulhane Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Ozbeyen Atalay
- Department of Physiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Tugba Fatsa
- Gulhane Health Sciences Institute, University of Health Sciences, Ankara, Turkey
| | - Ibrahim Turkel
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| | - Berkay Ozerklig
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| | - Ertugrul Celik
- Department of Pathology, Gulhane Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Emrah Ozenc
- Department of Pathology, Gulhane Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Gulcin Simsek
- Department of Pathology, Gulhane Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Meltem Tuncer
- Department of Physiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
16
|
Alanazi AZ, Alqinyah M, Alhamed AS, Mohammed H, Raish M, Aljerian K, Alsabhan JF, Alhazzani K. Cardioprotective effects of liposomal resveratrol in diabetic rats: unveiling antioxidant and anti-inflammatory benefits. Redox Rep 2024; 29:2416835. [PMID: 39496097 PMCID: PMC11536670 DOI: 10.1080/13510002.2024.2416835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024] Open
Abstract
As a consequence of chronic hyperglycemia, diabetes complications and tissue damage are exacerbated. There is evidence that natural phytochemicals, including resveratrol, a bioactive polyphenol, may be able to reduce oxidative stress and improve insulin sensitivity. However, resveratrol's limited bioavailability hampers its therapeutic effectiveness. By using liposomes, resveratrol may be better delivered into the body and be more bioavailable. The objective of this study was to assess the cardioprotective potential of liposome-encapsulated resveratrol (LR) in a streptozotocin-induced (STZ) diabetic rat model. Adult male Wistar rats were categorized into five groups: control, diabetic, resveratrol-treated (40 mg/kg), liposomal resveratrol (LR)-treated (20 mg/kg) and liposomal resveratrol (LR)-treated (40 mg/kg) for a five-week study period. We compared the effects of LR to those of resveratrol (40 mg/kg) on various parameters, including serum levels of cardiac markers, tissue levels of pro-inflammatory cytokines, nuclear transcription factor, oxidative stress markers, and apoptotic markers. LR treatment in STZ-diabetic rats resulted in notable physiological improvements, including blood glucose regulation, inflammation reduction, oxidative stress mitigation, and apoptosis inhibition. LR effectively lowered oxidative stress and enhanced cardiovascular function. It also demonstrated a remarkable ability to suppress NF-kB-mediated inflammation by inhibiting the pro-inflammatory cytokines TNF-α and IL-6. Additionally, LR restored the antioxidant enzymes, catalase and glutathione peroxidase, thereby effectively counteracting oxidative stress. Notably, LR modulated apoptotic regulators, including caspase, Bcl2, and Bax, suggesting a role in regulating programmed cell death. These biochemical alterations were consistent with improved structural integrity of cardiac tissue as revealed by histological examination. In comparison, resveratrol exhibited lower efficacy at an equivalent dosage. Liposomal resveratrol shows promise in alleviating hyperglycemia-induced cardiac damage in diabetes. Further research is warranted to explore its potential as a therapeutic agent for diabetic cardiovascular complications and possible cardioprotective effects.
Collapse
Affiliation(s)
- Ahmed Z. Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Alqinyah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah S. Alhamed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hanan Mohammed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khaldoon Aljerian
- Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Jawza F. Alsabhan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khalid Alhazzani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
17
|
Jarrar B, Almansour M, Al-Doaiss A, Lee SY, Melhem W, Jarrar Q, Sewelam A. Metallic and metallic oxide nanoparticles toxicity primarily targets the mitochondria of hepatocytes and renal cells. Toxicol Ind Health 2024; 40:667-678. [PMID: 39287072 DOI: 10.1177/07482337241282860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Nanoparticles (NPs) are utilized in various applications, posing potential risks to human health, tissues, cells, and macromolecules. This study aimed to investigate the ultrastructural alterations in hepatocytes and renal tubular cells induced by metallic and metal oxide NPs. Adult healthy male Wistar albino rats (Rattus norvegicus) were divided into 6 (n = 7) control and 6 treated groups (n = 7). The rats in the treated groups exposed daily to silver NPs, gold NPs, zinc oxide NPs, silicon dioxide NPs, copper oxide NPs, and ferric oxide NPs for 35 days. The members of the control group for each corresponding NPs received the respective vehicle. Liver and kidney tissue blocks from all rats were processed for Transmission Electron Microscopy (TEM) examinations. The hepatocytes and renal tubular cells of all NPs-treated rats demonstrated mitochondrial ultrastructural alterations mainly cristolysis, swelling, membrane disruption, lucent matrices, matrices lysis, and electron-dense deposits. However, other organelles demonstrated injury but to a lesser extent in the form of shrunken nuclei, nuclear membrane indentation, endoplasmic reticulum fragmentation, cellular membranes enfolding, brush border microvilli disruption, lysosomal hyperplasia, ribosomes dropping, and peroxisome formation. One may conclude from the findings that the hepatocytes and the renal tubular cells mitochondria are the main targets for nanoparticles toxicity ending in mitochondrial disruption and cell injury. Further studies taking into account the relation of mitochondrial ultrastructural damage with a weakened antioxidant defense system induced by chronic exposure to nanomaterials are needed.
Collapse
Affiliation(s)
- Bashir Jarrar
- Nanobiology Unit, Faculty of Sciences, Jerash University, Jordan
| | | | - Amin Al-Doaiss
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Shiou Yih Lee
- Faculty of Health and Life Sciences, INTI International University, Nilai, Malaysia
| | - Walid Melhem
- School of Medicine, King Faisal University, Saudi Arabia
| | - Qais Jarrar
- Department of Applied Pharmaceutical Sciences and Clinical Pharmacy, Faculty of Pharmacy, Isra University, Jordan
| | - Amal Sewelam
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Egypt
| |
Collapse
|
18
|
Alrouji M, Anwar S, Venkatesan K, Shahwan M, Hassan MI, Islam A, Shamsi A. Iron homeostasis and neurodegeneration in the ageing brain: Insight into ferroptosis pathways. Ageing Res Rev 2024; 102:102575. [PMID: 39515619 DOI: 10.1016/j.arr.2024.102575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/25/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Ageing is a major risk factor for various chronic diseases and offers a potential target for developing novel and broadly effective preventatives or therapeutics for age-related conditions, including those affecting the brain. Mechanisms contributing to ageing have been summarized as the hallmarks of ageing, with iron imbalance being one of the major factors. Ferroptosis, an iron-mediated lipid peroxidation-induced programmed cell death, has recently been implicated in neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD). Addressing ferroptosis offers both opportunities and challenges for treating neurodegenerative diseases, though the specific mechanisms remain unclear. This research explores the key processes behind how ferroptosis contributes to brain ageing, with a focus on the complex signaling networks that are involved. The current article aims to uncover that how ferroptosis, a specific type of cell death, may drive age-related changes in the brain. Additionally, the article also unveils its role in neurodegenerative diseases, discussing how understanding these mechanisms could open up new therapeutic avenues.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia.
| | - Saleha Anwar
- Center for Global Health Research, Saveetha medical college, Saveetha institute of Medical and Technical Sciences, Chennai, India.
| | - Kumar Venkatesan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia.
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, United Arab Emirates.
| | - Md Imtaiyaz Hassan
- Center for Interdsicplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.
| | - Asimul Islam
- Center for Interdsicplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.
| | - Anas Shamsi
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, United Arab Emirates.
| |
Collapse
|
19
|
Oyovwi MO, Ugwuishi EW, Udi OA, Uchechukwu GJ. Mitophagy Unveiled: Exploring the Nexus of Mitochondrial Health and Neuroendocrinopathy. J Mol Neurosci 2024; 74:107. [PMID: 39514132 DOI: 10.1007/s12031-024-02280-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Mitochondria play a pivotal role in cellular metabolism, energy production, and apoptotic signaling, making mitophagy, the selective degradation of damaged mitochondria, crucial for mitochondrial health. Dysregulation of mitophagy has been implicated in various neuroendocrinopathies, yet the mechanisms linking these processes remain poorly understood. This review aims to explore the intersection between mitophagy and neuroendocrinopathy, addressing the critical gaps in knowledge regarding how mitochondrial dysfunction may contribute to the pathophysiology of neuroendocrine disorders. We conducted a comprehensive literature review of studies published on mitophagy and neuroendocrinopathies, focusing on data that elucidate the pathways involved and the clinical implications of mitochondrial health in neuroendocrine contexts. Our findings indicate that altered mitophagy may lead to the accumulation of dysfunctional mitochondria, contributing to neuroendocrine dysregulation. We present evidence linking impaired mitochondrial clearance to disease models of conditions such as metabolic syndrome, depression, and stress-related disorders, highlighting the potential for therapeutic interventions targeting mitophagy. While significant advances have been made in understanding mitochondrial biology, the direct interplay between mitophagy and neuroendocrinopathies remains underexplored. This review underscores the necessity for further research to elucidate these connections, which may offer novel insights into disease mechanisms and therapeutic strategies for treating maladaptive neuroendocrine responses.
Collapse
Affiliation(s)
- Mega Obukohwo Oyovwi
- Department of Physiology, Faculty of Basic Medical Sciences, Adeleke University, Ede, Osun State, Nigeria.
| | | | - Onoriode Andrew Udi
- Department of Human Anatomy, Federal University Otuoke, Otuoke, Bayelsa State, Nigeria
| | - Gregory Joseph Uchechukwu
- Department of Medical Laboratory Science, Faculty of Basic Medical Sciences, Adeleke University, Ede, Osun State, Nigeria
| |
Collapse
|
20
|
Nevoit G, Jarusevicius G, Potyazhenko M, Mintser O, Bumblyte IA, Vainoras A. Mitochondrial Dysfunction and Risk Factors for Noncommunicable Diseases: From Basic Concepts to Future Prospective. Diseases 2024; 12:277. [PMID: 39589951 PMCID: PMC11592525 DOI: 10.3390/diseases12110277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Noncommunicable diseases (NCDs) are a very important medical problem. The key role of mitochondrial dysfunction (MD) in the occurrence and progression of NCDs has been proven. However, the etiology and pathogenesis of MD itself in many NCDs has not yet been clarified, which makes it one of the most serious medical problems in the modern world, according to many scientists. METHODS An extensive research in the literature was implemented in order to elucidate the role of MD and NCDs' risk factors in the pathogenesis of NCDs. RESULTS The authors propose to take a broader look at the problem of the pathogenesis of NCDs. It is important to understand exactly how NCD risk factors lead to MD. The review is structured in such a way as to answer this question. Based on a systematic analysis of scientific data, a theoretical concept of modern views on the occurrence of MD under the influence of risk factors for the occurrence of NCDs is presented. This was done in order to update MD issues in clinical medicine. MD and NCDs progress throughout a patient's life. Based on this, the review raised the question of the existence of an NCDs continuum. CONCLUSIONS MD is a universal mechanism that causes organ dysfunction and comorbidity of NCDs. Prevention of MD involves diagnosing and eliminating the factors that cause it. Mitochondria are an important therapeutic target.
Collapse
Affiliation(s)
- Ganna Nevoit
- Laboratory of Population Studies, Cardiology Institute, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Gediminas Jarusevicius
- Laboratory for Automatization of Cardiovascular Investigations, Cardiology Institute, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania;
| | - Maksim Potyazhenko
- Department of Internal Medicine and Emergency Medicine, Poltava State Medical University, 36011 Poltava, Ukraine;
| | - Ozar Mintser
- Department of Fundamental Disciplines and Informatics, Shupyk National Healthcare University of Ukraine, 04112 Kyiv, Ukraine;
| | - Inga Arune Bumblyte
- Department of Nephrology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania;
| | - Alfonsas Vainoras
- Laboratory for Automatization of Cardiovascular Investigations, Cardiology Institute, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania;
| |
Collapse
|
21
|
Liang W, Zhang W, Tian J, Zhang X, Lv X, Qu A, Chen J, Wu Z. Advances in carbohydrate-based nanoparticles for targeted therapy of inflammatory bowel diseases: A review. Int J Biol Macromol 2024; 281:136392. [PMID: 39423983 DOI: 10.1016/j.ijbiomac.2024.136392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/13/2024] [Accepted: 10/05/2024] [Indexed: 10/21/2024]
Abstract
The incidence of inflammatory bowel disease (IBD), a chronic gastrointestinal disorder, is rapidly increasing worldwide. Unfortunately, the current therapies for IBD are often hindered by premature drug release and undesirable side effects. With the advancement of nanotechnology, the innovative targeted nanotherapeutics are explored to ensure the accurate delivery of drugs to specific sites in the colon, thereby reducing side effects and improving the efficacy of oral administration. The emphasis of this review is to summarize the potential pathogenesis of IBD and highlight recent breakthroughs in carbohydrate-based nanoparticles for IBD treatment, including their construction, release mechanism, potential targeting ability, and their therapeutic efficacy. Specifically, we summarize the latest knowledge regarding environmental-responsive nano-systems and active targeted nanoparticles. The environmental-responsive drug delivery systems crafted with carbohydrates or other biological macromolecules like chitosan and sodium alginate, exhibit a remarkable capacity to enhance the accumulation of therapeutic drugs in the inflamed regions of the digestive tract. Active targeting strategies improve the specificity and accuracy of oral drug delivery to the colon by modifying carbohydrates such as hyaluronic acid and mannose onto nanocarriers. Finally, we discuss the challenges and provide insight into the future perspectives of colon-targeted delivery systems for IBD treatment.
Collapse
Affiliation(s)
- Wenjing Liang
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Wen Zhang
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; Key Laboratory of Low Carbon Cold Chain for Agricultural Products, Ministry of Agriculture and Rural Affairs, China.
| | - Jiayi Tian
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Xinping Zhang
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Xinyi Lv
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Ao Qu
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Jinyu Chen
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; Key Laboratory of Low Carbon Cold Chain for Agricultural Products, Ministry of Agriculture and Rural Affairs, China
| | - Zijian Wu
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; Key Laboratory of Low Carbon Cold Chain for Agricultural Products, Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
22
|
Zhou Q, Li H, Zhang Y, Zhao Y, Wang C, Liu C. Hydrogen-Rich Water to Enhance Exercise Performance: A Review of Effects and Mechanisms. Metabolites 2024; 14:537. [PMID: 39452918 PMCID: PMC11509640 DOI: 10.3390/metabo14100537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/22/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024] Open
Abstract
Background: Hydrogen-rich water (HRW) has garnered significant interest within the sports and exercise science community due to its selective antioxidant properties. Despite its potential benefits, comprehensive reviews specifically addressing its effects on athletic performance are limited. This review aims to assess the impact of HRW on sports performance and explore the underlying molecular biological mechanisms, with the goal of elucidating how HRW might enhance athletic performance. Methods: This review synthesizes research on HRW by examining articles published between 1980 and April 2024 in databases such as PubMed, the Cochrane Library, Embase, Scopus, and Web of Science. Results: It highlights HRW's effects on various aspects of athletic performance, including endurance, strength, sprint times, lunge movements, countermovement jump height, and time to exhaustion. While the precise mechanisms by which HRW affects athletic performance remain unclear, this review investigates its general molecular biological mechanisms beyond the specific context of sports. This provides a theoretical foundation for future research aimed at understanding how HRW can enhance athletic performance. HRW targets the harmful reactive oxygen and nitrogen species produced during intense exercise, thereby reducing oxidative stress-a critical factor in muscle fatigue, inflammation, and diminished athletic performance. HRW helps to scavenge hydroxyl radicals and peroxynitrite, regulate antioxidant enzymes, mitigate lipid peroxidation, reduce inflammation, protect against mitochondrial dysfunction, and modulate cellular signaling pathways. Conclusions: In summary, while a few studies have indicated that HRW may not produce significant beneficial effects, the majority of research supports the conclusion that HRW may enhance athletic performance across various sports. The potential mechanisms underlying these benefits are thought to involve HRW's role as a selective antioxidant, its impact on oxidative stress, and its regulation of redox homeostasis. However, the specific molecular biological mechanisms through which HRW improves athletic performance remain to be fully elucidated.
Collapse
Affiliation(s)
- Qiaorui Zhou
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China;
| | - Huixin Li
- School of Sport Science, Beijing Sport University, Beijing 100084, China;
| | - Ye Zhang
- Sport Coaching College, Beijing Sport University, Beijing 100084, China;
| | - Yirui Zhao
- China Ice and Snow Sports College, Beijing Sport University, Beijing 100084, China;
| | - Can Wang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China;
| | - Chang Liu
- School of Sport Science, Beijing Sport University, Beijing 100084, China;
| |
Collapse
|
23
|
Song J, Dong J, Yuan Z, Huang M, Yu X, Zhao Y, Shen Y, Wu J, El-Newehy M, Abdulhameed MM, Sun B, Chen J, Mo X. Shape-Persistent Conductive Nerve Guidance Conduits for Peripheral Nerve Regeneration. Adv Healthc Mater 2024; 13:e2401160. [PMID: 38757919 DOI: 10.1002/adhm.202401160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/09/2024] [Indexed: 05/18/2024]
Abstract
To solve the problems of slow regeneration and mismatch of axon regeneration after peripheral nerve injury, nerve guidance conduits (NGCs) have been widely used to promote nerve regeneration. Multichannel NGCs have been widely studied to mimic the structure of natural nerve bundles. However, multichannel conduits are prone to structural instability. Thermo-responsive shape memory polymers (SMPs) can maintain a persistent initial structure over the body temperature range. Electrical stimulation (ES), utilized within nerve NGCs, serves as a biological signal to expedite damaged nerve regeneration. Here, an electrospun shape-persistent conductive NGC is designed to maintain the persistent tubular structure in the physiological temperature range and improve the conductivity. The physicochemical and biocompatibility of these P, P/G, P/G-GO, and P/G-RGO NGCs are conducted in vitro. Meanwhile, to evaluate biocompatibility and peripheral nerve regeneration, NGCs are implanted in subcutaneous parts of the back of rats and sciatic nerves assessed by histology and immunofluorescence analyses. The conductive NGC displays a stable structure, good biocompatibility, and promoted nerve regeneration. Collectively, the shape-persistent conductive NGC (P/G-RGO) is expected to promote peripheral nerve recovery, especially for long-gap and large-diameter nerves.
Collapse
Affiliation(s)
- Jiahui Song
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Jize Dong
- Department of Sports Medicine, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200080, P. R. China
| | - Zhengchao Yuan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Moran Huang
- Department of Sports Medicine, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200080, P. R. China
| | - Xiao Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Yue Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Yihong Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Jinglei Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Mohamed El-Newehy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Meera Moydeen Abdulhameed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Binbin Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Jiwu Chen
- Department of Sports Medicine, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200080, P. R. China
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
24
|
Elmorsy EM, Al-Ghafari AB, Al Doghaither HA, Fawzy MS, Shehata SA. Neurotoxic mechanisms of dexamethasone in SH-SY5Y neuroblastoma cells: Insights into bioenergetics, oxidative stress, and apoptosis. Steroids 2024; 212:109514. [PMID: 39303897 DOI: 10.1016/j.steroids.2024.109514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Despite the known therapeutic uses of dexamethasone (DEX), the specific mechanisms underlying its neurotoxic effects in neuronal cells, particularly in undifferentiated human neuroblastoma (SH-SY5Y) cells, remain inadequately understood. This study aims to elucidate these mechanisms, emphasizing bioenergetics, oxidative stress, and apoptosis, thereby providing novel insights into the cellular vulnerabilities induced by chronic DEX exposure. The findings revealed significant reductions in cell viability, altered membrane integrity with LDH leakage, decreased intracellular ATP production, and the electron transport chain complexes I and III activity inhibition. DEX significantly increased the release of the reactive species and peroxidation of lipids, as well as of Nrf2 expression. At the same time, it simultaneously led to a decline in the activities of the antioxidant catalase and superoxide dismutase enzymes, along with a depletion of glutathione reserves. The apoptosis process was exhibited by a significant elevation of caspases 3 and 8 activities with overexpression of mRNA BAX, inhibition of BCL-2, and a significant upregulation of the BAX/BCL-2 ratio. Assessment of neuronal development genes (GAP43, CAMK2A, CAMK2B, TUBB3, and Wnts) by quantitative PCR assay showed increased expression of CAMK2A, CAMK2B, and Wnt3a with a significant reduction in GAP43 mRNA levels. Collectively, this study proved that DEX was cytotoxic to SH-SY5Y via bioenergetic disruption, mitochondrial dysfunction, oxidative stress, and apoptosis.
Collapse
Affiliation(s)
- Ekramy M Elmorsy
- Pathology Department, Faculty of Medicine, Northern Border University, Arar 91431, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| | - Ayat B Al-Ghafari
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Huda A Al Doghaither
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Manal S Fawzy
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar 91431, Saudi Arabia; Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt.
| | - Shaimaa A Shehata
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
25
|
Semenyuta I, Golovchenko O, Bahrieieva O, Vydzhak R, Zhirnov V, Brovarets V. Synthesis, Characterization, In Vitro Anticancer Evaluation, ADMET Properties, and Molecular Docking of Novel 5-Sulfanyl Substituted (Thiazol-4-yl)-Phosphonium Salts. ChemMedChem 2024; 19:e202400205. [PMID: 38847335 DOI: 10.1002/cmdc.202400205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/04/2024] [Indexed: 07/25/2024]
Abstract
Seven TPP+ new 5-sulfanyl substituted (thiazol-4-yl) phosphonium salts functionalized with different substituents were designed, synthesized, and studied against the NCI-60 human cancer cell lines. Compounds 1-4 show the total average parameters GI50=0.7-2.7 μM, TGI=7.0-14.6 μM, and LC50=25.2-41.8 μM, and compounds 5-7 show GI50=0.3-0.5 μM, TGI=1.3-3.1 μM, and LC50=3.6-4.0 μM. The most active compound 7 demonstrated the best anticancer results against leukemia (K-562, GI50=0.141 μM; RPMI-8226, GI50=0.143 μM), ovarian cancer (NCI/ADR-RES, GI50=0.142 μM), breast cancer (HS578T, GI50=0.175 μM; MDA-MB-468, GI50=0.101 μM), melanoma (SK-MEL-5, GI50=0.155 μM), and colon cancer (COLO 205, GI50=0.163 μM). All compounds showed low cytotoxicity against the leukemia subpanel (LC50>100 μM). The SAR analysis reveals the critical role of the substitutes at the thiazole C2 and C5 positions. Adding the phenyl, p-tolyl, or 4-chlorophenyl group to the C2 position in compounds 5-7 increases anticancer effectiveness. According to the NCI COMPARE analysis, compounds 2-3 showed a very high (r=0.92, 0.81) correlation with morpholino-doxorubicin. Molecular docking-analyzing the antitumor mechanism of compounds 1-4 action demonstrated that the DNA chain is a probable biotarget. The ADMET analysis acknowledges the favorable prognosis using compounds as potential anticancer agents.
Collapse
Affiliation(s)
- Ivan Semenyuta
- Department of chemistry of natural compounds, V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine, Academician Kukhar st. 1, 02094, Kyiv, Ukraine
| | - Oleksandr Golovchenko
- Department of chemistry of bioactive nitrogen-containing heterocyclic bases, V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine, Academician Kukhar st. 1, 02094, Kyiv, Ukraine
| | - Oksana Bahrieieva
- Department of chemistry of bioactive nitrogen-containing heterocyclic bases, V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine, Academician Kukhar st. 1, 02094, Kyiv, Ukraine
| | - Roman Vydzhak
- Department of chemistry of bioactive nitrogen-containing heterocyclic bases, V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine, Academician Kukhar st. 1, 02094, Kyiv, Ukraine
| | - Victor Zhirnov
- Department of chemistry of bioactive nitrogen-containing heterocyclic bases, V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine, Academician Kukhar st. 1, 02094, Kyiv, Ukraine
| | - Volodymyr Brovarets
- Department of chemistry of bioactive nitrogen-containing heterocyclic bases, V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine, Academician Kukhar st. 1, 02094, Kyiv, Ukraine
| |
Collapse
|
26
|
Huang S, Xiao S, Li X, Tao R, Yang Z, Gao Z, Hu J, Meng Y, Zheng G, Chen X. Development of Dual-Targeted Mixed Micelles Loaded with Celastrol and Evaluation on Triple-Negative Breast Cancer Therapy. Pharmaceutics 2024; 16:1174. [PMID: 39339211 PMCID: PMC11435154 DOI: 10.3390/pharmaceutics16091174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Considering that the precise delivery of Celastrol (Cst) into mitochondria to induce mitochondrial dysfunction may be a potential approach to improve the therapeutic outcomes of Cst on TNBC, a novel tumor mitochondria dual-targeted mixed-micelle nano-system was fabricated via self-synthesized triphenylphosphonium-modified cholesterol (TPP-Chol) and hyaluronic acid (HA)-modified cholesterol (HA-Chol). The Cst-loaded mixed micelles (Cst@HA/TPP-M) exhibited the characteristics of a small particle size, negative surface potential, high drug loading of up to 22.8%, and sustained drug release behavior. Compared to Cst-loaded micelles assembled only by TPP-Chol (Cst@TPP-M), Cst@HA/TPP-M decreased the hemolysis rate and upgraded the in vivo stability and safety. In addition, a series of cell experiments using the triple-negative breast cancer cell line MDA-MB-231 as a cell model proved that Cst@HA/TPP-M effectively increased the cellular uptake of the drug through CD44-receptors-mediated endocytosis, and the uptake amount was three times that of the free Cst group. The confocal results demonstrated successful endo-lysosomal escape and effective mitochondrial transport triggered by the charge converse of Cst@HA/TPP-M after HA degradation in endo-lysosomes. Compared to the free Cst group, Cst@HA/TPP-M significantly elevated the ROS levels, reduced the mitochondrial membrane potential, and promoted tumor cell apoptosis, showing a better induction effect on mitochondrial dysfunction. In vivo imaging and antitumor experiments based on MDA-MB-231-tumor-bearing nude mice showed that Cst@HA/TPP-M facilitated drug enrichment at the tumor site, attenuated drug systemic distribution, and polished up the antitumor efficacy of Cst compared with free Cst. In general, as a target drug delivery system, mixed micelles co-constructed by TPP-Chol and HA-Chol might provide a promising strategy to ameliorate the therapeutic outcomes of Cst on TNBC.
Collapse
Affiliation(s)
- Siying Huang
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan 430065, China; (S.H.); (S.X.); (X.L.); (R.T.); (Z.Y.); (Z.G.); (J.H.); (Y.M.)
| | - Simeng Xiao
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan 430065, China; (S.H.); (S.X.); (X.L.); (R.T.); (Z.Y.); (Z.G.); (J.H.); (Y.M.)
| | - Xuehao Li
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan 430065, China; (S.H.); (S.X.); (X.L.); (R.T.); (Z.Y.); (Z.G.); (J.H.); (Y.M.)
| | - Ranran Tao
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan 430065, China; (S.H.); (S.X.); (X.L.); (R.T.); (Z.Y.); (Z.G.); (J.H.); (Y.M.)
| | - Zhangwei Yang
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan 430065, China; (S.H.); (S.X.); (X.L.); (R.T.); (Z.Y.); (Z.G.); (J.H.); (Y.M.)
| | - Ziwei Gao
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan 430065, China; (S.H.); (S.X.); (X.L.); (R.T.); (Z.Y.); (Z.G.); (J.H.); (Y.M.)
| | - Junjie Hu
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan 430065, China; (S.H.); (S.X.); (X.L.); (R.T.); (Z.Y.); (Z.G.); (J.H.); (Y.M.)
- Hubei Shizhen Laboratory, Wuhan 430065, China
| | - Yan Meng
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan 430065, China; (S.H.); (S.X.); (X.L.); (R.T.); (Z.Y.); (Z.G.); (J.H.); (Y.M.)
- Hubei Shizhen Laboratory, Wuhan 430065, China
| | - Guohua Zheng
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan 430065, China; (S.H.); (S.X.); (X.L.); (R.T.); (Z.Y.); (Z.G.); (J.H.); (Y.M.)
- Hubei Shizhen Laboratory, Wuhan 430065, China
| | - Xinyan Chen
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan 430065, China; (S.H.); (S.X.); (X.L.); (R.T.); (Z.Y.); (Z.G.); (J.H.); (Y.M.)
- Hubei Shizhen Laboratory, Wuhan 430065, China
| |
Collapse
|
27
|
Borsoi FT, da Silva GB, Manica D, Bagatini MD, Pastore GM, Arruda HS. Extract of Araçá-Boi and Its Major Phenolic Compound, Trans-Cinnamic Acid, Reduce Viability and Inhibit Migration of Human Metastatic Melanoma Cells. Nutrients 2024; 16:2929. [PMID: 39275245 PMCID: PMC11396791 DOI: 10.3390/nu16172929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
Cutaneous melanoma is an aggressive type of skin cancer that is recognized for its high metastatic potential and the challenges it presents in its treatment. There has been increasing interest in plant extracts and their potential applications in melanoma. The present study aimed to investigate the content of individual phenolic compounds in araçá-boi extract, evaluate their antioxidant activity, and explore their effects on cell viability, migration properties, oxidative stress levels, and protein expression in the human metastatic melanoma cell line SK-MEL-28. HPLC-DAD analysis identified 11 phenolic compounds in the araçá-boi extract. Trans-cinnamic acid was the main phenolic compound identified; therefore, it was used alone to verify its contribution to antitumor activities. SK-MEL-28 melanoma cells were treated for 24 h with different concentrations of araçá-boi extract and trans-cinnamic acid (200, 400, 600, 800, and 1600 µg/mL). Both the araçá-boi extract and trans-cinnamic acid reduced cell viability, cell migration, and oxidative stress in melanoma cells. Additionally, they modulate proteins involved in apoptosis and inflammation. These findings suggest the therapeutic potential of araçá-boi extract and its phenolic compounds in the context of melanoma, especially in strategies focused on preventing metastasis. Additional studies, such as the analysis of specific signaling pathways, would be valuable in confirming and expanding these observations.
Collapse
Affiliation(s)
- Felipe Tecchio Borsoi
- Department of Food Science and Nutrition (DEPAN), School of Food Engineering (FEA), University of Campinas (UNICAMP), Monteiro Lobato Street 80, Campinas 13083-862, SP, Brazil
| | - Gilnei Bruno da Silva
- Multicentric Postgraduate Program in Biochemistry and Molecular Biology, State University of Santa Catarina (UDESC), Lages 88520-000, SC, Brazil
| | - Daiane Manica
- Postgraduate Program in Biochemistry, Federal University of Santa Catarina (UFSC), Florianópolis 88040-900, SC, Brazil
| | - Margarete Dulce Bagatini
- Postgraduate Program in Biomedical Sciences, Federal University of Fronteira Sul (UFFS), Chapecó 89815-899, SC, Brazil
| | - Glaucia Maria Pastore
- Department of Food Science and Nutrition (DEPAN), School of Food Engineering (FEA), University of Campinas (UNICAMP), Monteiro Lobato Street 80, Campinas 13083-862, SP, Brazil
| | - Henrique Silvano Arruda
- Department of Food Science and Nutrition (DEPAN), School of Food Engineering (FEA), University of Campinas (UNICAMP), Monteiro Lobato Street 80, Campinas 13083-862, SP, Brazil
| |
Collapse
|
28
|
Jiang Y, Cao Y, Li Y, Bi L, Wang L, Chen Q, Lin Y, Jin H, Xu X, Peng R, Chen Z. SNP alleviates mitochondrial homeostasis dysregulation-mediated developmental toxicity in diabetic zebrafish larvae. Biomed Pharmacother 2024; 177:117117. [PMID: 38996709 DOI: 10.1016/j.biopha.2024.117117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024] Open
Abstract
The incidence of diabetes is increasing annually, and the disease is uncurable due to its complex pathogenesis. Therefore, understanding diabetes pathogenesis and developing new treatments are crucial. This study showed that the NO donor SNP (8 µM) significantly alleviated high glucose-induced developmental toxicity in zebrafish larvae. High glucose levels caused hyperglycemia, leading to oxidative stress and mitochondrial damage from excessive ROS accumulation. This promoted mitochondrial-dependent apoptosis and lipid peroxidation (LPO)-induced ferroptosis, along with immune inflammatory reactions that decreased mitochondrial function and altered intracellular grid morphology, causing imbalanced kinetics and autophagy. After SNP treatment, zebrafish larvae showed improved developmental toxicity and glucose utilization, reduced ROS accumulation, and increased antioxidant activity. The NO-sGC-cGMP signaling pathway, inhibited by high glucose, was significantly activated by SNP, improving mitochondrial homeostasis, increasing mitochondrial count, and enhancing mitochondrial function. It's worth noting that apoptosis, ferroptosis and immune inflammation were effectively alleviated. In summary, SNP improved high glucose-induced developmental toxicity by activating the NO-sGC-cGMP signaling pathway to reduce toxic effects such as apoptosis, ferroptosis and inflammation resulting from mitochondrial homeostasis imbalance.
Collapse
Affiliation(s)
- Yingying Jiang
- Department of Emergency, The Third Affiliated Hospital of Shanghai University, Wenzhou No.3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, China
| | - Yu Cao
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yaoqi Li
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Liuliu Bi
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Lv Wang
- Department of Emergency, The Third Affiliated Hospital of Shanghai University, Wenzhou No.3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, China
| | - Qianqian Chen
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yue Lin
- General Practitioner, The Third Affiliated Hospital of Shanghai University, Wenzhou No.3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, China
| | - Huanzhi Jin
- General Practitioner, The Third Affiliated Hospital of Shanghai University, Wenzhou No.3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, China
| | - Xiaoming Xu
- Scientific Research Center, The Third Affiliated Hospital of Shanghai University, Wenzhou No.3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, China
| | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Zheyan Chen
- Department of Plastic Surgery, The Third Affiliated Hospital of Shanghai University, Wenzhou No.3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, China.
| |
Collapse
|
29
|
Vo TTT, Peng TY, Nguyen TH, Bui TNH, Wang CS, Lee WJ, Chen YL, Wu YC, Lee IT. The crosstalk between copper-induced oxidative stress and cuproptosis: a novel potential anticancer paradigm. Cell Commun Signal 2024; 22:353. [PMID: 38970072 PMCID: PMC11225285 DOI: 10.1186/s12964-024-01726-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/25/2024] [Indexed: 07/07/2024] Open
Abstract
Copper is a crucial trace element that plays a role in various pathophysiological processes in the human body. Copper also acts as a transition metal involved in redox reactions, contributing to the generation of reactive oxygen species (ROS). Under prolonged and increased ROS levels, oxidative stress occurs, which has been implicated in different types of regulated cell death. The recent discovery of cuproptosis, a copper-dependent regulated cell death pathway that is distinct from other known regulated cell death forms, has raised interest to researchers in the field of cancer therapy. Herein, the present work aims to outline the current understanding of cuproptosis, with an emphasis on its anticancer activities through the interplay with copper-induced oxidative stress, thereby providing new ideas for therapeutic approaches targeting modes of cell death in the future.
Collapse
Affiliation(s)
- Thi Thuy Tien Vo
- Faculty of Dentistry, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Vietnam
| | - Tzu-Yu Peng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, 110301, Taiwan
| | - Thi Hong Nguyen
- Faculty of Dentistry, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Vietnam
| | - Trang Ngoc Huyen Bui
- Faculty of Dentistry, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Vietnam
| | - Ching-Shuen Wang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, 110301, Taiwan
| | - Wei-Ju Lee
- School of Food Safety, College of Nutrition, Taipei Medical University, Taipei, 110301, Taiwan
| | - Yuh-Lien Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan
| | - Yang-Che Wu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, 110301, Taiwan
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, 110301, Taiwan.
| |
Collapse
|
30
|
Batheja S, Gupta S, Tejavath KK, Gupta U. TPP-based conjugates: potential targeting ligands. Drug Discov Today 2024; 29:103983. [PMID: 38641237 DOI: 10.1016/j.drudis.2024.103983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/30/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
Mitochondria are one of the major sources of energy as well as regulators of cancer cell metabolism. Thus, they are potential targets for the effective treatment and management of cancer. Research has explored triphenylphosphonium (TPP) derivatives as potent cancer-targeting ligands because of their lipophilic nature and mitochondrial affinity. In this review, we summarize the utility of TPP-based conjugates targeting mitochondria in different types of cancer and other diseases, such as neurodegenerative and cardiovascular disorders. Such conjugates offer versatile therapeutic potential by modulating membrane potential, influencing reactive oxygen species (ROS) production, and coupling of molecular modifications (such as ATP metabolism and energy metabolism). Thus, we highlight TPP conjugates as promising mitochondria-targeting agents for use in targeted drug delivery systems.
Collapse
Affiliation(s)
- Sanya Batheja
- Nanopolymeric Drug Delivery Lab, Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer 305817, India
| | - Shruti Gupta
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer 305817, India
| | - Kiran Kumar Tejavath
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer 305817, India; Department of Biochemistry, All India Institute of Medical Sciences, BIBINAGAR, Hyderabad Metropolitan Region (HMR), Telangana 508126, India.
| | - Umesh Gupta
- Nanopolymeric Drug Delivery Lab, Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer 305817, India.
| |
Collapse
|
31
|
Affourtit C, Carré JE. Mitochondrial involvement in sarcopenia. Acta Physiol (Oxf) 2024; 240:e14107. [PMID: 38304924 DOI: 10.1111/apha.14107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
Sarcopenia lowers the quality-of-life for millions of people across the world, as accelerated loss of skeletal muscle mass and function contributes to both age- and disease-related frailty. Physical activity remains the only proven therapy for sarcopenia to date, but alternatives are much sought after to manage this progressive muscle disorder in individuals who are unable to exercise. Mitochondria have been widely implicated in the etiology of sarcopenia and are increasingly suggested as attractive therapeutic targets to help restore the perturbed balance between protein synthesis and breakdown that underpins skeletal muscle atrophy. Reviewing current literature, we note that mitochondrial bioenergetic changes in sarcopenia are generally interpreted as intrinsic dysfunction that renders muscle cells incapable of making sufficient ATP to fuel protein synthesis. Based on the reported mitochondrial effects of therapeutic interventions, however, we argue that the observed bioenergetic changes may instead reflect an adaptation to pathologically decreased energy expenditure in sarcopenic muscle. Discrimination between these mechanistic possibilities will be crucial for improving the management of sarcopenia.
Collapse
Affiliation(s)
| | - Jane E Carré
- School of Biomedical Sciences, University of Plymouth, Plymouth, UK
| |
Collapse
|
32
|
Liu J, Gao Z, Liu X. Mitochondrial dysfunction and therapeutic perspectives in osteoporosis. Front Endocrinol (Lausanne) 2024; 15:1325317. [PMID: 38370357 PMCID: PMC10870151 DOI: 10.3389/fendo.2024.1325317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/03/2024] [Indexed: 02/20/2024] Open
Abstract
Osteoporosis (OP) is a systemic skeletal disorder characterized by reduced bone mass and structural deterioration of bone tissue, resulting in heightened vulnerability to fractures due to increased bone fragility. This condition primarily arises from an imbalance between the processes of bone resorption and formation. Mitochondrial dysfunction has been reported to potentially constitute one of the most crucial mechanisms influencing the pathogenesis of osteoporosis. In essence, mitochondria play a crucial role in maintaining the delicate equilibrium between bone formation and resorption, thereby ensuring optimal skeletal health. Nevertheless, disruption of this delicate balance can arise as a consequence of mitochondrial dysfunction. In dysfunctional mitochondria, the mitochondrial electron transport chain (ETC) becomes uncoupled, resulting in reduced ATP synthesis and increased generation of reactive oxygen species (ROS). Reinforcement of mitochondrial dysfunction is further exacerbated by the accumulation of aberrant mitochondria. In this review, we investigated and analyzed the correlation between mitochondrial dysfunction, encompassing mitochondrial DNA (mtDNA) alterations, oxidative phosphorylation (OXPHOS) impairment, mitophagy dysregulation, defects in mitochondrial biogenesis and dynamics, as well as excessive ROS accumulation, with regards to OP (Figure 1). Furthermore, we explore prospective strategies currently available for modulating mitochondria to ameliorate osteoporosis. Undoubtedly, certain therapeutic strategies still require further investigation to ensure their safety and efficacy as clinical treatments. However, from a mitochondrial perspective, the potential for establishing effective and safe therapeutic approaches for osteoporosis appears promising.
Collapse
Affiliation(s)
- Jialing Liu
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhonghua Gao
- School of Medicine, Ezhou Vocational University, Ezhou, China
| | - Xiangjie Liu
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
33
|
Hasan GM, Anwar S, Shamsi A, Sohal SS, Hassan MI. The neuroprotective potential of phytochemicals in traumatic brain injury: mechanistic insights and pharmacological implications. Front Pharmacol 2024; 14:1330098. [PMID: 38239205 PMCID: PMC10794744 DOI: 10.3389/fphar.2023.1330098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/15/2023] [Indexed: 01/22/2024] Open
Abstract
Traumatic brain injury (TBI) leads to brain damage, comprising both immediate primary damage and a subsequent cascade of secondary injury mechanisms. The primary injury results in localized brain damage, while the secondary damage initiates inflammatory responses, followed by the disruption of the blood-brain barrier, infiltration of peripheral blood cells, brain edema, and the release of various immune mediators, including chemotactic factors and interleukins. TBI disrupts molecular signaling, cell structures, and functions. In addition to physical tissue damage, such as axonal injuries, contusions, and haemorrhages, TBI interferes with brain functioning, impacting cognition, decision-making, memory, attention, and speech capabilities. Despite a deep understanding of the pathophysiology of TBI, an intensive effort to evaluate the underlying mechanisms with effective therapeutic interventions is imperative to manage the repercussions of TBI. Studies have commenced to explore the potential of employing natural compounds as therapeutic interventions for TBI. These compounds are characterized by their low toxicity and limited interactions with conventional drugs. Moreover, many natural compounds demonstrate the capacity to target various aspects of the secondary injury process. While our understanding of the pathophysiology of TBI, there is an urgent need for effective therapeutic interventions to mitigate its consequences. Here, we aimed to summarize the mechanism of action and the role of phytochemicals against TBI progression. This review discusses the therapeutic implications of various phytonutrients and addresses primary and secondary consequences of TBI. In addition, we highlighted the roles of emerging phytochemicals as promising candidates for therapeutic intervention of TBI. The review highlights the neuroprotective roles of phytochemicals against TBI and the mechanistic approach. Furthermore, our efforts focused on the underlying mechanisms, providing a better understanding of the therapeutic potential of phytochemicals in TBI therapeutics.
Collapse
Affiliation(s)
- Gulam Mustafa Hasan
- Department of Basic Medical Science, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Anas Shamsi
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS, Australia
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
34
|
Khan T, Waseem R, Shahid M, Ansari J, Ahanger IA, Hassan I, Islam A. Recent advancement in therapeutic strategies for Alzheimer's disease: Insights from clinical trials. Ageing Res Rev 2023; 92:102113. [PMID: 37918760 DOI: 10.1016/j.arr.2023.102113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/16/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia, characterized by the presence of plaques of amyloid beta and Tau proteins. There is currently no permanent cure for AD; the only medications approved by the FDA for mild to moderate AD are cholinesterase inhibitors, NMDA receptor antagonists, and immunotherapies against core pathophysiology, that provide temporary relief only. Researchers worldwide have made significant attempts to find new targets and develop innovative therapeutic molecules to treat AD. The FDA-approved drugs are palliative and couldn't restore the damaged neuron cells of AD. Stem cells have self-differentiation properties, making them prospective therapeutics to treat AD. The promising results in pre-clinical studies of stem cell therapy for AD seek attention worldwide. Various stem cells, mainly mesenchymal stem cells, are currently in different phases of clinical trials and need more advancements to take this therapy to the translational level. Here, we review research from the past decade that has identified several hypotheses related to AD pathology. Moreover, this article also focuses on the recent advancement in therapeutic strategies for AD treatment including immunotherapy and stem cell therapy detailing the clinical trials that are currently undergoing development.
Collapse
Affiliation(s)
- Tanzeel Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Rashid Waseem
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Jaoud Ansari
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ishfaq Ahmad Ahanger
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; Department of Clinical Biochemistry, University of Kashmir,190006, India
| | - Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
35
|
Khan MS, Furkan M, Shahwan M, Yadav DK, Anwar S, Khan RH, Shamsi A. Investigating molecular interactions between human transferrin and resveratrol through a unified experimental and computational approach: Role of natural compounds in Alzheimer's disease therapeutics. Amino Acids 2023; 55:1923-1935. [PMID: 37926707 DOI: 10.1007/s00726-023-03355-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
Disruptions to iron metabolism and iron homeostasis have emerged as significant contributors to the development and progression of Alzheimer's disease (AD). Human transferrin plays a key part in maintaining iron equilibrium throughout the body, highlighting its importance in AD. Many plant-derived compounds and dietary constituents show promise for preventing AD. Polyphenols that are abundant in fruits, vegetables, teas, coffee, and herbs possess neuroprotective attributes. Resveratrol is a natural polyphenol present in various plant sources like grapes, berries, peanuts, and red wine that has garnered research interest due to its wide range of biological activities. Notably, resveratrol exhibits neuroprotective effects that may help prevent or treat AD through multiple mechanisms. In the present study, we employed a combination of molecular docking and all-atom molecular dynamic simulations (MD) along with experimental approaches to unravel the intricate interactions between transferrin and resveratrol deciphering the binding mechanism. Through molecular docking analysis, it was determined that resveratrol occupies the iron binding pocket of transferrin. Furthermore, MD simulations provided a more profound insight into the stability and conformational dynamics of the complex suggesting that the binding of resveratrol introduced localized flexibility, while maintaining overall stability. The spectroscopic observations yielded clear evidence of substantial binding between resveratrol and transferrin, confirming the computational findings. The identified binding mechanism and conformational stability hold potential for advancing the development of innovative therapeutic approaches targeting AD through resveratrol, particularly concerning iron homeostasis. These insights serve as a platform for considering the natural compounds in the realm of AD therapeutics.
Collapse
Affiliation(s)
- Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mohammad Furkan
- Department of Biochemistry, Aligarh Muslim University, Aligarh, India
| | - Moyad Shahwan
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Dharmendra Kumar Yadav
- Gachon Institute of Pharmaceutical Science and Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Anas Shamsi
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| |
Collapse
|
36
|
Cáceres C, Heusser B, Garnham A, Moczko E. The Major Hypotheses of Alzheimer's Disease: Related Nanotechnology-Based Approaches for Its Diagnosis and Treatment. Cells 2023; 12:2669. [PMID: 38067098 PMCID: PMC10705786 DOI: 10.3390/cells12232669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/25/2023] [Accepted: 09/19/2023] [Indexed: 12/18/2023] Open
Abstract
Alzheimer's disease (AD) is a well-known chronic neurodegenerative disorder that leads to the progressive death of brain cells, resulting in memory loss and the loss of other critical body functions. In March 2019, one of the major pharmaceutical companies and its partners announced that currently, there is no drug to cure AD, and all clinical trials of the new ones have been cancelled, leaving many people without hope. However, despite the clear message and startling reality, the research continued. Finally, in the last two years, the Food and Drug Administration (FDA) approved the first-ever medications to treat Alzheimer's, aducanumab and lecanemab. Despite researchers' support of this decision, there are serious concerns about their effectiveness and safety. The validation of aducanumab by the Centers for Medicare and Medicaid Services is still pending, and lecanemab was authorized without considering data from the phase III trials. Furthermore, numerous reports suggest that patients have died when undergoing extended treatment. While there is evidence that aducanumab and lecanemab may provide some relief to those suffering from AD, their impact remains a topic of ongoing research and debate within the medical community. The fact is that even though there are considerable efforts regarding pharmacological treatment, no definitive cure for AD has been found yet. Nevertheless, it is strongly believed that modern nanotechnology holds promising solutions and effective clinical strategies for the development of diagnostic tools and treatments for AD. This review summarizes the major hallmarks of AD, its etiological mechanisms, and challenges. It explores existing diagnostic and therapeutic methods and the potential of nanotechnology-based approaches for recognizing and monitoring patients at risk of irreversible neuronal degeneration. Overall, it provides a broad overview for those interested in the evolving areas of clinical neuroscience, AD, and related nanotechnology. With further research and development, nanotechnology-based approaches may offer new solutions and hope for millions of people affected by this devastating disease.
Collapse
Affiliation(s)
| | | | | | - Ewa Moczko
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar 2562307, Chile; (C.C.)
| |
Collapse
|
37
|
Xiong G, Zhang K, Ma Y, Song Y, Zhang W, Qi T, Qiu H, Shi J, Kan C, Zhang J, Sun X. BAM15 as a mitochondrial uncoupler: a promising therapeutic agent for diverse diseases. Front Endocrinol (Lausanne) 2023; 14:1252141. [PMID: 37900126 PMCID: PMC10600450 DOI: 10.3389/fendo.2023.1252141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
Subcellular organelles dysfunction is implicated in various diseases, including metabolic diseases, neurodegenerative diseases, cancer, and cardiovascular diseases. BAM15, a selective mitochondrial uncoupler, has emerged as a promising therapeutic agent due to its ability to enhance mitochondrial respiration and metabolic flexibility. By disrupting the coupling between electron transport and ATP synthesis, BAM15 dissipates the proton gradient, leading to increased mitochondrial respiration and energy expenditure. This review provides a comprehensive overview of BAM15, including its mechanism of action and potential therapeutic applications in diverse disease contexts. BAM15 has shown promise in obesity by increasing energy expenditure and reducing fat accumulation. In diabetes, it improves glycemic control and reverses insulin resistance. Additionally, BAM15 has potential in non-alcoholic fatty liver disease, sepsis, and cardiovascular diseases by mitigating oxidative stress, modulating inflammatory responses, and promoting cardioprotection. The safety profile of BAM15 is encouraging, with minimal adverse effects and remarkable tolerability. However, challenges such as its high lipophilicity and the need for alternative delivery methods need to be addressed. Further research is necessary to fully understand the therapeutic potential of BAM15 and optimize its application in clinical settings.
Collapse
Affiliation(s)
- Guoji Xiong
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yujie Ma
- Department of Pathophysiology, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Yixin Song
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Wenqiang Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Tongbing Qi
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Hongyan Qiu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Junfeng Shi
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Jingwen Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
38
|
Sousa T, Moreira PI, Cardoso S. Current Advances in Mitochondrial Targeted Interventions in Alzheimer's Disease. Biomedicines 2023; 11:2331. [PMID: 37760774 PMCID: PMC10525414 DOI: 10.3390/biomedicines11092331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Alzheimer's disease is the most prevalent neurodegenerative disorder and affects the lives not only of those who are diagnosed but also of their caregivers. Despite the enormous social, economic and political burden, AD remains a disease without an effective treatment and with several failed attempts to modify the disease course. The fact that AD clinical diagnosis is most often performed at a stage at which the underlying pathological events are in an advanced and conceivably irremediable state strongly hampers treatment attempts. This raises the awareness of the need to identify and characterize the early brain changes in AD, in order to identify possible novel therapeutic targets to circumvent AD's cascade of events. One of the most auspicious targets is mitochondria, powerful organelles found in nearly all cells of the body. A vast body of literature has shown that mitochondria from AD patients and model organisms of the disease differ from their non-AD counterparts. In view of this evidence, preserving and/or restoring mitochondria's health and function can represent the primary means to achieve advances to tackle AD. In this review, we will briefly assess and summarize the previous and latest evidence of mitochondria dysfunction in AD. A particular focus will be given to the recent updates and advances in the strategy options aimed to target faulty mitochondria in AD.
Collapse
Affiliation(s)
- Tiago Sousa
- Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal;
| | - Paula I. Moreira
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal
| | - Susana Cardoso
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| |
Collapse
|
39
|
Bottani E, Brunetti D. Advances in Mitochondria-Targeted Drug Delivery. Pharmaceutics 2023; 15:2089. [PMID: 37631303 PMCID: PMC10459761 DOI: 10.3390/pharmaceutics15082089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Mitochondria are dynamic organelles that play a crucial role in numerous cellular activities [...].
Collapse
Affiliation(s)
- Emanuela Bottani
- Department of Diagnostic and Public Health, Section of Pharmacology, University of Verona, 37134 Verona, Italy
| | - Dario Brunetti
- Unità di Genetica Medica e Neurogenetica, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| |
Collapse
|
40
|
Stillger K, Neundorf I. Cell-permeable peptide-based delivery vehicles useful for subcellular targeting and beyond. Cell Signal 2023:110796. [PMID: 37423344 DOI: 10.1016/j.cellsig.2023.110796] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
Personal medicine aims to provide tailor-made diagnostics and treatments and has been emerged as a promising but challenging strategy during the last years. This includes the active delivery and localization of a therapeutic compound to a targeted site of action within a cell. An example being targeting the interference of a distinct protein-protein interaction (PPI) within the cell nucleus, mitochondria or other subcellular location. Therefore, not only the cell membrane has to be overcome but also the final intracellular destination has to be reached. One approach which fulfills both requirements is to use short peptide sequences that are able to translocate into cells as targeting and delivery vehicles. In fact, recent progress in this field demonstrates how these tools can modulate the pharmacological parameters of a drug without compromising its biological activity. Beside classical targets that are addressed by various small molecule drugs such as receptors, enzymes, or ion channels, PPIs have received increasing attention as potential therapeutic targets. Within this review, we will provide a recent update on cell-permeable peptides targeting subcellular destinations. We include chimeric peptide probes that combine cell-penetrating peptides (CPPs) and a targeting sequence, as well peptides having intrinsic cell-permeability and which are often used to target PPIs.
Collapse
Affiliation(s)
- Katharina Stillger
- Institute for Biochemistry, Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Zuelpicher Str. 47a, 50674 Cologne, Germany
| | - Ines Neundorf
- Institute for Biochemistry, Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Zuelpicher Str. 47a, 50674 Cologne, Germany.
| |
Collapse
|
41
|
Musicco C, Signorile A, Pesce V, Loguercio Polosa P, Cormio A. Mitochondria Deregulations in Cancer Offer Several Potential Targets of Therapeutic Interventions. Int J Mol Sci 2023; 24:10420. [PMID: 37445598 DOI: 10.3390/ijms241310420] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
Mitochondria play a key role in cancer and their involvement is not limited to the production of ATP only. Mitochondria also produce reactive oxygen species and building blocks to sustain rapid cell proliferation; thus, the deregulation of mitochondrial function is associated with cancer disease development and progression. In cancer cells, a metabolic reprogramming takes place through a different modulation of the mitochondrial metabolic pathways, including oxidative phosphorylation, fatty acid oxidation, the Krebs cycle, glutamine and heme metabolism. Alterations of mitochondrial homeostasis, in particular, of mitochondrial biogenesis, mitophagy, dynamics, redox balance, and protein homeostasis, were also observed in cancer cells. The use of drugs acting on mitochondrial destabilization may represent a promising therapeutic approach in tumors in which mitochondrial respiration is the predominant energy source. In this review, we summarize the main mitochondrial features and metabolic pathways altered in cancer cells, moreover, we present the best known drugs that, by acting on mitochondrial homeostasis and metabolic pathways, may induce mitochondrial alterations and cancer cell death. In addition, new strategies that induce mitochondrial damage, such as photodynamic, photothermal and chemodynamic therapies, and the development of nanoformulations that specifically target drugs in mitochondria are also described. Thus, mitochondria-targeted drugs may open new frontiers to a tailored and personalized cancer therapy.
Collapse
Affiliation(s)
- Clara Musicco
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), CNR, 70126 Bari, Italy
| | - Anna Signorile
- Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Vito Pesce
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Paola Loguercio Polosa
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Antonella Cormio
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", 70124 Bari, Italy
| |
Collapse
|
42
|
Pourmadadi M, Mahdi Eshaghi M, Ostovar S, Mohammadi Z, K. Sharma R, Paiva-Santos AC, Rahmani E, Rahdar A, Pandey S. Innovative nanomaterials for cancer diagnosis, imaging, and therapy: Drug deliveryapplications. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|