1
|
Yang M, Hu Y, Hao X, Chen Q, Cao Y, Ran H, Zhang W. Ultrasound-actuated ion homeostasis perturbator for oxidative damage-augmented Ca 2+ interference therapy and combined immunotherapy. Mater Today Bio 2025; 32:101666. [PMID: 40166376 PMCID: PMC11957807 DOI: 10.1016/j.mtbio.2025.101666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/08/2025] [Accepted: 03/13/2025] [Indexed: 04/02/2025] Open
Abstract
Calcium ion therapy has shown promise for cancer treatment, but its efficacy is limited by the cellular calcium buffering mechanism. Herein, an ion homeostasis disruptor (PCCa) was synthesized using an in situ mineralization method. The surface of the porphyrin-metal-organic framework PCN was coated with calcium carbonate (CaCO3), aimed at causing Ca2+ overload and disrupting the self-defense mechanism during ion imbalance. Upon internalization into tumor cells, PCCa undergoes lysosomal acidification-induced CaCO3 decomposition, leading to instantaneous Ca2+ overload. Simultaneously, under ultrasonic irradiation, the meso-tetra-(4-carboxyphenyl)porphine (TCPP) within the ion homeostasis disruptor generates reactive oxygen species (ROS), which impairs cellular calcium buffering capacity and amplifies cell damage caused by calcium overload. In addition, PCCa could also induce immunogenic cell death, release tumor-associated antigens (TAA), and act as an adjuvant, thereby promoting dendritic cell maturation and enhancing the antitumor activity of CD8+ T cells. In mouse models, PCCa not only led to significant regression of subcutaneous mammary tumors but also demonstrated substantial anti-metastatic effects. In summary, the proposed ultrasound-actuated Ca2+ interference strategy is promising to deactivate the ion homeostasis maintenance system, contributing to the attainment of splendid tumor treatment outcome with reliable biosafety, which may provide useful insights in cancer therapy.
Collapse
Affiliation(s)
- Mi Yang
- Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University. Chongqing, 400010, China
| | - Yaqin Hu
- Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University. Chongqing, 400010, China
| | - Xiuxiu Hao
- Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University. Chongqing, 400010, China
| | - Qiaoqi Chen
- Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University. Chongqing, 400010, China
| | - Yang Cao
- Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University. Chongqing, 400010, China
| | - Haitao Ran
- Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University. Chongqing, 400010, China
| | - Wei Zhang
- Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University. Chongqing, 400010, China
| |
Collapse
|
2
|
Uti DE, Atangwho IJ, Alum EU, Ntaobeten E, Obeten UN, Bawa I, Agada SA, Ukam CIO, Egbung GE. Antioxidants in cancer therapy mitigating lipid peroxidation without compromising treatment through nanotechnology. DISCOVER NANO 2025; 20:70. [PMID: 40272665 DOI: 10.1186/s11671-025-04248-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/03/2025] [Indexed: 04/27/2025]
Abstract
BACKGROUND Cancer treatments often exploit oxidative stress to selectively kill tumour cells by disrupting their lipid peroxidation membranes and inhibiting antioxidant enzymes. However, lipid peroxidation plays a dual role in cancer progression, acting as both a tumour promoter and a suppressor. Balancing oxidative stress through antioxidant therapy remains a challenge, as excessive antioxidant activity may compromise the efficacy of chemotherapy and radiotherapy. AIM This review explores the role of antioxidants in mitigating lipid peroxidation in cancer therapy while maintaining treatment efficacy. It highlights recent advancements in nanotechnology-based targeted antioxidant delivery to optimize therapeutic outcomes. METHODS A comprehensive literature review was conducted using reputable databases, including PubMed, Scopus, Web of Science, and ScienceDirect. The search focused on publications from the past five years (2020-2025), supplemented by relevant studies from earlier years. Keywords such as "antioxidants," "lipid peroxidation," "nanotechnology in cancer therapy," and "oxidative stress" were utilized. Relevant articles were critically analysed, and graphical illustrations were created. RESULTS Emerging evidence suggests that nanoparticles, including liposomes, polymeric nanoparticles, metal-organic frameworks, and others, can effectively encapsulate and control the release of antioxidants in tumour cells while minimizing systemic toxicity. Stimuli-responsive carriers with tumour-specific targeting mechanisms further enhance antioxidant delivery. Studies indicate that these strategies help preserve normal cells, mitigate oxidative stress-related damage, and improve treatment efficacy. However, challenges such as bioavailability, stability, and potential interactions with standard therapies remain. CONCLUSION Integrating nanotechnology with antioxidant-based interventions presents a promising approach for optimizing cancer therapy. Future research should focus on refining lipid peroxidation modulation strategies, assessing oxidative stress profiles during treatment, and employing biomarkers to determine optimal antioxidant dosing. A balanced approach to antioxidant use may enhance therapeutic efficacy while minimizing adverse effects.
Collapse
Affiliation(s)
- Daniel Ejim Uti
- Department of Biochemistry, Research and Publications, Kampala International University, P.O. Box 20000, Kampala, Uganda.
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Otukpo, Benue State, Nigeria.
| | - Item Justin Atangwho
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar, Calabar, Nigeria
| | - Esther Ugo Alum
- Department of Biochemistry, Research and Publications, Kampala International University, P.O. Box 20000, Kampala, Uganda
| | - Emmanuella Ntaobeten
- Department of Cancer and Haematology, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Uket Nta Obeten
- Department of Chemistry/Biochemistry and Molecular Biology, Alex Ekwueme Federal University, Ndufu-Alike Ikwo, PMB 1010, Abakaliki, Ebonyi State, Nigeria
| | - Inalegwu Bawa
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Otukpo, Benue State, Nigeria
| | - Samuel A Agada
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Otukpo, Benue State, Nigeria
| | | | - Godwin Eneji Egbung
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar, Calabar, Nigeria
| |
Collapse
|
3
|
M A, S KB, Liyana EP, Jasmine JS. Transformative potential of plant-based nanoparticles in cancer diagnosis and treatment: bridging traditional medicine and modern therapy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04113-y. [PMID: 40237799 DOI: 10.1007/s00210-025-04113-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025]
Abstract
Cancer is a primary global health concern, with an estimated 35.3 million cancer cases expected worldwide, representing a 76.6% increase in 2022, and 20 million by 2050, resulting from genetic mutation and environmental factors that cause uncontrolled cell growth. Other factors including smoking, unhealthy diets, physical inactivity, exposure to carcinogens, UV radiation, and aging increase DNA damage. Current cancer treatments like chemotherapy, radiation therapy, immunotherapy, and surgery are effective, but those have significant effects like lack of specificity, development of drug resistance, and significant side effects to healthy tissues. An advancement to conventional therapies is plant-based nanoparticles as transformative approaches in cancer diagnosis and treatment. These nanoparticles synthesized using plant bioactive compounds like flavonoids, alkaloids, polyphenols, and some metals-oxides like gold, silver, copper, zinc, etc. offer eco-friendly, cost-effective, and biocompatible alternatives. They enhance targeted drug delivery, allowing anticancer agents specifically to tumor cells, minimizing damage to health. Improves imaging techniques like MRI and fluorescence imaging, and helps early detection, cancer biomarkers, allowing for prompt intervention. Recent findings show that nanocarriers made from plant-based materials, such as polyphenols (curcumin, resveratrol) and plant-extracted metal nanoparticles (gold, silver), can improve drug stability and selectively target tumor cells. Plant-derived nanoparticles play a crucial role in cancer immunotherapy and nanovaccines. Biodegradable plant-based nanocarriers can deliver cancer vaccines, stimulating long-term immunity against tumors. Graphene oxide and gold nanoparticles synthesized from plant extracts can absorb near-infrared (NIR) light, generating heat to destroy cancer cells with minimal damage to surrounding tissues. This study discusses the types of plant-based nanoparticles like plant virus nanoparticles (TMV, PVX, CPMV), plant metallic nanoparticles (Au, Ag., Cu, Zn, Mg, Ca, and Mn), and flavonoid nanoparticles found in cancer treatment, their significant roles, chemotherapy-based nanomedicines available in the medical field, and a detailed vision of nanomaterial applications in cancer diagnosis, treatment, and targeted drug delivery.
Collapse
Affiliation(s)
- Aswini M
- Department of Biotechnology, PSG College of Arts & Science, Coimbatore, Tamil Nadu, India.
| | - Kavitha Bagya S
- Department of Biotechnology, PSG College of Arts & Science, Coimbatore, Tamil Nadu, India
| | - E P Liyana
- Department of Biotechnology, PSG College of Arts & Science, Coimbatore, Tamil Nadu, India
| | | |
Collapse
|
4
|
Ahmadishoar S, Mones Saeed S, Salih Mahdi M, Mohammed Taher W, Alwan M, Jasem Jawad M, Khdyair Hamad A, Gandomkar H. The potential use of bacteria and their derivatives as delivery systems for nanoparticles in the treatment of cancer. J Drug Target 2025:1-34. [PMID: 40186857 DOI: 10.1080/1061186x.2025.2489979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/23/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Cancer is a leading cause of mortality and morbidity worldwide. Nanomaterials, unique optical, magnetic, and electrical properties at the nanoscale (1-100 nm), have been engineered to improve drug capacity, bioavailability, and specificity in cancer treatment. These advancements address toxicity and lack of selectivity in conventional therapies, enabling precise targeting of cancer cells, the tumour microenvironment, and the immune system. Among emerging approaches, bacterial treatment shows promise due to its natural ability to target cancer and its diverse therapeutic mechanisms, which nanotechnology can further enhance. Bacteria-based drug delivery systems leverage bacteria's adaptability and survival strategies within the human body. Bacterial derivatives, such as bacterial ghosts (BGs), bacterial extracellular vesicles (BEVs), and dietary toxins, are recognised as effective biological nanomaterials capable of carrying nanoparticles (NPs). These systems have attracted increasing attention for their potential in targeted NP delivery for cancer treatment. This study explores the use of various bacteria and their byproducts as NP delivery vehicles, highlighting their potential in treating different types of cancer. By combining the strengths of nanotechnology and bacterial therapy, these innovative approaches aim to revolutionise cancer treatment with improved precision and efficacy.
Collapse
Affiliation(s)
- Shiva Ahmadishoar
- Department of Microbiology, Male.C., Islamic Azad University, Malekan, Iran
| | - Samaa Mones Saeed
- Dental Prosthetics Techniques Department, Health and Medical Techniques College/AlNoor University, Mosul, Iraq
| | | | - Waam Mohammed Taher
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Mariem Alwan
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | | | | | - Hossein Gandomkar
- Department of Surgical Oncology, Tehran University of Medical Medicine, Tehran, Iran
| |
Collapse
|
5
|
Tavakkoli E, Hashemi SM, Montazerabadi A, Khademi S, Ghorbani F, Mohammadzadeh S, Azimian H. In vitro study of effect of gold nanoparticles conjugated with triptorelin peptide on the radiosensitivity of breast cancer cells (MCF-7). Discov Oncol 2025; 16:404. [PMID: 40140152 PMCID: PMC11947392 DOI: 10.1007/s12672-025-01935-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 02/04/2025] [Indexed: 03/28/2025] Open
Abstract
INTRODUCTION One of the significant challenges in the field of radiation therapy for cancer cells is the damage to healthy tissues in the vicinity of the tumor. In light of the recent developments in nanotechnology, as well as the historical use of materials with high atomic number to enhance contrast in medical imaging, a potential solution was proposed: the use of targeted gold nanoparticles in conjunction with the triptorelin peptide to enhance the radiation sensitivity of MCF-7 cancer cells. Consequently, due to the presence of the triptorelin peptide receptor on the surface of MCF-7 cells, the nanoparticles are absorbed by the target cells in a targeted manner. By increasing the interaction between the nanoparticles and X-ray MeV 6, it was anticipated that there will be an increase in cell death and optimization of the treatment quality. METHODOLOGY Following synthesis and combination with triptorelin peptide, gold nanoparticles coated with alginate were subjected to characterization tests. Subsequently, MTT and colony tests were conducted to ascertain the toxicity of the nanoparticles and the optimal dosage of the drug for use on MCF-7 cells. Subsequently, the cells were subjected to the colony assay to ascertain the level of radiation sensitivity. Following the culturing and treatment of the cells with a concentration of 20 μg/ml of nanoparticles, they were subjected to 2, 4, 6, and 8 Gy (Gray) of radiation. Following the incubation period, the resulting colonies were stained and counted. Finally, the flow cytometry test was employed by Annexin V PI kit to determine the extent of cell death caused by apoptosis. RESULTS The toxicity test finally indicated that a concentration of 20 μg/ml should be employed in the continuation of the study. The results of the colony assay, which was conducted to determine radiation sensitivity, revealed a dose enhancement factor (DEF) of 1.68, 2.32, 1.76 and 1.86, respectively, for radiation doses of 2, 4, 6 and 8 Gy. These findings were observed in the group that received the targeted nanoparticle in conjunction with radiation therapy, when compared to the group that received only radiation therapy. Additionally, the flow cytometry test yielded a synergistic effect of 5.63. The administration of gold nanoparticles in both forms was observed to result in a reduction in cell survival. However, the radio-sensitizing effect of targeted gold nanoparticles with triptorelin peptide was greater, which can be attributed to enhanced cellular uptake by breast cancer cells (MCF-7). Au-Triptorelin nanoparticles with their specific targeting increased radiosensitivity and increased apoptosis compared to the group that only received radiation. CONCLUSION The results of the tests showed that Triptorelin-AuNPs nanoparticles have the ability to cause targeted sensitivity in MCF-7 cells with triptorelin peptide receptors.
Collapse
Affiliation(s)
- Elham Tavakkoli
- Medical Physics Research Center, Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyyed Mohammad Hashemi
- Medical Physics Research Center, Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Montazerabadi
- Medical Physics Research Center, Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Khademi
- Department of Radiology Technology, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzaneh Ghorbani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Comprehensive Research Laboratory, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sheyda Mohammadzadeh
- Medical Physics Research Center, Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hosein Azimian
- Medical Physics Research Center, Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Moni SS, Moshi JM, Matou-Nasri S, Alotaibi S, Hawsawi YM, Elmobark ME, Hakami AMS, Jeraiby MA, Sulayli AA, Moafa HN. Advances in Materials Science for Precision Melanoma Therapy: Nanotechnology-Enhanced Drug Delivery Systems. Pharmaceutics 2025; 17:296. [PMID: 40142960 PMCID: PMC11945159 DOI: 10.3390/pharmaceutics17030296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 03/28/2025] Open
Abstract
Melanoma, a highly aggressive form of skin cancer, poses a major therapeutic challenge due to its metastatic potential, resistance to conventional therapies, and the complexity of the tumor microenvironment (TME). Materials science and nanotechnology advances have led to using nanocarriers such as liposomes, dendrimers, polymeric nanoparticles, and metallic nanoparticles as transformative solutions for precision melanoma therapy. This review summarizes findings from Web of Science, PubMed, EMBASE, Scopus, and Google Scholar and highlights the role of nanotechnology in overcoming melanoma treatment barriers. Nanoparticles facilitate passive and active targeting through mechanisms such as the enhanced permeability and retention (EPR) effect and functionalization with tumor-specific ligands, thereby improving the accuracy of drug delivery and reducing systemic toxicity. Stimuli-responsive systems and multi-stage targeting further improve therapeutic precision and overcome challenges such as poor tumor penetration and drug resistance. Emerging therapeutic platforms combine diagnostic imaging with therapeutic delivery, paving the way for personalized medicine. However, there are still issues with scalability, biocompatibility, and regulatory compliance. This comprehensive review highlights the potential of integrating nanotechnology with advances in genetics and proteomics, scalable, and patient-specific therapies. These interdisciplinary innovations promise to redefine the treatment of melanoma and provide safer, more effective, and more accessible treatments. Continued research is essential to bridge the gap between evidence-based scientific advances and clinical applications.
Collapse
Affiliation(s)
- Sivakumar S. Moni
- College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
- Health Research Centre, Jazan University, Jazan 45142, Saudi Arabia
| | - Jobran M. Moshi
- Department of Medical Laboratory Technology, College of Nursing and Health Science, Jazan University, Jazan 45142, Saudi Arabia
- Health Research Centre, Jazan University, Jazan 45142, Saudi Arabia
| | - Sabine Matou-Nasri
- Blood and Cancer Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh 11481, Saudi Arabia;
- Biosciences Department, Faculty of the School for Systems Biology, George Mason University, Manassas, VA 22030, USA
| | - Shmoukh Alotaibi
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah 23433, Saudi Arabia; (S.A.); (Y.M.H.)
| | - Yousef M. Hawsawi
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah 23433, Saudi Arabia; (S.A.); (Y.M.H.)
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al-Faisal University, Riyadh 11533, Saudi Arabia
| | | | | | - Mohammed A. Jeraiby
- Department of Basic Medical Science, Faculty of Medicine, Jazan University, Jazan 45142, Saudi Arabia;
| | - Ahmed A. Sulayli
- Laboratory Department, Prince Mohammed bin Nasser Hospital, Jazan Health Cluster, Jazan 82734, Saudi Arabia;
| | - Hassan N. Moafa
- Department of Public Health, College of Nursing and Health Sciences, Jazan University, Jazan 45142, Saudi Arabia;
- Department of Quality and Patients Safety, Jazan University Hospital, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
7
|
Rodriguez-Nieves AL, Shah S, Taylor ML, Alle M, Huang X. Magnetic-Plasmonic Core-Shell Nanoparticles: Properties, Synthesis and Applications for Cancer Detection and Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:264. [PMID: 39997827 PMCID: PMC11858323 DOI: 10.3390/nano15040264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/27/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025]
Abstract
Nanoparticles have been widely used in cancer diagnostics and treatment research due to their unique properties. Magnetic nanoparticles are popular in imaging techniques due to their ability to alter the magnetization field around them. Plasmonic nanoparticles are mainly applied in cancer treatments like photothermal therapy due to their ability to convert light into heat. While these nanoparticles are popular among their respective fields, magnetic-plasmonic core-shell nanoparticles (MPNPs) have gained popularity in recent years due to the combined magnetic and optical properties from the core and shell. MPNPs have stood out in cancer theranostics as a multimodal platform capable of serving as a contrast agent for imaging, a guidable drug carrier, and causing cellular ablation through photothermal energy conversion. In this review, we summarize the different properties of MPNPs and the most common synthesis approaches. We particularly discuss applications of MPNPs in cancer diagnosis and treatment based on different mechanisms using the magnetic and optical properties of the particles. Lastly, we look into current challenges they face for clinical applications and future perspectives using MPNPs for cancer detection and therapy.
Collapse
Affiliation(s)
| | | | | | | | - Xiaohua Huang
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, USA; (A.L.R.-N.); (S.S.); (M.L.T.); (M.A.)
| |
Collapse
|
8
|
Fu J, Yu L, Wang Z, Chen H, Zhang S, Zhou H. Advances in controlled release drug delivery systems based on nanomaterials in lung cancer therapy: A review. Medicine (Baltimore) 2025; 104:e41415. [PMID: 39928802 PMCID: PMC11813027 DOI: 10.1097/md.0000000000041415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 02/12/2025] Open
Abstract
Lung cancer is one of the most common malignant tumors, with the highest morbidity and mortality rates. Currently, significant progress has been made in the treatment of lung cancer, which has effectively improved the overall prognosis of patients, but there are still many problems, such as tumor recurrence, drug resistance, and serious complications. With the rapid development of nanotechnology in the field of medicine, it breaks through the inherent limitations of traditional cancer treatments and shows great potential in tumor treatment. To address the drawbacks of traditional therapeutic means, nanodrug delivery systems can release drugs under specific conditions, thus realizing tumor-targeted drug delivery, which improves the antitumor effect of drugs. In this paper, we review the current treatments for lung cancer and further discuss the advantages and common carriers of nanodrug delivery systems. We also summarize the latest research progress of nanotargeted drug delivery systems in the field of lung cancer therapy, discuss the problems faced in their clinical translation, and look forward to future development opportunities and directions.
Collapse
Affiliation(s)
- Jiang Fu
- Department of Thoracic Surgery, Suining Central Hospital, Suining, China
- School of Medical and Life Science, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Yu
- Department of Physical Examination, Suining Central Hospital, Suining, China
| | - Zixu Wang
- Department of Thoracic Surgery, Suining Central Hospital, Suining, China
- School of Medical and Life Science, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haoyu Chen
- Department of Thoracic Surgery, Suining Central Hospital, Suining, China
| | - Song Zhang
- Department of Thoracic Surgery, Suining Central Hospital, Suining, China
| | - Haining Zhou
- Department of Thoracic Surgery, Suining Central Hospital, Suining, China
- School of Medical and Life Science, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| |
Collapse
|
9
|
Darwish A, Sándor N, Szenti I, Marosvölgyi T, Juhász K, Rónavári A, Kachal E, Kutus B, Kónya Z, Balogi Z. Highly Stable Antitumor Silver-Lipid Nanoparticles Optimized for Targeted Therapy. Int J Nanomedicine 2025; 20:1351-1366. [PMID: 39911260 PMCID: PMC11796454 DOI: 10.2147/ijn.s498208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/21/2024] [Indexed: 02/07/2025] Open
Abstract
Background Silver nanoparticles (AgNPs) have a broad spectrum of biocidal effects, allowing also their antitumor application. To enhance bioavailability, minimize adverse effects and enable targeted drug delivery AgNPs may be encapsulated in liposomes. In this study we aimed to create highly stable and effective antitumor AgNP lipid formulations (LAgs). Methods Uncapped and citrate-stabilized AgNPs were encapsulated by the lipid film hydration method using several phospholipid mixtures, followed by the essential removal of unencapsulated AgNPs by size exclusion chromatography (SEC). Purified LAgs were characterized by UV-VIS, DLS, XRD, ICP-MS, transmission electron microscopy (TEM) and glycerol-based density gradient centrifugation (DGC). Liposomal stability was assessed by carboxyfluorescein (CF) leakage, while antitumor effects of purified LAgs were tested in MTT, clonogenic and 3D spheroid invasion experiments. Results The presence of AgNPs inside SEC-purified liposomes was confirmed by TEM, XRD and ICP-MS. Encapsulation efficiency was estimated to be between 18.7 and 25.5%. Purified LAgs had higher density as compared to free AgNPs revealed by DGC, indicating that a considerable fraction of liposomes contained AgNPs. LAgs with PC/PG, PC/PG/SM/Chol, and in particular PC/PG/SM displayed the highest stability assessed by CF leakage, whereas high content of neutral or negatively charged phospholipids was destabilizing. As shown by MTT and colony formation assays, viability and survival of A375 and RPMI-7951 melanoma cells were severely impaired by LAgs at a higher or comparable level as caused by free AgNPs. Used as a non-tumor control, HEK293 cells were less vulnerable to LAgs as compared to free AgNPs. Finally, applying the most stable lipid composition, PC/PG/SM-LAg-c, and in part PC/PG/SM-LAg-u effectively inhibited a tissue-like invasion of melanoma spheroids. Conclusion Altogether, highly stable purified LAg formulations were created, which effectively block survival, clonogenic potential and invasion of melanoma cells, therefore could be promising NP platforms for targeted tumor therapy.
Collapse
Affiliation(s)
- Ammar Darwish
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, H-7624, Hungary
| | - Nikolett Sándor
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, H-7624, Hungary
| | - Imre Szenti
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, H-6720, Hungary
| | - Tamás Marosvölgyi
- Institute of Bioanalysis, Medical School, University of Pécs, Pécs, H-7624, Hungary
| | - Kata Juhász
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, H-7624, Hungary
| | - Andrea Rónavári
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, H-6720, Hungary
| | - Edi Kachal
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, H-6720, Hungary
| | - Bence Kutus
- Department of Molecular and Analytical Chemistry, University of Szeged, Szeged, H-6720, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, H-6720, Hungary
| | - Zsolt Balogi
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, H-7624, Hungary
| |
Collapse
|
10
|
Hussein MO, Abdulhameed AS. Design of Bionanomaterial of Chitosan Carbohydrate Polymer Composited with Broccoli Extract and Zinc Oxide Nanoparticles: Anticancer Activity in Human Osteosarcoma. Appl Biochem Biotechnol 2025; 197:1073-1089. [PMID: 39352452 DOI: 10.1007/s12010-024-05066-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 02/13/2025]
Abstract
In the current research, a chitosan/broccoli extract/ZnO nanoparticle (CH/BE/ZnO) bionanocomposite was created. The physicochemical properties of CH/BE/ZnO bionanocomposite were investigated using a variety of methods, including field emission scanning electron microscopy (FESEM), elemental analysis (CHN-O), X-ray diffraction (XRD), Fourier transform infrared spectrum (FTIR), Brunauer-Emmett-Teller (BET), and transmission electron microscopy (TEM). The CH/BE/ZnO bionanocomposite's biological activity was assessed by examining its cytotoxicity capabilities against a bone cancer cell line (MG63). The total pore volume and specific surface area of CH/BE/ZnO are 0.134 cm3/g and 16.99 m2/g, respectively. The IC50 results for CH/BE/ZnO bionanocomposite in bone cancer investigations using the MTT test against the MG63 cell line was 115 μg/mL. The results indicate that the CH/BE/ZnO bionanocomposite is an effective chemotherapeutic agent against human osteosarcoma. The CH/BE/ZnO bionanocomposite showed high performance and structure, which means innovating nanomaterial agents for biological applications in the future.
Collapse
Affiliation(s)
- Muthanna O Hussein
- Department of Clinical Laboratory Sciences, College of Pharmacy, University of Anbar, Ramadi, Iraq
| | - Ahmed Saud Abdulhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Anbar, Ramadi, Iraq.
| |
Collapse
|
11
|
Basingab FS, Alshahrani OA, Alansari IH, Almarghalani NA, Alshelali NH, Alsaiary AH, Alharbi N, Zaher KA. From Pioneering Discoveries to Innovative Therapies: A Journey Through the History and Advancements of Nanoparticles in Breast Cancer Treatment. BREAST CANCER (DOVE MEDICAL PRESS) 2025; 17:27-51. [PMID: 39867813 PMCID: PMC11761866 DOI: 10.2147/bctt.s501448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/03/2025] [Indexed: 01/28/2025]
Abstract
Nanoparticle technology has revolutionized breast cancer treatment by offering innovative solutions addressing the gaps in traditional treatment methods. This paper aimed to comprehensively explore the historical journey and advancements of nanoparticles in breast cancer treatment, highlighting their transformative impact on modern medicine. The discussion traces the evolution of nanoparticle-based therapies from their early conceptualization to their current applications and future potential. We initially explored the historical context of breast cancer treatment, highlighting the limitations of conventional therapies, such as surgery, radiation, and chemotherapy. The advent of nanotechnology has introduced a new era characterized by the development of various nanoparticles, including liposomes, dendrimers, and gold nanoparticles, designed to target cancer cells with remarkable precision. We further described the mechanisms of action for nanoparticles, including passive and active targeting, and reviewed significant breakthroughs and clinical trials that have validated their efficacy. Current applications of nanoparticles in breast cancer treatment have been examined, showcasing clinically approved therapies and comparing their effectiveness with traditional methods. This article also discusses the latest advancements in nanoparticle research, including drug delivery systems and combination therapy innovations, while addressing the current technical, biological, and regulatory challenges. The technical challenges include efficient and targeted delivery to tumor sites without affecting healthy tissue; biological, such as potential toxicity, immune system activation, or resistance mechanisms; economic, involving high production and scaling costs; and regulatory, requiring rigorous testing for safety, efficacy, and long-term effects to meet stringent approval standards. Finally, we have explored emerging trends, the potential for personalized medicine, and the ethical and social implications of this transformative technology. In conclusion, through comprehensive analysis and case studies, this paper underscores the profound impact of nanoparticles on breast cancer treatment and their future potential.
Collapse
Affiliation(s)
- Fatemah S Basingab
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
| | - Omniah A Alshahrani
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
| | - Ibtehal H Alansari
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
| | - Nada A Almarghalani
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
| | - Nada H Alshelali
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
| | - Abeer Hamad Alsaiary
- Biology Department, College of Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Najwa Alharbi
- Department of Biology Science, Faculty of Science, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
| | - Kawther A Zaher
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
| |
Collapse
|
12
|
Hajipour Keyvani A, Mohammadnejad P, Pazoki-Toroudi H, Perez Gilabert I, Chu T, Manshian BB, Soenen SJ, Sohrabi B. Advancements in Cancer Treatment: Harnessing the Synergistic Potential of Graphene-Based Nanomaterials in Combination Therapy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2756-2790. [PMID: 39745785 DOI: 10.1021/acsami.4c15536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Combination therapy, which involves using multiple therapeutic modalities simultaneously or sequentially, has become a cornerstone of modern cancer treatment. Graphene-based nanomaterials (GBNs) have emerged as versatile platforms for drug delivery, gene therapy, and photothermal therapy. These materials enable a synergistic approach, improving the efficacy of treatments while reducing side effects. This review explores the roles of graphene, graphene oxide (GO), and graphene quantum dots (GQDs) in combination therapies and highlights their potential to enhance immunotherapy and targeted cancer therapies. The large surface area and high drug-loading capacity of graphene facilitate the codelivery of multiple therapeutic agents, promoting targeted and sustained release. GQDs, with their unique optical properties, offer real-time imaging capabilities, adding another layer of precision to treatment. However, challenges such as biocompatibility, long-term toxicity, and scalability need to be addressed to ensure clinical safety. Preclinical studies show promising results for GBNs, suggesting their potential to revolutionize cancer treatment through innovative combination therapies.
Collapse
Affiliation(s)
- Armin Hajipour Keyvani
- Surface Chemistry Research Laboratory, Faculty of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Parizad Mohammadnejad
- Surface Chemistry Research Laboratory, Faculty of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Irati Perez Gilabert
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Rellis Research Group, Gaston Geenslaan 3 - Box 901, 3001 Leuven, Belgium
| | - Tianjiao Chu
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Rellis Research Group, Gaston Geenslaan 3 - Box 901, 3001 Leuven, Belgium
| | - Bella B Manshian
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, RK-Herestraat 49 - Box 505,3000 Leuven, Belgium
| | - Stefaan J Soenen
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Rellis Research Group, Gaston Geenslaan 3 - Box 901, 3001 Leuven, Belgium
- Leuven Cancer Institute, Faculty of Medicine, KU Leuven, Rellis Research Group, Gaston Geenslaan 3 - Box 901, 3001 Leuven, Belgium
| | - Beheshteh Sohrabi
- Surface Chemistry Research Laboratory, Faculty of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
13
|
Borjikhani P, Granpayeh N, Zibaii MI. High sensitivity tapered fiber refractive index biosensor using hollow gold nanoparticles. Sci Rep 2025; 15:1458. [PMID: 39789159 PMCID: PMC11717910 DOI: 10.1038/s41598-025-85739-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025] Open
Abstract
A localized surface plasmon resonance (LSPR) sensor based on tapered optical fiber (TOF) using hollow gold nanoparticles (HAuNPs) for measuring the refractive index (RI) is presented. This optical fiber sensor is a good candidate for a label-free RI biosensor. In practical biosensors, bioreceptors are immobilized on nanoparticles (NPs) that only absorb specific biomolecules. The binding of these biomolecules to the receptors changes the local RI around the sensor and this change is detected by the transmittance spectrum of the fiber. Fast, accurate, easy and low-cost disease diagnosis are the advantages of optical fiber biosensors. In this paper, the structure theory is reviewed and the sensor is simulated by the finite difference time domain (FDTD) method and the finite element method (FEM) and the effect of the thickness and diameter of the HAuNPs and the waist diameter of the TOF is investigated. For the structure with HAuNPs thickness (2.5 nm), diameter (50 nm), and the fiber waist diameter of 10 μm, the wavelength sensitivity of 489.8 nm/RIU and full width at half maximum (FWHM) of 50 nm are obtained, which are better than those specifications in some other LSPR fiber sensors. In addition, the sensitivity of the sensor increases about 2-3 times compared to those of sensors with the same structure. Although there are many parameters in human blood that can change its RI, in practical work, the special bioreceptors on the sensor can deactivate other markers except the specific cancer markers, which changes the effective RI. Therefore, this optical fiber sensor is used for label-free detecting the RI of cancer cells and can be used as a biosensor for the detection of early stages of cancers in a non-invasive way, just using human blood samples.
Collapse
Affiliation(s)
- Parisa Borjikhani
- Center of Excellence in Electromagnetics, Optical Communication Laboratory, Faculty of Electrical Engineering, K.N. Toosi University of Technology, Tehran, Iran
| | - Nosrat Granpayeh
- Center of Excellence in Electromagnetics, Optical Communication Laboratory, Faculty of Electrical Engineering, K.N. Toosi University of Technology, Tehran, Iran
| | | |
Collapse
|
14
|
Puttasiddaiah R, Basavegowda N, Lakshmanagowda NK, Raghavendra VB, Sagar N, Sridhar K, Dikkala PK, Bhaswant M, Baek KH, Sharma M. Emerging Nanoparticle-Based Diagnostics and Therapeutics for Cancer: Innovations and Challenges. Pharmaceutics 2025; 17:70. [PMID: 39861718 PMCID: PMC11768644 DOI: 10.3390/pharmaceutics17010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/29/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Malignant growth is expected to surpass other significant causes of death as one of the top reasons for dismalness and mortality worldwide. According to a World Health Organization (WHO) study, this illness causes approximately between 9 and 10 million instances of deaths annually. Chemotherapy, radiation, and surgery are the three main methods of treating cancer. These methods seek to completely eradicate all cancer cells while having the fewest possible unintended impacts on healthy cell types. Owing to the lack of target selectivity, the majority of medications have substantial side effects. On the other hand, nanomaterials have transformed the identification, diagnosis, and management of cancer. Nanostructures with biomimetic properties have been grown as of late, fully intent on observing and treating the sickness. These nanostructures are expected to be consumed by growth in areas with profound disease. Furthermore, because of their extraordinary physicochemical properties, which incorporate nanoscale aspects, a more prominent surface region, explicit geometrical features, and the ability to embody different substances within or on their outside surfaces, nanostructures are remarkable nano-vehicles for conveying restorative specialists to their designated regions. This review discusses recent developments in nanostructured materials such as graphene, dendrimers, cell-penetrating peptide nanoparticles, nanoliposomes, lipid nanoparticles, magnetic nanoparticles, and nano-omics in the diagnosis and management of cancer.
Collapse
Affiliation(s)
- Rachitha Puttasiddaiah
- Teresian College Research Centre, Teresian College, Siddarthanagar, Mysore 570011, India
| | - Nagaraj Basavegowda
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | | | | | - Niju Sagar
- Teresian College Research Centre, Teresian College, Siddarthanagar, Mysore 570011, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | - Praveen Kumar Dikkala
- Department of Food Technology, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522502, India
| | - Maharshi Bhaswant
- New Industry Creation Hatchery Center, Tohoku University, Sendai 9808579, Japan
- Center for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai 600119, India
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Minaxi Sharma
- Research Centre for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, Ningbo 315000, China
| |
Collapse
|
15
|
Irannejad F, Shahbazi S, Reiisi S, Heidari R. Study of the effect of zinc oxide, selenium, and silver nanoparticles on the expression level of oxidative stress-associated genes in ovarian cancer. Med Oncol 2025; 42:39. [PMID: 39760958 DOI: 10.1007/s12032-024-02593-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/23/2024] [Indexed: 01/07/2025]
Abstract
Reactive oxygen species (ROS) generated by oxidative stress have emerged as critical factors in the pathophysiology of malignancies. This study investigated the antioxidant and anticancer properties of zinc (Zn), selenium (Se), and silver (Ag) nanoparticles (NPs) against the A2780 human ovarian cancer cell line. Here, the bioinformatics approach was used to determine the top differentially expressed genes associated with oxidative stress. The ZnO-, Se-, and Ag-NPs were then synthesized via a green synthesis method and subsequently characterized using techniques, such as FTIR, XRD, DLS, zeta potential analysis, FESEM, and TEM. The antioxidant capacity of the NPs was evaluated using a DPPH scavenging assay and their effect on superoxide dismutase enzyme activity was determined. HDF and A2780 cells were treated with varying concentrations of ZnO-, Se-, and Ag-NPs, and cell viability and colony formation were assessed using MTT and clonogenic assays, respectively. Additionally, qPCR was performed to analyze the expression of the candidate genes NOX4, SOD2, and NR4A4. Characterization techniques confirmed the successful synthesis of pure, crystalline, and spherical NPs. Antioxidant assays demonstrated the significant antioxidant properties of ZnO-, Se-, and Ag-NPs. In vitro studies indicated that ZnO-, Se-, and Ag-NPs effectively inhibited cell proliferation and suppressed colony formation, likely owing to the downregulation of NOX4 and upregulation of SOD2 genes. Our findings suggest that ZnO-, Se-, and Ag-NPs may serve as promising anticancer agents for ovarian cancer and NOX4 downregulation and SOD2 upregulation can be proposed as oxidative stress biomarkers; however, further experimental investigation is required to elucidate the therapeutic potential of NPs and the early detection potential of biomarkers.
Collapse
Affiliation(s)
- Fatemeh Irannejad
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Shahrzad Shahbazi
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Somayeh Reiisi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran.
| | - Razieh Heidari
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
16
|
Kumar N, Mangla M. Nanotechnology and nanobots unleashed: pioneering a new era in gynecological cancer management - a comprehensive review. Cancer Chemother Pharmacol 2025; 95:18. [PMID: 39754614 DOI: 10.1007/s00280-024-04747-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/24/2024] [Indexed: 01/06/2025]
Abstract
INTRODUCTION Gynecological cancers, such as ovarian, cervical, and endometrial malignancies, are notoriously challenging due to their intricate biology and the critical need for precise diagnostic and therapeutic approaches. In recent years, groundbreaking advances in nanotechnology and nanobots have emerged as game-changers in this arena, offering the promise of a new paradigm in cancer management. This comprehensive review delves into the revolutionary potential of these technologies, showcasing their ability to transform the landscape of gynecological oncology. METHODOLOGY A systematic literature search spanning from March 2005 to August 2024 was conducted using major databases such as PubMed, Google Scholar, and Scopus. Keywords included "nanotechnology," "nanobots," "gynecological cancers," "ovarian cancer," "cervical cancer," and "endometrial cancer." Relevant articles published in English were selected based on their focus on nanotechnology and nanobots in the diagnosis, treatment, and management of gynecological cancers. The findings were synthesized to present a coherent overview of how nanotechnology and nanobots are reshaping gynecological cancer management. The review highlights key innovations, current applications, and future directions for research and clinical implementation. CONCLUSION The integration of nanotechnology and nanobots in gynecological cancer management represents a groundbreaking shift in the field. Recent advancements in nanoscale materials and robotic technology offer unprecedented opportunities for precision diagnosis, targeted drug delivery, and innovative therapeutic approaches. Despite promising developments, challenges such as biocompatibility, safety, and regulatory issues remain. Continued research and clinical trials are essential to overcome these hurdles and fully realize the potential of nanotechnology and nanobots.
Collapse
Affiliation(s)
- Naina Kumar
- Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, Bibinagar, Hyderabad, Telangana, 508126, India.
| | - Mishu Mangla
- Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, Bibinagar, Hyderabad, Telangana, 508126, India
| |
Collapse
|
17
|
Balaji PG, Bhimrao LS, Yadav AK. Revolutionizing Stroke Care: Nanotechnology-Based Brain Delivery as a Novel Paradigm for Treatment and Diagnosis. Mol Neurobiol 2025; 62:184-220. [PMID: 38829514 DOI: 10.1007/s12035-024-04215-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/03/2024] [Indexed: 06/05/2024]
Abstract
Stroke, a severe medical condition arising from abnormalities in the coagulation-fibrinolysis cycle and metabolic processes, results in brain cell impairment and injury due to blood flow obstruction within the brain. Prompt and efficient therapeutic approaches are imperative to control and preserve brain functions. Conventional stroke medications, including fibrinolytic agents, play a crucial role in facilitating reperfusion to the ischemic brain. However, their clinical efficacy is hampered by short plasma half-lives, limited brain tissue distribution attributed to the blood-brain barrier (BBB), and lack of targeted drug delivery to the ischemic region. To address these challenges, diverse nanomedicine strategies, such as vesicular systems, polymeric nanoparticles, dendrimers, exosomes, inorganic nanoparticles, and biomimetic nanoparticles, have emerged. These platforms enhance drug pharmacokinetics by facilitating targeted drug accumulation at the ischemic site. By leveraging nanocarriers, engineered drug delivery systems hold the potential to overcome challenges associated with conventional stroke medications. This comprehensive review explores the pathophysiological mechanism underlying stroke and BBB disruption in stroke. Additionally, this review investigates the utilization of nanocarriers for current therapeutic and diagnostic interventions in stroke management. By addressing these aspects, the review aims to provide insight into potential strategies for improving stroke treatment and diagnosis through a nanomedicine approach.
Collapse
Affiliation(s)
- Paul Gajanan Balaji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli (An Institute of National Importance under Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, GOI), A Transit Campus at Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow, 226002, Uttar Pradesh, India
| | - Londhe Sachin Bhimrao
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli (An Institute of National Importance under Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, GOI), A Transit Campus at Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow, 226002, Uttar Pradesh, India
| | - Awesh K Yadav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli (An Institute of National Importance under Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, GOI), A Transit Campus at Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow, 226002, Uttar Pradesh, India.
| |
Collapse
|
18
|
Sharma S, Mishra A, Ramniwas S, Pandey P. An Updated Review Summarizing the Anticancer Potential of Naringenin. Endocr Metab Immune Disord Drug Targets 2025; 25:364-376. [PMID: 39005120 DOI: 10.2174/0118715303308238240705061522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 07/16/2024]
Abstract
One important phytochemical is naringenin, which belongs to the flavanone class of polyphenols. It is found in citrus fruits, such as grapefruits, but it can also be found in tomatoes, cherries, and other food-grade medicinal plants. Naringenin has a significant chemotherapeutic promise, as several investigations have conclusively shown. Therefore, the goal of this review is to synthesize the literature that has been done on naringenin as a possible anti-cancer agent and clarify the mechanisms of action that have been described in treatment plans for different kinds of cancer. In a variety of cancer cells, naringenin works by affecting several pathways associated with cell cycle arrest, anti-metastasis, apoptosis, anti-angiogenesis, and DNA repair. It has been shown to alter several molecular targets linked to the development of cancer, such as drug transporters, transcription factors, reactive nitrogen species, reactive oxygen species, cellular kinases, and inflammatory cytokines and regulators of the cell cycle. In summary, this research provides significant insights into the potential of naringenin as a strong and prospective candidate for use in medicines, nutraceuticals, functional foods, and dietary supplements to improve the management of carcinoma.
Collapse
Affiliation(s)
- Srishti Sharma
- Department of Biotechnology, GLA University, Mathura, India
| | - Anuja Mishra
- Department of Biotechnology, GLA University, Mathura, India
| | - Seema Ramniwas
- University Centre of Research and Development, University Institute of Biotechnology, Chandigarh University Gharuan, Mohali, Punjab, India
| | - Pratibha Pandey
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, 140417, Punjab, India
- Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh, 174103 India
- Saveetha Institute of Medical and Technical Sciences, Chennai, India
| |
Collapse
|
19
|
Soleymani S, Naghib SM, Mozafari MR. Circulating Tumor Cells in Cancer Diagnosis, Therapy, and Theranostics Applications: An Overview of Emerging Materials and Technologies. Curr Pharm Des 2025; 31:674-690. [PMID: 39473210 DOI: 10.2174/0113816128328459241009191933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/06/2024] [Indexed: 04/11/2025]
Abstract
In recent years, immunotherapy, namely immune checkpoint inhibitor therapy, has significantly transformed the approach to treating various forms of cancer. Simultaneously, the adoption of clinical oncology has been sluggish due to the exorbitant expense of therapy, the adverse effects experienced by patients, and the inconsistency in treatment response among individuals. As a reaction, individualized methods utilizing predictive biomarkers have arisen as novel strategies for categorizing patients to achieve successful immunotherapy. Recently, the identification and examination of circulating tumor cells (CTCs) have gained attention as predictive indicators for the treatment of cancer patients undergoing chemotherapy and for personalized targeted therapy. CTCs have been found to exhibit immunological checkpoints in several types of solid tumors, which has contributed to our understanding of managing cancer immunotherapy. Circulating tumor cells (CTCs) present in the bloodstream have a crucial function in the formation of metastases. Nevertheless, the practical usefulness of existing CTC tests is mostly restricted by methodological limitations.
Collapse
Affiliation(s)
- Sina Soleymani
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
20
|
Moscheni C, Sartori P, Hu K, Zecchini S, Brambilla L, Arcari A, Napoli A, Mocciaro E, Uboldi M, Zema L, Perrotta C, Castiglioni C. Tailored graphene nanoparticles for biomedical application: preliminary in vitro characterization of the functionality in model cell lines. Int J Pharm 2024; 667:124914. [PMID: 39515671 DOI: 10.1016/j.ijpharm.2024.124914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Thanks to an environmentally friendly physical treatment of high purity graphite, a good control of the structure of graphene nanoparticles (GNPs) has been obtained with the production of stable and reproducible GNPs water dispersions. The preparation protocol entailed ball-milling of synthetic graphite followed by sonication in water and centrifugation/separation procedures. This way, two different GNPs samples with slightly different structural characteristics were harvested: TOP60, showing an average lateral size of the graphene layers = 70 nm and average number of stacked layers = 4, and BOTTOM60, with = 120 nm and = 6. A detailed structural characterization of GNPs was performed as mandatory pre-requisite to build reliable structure/properties correlations, in terms of both biomedical efficacy and toxicity, aiming at a rationale design of tailored materials for applications in biological environments. To this end, in this study GNPs were thoroughly characterized, focusing on cytotoxicity, cellular uptake, and inflammatory response, by testing their effect in different cell lines. BOTTOM60 GNPs in culture medium and in the presence of cells showed a tendency to form big aggregates, phenomenon that was probably responsible for their cytotoxicity at high concentrations. On the other hand, TOP60 GNPs showed a diverse behavior depending on the cell type under investigation. Indeed, the nanoparticles were internalized by cells specialized in endo/phagocytosis, such as astrocytoma cells, but not by carcinoma cells of epithelial origin. Moreover, TOP60 GNPs caused a reduction of proliferation only at high concentration and did not trigger an inflammatory response in THP-1-derived macrophages. The evidence here collected paves the way for further investigations towards the development of GNPs-based drug delivery systems.
Collapse
Affiliation(s)
- Claudia Moscheni
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, via Giovanni Battista Grassi 74, Milano 20157, Italy
| | - Patrizia Sartori
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Giuseppe Colombo 71, Milano 20133, Italy
| | - Kaiyue Hu
- Dipartimento di Chimica, Materiali e Ingegneria Chimica Giulio Natta, Politecnico di Milano, piazza Leonardo da Vinci 32, Milano 20133, Italy
| | - Silvia Zecchini
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, via Giovanni Battista Grassi 74, Milano 20157, Italy
| | - Luigi Brambilla
- Dipartimento di Chimica, Materiali e Ingegneria Chimica Giulio Natta, Politecnico di Milano, piazza Leonardo da Vinci 32, Milano 20133, Italy
| | - Alessandro Arcari
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, via Giovanni Battista Grassi 74, Milano 20157, Italy
| | - Alessandra Napoli
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, via Giovanni Battista Grassi 74, Milano 20157, Italy
| | - Emanuele Mocciaro
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, via Giovanni Battista Grassi 74, Milano 20157, Italy
| | - Marco Uboldi
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Giuseppe Colombo 71, Milano 20133, Italy
| | - Lucia Zema
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Giuseppe Colombo 71, Milano 20133, Italy
| | - Cristiana Perrotta
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, via Giovanni Battista Grassi 74, Milano 20157, Italy.
| | - Chiara Castiglioni
- Dipartimento di Chimica, Materiali e Ingegneria Chimica Giulio Natta, Politecnico di Milano, piazza Leonardo da Vinci 32, Milano 20133, Italy
| |
Collapse
|
21
|
Wu Y, Shang J, Zhang X, Li N. Advances in molecular imaging and targeted therapeutics for lymph node metastasis in cancer: a comprehensive review. J Nanobiotechnology 2024; 22:783. [PMID: 39702277 PMCID: PMC11657939 DOI: 10.1186/s12951-024-02940-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/19/2024] [Indexed: 12/21/2024] Open
Abstract
Lymph node metastasis is a critical indicator of cancer progression, profoundly affecting diagnosis, staging, and treatment decisions. This review article delves into the recent advancements in molecular imaging techniques for lymph nodes, which are pivotal for the early detection and staging of cancer. It provides detailed insights into how these techniques are used to visualize and quantify metastatic cancer cells, resident immune cells, and other molecular markers within lymph nodes. Furthermore, the review highlights the development of innovative, lymph node-targeted therapeutic strategies, which represent a significant shift towards more precise and effective cancer treatments. By examining cutting-edge research and emerging technologies, this review offers a comprehensive overview of the current and potential impact of lymph node-centric approaches on cancer diagnosis, staging, and therapy. Through its exploration of these topics, the review aims to illuminate the increasingly sophisticated landscape of cancer management strategies focused on lymph node assessment and intervention.
Collapse
Affiliation(s)
- Yunhao Wu
- Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jin Shang
- Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xinyue Zhang
- The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Nu Li
- The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
22
|
Khalili-Hezarjaribi H, Bahrami AR, Sh Saljooghi A, Matin MM. Modified mesoporous silica nanocarriers containing superparamagnetic iron oxide nanoparticle, 5-fluorouracil or oxaliplatin, and metformin as a radiosensitizer, significantly impact colorectal cancer radiation therapy. Int J Pharm 2024; 666:124838. [PMID: 39419365 DOI: 10.1016/j.ijpharm.2024.124838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/25/2024] [Accepted: 10/13/2024] [Indexed: 10/19/2024]
Abstract
This study investigates the anticancer effects of SPION-based silica nanoparticles carrying 5-fluorouracil (5-FU) or oxaliplatin (OX), and metformin (MET) on colorectal cancer cells. Nanocarriers were equipped with pH-responsive gold gatekeepers for controlled release, PEGylation for longer circulation, and folic acid (FA) for targeted delivery. The effects were evaluated by investigating cell viability, cellular uptake, flow cytometry, and clonogenic assay in vitro. The efficacy of the system was also tested in vivo on C57BL/6 mice bearing HT-29 tumors, and potential side effects were evaluated. Nanocarriers were synthesized with hydrodynamic diameters of 79.8 nm for 5-FU and 85.2 nm for OX; zeta potentials of -21 and -22 mV, respectively, and remained stable after 72 h. Encapsulation efficiencies were 85 % for 5-FU, 80 % for OX, and 83 % for MET, with loading capacities of 44 %, 38 %, and 41 %, respectively. Drug release in acidic buffer was 38.7 % for 5-FU, 32.8 % for OX, and 43.5 % for MET. MTT assay showed increased toxicity due to FA conjugation, while PEGylation reduced the hemolysis activity. Targeted nanocarriers demonstrated superior cellular uptake and tumor localization compared to non-targeted variants. The combination of 5-FU-MET and OX-MET nanocarriers with radiation therapy (RT) demonstrated the greatest effect on their antitumor activity, accompanied by minimal side effects indicating effective tumor targeting in vivo. MRI and CT imaging further supported these findings. This study underscores the synergistic impact of MET alongside RT on the inhibition of cancer cells and tumor growth for both targeted 5-FU and OX nanocarriers reflecting the significant radiosensitizing properties of MET.
Collapse
Affiliation(s)
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amir Sh Saljooghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
23
|
Cavdar E, Karaboyun K, Iriagac Y. Nanotechnology in oncology: a mini review. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2024; 70:e20241347. [PMID: 39630738 PMCID: PMC11639546 DOI: 10.1590/1806-9282.20241347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 09/14/2024] [Indexed: 12/07/2024]
Affiliation(s)
- Eyyup Cavdar
- Tekirdağ Namık Kemal University, Department of Medical Oncology – Tekirdağ, Turkey
| | - Kubilay Karaboyun
- Agri Ibrahim Cecen University, Training and Research Hospital, Department of Medical Oncology – Ağrı, Turkey
| | - Yakup Iriagac
- Balikesir Ataturk City Hospital, Department of Medical Oncology – Balıkesir, Turkey
| |
Collapse
|
24
|
Surendran A, Tintu R, Das KS, Nair VJA, Varghese P. Biomedical and Anticancer Potential of Green Synthesized Chalcogenide Zinc Sulfide Nanoparticles Using Different Plant Extracts as the Capping Agent. BRAZILIAN JOURNAL OF PHYSICS 2024; 54:224. [DOI: 10.1007/s13538-024-01591-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/23/2024] [Indexed: 01/05/2025]
|
25
|
Zou B, Long Y, Gao R, Liu Q, Tian X, Liu B, Zhou Q. Nanodelivery system of traditional Chinese medicine bioactive compounds: Application in the treatment of prostate cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:155554. [PMID: 39341127 DOI: 10.1016/j.phymed.2024.155554] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND The long history of clinical experience in China have confirmed the effectiveness of traditional Chinese medicine (TCM) in treating prostate cancer (PCa). Until now, several bioactive compounds with anti-PCa potential, such as curcumin, gallic acid, and quercetin, have been extracted from TCM. Recent studies have shown that encapsulating these TCM bioactive compounds into nano-delivery system enhanced their bioavailability and improved their ability to target PCa tumors. PURPOSE This review aims to summarize the anti-PCa effects and molecular mechanisms of TCM bioactive compounds and discuss the clinical application prospects and future research trends of nano-delivery system based on these compounds. METHODS Literatures focusing on the treatment of PCa using traditional Chinese medicine compounds via nano-drug delivery system were searched from Electronic databases, including PubMed, Web of Science, and Scopus until December 2023. RESULTS Polyphenols, alkaloids, terpenes, and quinones exhibit anti-PCa effects through various pathways. Notably, compounds like curcumin, gallic acid, quercetin, and tanshinone have been extensively studied in nano-delivery systems for anti-PCa purpose. Nano-delivery systems enhance the biological activity of free compounds and reduce toxic side effects, as well. Commonly used nanomaterials for delivering TCM compounds include polymer nanomaterials, liposomes, solid lipid nanoparticles, nanostructured lipid carriers, and niosomes. CONCLUSION Research on nano-delivery systems for TCM bioactive compounds holds promising prospects for anti-PCa therapy. However, extensive clinical trials are necessary to evaluate the effectiveness and safety of these nanodrugs.
Collapse
Affiliation(s)
- Bo Zou
- The First Hospital of Hunan University of Chinese Medicine, 95, Changsha 410007, Hunan, China
| | - Yan Long
- The First Hospital of Hunan University of Chinese Medicine, 95, Changsha 410007, Hunan, China
| | - Ruisong Gao
- The First Hospital of Hunan University of Chinese Medicine, 95, Changsha 410007, Hunan, China
| | - Qizhi Liu
- Hunan University of Chinese Medicine, 300, Changsha 410208, Hunan, China
| | - Xuefei Tian
- Hunan University of Chinese Medicine, 300, Changsha 410208, Hunan, China
| | - Bin Liu
- College of Biology of Hunan University, Changsha 410208, Hunan, China.
| | - Qing Zhou
- The First Hospital of Hunan University of Chinese Medicine, 95, Changsha 410007, Hunan, China.
| |
Collapse
|
26
|
van Staden D, Gerber M, Lemmer HJR. The Application of Nano Drug Delivery Systems in Female Upper Genital Tract Disorders. Pharmaceutics 2024; 16:1475. [PMID: 39598598 PMCID: PMC11597179 DOI: 10.3390/pharmaceutics16111475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
The prevalence of female reproductive system disorders is increasing, especially among women of reproductive age, significantly impacting their quality of life and overall health. Managing these diseases effectively is challenging due to the complex nature of the female reproductive system, characterized by dynamic physiological environments and intricate anatomical structures. Innovative drug delivery approaches are necessary to facilitate the precise regulation and manipulation of biological tissues. Nanotechnology is increasingly considered to manage reproductive system disorders, for example, nanomaterial imaging allows for early detection and enhances diagnostic precision to determine disease severity and progression. Additionally, nano drug delivery systems are gaining attention for their ability to target the reproductive system successfully, thereby increasing therapeutic efficacy and decreasing side effects. This comprehensive review outlines the anatomy of the female upper genital tract by highlighting the complex mucosal barriers and their impact on systemic and local drug delivery. Advances in nano drug delivery are described for their sustainable therapeutic action and increased biocompatibility to highlight the potential of nano drug delivery strategies in managing female upper genital tract disorders.
Collapse
Affiliation(s)
| | | | - Hendrik J. R. Lemmer
- Centre of Excellence for Pharmaceutical Sciences (PharmacenTM), North-West University, Potchefstroom 2531, South Africa; (D.v.S.); (M.G.)
| |
Collapse
|
27
|
Al-Baidhani SAS, Pouresmaeil V, Homayouni Tabrizi M. Synthesis of liposomal nanoparticles to load 4-farnesyloxycoumarin and investigating its anti-cancer and anti-metastatic effects. J Liposome Res 2024:1-10. [PMID: 39550704 DOI: 10.1080/08982104.2024.2428168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/18/2024]
Abstract
The aim of this study was to load 4-farnesyloxycoumarin (4-FLC) in nanoliposomes (4-FLC-LNPs) and evaluate its anti-cancer and anti-metastatic effects. 4-FLC-LNPs were synthesized using a combination of lecithin-cholesterol-polyethylene glycol. The physicochemical properties were evaluated using DLS, FTIR, and microscopy methods. The toxicity against breast cancer (MCF-7), prostate cancer (PS3), pancreatic cancer (PANC), gastric cancer (AGS), and normal cell lines (HUVEC) was evaluated using the MTT assay. Fluorescent staining and flow cytometry were used to assess the occurrence of apoptosis. Molecular analysis methods were used to study the apoptosis and metastasis effects of these nanoliposomes. The antioxidant power of 4-FLC-LNPs was measured using the ABTS and DPPH free radicals methods. 4-FLC-LNPs exhibit a spherical morphology, with an average size of 57.43 nm, a polydispersity index of 0.29, and a zeta potential of -31.4 mV. They demonstrate an encapsulation efficiency of 82.4% for 4-FLC. The IC50 value of 4-FLC-LNPs against the breast cancer cell line was reported as the most sensitive, at approximately 60 μg/mL. ABTS and DPPH results were reported at approximately 30 µg/mL. The inductive effects of nanoliposomes on the apoptosis process were confirmed by an increase in the number of apoptotic cells, as well as the arrest of cells in various phases of cell growth. The increased expression of BAX and decreased expression of Bcl-2, MMP-2, and MMP-9 confirmed the pro-apoptotic and anti-metastatic effects of 4-FLC-LNPs. These finding validate the therapeutic potential of 4-FLC-LNPs, which may be utilized in preclinical studies.
Collapse
Affiliation(s)
| | - Vahid Pouresmaeil
- Department of Biochemistry, Faculty of Medicine, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran
| | | |
Collapse
|
28
|
Shahzad A, Teng Z, Yameen M, Liu W, Cui K, Liu X, Sun Y, Duan Q, Xia J, Dong Y, Bai Z, Peng D, Zhang J, Xu Z, Pi J, Yang Z, Zhang Q. Innovative lipid nanoparticles: A cutting-edge approach for potential renal cell carcinoma therapeutics. Biomed Pharmacother 2024; 180:117465. [PMID: 39321512 DOI: 10.1016/j.biopha.2024.117465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024] Open
Abstract
The kidney plays a crucial role in regulating homeostasis within the human body. Renal cell carcinoma (RCC) is the most common form of kidney cancer, accounting for nearly 90 % of all renal malignancies. Despite the availability of various therapeutic strategies, RCC remains a challenging disease due to its resistance to conventional treatments. Nanotechnology has emerged as a promising field, offering new opportunities in cancer therapeutics. It presents several advantages over traditional methods, enabling diverse biomedical applications, including drug delivery, prevention, diagnosis, and treatment. Lipid nanoparticles (LNPs), approximately 100 nm in size, are derived from a range of lipids and other biochemical compounds. these particulates are designed to overcome biological barriers, allowing them to selectively accumulate at diseased target sites for effective therapeutic action. Many pharmaceutically important compounds face challenges such as poor solubility in aqueous solutions, chemical and physiological instability, or toxicity. LNP technology stands out as a promising drug delivery system for bioactive organic compounds. This article reviews the applications of LNPs in RCC treatment and explores their potential clinical translation, identifying the most viable LNPs for medical use. With ongoing advancement in LNP-based anticancer strategies, there is a growing potential to improve the management and treatment of renal cancer.
Collapse
Affiliation(s)
- Asif Shahzad
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Zhuoran Teng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Muhammad Yameen
- Department of Biochemistry, Government College University Faisalabad, Punjab 38000, Pakistan
| | - Wenjing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Kun Cui
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Xiangjie Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yijian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Qiuxin Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - JiaoJiao Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yurong Dong
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Ziyuan Bai
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Dongmei Peng
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Jinshan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Zhe Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China.
| | - Zhe Yang
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China.
| | - Qiao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China.
| |
Collapse
|
29
|
Zakaria N, Kandile NG, Mohamed MI, Zaky HT, Mohamed HM. Superior remedy colon cancer HCT-116 cells via new chitosan Schiff base nanocomposites: Synthesis and characterization. Int J Biol Macromol 2024; 281:135916. [PMID: 39362442 DOI: 10.1016/j.ijbiomac.2024.135916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024]
Abstract
Cancer is a serious worldwide health problem and colon cancer is the major cancer public prevailing form. The innovative pharmaceuticals with great cancer efficacy are metal nanoparticles. Therefore, the present study relies on developing chitosan Schiff base nanocomposites and investigating their antitumor ability against human colon carcinoma (HCT-116 cell line) using the MTT method. Thus, chitosan (CS) is modified with 9-ethyl-3-carbazolecarboxaldehyde (ECCA) in the absence or presence of the biomedical crosslinker poly(ethylene glycol) diglycidyl ether (PEGDGE) under microwave irradiation to afford CS-Schiff bases CS-SB-I and CS-SB-II, respectively. The assembly method is applied to formulate CS-Schiff base (Ag, Au and ZnO) nanocomposites. These new CS-Schiff bases and their nanocomposites are characterized by utilizing elemental analysis, FTIR, TGA, XRD, SEM, TEM and EDX. Cytotoxicity test showed that CS-SB-I (IC50 112.10 ± 4.23 μg/mL) and CS-SB-II (IC50 98.54 ± 4.09 μg/mL) inhibit the growth of HCT-116 more effectively than chitosan (IC50 181.38 ± 6.54 μg/mL). Additionally, CS-Schiff base nanocomposites revealed superior anticancer efficiency which displayed the lowest IC50 values CS-SB-I-Ag (IC50 10.99 ± 0.37 μg/mL), CS-SB-II-Ag (IC50 12.79 ± 0.49 μg/mL), CS-SB-I-Au (IC50 14.96 ± 0.51 μg/mL), CS-SB-II-Au (IC50 26.72 ± 1.57 μg/mL), CS-SB-I-ZnO (IC50 22.79 ± 1.28 μg/mL) and CS-SB-II-ZnO (IC50 22.24 ± 1.34 μg/mL). The findings demonstrated that CS-Schiff base nanocomposites are promising agents for the HCT-116 cell therapeutic.
Collapse
Affiliation(s)
- Nada Zakaria
- Chemistry Department, Faculty of Women for Art, Science and Education, Ain Shams University, Heliopolis Post Cod. No., 11757 Cairo, Egypt
| | - Nadia G Kandile
- Chemistry Department, Faculty of Women for Art, Science and Education, Ain Shams University, Heliopolis Post Cod. No., 11757 Cairo, Egypt.
| | - Mansoura I Mohamed
- Chemistry Department, Faculty of Women for Art, Science and Education, Ain Shams University, Heliopolis Post Cod. No., 11757 Cairo, Egypt
| | - Howida T Zaky
- Chemistry Department, Faculty of Women for Art, Science and Education, Ain Shams University, Heliopolis Post Cod. No., 11757 Cairo, Egypt
| | - Hemat M Mohamed
- Chemistry Department, Faculty of Women for Art, Science and Education, Ain Shams University, Heliopolis Post Cod. No., 11757 Cairo, Egypt
| |
Collapse
|
30
|
Pejova B, Eid A, Lari L, Althumali A, Šiller L, Kerrigan A, Pejov L, Lazarov VK. 3D self-assembled polar vs. non-polar NiO nanoparticles nanoengineered from turbostratic Ni 3(OH) 4(NO 3) 2 and ordered β-Ni(OH) 2 intermediates. NANOSCALE 2024; 16:19485-19503. [PMID: 39351687 DOI: 10.1039/d4nr03255a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
A surfactant-free ammonia and carbamide precursor-modulated engineering of self-assembled flower-like 3D NiO nanostructures based on ordered β-Ni(OH)2 and turbostratic Ni3(OH)4(NO3)2 nanoplate-structured intermediates is reported. By employing complementary structural and spectroscopic techniques, fundamental insights into structural and chemical transformations from intermediates to NiO nanoparticles (NPs) are provided. FTIR, Raman and DSC analyses show that the transformation of intermediates to NiO NPs involves subsequent loss of NO3- and OH- species through a double-step phase transformation at 306 and 326 °C corresponding to the loss of free interlayer ions and H2O species, respectively, followed by the loss of chemically bonded OH- and NO3- ions. Transformation to NiO NPs via the ammonia route proceeds as single-phase transition, accompanied with a loss of OH- species at 298 °C. The full transformation to NiO NPs of both intermediates is achieved at 350 °C through annealing in the air atmosphere. Ammonia-derived NPs maintain nanoflower morphology by self-assembling into nanoplates, which is enabled by H2O-mediated adhesion on the NiO NPs' {100} neutral surfaces. Structural transformations of turbostratic Ni3(OH)4(NO3)2 nanoplates result in the formation of NiO NPs dominantly shaped by inert polar OH-terminated (111) atomic planes, leading to the loss of the initial self-assembled 3D structure. DFT calculations support these observations, confirming that H2O adsorbs dissociatively on polar {111} surfaces, while only physisorption is energetically feasible on {100} surfaces. NiO NPs obtained via two different routes have overall different properties: carbamide-derived NPs are 3 times larger (15.5 vs. 5.4 nm), possess a larger band gap (3.6 vs. 3.2 eV) and are more Ni deficient. The intensity ratio of surface optical (SO) modes to transversal and longitudinal optical modes is ∼40 times higher in the NiO NPs obtained from β-Ni(OH)2 compared to Ni3(OH)4(NO3)2-derived NPs. The SO phonon lifetime is an order of magnitude shorter in NiO obtained from β-Ni(OH)2, reflecting a much smaller NP size. The choice of a precursor defines the size, morphology, crystallographic surface orientations and band gap of the NiO NPs, with Ni deficiency providing pathways for utilizing them as p-type materials, allowing for the precise nanoengineering of polar and neutral surface-dominated NiO NPs, which is of exceptional importance for use in catalysis.
Collapse
Affiliation(s)
- Biljana Pejova
- Institute of Chemistry, Faculty of Natural Sciences and Mathematics, SS. Cyril and Methodius University, POB 162, 1000 Skopje, Macedonia.
| | - Arej Eid
- School of Physics Engineering and Technology, University of York, York, UK.
- University of Tabuk, Tabuk, Saudi Arabia
| | - Leonardo Lari
- School of Physics Engineering and Technology, University of York, York, UK.
- The York-JEOL Nanocentre, University of York, York, UK
| | - Ahmad Althumali
- School of Physics Engineering and Technology, University of York, York, UK.
- Department of Physics, Faculty of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Lidija Šiller
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Adam Kerrigan
- The York-JEOL Nanocentre, University of York, York, UK
| | - Ljupcho Pejov
- Institute of Chemistry, Faculty of Natural Sciences and Mathematics, SS. Cyril and Methodius University, POB 162, 1000 Skopje, Macedonia.
| | - Vlado K Lazarov
- School of Physics Engineering and Technology, University of York, York, UK.
- The York-JEOL Nanocentre, University of York, York, UK
| |
Collapse
|
31
|
Sueyoshi S, Vitor Silva J, Guizze F, Giarolla J. Dendrimers as drug delivery systems for oncotherapy: Current status of promising applications. Int J Pharm 2024; 663:124573. [PMID: 39134292 DOI: 10.1016/j.ijpharm.2024.124573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024]
Abstract
Cancer affects millions of people worldwide, causing death and serious health problems. Despite significant investment in the development of new anticancer compounds, there are still several limitations that can still be found. Many compounds exhibit high levels of toxicity and low bioavailability. Therefore, it is urgent to design safer, more effective, and particularly more selective compounds for oncological treatment. Dendrimers are polymeric structures that have been shown to be potential drug nanocarriers to overcome physicochemical, pharmacokinetic, and indirect pharmacodynamic issues. Due to their versatility, they can be used in the design of nanovaccines, lipophilic complexes, amphiphilic complexes, smart nanocomplexes, and others. This work targets the use of dendrimers in oncological treatment and their importance and effectiveness as drug delivery systems for the development of new therapies. For this review, only publications from the last two years are considered in this review.
Collapse
Affiliation(s)
- Sophia Sueyoshi
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo, Av Prof Lineu Prestes, 580, Bl. 13, CEP 05508-900 São Paulo, SP, Brazil
| | - João Vitor Silva
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo, Av Prof Lineu Prestes, 580, Bl. 13, CEP 05508-900 São Paulo, SP, Brazil
| | - Felipe Guizze
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo, Av Prof Lineu Prestes, 580, Bl. 13, CEP 05508-900 São Paulo, SP, Brazil
| | - Jeanine Giarolla
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo, Av Prof Lineu Prestes, 580, Bl. 13, CEP 05508-900 São Paulo, SP, Brazil.
| |
Collapse
|
32
|
Fawzy MP, Hassan HAFM, Sedky NK, Nafie MS, Youness RA, Fahmy SA. Revolutionizing cancer therapy: nanoformulation of miRNA-34 - enhancing delivery and efficacy for various cancer immunotherapies: a review. NANOSCALE ADVANCES 2024:d4na00488d. [PMID: 39309515 PMCID: PMC11414826 DOI: 10.1039/d4na00488d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024]
Abstract
Despite recent advancements in cancer therapies, challenges such as severe toxic effects, non-selective targeting, resistance to chemotherapy and radiotherapy, and recurrence of metastatic tumors persist. Consequently, there has been considerable effort to explore innovative anticancer compounds, particularly in immunotherapy, which offer the potential for enhanced biosafety and efficacy in cancer prevention and treatment. One such avenue of exploration involves the miRNA-34 (miR-34) family, known for its ability to inhibit tumorigenesis across various cancers. Dysregulation of miR-34 has been observed in several human cancers, and it is recognized as a tumor suppressor microRNA due to its synergistic interaction with the well-established tumor suppressor p53. However, challenges have arisen with the therapeutic application of miR-34a. These include its susceptibility to degradation by RNase in serum, limiting its ability to penetrate capillary endothelium and reach target cells, as well as reports of immunoreactive adverse reactions. Furthermore, unexpected side effects may occur, such as the accumulation of therapeutic miRNAs in healthy tissues due to interactions with serum proteins on nano-vector surfaces, nanoparticle breakdown in the bloodstream due to shearing stress, and unsuccessful extravasation of nanocarriers to target cells owing to interstitial fluid pressure. Despite these challenges, miR-34a remains a promising candidate for cancer therapy, and other members of the miR-34 family have also shown potential in inhibiting tumor cell proliferation. While the in vivo applications of miR-34b/c are limited, they warrant further exploration for oncotherapy. Recently, procedures utilizing nanoparticles have been developed to address the challenges associated with the clinical use of miR-34, demonstrating efficacy both in vitro and in vivo. This review highlights emerging trends in nanodelivery systems for miR-34 targeting cancer cells, offering insights into novel nanoformulations designed to enhance the anticancer therapeutic activity and targeting precision of miR-34. As far as current knowledge extends, no similar recent review comprehensively addresses the diverse nanoformulations aimed at optimizing the therapeutic potential of miR-34 in anticancer strategies.
Collapse
Affiliation(s)
- Marola Paula Fawzy
- Department of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation R5 New Garden City, New Capital Cairo 11835 Egypt
| | - Hatem A F M Hassan
- Medway School of Pharmacy, University of Kent Central Avenue, Chatham Maritime Canterbury ME44TB UK
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University 11562 Cairo Egypt
| | - Nada K Sedky
- Department of Biochemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation R5 New Garden City, New Administrative Capital Cairo 11835 Egypt
| | - Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah (P.O. 27272) Sharjah United Arab Emirates (UAE)
- Chemistry Department, Faculty of Science, Suez Canal University (P.O. 41522) Ismailia Egypt
| | - Rana A Youness
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU) 11835 Cairo Egypt
| | - Sherif Ashraf Fahmy
- Department of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation R5 New Garden City, New Capital Cairo 11835 Egypt
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg Robert-Koch-Str. 4 35037 Marburg Germany
| |
Collapse
|
33
|
Szupryczyński K, Czeleń P, Jeliński T, Szefler B. What is the Reason That the Pharmacological Future of Chemotherapeutics in the Treatment of Lung Cancer Could Be Most Closely Related to Nanostructures? Platinum Drugs in Therapy of Non-Small and Small Cell Lung Cancer and Their Unexpected, Possible Interactions. The Review. Int J Nanomedicine 2024; 19:9503-9547. [PMID: 39296940 PMCID: PMC11410046 DOI: 10.2147/ijn.s469217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/19/2024] [Indexed: 09/21/2024] Open
Abstract
Over the course of several decades, anticancer treatment with chemotherapy drugs for lung cancer has not changed significantly. Unfortunately, this treatment prolongs the patient's life only by a few months, causing many side effects in the human body. It has also been proven that drugs such as Cisplatin, Carboplatin, Oxaliplatin and others can react with other substances containing an aromatic ring in which the nitrogen atom has a free electron group in its structure. Thus, such structures may have a competitive effect on the nucleobases of DNA. Therefore, scientists are looking not only for new drugs, but also for new alternative ways of delivering the drug to the cancer site. Nanotechnology seems to be a great hope in this matter. Creating a new nanomedicine would reduce the dose of the drug to an absolute minimum, and thus limit the toxic effect of the drug; it would allow for the exclusion of interactions with competitive compounds with a structure similar to nucleobases; it would also permit using the so-called targeted treatment and bypassing healthy cells; it would allow for the introduction of other treatment options, such as radiotherapy directly to the cancer site; and it would provide diagnostic possibilities. This article is a review that aims to systematize the knowledge regarding the anticancer treatment of lung cancer, but not only. It shows the clear possibility of interactions of chemotherapeutics with compounds competitive to the nitrogenous bases of DNA. It also shows the possibilities of using nanostructures as potential Platinum drug carriers, and proves that nanomedicine can easily become a new medicinal product in personalized medicine.
Collapse
Affiliation(s)
- Kamil Szupryczyński
- Doctoral School of Medical and Health Sciences, Faculty of Pharmacy, Collegium Medicum, Nicolaus, Copernicus University, Bydgoszcz, Poland
| | - Przemysław Czeleń
- Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Tomasz Jeliński
- Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Beata Szefler
- Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| |
Collapse
|
34
|
Alven S, Gandidzanwa S, Ngalo B, Poswayo O, Madanhire T, Aderibigbe BA, Tshentu Z. Platinum Group Metals Nanoparticles in Breast Cancer Therapy. Pharmaceutics 2024; 16:1162. [PMID: 39339199 PMCID: PMC11434984 DOI: 10.3390/pharmaceutics16091162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Despite various methods currently used in cancer therapy, breast cancer remains the leading cause of morbidity and mortality worldwide. Current therapeutics face limitations such as multidrug resistance, drug toxicity and off-target effects, poor drug bioavailability and biocompatibility, and inefficient drug delivery. Nanotechnology has emerged as a promising approach to cancer diagnosis, imaging, and therapy. Several preclinical studies have demonstrated that compounds and nanoparticles formulated from platinum group metals (PGMs) effectively treat breast cancer. PGMs are chemically stable, easy to functionalise, versatile, and tunable. They can target hypoxic microenvironments, catalyse the production of reactive oxygen species, and offer the potential for combination therapy. PGM nanoparticles can be incorporated with anticancer drugs to improve efficacy and can be attached to targeting moieties to enhance tumour-targeting efficiency. This review focuses on the therapeutic outcomes of platinum group metal nanoparticles (PGMNs) against various breast cancer cells and briefly discusses clinical trials of these nanoparticles in breast cancer treatment. It further illustrates the potential applications of PGMNs in breast cancer and presents opportunities for future PGM-based nanomaterial applications in combatting breast cancer.
Collapse
Affiliation(s)
- Sibusiso Alven
- Department of Chemistry, Nelson Mandela University, Gqeberha 6001, South Africa
| | | | - Basabele Ngalo
- Department of Chemistry, Nelson Mandela University, Gqeberha 6001, South Africa
| | - Olwethu Poswayo
- Department of Chemistry, Nelson Mandela University, Gqeberha 6001, South Africa
| | - Tatenda Madanhire
- Department of Chemistry, Nelson Mandela University, Gqeberha 6001, South Africa
- Department of Chemistry, University of South Africa, Johannesburg 1710, South Africa
| | | | - Zenixole Tshentu
- Department of Chemistry, Nelson Mandela University, Gqeberha 6001, South Africa
| |
Collapse
|
35
|
Assi S, Hayar B, Pisano C, Darwiche N, Saad W. Novel ST1926 Nanoparticle Drug Formulation Enhances Drug Therapeutic Efficiency in Colorectal Cancer Xenografted Mice. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1380. [PMID: 39269042 PMCID: PMC11396872 DOI: 10.3390/nano14171380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/15/2024]
Abstract
Cancer is a major public health problem that ranks as the second leading cause of death. Anti-cancer drug development presents with various hurdles faced throughout the process. Nanoparticle (NP) formulations have emerged as a promising strategy for enhancing drug delivery efficiency, improving stability, and reducing drug toxicity. Previous studies have shown that the adamantyl retinoid ST1926 displays potent anti-tumor activities in several types of tumors, particularly in colorectal cancer (CRC). However, phase I clinical trials in cancer patients using ST1926 are halted due to its low bioavailability. In this manuscript, we developed ST1926-NPs using flash nanoprecipitation with polystyrene-b-poly (ethyleneoxide) as an amphiphilic stabilizer and cholesterol as a co-stabilizer. Dynamic light scattering revealed that the resulting ST1926-NPs Contin diameter was 97 nm, with a polydispersity index of 0.206. Using cell viability, cell cycle analysis, and cell death assays, we showed that ST1926-NP exhibited potent anti-tumor activities in human CRC HCT116 cells. In a CRC xenograft model, mice treated with ST1926-NP exhibited significantly lowered tumor volumes compared to controls at low drug concentrations and enhanced the delivery of ST1926 to the tumors. These findings highlight the potential of ST1926-NPs in attenuating CRC tumor growth, facilitating its further development in clinical settings.
Collapse
Affiliation(s)
- Sara Assi
- Biomedical Engineering Program, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Berthe Hayar
- Department of Biochemistry & Molecular Genetics, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Claudio Pisano
- Biogem, Institute of Molecular Biology and Genetics, Via Camporeale, 83031 Ariano Irpino, AV, Italy
| | - Nadine Darwiche
- Department of Biochemistry & Molecular Genetics, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Walid Saad
- Department of Chemical Engineering and Advanced Energy, American University of Beirut, Beirut 1107 2020, Lebanon
| |
Collapse
|
36
|
Moalwi A, Kamat K, Muddapur UM, Aldoah B, AlWadai HH, Alamri AM, Alrashid FF, Alsareii SA, Mahnashi MH, Shaikh IA, Khan AA, More SS. Green synthesis of zinc oxide nanoparticles from Wodyetia bifurcata fruit peel extract: multifaceted potential in wound healing, antimicrobial, antioxidant, and anticancer applications. Front Pharmacol 2024; 15:1435222. [PMID: 39161893 PMCID: PMC11330823 DOI: 10.3389/fphar.2024.1435222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/19/2024] [Indexed: 08/21/2024] Open
Abstract
This study focuses on the synthesis, characterization, and use of zinc oxide nanoparticles (ZnONPs) derived from W. bifurcata fruit peel extract. ZnONPs are frequently synthesized utilizing a green technique that is both cost-effective and ecologically friendly. ZnONPs were characterized utilizing analytical techniques. Ultra Violet visible (UV-Vis) spectra showed peaks at 364 nm, confirming the production of ZnONPs. Scanning Electron Microscope analysis indicated that the nanoparticles generated were spherical/agglomerated, with diameters ranging from 11 to 25 nm. FTIR spectroscopy was used to identify the particular functional groups responsible for the nanoparticles' reduction, stabilization, and capping. Phytochemical analysis of the extract revealed that flavonoids, saponins, steroids, triterpenoids, and resins were present. The antibacterial activity of W. bifurcata synthesised nanoparticles was evaluated against pathogenic bacteria. The ZnONPs antioxidant activity was assessed using DPPH assay. The in vitro cytotoxicity was assessed against prostate cancer PC3 cells. The wound healing potential was assessed by employing in vitro scratch assay and in vivo excision model in Wistar rats. Because of its environmentally benign production, low toxicity, and biocompatibility, ZnONPs exhibited potential antibacterial, antioxidant, anticancer, and wound healing activities, indicating that they could be used in cancer treatment and wound management. Further study is required to examine the fundamental mechanisms and evaluate the safety and effectiveness of the test sample in clinical situations.
Collapse
Affiliation(s)
- Adel Moalwi
- Department of Surgery, College of Medicine, Najran University, Najran, Saudi Arabia
| | - Keerti Kamat
- Department of Biotechnology, BVB Campus, KLE Technological University, Hubballi, Karnataka, India
| | - Uday M. Muddapur
- Department of Biotechnology, BVB Campus, KLE Technological University, Hubballi, Karnataka, India
| | - Bader Aldoah
- Department of Surgery, College of Medicine, Najran University, Najran, Saudi Arabia
| | - Hajar Hassan AlWadai
- Department of Surgery, College of Medicine, Najran University, Najran, Saudi Arabia
| | | | | | - Saeed Ali Alsareii
- Department of Surgery, College of Medicine, Najran University, Najran, Saudi Arabia
| | - Mater H. Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Ibrahim Ahmed Shaikh
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Aejaz Abdullatif Khan
- Department of General Science, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| | - Sunil S. More
- School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, India
| |
Collapse
|
37
|
Ahmad E, Athar A, Nimisha, Zia Q, Sharma AK, Sajid M, Bharadwaj M, Ansari MA, Saluja SS. Harnessing nature's potential: Alpinia galanga methanolic extract mediated green synthesis of silver nanoparticle, characterization and evaluation of anti-neoplastic activity. Bioprocess Biosyst Eng 2024; 47:1183-1196. [PMID: 38509420 DOI: 10.1007/s00449-024-02993-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
With the advent of nanotechnology, the treatment of cancer is changing from a conventional to a nanoparticle-based approach. Thus, developing nanoparticles to treat cancer is an area of immense importance. We prepared silver nanoparticles (AgNPs) from methanolic extract of Alpinia galanga rhizome and characterized them by UV-Vis spectrophotometry, Fourier transform Infrared (FTIR) spectroscopy, Zetasizer, and Transmission electron Microscopy (TEM). UV-Vis spectrophotometry absorption spectrum showed surface plasmon between 400 and 480 nm. FTIR spectrum analysis implies that various phytochemicals/secondary metabolites are involved in the reduction, caping, and stabilization of AgNPs. The Zetasier result suggests that the particles formed are small in size with a low polydispersity index (PDI), suggesting a narrow range of particle distribution. The TEM image suggests that the particles formed are mostly of spherical morphology with nearly 20-25 nm. Further, the selected area electron diffraction (SAED) image showed five electron diffraction rings, suggesting the polycrystalline nature of the particles. The nanoparticles showed high anticancer efficacy against cervical cancer (SiHa) cell lines. The nanostructures showed dose-dependent inhibition with 40% killing observed at 6.25 µg/mL dose. The study showed an eco-friendly and cost-effective approach to the synthesis of AgNPs and provided insight into the development of antioxidant and anticancer agents.
Collapse
Affiliation(s)
- Ejaj Ahmad
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi-110002, India
| | - Alina Athar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi-110002, India
| | - Nimisha
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi-110002, India
| | - Qamar Zia
- Department of Medical Laboratory Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Abhay Kumar Sharma
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi-110002, India
| | - Mohammed Sajid
- Division of Molecular Genetics & Biochemistry, Molecular Biology Group, ICMR-National Institute of Cancer Prevention & Research, Noida, Uttar Pradesh, India
| | - Mausumi Bharadwaj
- Division of Molecular Genetics & Biochemistry, Molecular Biology Group, ICMR-National Institute of Cancer Prevention & Research, Noida, Uttar Pradesh, India
| | | | - Sundeep Singh Saluja
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi-110002, India.
- Department of GI Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, 110002, India.
| |
Collapse
|
38
|
Ouled Ltaief O, Ben Amor I, Hemmami H, Hamza W, Zeghoud S, Ben Amor A, Benzina M, Alnazza Alhamad A. Recent developments in cancer diagnosis and treatment using nanotechnology. Ann Med Surg (Lond) 2024; 86:4541-4554. [PMID: 39118776 PMCID: PMC11305775 DOI: 10.1097/ms9.0000000000002271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/05/2024] [Indexed: 08/10/2024] Open
Abstract
The article provides an insightful overview of the pivotal role of nanotechnology in revolutionizing cancer diagnosis and treatment. It discusses the critical importance of nanoparticles in enhancing the accuracy of cancer detection through improved imaging contrast agents and the synthesis of various nanomaterials designed for oncology applications. The review broadly classifies nanoparticles used in therapeutics, including metallic, magnetic, polymeric, and many other types, with an emphasis on their functions in drug delivery systems for targeted cancer therapy. It details targeting mechanisms, including passive and intentional targeting, to maximize treatment efficacy while minimizing side effects. Furthermore, the article addresses the clinical applications of nanomaterials in cancer treatment, highlights prospects, and addresses the challenges of integrating nanotechnology into cancer treatment.
Collapse
Affiliation(s)
- Olfa Ouled Ltaief
- Water, Energy and Environment Laboratory, National School of Engineers of Sfax, University of Safx, Safx, Tunisia
| | - Ilham Ben Amor
- Department of Process Engineering and Petrochemical, Faculty of Technology
- Renewable Energy Development unit in Arid Zones (UDERZA), University of El Oued, El Oued, Algeria
| | - Hadia Hemmami
- Department of Process Engineering and Petrochemical, Faculty of Technology
- Renewable Energy Development unit in Arid Zones (UDERZA), University of El Oued, El Oued, Algeria
| | - Wiem Hamza
- Water, Energy and Environment Laboratory, National School of Engineers of Sfax, University of Safx, Safx, Tunisia
| | - Soumeia Zeghoud
- Department of Process Engineering and Petrochemical, Faculty of Technology
- Renewable Energy Development unit in Arid Zones (UDERZA), University of El Oued, El Oued, Algeria
| | - Asma Ben Amor
- Department of Process Engineering and Petrochemical, Faculty of Technology
- Renewable Energy Development unit in Arid Zones (UDERZA), University of El Oued, El Oued, Algeria
| | - Mourad Benzina
- Water, Energy and Environment Laboratory, National School of Engineers of Sfax, University of Safx, Safx, Tunisia
| | - Ali Alnazza Alhamad
- Department of Chemistry, Faculty of Science, University of Aleppo, Aleppo, Syria
- Department of Technology of organic synthesis, Ural Federal University, Yekaterinburg, Russia
| |
Collapse
|
39
|
Jabłońska W, Gołębiewski M, Kot M, Mardan H, Pawliński B, Kalińska A. Perspectives and Possibilities for New Antimicrobial Agents in the Treatment and Control of Mastitis Induced by Algae of the Genus Prototheca spp.: A Review. Int J Mol Sci 2024; 25:8219. [PMID: 39125795 PMCID: PMC11311760 DOI: 10.3390/ijms25158219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Innovative approaches in nanotechnology provide a potentially promising alternative to untreatable cases of mastitis caused by genus Prototheca spp. algae infections. Drying of the teats of the affected animals or culling are typically the outcomes of mastitis in dairy cattle caused by these pathogens. A major issue in both veterinary medicine and animal breeding is the Prototheca species' widespread resistance to the current methods of managing infections and the available drugs, including antibiotics. Commercial antifungal preparations are also ineffective. Nanotechnology, an emerging discipline, has the potential to create an effective alternative treatment for protothecal mastitis. The aim of the paper is to combine the literature data on the use of nanotechnology in the control of mastitis, taking into account data on combating mastitis caused by Prototheca spp. infections. The databases employed were PubMed, Google Scholar, and Scopus, focusing on literature from the last 20 years to ensure relevance and currency. Studies conducted in vitro have demonstrated that nanomaterials have significant biocidal activity against mastitis infections of different etiologies. Analyzed research papers show that (NPs), such as AgNPs, CuNPs, AuNPs, etc., may not negatively impact various cell lines and may be effective agents in reducing the pathogens' viability. However, it is also critical to assess the risks involved in using nanomaterials.
Collapse
Affiliation(s)
- Weronika Jabłońska
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Marcin Gołębiewski
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Magdalena Kot
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Henadzi Mardan
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Bartosz Pawliński
- Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Aleksandra Kalińska
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| |
Collapse
|
40
|
Silva AC, Costa MP, Zacaron TM, Ferreira KCB, Braz WR, Fabri RL, Frézard FJG, Pittella F, Tavares GD. The Role of Inhaled Chitosan-Based Nanoparticles in Lung Cancer Therapy. Pharmaceutics 2024; 16:969. [PMID: 39204314 PMCID: PMC11359377 DOI: 10.3390/pharmaceutics16080969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 09/04/2024] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide, largely due to the limited efficacy of anticancer drugs, which is primarily attributed to insufficient doses reaching the lungs. Additionally, patients undergoing treatment experience severe systemic adverse effects due to the distribution of anticancer drugs to non-targeted sites. In light of these challenges, there has been a growing interest in pulmonary administration of drugs for the treatment of lung cancer. This route allows drugs to be delivered directly to the lungs, resulting in high local concentrations that can enhance antitumor efficacy while mitigating systemic toxic effects. However, pulmonary administration poses the challenge of overcoming the mechanical, chemical, and immunological defenses of the respiratory tract that prevent the inhaled drug from properly penetrating the lungs. To overcome these drawbacks, the use of nanoparticles in inhaler formulations may be a promising strategy. Nanoparticles can assist in minimizing drug clearance, increasing penetration into the lung epithelium, and enhancing cellular uptake. They can also facilitate increased drug stability, promote controlled drug release, and delivery to target sites, such as the tumor environment. Among them, chitosan-based nanoparticles demonstrate advantages over other polymeric nanocarriers due to their unique biological properties, including antitumor activity and mucoadhesive capacity. These properties have the potential to enhance the efficacy of the drug when administered via the pulmonary route. In view of the above, this paper provides an overview of the research conducted on the delivery of anticancer drug-loaded chitosan-based nanoparticles incorporated into inhaled drug delivery devices for the treatment of lung cancer. Furthermore, the article addresses the use of emerging technologies, such as siRNA (small interfering RNA), in the context of lung cancer therapy. Particularly, recent studies employing chitosan-based nanoparticles for siRNA delivery via the pulmonary route are described.
Collapse
Affiliation(s)
- Allana Carvalho Silva
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
| | - Mirsiane Pascoal Costa
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
| | - Thiago Medeiros Zacaron
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
| | - Kézia Cristine Barbosa Ferreira
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
| | - Wilson Rodrigues Braz
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
| | - Rodrigo Luiz Fabri
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
- Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil
| | - Frédéric Jean Georges Frézard
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil;
| | - Frederico Pittella
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
- Department of Pharmaceutical Science, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil
| | - Guilherme Diniz Tavares
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
- Department of Pharmaceutical Science, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil
| |
Collapse
|
41
|
Kirti A, Simnani FZ, Jena S, Lenka SS, Kalalpitiya C, Naser SS, Singh D, Choudhury A, Sahu RN, Yadav A, Sinha A, Nandi A, Panda PK, Kaushik NK, Suar M, Verma SK. Nanoparticle-mediated metronomic chemotherapy in cancer: A paradigm of precision and persistence. Cancer Lett 2024; 594:216990. [PMID: 38801886 DOI: 10.1016/j.canlet.2024.216990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/05/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Current methods of cancer therapy have demonstrated enormous potential in tumor inhibition. However, a high dosage regimen of chemotherapy results in various complications which affect the normal body cells. Tumor cells also develop resistance against the prescribed drugs in the whole treatment regimen increasing the risk of cancer relapse. Metronomic chemotherapy is a modern treatment method that involves administering drugs at low doses continuously, allowing the drug sufficient time to take its effect. This method ensures that the toxicity of the drugs is to a minimum in comparison to conventional chemotherapy. Nanoparticles have shown efficacy in delivering drugs to the tumor cells in various cancer therapies. Combining nanoparticles with metronomic chemotherapy can yield better treatment results. This combination stimulates the immune system, improving cancer cells recognition by immune cells. Evidence from clinical and pre-clinical trials supports the use of metronomic delivery for drug-loaded nanoparticles. This review focuses on the functionalization of nanoparticles for improved drug delivery and inhibition of tumor growth. It emphasizes the mechanisms of metronomic chemotherapy and its conjunction with nanotechnology. Additionally, it explores tumor progression and the current methods of chemotherapy. The challenges associated with nano-based metronomic chemotherapy are outlined, paving the way for prospects in this dynamic field.
Collapse
Affiliation(s)
- Apoorv Kirti
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | | | - Snehasmita Jena
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Sudakshya S Lenka
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | | | | | - Dibyangshee Singh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Anmol Choudhury
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Rudra Narayan Sahu
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Anu Yadav
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Adrija Sinha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Aditya Nandi
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India; Instituto de Investigaciones en Materiales, UNAM, 04510, CDMX, Mexico
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20, Uppsala, Sweden
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Republic of Korea.
| | - Mrutyunjay Suar
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India.
| | - Suresh K Verma
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India.
| |
Collapse
|
42
|
Oehler JB, Rajapaksha W, Albrecht H. Emerging Applications of Nanoparticles in the Diagnosis and Treatment of Breast Cancer. J Pers Med 2024; 14:723. [PMID: 39063977 PMCID: PMC11278299 DOI: 10.3390/jpm14070723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Breast cancer remains the most prevalent cancer among women worldwide, driving the urgent need for innovative approaches to diagnosis and treatment. This review highlights the pivotal role of nanoparticles in revolutionizing breast cancer management through advancements of interconnected approaches including targeted therapy, imaging, and personalized medicine. Nanoparticles, with their unique physicochemical properties, have shown significant promise in addressing current treatment limitations such as drug resistance and nonspecific systemic distribution. Applications range from enhancing drug delivery systems for targeted and sustained release to developing innovative diagnostic tools for early and precise detection of metastases. Moreover, the integration of nanoparticles into photothermal therapy and their synergistic use with existing treatments, such as immunotherapy, illustrate their transformative potential in cancer care. However, the journey towards clinical adoption is fraught with challenges, including the chemical feasibility, biodistribution, efficacy, safety concerns, scalability, and regulatory hurdles. This review delves into the current state of nanoparticle research, their applications in breast cancer therapy and diagnosis, and the obstacles that must be overcome for clinical integration.
Collapse
Affiliation(s)
- Josephine B. Oehler
- College of Medicine and Dentistry, James Cook University, Townsville, QLD 4810, Australia
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical & Vet Sciences, James Cook University, Townsville, QLD 4810, Australia
| | - Weranga Rajapaksha
- Centre for Pharmaceutical Innovation (CPI), Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Hugo Albrecht
- Centre for Pharmaceutical Innovation (CPI), Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| |
Collapse
|
43
|
Andoh V, Ocansey DKW, Naveed H, Wang N, Chen L, Chen K, Mao F. The Advancing Role of Nanocomposites in Cancer Diagnosis and Treatment. Int J Nanomedicine 2024; 19:6099-6126. [PMID: 38911500 PMCID: PMC11194004 DOI: 10.2147/ijn.s471360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/12/2024] [Indexed: 06/25/2024] Open
Abstract
The relentless pursuit of effective cancer diagnosis and treatment strategies has led to the rapidly expanding field of nanotechnology, with a specific focus on nanocomposites. Nanocomposites, a combination of nanomaterials with diverse properties, have emerged as versatile tools in oncology, offering multifunctional platforms for targeted delivery, imaging, and therapeutic interventions. Nanocomposites exhibit great potential for early detection and accurate imaging in cancer diagnosis. Integrating various imaging modalities, such as magnetic resonance imaging (MRI), computed tomography (CT), and fluorescence imaging, into nanocomposites enables the development of contrast agents with enhanced sensitivity and specificity. Moreover, functionalizing nanocomposites with targeting ligands ensures selective accumulation in tumor tissues, facilitating precise imaging and diagnostic accuracy. On the therapeutic front, nanocomposites have revolutionized cancer treatment by overcoming traditional challenges associated with drug delivery. The controlled release of therapeutic agents from nanocomposite carriers enhances drug bioavailability, reduces systemic toxicity, and improves overall treatment efficacy. Additionally, the integration of stimuli-responsive components within nanocomposites enables site-specific drug release triggered by the unique microenvironment of the tumor. Despite the remarkable progress in the field, challenges such as biocompatibility, scalability, and long-term safety profiles remain. This article provides a comprehensive overview of recent developments, challenges, and prospects, emphasizing the transformative potential of nanocomposites in revolutionizing the landscape of cancer diagnostics and therapeutics. In Conclusion, integrating nanocomposites in cancer diagnosis and treatment heralds a new era for precision medicine.
Collapse
Affiliation(s)
- Vivian Andoh
- School of Life Sciences, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Dickson Kofi Wiredu Ocansey
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang, Jiangsu, People’s Republic of China
- Directorate of University Health Services, University of Cape Coast, Cape Coast, Central Region, CC0959347, Ghana
| | - Hassan Naveed
- School of Life Sciences, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Naijian Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Liang Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Fei Mao
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang, Jiangsu, People’s Republic of China
| |
Collapse
|
44
|
Fateh ST, Aghaii AH, Aminzade Z, Shahriari E, Roohpour N, Koosha F, Dezfuli AS. Inorganic nanoparticle-cored dendrimers for biomedical applications: A review. Heliyon 2024; 10:e29726. [PMID: 38694058 PMCID: PMC11061704 DOI: 10.1016/j.heliyon.2024.e29726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024] Open
Abstract
Hybrid nanostructures exhibit a synergistic combination of features derived from their individual components, showcasing novel characteristics resulting from their distinctive structure and chemical/physical properties. Surface modifiers play a pivotal role in shaping INPs' primary attributes, influencing their physicochemical properties, stability, and functional applications. Among these modifiers, dendrimers have gained attention as highly effective multifunctional agents for INPs, owing to their unique structural qualities, dendritic effects, and physicochemical properties. Dendrimers can be seamlessly integrated with diverse inorganic nanostructures, including metal NPs, carbon nanostructures, silica NPs, and QDs. Two viable approaches to achieving this integration involve either growing or grafting dendrimers, resulting in inorganic nanostructure-cored dendrimers. The initial step involves functionalizing the nanostructures' surface, followed by the generation of dendrimers through stepwise growth or attachment of pre-synthesized dendrimer branches. This hybridization imparts superior qualities to the resulting structure, including biocompatibility, solubility, high cargo loading capacity, and substantial functionalization potential. Combining the unique properties of dendrimers with those of the inorganic nanostructure cores creates a multifunctional system suitable for diverse applications such as theranostics, bio-sensing, component isolation, chemotherapy, and cargo-carrying applications. This review summarizes the recent developments, with a specific focus on the last five years, within the realm of dendrimers. It delves into their role as modifiers of INPs and explores the potential applications of INP-cored dendrimers in the biomedical applications.
Collapse
Affiliation(s)
- Sepand Tehrani Fateh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Ronash Technology Pars Company(AMINBIC), Tehran, Iran
| | - Amir Hossein Aghaii
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
- Ronash Technology Pars Company(AMINBIC), Tehran, Iran
| | - Zahra Aminzade
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Shahriari
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | | | - Fereshteh Koosha
- Department of Radiology Technology, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
45
|
Ndlovu NL, Mdlalose WB, Ntsendwana B, Moyo T. Evaluation of Advanced Nanomaterials for Cancer Diagnosis and Treatment. Pharmaceutics 2024; 16:473. [PMID: 38675134 PMCID: PMC11054857 DOI: 10.3390/pharmaceutics16040473] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/04/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Cancer is a persistent global disease and a threat to the human species, with numerous cases reported every year. Over recent decades, a steady but slowly increasing mortality rate has been observed. While many attempts have been made using conventional methods alone as a theragnostic strategy, they have yielded very little success. Most of the shortcomings of such conventional methods can be attributed to the high demands of industrial growth and ever-increasing environmental pollution. This requires some high-tech biomedical interventions and other solutions. Thus, researchers have been compelled to explore alternative methods. This has brought much attention to nanotechnology applications, specifically magnetic nanomaterials, as the sole or conjugated theragnostic methods. The exponential growth of nanomaterials with overlapping applications in various fields is due to their potential properties, which depend on the type of synthesis route used. Either top-down or bottom-up strategies synthesize various types of NPs. The top-down only branches out to one method, i.e., physical, and the bottom-up has two methods, chemical and biological syntheses. This review highlights some synthesis techniques, the types of nanoparticle properties each technique produces, and their potential use in the biomedical field, more specifically for cancer. Despite the evident drawbacks, the success achieved in furthering nanoparticle applications to more complex cancer stages and locations is unmatched.
Collapse
Affiliation(s)
- Nkanyiso L. Ndlovu
- Discipline of Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Wendy B. Mdlalose
- Discipline of Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Bulelwa Ntsendwana
- DSI/Mintek Nanotechnology Innovation Centre, Advanced Materials Division, Mintek, Private Bag X3015, Randburg, Johannesburg 2125, South Africa
| | - Thomas Moyo
- Discipline of Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
46
|
Raad SH, Afshari-Bavil M, Liu D. Efficient and high-quality absorption enhancement using epsilon-near-zero cylindrical nano-shells constructed by graphene. Sci Rep 2024; 14:6742. [PMID: 38509124 PMCID: PMC10954738 DOI: 10.1038/s41598-024-55194-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/21/2024] [Indexed: 03/22/2024] Open
Abstract
This paper presents a detailed scattering analysis of a hollow-core plasmonic-shell cylindrical wire to design an efficient, compact, narrowband, and reconfigurable optical absorber. The shell is formed by a thin graphene material, investigated in its epsilon-near-zero (ENZ) plasmonic region. Compared to the graphene plasmonic resonances in the terahertz(THz)/far-infrared (FIR) frequencies, the ENZ plasmonic resonances offer a blue shift in the operating frequency of the second-order plasmonic resonances by increasing the geometrical dimensions. This feature is successfully used to design efficient optical wave absorbers with absorption cross-sections much larger than geometrical and scattering cross-sections. The observed blue shift in the resonance spectrum, which is the key point of the design, is further verified by defining each particle with its polarizability and fulfilling the resonant scattering condition in the framework of Mie's theory. Furthermore, graphene relaxation time and chemical potential can be used to manipulate the absorption rate. Observed resonances have narrow widths, achieved with simple geometry. To consider more practical scenarios, the one-dimensional arrangement of the cylindrical elements as a dense and sparse array is also considered and the design key point regarding graphene quality is revealed. The quality factor of the sparse array resonance is 2272.8 and it demands high-quality graphene material in design. It is also observed that due to the use of small particles in the design, the near-field and cooperative effects are not visible in the absorption cross-section of the array and a clear single peak is attained. This polarization-insensitive absorber can tolerate a wide range of incident angles with an absorption rate above 90%.
Collapse
Affiliation(s)
- Shiva Hayati Raad
- Department of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran
| | - Mehdi Afshari-Bavil
- Key Laboratory of Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
| | - Dong Liu
- Key Laboratory of Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Advanced Laser Technology Laboratory of Anhui Province, Hefei, 230037, China
| |
Collapse
|
47
|
Hii ARK, Qi X, Wu Z. Advanced strategies for CRISPR/Cas9 delivery and applications in gene editing, therapy, and cancer detection using nanoparticles and nanocarriers. J Mater Chem B 2024; 12:1467-1489. [PMID: 38288550 DOI: 10.1039/d3tb01850d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Cancer remains one of the deadliest diseases, and is characterised by the uncontrolled growth of modified human cells. Unlike infectious diseases, cancer does not originate from foreign agents. Though a variety of diagnostic procedures are available; their cost-effectiveness and accessibility create significant hurdles. Non-specific cancer symptoms further complicate early detection, leading to belated recognition of certain cancer. The lack of reliable biomarkers hampers effective treatment, as chemotherapy, radiation therapy, and surgery often result in poor outcomes and high recurrence rates. Genetic and epigenetic mutations play a crucial role in cancer pathogenesis, necessitating the development of alternate treatment methods. The advent of CRISPR/Cas9 technology has transformed molecular biology and exhibits potential for gene modification and therapy in various cancer types. Nonetheless, obstacles such as safe transport, off-target consequences, and potency must be overcome before widespread clinical use. Notably, this review delves into the multifaceted landscape of cancer research, highlighting the pivotal role of nanoparticles in advancing CRISPR/Cas9-based cancer interventions. By addressing the challenges associated with cancer diagnosis and treatment, this integrated approach paves the way for innovative solutions and improved patient outcomes.
Collapse
Affiliation(s)
| | - Xiaole Qi
- Industrial Technology Innovation Platform, Zhejiang Center for Safety Study of Drug Substances, China Pharmaceutical University, 210009, 310018, Nanjing, Hangzhou, P. R. China.
| | - Zhenghong Wu
- Pharmaceutical University, 210009, Nanjing, P. R. China.
| |
Collapse
|
48
|
Dragicevic N, Predic-Atkinson J, Nikolic B, Pajovic SB, Ivkovic S, Adzic M. Nanocarriers in topical photodynamic therapy. Expert Opin Drug Deliv 2024; 21:279-307. [PMID: 38349540 DOI: 10.1080/17425247.2024.2318460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/09/2024] [Indexed: 02/22/2024]
Abstract
INTRODUCTION Photodynamic therapy (PDT) has gained significant attention due to its superiority over conventional treatments. In the context of skin cancers and nonmalignant skin diseases, topical application of photosensitizer formulations onto affected skin, followed by illumination, offers distinct advantages. Topical PDT simplifies therapy by providing easy access to the skin, increasing drug concentration within the target area, and confining residual photosensitivity to the treated skin. However, the effectiveness of topical PDT is often hindered by challenges such as limited skin penetration or photosensitizer instability. Additionally, the hypoxic tumor environment poses further limitations. Nanocarriers present a promising solution to address these challenges. AREAS COVERED The objective of this review is to comprehensively explore and highlight the role of various nanocarriers in advancing topical PDT for the treatment of skin diseases. The primary focus is to address the challenges associated with conventional topical PDT approaches and demonstrate how nanotechnology-based strategies can overcome these challenges, thereby improving the overall efficiency and efficacy of PDT. EXPERT OPINION Nanotechnology has revolutionized the field of PDT, offering innovative tools to combat the unfavorable features of photosensitizers and hurdles in PDT. Nanocarriers enhance skin penetration and stability of photosensitizers, provide controlled drug release, reduce needed dose, increase production of reactive oxygen species, while reducing side effects, thereby improving PDT effectiveness.
Collapse
Affiliation(s)
- Nina Dragicevic
- Department of Pharmacy, Singidunum University, Belgrade, Serbia
| | | | - Bojan Nikolic
- Faculty of Health and Business studies, Singidunum University, Valjevo, Serbia
| | - Snezana B Pajovic
- Institute of Nuclear sciences "Vinča", National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Sanja Ivkovic
- Institute of Nuclear sciences "Vinča", National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Miroslav Adzic
- Institute of Nuclear sciences "Vinča", National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
49
|
Ding J, Ding X, Liao W, Lu Z. Red blood cell-derived materials for cancer therapy: Construction, distribution, and applications. Mater Today Bio 2024; 24:100913. [PMID: 38188647 PMCID: PMC10767221 DOI: 10.1016/j.mtbio.2023.100913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
Cancer has become an increasingly important public health issue owing to its high morbidity and mortality rates. Although traditional treatment methods are relatively effective, they have limitations such as highly toxic side effects, easy drug resistance, and high individual variability. Meanwhile, emerging therapies remain limited, and their actual anti-tumor effects need to be improved. Nanotechnology has received considerable attention for its development and application. In particular, artificial nanocarriers have emerged as a crucial approach for tumor therapy. However, certain deficiencies persist, including immunogenicity, permeability, targeting, and biocompatibility. The application of erythrocyte-derived materials will help overcome the above problems and enhance therapeutic effects. Erythrocyte-derived materials can be acquired via the application of physical and chemical techniques from natural erythrocyte membranes, or through the integration of these membranes with synthetic inner core materials using cell membrane biomimetic technology. Their natural properties such as biocompatibility and long circulation time make them an ideal choice for drug delivery or nanoparticle biocoating. Thus, red blood cell-derived materials are widely used in the field of biomedicine. However, further studies are required to evaluate their efficacy, in vivo metabolism, preparation, design, and clinical translation. Based on the latest research reports, this review summarizes the biology, synthesis, characteristics, and distribution of red blood cell-derived materials. Furthermore, we provide a reference for further research and clinical transformation by comprehensively discussing the applications and technical challenges faced by red blood cell-derived materials in the treatment of malignant tumors.
Collapse
Affiliation(s)
- Jianghua Ding
- Department of Hematology & Oncology, Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, 332005, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, 332005, China
| | - Xinjing Ding
- Oncology of Department, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 332000, China
| | - Weifang Liao
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, 332005, China
- Department of Medical Laboratory, Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, 332005, China
| | - Zhihui Lu
- Oncology of Department, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 332000, China
| |
Collapse
|
50
|
Afzali M, Sadat Shandiz SA, Keshtmand Z. Preparation of biogenic silver chloride nanoparticles from microalgae Spirulina Platensis extract: anticancer properties in MDA-MB231 breast cancer cells. Mol Biol Rep 2024; 51:62. [PMID: 38170277 DOI: 10.1007/s11033-023-08970-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/16/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Breast carcinoma is the second leading cause of cancer related-deaths among women. Given its high incidence and mortality rates, searching for innovative treatments represents a formidable challenge within the medical and pharmaceutical industries. This study delves into the preparation, characterization, and anticancer properties of silver chloride nanoparticles (AgCLNPs) as a novel therapeutic approach for breast cancer cells, employing a biological synthesis method. METHODS This investigation, utilized spirulina platensis extract to synthesize silver chloride nanoparticles (AgCLNPs-SP). The formation, size, and structure of the nanoparticles were characterized by Transmission Electron Microscopy (TEM), Scanning Electron Microscope (SEM), X-ray crystallography (XRD), and Energy-dispersive X-ray spectroscopy (EDS) analysis. Additionally, the apoptotic and anticancer properties of AgCLNPs-SP were thoroughly examined. RESULTS The results, revealed AgCLNPs-SP to exhibit a spherical, morphology with a size range of 40-70 nm, primarily silver and chlorine. The dose-dependent response of AgCLNP-SP against MDA-MB231 cells was ascertained using the MTT Assay, with an IC50 value of 34 µg/mL. Furthermore, the Annexin V-FITC/ PI apoptosis assay demonstrated a significant proportion of early apoptosis (43.67%) in MDA-MB231 cells. This apoptosis process was substantiated by up-regulation in mRNA expression levels of P53, CAD, and Bax genes, alongside a down-regulation of the of bcl2 gene expression. Additionally, an augmented production of reactive oxygen species (ROS), cell cycle analysis, Hoechst staining assay, and evaluated levels of Caspase - 3, -8 and - 9 were observed in AgCLNPs-SP-treated MDA_MB231 cancer cells. CONCLUSIONS In conclusion, the results suggest that AgCLNPs-SP may be a promising agent for treating breast cancer.
Collapse
Affiliation(s)
- Mahsa Afzali
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Zahra Keshtmand
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|