1
|
Akingbola A, Adegbesan A, Adewole O, Adegoke K, Benson AE, Jombo PA, Uchechukwu Eboson S, Oluwasola V, Aiyenuro A. The mRNA-1647 vaccine: A promising step toward the prevention of cytomegalovirus infection (CMV). Hum Vaccin Immunother 2025; 21:2450045. [PMID: 39825496 DOI: 10.1080/21645515.2025.2450045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/14/2024] [Accepted: 01/02/2025] [Indexed: 01/30/2025] Open
Abstract
Cytomegalovirus (CMV) is a leading cause of congenital infections and significant health complications in immunocompromised individuals. With no licensed CMV vaccine available, the development of the mRNA-1647 offers promising advancements in CMV prevention. We have reviewed results from Phase 1 and 2 clinical trials of the mRNA-1647 vaccine, demonstrating robust immune responses in both seronegative and seropositive participants. Vaccines exhibited significantly elevated neutralizing antibody titers against CMV, particularly in fibroblast and epithelial cells, with sustained responses lasting up to 18 months post-vaccination. The mRNA-1647 vaccine triggered strong T-cell and memory B-cell responses, suggesting its potential for long-term protection against CMV infection. The ongoing Phase 3 CMVictory trial evaluates the safety and immunogenicity of mRNA-1647 in women of childbearing age, with preliminary data showing promise in preventing congenital CMV transmission. This vaccine could significantly reduce CMV-related morbidity and mortality, particularly in newborns and immunocompromised individuals, addressing a critical unmet medical need.
Collapse
Affiliation(s)
| | - Abiodun Adegbesan
- African Cancer Institute, Department of Global Health, Stellenbosch University, Cape Town, South Africa
| | | | - Kolade Adegoke
- Faculty of Clinical Sciences, Obafemi Awolowo University Ile-Ife, Osun State,Nigeria
| | | | - Paul Ayomide Jombo
- Internal Medicine, Basildon and Thurrock University Hospitals NHS Foundation Trust: Basildon SS165NL, England, Essex, England, UK
| | | | - Victor Oluwasola
- Babcock University Teaching Hospital, Ilishan-Remo, Ogun State, Nigeria
| | - Ademola Aiyenuro
- Division of Virology, Department of Pathology, University of Cambridge, England, UK
| |
Collapse
|
2
|
Tahir D, Geolier V, Bruant H, Le Flèche-Matéos A, Mallet A, Varloud M, Civat C, Girerd-Chambaz Y, Montano S, Pion C, Ferquel E, Pavot V, Choumet V. A Lyme disease mRNA vaccine targeting Borrelia burgdorferi OspA induces strong immune responses and prevents transmission in mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102514. [PMID: 40226328 PMCID: PMC11986965 DOI: 10.1016/j.omtn.2025.102514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 03/07/2025] [Indexed: 04/15/2025]
Abstract
Lyme borreliosis (LB), caused by Borrelia burgdorferi sensu lato, is one of the most common tick-borne diseases in the northern hemisphere. Given its increasing global incidence, LB remains a major public health concern and the development of an effective vaccine is recognized as a key component of the overall disease prevention strategy. Here, we present results obtained with newly developed lipid nanoparticle-encapsulated mRNA vaccine candidates encoding the outer surface protein A (OspA) of B. burgdorferi sensu stricto (Bbss) serotype 1 (mRNA-OspA) with or without a secretion signal (SS) or a transmembrane domain. We evaluated the immunogenicity and protective efficacy of the mRNA-OspA vaccine candidates in a tick-fed mouse challenge model compared with an adjuvanted OspA protein subunit vaccine and the licensed canine vaccine Recombitek Lyme. At the doses tested, the mRNA-OspA vaccines induced significantly higher OspA-specific immunoglobulin G titers than the protein-based vaccines, as well as functional antibodies measured by serum bactericidal assay against Bbss strain B31. Complete protection against transmission was observed in the group immunized with the mRNA-OspA without SS. Overall, these data demonstrate that an mRNA-OspA vaccine can be effective against LB infection and could be used in the future for the prevention of Lyme disease.
Collapse
Affiliation(s)
- Djamel Tahir
- Institut Pasteur, Environnement et Risques Infectieux, Université Paris Cité, 75015 Paris, France
- Institut Pasteur, Ultrastructural Bio-Imaging Core Facility, 75015 Paris, France
| | - Virginie Geolier
- Institut Pasteur, Environnement et Risques Infectieux, Université Paris Cité, 75015 Paris, France
| | - Hugo Bruant
- Institut Pasteur, Environnement et Risques Infectieux, Université Paris Cité, 75015 Paris, France
| | - Anne Le Flèche-Matéos
- Institut Pasteur, Environnement et Risques Infectieux, Université Paris Cité, 75015 Paris, France
| | - Adeline Mallet
- Institut Pasteur, Ultrastructural Bio-Imaging Core Facility, 75015 Paris, France
| | - Marie Varloud
- Ceva Santé Animale, 10 Avenue de la Ballastière, 33500 Libourne, France
| | - Céline Civat
- Sanofi Vaccines R&D, Campus Mérieux, 69280 Marcy l’Etoile, France
| | | | - Sandrine Montano
- Sanofi Vaccines R&D, Campus Mérieux, 69280 Marcy l’Etoile, France
| | - Corinne Pion
- Sanofi Vaccines R&D, Campus Mérieux, 69280 Marcy l’Etoile, France
| | - Elisabeth Ferquel
- Institut Pasteur, Environnement et Risques Infectieux, Université Paris Cité, 75015 Paris, France
| | - Vincent Pavot
- Sanofi Vaccines R&D, Campus Mérieux, 69280 Marcy l’Etoile, France
| | - Valérie Choumet
- Institut Pasteur, Environnement et Risques Infectieux, Université Paris Cité, 75015 Paris, France
| |
Collapse
|
3
|
Jeong J, Jo H, Son Y, Park J, Oh J, Lee S, Jeong YD, Lee K, Kim HJ, Lee H, Kim S, Yim Y, Rahmati M, Kang J, Udeh R, Pizzol D, Smith L, Hwang J, Yon DK. Global and regional estimates of vaccine-associated herpes zoster and their related vaccines from 1969 to 2023. Sci Rep 2025; 15:13285. [PMID: 40247100 PMCID: PMC12006434 DOI: 10.1038/s41598-025-98106-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 04/09/2025] [Indexed: 04/19/2025] Open
Abstract
Vaccine-induced immunosuppression can reactivate the varicella-zoster virus, potentially leading to the development of herpes zoster. However, the literature on this topic is inconsistent, resulting in limited clarity. Therefore, we aimed to enhance our understanding of vaccine-associated herpes zoster and establish guidelines for future research, utilizing a global database to improve global public health. We investigated vaccine-associated adverse events in herpes zoster using reports (~ 13 million reports) from the WHO international pharmacovigilance database. Data were analyzed for the global number of reports, reported odds ratios (ROR), and information components (IC) to determine the potential association between 18 vaccines and vaccine-associated herpes zoster reports in nearly 170 countries and territories from 1969 to 2023. Of 7,805,380 vaccine-associated adverse events, there were 51,985 herpes zoster reports. Vaccine-associated herpes zoster showed the highest strength of association with COVID-19 mRNA vaccines (ROR, 11.85 [95% CI, 11.70-12.01]; IC, 2.74 [IC0.25, 2.72]), followed by encephalitis (ROR, 4.07 [95% CI, 3.37-4.92]; IC, 2.00 [IC0.25, 1.68]), influenza (ROR, 3.44 [95% CI, 3.28-3.62]; IC, 1.77 [IC0.25, 1.69]), and ad5-vectored COVID-19 vaccines (ROR, 3.05 [95% CI, 2.97-3.14]; IC, 1.54 [IC0.25, 1.50]). The ROR and IC of vaccine-associated herpes zoster in males (ROR, 7.94 [95% CI, 7.80-8.08]; IC, 2.47 [IC0.25, 2.45]) and females (ROR, 6.71 [95% CI, 6.62-6.80]; IC, 2.30 [IC0.25, 2.28]). The ROR and IC increased with advancing age. Our findings emphasize the need to consider the immune status of vaccine recipients and to implement appropriate compensation and management manuals for vaccine-associated herpes zoster.
Collapse
Affiliation(s)
- Jinyoung Jeong
- Department of Medicine, Kyung Hee University College of Medicine, Seoul, South Korea
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea
| | - Hyesu Jo
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea
- Department of Regulatory Science, Kyung Hee University, Seoul, South Korea
| | - Yejun Son
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea
- Department of Precision Medicine, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Jaeyu Park
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea
- Department of Precision Medicine, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Jiyeon Oh
- Department of Medicine, Kyung Hee University College of Medicine, Seoul, South Korea
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea
| | - Sooji Lee
- Department of Medicine, Kyung Hee University College of Medicine, Seoul, South Korea
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea
| | - Yi Deun Jeong
- Department of Medicine, Kyung Hee University College of Medicine, Seoul, South Korea
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea
| | - Kyeongmin Lee
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea
- Department of Regulatory Science, Kyung Hee University, Seoul, South Korea
| | - Hyeon Jin Kim
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea
- Department of Precision Medicine, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Hayeon Lee
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea
- Department of Electronics and Information Convergence Engineering, Kyung Hee University, Yongin, South Korea
| | - Soeun Kim
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea
- Department of Precision Medicine, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Yesol Yim
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea
- Department of Precision Medicine, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Masoud Rahmati
- Health Service Research and Quality of Life Center (CEReSS), Assistance Publique-Hôpitaux de Marseille, Aix-Marseille Université, Marseille, France
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khoramabad, Iran
- Department of Physical Education and Sport Sciences, Faculty of Literature and Humanities, Vali-E-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Jiseung Kang
- School of Health and Environmental Science, College of Health Science, Korea University, Seoul, South Korea
- Department of Health and Safety Convergence Science, Korea University Graduate School, Seoul, South Korea
| | - Raphael Udeh
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, Australia
| | - Damiano Pizzol
- Health Unit, Eni, San Donato Milanese, Italy
- Health Unit, Eni, Maputo, Mozambique
| | - Lee Smith
- Centre for Health, Performance and Wellbeing, Anglia Ruskin University, Cambridge, CB1 1PT, UK.
| | - Jiyoung Hwang
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea.
| | - Dong Keon Yon
- Department of Medicine, Kyung Hee University College of Medicine, Seoul, South Korea.
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea.
- Department of Regulatory Science, Kyung Hee University, Seoul, South Korea.
- Department of Precision Medicine, Kyung Hee University College of Medicine, Seoul, South Korea.
- Department of Pediatrics, Kyung Hee University College of Medicine, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea.
| |
Collapse
|
4
|
Sibomana O, Hakayuwa CM, Munyantore J. Marburg virus reaches Rwanda: how close are we to a vaccine solution? Int J Infect Dis 2025; 153:107371. [PMID: 39709116 DOI: 10.1016/j.ijid.2024.107371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024] Open
Abstract
Marburg virus disease (MVD) is a highly virulent and often fatal disease caused by the Marburg virus, a member of the Filoviridae family, closely related to the Ebola virus. Historically, outbreaks have been sporadic but lethal across various African countries, with high case fatality rates (CFRs). In 2023, significant outbreaks occurred in Tanzania and Equatorial Guinea, with CFRs of 62.5% and 75%, respectively. In 2024, Rwanda faced its first outbreak, starting on September 27, 2024. By November 8, 2024, Rwanda had conducted 7,408 tests, confirming 66 cases, 15 of which were fatal, and 51 recoveries. Although no approved vaccine currently exists for MVD, global health authorities are prioritizing the development of effective vaccines. Drawing on insights from the rapid COVID-19 vaccine development, several promising candidates are under exploration, with the cAd3-MARV showing notable potential. This paper examines the current MVD outbreak in Rwanda and the progress toward developing a long-term vaccine solution.
Collapse
Affiliation(s)
- Olivier Sibomana
- Department of General Medicine and Surgery, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda.
| | | | - Jildas Munyantore
- Department of General Medicine and Surgery, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| |
Collapse
|
5
|
Zheng Y, Wang B, Cai Z, Lai Z, Yu H, Wu M, Liu X, Zhang D. Tailoring nanovectors for optimal neoantigen vaccine efficacy. J Mater Chem B 2025; 13:4045-4058. [PMID: 40042164 DOI: 10.1039/d4tb02547d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
The primary objective of neoantigen vaccines is to elicit a robust anti-tumor immune response by generating neoantigen-specific T cells that can eradicate tumor cells. Despite substantial advancements in personalized neoantigen prediction using next-generation sequencing, machine learning, and mass spectrometry, challenges remain in efficiently expanding neoantigen-specific T cell populations in vivo. This challenge impedes the widespread clinical application of neoantigen vaccines. Nanovector-based neoantigen delivery systems have emerged as a promising solutions to this challenge. These nanovectors offer several advantages, such as enhanced stability, targeted intracellular delivery, sustained release, and improved antigen-presenting cell (APC) activation. Notably, they effectively deliver various neoantigen vaccine formulations (DC cell-based, synthetic long peptide (SLP)-based or DNA/mRNA-based) to APCs or T cells, thereby activating both CD4+ T and CD8+ T cells. This ultimately induces a specific anti-tumor immune response. This review focuses on recent innovations in neoantigen vaccine delivery vectors. We aim to identify optimal design parameters for vectors tailored to different neoantigen vaccine types, with an emphasis on enhancing the tumor microenvironment and stimulating the production of neoantigen-specific cytotoxic T cells. By maximizing the potential of these delivery systems, we aim to accelerate the clinical translation of neoantigen nanovaccines and advance cancer immunotherapy.
Collapse
Affiliation(s)
- Youshi Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China.
- Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
| | - Bing Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China.
- Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Zhixiong Cai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China.
- Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
| | - Zisen Lai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China.
- Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Haijun Yu
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China.
- Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China.
- Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
| | - Da Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China.
- Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
| |
Collapse
|
6
|
Fernandes RS, de Assis Burle-Caldas G, Sergio SAR, Bráz AF, da Silva Leite NP, Pereira M, de Oliveira Silva J, Hojo-Souza NS, de Oliveira B, Fernandes APSM, da Fonseca FG, Gazzinelli RT, Dos Santos Ferreira D, Teixeira SMR. The immunogenic potential of an optimized mRNA lipid nanoparticle formulation carrying sequences from virus and protozoan antigens. J Nanobiotechnology 2025; 23:221. [PMID: 40102899 PMCID: PMC11921523 DOI: 10.1186/s12951-025-03201-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 02/04/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND Lipid nanoparticles (LNP) are a safe and effective messenger RNA (mRNA) delivery system for vaccine applications, as shown by the COVID-19 mRNA vaccines. One of the main challenges faced during the development of these vaccines is the production of new and versatile LNP formulations capable of efficient encapsulation and delivery to cells in vivo. This study aimed to develop a new mRNA vaccine formulation that could potentially be used against existing diseases as well as those caused by pathogens that emerge every year. RESULTS Using firefly luciferase (Luc) as a reporter mRNA, we evaluated the physical-chemical properties, stability, and biodistribution of an LNP-mRNA formulation produced using a novel lipid composition and a microfluidic organic-aqueous precipitation method. Using mRNAs encoding a dengue virus or a Leishmania infantum antigen, we evaluated the immunogenicity of LNP-mRNA formulations and compared them with the immunization with the corresponding recombinant protein or plasmid-encoded antigens. For all tested LNP-mRNAs, mRNA encapsulation efficiency was higher than 85%, their diameter was around 100 nm, and their polydispersity index was less than 0.3. Following an intramuscular injection of 10 µg of the LNP-Luc formulation in mice, we detected luciferase activity in the injection site, as well as in the liver and spleen, as early as 6 h post-administration. LNPs containing mRNA encoding virus and parasite antigens were highly immunogenic, as shown by levels of antigen-specific IgG antibody as well as IFN-γ production by splenocytes of immunized animals that were similar to the levels that resulted from immunization with the corresponding recombinant protein or plasmid DNA. CONCLUSIONS Altogether, these results indicate that these novel LNP-mRNA formulations are highly immunogenic and may be used as novel vaccine candidates for different infectious diseases.
Collapse
Affiliation(s)
- Renata S Fernandes
- Centro de Tecnologia de Vacinas da, Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
| | - Gabriela de Assis Burle-Caldas
- Centro de Tecnologia de Vacinas da, Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
| | | | - Ana Flávia Bráz
- Centro de Tecnologia de Vacinas da, Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
| | - Nathália Pereira da Silva Leite
- Centro de Tecnologia de Vacinas da, Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
| | - Milton Pereira
- Centro de Tecnologia de Vacinas da, Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
| | - Juliana de Oliveira Silva
- Centro de Tecnologia de Vacinas da, Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
- Department of Pharmaceuticals, School of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Natália Satchiko Hojo-Souza
- Centro de Tecnologia de Vacinas da, Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
- Instituto René Rachou, Fundação Oswaldo Cruz-Minas, Belo Horizonte, MG, 30190-002, Brazil
| | - Bianca de Oliveira
- Centro de Tecnologia de Vacinas da, Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
| | - Ana Paula S Moura Fernandes
- Centro de Tecnologia de Vacinas da, Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Flávio Guimarães da Fonseca
- Centro de Tecnologia de Vacinas da, Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Ricardo Tostes Gazzinelli
- Centro de Tecnologia de Vacinas da, Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
- Instituto René Rachou, Fundação Oswaldo Cruz-Minas, Belo Horizonte, MG, 30190-002, Brazil
- Department of Biochemistry & Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Diego Dos Santos Ferreira
- Centro de Tecnologia de Vacinas da, Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
- Department of Pharmaceuticals, School of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Santuza M Ribeiro Teixeira
- Centro de Tecnologia de Vacinas da, Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil.
- Department of Biochemistry & Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
7
|
Sun N, Su Z, Zheng X. Research progress of mosquito-borne virus mRNA vaccines. Mol Ther Methods Clin Dev 2025; 33:101398. [PMID: 39834558 PMCID: PMC11743085 DOI: 10.1016/j.omtm.2024.101398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
In recent years, mRNA vaccines have emerged as a leading technology for preventing infectious diseases due to their rapid development and high immunogenicity. These vaccines encode viral antigens, which are translated into antigenic proteins within host cells, inducing both humoral and cellular immune responses. This review systematically examines the progress in mRNA vaccine research for major mosquito-borne viruses, including dengue virus, Zika virus, Japanese encephalitis virus, Chikungunya virus, yellow fever virus, Rift Valley fever virus, and Venezuelan equine encephalitis virus. Enhancements in mRNA vaccine design, such as improvements to the 5' cap structure, 5'UTR, open reading frame, 3'UTR, and polyadenylation tail, have significantly increased mRNA stability and translation efficiency. Additionally, the use of lipid nanoparticles and polymer nanoparticles has greatly improved the delivery efficiency of mRNA vaccines. Currently, mRNA vaccines against mosquito-borne viruses are under development and clinical trials, showing promising protective effects. Future research should continue to optimize vaccine design and delivery systems to achieve broad-spectrum and long-lasting protection against various mosquito-borne virus infections.
Collapse
Affiliation(s)
- Ningze Sun
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing, China
| | - Zhiwei Su
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing, China
| | - Xiaoyan Zheng
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing, China
| |
Collapse
|
8
|
Haghmorad D, Eslami M, Orooji N, Halabitska I, Kamyshna I, Kamyshnyi O, Oksenych V. mRNA vaccine platforms: linking infectious disease prevention and cancer immunotherapy. Front Bioeng Biotechnol 2025; 13:1547025. [PMID: 40144393 PMCID: PMC11937095 DOI: 10.3389/fbioe.2025.1547025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/24/2025] [Indexed: 03/28/2025] Open
Abstract
The advent of mRNA vaccines, accelerated by the global response to the COVID-19 pandemic, marks a transformative shift in vaccine technology. In this article, we discuss the development, current applications, and prospects of mRNA vaccines for both the prevention and treatment of infectious diseases and oncology. By leveraging the capacity to encode antigens within host cells directly, mRNA vaccines provide a versatile and scalable platform suitable for addressing a broad spectrum of pathogens and tumor-specific antigens. We highlight recent advancements in mRNA vaccine design, innovative delivery mechanisms, and ongoing clinical trials, with particular emphasis on their efficacy in combating infectious diseases, such as COVID-19, Zika, and influenza, as well as their emerging potential in cancer immunotherapy. We also address critical challenges, including vaccine stability, optimization of immune responses, and the broader issue of global accessibility. Finally, we review potential strategies for advancing next-generation mRNA vaccines, with the aim of overcoming current limitations in vaccine technology and enhancing both preventive and therapeutic approaches for infectious and oncological diseases.
Collapse
Affiliation(s)
- Dariush Haghmorad
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Majid Eslami
- Department of Bacteriology and Virology, Semnan University of Medical Sciences, Semnan, Iran
| | - Niloufar Orooji
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Iryna Halabitska
- Department of Therapy and Family Medicine, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Iryna Kamyshna
- Department of Medical Rehabilitation, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Valentyn Oksenych
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
9
|
Wei Z, Zhang S, Wang X, Xue Y, Dang S, Zhai J. Technological breakthroughs and advancements in the application of mRNA vaccines: a comprehensive exploration and future prospects. Front Immunol 2025; 16:1524317. [PMID: 40103818 PMCID: PMC11913674 DOI: 10.3389/fimmu.2025.1524317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/17/2025] [Indexed: 03/20/2025] Open
Abstract
mRNA vaccines utilize single-stranded linear DNA as a template for in vitro transcription. The mRNA is introduced into the cytoplasm via the corresponding delivery system to express the target protein, which then performs its relevant biological function. mRNA vaccines are beneficial in various fields, including cancer vaccines, infectious disease vaccines, protein replacement therapy, and treatment of rare diseases. They offer advantages such as a simple manufacturing process, a quick development cycle, and ease of industrialization. Additionally, mRNA vaccines afford flexibility in adjusting antigen designs and combining sequences of multiple variants, thereby addressing the issue of frequent mutations in pathogenic microorganisms. This paper aims to provide an extensive review of the global development and current research status of mRNA vaccines, with a focus on immunogenicity, classification, design, delivery vector development, stability, and biomedical application. Moreover, the study highlights current challenges and offers insights into future directions for development.
Collapse
Affiliation(s)
- Zhimeng Wei
- School of Basic Medical Sciences, Inner Mongolia Minzu University, Tongliao, China
- Keerqin District First People's Hospital, Tongliao, China
| | - Shuai Zhang
- School of Basic Medical Sciences, Inner Mongolia Minzu University, Tongliao, China
| | - Xingya Wang
- School of Basic Medical Sciences, Inner Mongolia Minzu University, Tongliao, China
| | - Ying Xue
- Keerqin District First People's Hospital, Tongliao, China
| | - Sheng Dang
- Keerqin District First People's Hospital, Tongliao, China
| | - Jingbo Zhai
- School of Basic Medical Sciences, Inner Mongolia Minzu University, Tongliao, China
- Brucellosis Prevention and Treatment Engineering Research Center of Inner Mongolia Autonomous Region, Tongliao, China
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao, China
| |
Collapse
|
10
|
Fatima M, An T, Hong KJ. Revolutionizing mRNA Vaccines Through Innovative Formulation and Delivery Strategies. Biomolecules 2025; 15:359. [PMID: 40149895 PMCID: PMC11940278 DOI: 10.3390/biom15030359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/12/2025] [Accepted: 02/19/2025] [Indexed: 03/29/2025] Open
Abstract
Modernization of existing methods for the delivery of mRNA is vital in advanced therapeutics. Traditionally, mRNA has faced obstacles of poor stability due to enzymatic degradation. This work examines cutting-edge formulation and emerging techniques for safer delivery of mRNA vaccines. Inspired by the success of lipid nanoparticles (LNP) in delivering mRNA vaccines for COVID-19, a variety of other formulations have been developed to deliver mRNA vaccines for diverse infections. The meritorious features of nanoparticle-based mRNA delivery strategies, including LNP, polymeric, dendrimers, polysaccharide-based, peptide-derived, carbon and metal-based, DNA nanostructures, hybrid, and extracellular vesicles, have been examined. The impact of these delivery platforms on mRNA vaccine delivery efficacy, protection from enzymatic degradation, cellular uptake, controlled release, and immunogenicity has been discussed in detail. Even with significant developments, there are certain limitations to overcome, including toxicity concerns, limited information about immune pathways, the need to maintain a cold chain, and the necessity of optimizing administration methods. Continuous innovation is essential for improving delivery systems for mRNA vaccines. Future research directions have been proposed to address the existing challenges in mRNA delivery and to expand their potential prophylactic and therapeutic application.
Collapse
Affiliation(s)
- Munazza Fatima
- Department of Microbiology, Gachon University College of Medicine, Incheon 21936, Republic of Korea;
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Timothy An
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Kee-Jong Hong
- Department of Microbiology, Gachon University College of Medicine, Incheon 21936, Republic of Korea;
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
- Korea mRNA Vaccine Initiative, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
11
|
Yoo S, Faisal M, Bae S, Youn K, Park H, Kwon SP, Hwang IK, Lee J, Kim HJ, Nam J, Keum G, Bang E. Novel Less Toxic, Lymphoid Tissue-Targeted Lipid Nanoparticles Containing a Vitamin B5-Derived Ionizable Lipid for mRNA Vaccine Delivery. Adv Healthc Mater 2025; 14:e2403366. [PMID: 39502027 PMCID: PMC11912100 DOI: 10.1002/adhm.202403366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/23/2024] [Indexed: 03/18/2025]
Abstract
Following their approval by the Food and Drug Administration, lipid nanoparticles (LNPs) have emerged as promising tools for delivering mRNA vaccines and therapeutics. Ionizable lipids are among the essential components of LNPs, as they play crucial roles in encapsulating mRNA and facilitating its release into the cytosol. In this study, 17 innovative ionizable lipids using vitamin B5 are designed as the core structure, aiming to reduce toxicity, to maintain vaccine efficiency, and to ensure synthetic feasibility. The top-performing LNP in terms of mRNA vaccine delivery in the mouse model is LNP 5097, which is generated by incorporating ionizable lipid I97. mRNA⊂LNP 5097 demonstrates favorable structural and physicochemical properties, high mRNA transfection efficiency, and long-term stability. Moreover, mRNA⊂LNP 5097 specifically delivers the mRNA to the spleen and lymph nodes in model mice, induces balanced Th1/Th2 immune responses, and elicits the production of high levels of neutralizing antibodies with low toxicity. The findings here suggest the high utility of LNP 5097, which includes novel vitamin B5-derived ionizable lipids with reduced toxicity, in mRNA vaccine research for both infectious diseases and cancer.
Collapse
Affiliation(s)
- Soyeon Yoo
- Brain Technology Research CenterBrain Science Research DivisionKorea Institute of Science and Technology5 Hwarang‐ro 14‐gil, Seongbuk‐guSeoul02792Republic of Korea
| | - Muhammad Faisal
- Brain Technology Research CenterBrain Science Research DivisionKorea Institute of Science and Technology5 Hwarang‐ro 14‐gil, Seongbuk‐guSeoul02792Republic of Korea
- Division of Bio‐Medical Science & TechnologyKIST SchoolKorea University of Science and Technology (UST)Seoul02792Republic of Korea
| | - Seo‐Hyeon Bae
- Department of Medical and Biological SciencesThe Catholic University of Korea43 Jibong‐roBucheonGyeonggi‐do14662Republic of Korea
- BK21 four Department of BiotechnologyThe Catholic University of Korea43 Jibong‐roBucheonGyeonggi‐do14662South Korea
| | - Kounghwa Youn
- Brain Technology Research CenterBrain Science Research DivisionKorea Institute of Science and Technology5 Hwarang‐ro 14‐gil, Seongbuk‐guSeoul02792Republic of Korea
- KHU‐KIST Department of Converging Science and TechnologyKyung Hee University7–13 Kyungheedae‐ro 6‐gil, Dongdaemun‐guSeoul02447Republic of Korea
| | - Hyo‐Jung Park
- Department of Medical and Biological SciencesThe Catholic University of Korea43 Jibong‐roBucheonGyeonggi‐do14662Republic of Korea
- BK21 four Department of BiotechnologyThe Catholic University of Korea43 Jibong‐roBucheonGyeonggi‐do14662South Korea
| | - Sung Pil Kwon
- Brain Technology Research CenterBrain Science Research DivisionKorea Institute of Science and Technology5 Hwarang‐ro 14‐gil, Seongbuk‐guSeoul02792Republic of Korea
| | - Il Kwon Hwang
- Brain Technology Research CenterBrain Science Research DivisionKorea Institute of Science and Technology5 Hwarang‐ro 14‐gil, Seongbuk‐guSeoul02792Republic of Korea
- Department of Chemical and Biological EngineeringKorea University145 Anam‐ro, Seongbuk‐guSeoul02841Republic of Korea
| | - Jisun Lee
- Department of Medical and Biological SciencesThe Catholic University of Korea43 Jibong‐roBucheonGyeonggi‐do14662Republic of Korea
| | - Hyeong Jun Kim
- Medicinal Materials Research CenterBiomedical Research DivisionKorea Institute of Science and Technology5 Hwarang‐ro 14‐gil, Seongbuk‐guSeoul02792Republic of Korea
| | - Jae‐Hwan Nam
- Department of Medical and Biological SciencesThe Catholic University of Korea43 Jibong‐roBucheonGyeonggi‐do14662Republic of Korea
- BK21 four Department of BiotechnologyThe Catholic University of Korea43 Jibong‐roBucheonGyeonggi‐do14662South Korea
- SML Biopharm, Gwangmyeong Station M Cluster17 Deokan‐ro 104beon‐gilGwangmyeong‐siGyeonggi‐do14353Republic of Korea
| | - Gyochang Keum
- Brain Technology Research CenterBrain Science Research DivisionKorea Institute of Science and Technology5 Hwarang‐ro 14‐gil, Seongbuk‐guSeoul02792Republic of Korea
- Division of Bio‐Medical Science & TechnologyKIST SchoolKorea University of Science and Technology (UST)Seoul02792Republic of Korea
| | - Eun‐Kyoung Bang
- Brain Technology Research CenterBrain Science Research DivisionKorea Institute of Science and Technology5 Hwarang‐ro 14‐gil, Seongbuk‐guSeoul02792Republic of Korea
- KHU‐KIST Department of Converging Science and TechnologyKyung Hee University7–13 Kyungheedae‐ro 6‐gil, Dongdaemun‐guSeoul02447Republic of Korea
- Department of Chemical and Biological EngineeringKorea University145 Anam‐ro, Seongbuk‐guSeoul02841Republic of Korea
| |
Collapse
|
12
|
Imani S, Lv S, Qian H, Cui Y, Li X, Babaeizad A, Wang Q. Current innovations in mRNA vaccines for targeting multidrug-resistant ESKAPE pathogens. Biotechnol Adv 2025; 79:108492. [PMID: 39637949 DOI: 10.1016/j.biotechadv.2024.108492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/30/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
The prevalence of multidrug-resistant (MDR) ESKAPE pathogens, including Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa, represents a critical global public health challenge. In response, mRNA vaccines offer an adaptable and scalable platform for immunotherapy against ESKAPE pathogens by encoding specific antigens that stimulate B-cell-driven antibody production and CD8+ T-cell-mediated cytotoxicity, effectively neutralizing these pathogens and combating resistance. This review examines recent advancements and ongoing challenges in the development of mRNA vaccines targeting MDR ESKAPE pathogens. We explore antigen selection, the nuances of mRNA vaccine technology, and the complex interactions between bacterial infections and antibiotic resistance. By assessing the potential efficacy of mRNA vaccines and addressing key barriers to their paraclinical implementation, this review highlights the promising function of mRNA-based immunization in combating MDR ESKAPE pathogens.
Collapse
Affiliation(s)
- Saber Imani
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - Shuojie Lv
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - Hongbo Qian
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - Yulan Cui
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - XiaoYan Li
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - Ali Babaeizad
- Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Qingjing Wang
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China.
| |
Collapse
|
13
|
Wang J, Cai L, Li N, Luo Z, Ren H, Zhang B, Zhao Y. Developing mRNA Nanomedicines with Advanced Targeting Functions. NANO-MICRO LETTERS 2025; 17:155. [PMID: 39979495 PMCID: PMC11842722 DOI: 10.1007/s40820-025-01665-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/06/2025] [Indexed: 02/22/2025]
Abstract
The emerging messenger RNA (mRNA) nanomedicines have sprung up for disease treatment. Developing targeted mRNA nanomedicines has become a thrilling research hotspot in recent years, as they can be precisely delivered to specific organs or tissues to enhance efficiency and avoid side effects. Herein, we give a comprehensive review on the latest research progress of mRNA nanomedicines with targeting functions. mRNA and its carriers are first described in detail. Then, mechanisms of passive targeting, endogenous targeting, and active targeting are outlined, with a focus on various biological barriers that mRNA may encounter during in vivo delivery. Next, emphasis is placed on summarizing mRNA-based organ-targeting strategies. Lastly, the advantages and challenges of mRNA nanomedicines in clinical translation are mentioned. This review is expected to inspire researchers in this field and drive further development of mRNA targeting technology.
Collapse
Affiliation(s)
- Ji Wang
- Department of Radiology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, People's Republic of China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Lijun Cai
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Ning Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Zhiqiang Luo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Haozhen Ren
- Department of Radiology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, People's Republic of China.
- Department of Hepatobiliary Surgery, Hepatobiliary Institute, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, People's Republic of China.
| | - Bing Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, People's Republic of China.
| | - Yuanjin Zhao
- Department of Radiology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, People's Republic of China.
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China.
| |
Collapse
|
14
|
Alhamlan FS, Al-Qahtani AA. SARS-CoV-2 Variants: Genetic Insights, Epidemiological Tracking, and Implications for Vaccine Strategies. Int J Mol Sci 2025; 26:1263. [PMID: 39941026 PMCID: PMC11818319 DOI: 10.3390/ijms26031263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/04/2025] [Accepted: 01/09/2025] [Indexed: 02/16/2025] Open
Abstract
The emergence of SARS-CoV-2 variants has significantly impacted the global response to the COVID-19 pandemic. This review examines the genetic diversity of SARS-CoV-2 variants, their roles in epidemiological tracking, and their influence on viral fitness. Variants of concern (VOCs) such as Alpha, Beta, Gamma, Delta, and Omicron have demonstrated increased transmissibility, altered pathogenicity, and potential resistance to neutralizing antibodies. Epidemiological tracking of these variants is crucial for understanding their spread, informing public health interventions, and guiding vaccine development. The review also explores how specific mutations in the spike protein and other genomic regions contribute to viral fitness, affecting replication efficiency, immune escape, and transmission dynamics. By integrating genomic surveillance data with epidemiological and clinical findings, this review provides a comprehensive overview of the ongoing evolution of SARS-CoV-2 and its implications for public health strategies and new vaccine development.
Collapse
Affiliation(s)
- Fatimah S. Alhamlan
- Department of Infection and Immunity, Research Centre, King Faisal Specialist Hospital & Research Centre, 11211 Riyadh, Saudi Arabia;
- Department of Microbiology and Immunology, College of Medicine, Alfaisal University, 11211 Riyadh, Saudi Arabia
| | - Ahmed A. Al-Qahtani
- Department of Infection and Immunity, Research Centre, King Faisal Specialist Hospital & Research Centre, 11211 Riyadh, Saudi Arabia;
- Department of Microbiology and Immunology, College of Medicine, Alfaisal University, 11211 Riyadh, Saudi Arabia
| |
Collapse
|
15
|
Imani S, Li X, Chen K, Maghsoudloo M, Jabbarzadeh Kaboli P, Hashemi M, Khoushab S, Li X. Computational biology and artificial intelligence in mRNA vaccine design for cancer immunotherapy. Front Cell Infect Microbiol 2025; 14:1501010. [PMID: 39902185 PMCID: PMC11788159 DOI: 10.3389/fcimb.2024.1501010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/16/2024] [Indexed: 02/05/2025] Open
Abstract
Messenger RNA (mRNA) vaccines offer an adaptable and scalable platform for cancer immunotherapy, requiring optimal design to elicit a robust and targeted immune response. Recent advancements in bioinformatics and artificial intelligence (AI) have significantly enhanced the design, prediction, and optimization of mRNA vaccines. This paper reviews technologies that streamline mRNA vaccine development, from genomic sequencing to lipid nanoparticle (LNP) formulation. We discuss how accurate predictions of neoantigen structures guide the design of mRNA sequences that effectively target immune and cancer cells. Furthermore, we examine AI-driven approaches that optimize mRNA-LNP formulations, enhancing delivery and stability. These technological innovations not only improve vaccine design but also enhance pharmacokinetics and pharmacodynamics, offering promising avenues for personalized cancer immunotherapy.
Collapse
Affiliation(s)
- Saber Imani
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Xiaoyan Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Keyi Chen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Mazaher Maghsoudloo
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | | | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Saloomeh Khoushab
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Xiaoping Li
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| |
Collapse
|
16
|
Fu Q, Zhao X, Hu J, Jiao Y, Yan Y, Pan X, Wang X, Jiao F. mRNA vaccines in the context of cancer treatment: from concept to application. J Transl Med 2025; 23:12. [PMID: 39762875 PMCID: PMC11702060 DOI: 10.1186/s12967-024-06033-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025] Open
Abstract
Immuno-oncology has witnessed remarkable advancements in the past decade, revolutionizing the landscape of cancer therapeutics in an encouraging manner. Among the diverse immunotherapy strategies, mRNA vaccines have ushered in a new era for the therapeutic management of malignant diseases, primarily due to their impressive impact on the COVID-19 pandemic. In this comprehensive review, we offer a systematic overview of mRNA vaccines, focusing on the optimization of structural design, the crucial role of delivery materials, and the administration route. Additionally, we summarize preclinical studies and clinical trials to provide valuable insights into the current status of mRNA vaccines in cancer treatment. Furthermore, we delve into a systematic discussion on the significant challenges facing the current development of mRNA tumor vaccines. These challenges encompass both intrinsic and external factors that are closely intertwined with the successful application of this innovative approach. To pave the way for a more promising future in cancer treatments, a deeper understanding of immunological mechanisms, an increasing number of high-quality clinical trials, and a well-established manufacturing platform are crucial. Collaborative efforts between scientists, clinicians, and industry engineers are essential to achieving these goals.
Collapse
Affiliation(s)
- Qiang Fu
- School of Pharmacology, Institute of Aging Medicine, Binzhou Medical University, Yantai, 264003, P. R. China
| | - Xiaoming Zhao
- Center of Physical Examination, Binzhou Medical University Affiliated 970 Hospital of the PLA Joint Logistic Support Force, Yantai, 264002, P. R. China
| | - Jinxia Hu
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, P. R. China
| | - Yang Jiao
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| | - Yunfei Yan
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, P. R. China
| | - Xuchen Pan
- Department of Clinical Laboratory & Health Service Training, Binzhou Medical University Affiliated 970 Hospital of the PLA Joint Logistic Support Force, Yantai, 264002, P. R. China
| | - Xin Wang
- Department of Clinical Laboratory & Health Service Training, Binzhou Medical University Affiliated 970 Hospital of the PLA Joint Logistic Support Force, Yantai, 264002, P. R. China.
| | - Fei Jiao
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, P. R. China.
| |
Collapse
|
17
|
Bhaskar SM. Medicine Meets Science: The Imperative of Scientific Research and Publishing for Physician-Scientists. Indian J Radiol Imaging 2025; 35:S9-S17. [PMID: 39802717 PMCID: PMC11717469 DOI: 10.1055/s-0044-1800803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
Physician-scientists serve as conduits between clinical practice and scientific research, leveraging their unique expertise to improve patient care and drive medical innovation. This article highlights the indispensable role of research and publishing in promoting evidence-based practices, facilitating professional growth, and shaping public health policy. Drawing on historical and contemporary examples, I examine the challenges faced by physician-scientists, such as ethical dilemmas and declining engagement in research, particularly in resource-constrained settings. I suggest pragmatic strategies to overcome these barriers, emphasizing the need for systemic support, ethical integrity, and the equitable dissemination of advancements. This piece aims to inspire a new generation of physician-scientists to engage deeply with both clinical and research domains, thus advancing global health equity and resilience.
Collapse
Affiliation(s)
- Sonu M.M. Bhaskar
- Department of Neurology, Division of Cerebrovascular Medicine and Neurology, National Cerebral and Cardiovascular Center (NCVC), Suita, Osaka, Japan
- Global Health Neurology Lab, Sydney, New South Wales, Australia
- Ingham Institute for Applied Medical Research, Clinical Sciences Stream, Liverpool, New South Wales, Australia
- NSW Brain Clot Bank, NSW Health Pathology, Sydney, New South Wales, Australia
- Department of Neurology & Neurophysiology, Liverpool Hospital, South Western Sydney Local Health District, Liverpool, New South Wales, Australia
| |
Collapse
|
18
|
Jin L, Zhou Y, Zhang S, Chen SJ. mRNA vaccine sequence and structure design and optimization: Advances and challenges. J Biol Chem 2025; 301:108015. [PMID: 39608721 PMCID: PMC11728972 DOI: 10.1016/j.jbc.2024.108015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 11/30/2024] Open
Abstract
Messenger RNA (mRNA) vaccines have emerged as a powerful tool against communicable diseases and cancers, as demonstrated by their huge success during the coronavirus disease 2019 (COVID-19) pandemic. Despite the outstanding achievements, mRNA vaccines still face challenges such as stringent storage requirements, insufficient antigen expression, and unexpected immune responses. Since the intrinsic properties of mRNA molecules significantly impact vaccine performance, optimizing mRNA design is crucial in preclinical development. In this review, we outline four key principles for optimal mRNA sequence design: enhancing ribosome loading and translation efficiency through untranslated region (UTR) optimization, improving translation efficiency via codon optimization, increasing structural stability by refining global RNA sequence and extending in-cell lifetime and expression fidelity by adjusting local RNA structures. We also explore recent advancements in computational models for designing and optimizing mRNA vaccine sequences following these principles. By integrating current mRNA knowledge, addressing challenges, and examining advanced computational methods, this review aims to promote the application of computational approaches in mRNA vaccine development and inspire novel solutions to existing obstacles.
Collapse
Affiliation(s)
- Lei Jin
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri, USA
| | - Yuanzhe Zhou
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri, USA
| | - Sicheng Zhang
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri, USA
| | - Shi-Jie Chen
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri, USA; Department of Biochemistry, MU Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri, USA.
| |
Collapse
|
19
|
Essink BJ, Shapiro C, Isidro MGD, Bradley P, Pragalos A, Bloch M, Santiaguel J, Frias MV, Miyakis S, Alves de Mesquita M, Berrè S, Servais C, Waugh N, Hoffmann C, Baba E, Schönborn-Kellenberger O, Wolz OO, Koch SD, Ganyani T, Boutet P, Mann P, Mueller SO, Ramanathan R, Gaudinski MR, Vanhoutte N. Safety and immunogenicity of a modified mRNA-lipid nanoparticle vaccine candidate against COVID-19: Results from a phase 1, dose-escalation study. Hum Vaccin Immunother 2024; 20:2408863. [PMID: 39422261 PMCID: PMC11492660 DOI: 10.1080/21645515.2024.2408863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
This phase 1, open-label, dose-escalation, multi-center study (NCT05477186) assessed the safety and immunogenicity of a booster dose of an mRNA COVID-19 vaccine (CV0501) encoding the SARS-CoV-2 Omicron BA.1 spike protein. Participants aged ≥ 18 years previously vaccinated with ≥ 2 doses of an mRNA COVID-19 vaccine received CV0501 doses ranging from 12 to 200 μg. After assessment of safety and immunogenicity of the 12 μg dose in 30 adults, 30 adults ≤ 64 years were randomized to receive either a 3 or 6 μg dose. Solicited adverse events (AEs) were collected for 7 days, unsolicited AEs for 28 days, and serious AEs (SAEs), medically attended AEs (MAAEs), and AEs of special interest (AESIs) until day (D) 181 post-vaccination. Serum neutralizing titers specific to SARS-CoV-2 BA.1, wild-type, Delta, and additional Omicron subvariants were assessed at D1, D15, D29, D91, and D181. Of 180 vaccinated participants (mean age: 49.3 years; 57.8% women), 70.6% had prior SARS-CoV-2 infection. Most solicited local (98.1%) and systemic (96.7%) AEs were of mild-to-moderate severity; the most common were injection site pain (57.5%; 33.3-73.3% across groups) and myalgia (36.9%; 13.3-56.7%). Unsolicited AEs were reported by 14.4% (6.7-26.7%) of participants (mild-to-moderate severity in 88.5% of the participants). Three participants (1.7%) reported SAEs, 16.7% (6.7-30.0%) reported MAAEs, and 8.3% (0.0-13.3%) reported AESIs (15 COVID-19 cases), none related to vaccination. Geometric means of serum neutralizing titers increased from baseline to D15 and D29 (dose-dependent), and then decreased over time. The safety and immunogenicity results supported advancement to a phase 2 trial.
Collapse
Affiliation(s)
| | | | | | | | | | - Mark Bloch
- Holdsworth House Medical Practice Sydney, Darlinghurst, New South Wales, Australia
| | - Joel Santiaguel
- Quirino Memorial Medical Center, Quezon, Philippines
- University of the Philippines College of Medicine, Manila, Philippines
| | - Melchor Victor Frias
- De La Salle Medical and Health Sciences Institute, Dasmariñas, Cavite, Philippines
| | - Spiros Miyakis
- Wollongong Hospital, Wollongong, New South Wales, Australia
- Graduate School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Shariati A, Khani P, Nasri F, Afkhami H, Khezrpour A, Kamrani S, Shariati F, Alavimanesh S, Modarressi MH. mRNA cancer vaccines from bench to bedside: a new era in cancer immunotherapy. Biomark Res 2024; 12:157. [PMID: 39696625 DOI: 10.1186/s40364-024-00692-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/15/2024] [Indexed: 12/20/2024] Open
Abstract
Harnessing the power of the immune system to target cancer cells is one of the most appealing approaches for cancer therapy. Among these immunotherapies, messenger ribonucleic acid (mRNA) cancer vaccines are worthy of consideration, as they have demonstrated promising results in clinical trials. These vaccines have proven to be safe and well-tolerated. They can be easily mass-produced in a relatively short time and induce a systemic immune response effective against both the primary tumor and metastases. Transcripts encoding immunomodulatory molecules can also be incorporated into the mRNA, enhancing its efficacy. On the other hand, there are some challenges associated with their application, including mRNA instability, insufficient uptake by immune cells, and intrinsic immunogenicity, which can block mRNA translation. Many innovations have been suggested to overcome these obstacles, including structural modification (such as 5' cap modification), optimizing delivery vehicles (especially dendritic cells (DCs) and nanoparticles), and using antigens that can enhance immunogenicity by circumventing tolerance mechanisms. A popular approach is to combine mRNA cancer vaccines with traditional and novel cancer treatments like chemotherapy, radiotherapy, and immune checkpoint blockade (ICB). They are most efficacious when combined with other therapies like ICBs. There is still a long way to go before these vaccines enter the standard of care for cancer patients, but with the incredible pace of development in this field, their clinical application will soon be witnessed. This review highlights the recent advances and challenges of mRNA cancer vaccines. Finally, some of the most prominent clinical applications of these vaccines will be reviewed.
Collapse
Affiliation(s)
- Alireza Shariati
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Pouria Khani
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Farzad Nasri
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Arya Khezrpour
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Sina Kamrani
- Department of Orthopedic, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Shariati
- Department of Genetics, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Sajad Alavimanesh
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran.
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Mohammad Hossein Modarressi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
21
|
Abu-Alghayth MH, Abalkhail A, Hazazi A, Alyahyawi Y, Abdulaziz O, Alsharif A, Nassar SA, Omar BIA, Alqahtani SF, Shmrany HA, Khan FR. MicroRNAs and long non-coding RNAs In T-cell lymphoma: Mechanisms, pathway, therapeutic opportunities. Pathol Res Pract 2024; 266:155769. [PMID: 39740285 DOI: 10.1016/j.prp.2024.155769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 01/02/2025]
Abstract
T-cell lymphomas represent non-Hodgkin lymphomas distinguished by the uncontrolled proliferation of malignant T lymphocytes. Classifying these neoplasms and the ongoing investigation of their underlying biological mechanisms remains challenging. Significant subtypes encompass peripheral T-cell lymphomas, anaplastic large-cell lymphomas, cutaneous T-cell lymphomas, and adult T-cell leukemia/lymphoma. A systematic literature survey used electronic databases, including PubMed, Springer Link, Google Scholar, and Web of Science. Search keywords included "T-cell lymphoma," "therapeutic approaches," "RNA therapeutics," "microRNA," and "signaling pathways". T-cell lymphomas are believed to arise from a complex interplay of genetic predispositions and environmental factors. Epstein-Barr virus (EBV) and Human T-cell leukemia virus-1 (HTLV-1), have been implicated as potential etiologic agents. While the exact molecular mechanisms are under investigation, T-cell lymphomas are distinguished by aberrant proliferation of T-cells resulting from dysregulated gene expression. Contemporary research has emphasized the significance of non-coding RNAs, including microRNAs and long non-coding RNAs, in the etiology and advancement of T-cell lymphomas. Certain miRNAs function as tumor suppressors (e.g., miR-451, miR-31, miR-150, miR-29a), while others can act as oncogenes (e.g., miR-223, miR-17-92, miR-155). Additionally, lcRNAs are responsible for modulating gene expression, and their influence on T-cell function suggests their potential outcome as therapeutic targets. Current therapeutic strategies for T-cell lymphomas predominantly rely on chemotherapy, with emerging modalities encompassing immunotherapy and targeted therapies. Despite these advancements, a substantial subset of T-cell lymphomas remains challenging to manage, especially those in advanced stages or refractory to conventional treatments. RNA-based therapeutics represent a promising strategy, offering many advantages such as targeted therapy, potential for personalized medicine, reduced side effects, rapid development, and synergy with other therapies while facing challenges in delivery, immune response, and specificity. Future research should focus on improving delivery systems, modulating immune responses, and optimizing production to unlock its full potential. This review comprehensively explored T-cell lymphomas, delving into their classification, pathogenesis, and existing therapeutic options. Additionally, we explore the evolving function of non-coding RNAs in the pathogenesis of T-cell lymphoma. Furthermore, we discuss the potential of RNA-based therapeutics as a promising treatment strategy.
Collapse
Affiliation(s)
- Mohammed H Abu-Alghayth
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, P.O. Box 255, Bisha 67714, Saudi Arabia.
| | - Adil Abalkhail
- Department of Public Health, College of Applied Medical Sciences, Qassim University, P.O. Box 6666, Buraydah 51452, Saudi Arabia.
| | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| | - Yara Alyahyawi
- Department of Medical Laboratory Technology, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia.
| | - Osama Abdulaziz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Abdulaziz Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Somia A Nassar
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia; Department of Parasitology & Animal Diseases, National Research Centre, 33 Bohouth St., Dokki, Giza 12622, Egypt.
| | - Bashir Ibrahim A Omar
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia.
| | - Sultan F Alqahtani
- Laboratory Department, Aliman General Hospital, Riyadh 13782, Saudi Arabia.
| | - Humood Al Shmrany
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia.
| | - Farhan R Khan
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia.
| |
Collapse
|
22
|
Zhou M, Zhang X, Yan H, Xing L, Tao Y, Shen L. Review on the bioanalysis of non-virus-based gene therapeutics. Bioanalysis 2024; 16:1279-1294. [PMID: 39673530 PMCID: PMC11703353 DOI: 10.1080/17576180.2024.2437418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/29/2024] [Indexed: 12/16/2024] Open
Abstract
Over the past years, gene therapeutics have held great promise for treating many inherited and acquired diseases. The increasing number of approved gene therapeutics and developing clinical pipelines demonstrate the potential to treat diseases by modifying their genetic blueprints in vivo. Compared with conventional treatments targeting proteins rather than underlying causes, gene therapeutics can achieve enduring or curative effects via gene activation, inhibition, and editing. However, the delivery of DNA/RNA to the target cell to alter the gene expression is a complex process that involves, crossing numerous barriers in both the extracellular and intracellular environment. Generally, the delivery strategies can be divided into viral-based and non-viral-based vectors. This review summarizes various bioanalysis strategies that support the non-virus-based gene therapeutics research, including pharmacokinetics (PK)/toxicokinetics (TK), biodistribution, immunogenicity evaluations for the gene cargo, vector, and possible expressed protein, and highlights the challenges and future perspectives of bioanalysis strategies in non-virus-based gene therapeutics. This review may provide new insights and directions for the development of emerging bioanalytical methods, offering technical support and a research foundation for innovative gene therapy treatments.
Collapse
Affiliation(s)
- Maotian Zhou
- DMPK, Lab Testing Division, WuXi AppTec, Suzhou, China
| | - Xue Zhang
- DMPK, Lab Testing Division, WuXi AppTec, Suzhou, China
| | - Huan Yan
- DMPK, Lab Testing Division, WuXi AppTec, Suzhou, China
| | - Lili Xing
- DMPK, Lab Testing Division, WuXi AppTec, Shanghai, China
| | - Yi Tao
- DMPK, Lab Testing Division, WuXi AppTec, Shanghai, China
| | - Liang Shen
- DMPK, Lab Testing Division, WuXi AppTec, Shanghai, China
| |
Collapse
|
23
|
Weerarathna IN, Doelakeh ES, Kiwanuka L, Kumar P, Arora S. Prophylactic and therapeutic vaccine development: advancements and challenges. MOLECULAR BIOMEDICINE 2024; 5:57. [PMID: 39527305 PMCID: PMC11554974 DOI: 10.1186/s43556-024-00222-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Biomedical research is fundamental in developing preventive and therapeutic vaccines, serving as a cornerstone of global public health. This review explores the key concepts, methodologies, tools, and challenges in the vaccine development landscape, focusing on transitioning from basic biomedical sciences to clinical applications. Foundational disciplines such as virology, immunology, and molecular biology lay the groundwork for vaccine creation, while recent innovations like messenger RNA (mRNA) technology and reverse vaccinology have transformed the field. Additionally, it highlights the role of pharmaceutical advancements in translating lab discoveries into clinical solutions. Techniques like CRISPR-Cas9, genome sequencing, monoclonal antibodies, and computational modeling have significantly enhanced vaccine precision and efficacy, expediting the development of vaccines against infectious diseases. The review also discusses challenges that continue to hinder progress, including stringent regulatory pathways, vaccine hesitancy, and the rapid emergence of new pathogens. These obstacles underscore the need for interdisciplinary collaboration and the adoption of innovative strategies. Integrating personalized medicine, nanotechnology, and artificial intelligence is expected to revolutionize vaccine science further. By embracing these advancements, biomedical research has the potential to overcome existing challenges and usher in a new era of therapeutic and prophylactic vaccines, ultimately improving global health outcomes. This review emphasizes the critical role of vaccines in combating current and future health threats, advocating for continued investment in biomedical science and technology.
Collapse
Affiliation(s)
- Induni Nayodhara Weerarathna
- Department of Biomedical Sciences, School of Allied Health Sciences, Datta Meghe Institute of Higher Education and Research (Deemed to Be University), Wardha, Maharashtra, 442001, India.
| | - Elijah Skarlus Doelakeh
- Department of Anesthesia, School of Allied Health Sciences, Datta Meghe Institute of Higher Education and Research (Deemed to Be University), Wardha, Maharashtra, 442001, India
| | - Lydia Kiwanuka
- Department of Medical Radiology and Imaging Technology, School of Allied Health Sciences, Datta Meghe Institute of Higher Education and Research (Deemed to Be University), Wardha, Maharashtra, 442001, India
| | - Praveen Kumar
- Department of Computer Science and Medical Engineering, FEAT, Datta Meghe Institute of Higher Education and Research (Deemed to Be University), Wardha, Maharashtra, 442001, India
| | - Sanvi Arora
- Faculty of Medicine, Jawaharlal Medical College, Datta Meghe Institute of Higher Education and Research (Deemed to Be University), Wardha, Maharashtra, 442001, India
| |
Collapse
|
24
|
Troncoso-Bravo T, Ramírez MA, Loaiza RA, Román-Cárdenas C, Papazisis G, Garrido D, González PA, Bueno SM, Kalergis AM. Advancement in the development of mRNA-based vaccines for respiratory viruses. Immunology 2024; 173:481-496. [PMID: 39161170 DOI: 10.1111/imm.13844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/22/2024] [Indexed: 08/21/2024] Open
Abstract
Acute respiratory infections are the leading cause of death and illness in children under 5 years old and represent a significant burden in older adults. Primarily caused by viruses infecting the lower respiratory tract, symptoms include cough, congestion, and low-grade fever, potentially leading to bronchiolitis and pneumonia. Messenger ribonucleic acid (mRNA)-based vaccines are biopharmaceutical formulations that employ mRNA molecules to induce specific immune responses, facilitating the expression of viral or bacterial antigens and promoting immunization against infectious diseases. Notably, this technology had significant relevance during the COVID-19 pandemic, as these formulations helped to limit SARS-CoV-2 virus infections, hospitalizations, and deaths. Importantly, mRNA vaccines promise to be implemented as new alternatives for fighting other respiratory viruses, such as influenza, human respiratory syncytial virus, and human metapneumovirus. This review article analyzes mRNA-based vaccines' main contributions, perspectives, challenges, and implications against respiratory viruses.
Collapse
Affiliation(s)
- Tays Troncoso-Bravo
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Ingeniería Química y Bioprocesos, Facultad de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mario A Ramírez
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ricardo A Loaiza
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carolina Román-Cárdenas
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Georgios Papazisis
- Laboratory of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Clinical Research Unit, Special Unit for Biomedical Research and Education (SUBRE), School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Daniel Garrido
- Departamento de Ingeniería Química y Bioprocesos, Facultad de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
25
|
Bi D, Wilhelmy C, Unthan D, Keil IS, Zhao B, Kolb B, Koning RI, Graewert MA, Wouters B, Zwier R, Bussmann J, Hankemeier T, Diken M, Haas H, Langguth P, Barz M, Zhang H. On the Influence of Fabrication Methods and Materials for mRNA-LNP Production: From Size and Morphology to Internal Structure and mRNA Delivery Performance In Vitro and In Vivo. Adv Healthc Mater 2024; 13:e2401252. [PMID: 38889433 DOI: 10.1002/adhm.202401252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Lipid nanoparticle (LNP) remains the most advanced platform for messenger RNA (mRNA) delivery. To date, mRNA LNPs synthesis is mostly performed by mixing lipids and mRNA with microfluidics. In this study, a cost-effective microfluidic setup for synthesizing mRNA LNPs is developed. It allows to fine-tune the LNPs characteristics without compromising LNP properties. It is compared with a commercial device (NanoAssemblr) and ethanol injection and the influence of manufacturing conditions on the performance of mRNA LNPs is investigated. LNPs prepared by ethanol injection exhibit broader size distributions and more inhomogeneous internal structure (e.g., bleb-like substructures), while other LNPs show uniform structure with dense cores. Small angel X-ray scattering (SAXS) data indicate a tighter interaction between mRNA and lipids within LNPs synthesized by custom device, compared to LNPs produced by NanoAssemblr. Interestingly, the better transfection efficiency of polysarcosine (pSar)-modified LNPs correlates with a higher surface roughness than that of PEGylated ones. The manufacturing approach, however, shows modest influence on mRNA expression in vivo. In summary, the home-developed cost-effective microfluidic device can synthesize LNPs and represents a potent alternative to NanoAssemblr. The preparation methods show notable effect on LNPs' structure but a minor influence on mRNA delivery in vitro and in vivo.
Collapse
Affiliation(s)
- Dongdong Bi
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Christoph Wilhelmy
- Department of Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Dennis Unthan
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Isabell Sofia Keil
- TRON-Translational Oncology at the University Medical Center of Johannes Gutenberg University GmbH, 55131, Mainz, Germany
| | - Bonan Zhao
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Bastian Kolb
- Department of Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Roman I Koning
- Electron Microscopy Facility, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, 2300 RC, The Netherlands
| | - Melissa A Graewert
- European Molecular Biology Laboratory (EMBL) Hamburg Outstation c/o DESY, 22607, Hamburg, Germany
| | - Bert Wouters
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Raphaël Zwier
- Leiden Institute of Physics Research, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Jeroen Bussmann
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Thomas Hankemeier
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Mustafa Diken
- TRON-Translational Oncology at the University Medical Center of Johannes Gutenberg University GmbH, 55131, Mainz, Germany
| | - Heinrich Haas
- Department of Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Peter Langguth
- Department of Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Matthias Barz
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Heyang Zhang
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| |
Collapse
|
26
|
Khan M. Polymers as Efficient Non-Viral Gene Delivery Vectors: The Role of the Chemical and Physical Architecture of Macromolecules. Polymers (Basel) 2024; 16:2629. [PMID: 39339093 PMCID: PMC11435517 DOI: 10.3390/polym16182629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Gene therapy is the technique of inserting foreign genetic elements into host cells to achieve a therapeutic effect. Although gene therapy was initially formulated as a potential remedy for specific genetic problems, it currently offers solutions for many diseases with varying inheritance patterns and acquired diseases. There are two major groups of vectors for gene therapy: viral vector gene therapy and non-viral vector gene therapy. This review examines the role of a macromolecule's chemical and physical architecture in non-viral gene delivery, including their design and synthesis. Polymers can boost circulation, improve delivery, and control cargo release through various methods. The prominent examples discussed include poly-L-lysine, polyethyleneimine, comb polymers, brush polymers, and star polymers, as well as hydrogels and natural polymers and their modifications. While significant progress has been made, challenges still exist in gene stabilization, targeting specificity, and cellular uptake. Overcoming cytotoxicity, improving delivery efficiency, and utilizing natural polymers and hybrid systems are vital factors for prospects. This comprehensive review provides an illuminating overview of the field, guiding the way toward innovative non-viral-based gene delivery solutions.
Collapse
Affiliation(s)
- Majad Khan
- Department of Chemistry, King Fahd University of Petroleum & Minerals KFUPM, Dahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals KFUPM, Dahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Refining and Advanced Chemicals (IRC-CRAC), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| |
Collapse
|
27
|
Chandra S, Wilson JC, Good D, Wei MQ. mRNA vaccines: a new era in vaccine development. Oncol Res 2024; 32:1543-1564. [PMID: 39308511 PMCID: PMC11413818 DOI: 10.32604/or.2024.043987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 07/02/2024] [Indexed: 09/25/2024] Open
Abstract
The advent of RNA therapy, particularly through the development of mRNA cancer vaccines, has ushered in a new era in the field of oncology. This article provides a concise overview of the key principles, recent advancements, and potential implications of mRNA cancer vaccines as a groundbreaking modality in cancer treatment. mRNA cancer vaccines represent a revolutionary approach to combatting cancer by leveraging the body's innate immune system. These vaccines are designed to deliver specific mRNA sequences encoding cancer-associated antigens, prompting the immune system to recognize and mount a targeted response against malignant cells. This personalized and adaptive nature of mRNA vaccines holds immense potential for addressing the heterogeneity of cancer and tailoring treatments to individual patients. Recent breakthroughs in the development of mRNA vaccines, exemplified by the success of COVID-19 vaccines, have accelerated their application in oncology. The mRNA platform's versatility allows for the rapid adaptation of vaccine candidates to various cancer types, presenting an agile and promising avenue for therapeutic intervention. Clinical trials of mRNA cancer vaccines have demonstrated encouraging results in terms of safety, immunogenicity, and efficacy. Pioneering candidates, such as BioNTech's BNT111 and Moderna's mRNA-4157, have exhibited promising outcomes in targeting melanoma and solid tumors, respectively. These successes underscore the potential of mRNA vaccines to elicit robust and durable anti-cancer immune responses. While the field holds great promise, challenges such as manufacturing complexities and cost considerations need to be addressed for widespread adoption. The development of scalable and cost-effective manufacturing processes, along with ongoing clinical research, will be pivotal in realizing the full potential of mRNA cancer vaccines. Overall, mRNA cancer vaccines represent a cutting-edge therapeutic approach that holds the promise of transforming cancer treatment. As research progresses, addressing challenges and refining manufacturing processes will be crucial in advancing these vaccines from clinical trials to mainstream oncology practice, offering new hope for patients in the fight against cancer.
Collapse
Affiliation(s)
- Shubhra Chandra
- School of Pharmacy & Medical Sciences, Gold Coast campus, Griffith University, Brisbane, QLD-4222, Australia
- Menzies Health Institute Queensland (MHIQ), Gold Coast Campus, Griffith University, Brisbane, QLD-4215, Australia
| | - Jennifer C Wilson
- School of Pharmacy & Medical Sciences, Gold Coast campus, Griffith University, Brisbane, QLD-4222, Australia
- Menzies Health Institute Queensland (MHIQ), Gold Coast Campus, Griffith University, Brisbane, QLD-4215, Australia
| | - David Good
- School of Allied Health, Australian Catholic University, Brisbane, QLD-4014, Australia
| | - Ming Q Wei
- School of Pharmacy & Medical Sciences, Gold Coast campus, Griffith University, Brisbane, QLD-4222, Australia
- Menzies Health Institute Queensland (MHIQ), Gold Coast Campus, Griffith University, Brisbane, QLD-4215, Australia
| |
Collapse
|
28
|
Parvin N, Joo SW, Mandal TK. Enhancing Vaccine Efficacy and Stability: A Review of the Utilization of Nanoparticles in mRNA Vaccines. Biomolecules 2024; 14:1036. [PMID: 39199422 PMCID: PMC11353004 DOI: 10.3390/biom14081036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/12/2024] [Accepted: 08/18/2024] [Indexed: 09/01/2024] Open
Abstract
The development of vaccines has entered a new era with the advent of nanotechnology, particularly through the utilization of nanoparticles. This review focuses on the role of nanoparticles in enhancing the efficacy and stability of mRNA vaccines. Nanoparticles, owing to their unique properties such as high surface area, tunable size, and their ability to be functionalized, have emerged as powerful tools in vaccine development. Specifically, lipid nanoparticles (LNPs) have revolutionized the delivery of mRNA vaccines by protecting the fragile mRNA molecules and facilitating their efficient uptake by cells. This review discusses the various types of nanoparticles employed in mRNA vaccine formulations, including lipid-based, polymer-based, and inorganic nanoparticles, highlighting their advantages and limitations. Moreover, it explores the mechanisms by which nanoparticles improve immune responses, such as enhanced antigen presentation and the prolonged release of mRNA. This review also addresses the challenges and future directions in nanoparticle-based vaccine development, emphasizing the need for further research to optimize formulations for broader applications. By providing an in-depth analysis of the current advancements in and potential of nanoparticles in mRNA vaccines, this review aims to shed light on their critical role in combating infectious diseases and improving public health outcomes.
Collapse
Affiliation(s)
| | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Tapas Kumar Mandal
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
29
|
Elalouf A, Maoz H, Rosenfeld AY. Bioinformatics-Driven mRNA-Based Vaccine Design for Controlling Tinea Cruris Induced by Trichophyton rubrum. Pharmaceutics 2024; 16:983. [PMID: 39204328 PMCID: PMC11357599 DOI: 10.3390/pharmaceutics16080983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/26/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Tinea cruris, a dermatophyte fungal infection predominantly caused by Trichophyton rubrum and Epidermophyton floccosum, primarily affects the groin, pubic region, and adjacent thigh. Its recurrence is frequent, attributable to repeated fungal infections in susceptible individuals, especially those with onychomycosis or tinea pedis, which act as reservoirs for dermatophytes. Given the persistent nature of tinea cruris, vaccination emerges as a promising strategy for fungal infection management, offering targeted, durable protection against various fungal species. Vaccines stimulate both humoral and cell-mediated immunity and are administered prophylactically to prevent infections while minimizing the risk of antifungal resistance development. Developing fungal vaccines is challenging due to the thick fungal cell wall, similarities between fungal and human cells, antigenic variation, and evolutionary resemblance to animals, complicating non-toxic target identification and T-cell response variability. No prior research has shown an mRNA vaccine for T. rubrum. Hence, this study proposes a novel mRNA-based vaccine for tinea cruris, potentially offering long-term immunity and reducing reliance on antifungal medications. This study explores the complete proteome of T. rubrum, identifying potential protein candidates for vaccine development through reverse vaccinology. Immunogenic epitopes from these candidates were mapped and integrated into multitope vaccines and reverse translated to construct mRNA vaccines. Then, the mRNA was translated and computationally assessed for physicochemical, chemical, and immunological attributes. Notably, 1,3-beta-glucanosyltransferase, CFEM domain-containing protein, cell wall galactomannoprotein, and LysM domain-containing protein emerged as promising vaccine targets. Antigenic, immunogenic, non-toxic, and non-allergenic cytotoxic T lymphocyte, helper T lymphocyte, and B lymphocyte epitopes were selected and linked with appropriate linkers and Toll-like receptor (TLR) agonist adjuvants to formulate vaccine candidates targeting T. rubrum. The protein-based vaccines underwent reverse translation to construct the mRNA vaccines, which, after inoculation, were translated again by host ribosomes to work as potential components for triggering the immune response. After that, molecular docking, normal mode analysis, and molecular dynamic simulation confirmed strong binding affinities and stable complexes between vaccines and TLR receptors. Furthermore, immune simulations of vaccines with and without adjuvant demonstrated activation of immune responses, evidenced by elevated levels of IgG1, IgG2, IgM antibodies, cytokines, and interleukins. There was no significant change in antibody production between vaccines with and without adjuvants, but adjuvants are crucial for activating the innate immune response via TLRs. Although mRNA vaccines hold promise against fungal infections, further research is essential to assess their safety and efficacy. Experimental validation is crucial for evaluating their immunogenicity, effectiveness, and safety.
Collapse
Affiliation(s)
- Amir Elalouf
- Department of Management, Bar-Ilan University, Ramat Gan 5290002, Israel; (H.M.); (A.Y.R.)
| | | | | |
Collapse
|
30
|
Kim Y, Kim MH, Chun E, Cho D. Association of Coronavirus Disease 2019 Vaccination with Facial-Related Neurological Disorders: A Nationwide Retrospective Cohort Study. J Pers Med 2024; 14:671. [PMID: 39063925 PMCID: PMC11277844 DOI: 10.3390/jpm14070671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Neurological complications after the coronavirus disease 2019 (COVID-19) vaccine administration have been reported. However, the incidence rates of these complications have not been compared in vaccinated and unvaccinated individuals. This study used a nationwide cohort from South Korea to investigate the incidence and prognostic factors of facial-related neurological disorders, such as facial palsy, trigeminal neuralgia, and hemifacial spasms, after COVID-19 vaccination. A population-based cohort design was used to examine data from a randomly selected 50% of the adult population in Seoul, South Korea. Information on demographics, vaccination status, vaccination type, and medical history was collected. The incidence rates and adjusted hazard ratios (aHRs) for facial-related neurological disorders were calculated. This study included 2,482,481 adults, 85.94% of whom were vaccinated. Vaccinated individuals showed a higher incidence of facial palsy, hemifacial spasm, and trigeminal neuralgia than unvaccinated individuals, with significant aHRs of 1.821, 3.203, and 6.621, respectively. Dyslipidemia, female sex, and young age were identified as risk factors for hemifacial spasms and trigeminal neuralgia. This study demonstrates an increased incidence of facial-related neurological disorders after COVID-19 vaccination, particularly among individuals with dyslipidemia and younger women. These findings underscore the need for further investigations into the mechanisms and management of vaccine-related neurological issues.
Collapse
Affiliation(s)
- Younggoo Kim
- Department of Neurosurgery, Mokdong Hospital, College of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea;
| | - Min-Ho Kim
- Informatization Department, Seoul Hospital, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea;
| | - Eunmi Chun
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mokdong Hospital, College of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea
| | - Dosang Cho
- Department of Neurosurgery, Seoul Hospital, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea
| |
Collapse
|
31
|
Curry E, Sedelnikova S, Rafferty J, Hulley M, Pohle M, Muir G, Brown A. Expanding the RNA polymerase biocatalyst solution space for mRNA manufacture. Biotechnol J 2024; 19:e2400012. [PMID: 39031865 PMCID: PMC11475235 DOI: 10.1002/biot.202400012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 07/22/2024]
Abstract
All mRNA products are currently manufactured in in vitro transcription (IVT) reactions that utilize single-subunit RNA polymerase (RNAP) biocatalysts. Although it is known that discrete polymerases exhibit highly variable bioproduction phenotypes, including different relative processivity rates and impurity generation profiles, only a handful of enzymes are generally available for mRNA biosynthesis. This limited RNAP toolbox restricts strategies to design and troubleshoot new mRNA manufacturing processes, which is particularly undesirable given the continuing diversification of mRNA product lines toward larger and more complex molecules. Herein, we describe development of a high-throughput RNAP screening platform, comprising complementary in silico and in vitro testing modules, that enables functional characterization of large enzyme libraries. Utilizing this system, we identified eight novel sequence-diverse RNAPs, with associated active cognate promoters, and subsequently validated their performance as recombinant enzymes in IVT-based mRNA production processes. By increasing the number of available characterized functional RNAPs by more than 130% and providing a platform to rapidly identify further potentially useful enzymes, this work significantly expands the RNAP biocatalyst solution space for mRNA manufacture, thereby enhancing the capability for application-specific and molecule-specific optimization of both product yield and quality.
Collapse
Affiliation(s)
- Edward Curry
- Department of Chemical and Biological EngineeringUniversity of SheffieldSheffieldUK
| | | | - John Rafferty
- School of BiosciencesUniversity of SheffieldSheffieldUK
| | | | - Melinda Pohle
- Department of Chemical and Biological EngineeringUniversity of SheffieldSheffieldUK
| | - George Muir
- Department of Chemical and Biological EngineeringUniversity of SheffieldSheffieldUK
| | - Adam Brown
- Department of Chemical and Biological EngineeringUniversity of SheffieldSheffieldUK
| |
Collapse
|
32
|
Movahed F, Darzi S, Mahdavi P, Salih Mahdi M, Qutaiba B Allela O, Naji Sameer H, Adil M, Zarkhah H, Yasamineh S, Gholizadeh O. The potential use of therapeutics and prophylactic mRNA vaccines in human papillomavirus (HPV). Virol J 2024; 21:124. [PMID: 38822328 PMCID: PMC11143593 DOI: 10.1186/s12985-024-02397-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/23/2024] [Indexed: 06/02/2024] Open
Abstract
Cervical cancer (CC) and other malignant malignancies are acknowledged to be primarily caused by persistent human papillomavirus (HPV) infection. Historically, vaccinations against viruses that produce neutralizing antibodies unique to the virus have been an affordable way to manage viral diseases. CC risk is decreased, but not eliminated, by HPV vaccinations. Since vaccinations have been made available globally, almost 90% of HPV infections have been successfully avoided. On the lesions and diseases that are already present, however, no discernible treatment benefit has been shown. As a result, therapeutic vaccines that elicit immune responses mediated by cells are necessary for the treatment of established infections and cancers. mRNA vaccines possess remarkable potential in combating viral diseases and malignancy as a result of their superior industrial production, safety, and efficacy. Furthermore, considering the expeditiousness of production, the mRNA vaccine exhibits promise as a therapeutic approach targeting HPV. Given that the HPV-encoded early proteins, including oncoproteins E6 and E7, are consistently present in HPV-related cancers and pre-cancerous lesions and have crucial functions in the progression and persistence of HPV-related diseases, they serve as ideal targets for therapeutic HPV vaccines. The action mechanism of HPV and HPV-related cancer mRNA vaccines, their recent advancements in clinical trials, and the potential for their therapeutic applications are highlighted in this study, which also offers a quick summary of the present state of mRNA vaccines. Lastly, we highlight a few difficulties with mRNA HPV vaccination clinical practice and provide our thoughts on further advancements in this quickly changing sector. It is expected that mRNA vaccines will soon be produced quickly for clinical HPV prevention and treatment.
Collapse
Affiliation(s)
- Fatemeh Movahed
- Department of Gynecology and Obstetrics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Satinik Darzi
- Department Of Obstetrics and Gynecology, Abnormal Uterine Bleeding Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Parya Mahdavi
- Department of Obstetrics and Gynecology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | | | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | - Mohaned Adil
- Pharmacy college, Al-Farahidi University, Baghdad, Iraq
| | - Hasna Zarkhah
- Department of Obstetrics and Gynaecology, Tabriz University of Medical Siences, Tabriz, Iran.
| | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | | |
Collapse
|
33
|
Biasio LR, Zanobini P, Lorini C, Bonaccorsi G. Perspectives in the Development of Tools to Assess Vaccine Literacy. Vaccines (Basel) 2024; 12:422. [PMID: 38675804 PMCID: PMC11054371 DOI: 10.3390/vaccines12040422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/26/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Vaccine literacy (VL) is the ability to find, understand, and evaluate vaccination-related information to make appropriate decisions about immunization. The tools developed so far for its evaluation have produced consistent results. However, some dimensions may be underestimated due to the complexity of factors influencing VL. Moreover, the heterogeneity of methods used in studies employing these tools hinders a comprehensive understanding of its role even more. To overcome these limitations, a path has been sought to propose new instruments. This has necessitated updating earlier literature reviews on VL and related tools, exploring its relationship with vaccine hesitancy (VH), and examining associated variables like beliefs, attitudes, and behaviors towards immunization. Based on the current literature, and supported by the re-analysis of a dataset from an earlier study, we propose a theoretical framework to serve as the foundation for creating future assessment tools. These instruments should not only evaluate the psychological factors underlying the motivational aspect of VL, but also encompass knowledge and competencies. The positioning of VL in the framework at the intersection between sociodemographic antecedents and attitudes, leading to behaviors and outcomes, explains why and how VL can directly or indirectly influence vaccination decisions by countering VH and operating at personal, as well as at organizational and community levels.
Collapse
Affiliation(s)
| | - Patrizio Zanobini
- Department of Health Sciences, University of Florence, 50134 Florence, Italy; (P.Z.); (C.L.); (G.B.)
| | - Chiara Lorini
- Department of Health Sciences, University of Florence, 50134 Florence, Italy; (P.Z.); (C.L.); (G.B.)
| | - Guglielmo Bonaccorsi
- Department of Health Sciences, University of Florence, 50134 Florence, Italy; (P.Z.); (C.L.); (G.B.)
| |
Collapse
|
34
|
Riccardi D, Baldino L, Reverchon E. Liposomes, transfersomes and niosomes: production methods and their applications in the vaccinal field. J Transl Med 2024; 22:339. [PMID: 38594760 PMCID: PMC11003085 DOI: 10.1186/s12967-024-05160-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/03/2024] [Indexed: 04/11/2024] Open
Abstract
One of the most effective strategies to fight viruses and handle health diseases is vaccination. Recent studies and current applications are moving on antigen, DNA and RNA-based vaccines to overcome the limitations related to the conventional vaccination strategies, such as low safety, necessity of multiple injection, and side effects. However, due to the instability of pristine antigen, RNA and DNA molecules, the use of nanocarriers is required. Among the different nanocarriers proposed for vaccinal applications, three types of nanovesicles were selected and analysed in this review: liposomes, transfersomes and niosomes. PubMed, Scopus and Google Scholar databases were used for searching recent papers on the most frequently used conventional and innovative methods of production of these nanovesicles. Weaknesses and limitations of conventional methods (i.e., multiple post-processing, solvent residue, batch-mode processes) can be overcome using innovative methods, in particular, the ones assisted by supercritical carbon dioxide. SuperSomes process emerged as a promising production technique of solvent-free nanovesicles, since it can be easily scaled-up, works in continuous-mode, and does not require further post-processing steps to obtain the desired products. As a result of the literature analysis, supercritical carbon dioxide assisted methods attracted a lot of interest for nanovesicles production in the vaccinal field. However, despite their numerous advantages, supercritical processes require further studies for the production of liposomes, transfersomes and niosomes with the aim of reaching well-defined technologies suitable for industrial applications and mass production of vaccines.
Collapse
Affiliation(s)
- Domenico Riccardi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| | - Lucia Baldino
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy.
| | - Ernesto Reverchon
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| |
Collapse
|
35
|
Vulturar DM, Moacă LȘ, Neag MA, Mitre AO, Alexescu TG, Gherman D, Făgărășan I, Chețan IM, Gherman CD, Melinte OE, Trofor AC, Todea DA. Delta Variant in the COVID-19 Pandemic: A Comparative Study on Clinical Outcomes Based on Vaccination Status. J Pers Med 2024; 14:358. [PMID: 38672984 PMCID: PMC11050903 DOI: 10.3390/jpm14040358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/17/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND As the global battle against the COVID-19 pandemic endures, the spread of the Delta variant has introduced nuanced challenges, prompting a nuanced examination. MATERIALS AND METHODS We performed a multilevel logistic regression analysis encompassing 197 patients, comprising 44 vaccinated individuals (V group) and 153 unvaccinated counterparts (UV). These patients, afflicted with the Delta variant of SARS-CoV-2, were hospitalized between October 2021 and February 2022 at the COVID-19 department of a University Centre in Cluj-Napoca, Romania. We compared patient characteristics, CT lung involvement, Padua score, oxygen saturation (O2 saturation), ventilation requirements, dynamics of arterial blood gas (ABG) parameters, ICU admission rates, and mortality rates between the two groups. RESULTS The UV group exhibited a statistically significant (p < 0.05) proclivity toward developing a more severe form of infection, marked by elevated rates of lung involvement, oxygen requirement, ICU admission, and mortality. CONCLUSION Our findings underscore the substantial efficacy of the vaccine in diminishing the incidence of severe disease, lowering the rates of ICU admissions, and mitigating mortality among hospitalized patients.
Collapse
Affiliation(s)
- Damiana-Maria Vulturar
- Department of Pneumology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400332 Cluj-Napoca, Romania; (D.-M.V.); (I.F.); (I.M.C.); (D.-A.T.)
| | - Liviu-Ștefan Moacă
- Department of Pneumology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400332 Cluj-Napoca, Romania; (D.-M.V.); (I.F.); (I.M.C.); (D.-A.T.)
| | - Maria Adriana Neag
- Department of Pharmacology, Toxicology and Clinical Pharmacology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania;
| | - Andrei-Otto Mitre
- Department of Pathophysiology, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Teodora-Gabriela Alexescu
- 4th Department Internal Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania;
| | - Diana Gherman
- Department of Radiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania;
| | - Iulia Făgărășan
- Department of Pneumology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400332 Cluj-Napoca, Romania; (D.-M.V.); (I.F.); (I.M.C.); (D.-A.T.)
| | - Ioana Maria Chețan
- Department of Pneumology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400332 Cluj-Napoca, Romania; (D.-M.V.); (I.F.); (I.M.C.); (D.-A.T.)
| | - Claudia Diana Gherman
- Department of Surgery-Practical Abilities,“Iuliu Hatieganu” University of Medicine and Pharmacy, Marinescu Street, No. 23, 400337 Cluj-Napoca, Romania;
| | - Oana-Elena Melinte
- Discipline of Pneumology, III-rd Medical Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (O.-E.M.); (A.C.T.)
| | - Antigona Carmen Trofor
- Discipline of Pneumology, III-rd Medical Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (O.-E.M.); (A.C.T.)
| | - Doina-Adina Todea
- Department of Pneumology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400332 Cluj-Napoca, Romania; (D.-M.V.); (I.F.); (I.M.C.); (D.-A.T.)
| |
Collapse
|
36
|
Guterres A, Filho PNS, Moura-Neto V. Breaking Barriers: A Future Perspective on Glioblastoma Therapy with mRNA-Based Immunotherapies and Oncolytic Viruses. Vaccines (Basel) 2024; 12:61. [PMID: 38250874 PMCID: PMC10818651 DOI: 10.3390/vaccines12010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
The use of mRNA-based immunotherapies that leverage the genomes of oncolytic viruses holds significant promise in addressing glioblastoma (GBM), an exceptionally aggressive neurological tumor. We explore the significance of mRNA-based platforms in the area of immunotherapy, introducing an innovative approach to mitigate the risks associated with the use of live viruses in cancer treatment. The ability to customize oncolytic virus genome sequences enables researchers to precisely target specific cancer cells, either through viral genome segments containing structural proteins or through a combination of regions with oncolytic potential. This strategy may enhance treatment effectiveness while minimizing unintended impacts on non-cancerous cells. A notable case highlighted here pertains to advanced findings regarding the application of the Zika virus (ZIKV) in GBM treatment. ZIKV, a member of the family Flaviviridae, shows oncolytic properties against GBM, opening novel therapeutic avenues. We explore intensive investigations of glioblastoma stem cells, recognized as key drivers in GBM initiation, progression, and resistance to therapy. However, a comprehensive elucidation of ZIKV's underlying mechanisms is imperative to pave the way for ZIKV-based clinical trials targeting GBM patients. This investigation into harnessing the potential of oncolytic-virus genomes for mRNA-based immunotherapies underscores its noteworthy implications, potentially paving the way for a paradigm shift in cancer treatment strategies.
Collapse
Affiliation(s)
- Alexandro Guterres
- Laboratório de Hantaviroses e Rickettsioses, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-360, RJ, Brazil
- Laboratório de Tecnologia Imunológica, Instituto de Tecnologia em Imunobiológicos, Vice-Diretoria de Desenvolvimento Tecnológico, Bio-Manguinhos, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-360, RJ, Brazil
| | | | - Vivaldo Moura-Neto
- Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro 20231-092, RJ, Brazil; (P.N.S.F.)
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil
| |
Collapse
|
37
|
Verma A, Awasthi A. Innovative Strategies to Enhance mRNA Vaccine Delivery and Effectiveness: Mechanisms and Future Outlook. Curr Pharm Des 2024; 30:1049-1059. [PMID: 38551046 DOI: 10.2174/0113816128296588240321072042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/11/2024] [Indexed: 06/22/2024]
Abstract
The creation of mRNA vaccines has transformed the area of vaccination and allowed for the production of COVID-19 vaccines with previously unheard-of speed and effectiveness. The development of novel strategies to enhance the delivery and efficiency of mRNA vaccines has been motivated by the ongoing constraints of the present mRNA vaccine delivery systems. In this context, intriguing methods to get beyond these restrictions include lipid nanoparticles, self-amplifying RNA, electroporation, microneedles, and cell-targeted administration. These innovative methods could increase the effectiveness, safety, and use of mRNA vaccines, making them more efficient, effective, and broadly available. Additionally, mRNA technology may have numerous and far-reaching uses in the field of medicine, opening up fresh avenues for the diagnosis and treatment of disease. This paper gives an overview of the existing drawbacks of mRNA vaccine delivery techniques, the creative solutions created to address these drawbacks, and their prospective public health implications. The development of mRNA vaccines for illnesses other than infectious diseases and creating scalable and affordable manufacturing processes are some of the future directions for research in this area that are covered in this paper.
Collapse
Affiliation(s)
- Abhishek Verma
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab 142001, India
| | - Ankit Awasthi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab 142001, India
| |
Collapse
|
38
|
Mohanty P, Panda P, Acharya RK, Pande B, Bhaskar LVKS, Verma HK. Emerging perspectives on RNA virus-mediated infections: from pathogenesis to therapeutic interventions. World J Virol 2023; 12:242-255. [PMID: 38187500 PMCID: PMC10768389 DOI: 10.5501/wjv.v12.i5.242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/07/2023] [Accepted: 11/29/2023] [Indexed: 12/25/2023] Open
Abstract
RNA viruses continue to pose significant threats to global public health, necessitating a profound understanding of their pathogenic mechanisms and the development of effective therapeutic interventions. This manuscript provides a comprehensive overview of emerging perspectives on RNA virus-mediated infections, spanning from the intricate intricacies of viral pathogenesis to the forefront of innovative therapeutic strategies. A critical exploration of antiviral drugs sets the stage, highlighting the diverse classes of compounds that target various stages of the viral life cycle, underscoring the ongoing efforts to combat viral infections. Central to this discussion is the exploration of RNA-based therapeutics, with a spotlight on messenger RNA (mRNA)-based approaches that have revolutionized the landscape of antiviral interventions. Furthermore, the manuscript delves into the intricate world of delivery systems, exploring inno-vative technologies designed to enhance the efficiency and safety of mRNA vaccines. By analyzing the challenges and advancements in delivery mechanisms, this review offers a roadmap for future research and development in this critical area. Beyond conventional infectious diseases, the document explores the expanding applications of mRNA vaccines, including their promising roles in cancer immunotherapy and personalized medicine approaches. This manuscript serves as a valuable resource for researchers, clinicians, and policymakers alike, offering a nuanced perspective on RNA virus pathogenesis and the cutting-edge therapeutic interventions. By synthesizing the latest advancements and challenges, this review contributes significantly to the ongoing discourse in the field, driving the development of novel strategies to combat RNA virus-mediated infections effectively.
Collapse
Affiliation(s)
- Pratik Mohanty
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Guwahati 781039, Assam, India
| | - Poojarani Panda
- Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Rakesh Kumar Acharya
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Bilaspur 495009, Chhattisgarh, India
| | - Babita Pande
- Department of Physiology, All India Institute of Medical Science, Raipur 492001, chhattisgarh, India
| | - LVKS Bhaskar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Bilaspur 495009, Chhattisgarh, India
| | - Henu Kumar Verma
- Lung Health and Immunity, Helmholtz Zentrum Munich, Munich 85764, Bayren, Germany
| |
Collapse
|
39
|
Shah M, Jaan S, Shehroz M, Sarfraz A, Asad K, Wara TU, Zaman A, Ullah R, Ali EA, Nishan U, Ojha SC. Deciphering the Immunogenicity of Monkeypox Proteins for Designing the Potential mRNA Vaccine. ACS OMEGA 2023; 8:43341-43355. [PMID: 38024731 PMCID: PMC10652822 DOI: 10.1021/acsomega.3c07866] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023]
Abstract
The Monkeypox virus (MPXV), an orthopox virus, is responsible for monkeypox in humans, a zoonotic disease similar to smallpox. This infection first appeared in the 1970s in humans and then in 2003, after which it kept on spreading all around the world. To date, various antivirals have been used to cure this disease, but now, MPXV has developed resistance against these, thus increasing the need for an alternative cure for this deadly disease. In this study, we devised a reverse vaccinology approach against MPXV using a messenger RNA (mRNA) vaccine by pinning down the antigenic proteins of this virus. By using bioinformatic tools, we predicted prospective immunogenic B and T lymphocyte epitopes. Based on cytokine inducibility score, nonallergenicity, nontoxicity, antigenicity, and conservancy, the final epitopes were selected. Our analysis revealed the stable structure of the mRNA vaccine and its efficient expression in host cells. Furthermore, strong interactions were demonstrated with toll-like receptors 2 (TLR2) and 4 (TLR4) according to the molecular dynamic simulation studies. The in silico immune simulation analyses revealed an overall increase in the immune responses following repeated exposure to the designed vaccine. Based on our findings, the vaccine candidate designed in this study has the potential to be tested as a promising novel mRNA therapeutic vaccine against MPXV infection.
Collapse
Affiliation(s)
- Mohibullah Shah
- Department
of Biochemistry, Bahauddin Zakariya University, Multan 66000, Pakistan
| | - Samavia Jaan
- Department
of Biochemistry, Bahauddin Zakariya University, Multan 66000, Pakistan
- School
of Biochemistry and Biotechnology, University
of the Punjab, Lahore 54590, Pakistan
| | - Muhammad Shehroz
- Department
of Bioinformatics, Kohsar University Murree, Murree 47150 Pakistan
| | - Asifa Sarfraz
- Department
of Biochemistry, Bahauddin Zakariya University, Multan 66000, Pakistan
| | - Khamna Asad
- School
of Biochemistry and Biotechnology, University
of the Punjab, Lahore 54590, Pakistan
| | - Tehreem Ul Wara
- Department
of Biochemistry, Bahauddin Zakariya University, Multan 66000, Pakistan
| | - Aqal Zaman
- Department
of Microbiology & Molecular Genetics, Bahauddin Zakariya University, Multan 66000, Pakistan
| | - Riaz Ullah
- Department
of Pharmacognosy, College of Pharmacy, King
Saud University Riyadh 11451, Saudi Arabia
| | - Essam A. Ali
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Umar Nishan
- Department
of Chemistry, Kohat University of Science
& Technology, Kohat 26000, Pakistan
| | - Suvash Chandra Ojha
- Department
of Infectious Diseases, The Affiliated Hospital
of Southwest Medical University, 646000 Luzhou, China
| |
Collapse
|
40
|
Ni L. Advances in mRNA-Based Cancer Vaccines. Vaccines (Basel) 2023; 11:1599. [PMID: 37897001 PMCID: PMC10611059 DOI: 10.3390/vaccines11101599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Cancer is a leading cause of death worldwide, accounting for millions of deaths every year. Immunotherapy is a groundbreaking approach for treating cancer through harnessing the power of the immune system to target and eliminate cancer cells. Cancer vaccines, one immunotherapy approach, have shown promise in preclinical settings, but researchers have struggled to reproduce these results in clinical settings. However, with the maturity of mRNA technology and its success in tackling the recent coronavirus disease 2019 (COVID-19) pandemic, cancer vaccines are expected to regain attention. In this review, we focused on the recent progress made in mRNA-based cancer vaccines over the past five years. The mechanism of action of mRNA vaccines, advancements in neoantigen discovery, adjuvant identification, and delivery materials are summarized and reviewed. In addition, we also provide a detailed overview of current clinical trials involving mRNA cancer vaccines. Lastly, we offer an insight into future considerations for the application of mRNA vaccines in cancer immunotherapy. This review will help researchers to understand the advances in mRNA-based cancer vaccines and explore new dimensions for potential immunotherapy approaches.
Collapse
Affiliation(s)
- Ling Ni
- Institute for Immunology and School of Medicine, Tsinghua University, Medical Research Building, No. 30 Haidian Shuangqing Road, Beijing 100084, China
| |
Collapse
|
41
|
Perenkov AD, Sergeeva AD, Vedunova MV, Krysko DV. In Vitro Transcribed RNA-Based Platform Vaccines: Past, Present, and Future. Vaccines (Basel) 2023; 11:1600. [PMID: 37897003 PMCID: PMC10610676 DOI: 10.3390/vaccines11101600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
mRNA was discovered in 1961, but it was not used as a vaccine until after three decades. Recently, the development of mRNA vaccine technology gained great impetus from the pursuit of vaccines against COVID-19. To improve the properties of RNA vaccines, and primarily their circulation time, self-amplifying mRNA and trans-amplifying mRNA were developed. A separate branch of mRNA technology is circular RNA vaccines, which were developed with the discovery of the possibility of translation on their protein matrix. Circular RNA has several advantages over mRNA vaccines and is considered a fairly promising platform, as is trans-amplifying mRNA. This review presents an overview of the mRNA platform and a critical discussion of the more modern self-amplifying mRNA, trans-amplifying mRNA, and circular RNA platforms created on its basis. Finally, the main features, advantages, and disadvantages of each of the presented mRNA platforms are discussed. This discussion will facilitate the decision-making process in selecting the most appropriate platform for creating RNA vaccines against cancer or viral diseases.
Collapse
Affiliation(s)
- Alexey D. Perenkov
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Alena D. Sergeeva
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Maria V. Vedunova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Dmitri V. Krysko
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
- Cell Death Investigation and Therapy (CDIT) Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Science, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
| |
Collapse
|