1
|
Debnath M, Malhotra M, Kulkarni A. Protein corona formation on supramolecular polymer nanoparticles causes differential endosomal sorting resulting in an attenuated NLRP3 inflammasome activation. Biomater Sci 2025; 13:3030-3047. [PMID: 40244934 DOI: 10.1039/d5bm00244c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Upon introduction into biological environments, nanoparticles undergo the spontaneous formation of a dynamic protein corona, which continually evolves and significantly modifies their physicochemical properties and interactions with biological systems. This evolving protein corona can critically impact the nanoparticles' endocytic pathways and targeting efficiency, potentially altering their functional characteristics and obscuring their intended therapeutic effects. Despite considerable focus on the characterization of corona proteins and their impact on nanoparticle uptake, the intracellular processes and their effects on immunogenicity are not yet thoroughly understood. Supramolecular polymer nanoparticles (SNPs) with a highly hydrophobic core are recognized for triggering NLRP3 inflammasome activation, a key component of the innate immune system. Here, it is reported that the protein corona formation on SNPs exerts an inhibitory effect on the activation pathway of NLRP3 inflammasome. The protein corona impairs the intrinsic capacity of SNPs to induce lysosomal membrane rupture, thereby diminishing the cellular stress signals necessary for the formation of the NLRP3 inflammasome complex. Furthermore, the cells transport SNPs with an attached protein corona to recycling endosomes, where they are sorted and prepared for exocytosis. Conversely, nascent SNPs are primarily confined to late endosomes and lysosomes, leading to lysosomal rupture and inflammasome activation. This differential routing reflects the significant impact of the protein corona on the cellular handling and subsequent biological activity of nanoparticles. In summary, this study elucidates the fundamental role of the protein corona in shaping the intracellular disposition of nanoparticles, with implications for modulating their interactions with the immune system.
Collapse
Affiliation(s)
- Maharshi Debnath
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA.
| | - Mehak Malhotra
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA.
| | - Ashish Kulkarni
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA.
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
2
|
Lissandrini G, Zeppilli D, Lorandi F, Matyjaszewski K, Isse AA, Orian L, Fantin M. Photo-RAFT Polymerization Under Microwatt Irradiation via Unimolecular Photoinduced Electron Transfer. Angew Chem Int Ed Engl 2025; 64:e202424225. [PMID: 40018858 PMCID: PMC12051724 DOI: 10.1002/anie.202424225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/03/2025] [Accepted: 02/27/2025] [Indexed: 03/01/2025]
Abstract
Photoinduced radical addition fragmentation chain transfer (PET-RAFT) polymerization typically requires high light intensity (>5 mW cm- 2), limiting energy efficiency, and scalability. We demonstrate that adding a base to PET-RAFT systems drastically enhances the reactivity of acidic chain transfer agents (CTAs) with Zn-based photocatalysts (Zn porphyrin and Zn phthalocyanine). This approach enables complete polymerization under microwatt light intensity (0.25 mW cm- 2), a significant improvement over traditional PET-RAFT, which showed no conversion under the same conditions. Both acrylates and methacrylates polymerized efficiently with excellent chain-end fidelity. Reactivity was triggered chemically (via base addition) or electrochemically (via electrolytic reduction). Mechanistic studies reveal that base addition promotes a CTA-Zn photocatalyst complex, shifting the activation from bimolecular to more efficient unimolecular PET-RAFT.
Collapse
Affiliation(s)
- Giovanni Lissandrini
- Department of Chemical SciencesUniversity of PadovaVia Marzolo 1Padova35131Italy
| | - Davide Zeppilli
- Department of Chemical SciencesUniversity of PadovaVia Marzolo 1Padova35131Italy
| | - Francesca Lorandi
- Department of ChemistryCarnegie Mellon University4400 Fifth AvenuePittsburghPennsylvania15213USA
- Present address:
Laboratory for Macromolecular and Organic ChemistryDepartment of Chemical SciencesUniversity of PadovaVia Marzolo 1Padova35131Italy
| | - Krzysztof Matyjaszewski
- Department of ChemistryCarnegie Mellon University4400 Fifth AvenuePittsburghPennsylvania15213USA
| | - Abdirisak A. Isse
- Department of Chemical SciencesUniversity of PadovaVia Marzolo 1Padova35131Italy
| | - Laura Orian
- Department of Chemical SciencesUniversity of PadovaVia Marzolo 1Padova35131Italy
| | - Marco Fantin
- Department of Chemical SciencesUniversity of PadovaVia Marzolo 1Padova35131Italy
| |
Collapse
|
3
|
Suzuki H, Nishikawa T, Ouchi M. Design of Vinylboron Monomers for the Comprehensive Structural Control of Poly(vinyl alcohol)s via Stereospecific Controlled Radical Polymerization and Subsequent Side-Chain Replacement. J Am Chem Soc 2025; 147:12672-12685. [PMID: 40183458 DOI: 10.1021/jacs.5c00336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
A series of vinylboron monomers was designed, wherein the boron atom is protected by N-alkyl-substituted anthranilamide moieties, in order to prepare poly(vinyl alcohol) (PVA) polymers via stereospecific RAFT polymerization and subsequent oxidation of the pendant boron groups with comprehensive control over primary structural factors, i.e., branching structure, molecular weight, tacticity, and block sequencing with other monomers. In contrast to vinylboron monomers that are protected by nonsubstituted anthranilamide moieties, those protected with N-alkyl-substituted anthranilamide moieties allowed suppressing backbiting reactions during the radical polymerization, thus enabling the generation of linear PVAs. In particular, when relatively bulky substituents such as isobutyl and neopentyl groups were installed on the anthranilamide protecting group, the polymerization proceeded in an isospecific fashion through helical conformation, yielding isotactic PVAs. Stereoblock PVAs and a vinyl alcohol-acrylamide block copolymer were also synthesized via RAFT polymerization, and the thermal properties specific to tacticity, e.g., dual melting behavior affected by the two segments, were observed.
Collapse
Affiliation(s)
- Hiroshi Suzuki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Tsuyoshi Nishikawa
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Makoto Ouchi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| |
Collapse
|
4
|
Weerasinghe MASN, Nwoko T, Konkolewicz D. Polymers and light: a love-hate relationship. Chem Sci 2025; 16:5326-5352. [PMID: 40103712 PMCID: PMC11912025 DOI: 10.1039/d5sc00997a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 02/28/2025] [Indexed: 03/20/2025] Open
Abstract
The study of the interaction between polymers and light has significantly bloomed over the past few years in various fundamental research and applications. The relationship between polymers and light can be beneficial (we refer to this as "love") or be destructive (we refer to this as "hate"). It is important to understand the nature of both these love and hate relationships between polymers and light to apply these concepts in various future systems, to surpass performance of existing materials, or to mitigate some problems associated with polymers. Therefore, this perspective highlights both the photophilic (e.g., photopolymerization, rate modulation, temporal/spatial control, drug delivery, waste management, photo functionalization, and photo-enhanced depolymerization) and photophobic (e.g., photodegradation, discoloration, optical density, and loss of functionality) nature of polymers.
Collapse
Affiliation(s)
| | - Tochukwu Nwoko
- Department of Chemistry and Biochemistry, Miami University 651 E High St Oxford OH 45056 USA
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University 651 E High St Oxford OH 45056 USA
| |
Collapse
|
5
|
Gerardos AM, Forys A, Trzebicka B, Pispas S. One-Pot Synthesis of Amphiphilic Linear and Hyperbranched Polyelectrolytes and Their Stimuli-Responsive Self-Assembly in Aqueous Solutions. Polymers (Basel) 2025; 17:701. [PMID: 40076192 PMCID: PMC11902553 DOI: 10.3390/polym17050701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Stimuli-responsive polymeric nanostructures are compelling vectors for a wide range of application opportunities. The objective we sought was to broaden the array of self-assembling amphiphilic copolymers with stimuli-responsive characteristics by introducing a hydrophilic tunable monomer, (2-dimethylamino)ethyl methacrylate (DMAEMA), together with a hydrophilic one, lauryl methacrylate (LMA), within linear and branched copolymer topologies. Size exclusion chromatography was used to evaluate the resultant linear and hyperbranched copolymers' molecular weight and dispersity, and FT-IR and 1H-NMR spectroscopy techniques were used to delineate their chemical structure. The structural changes in the obtained self-organized supramolecular structures were thoroughly investigated using aqueous media with varying pH and salinity by dynamic light scattering (DLS), fluorescence spectroscopy (FS), and transmission electron microscopy (TEM). The nanoscale assemblies formed by the amphiphiles indicate significant potential for applications within the field of nanotechnology.
Collapse
Affiliation(s)
- Angelica Maria Gerardos
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | - Aleksander Forys
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 ul. M. Curie-Skłodowskiej, 41-819 Zabrze, Poland; (A.F.); (B.T.)
| | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 ul. M. Curie-Skłodowskiej, 41-819 Zabrze, Poland; (A.F.); (B.T.)
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| |
Collapse
|
6
|
Pantelaiou MA, Vagenas D, Pispas S. Poly(oligoethylene glycol methylether methacrylate-co-methyl methacrylate) Aggregates as Nanocarriers for Curcumin and Quercetin. Polymers (Basel) 2025; 17:635. [PMID: 40076126 PMCID: PMC11902823 DOI: 10.3390/polym17050635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Amphiphilic statistical copolymers can be utilized for the formulation of nanocarriers for the drug delivery of insoluble substances. Oligoethylene glycol methylether methacrylate and methyl methacrylate are two biocompatible monomers that can be used for biological applications. In this work, the synthesis of linear poly(oligoethylene glycol methylether methacrylate-co-methyl methacrylate), P(OEGMA-co-MMA), and statistical copolymers via reversible addition fragmentation chain transfer (RAFT) polymerization is reported. P(OEGMA-co-MMA) copolymers with different comonomer compositions were synthesized and characterized by size exclusion chromatography (SEC), 1H-NMR, and ATR-FTIR spectroscopy. Self-assembly studies were carried out by the dissolution of polymers in water and via the co-solvent protocol. For the characterization of the formed nanoaggregates, DLS, zeta potential, and fluorescence spectroscopy (FS) experiments were performed. Such measurements delineate the association of copolymers into aggregates with structural characteristics dependent on copolymer composition. In order to investigate the drug encapsulation properties of the formed nanoparticles, curcumin and quercetin were loaded into them. The co-solvent protocol was followed for the encapsulation of varying concentrations of the two drugs. Nanocarrier formulation properties were confirmed by DLS while UV-Vis and FS experiments revealed the encapsulation loading and the optical properties of the drug-loaded nanosystems in each case. The maximum encapsulation efficiency was found to be 54% for curcumin and 49% for quercetin. For all nanocarriers, preliminary qualitive biocompatibility studies were conducted by the addition of FBS medium in the copolymer aqueous solutions which resulted in no significant interactions between copolymer aggregates and serum proteins. Novel nanocarriers of curcumin and quercetin were fabricated as a first step for the utilization of these statistical copolymer nanosystems in nanomedicine.
Collapse
Affiliation(s)
- Michaila Akathi Pantelaiou
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece; (M.A.P.); (D.V.)
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Dimitrios Vagenas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece; (M.A.P.); (D.V.)
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece; (M.A.P.); (D.V.)
| |
Collapse
|
7
|
Ullah A, Khan M, Zhang Y, Shafiq M, Ullah M, Abbas A, Xianxiang X, Chen G, Diao Y. Advancing Therapeutic Strategies with Polymeric Drug Conjugates for Nucleic Acid Delivery and Treatment. Int J Nanomedicine 2025; 20:25-52. [PMID: 39802382 PMCID: PMC11717654 DOI: 10.2147/ijn.s429279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
The effective clinical translation of messenger RNA (mRNA), small interfering RNA (siRNA), and microRNA (miRNA) for therapeutic purposes hinges on the development of efficient delivery systems. Key challenges include their susceptibility to degradation, limited cellular uptake, and inefficient intracellular release. Polymeric drug conjugates (PDCs) offer a promising solution, combining the benefits of polymeric carriers and therapeutic agents for targeted delivery and treatment. This comprehensive review explores the clinical translation of nucleic acid therapeutics, focusing on polymeric drug conjugates. It investigates how these conjugates address delivery obstacles, enhance systemic circulation, reduce immunogenicity, and provide controlled release, improving safety profiles. The review delves into the conjugation strategies, preparation methods, and various classes of PDCs, as well as strategic design, highlighting their role in nucleic acid delivery. Applications of PDCs in treating diseases such as cancer, immune disorders, and fibrosis are also discussed. Despite significant advancements, challenges in clinical adoption persist. The review concludes with insights into future directions for this transformative technology, underscoring the potential of PDCs to advance nucleic acid-based therapies and combat infectious diseases significantly.
Collapse
Affiliation(s)
- Aftab Ullah
- School of Medicine, Huaqiao University, Quanzhou, Fujian, People’s Republic of China
| | - Marina Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Pakistan
| | - Yibang Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Muhammad Shafiq
- Research Institute of Clinical Pharmacy, Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Mohsan Ullah
- School of Medicine, Huaqiao University, Quanzhou, Fujian, People’s Republic of China
| | - Azar Abbas
- Institute of Medicine, Shenzhen Institute of Advanced Technology, Shenzhen, Guangdong, People’s Republic of China
| | - Xu Xianxiang
- School of Medicine, Huaqiao University, Quanzhou, Fujian, People’s Republic of China
| | - Gang Chen
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, People’s Republic of China
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao central Medical Group), Qingdao, Shandong, People’s Republic of China
| | - Yong Diao
- School of Medicine, Huaqiao University, Quanzhou, Fujian, People’s Republic of China
| |
Collapse
|
8
|
Gerardos AM, Pispas S. Double Hydrophilic Hyperbranched Copolymer-Based Lipomer Nanoparticles: Copolymer Synthesis and Co-Assembly Studies. Polymers (Basel) 2024; 16:3129. [PMID: 39599220 PMCID: PMC11598649 DOI: 10.3390/polym16223129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Double hydrophilic, random, hyperbranched copolymers were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization of oligo(ethylene glycol) methyl ether methacrylate (OEGMA) and 2-(dimethylamino)ethyl methacrylate (DMAEMA) utilizing ethylene glycol dimethacrylate (EGDMA) as the branching agent. The resulting copolymers were characterized in terms of their molecular weight and dispersity using size exclusion chromatography (SEC), and their chemical structure was confirmed using FT-IR and 1H-NMR spectroscopy techniques. The choice of the two hydrophilic blocks and the design of the macromolecular structure allowed the formation of self-assembled nanoparticles, partially due to the pH-responsive character of the DMAEMA segments and their interaction with -COOH end groups remaining from the chain transfer agent. The copolymers showed pH-responsive properties, mainly due to the protonation-deprotonation equilibria of the DMAEMA segments. Subsequently, a nanoscopic polymer-lipid (lipomer) mixed system was formulated by complexing the synthesized copolymers with cosmetic amphiphilic emulsifiers, specifically glyceryl stearate (GS) and glyceryl stearate citrate (GSC). This study aims to show that developing lipid-polymer hybrid nanoparticles can effectively address the limitations of both liposomes and polymeric nanoparticles. The effects of varying the ionic strength and pH on stimuli-sensitive polymeric and mixed polymer-lipid nanostructures were thoroughly investigated. To achieve this, the structural properties of the hybrid nanoparticles were comprehensively characterized using physicochemical techniques providing insights into their size distribution and stability.
Collapse
Affiliation(s)
- Angelica Maria Gerardos
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece;
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece;
| |
Collapse
|
9
|
Versteeg FG, Picchioni F. Reversible Addition-Fragmentation Chain-Transfer Polymerization in Supercritical CO 2: A Review. Macromol Rapid Commun 2024; 45:e2400514. [PMID: 39259254 PMCID: PMC11583296 DOI: 10.1002/marc.202400514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/27/2024] [Indexed: 09/12/2024]
Abstract
The development of cleaner, more environmentally friendly processes in polymerization technology is crucial due to the prevalent use of volatile organic solvents (VOCs), which are harmful and toxic. Future regulations are likely to limit or ban VOCs. This review explores the use of supercritical solvents, specifically supercritical CO2 (scCO2), in polymerization processes. The study focuses on reversible addition-fragmentation chain-transfer (RAFT) induced homo-polymerization of various monomers using specific chain transfer agents (CTAs) in scCO2. RAFT polymerization, a reversible deactivation radical polymerization (RDRP) polymerization, relies heavily on the choice of CTA, which significantly influences the dispersity and molar mass of the resulting polymers. Stabilizers are also crucial in controlling product specifications for polymerizations in supercritical CO2, except for fluor-based polymers, although they must be removed and preferably recycled to ensure product purity and sustainability. The review notes that achieving high molar mass through RAFT polymerization in scCO2 is challenging due to solubility limits, which lead to polymer precipitation. Despite this, RAFT polymerization in scCO2 shows promise for sustainable, circular production of low molar mass polymers, although these cannot yet be fully considered green products.
Collapse
Affiliation(s)
- Friso G. Versteeg
- Department of Chemical Engineering – Product TechnologyUniversity of GroningenNijenborgh 4Groningen9747 AGThe Netherlands
| | - Francesco Picchioni
- Department of Chemical Engineering – Product TechnologyUniversity of GroningenNijenborgh 4Groningen9747 AGThe Netherlands
| |
Collapse
|
10
|
Pantelaiou MA, Vagenas D, Karvelis ES, Rotas G, Pispas S. Co-Assembled Nanosystems Exhibiting Intrinsic Fluorescence by Complexation of Amino Terpolymer and Its Quaternized Analog with Aggregation-Induced Emission (AIE) Dye. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1631. [PMID: 39452967 PMCID: PMC11510664 DOI: 10.3390/nano14201631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024]
Abstract
Aggregation-induced emission dyes (AIEs) have gained significant interest due to their unique optical properties. Upon aggregation, AIEs can exhibit remarkable fluorescence enhancement. These systems are ideal candidates for applications in bioimaging, such as image-guided drug delivery or surgery. Encapsulation of AIEs in polymeric nanocarriers can result in biocompatible and efficient nanosystems. Herein, we report the fabrication of novel nanoaggregates formulated by amino terpolymer and tetraphenylethylene (TPE) AIE in aqueous media. Poly(di(ethylene glycol) methyl ether methacrylate-co-2-(dimethylamino)ethylmethacrylate-co-oligoethylene glycol methyl ether methacrylate), P(DEGMA-co-DMAEMA-co-OEGMA) hydrophilic terpolymer was utilized for the complexation of the sodium tetraphenylethylene 4,4',4″,4‴-tetrasulfonate AIE dye. Fluorescence spectroscopy, physicochemical studies, and self-assembly in aqueous and fetal bovine serum media were carried out. The finely dispersed nanoparticles exhibited enhanced fluorescence compared to the pure dye. To investigate the role of tertiary amino groups in the aggregation phenomenon, the polymer was quaternized, and quaternized polymer nanocarriers were fabricated. The increase in fluorescence intensity indicated stronger interaction between the cationic polymer analog and the dye. A stronger interaction between the nanoparticles and fetal bovine serum was observed in the case of the quaternized polymer. Thus, P(DEGMA-co-DMAEMA-co-OEGMA) formulations are better candidates for bioimaging applications than the quaternized ones, presenting both aggregation-induced emission and less interaction with fetal bovine serum.
Collapse
Affiliation(s)
- Michaila Akathi Pantelaiou
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece; (M.A.P.); (D.V.)
| | - Dimitrios Vagenas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece; (M.A.P.); (D.V.)
| | - Evangelos S. Karvelis
- Section of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (E.S.K.); (G.R.)
| | - Georgios Rotas
- Section of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (E.S.K.); (G.R.)
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece; (M.A.P.); (D.V.)
| |
Collapse
|
11
|
Kim S, Lee SN, Melvin AA, Choi JW. Stimuli-Responsive Polymer Actuator for Soft Robotics. Polymers (Basel) 2024; 16:2660. [PMID: 39339124 PMCID: PMC11436224 DOI: 10.3390/polym16182660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Polymer actuators are promising, as they are widely used in various fields, such as sensors and soft robotics, for their unique properties, such as their ability to form high-quality films, sensitivity, and flexibility. In recent years, advances in structural and fabrication processes have significantly improved the reliability of polymer sensing-based actuators. Polymer actuators have attracted considerable attention for use in artificial or biohybrid systems, as they have the potential to operate under diverse conditions with high durability. This review briefly describes different types of polymer actuators and provides an understanding of their working mechanisms. It focuses on actuation modes controlled by diverse or multiple stimuli. Furthermore, it discusses the fabrication processes of polymer actuators; the fabrication process is an important consideration in the development of high-quality actuators with sensing properties for a wide range of applications in soft robotics. Additionally, the high potential of polymer actuators for use in sensing technology is examined, and the latest developments in the field of polymer actuators, such as the development of biohybrid polymers and the use of polymer actuators in 4D printing, are briefly described.
Collapse
Affiliation(s)
- Seewoo Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Sang-Nam Lee
- Uniance Gene Inc., 273, Digital-ro, Guro-gu, Seoul 08381, Republic of Korea
| | - Ambrose Ashwin Melvin
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| |
Collapse
|
12
|
Gerardos AM, Foryś A, Trzebicka B, Pispas S. Self-Assembly of Hydrophobic Hyperbranched PLMA Homopolymer with -COOH End Groups as Effective Nanocarriers for Bioimaging Applications. Polymers (Basel) 2024; 16:2166. [PMID: 39125191 PMCID: PMC11314538 DOI: 10.3390/polym16152166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Nanomedicine is a discipline of medicine that applies all aspects of nanotechnology strategies and concepts for treatment and screening possibilities. Synthetic polymer nanostructures are among the many nanomedicine formulations frequently studied for their potential as vectors. Bioimaging is a valuable diagnostic tool, thus, there is always a demand for new excipients/nanocarriers. In this study, hydrophobic hyperbranched poly(lauryl methacrylate) (PLMA) homopolymers comprised of highly hydrophobic LMA moieties with -COOH polar end groups were synthesized by employing reversible addition-fragmentation chain transfer (RAFT) polymerization. Ethylene glycol dimethacrylate (EGDMA) was utilized as the branching agent. End groups are incorporated through the RAFT agent utilized. The resulting amphiphilic hyperbranched polymer was molecularly characterized by size exclusion chromatography (SEC), Fourier transformation infrared spectroscopy (FT-IR), and 1H-NMR spectroscopy. Pyrene, curcumin, and IR-1048 dye were hydrophobic payload molecules successfully encapsulated to show how adaptable these homopolymer nanoparticles (prepared by nanoprecipitation in water) are as dye nanocarriers. This study demonstrates a simple way of producing excipients by generating polymeric nanoparticles from an amphiphilic, hyperbranched, hydrophobic homopolymer, with a low fraction of polar end groups, for bioimaging purposes.
Collapse
Affiliation(s)
- Angelica Maria Gerardos
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece;
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | - Aleksander Foryś
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 ul. M. Curie-Skłodowskiej, 41-819 Zabrze, Poland; (A.F.); (B.T.)
| | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 ul. M. Curie-Skłodowskiej, 41-819 Zabrze, Poland; (A.F.); (B.T.)
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece;
| |
Collapse
|
13
|
Muslimova IB, Zhumanazar N, Melnikova GB, Yeszhanov AB, Zhatkanbayeva ZK, Chizhik SA, Zdorovets MV, Güven O, Korolkov IV. Preparation and application of stimuli-responsive PET TeMs: RAFT graft block copolymerisation of styrene and acrylic acid for the separation of water-oil emulsions. RSC Adv 2024; 14:14425-14437. [PMID: 38694549 PMCID: PMC11061781 DOI: 10.1039/d4ra02117g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/25/2024] [Indexed: 05/04/2024] Open
Abstract
Stimuli-responsive membranes play an important role in the fields of biomedicine, food and chemical industries, and environmental applications, including separation of water-oil emulsions. In this study, we present a method to fabricate pH-sensitive membranes using UV-initiated RAFT graft copolymerization of styrene (ST) and acrylic acid (AA) on poly(ethylene terephthalate) (PET) track-etched membranes (TeMs). The optimization of polymerization conditions led to successful grafting of polystyrene (PS) and poly(acrylic acid) (PAA) onto PET TeMs, resulting in membranes with stable hydrophobicity and pH change responsiveness. The membranes show a contact angle of 65° in basic environments (pH 9) and 97° in acidic environments (pH 2). The membranes were characterized by atomic force microscopy (AFM), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), thermogravimetric analyses (TGA), Fourier transform infrared spectroscopy (FTIR), contact angle (CA) methods. The PET TeMs-g-PS-g-PAA exhibited good performance in separating water-oil emulsions with a high efficiency of more than 90% and flux for direct chloroform-water 2500 L m-2 h-1 and reverse emulsions of benzene-water 1700 L m-2 h-1. This method of preparing stimuli-responsive membranes with controlled wettability and responsiveness to environmental pH provides versatility in their use in separating two types of emulsions: direct and reverse.
Collapse
Affiliation(s)
- Indira B Muslimova
- L.N. Gumilyov Eurasian National University Satpaev Str., 2 Astana 010000 Kazakhstan
- The Institute of Nuclear Physics Ibragimov str. 1 Almaty 050032 Kazakhstan +7-705-179-9083
| | - Nurdaulet Zhumanazar
- The Institute of Nuclear Physics Ibragimov str. 1 Almaty 050032 Kazakhstan +7-705-179-9083
| | - Galina B Melnikova
- L.N. Gumilyov Eurasian National University Satpaev Str., 2 Astana 010000 Kazakhstan
- The National Academy of Sciences of Belarus P. Brovki Str., 15 220072 Minsk Belarus
| | - Arman B Yeszhanov
- L.N. Gumilyov Eurasian National University Satpaev Str., 2 Astana 010000 Kazakhstan
- The Institute of Nuclear Physics Ibragimov str. 1 Almaty 050032 Kazakhstan +7-705-179-9083
| | | | - Sergei A Chizhik
- The National Academy of Sciences of Belarus P. Brovki Str., 15 220072 Minsk Belarus
| | - Maxim V Zdorovets
- L.N. Gumilyov Eurasian National University Satpaev Str., 2 Astana 010000 Kazakhstan
- The Institute of Nuclear Physics Ibragimov str. 1 Almaty 050032 Kazakhstan +7-705-179-9083
| | - Olgun Güven
- Hacettepe University Beytepe Ankara 06800 Turkey
| | - Ilya V Korolkov
- L.N. Gumilyov Eurasian National University Satpaev Str., 2 Astana 010000 Kazakhstan
- The Institute of Nuclear Physics Ibragimov str. 1 Almaty 050032 Kazakhstan +7-705-179-9083
| |
Collapse
|
14
|
Zhang F, Yao Q, Chen X, Zhou H, Zhou M, Li Y, Cheng H. In-depth study of anticancer drug diffusion through a cross-linked -pH-responsive polymeric vesicle membrane. Drug Deliv 2023; 30:2162626. [PMID: 36600638 PMCID: PMC9828689 DOI: 10.1080/10717544.2022.2162626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Post-encapsulation and release of the anticancer drug doxorubicin hydrochloride (DOX·HCl) through cell-like transmission functions of polymeric vesicles were studied using cross-linked pH-responsive polymeric vesicles. The vesicles were fabricated for the first time via the redox-initiated reversible addition-fragmentation chain transfer dispersion polymerization in ethanol-water mixture, using 2-(diisopropylamino)ethyl methacrylate and glycidyl methacrylate, and the vesicle membrane was modified post-cross-linking by using ethylenediamine. A phase diagram was constructed for reproducible fabrication of the polymeric vesicles, and well-shaped vesicles were formed when the target degree of polymerization of the hydrophobic polymer chains was equal to or higher than 50 with solid content in the range of 10-30 wt%. The cross-linked vesicle membrane served as a gate enabling "open" and "closed" states in response to pH stimulation. Up to 50% drug loading efficiency and 39% drug loading content could be achieved, and in vitro release of the DOX-loaded vesicles in aqueous buffer solutions showed a much faster DOX release rate at pH 5.0 than at pH 6.5. The polymeric vesicles were of very low cytotoxicity to A549 cells up to the concentration of 2 mg/mL, and the IC50 of DOX-loaded vesicles were higher than that of the free DOX. The intracellular DOX release study indicated higher cellular uptake capability for DOX-loaded vesicles than that of free DOX.
Collapse
Affiliation(s)
- Fen Zhang
- Institute of Energy Resources, Hebei Academy of Sciences, Shijiazhuang, Hebei Province, China,CONTACT Fen Zhang ; Yantao Li Institute of Energy Resources, Hebei Academy of Sciences, Shijiazhuang, Hebei Province050081, China; Hua Cheng Institute of Biology, Hebei Academy of Sciences, Shijiazhuang, Hebei Province050081, China
| | - Qian Yao
- Institute of Energy Resources, Hebei Academy of Sciences, Shijiazhuang, Hebei Province, China
| | - Xiaoqi Chen
- Institute of Energy Resources, Hebei Academy of Sciences, Shijiazhuang, Hebei Province, China
| | - Haijun Zhou
- Institute of Energy Resources, Hebei Academy of Sciences, Shijiazhuang, Hebei Province, China
| | - Mengmeng Zhou
- Institute of Energy Resources, Hebei Academy of Sciences, Shijiazhuang, Hebei Province, China
| | - Yantao Li
- Institute of Energy Resources, Hebei Academy of Sciences, Shijiazhuang, Hebei Province, China,CONTACT Fen Zhang ; Yantao Li Institute of Energy Resources, Hebei Academy of Sciences, Shijiazhuang, Hebei Province050081, China; Hua Cheng Institute of Biology, Hebei Academy of Sciences, Shijiazhuang, Hebei Province050081, China
| | - Hua Cheng
- Institute of Biology, Hebei Academy of Sciences, Shijiazhuang, Hebei Province, China,CONTACT Fen Zhang ; Yantao Li Institute of Energy Resources, Hebei Academy of Sciences, Shijiazhuang, Hebei Province050081, China; Hua Cheng Institute of Biology, Hebei Academy of Sciences, Shijiazhuang, Hebei Province050081, China
| |
Collapse
|
15
|
Konishi Y, Minoshima M, Fujihara K, Uchihashi T, Kikuchi K. Elastic Polymer Coated Nanoparticles with Fast Clearance for 19 F MR Imaging. Angew Chem Int Ed Engl 2023; 62:e202308565. [PMID: 37592736 DOI: 10.1002/anie.202308565] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/26/2023] [Accepted: 08/16/2023] [Indexed: 08/19/2023]
Abstract
19 F magnetic resonance imaging (MRI) is a powerful molecular imaging technique that enables high-resolution imaging of deep tissues without background signal interference. However, the use of nanoparticles (NPs) as 19 F MRI probes has been limited by the immediate trapping and accumulation of stiff NPs, typically of around 100 nm in size, in the mononuclear phagocyte system, particularly in the liver. To address this issue, elastic nanomaterials have emerged as promising candidates for improving delivery efficacy in vivo. Nevertheless, the impact of elasticity on NP elimination has remained unclear due to the lack of suitable probes for real-time and long-term monitoring. In this study, we present the development of perfluorocarbon-encapsulated polymer NPs as a novel 19 F MRI contrast agent, with the aim of suppressing long-term accumulation. The polymer NPs have high elasticity and exhibit robust sensitivity in 19 F MRI imaging. Importantly, our 19 F MRI data demonstrate a gradual decline in the signal intensity of the polymer NPs after administration, which contrasts starkly with the behavior observed for stiff silica NPs. This innovative polymer-coated NP system represents a groundbreaking nanomaterial that successfully overcomes the challenges associated with long-term accumulation, while enabling tracking of biodistribution over extended periods.
Collapse
Affiliation(s)
- Yuki Konishi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, 5650871, Suita, Osaka, Japan
| | - Masafumi Minoshima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, 5650871, Suita, Osaka, Japan
- JST, PRESTO, 2-1, Yamadaoka, 5650871, Suita, Osaka, Japan
| | - Kohei Fujihara
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Furocho, Chikusa, 4648602, Nagoya, Japan
| | - Takayuki Uchihashi
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Furocho, Chikusa, 4648602, Nagoya, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, 4440864, Okazaki, Japan
| | - Kazuya Kikuchi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, 5650871, Suita, Osaka, Japan
- Immunology Frontier Research Center (IFReC), Osaka University, 2-1, Yamadaoka, 5650871, Suita, Osaka, Japan
| |
Collapse
|
16
|
Muslimova IB, Zhatkanbayeva ZK, Omertasov DD, Melnikova GB, Yeszhanov AB, Güven O, Chizhik SA, Zdorovets MV, Korolkov IV. Stimuli-Responsive Track-Etched Membranes for Separation of Water-Oil Emulsions. MEMBRANES 2023; 13:membranes13050523. [PMID: 37233585 DOI: 10.3390/membranes13050523] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023]
Abstract
In this work, we have developed a method for the preparation of pH-responsive track-etched membranes (TeMs) based on poly(ethylene terephthalate) (PET) with pore diameters of 2.0 ± 0.1 μm of cylindrical shape by RAFT block copolymerization of styrene (ST) and 4-vinylpyridine (4-VP) to be used in the separation of water-oil emulsions. The influence of the monomer concentration (1-4 vol%), the molar ratio of RAFT agent: initiator (1:2-1:100) and the grafting time (30-120 min) on the contact angle (CA) was studied. The optimal conditions for ST and 4-VP grafting were found. The obtained membranes showed pH-responsive properties: at pH 7-9, the membrane was hydrophobic with a CA of 95°; at pH 2, the CA decreased to 52°, which was due to the protonated grafted layer of poly-4-vinylpyridine (P4VP), which had an isoelectric point of pI = 3.2. The obtained membranes with controlled hydrophobic-hydrophilic properties were tested by separating the direct and reverse "oil-water" emulsions. The stability of the hydrophobic membrane was studied for 8 cycles. The degree of purification was in the range of 95-100%.
Collapse
Affiliation(s)
- Indira B Muslimova
- Laboratory of Engineering Profile, L.N. Gumilyov Eurasian National University, Satpaev Str., 5, Astana 010008, Kazakhstan
- The Institute of Nuclear Physics, Ibragimov Str., 1, Almaty 050032, Kazakhstan
| | - Zh K Zhatkanbayeva
- Laboratory of Engineering Profile, L.N. Gumilyov Eurasian National University, Satpaev Str., 5, Astana 010008, Kazakhstan
| | - Dias D Omertasov
- Laboratory of Engineering Profile, L.N. Gumilyov Eurasian National University, Satpaev Str., 5, Astana 010008, Kazakhstan
| | - Galina B Melnikova
- Laboratory of Engineering Profile, L.N. Gumilyov Eurasian National University, Satpaev Str., 5, Astana 010008, Kazakhstan
- A.V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus, P. Brovki Str., 15, 220072 Minsk, Belarus
| | - Arman B Yeszhanov
- Laboratory of Engineering Profile, L.N. Gumilyov Eurasian National University, Satpaev Str., 5, Astana 010008, Kazakhstan
- The Institute of Nuclear Physics, Ibragimov Str., 1, Almaty 050032, Kazakhstan
| | - Olgun Güven
- Department of Chemistry, Hacettepe University, Beytepe, Ankara 06800, Turkey
| | - Sergei A Chizhik
- A.V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus, P. Brovki Str., 15, 220072 Minsk, Belarus
| | - Maxim V Zdorovets
- Laboratory of Engineering Profile, L.N. Gumilyov Eurasian National University, Satpaev Str., 5, Astana 010008, Kazakhstan
- The Institute of Nuclear Physics, Ibragimov Str., 1, Almaty 050032, Kazakhstan
- Department of Intelligent Information Technology, Ural Federal University, Mira Str. 19, 620002 Ekaterinburg, Russia
| | - Ilya V Korolkov
- Laboratory of Engineering Profile, L.N. Gumilyov Eurasian National University, Satpaev Str., 5, Astana 010008, Kazakhstan
- The Institute of Nuclear Physics, Ibragimov Str., 1, Almaty 050032, Kazakhstan
| |
Collapse
|
17
|
Clothier GKK, Guimarães TR, Thompson SW, Rho JY, Perrier S, Moad G, Zetterlund PB. Multiblock copolymer synthesis via RAFT emulsion polymerization. Chem Soc Rev 2023; 52:3438-3469. [PMID: 37093560 DOI: 10.1039/d2cs00115b] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
A multiblock copolymer is a polymer of a specific structure that consists of multiple covalently linked segments, each comprising a different monomer type. The control of the monomer sequence has often been described as the "holy grail" of synthetic polymer chemistry, with the ultimate goal being synthetic access to polymers of a "perfect" structure, where each monomeric building block is placed at a desired position along the polymer chain. Given that polymer properties are intimately linked to the microstructure and monomer distribution along the constituent chains, it goes without saying that there exist seemingly endless opportunities in terms of fine-tuning the properties of such materials by careful consideration of the length of each block, the number and order of blocks, and the inclusion of monomers with specific functional groups. The area of multiblock copolymer synthesis remains relatively unexplored, in particular with regard to structure-property relationships, and there are currently significant opportunities for the design and synthesis of advanced materials. The present review focuses on the synthesis of multiblock copolymers via reversible addition-fragmentation chain transfer (RAFT) polymerization implemented as aqueous emulsion polymerization. RAFT emulsion polymerization offers intriguing opportunities not only for the advanced synthesis of multiblock copolymers, but also provides access to polymeric nanoparticles of specific morphologies. Precise multiblock copolymer synthesis coupled with self-assembly offers material morphology control on length scales ranging from a few nanometers to a micrometer. It is imperative that polymer chemists interact with physicists and material scientists to maximize the impact of these materials of the future.
Collapse
Affiliation(s)
- Glenn K K Clothier
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - Thiago R Guimarães
- MACROARC, Queensland University of Technology, Brisbane City, QLD 4000, Australia
| | - Steven W Thompson
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - Julia Y Rho
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Sébastien Perrier
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Graeme Moad
- CSIRO Manufacturing, Bag 10, Clayton South, VIC 3169, Australia
| | - Per B Zetterlund
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
18
|
Hemin-catalyzed SI-RAFT polymerization for thrombin detection. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
19
|
Goldbach E, Allonas X, Croutxé-Barghorn C, Ley C, Halbardier L, L'Hostis G. Influence of thiocarbonylthio- RAFT agents on the homogeneity of polymer network and mechanical properties of 3D printed polymers. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
20
|
Tan X, Dewapriya P, Prasad P, Chang Y, Huang X, Wang Y, Gong X, Hopkins TE, Fu C, Thomas KV, Peng H, Whittaker AK, Zhang C. Efficient Removal of Perfluorinated Chemicals from Contaminated Water Sources Using Magnetic Fluorinated Polymer Sorbents. Angew Chem Int Ed Engl 2022; 61:e202213071. [PMID: 36225164 PMCID: PMC10946870 DOI: 10.1002/anie.202213071] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Indexed: 11/07/2022]
Abstract
Efficient removal of per- and polyfluoroalkyl substances (PFAS) from contaminated waters is urgently needed to safeguard public and environmental health. In this work, novel magnetic fluorinated polymer sorbents were designed to allow efficient capture of PFAS and fast magnetic recovery of the sorbed material. The new sorbent has superior PFAS removal efficiency compared with the commercially available activated carbon and ion-exchange resins. The removal of the ammonium salt of hexafluoropropylene oxide dimer acid (GenX) reaches >99 % within 30 s, and the estimated sorption capacity was 219 mg g-1 based on the Langmuir model. Robust and efficient regeneration of the magnetic polymer sorbent was confirmed by the repeated sorption and desorption of GenX over four cycles. The sorption of multiple PFAS in two real contaminated water matrices at an environmentally relevant concentration (1 ppb) shows >95 % removal for the majority of PFAS tested in this study.
Collapse
Affiliation(s)
- Xiao Tan
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandCorner College and Cooper Rds (Bldg 75)BrisbaneQueensland4072Australia
| | - Pradeep Dewapriya
- Queensland Alliance for Environmental Health SciencesThe University of Queensland, Level 420 Cornwall StreetWoolloongabbaQueensland4102Australia
| | - Pritesh Prasad
- Queensland Alliance for Environmental Health SciencesThe University of Queensland, Level 420 Cornwall StreetWoolloongabbaQueensland4102Australia
| | - Yixin Chang
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandCorner College and Cooper Rds (Bldg 75)BrisbaneQueensland4072Australia
| | - Xumin Huang
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandCorner College and Cooper Rds (Bldg 75)BrisbaneQueensland4072Australia
| | - Yiqing Wang
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandCorner College and Cooper Rds (Bldg 75)BrisbaneQueensland4072Australia
| | - Xiaokai Gong
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandCorner College and Cooper Rds (Bldg 75)BrisbaneQueensland4072Australia
| | - Timothy E. Hopkins
- The Chemours Company, Chemours Discovery Hub201 Discovery BoulevardNewarkDE 19713USA
| | - Changkui Fu
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandCorner College and Cooper Rds (Bldg 75)BrisbaneQueensland4072Australia
| | - Kevin V. Thomas
- Queensland Alliance for Environmental Health SciencesThe University of Queensland, Level 420 Cornwall StreetWoolloongabbaQueensland4102Australia
| | - Hui Peng
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandCorner College and Cooper Rds (Bldg 75)BrisbaneQueensland4072Australia
| | - Andrew K. Whittaker
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandCorner College and Cooper Rds (Bldg 75)BrisbaneQueensland4072Australia
| | - Cheng Zhang
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandCorner College and Cooper Rds (Bldg 75)BrisbaneQueensland4072Australia
| |
Collapse
|
21
|
Dalei G, Das S. Polyacrylic acid-based drug delivery systems: A comprehensive review on the state-of-art. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Sifri RJ, Ma Y, Fors BP. Photoredox Catalysis in Photocontrolled Cationic Polymerizations of Vinyl Ethers. Acc Chem Res 2022; 55:1960-1971. [PMID: 35771008 DOI: 10.1021/acs.accounts.2c00252] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
ConspectusAdvances in photocontrolled polymerizations have expanded the scope of polymer architectures and structures that can be synthesized for various applications. The majority of these polymerizations have been developed for radical processes, which limits the diversity of monomers that can be used in macromolecular design. More recent developments of photocontrolled cationic polymerizations have taken a step toward addressing this limitation and have expanded the palette of monomers that can be used in stimuli-regulated polymerizations, enabling the synthesis of previously inaccessible polymeric structures. This Account will detail our group's studies on cationic polymerization processes where chain growth is regulated by light and highlight how these methods can be combined with other stimuli-controlled polymerizations to precisely dictate macromolecular structure.Photoinitiated cationic polymerizations are well-studied and important processes that have control over initiation. However, we wanted to develop systems where we had spatiotemporal control over both polymer initiation and chain growth. This additional command over the reaction provides the ability to manipulate the growing polymer with an external stimulus during a polymerization, which can be used to control structure. To achieve this goal, we set out to develop a method to photoreversibly generate a cation at a growing chain end that could participate in a controlled polymerization process. We took inspiration from previous work on cationic degenerate chain transfer polymerizations of vinyl ethers that used thiocarbonylthio chain transfer agents. These polymerizations were initiated by a strong acid and gave well-defined poly(vinyl ether)s. We posited that we could remove the acid initiator in these systems and reversibly oxidize the thiocarbonylthio chain ends in these reactions with a photocatalyst to give a photocontrolled cationic polymerization of vinyl ethers. This Account will focus on our journey to discover cationic photocontrolled polymerizations. We will summarize our initial developments and detail our mechanistic understanding of these reactions using both organic and inorganic based photocatalysts, and we will outline more recent efforts to expand cationic degenerate chain transfer polymerizations to other thioacetal initiators. Finally, we will detail how these photocontrolled cationic polymerizations can be used to switch monomer selectivity in situ using light to control polymer structure. At the end of the Account, we will discuss our vision for future potential applications of these photocontrolled cationic polymerizations in the synthesis of novel block copolymers and next generation cross-linked networks.
Collapse
Affiliation(s)
- Renee J Sifri
- Cornell University, Ithaca, New York 14853, United States
| | - Yuting Ma
- Cornell University, Ithaca, New York 14853, United States
| | - Brett P Fors
- Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
23
|
Grishin ID. New Approaches to Atom Transfer Radical Polymerization and Their Realization in the Synthesis of Functional Polymers and Hybrid Macromolecular Structures. POLYMER SCIENCE SERIES C 2022. [DOI: 10.1134/s1811238222700035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Ghasemi S, Owrang M, Javaheri F, Farjadian F. Spermine Modified PNIPAAm Nano-Hydrogel Serving as Thermo-Responsive System for Delivery of Cisplatin. Macromol Res 2022. [DOI: 10.1007/s13233-022-0035-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
25
|
Dallerba E, Hartnell D, Hackett MJ, Massi M, Lowe AB. Well‐defined Tetrazole‐functional Copolymers as Macromolecular Ligands for Luminescent Ir(III) and Re(I) Metal Species: Synthesis, Photophysical Properties and Application in Bioimaging. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Elena Dallerba
- School of Molecular and Life Sciences Curtin University Bentley Perth WA 6102 Australia
| | - David Hartnell
- School of Molecular and Life Sciences Curtin University Bentley Perth WA 6102 Australia
- Curtin Health Innovation Research Institute (CHIRI) Curtin University Bentley Perth WA 6102 Australia
| | - Mark J. Hackett
- School of Molecular and Life Sciences Curtin University Bentley Perth WA 6102 Australia
- Curtin Health Innovation Research Institute (CHIRI) Curtin University Bentley Perth WA 6102 Australia
| | - Massimiliano Massi
- School of Molecular and Life Sciences Curtin University Bentley Perth WA 6102 Australia
| | - Andrew B. Lowe
- School of Molecular and Life Sciences Curtin University Bentley Perth WA 6102 Australia
| |
Collapse
|
26
|
Clothier GKK, Guimarães TR, Moad G, Zetterlund PB. Expanding the Scope of RAFT Multiblock Copolymer Synthesis Using the Nanoreactor Concept: The Critical Importance of Initiator Hydrophobicity. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Glenn K. K. Clothier
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Thiago R. Guimarães
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Graeme Moad
- CSIRO Manufacturing, Bag 10, Clayton South, VIC 3169, Australia
| | - Per B. Zetterlund
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
27
|
|
28
|
Knol WC, Gruendling T, Schoenmakers PJ, Pirok BW, Peters RA. Co-Polymer sequence determination over the molar mass distribution by size-exclusion chromatography combined with pyrolysis - gas chromatography. J Chromatogr A 2022; 1670:462973. [DOI: 10.1016/j.chroma.2022.462973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 11/24/2022]
|
29
|
Rohland P, Schröter E, Nolte O, Newkome GR, Hager MD, Schubert US. Redox-active polymers: The magic key towards energy storage – a polymer design guideline progress in polymer science. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2021.101474] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
30
|
Tilottama B, Manojkumar K, Haribabu PM, Vijayakrishna K. A short review on RAFT polymerization of less activated monomers. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2021.2024076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Baisakhi Tilottama
- School of Basic Sciences, Indian Institute of Technology, Bhubaneswar, Odisha, India
| | - Kasina Manojkumar
- Dolcera Information Technology Services Pvt Ltd, Hyderabad, Telangana, India
| | - P. M. Haribabu
- School of Basic Sciences, Indian Institute of Technology, Bhubaneswar, Odisha, India
| | - Kari Vijayakrishna
- School of Basic Sciences, Indian Institute of Technology, Bhubaneswar, Odisha, India
| |
Collapse
|
31
|
Ma N, Liu J, Liu B, Li L, Kong J, Zhang X. Coenzyme-catalyzed electroinitiated reversible addition fragmentation chain transfer polymerization for ultrasensitive electrochemical DNA detection. Talanta 2022; 236:122840. [PMID: 34635230 DOI: 10.1016/j.talanta.2021.122840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 12/19/2022]
Abstract
Ultrasensitive detection of biomarkers at an early stage is generally limited by external influence factors such as high reaction temperature, complex operations, and sophisticated instruments. Here, we circumvent these problems by using nicotinamide adenine dinucleotide (NAD+) to control electroinitiated reversible addition fragmentation chain transfer (electro-RAFT) polymerization for biosensing that enables the detection of a few molecules of target DNA. In this coenzyme-catalyzed electro-RAFT polymerization, numerous ferrocenylmethyl methacrylate (FCMMA) as monomer with electrochemistry signal were linked to the biomarker on Au electrode. Afterwards, a strong oxidation peak appears at the potential of about 0.3 V that represents a typical oxidation potential of FCMMA. The sensitivity of this methodology was presented by detecting DNA from 10-1 to 104 fM concentration and detection limit (LOD) being down to 4.39 aM in 10 μL samples. This is lower by factors than detection limits of most other ultra-sensitive electrochemical DNA assays.
Collapse
Affiliation(s)
- Nan Ma
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, PR China
| | - Jingliang Liu
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, PR China
| | - Bang Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, PR China
| | - Lianzhi Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, PR China
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, PR China.
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong, 518060, PR China
| |
Collapse
|
32
|
Ahmed SE, Fletcher NL, Prior AR, Huda P, Bell CA, Thurecht KJ. Development of targeted micelles and polymersomes prepared from degradable RAFT-based diblock copolymers and their potential role as nanocarriers for chemotherapeutics. Polym Chem 2022. [DOI: 10.1039/d2py00257d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Modern polymerisation techniques allow synthesis of functional block copolymers that can self-assemble into degradable nanoparticles (NPs) of different sizes and conformations.
Collapse
Affiliation(s)
- Salma E. Ahmed
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Nicholas L. Fletcher
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Amber R. Prior
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Pie Huda
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Craig A. Bell
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Kristofer J. Thurecht
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
33
|
Naguib M, Nixon K, Keddie D. Effect of Radical Copolymerization of the (Oxa)norbornene End-group of RAFT-prepared Macromonomers on Bottlebrush Copolymer Synthesis via ROMP. Polym Chem 2022. [DOI: 10.1039/d1py01599k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bottlebrush polymers are attractive for use in a variety of different applications. Here we report synthesis of two novel trithiocarbonate RAFT agents bearing either a oxanorbornyl or norbornenyl moiety for...
Collapse
|
34
|
Farmanbordar H, Amini-Fazl MS, Mohammadi R. Synthesis of core-shell structure based on silica nanoparticles and methacrylic acid via RAFT method: An efficient pH-sensitive hydrogel for prolonging doxorubicin release. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
35
|
Synthesis of block copolymers used in polymersome fabrication: Application in drug delivery. J Control Release 2021; 341:95-117. [PMID: 34774891 DOI: 10.1016/j.jconrel.2021.11.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 01/03/2023]
Abstract
Amphiphilic block copolymers are common materials used for the fabrication of various nanostructures with biomedical applications including nanocapsules, nanospheres, micelles and polymeric vesicles. According to the literature, polymersomes have several advantages compared to other nanostructures used as drug delivery systems comprising better stability, facile synthesis, prolonged circulation time, and passive/active targeting capability. Various types of nanoparticles are formed by varying the ratio of the hydrophobic/hydrophilic blocks. Changing hydrophobic/hydrophilic ratio of amphiphilic block copolymers has an impact on the structural characteristics of polymers such as changing molecular weight and surface functionalization of the block copolymer. Thus, polymerization strategies are an important factor that influences polymersomes quality. In this review, different polymerization strategies for the synthesis of block copolymers applied in polymersomes formation, are described.
Collapse
|
36
|
|
37
|
Experimental Design in Polymer Chemistry-A Guide towards True Optimization of a RAFT Polymerization Using Design of Experiments (DoE). Polymers (Basel) 2021; 13:polym13183147. [PMID: 34578048 PMCID: PMC8468855 DOI: 10.3390/polym13183147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/01/2021] [Accepted: 09/13/2021] [Indexed: 11/17/2022] Open
Abstract
Despite the great potential of design of experiments (DoE) for efficiency and plannability in academic research, it remains a method predominantly used in industrial processes. From our perspective though, DoE additionally provides greater information gain than conventional experimentation approaches, even for more complex systems such as chemical reactions. Hence, this work presents a comprehensive DoE investigation on thermally initiated reversible addition–fragmentation chain transfer (RAFT) polymerization of methacrylamide (MAAm). To facilitate the adaptation of DoE for virtually every other polymerization, this work provides a step-by-step application guide emphasizing the biggest challenges along the way. Optimization of the RAFT system was achieved via response surface methodology utilizing a face-centered central composite design (FC-CCD). Highly accurate prediction models for the responses of monomer conversion, theoretical and apparent number averaged molecular weights, and dispersity are presented. The obtained equations not only facilitate thorough understanding of the observed system but also allow selection of synthetic targets for each individual response by prediction of the respective optimal factor settings. This work successfully demonstrates the great capability of DoE in academic research and aims to encourage fellow scientists to incorporate the technique into their repertoire of experimental strategies.
Collapse
|
38
|
Izadi F, Arthur‐Baidoo E, Strover LT, Yu L, Coote ML, Moad G, Denifl S. Selective Bond Cleavage in RAFT Agents Promoted by Low-Energy Electron Attachment. Angew Chem Int Ed Engl 2021; 60:19128-19132. [PMID: 34214239 PMCID: PMC8456798 DOI: 10.1002/anie.202107480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Indexed: 11/08/2022]
Abstract
Radical polymerization with reversible addition-fragmentation chain transfer (RAFT polymerization) has been successfully applied to generate polymers of well-defined architecture. For RAFT polymerization a source of radicals is required. Recent work has demonstrated that for minimal side-reactions and high spatio-temporal control these should be formed directly from the RAFT agent or macroRAFT agent (usually carbonothiosulfanyl compounds) thermally, photochemically or by electrochemical reduction. In this work, we investigated low-energy electron attachment to a common RAFT agent (cyanomethyl benzodithioate), and, for comparison, a simple carbonothioylsulfanyl compound (dimethyl trithiocarbonate, DMTTC) in the gas phase by means of mass spectrometry as well as quantum chemical calculations. We observe for both compounds that specific cleavage of the C-S bond is induced upon low-energy electron attachment at electron energies close to zero eV. This applies even in the case of a poor homolytic leaving group (. CH3 in DMTTC). All other dissociation reactions found at higher electron energies are much less abundant. The present results show a high control of the chemical reactions induced by electron attachment.
Collapse
Affiliation(s)
- Farhad Izadi
- Institut für Ionenphysik und Angewandte PhysikLeopold-Franzens Universität InnsbruckTechnikerstrasse 25A-6020InnsbruckAustria
| | - Eugene Arthur‐Baidoo
- Institut für Ionenphysik und Angewandte PhysikLeopold-Franzens Universität InnsbruckTechnikerstrasse 25A-6020InnsbruckAustria
| | | | - Li‐Juan Yu
- Research School of ChemistryAustralian National UniversityCanberraACTAustralia
| | - Michelle L. Coote
- Research School of ChemistryAustralian National UniversityCanberraACTAustralia
| | | | - Stephan Denifl
- Institut für Ionenphysik und Angewandte PhysikLeopold-Franzens Universität InnsbruckTechnikerstrasse 25A-6020InnsbruckAustria
| |
Collapse
|
39
|
Izadi F, Arthur‐Baidoo E, Strover LT, Yu L, Coote ML, Moad G, Denifl S. Selektive Bindungsspaltung in RAFT Agenzien durch niederenergetische Elektronenanlagerung. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Farhad Izadi
- Institut für Ionenphysik und Angewandte Physik Leopold-Franzens Universität Innsbruck Technikerstrasse 25 A-6020 Innsbruck Österreich
| | - Eugene Arthur‐Baidoo
- Institut für Ionenphysik und Angewandte Physik Leopold-Franzens Universität Innsbruck Technikerstrasse 25 A-6020 Innsbruck Österreich
| | | | - Li‐Juan Yu
- Research School of Chemistry Australian National University Canberra ACT Australien
| | - Michelle L. Coote
- Research School of Chemistry Australian National University Canberra ACT Australien
| | - Graeme Moad
- CSIRO Manufacturing Clayton VIC 3168 Australien
| | - Stephan Denifl
- Institut für Ionenphysik und Angewandte Physik Leopold-Franzens Universität Innsbruck Technikerstrasse 25 A-6020 Innsbruck Österreich
| |
Collapse
|
40
|
Allozy HGA, Abd Karim KJ. Optimization of Synthesis of Poly (vinylbenzyl chloride) by RAFT Polymerisation. 2021 INTERNATIONAL CONGRESS OF ADVANCED TECHNOLOGY AND ENGINEERING (ICOTEN) 2021. [DOI: 10.1109/icoten52080.2021.9493472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
41
|
Soheilmoghaddam F, Rumble M, Cooper-White J. High-Throughput Routes to Biomaterials Discovery. Chem Rev 2021; 121:10792-10864. [PMID: 34213880 DOI: 10.1021/acs.chemrev.0c01026] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many existing clinical treatments are limited in their ability to completely restore decreased or lost tissue and organ function, an unenviable situation only further exacerbated by a globally aging population. As a result, the demand for new medical interventions has increased substantially over the past 20 years, with the burgeoning fields of gene therapy, tissue engineering, and regenerative medicine showing promise to offer solutions for full repair or replacement of damaged or aging tissues. Success in these fields, however, inherently relies on biomaterials that are engendered with the ability to provide the necessary biological cues mimicking native extracellular matrixes that support cell fate. Accelerating the development of such "directive" biomaterials requires a shift in current design practices toward those that enable rapid synthesis and characterization of polymeric materials and the coupling of these processes with techniques that enable similarly rapid quantification and optimization of the interactions between these new material systems and target cells and tissues. This manuscript reviews recent advances in combinatorial and high-throughput (HT) technologies applied to polymeric biomaterial synthesis, fabrication, and chemical, physical, and biological screening with targeted end-point applications in the fields of gene therapy, tissue engineering, and regenerative medicine. Limitations of, and future opportunities for, the further application of these research tools and methodologies are also discussed.
Collapse
Affiliation(s)
- Farhad Soheilmoghaddam
- Tissue Engineering and Microfluidics Laboratory (TEaM), Australian Institute for Bioengineering and Nanotechnology (AIBN), University Of Queensland, St. Lucia, Queensland, Australia 4072.,School of Chemical Engineering, University Of Queensland, St. Lucia, Queensland, Australia 4072
| | - Madeleine Rumble
- Tissue Engineering and Microfluidics Laboratory (TEaM), Australian Institute for Bioengineering and Nanotechnology (AIBN), University Of Queensland, St. Lucia, Queensland, Australia 4072.,School of Chemical Engineering, University Of Queensland, St. Lucia, Queensland, Australia 4072
| | - Justin Cooper-White
- Tissue Engineering and Microfluidics Laboratory (TEaM), Australian Institute for Bioengineering and Nanotechnology (AIBN), University Of Queensland, St. Lucia, Queensland, Australia 4072.,School of Chemical Engineering, University Of Queensland, St. Lucia, Queensland, Australia 4072
| |
Collapse
|
42
|
Li Q, Yuan S, Liu F, Zhu X, Liu J. Lanthanide-Doped Nanoparticles for Near-Infrared Light Activation of Photopolymerization: Fundamentals, Optimization and Applications. CHEM REC 2021; 21:1681-1696. [PMID: 34145731 DOI: 10.1002/tcr.202100093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/26/2021] [Indexed: 11/06/2022]
Abstract
Photopolymerization refers to a type of polymerization process in which light is utilized as excitation source to initiate polymerization of monomers and oligomers. Despite great progress, photopolymerization is typically induced by ultraviolet or visible light, which still greatly restrains its applications. Upconversion nanoparticles (UCNPs) represent a class of optical nanomaterials that are able to convert low-energy near-infrared (NIR) light into high-energy ultraviolet (or visible light) emissions. In this context, UCNP-assisted photopolymerization has recently attracted extensive attentions due to its unique advantages. In this account, recent advances in the fundamentals, optimization and emerging applications of UCNP-based photopolymerization are reviewed. Fundamental theories of upconversion luminescence and photopolymerization will be introduced first. Various optimization approaches to improve UCNP-assisted photopolymerization are then summarized, followed by diverse emerging applications. Challenges and future perspectives in this area will be provided as a conclusion.
Collapse
Affiliation(s)
- Qin Li
- School of Environmental and Chemical Engineering, Shanghai University, 200444, Shanghai, China
| | - Shanshan Yuan
- School of Environmental and Chemical Engineering, Shanghai University, 200444, Shanghai, China
| | - Fangfang Liu
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, 262700, Weifang, China
| | - Xiaohui Zhu
- School of Environmental and Chemical Engineering, Shanghai University, 200444, Shanghai, China
| | - Jinliang Liu
- School of Environmental and Chemical Engineering, Shanghai University, 200444, Shanghai, China
| |
Collapse
|
43
|
Giacoletto N, Dumur F. Recent Advances in bis-Chalcone-Based Photoinitiators of Polymerization: From Mechanistic Investigations to Applications. Molecules 2021; 26:3192. [PMID: 34073491 PMCID: PMC8199041 DOI: 10.3390/molecules26113192] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 02/01/2023] Open
Abstract
Over the past several decades, photopolymerization has become an active research field, and the ongoing efforts to develop new photoinitiating systems are supported by the different applications in which this polymerization technique is involved-including dentistry, 3D and 4D printing, adhesives, and laser writing. In the search for new structures, bis-chalcones that combine two chalcones' moieties within a unique structure were determined as being promising photosensitizers to initiate both the free-radical polymerization of acrylates and the cationic polymerization of epoxides. In this review, an overview of the different bis-chalcones reported to date is provided. Parallel to the mechanistic investigations aiming at elucidating the polymerization mechanisms, bis-chalcones-based photoinitiating systems were used for different applications, which are detailed in this review.
Collapse
Affiliation(s)
| | - Frédéric Dumur
- Aix Marseille Univ, CNRS, ICR UMR 7273, F-13397 Marseille, France
| |
Collapse
|
44
|
Allegrezza ML, Konkolewicz D. PET-RAFT Polymerization: Mechanistic Perspectives for Future Materials. ACS Macro Lett 2021; 10:433-446. [PMID: 35549229 DOI: 10.1021/acsmacrolett.1c00046] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the past decade, photochemistry has emerged as a growing area in organic and polymer chemistry. Use of light to drive polymerization has advantages by imparting spatial and temporal control over the reaction. Photoinduced electron/energy transfer reversible addition-fragmentation chain transfer polymerization (PET-RAFT) has emerged as an excellent technique for developing well-defined polymers from a variety of functional monomers. However, the mechanism, of electron versus energy transfer is debated in the literature, with conflicting reports on the underlying process. This perspective focuses on the mechanistic aspects of PET-RAFT, in particular, the electron versus energy transfer pathways. The different mechanisms are evaluated, including evidence for one versus the other mechanisms. The current literature has not reached a consensus across all PET-RAFT processes, but rather, each catalytic system has unique characteristics.
Collapse
Affiliation(s)
- Michael L. Allegrezza
- Department of Chemistry and Biochemmistry, Miami University, 651 East High Street, Oxford, Ohio 45056, United States
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemmistry, Miami University, 651 East High Street, Oxford, Ohio 45056, United States
| |
Collapse
|
45
|
Sambiagio C, Ferrari M, van Beurden K, Ca’ ND, van Schijndel J, Noël T. Continuous-Flow Synthesis of Pyrylium Tetrafluoroborates: Application to Synthesis of Katritzky Salts and Photoinduced Cationic RAFT Polymerization. Org Lett 2021; 23:2042-2047. [PMID: 33650879 PMCID: PMC8041383 DOI: 10.1021/acs.orglett.1c00178] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Indexed: 11/29/2022]
Abstract
Katritzky salts have emerged as effective alkyl radical sources upon metal- or photocatalysis. These are typically prepared from the corresponding triarylpyrylium ions, in turn an important class of photocatalysts for small molecules synthesis and photopolymerization. Here, a flow method for the rapid synthesis of both pyrylium and Katrizky salts in a telescoped fashion is reported. Moreover, several pyrylium salts were tested in the photoinduced RAFT polymerization of vinyl ethers under flow and batch conditions.
Collapse
Affiliation(s)
- Carlo Sambiagio
- Department
of Chemical Engineering and Chemistry, Micro Flow Chemistry and Synthetic
Methodology, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Matteo Ferrari
- Department
of Chemical Engineering and Chemistry, Micro Flow Chemistry and Synthetic
Methodology, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
- Department
of Chemistry, Life Sciences and Environmental Sustainability (SCVSA), University of Parma, Parco Area delle Scienze 17A, 43124 Parma, Italy
| | - Koen van Beurden
- Research
Group Biopolymers/Green Chemistry, Avans
University of Applied Science, 4818 CR Breda, The Netherlands
| | - Nicola della Ca’
- Department
of Chemistry, Life Sciences and Environmental Sustainability (SCVSA), University of Parma, Parco Area delle Scienze 17A, 43124 Parma, Italy
| | - Jack van Schijndel
- Research
Group Biopolymers/Green Chemistry, Avans
University of Applied Science, 4818 CR Breda, The Netherlands
| | - Timothy Noël
- Department
of Chemical Engineering and Chemistry, Micro Flow Chemistry and Synthetic
Methodology, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| |
Collapse
|
46
|
Rosenbloom SI, Sifri RJ, Fors BP. Achieving molecular weight distribution shape control and broad dispersities using RAFT polymerizations. Polym Chem 2021. [DOI: 10.1039/d1py00399b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metered additions of chain transfer agents are used to control molecular weight distribution (MWD) features in reversible addition-fragmentation chain-transfer polymerizations, giving polymers with tailored MWD shapes and dispersities as high as 6.2.
Collapse
Affiliation(s)
- Stephanie I. Rosenbloom
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853, USA
| | - Renee J. Sifri
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853, USA
| | - Brett P. Fors
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853, USA
| |
Collapse
|
47
|
Zhao J, Diaz-Dussan D, Wu M, Peng YY, Wang J, Zeng H, Duan W, Kong L, Hao X, Narain R. Dual-Cross-Linked Network Hydrogels with Multiresponsive, Self-Healing, and Shear Strengthening Properties. Biomacromolecules 2020; 22:800-810. [PMID: 33320540 DOI: 10.1021/acs.biomac.0c01548] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Dual-cross-linked network (DCN) hydrogels with multiresponsive and self-healing properties are attracting intensive interests due to their enhanced mechanical strength for a wide range of applications. Herein, we developed a DCN hydrogel that combines a dynamic imine and a benzoxaboronic ester with a neutral pKa value (∼7.2) as dual linkages and contains biocompatible zwitterionic poly(2-methacryloyloxyethyl phosphorylcholine) [poly(MPC)] as the backbone. Oscillatory rheology result indicated shear strengthening mechanical properties compared to the single-cross-linked network (SCN) hydrogels, which use either imine bond or benzoxaboronic ester as the linkage alone. Due to the coexistence of stimuli-responsive imine and benzoxaboronic ester, the DCN hydrogels show sensitive multiple responsiveness to pH, sugar, and hydrogen peroxide. The dynamic nature of the dual linkages endows the DCN hydrogels with excellent self-healing ability after fracture. More importantly, the excellent biocompatibility and performance in three-dimensional (3D) cell encapsulation were established by a cytotoxicity Live/Dead assay, indicating DCN hydrogel's great potential as a cell culture scaffold. The biocompatible poly(MPC)-based backbone and the rapid formation of the cross-linking network make the DCN hydrogels promising candidates for future biomedical applications.
Collapse
Affiliation(s)
- Jianyang Zhao
- Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC 3216, Australia.,Manufacturing, CSIRO, Research Way, Clayton, VIC 3168, Australia
| | - Diana Diaz-Dussan
- Department of Chemical and Materials Engineering, University of Alberta, 116 Street and 85th Avenue, Edmonton, Alberta T6G 2G6, Canada
| | - Meng Wu
- Department of Chemical and Materials Engineering, University of Alberta, 116 Street and 85th Avenue, Edmonton, Alberta T6G 2G6, Canada
| | - Yi-Yang Peng
- Department of Chemical and Materials Engineering, University of Alberta, 116 Street and 85th Avenue, Edmonton, Alberta T6G 2G6, Canada
| | - Jinquan Wang
- Manufacturing, CSIRO, Research Way, Clayton, VIC 3168, Australia.,School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, 116 Street and 85th Avenue, Edmonton, Alberta T6G 2G6, Canada
| | - Wei Duan
- School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Lingxue Kong
- Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Xiaojuan Hao
- Manufacturing, CSIRO, Research Way, Clayton, VIC 3168, Australia
| | - Ravin Narain
- Department of Chemical and Materials Engineering, University of Alberta, 116 Street and 85th Avenue, Edmonton, Alberta T6G 2G6, Canada
| |
Collapse
|
48
|
Tajau R, Rohani R, Abdul Hamid SS, Adam Z, Mohd Janib SN, Salleh MZ. Surface functionalisation of poly-APO-b-polyol ester cross-linked copolymers as core-shell nanoparticles for targeted breast cancer therapy. Sci Rep 2020; 10:21704. [PMID: 33303818 PMCID: PMC7729971 DOI: 10.1038/s41598-020-78601-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/24/2020] [Indexed: 12/17/2022] Open
Abstract
Polymeric nanoparticles (NPs) are commonly used as nanocarriers for drug delivery, whereby their sizes can be altered for a more efficient delivery of therapeutic active agents with better efficacy. In this work, cross-linked copolymers acted as core-shell NPs from acrylated palm olein (APO) with polyol ester were synthesized via gamma radiation-induced reversible addition-fragmentation chain transfer (RAFT) polymerisation. The particle diameter of the copolymerised poly(APO-b-polyol ester) core-shell NPs was found to be less than 300 nm, have a low molecular weight (MW) of around 24 kDa, and showed a controlled MW distribution of a narrow polydispersity index (PDI) of 1.01. These properties were particularly crucial for further use in designing targeted NPs, with inclusion of peptide for the targeted delivery of paclitaxel. Moreover, the characterisation of the synthesised NPs using Fourier Transform-Infrared (FTIR) and Neutron Magnetic Resonance (NMR) analyses confirmed the possession of biodegradable hydrolysed ester in its chemical structures. Therefore, it can be concluded that the synthesised NPs produced may potentially contribute to better development of a nano-structured drug delivery system for breast cancer therapy.
Collapse
Affiliation(s)
- Rida Tajau
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
- Division of Radiation Processing Technology, Malaysia Nuclear Agency, Bangi, 43000, Kajang, Selangor, Malaysia
| | - Rosiah Rohani
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.
| | - Siti Selina Abdul Hamid
- Division of Medical Technology, Malaysia Nuclear Agency, Bangi, 43000, Kajang, Selangor, Malaysia
| | - Zainah Adam
- Division of Medical Technology, Malaysia Nuclear Agency, Bangi, 43000, Kajang, Selangor, Malaysia
| | - Siti Najila Mohd Janib
- Division of Medical Technology, Malaysia Nuclear Agency, Bangi, 43000, Kajang, Selangor, Malaysia
| | - Mek Zah Salleh
- Division of Radiation Processing Technology, Malaysia Nuclear Agency, Bangi, 43000, Kajang, Selangor, Malaysia
| |
Collapse
|
49
|
Semsarilar M, Abetz V. Polymerizations by RAFT: Developments of the Technique and Its Application in the Synthesis of Tailored (Co)polymers. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000311] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mona Semsarilar
- Institut Européen des Membranes IEM (UMR5635) Université Montpellier CNRS ENSCM CC 047, Université Montpellie 2 place E. Bataillon Montpellier 34095 France
| | - Volker Abetz
- Institut für Physikalische Chemie Grindelallee 117 Universität Hamburg Hamburg 20146 Germany
- Zentrum für Material‐und Küstenforschung GmbH Institut für Polymerforschung Max‐Planck‐Straße 1 Helmholtz‐Zentrum Geesthacht Geesthacht 21502 Germany
| |
Collapse
|
50
|
Strover LT, Postma A, Horne MD, Moad G. Anthraquinone-Mediated Reduction of a Trithiocarbonate Chain-Transfer Agent to Initiate Electrochemical Reversible Addition–Fragmentation Chain Transfer Polymerization. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02392] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Almar Postma
- CSIRO Manufacturing, Clayton, Victoria 3168, Australia
| | | | - Graeme Moad
- CSIRO Manufacturing, Clayton, Victoria 3168, Australia
| |
Collapse
|