1
|
Thamaraiselvan C, McKean T, Khalili M, Do S, Hackett C, Liyanage R, Qian X, Wickramasinghe R. Synergistic effect of electrocoagulation and antifouling nanofiltration membranes for microcystin removal. CHEMOSPHERE 2025; 376:144298. [PMID: 40068325 DOI: 10.1016/j.chemosphere.2025.144298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/01/2025] [Accepted: 03/04/2025] [Indexed: 03/23/2025]
Abstract
This study aims to develop fouling-resistant membranes utilizing zwitterionic polymers for an integrated electrocoagulation (EC) and nanofiltration (NF) process to effectively remove microcystin-LR (MC-LR). The fabricated membranes were thoroughly characterized through contact angle measurements, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The efficacy of these modified membranes was investigated for synthetic microcystin removal, employing both commercial NF 270 membranes and modified NF 270 with zwitterionic polymers. Furthermore, real lake water containing microcystin was subjected to crossflow filtration using both commercial and modified NF membranes. The results indicated that the zwitterionic polymer-modified membranes demonstrated significantly better fouling resistance, with flux decline reduced from 37% to 15.5%, and improved microcystin-LR removal from 95% to 99.5% compared to unmodified membranes. To further enhance performance and meet drinking water standards, an EC step was implemented as a pretreatment for microcystin removal. The integrated EC-NF system exhibited superior performance, achieving complete MC-LR removal (below detection limit) and a 27% improvement in flux compared to the individual processes of either EC or NF. This enhancement in performance suggests the potential of this innovative integrated membrane system for applications in water treatment processes, particularly in addressing challenges related to fouling and contaminant removal. The comprehensive analysis and promising outcomes presented in this study contribute valuable insights to the advancement of membrane technology for sustainable water purification.
Collapse
Affiliation(s)
- Chidambaram Thamaraiselvan
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR, 72701, United States; Interdisciplinary Centre for Energy Research, Indian Institute of Science, Bengaluru, 560012, India.
| | - Thomas McKean
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR, 72701, United States
| | - Mahsa Khalili
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, 72701, United States
| | - Sarah Do
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR, 72701, United States
| | - Cannon Hackett
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, 72701, United States
| | - Rohana Liyanage
- Department of Biochemistry, UAF Mass Spec, University of Arkansas, Fayetteville, AR, United States
| | - Xianghong Qian
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, 72701, United States
| | - Ranil Wickramasinghe
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR, 72701, United States.
| |
Collapse
|
2
|
Bai X, Lu Y, Wang M, Yu X, Huang Z. Enhanced properties of a positive-charged nanofiltration membrane containing quaternarized chitosan through second interfacial polymerization for the removal of salts and pharmaceuticals. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:2020-2034. [PMID: 38678406 DOI: 10.2166/wst.2024.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/20/2024] [Indexed: 04/30/2024]
Abstract
Nanofiltration (NF) membrane technology has been widely used in the removal of salts and trace organic pollutants, such as pharmaceuticals and personal care products (PPCPs), due to its superiority. A positive-charged composite NF membrane with an active skin layer was prepared by polyethyleneimine (PEI), trimethyl benzene chloride, and quaternate chitosan (HTCC) through second interfacial polymerization on the polyethersulfone ultrafiltration membrane. The physicochemical properties of the nanocomposite membrane were investigated using surface morphology, hydrophilicity, surface charge, and molecular weight cut-off (MWCO). The influence of the concentration and reaction time of PEI and HTCC was documented. The optimized membrane had a MWCO of about 481 Da and possessed a pure water permeability of 25.37 L·m-2·h-1·MPa-1. The results also exhibited salt rejection ability as MgCl2 > CaCl2 > MgSO4 > Na2SO4 > NaCl > KCl, showing a positive charge on the fabricated membrane. In addition, the membrane had higher rejection to atenolol, carbamazepine, amlodipine, and ibuprofen at 89.46, 86.02, 90.12, and 77.21%, respectively. Moreover, the anti-fouling performance and stability of the NF membrane were also improved.
Collapse
Affiliation(s)
- Xinhui Bai
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; X.B. and Y.L. contributed equally to this manuscript
| | - Yuting Lu
- School of Sino-French Engineer, Nanjing University of Science and Technology, Nanjing 210094, China; X.B. and Y.L. contributed equally to this manuscript
| | - Mudan Wang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xinyang Yu
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhonghua Huang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China E-mail:
| |
Collapse
|
3
|
Liu L, Wu W, Jin X, Luo X, Wu L. Interfacial Polymerization on Polyethersulfone Ultrafiltration Membrane to Prepare Nanofiltration Layers for Dye Separation. Polymers (Basel) 2023; 15:polym15092018. [PMID: 37177166 PMCID: PMC10181385 DOI: 10.3390/polym15092018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Nanofiltration membranes are of great significance to the treatment of dye wastewater. Interfacial polymerization is a widely used method to fabricate nanofiltration membranes. In this study, the interaction of tannic acid-assisted polyethylene polyamine (PEPA) with terephthalaldehyde (TPAL) was performed on PES ultrafiltration membranes using novel nitrogen-rich amine monomers and relatively less reactive aldehyde-based monomers. A new nanofiltration membrane ((T-P-T)/PES) was prepared by interfacial polymerization. Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy were used to analyze the elemental composition, bonding state, and surface morphology of the membrane surface. The effects of the PEPA deposition time, TPAL concentration, interfacial reaction time, and curing time on the nanofiltration layer were investigated. The modified membrane, prepared under optimal conditions, showed strong dye separation ability. The permeation of the modified membrane could reach 68.68 L·m-2·h-1·bar-1, and the rejection of various dyes was above 99%. In addition, the (T-P-T)/PES membrane showed good stability during long-term dye separation.
Collapse
Affiliation(s)
- Lulu Liu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Weilin Wu
- School of Pharmaceutical Sciences, Hunan University of Medicine, No.492 South Jinxi Road, Huaihua 418000, China
| | - Xiaogang Jin
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Xiong Luo
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Lili Wu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
4
|
Zhu B, Jia E, Zhang Q, Zhang Y, Zhou H, Tan Y, Deng Z. Titanium Surface-Grafted Zwitterionic Polymers with an Anti-Polyelectrolyte Effect Enhances Osteogenesis. Colloids Surf B Biointerfaces 2023; 226:113293. [PMID: 37028232 DOI: 10.1016/j.colsurfb.2023.113293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 04/05/2023]
Abstract
Zwitterionic polymers have attracted considerable attention because of their anti-adsorption and unique anti-polyelectrolyte effects and was widely used in surface modification. In this study, zwitterionic copolymers (poly (sulfobetaine methacrylate-co-butyl acrylate) (pSB) coating on the surface of a hydroxylated titanium sheet using surface-initiated atom transfer radical polymerization (SI-ATRP) was successfully constructed. X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR) and Water contact angle (WCA) analysis proved the successful preparation of the coating. The swelling effect caused by the anti-polyelectrolyte effect was reflected in the simulation experiment in vitro, and this coating can promote the proliferation and osteogenesis of MC3T3-E1. Therefore, this study provides a new strategy for designing multifunctional biomaterials for implant surface modifications.
Collapse
Affiliation(s)
- Bingbing Zhu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, PR China
| | - Erna Jia
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, PR China.
| | - Qimeng Zhang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, PR China
| | - Yanyan Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, PR China
| | - Hua Zhou
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, PR China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, PR China
| | - Ying Tan
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, PR China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, PR China.
| | - Zhennan Deng
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, PR China.
| |
Collapse
|
5
|
Chiao YH, Lin HT, Ang MBMY, Teow YH, Wickramasinghe SR, Chang Y. Surface Zwitterionization via Grafting of Epoxylated Sulfobetaine Copolymers onto PVDF Membranes for Improved Permeability and Biofouling Mitigation. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Yu-Hsuan Chiao
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan University, Chung Li32023, Taiwan
- Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas72701, United States
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Rokkodaicho 1-1, Nada, Kobe657-8501, Japan
| | - Hao-Tung Lin
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan University, Chung Li32023, Taiwan
| | - Micah Belle Marie Yap Ang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan University, Chung Li32023, Taiwan
| | - Yeit Hann Teow
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, 43600Selangor Darul Ehsan, Malaysia
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, 43600Selangor Darul Ehsan, Malaysia
| | - S. Ranil Wickramasinghe
- Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas72701, United States
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, 43600Selangor Darul Ehsan, Malaysia
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, 43600Selangor Darul Ehsan, Malaysia
| | - Yung Chang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan University, Chung Li32023, Taiwan
| |
Collapse
|
6
|
Shao S, Zeng F, Long L, Zhu X, Peng LE, Wang F, Yang Z, Tang CY. Nanofiltration Membranes with Crumpled Polyamide Films: A Critical Review on Mechanisms, Performances, and Environmental Applications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12811-12827. [PMID: 36048162 DOI: 10.1021/acs.est.2c04736] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanofiltration (NF) membranes have been widely applied in many important environmental applications, including water softening, surface/groundwater purification, wastewater treatment, and water reuse. In recent years, a new class of piperazine (PIP)-based NF membranes featuring a crumpled polyamide layer has received considerable attention because of their great potential for achieving dramatic improvements in membrane separation performance. Since the report of novel crumpled Turing structures that exhibited an order of magnitude enhancement in water permeance ( Science 2018, 360 (6388), 518-521), the number of published research papers on this emerging topic has grown exponentially to approximately 200. In this critical review, we provide a systematic framework to classify the crumpled NF morphologies. The fundamental mechanisms and fabrication methods involved in the formation of these crumpled morphologies are summarized. We then discuss the transport of water and solutes in crumpled NF membranes and how these transport phenomena could simultaneously improve membrane water permeance, selectivity, and antifouling performance. The environmental applications of these emerging NF membranes are highlighted, and future research opportunities/needs are identified. The fundamental insights in this review provide critical guidance on the further development of high-performance NF membranes tailored for a wide range of environmental applications.
Collapse
Affiliation(s)
- Senlin Shao
- School of Civil Engineering, Wuhan University, Wuhan 430072, PR China
| | - Fanxi Zeng
- School of Civil Engineering, Wuhan University, Wuhan 430072, PR China
| | - Li Long
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Xuewu Zhu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Lu Elfa Peng
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Fei Wang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| |
Collapse
|
7
|
Mkpuma VO, Moheimani NR, Fischer K, Schulze A, Ennaceri H. Membrane surface zwitterionization for an efficient microalgal harvesting: A review. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Permeation Increases Biofilm Development in Nanofiltration Membranes Operated with Varying Feed Water Phosphorous Concentrations. MEMBRANES 2022; 12:membranes12030335. [PMID: 35323810 PMCID: PMC8950030 DOI: 10.3390/membranes12030335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 02/01/2023]
Abstract
Nutrient limitation has been proposed as a biofouling control strategy for membrane systems. However, the impact of permeation on biofilm development under phosphorus-limited and enriched conditions is poorly understood. This study analyzed biofilm development in membrane fouling simulators (MFSs) with and without permeation supplied with water varying dosed phosphorus concentrations (0 and 25 μg P·L−1). The MFSs operated under permeation conditions were run at a constant flux of 15.6 L·m2·h−1 for 4.7 days. Feed channel pressure drop, transmembrane pressure, and flux were used as performance indicators. Optical coherence tomography (OCT) images and biomass quantification were used to analyze the developed biofilms. The total phosphorus concentration that accumulated on the membrane and spacer was quantified by using microwave digestion and inductively coupled plasma atomic emission spectroscopy (ICP-OES). Results show that permeation impacts biofilm development depending on nutrient condition with a stronger impact at low P concentration (pressure drop increase: 282%; flux decline: 11%) compared to a higher P condition (pressure drop increase: 206%; flux decline: 2%). The biofilm that developed at 0 μg P·L−1 under permeation conditions resulted in a higher performance decline due to biofilm localization and spread in the MFS. A thicker biofilm developed on the membrane for biofilms grown at 0 μg P·L−1 under permeation conditions, causing a stronger effect on flux decline (11%) compared to non-permeation conditions (5%). The difference in the biofilm thickness on the membrane was attributed to a higher phosphorus concentration in the membrane biofilm under permeation conditions. Permeation has an impact on biofilm development and, therefore, should not be excluded in biofouling studies.
Collapse
|
9
|
Zhao L, Zhang M, Liu G, Zhao A, Gong X, Shi S, Zheng X, Gao J, Jiang Y. Tuning the Microstructure of a Zwitterion-Functionalized Polyethylenimine Loose NF Membrane for Dye Desalination. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lingfeng Zhao
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Min Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Guanhua Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300130, China
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Anan Zhao
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Xuesong Gong
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Shuo Shi
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Xiaobing Zheng
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Jing Gao
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Yanjun Jiang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|
10
|
Zwitterionic monolayer grafted ceramic membrane with an antifouling performance for the efficient oil-water separation. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.03.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Ang MBMY, Marquez JAD, Huang SH, Lee KR. A recent review of developmental trends in fabricating pervaporation membranes through interfacial polymerization and future prospects. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.03.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Application of Zwitterions in Forward Osmosis: A Short Review. Polymers (Basel) 2021; 13:polym13040583. [PMID: 33672026 PMCID: PMC7919480 DOI: 10.3390/polym13040583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 11/30/2022] Open
Abstract
Forward osmosis (FO) is an important desalination method to produce potable water. It was also used to treat different wastewater streams, including industrial as well as municipal wastewater. Though FO is environmentally benign, energy intensive, and highly efficient; it still suffers from four types of fouling namely: organic fouling, inorganic scaling, biofouling and colloidal fouling or a combination of these types of fouling. Membrane fouling may require simple shear force and physical cleaning for sufficient recovery of membrane performance. Severe fouling may need chemical cleaning, especially when a slimy biofilm or severe microbial colony is formed. Modification of FO membrane through introducing zwitterionic moieties on the membrane surface has been proven to enhance antifouling property. In addition, it could also significantly improve the separation efficiency and longevity of the membrane. Zwitterion moieties can also incorporate in draw solution as electrolytes in FO process. It could be in a form of a monomer or a polymer. Hence, this review comprehensively discussed several methods of inclusion of zwitterionic moieties in FO membrane. These methods include atom transfer radical polymerization (ATRP); second interfacial polymerization (SIP); coating and in situ formation. Furthermore, an attempt was made to understand the mechanism of improvement in FO performance by zwitterionic moieties. Finally, the future prospective of the application of zwitterions in FO has been discussed.
Collapse
|
13
|
Xing J, Zhang G, Jia X, Liu D, Wyman I. Preparation of Multipurpose Polyvinylidene Fluoride Membranes via a Spray-Coating Strategy Using Waterborne Polymers. ACS APPLIED MATERIALS & INTERFACES 2021; 13:4485-4498. [PMID: 33443998 DOI: 10.1021/acsami.0c18788] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As reported herein, the waterborne polymers poly(glycidyl methacrylate-co-poly(ethylene glycol) methyl ether methacrylate) P(GMA-co-mPEGMA) and polyethyleneimine (PEI) were used to prepare multipurpose polyvinylidene fluoride (PVDF) membranes via a direct spray-coating method. P(GMA-co-mPEGMA) and PEI were alternately sprayed onto the PVDF membrane to yield stable cross-linked copolymer coatings. The successful coating of polymers onto the membrane surface was verified by scanning electron microscopy, attenuated total reflectance-Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy characterization. The coated membrane exhibited oil rejection rates that exceeded 99.0% for oil water mixture separation and 98.0% for oil/water emulsion separation. The flux recovery ratio reached 96.7% after bovine serum albumin filtration and washing with water. The removal efficiencies of the coated membrane M3 for Congo red, methyl orange, methylene blue, and crystal violet, Pb(II), Cu(II), and Cd(II) were 82.4, 83.9, 6.3, 26.8, 90.6, 91.3, and 86.2%, respectively. Thus, it can be used for the removal of dyes and heavy metal ions from wastewater. The antibacterial activities of the coated membranes were also confirmed by the inhibition zone tests and confocal laser scanning microscopy analysis. In addition, the cross-linking strategy provides the coated membranes with excellent durability and repeatability. More importantly, the use of water as the solvent can ensure that the application of these membrane coatings proceeds via a very safe and environmentally friendly coating process.
Collapse
Affiliation(s)
- Jiale Xing
- Jiangsu Province Engineering Research Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, P.R. China
| | - Ganwei Zhang
- Jiangsu Province Engineering Research Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, P.R. China
| | - Xinying Jia
- Jiangsu Province Engineering Research Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, P.R. China
| | - Dapeng Liu
- Jiangsu Province Engineering Research Center for Separation and Purification Materials & Technologies, Suzhou Key Laboratory of Separation and Purification Materials & Technologies, School of Environmental Science & Engineering, Suzhou University of Science and Technology, Suzhou 215009, P.R. China
| | - Ian Wyman
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston K7L 3N6, Canada
| |
Collapse
|
14
|
Chiao YH, Yap Ang MBM, Huang YX, DePaz SS, Chang Y, Almodovar J, Wickramasinghe SR. A "Graft to" Electrospun Zwitterionic Bilayer Membrane for the Separation of Hydraulic Fracturing-Produced Water via Membrane Distillation. MEMBRANES 2020; 10:membranes10120402. [PMID: 33297452 PMCID: PMC7762383 DOI: 10.3390/membranes10120402] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 11/28/2020] [Accepted: 11/30/2020] [Indexed: 12/17/2022]
Abstract
Simultaneous fouling and pore wetting of the membrane during membrane distillation (MD) is a major concern. In this work, an electrospun bilayer membrane for enhancing fouling and wetting resistance has been developed for treating hydraulic fracture-produced water (PW) by MD. These PWs can contain over 200,000 ppm total dissolved solids, organic compounds and surfactants. The membrane consists of an omniphobic surface that faces the permeate stream and a hydrophilic surface that faces the feed stream. The omniphobic surface was decorated by growing nanoparticles, followed by silanization to lower the surface energy. An epoxied zwitterionic polymer was grafted onto the membrane surface that faces the feed stream to form a tight antifouling hydration layer. The membrane was challenged with an aqueous NaCl solution containing sodium dodecyl sulfate (SDS), an ampholyte and crude oil. In the presence of SDS and crude oil, the membrane was stable and displayed salt rejection (>99.9%). Further, the decrease was much less than the base polyvinylidene difluoride (PVDF) electrospun membrane. The membranes were also challenged with actual PW. Our results highlight the importance of tuning the properties of the membrane surface that faces the feed and permeate streams in order to maximize membrane stability, flux and salt rejection.
Collapse
Affiliation(s)
- Yu-Hsuan Chiao
- Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (Y.-H.C.); (S.S.D.)
- R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan City 320, Taiwan; (M.B.M.Y.A.); (Y.C.)
| | - Micah Belle Marie Yap Ang
- R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan City 320, Taiwan; (M.B.M.Y.A.); (Y.C.)
| | - Yu-Xi Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China;
| | - Sandrina Svetlana DePaz
- Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (Y.-H.C.); (S.S.D.)
| | - Yung Chang
- R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan City 320, Taiwan; (M.B.M.Y.A.); (Y.C.)
| | - Jorge Almodovar
- Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (Y.-H.C.); (S.S.D.)
- Correspondence: (J.A.); (S.R.W.)
| | - S. Ranil Wickramasinghe
- Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (Y.-H.C.); (S.S.D.)
- Correspondence: (J.A.); (S.R.W.)
| |
Collapse
|
15
|
Malucelli G. “Polymer Analysis” Section, in Journal Polymers. Polymers (Basel) 2020; 12:polym12112748. [PMID: 33233649 PMCID: PMC7699807 DOI: 10.3390/polym12112748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 11/16/2022] Open
Affiliation(s)
- Giulio Malucelli
- Department of Applied Science and Technology, and Local INSTM Unit, Viale Teresa Michel 5, 15121 Alessandria, Italy
| |
Collapse
|
16
|
Cao Y, Chen X, Feng S, Wan Y, Luo J. Nanofiltration for Decolorization: Membrane Fabrication, Applications and Challenges. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04277] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yang Cao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xiangrong Chen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100190, PR China
| | - Shichao Feng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yinhua Wan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100190, PR China
| | - Jianquan Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100190, PR China
| |
Collapse
|
17
|
Shao W, Liu C, Yu T, Xiong Y, Hong Z, Xie Q. Constructing Positively Charged Thin-Film Nanocomposite Nanofiltration Membranes with Enhanced Performance. Polymers (Basel) 2020; 12:E2526. [PMID: 33137988 PMCID: PMC7692056 DOI: 10.3390/polym12112526] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 11/17/2022] Open
Abstract
Using polyethylenimine (PEI) as the aqueous reactive monomers, a positively charged thin-film nanocomposite (TFN) nanofiltration (NF) membrane with enhanced performance was developed by successfully incorporating graphene oxide (GO) into the active layer. The effects of GO concentrations on the surface roughness, water contact angle, water flux, salt rejection, heavy metal removals, antifouling property, and chlorine resistance of the TFN membranes were evaluated in depth. The addition of 20 ppm GO facilitated the formation of thin, smooth, and hydrophilic nanocomposite active layers. Thus, the TFN-PEI-GO-20 membrane showed the optimal water flux of 70.3 L·m-2·h-1 without a loss of salt rejection, which was 36.8% higher than the thin-film composite (TFC) blank membrane. More importantly, owing to the positively charged surfaces, both the TFC-PEI-blank and TFN-PEI-GO membranes exhibited excellent rejections toward various heavy metal ions including Zn2+, Cd2+, Cu2+, Ni2+, and Pb2+. Additionally, compared with the negatively charged polypiperazine amide NF membrane, both the TFC-PEI-blank and TFN-PEI-GO-20 membranes demonstrated superior antifouling performance toward the cationic surfactants and basic protein due to their hydrophilic, smooth, and positively charged surface. Moreover, the TFN-PEI-GO membranes presented the improved chlorine resistances with the increasing GO concentration.
Collapse
Affiliation(s)
- Wenyao Shao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (W.S.); (C.L.)
| | - Chenran Liu
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (C.L.); (T.Y.); (Z.H.)
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (W.S.); (C.L.)
| | - Tong Yu
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (C.L.); (T.Y.); (Z.H.)
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361005, China; (T.Y.); (Z.H.)
| | - Ying Xiong
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Zhuan Hong
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (C.L.); (T.Y.); (Z.H.)
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361005, China; (T.Y.); (Z.H.)
| | - Quanling Xie
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (C.L.); (T.Y.); (Z.H.)
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361005, China; (T.Y.); (Z.H.)
| |
Collapse
|
18
|
High-Performance Polyacrylic Acid-Grafted PVDF Nanofiltration Membrane with Good Antifouling Property for the Textile Industry. Polymers (Basel) 2020; 12:polym12112443. [PMID: 33105765 PMCID: PMC7690592 DOI: 10.3390/polym12112443] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 02/02/2023] Open
Abstract
In the textile industry, a high-efficiency dye removal and low-retention of salt is demanded for recycling wastewater. In this study, polyvinylidene fluoride (PVDF) ultrafiltration membrane was transformed to a negatively charged loose nanofiltration (NF) membrane through UV-grafting of acrylic acid. At the optimal exposure of PVDF membrane in UV light for 5 min, the membrane had a high dye recovery above 99% (Congo red and Eriochrome® Black T) and a low sodium chloride (NaCl) rejection of less than 15% along with pure water flux of 26 L∙m−2∙h−1∙bar−1. Its antifouling and oleophobicity surface properties were verified using fluorescent- bovine serum albumin (BSA) and underwater mineral oil contact angle, respectively. According to the fluorescent microscopic images, the modified membrane had ten times lower adhesion of protein on the surface than the unmodified membrane. The underwater oil contact angle was raised from 110° to 155°. Moreover, the salt rejection followed this sequence: Na2SO4 > MgSO4 > NaCl > MgCl2, which agreed with the typical negatively charged NF membrane. In addition, the physicochemical characterization of membranes was further investigated to understand and link to the membrane performance, such as surface functional group, surface elements analysis, surface roughness/morphology, and surface hydrophilicity.
Collapse
|
19
|
Yap Ang MBM, Huang SH, Tsai SJ, De Guzman MR, Lee KR, Lai JY. Embedding hollow silica nanoparticles of varying shapes and dimensions in nanofiltration membranes for optimal performance. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118333] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Effect of introducing varying amounts of polydopamine particles into different concentrations of polyethersulfone solution on the performance of resultant mixed-matrix membranes intended for dye separation. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02174-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
21
|
Zwitterionic Polymer Brush Grafted on Polyvinylidene Difluoride Membrane Promoting Enhanced Ultrafiltration Performance with Augmented Antifouling Property. Polymers (Basel) 2020; 12:polym12061303. [PMID: 32517332 PMCID: PMC7361682 DOI: 10.3390/polym12061303] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 11/16/2022] Open
Abstract
Superhydrophilic zwitterions on the membrane surface have been widely exploited to improve antifouling properties. However, the problematic formation of a <20 nm zwitterionic layer on the hydrophilic surface remains a challenge in wastewater treatment. In this work, we focused on the energy consumption and time control of polymerization and improved the strong hydrophilicity of the modified polyvinylidene difluoride (PVDF) membrane. The sulfobetaine methacrylate (SBMA) monomer was treated with UV-light through polymerization on the PVDF membrane at a variable time interval of 30 to 300 s to grow a poly-SBMA (PSBMA) chain and improve the membrane hydrophilicity. We examined the physiochemical properties of as-prepared PVDF and PVDF-PSBMAx using numeric analytical tools. Then, the zwitterionic polymer with controlled performance was grafted onto the SBMA through UV-light treatment to improve its antifouling properties. The PVDF-PSBMA120s modified membrane exhibited a greater flux rate and indicated bovine serum albumin (BSA) rejection performance. PVDF-PSBMA120s and unmodified PVDF membranes were examined for their antifouling performance using up to three cycles dynamic test using BSA as foulant. The PVDF-modified PSBMA polymer improved the antifouling properties in this experiment. Overall, the resulting membrane demonstrated an enhancement in the hydrophilicity and permeability of the membrane and simultaneously augmented its antifouling properties.
Collapse
|