1
|
Sharma P, Chukwuka AV, Chatterjee S, Chakraborty D, Bhowmick S, Mistri TK, Saha NC. Biomarker and adverse outcome pathway responses of Tubifex tubifex (sludge worm) exposed to environmentally-relevant levels of acenaphthene: insights from behavioral, physiological, and chemical structure-activity analyses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:61894-61911. [PMID: 39448429 DOI: 10.1007/s11356-024-35290-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), including acenaphthene, pose a significant threat to aquatic ecosystems by harming vital organisms such as benthic invertebrates. This study evaluated the impact of environmentally relevant concentrations of acenaphthene on Tubifex tubifex, focusing on sublethal acute toxicity and subchronic biomarker responses. Key biomarkers assessed included histopathological changes and the modulation of antioxidant enzymes: catalase (CAT), superoxide dismutase (SOD), glutathione S-transferase (GST), and malondialdehyde (MDA). Additionally, the study examined structure-activity relationships and species sensitivity distribution (SSD). Concentrations exceeding the solubility threshold of acenaphthene (3.9 mg/L) triggered distinct, concentration-dependent behavioral responses in Tubifex tubifex, such as clumping, mucus secretion, and body wrinkling. Prolonged exposure exacerbated these behavioral dysfunctions, while subchronic exposure resulted in significant histopathological alterations, including epithelial hyperplasia, inflammation, edema, fibrosis, and degenerative changes. The edematic appearance of the body wall suggested a potential immune response to exposure. Furthermore, increased activities of CAT, SOD, and GST indicated oxidative stress in the worms. The study found a 1.5-fold increase in CAT and GST activity, a fivefold increase in SOD, and a striking 100-fold increase in MDA levels compared to controls, signifying an overwhelmed antioxidant defense system and potential cellular disruption. The SSD curve revealed hazard concentrations (HC50 and HC90), indicating that Tubifex tubifex exhibited lower sensitivity to acenaphthene compared to other taxa. In silico analysis and read-across models confirmed the potential of acenaphthene to induce significant oxidative stress upon exposure. The correlation between biomarker responses and structure-activity relationship analysis highlighted the aromatic nature of acenaphthene as a key factor in generating reactive metabolites, inhibiting antioxidant enzymes, and promoting redox cycling, ultimately contributing to adverse outcomes. These findings, coupled with behavioral responses and SSD curve inferences, underscore the importance of the solubility threshold of acenaphthene as a critical benchmark for evaluating its ecological impact in aquatic environments.
Collapse
Affiliation(s)
- Pramita Sharma
- Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India
| | - Azubuike Victor Chukwuka
- Department of Environmental Quality Control (EQC), National Environmental Standards and Regulations Enforcement Agency, Abuja, Nigeria.
| | | | | | - Shovonlal Bhowmick
- Department of Chemical Technology, University of Calcutta, 92, A.P.C. Road, Kolkata, 700009, India
| | - Tapan Kumar Mistri
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur Campus, SRM Nagar, Potheri, Chennai, 603203, India
| | | |
Collapse
|
2
|
Lin P, Liu L, Ma Y, Du R, Yi C, Li P, Xu Y, Yin H, Sun L, Li ZH. Neurobehavioral toxicity induced by combined exposure of micro/nanoplastics and triphenyltin in marine medaka (Oryzias melastigma). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024:124334. [PMID: 38852665 DOI: 10.1016/j.envpol.2024.124334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/19/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
Microplastics/nanoplastics (MNPs) inevitably coexist with other pollutants in the natural environment, making it crucial to study the interactions between MNPs and other pollutants as well as their combined toxic effects. In this study, we investigated neurotoxicity in marine medaka (Oryzias melastigma) exposed to polystyrene micro/nanoplastics (PS-MNPs), triphenyltin (TPT), and PS-MNPs + TPT from physiological, behavioral, biochemical, and genetic perspectives. The results showed that marine medaka exposed to 200 ng/L TPT or 200 μg/L PS-NPs alone exhibited some degree of neurodevelopmental deficit, albeit with no significant behavioral abnormalities observed. However, in the PS-MP single exposure group, the average acceleration of short-term behavioral indices was significantly increased by 78.81%, indicating a highly stress-responsive locomotor pattern exhibited by marine medaka. After exposure to PS-MNPs + TPT, the swimming ability of marine medaka significantly decreased. In addition, PS-MNPs + TPT exposure disrupted normal neural excitability as well as activated detoxification processes in marine medaka larvae. Notably, changes in neural-related genes suggested that combined exposure to PS-MNPs and TPT significantly increased the neurotoxic effects observed with exposure to PS-MNPs or TPT alone. Furthermore, compared to the PS-MPs + TPT group, PS-NPs + TPT significantly inhibited swimming behavior and thus exacerbated the neurotoxicity. Interestingly, the neurotoxicity of PS-MPs was more pronounced than that of PS-NPs in the exposure group alone. However, the addition of TPT significantly enhanced the neurotoxicity of PS-NPs compared to PS-MPs + TPT. Overall, the study underscores the combined neurotoxic effects of MNPs and TPT, providing in-depth insights into the ecotoxicological implications of MNPs coexisting with pollutants and furnishing comprehensive data.
Collapse
Affiliation(s)
- Peiran Lin
- SDU-ANU Joint Science College, Weihai, Shandong, 264209, China
| | - Ling Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Yuqing Ma
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Renyan Du
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Chuansen Yi
- SDU-ANU Joint Science College, Weihai, Shandong, 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Yanan Xu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Haiyang Yin
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Le Sun
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
3
|
Lu J, Zhang C, Xu W, Chen W, Tao L, Li Z, Cheng J, Zhang Y. Developmental toxicity and estrogenicity of glyphosate in zebrafish in vivo and in silico studies. CHEMOSPHERE 2023; 343:140275. [PMID: 37758082 DOI: 10.1016/j.chemosphere.2023.140275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/17/2023] [Accepted: 09/23/2023] [Indexed: 09/30/2023]
Abstract
As the most heavily used herbicide globally, glyphosate (GLY) has been detected in a variety of environments and has raised concerns about its ecological and health effects. There is debate as to whether GLY may disrupt the endocrine system. Here, we investigated the developmental toxicity of GLY in zebrafish based on deep learning-enabled morphometric analysis (DLMA). In addition, the estrogenic activity of GLY was assessed by endocrine disruption prediction, docking study and in vivo experiments. Results showed that exposure to environmental concentrations of GLY negatively impacted zebrafish development, causing yolk edema and pericardial edema. Endocrine disruption prediction suggested that GLY may target estrogen receptors (ER). Molecular docking analysis revealed binding of GLY to three zebrafish ER. In vivo zebrafish experiment, GLY enhanced the protein levels of ERα and the mRNA levels of cyp19a, HSD17b1, vtg1, vtg2, esr1, esr2a and esr2b. These results suggest that GLY may act as an endocrine disruptor by targeting ER, which warrants further attention for its potential toxicity to aquatic animals.
Collapse
Affiliation(s)
- Jian Lu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Cheng Zhang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, United States
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Weidong Chen
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
4
|
Ismail RF, Hamed M, Sayed AEDH. Lycopene supplementation: effects on oxidative stress, sex hormones, gonads and thyroid tissue in tilapia Oreochromis niloticus during Harness ® exposure. Front Physiol 2023; 14:1237159. [PMID: 37637141 PMCID: PMC10454902 DOI: 10.3389/fphys.2023.1237159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/20/2023] [Indexed: 08/29/2023] Open
Abstract
Harness® is a commercial herbicide that contains acetochlor at a concentration of 84% as an active ingredient. Ubiquitous, persistent, and substantial uses of Harness® in agricultural processes have resulted in the pollution of nearby water sources, posing a threat to various aquatic biotas, including fish. The effects of Harness® toxicity on fish health are little known. So, this study aimed to describe the impact of herbicide Harness® on the oxidative stress and reproductive and thyroid performance of male and female tilapia (Oreochromis niloticus) and also investigate the prospective role of the natural antioxidant lycopene supplementation in dismissing the adverse properties of Harness®. Antioxidant enzyme (catalase, superoxide dismutase, and total antioxidant capacity) and hormone measurements (T, E2, T3, and T4) were carried out, and gonadal and thyroid follicle histological sections were examined as a method to investigate the effects of Harness® toxicity on fish. Male and female tilapia were exposed to 10 μmol/L and 100 μmol/L of Harness® and treated with 10 mg lycopene/kg for 15 days of exposure. Our results demonstrated that the antioxidant enzyme activity was altered by Harness exposure and serum T for both males and females dropped; also, female E2 levels decreased, but male E2 increased. Exposure to higher dose of Harness® induced elevation in both T3 and T4 levels, although the low exposure dose stimulated T4 levels. Harness® exposure prompted histological variations and degenerative changes in testicular, ovarian, and thyroid follicle tissues. Lycopene supplement administration diminished oxidative stress induced by Harness®, alleviating its endocrine disparaging effects by neutralizing T3, T4, T, and E2 and ameliorating the histological structure of gonadal and thyroid tissues. In conclusion, lycopene supplementation was preformed to normalize the alterations and oxidative damage caused by Harness® in Nile tilapia, suggesting that lycopene-supplemented diet functioned as potent antioxidants and had the ability to alleviate oxidative stress and thyroid and reproductive toxicity caused by herbicide Harness®. Moreover, it is crucial to take appropriate care when consuming herbicides to defend the aquatic environment.
Collapse
Affiliation(s)
- Rania F. Ismail
- National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt
| | - Mohamed Hamed
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut branch), Assiut, Egypt
| | - Alaa El-Din H. Sayed
- Zoology Department, Faculty of Science, Assiut University, Assiut, Egypt
- Molecular Biology Research and Studies Institute, Assiut University, Assiut, Egypt
| |
Collapse
|
5
|
Osborne RK, Ijzerman MM, Venier C, Prosser RS. Development of an Embryo Toxicity Test to Assess the Comparative Toxicity of Metal Exposure on Different Life Stages of Freshwater Gastropods. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1791-1805. [PMID: 37283216 DOI: 10.1002/etc.5686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/23/2023] [Accepted: 06/01/2023] [Indexed: 06/08/2023]
Abstract
Early life stages are commonly thought to be highly sensitive to environmental contaminants and may offer insight into the future health of a population. Despite the importance of studying early life stages, very few standard protocols for benthic invertebrates commonly used in ecotoxicological assessments measure developmental endpoints. The goal of the present study was to develop and optimize a robust standard protocol for studying embryonic endpoints in freshwater gastropods. The developed method was then used to characterize the sensitivity of four embryonic endpoints (viability, hatching, deformities, and biomass production), in conjunction with juvenile and adult mortality, for the snail Planorbella pilsbryi exposed to three metals (copper [Cu], cadmium [Cd], and nickel [Ni]). Biomass production was typically the most sensitive endpoint but was relatively variable, while embryo hatching was slightly less sensitive but highly consistent for all three metals. However, no single embryonic endpoint was consistently the most sensitive, which demonstrates the importance of assessing a broad range of endpoints and life stages in ecotoxicological risk assessment. Interestingly, the embryonic life stage of P. pilsbryi was considerably less sensitive to Cu exposure compared with juvenile and adult mortality. However, for Cd exposure, embryonic endpoints were the most sensitive, and for Ni exposure, embryonic endpoints were similar in sensitivity to juvenile and adult mortality. The present study has valuable applications in conducting developmental toxicity research with organisms lacking standardized testing protocol as well as future applications in multigenerational and in silico toxicity research. Environ Toxicol Chem 2023;42:1791-1805. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- R K Osborne
- School of Environmental Science, University of Guelph, Guelph, Ontario, Canada
| | - M M Ijzerman
- School of Environmental Science, University of Guelph, Guelph, Ontario, Canada
| | - C Venier
- School of Environmental Science, University of Guelph, Guelph, Ontario, Canada
| | - R S Prosser
- School of Environmental Science, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
6
|
Soloperto S, Olivier S, Poret A, Minier C, Halm-Lemeille MP, Jozet-Alves C, Aroua S. Effects of 17α-ethinylestradiol on the neuroendocrine gonadotropic system and behavior of European sea bass larvae ( Dicentrarchus labrax). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:198-215. [PMID: 36803253 DOI: 10.1080/15287394.2023.2177781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The widespread use of 17α-ethinylestradiol (EE2), and other estrogenic endocrine disruptors, results in a continuous release of estrogenic compounds into aquatic environments. Xenoestrogens may interfere with the neuroendocrine system of aquatic organisms and may produce various adverse effects. The aim of the present study was to expose European sea bass larvae (Dicentrarchus labrax) to EE2 (0.5 and 50 nM) for 8 d and determine the expression levels of brain aromatase (cyp19a1b), gonadotropin-releasing hormones (gnrh1, gnrh2, gnrh3), kisspeptins (kiss1, kiss2) and estrogen receptors (esr1, esr2a, esr2b, gpera, gperb). Growth and behavior of larvae as evidenced by locomotor activity and anxiety-like behaviors were measured 8 d after EE2 treatment and a depuration period of 20 d. Exposure to 0.5 nM EE2 induced a significant increase in cyp19a1b expression levels, while upregulation of gnrh2, kiss1, and cyp19a1b expression was noted after 8 d at 50 nM EE2. Standard length at the end of the exposure phase was significantly lower in larvae exposed to 50 nM EE2 than in control; however, this effect was no longer observed after the depuration phase. The upregulation of gnrh2, kiss1, and cyp19a1b expression levels was found in conjunction with elevation in locomotor activity and anxiety-like behaviors in larvae. Behavioral alterations were still detected at the end of the depuration phase. Evidence indicates that the long-lasting effects of EE2 on behavior might impact normal development and subsequent fitness of exposed fish.
Collapse
Affiliation(s)
- S Soloperto
- Normandie Univ, UNIHAVRE, Le Havre Cedex, France
| | - S Olivier
- Normandie Univ, UNIHAVRE, Le Havre Cedex, France
| | - A Poret
- Normandie Univ, UNIHAVRE, Le Havre Cedex, France
| | - C Minier
- Normandie Univ, UNIHAVRE, Le Havre Cedex, France
| | - M P Halm-Lemeille
- Ifremer Port-en-Bessin, LaboratoireEnvironnement Ressources de Normandie, Port-en-Bessin, France
| | - C Jozet-Alves
- Normandie Univ, Unicaen, CNRS, Caen, France
- Univ Rennes, CNRS, Rennes, France
| | - S Aroua
- Normandie Univ, UNIHAVRE, Le Havre Cedex, France
| |
Collapse
|
7
|
Boukadida K, Banni M, Romero-Ramirez A, Clerandeau C, Gourves PY, Cachot J. Metal contamination and heat stress impair swimming behavior and acetylcholinesterase activity in embryo-larval stages of the Mediterranean mussel, Mytilus galloprovincialis. MARINE ENVIRONMENTAL RESEARCH 2022; 179:105677. [PMID: 35738152 DOI: 10.1016/j.marenvres.2022.105677] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/27/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Behavioral parameters are increasingly considered sensitive and early bioindicators of toxicity in aquatic organisms. A video-tracking tool was specifically developed to monitor the swimming behaviour of D-larvae of the Mediterranean mussel, Mytilus galloprovincialis, in controlled laboratory conditions. Both maximum and average swimming speeds and trajectories were recorded. We then investigated the impact of copper and silver with or without a moderate rise of temperature on swimming behavior and acetylcholinesterase (AChE) activity of mussel D-larvae and the possible mechanistic link between both biological responses. Our results showed that copper and/or silver exposure, as well as temperature increase, disrupts the swimming behavior of mussel larvae which could compromise their dispersal and survival. In addition, the combined effect of temperature and metals significantly (p < 0.05) increased AChE activity in mussel larvae. Pearson's correlation analysis was performed and results showed that the AChE activity is positively correlated with maximum speeds (r = 0.71, p < 0.01). This study demonstrates the value of behavioral analyzes of aquatic invertebrates as a sensitive and integrate marker of the effects of stressors.
Collapse
Affiliation(s)
- Khouloud Boukadida
- Laboratory of Oceanic and Continental Environments and Paleoenvironments, University of Bordeaux, EPOC, UMR 5805, F-33600, Pessac, France; Laboratory of Agrobiodiversity and Ecotoxicology, ISA, Chott-Mariem, 4042, Sousse, Tunisia.
| | - Mohamed Banni
- Laboratory of Agrobiodiversity and Ecotoxicology, ISA, Chott-Mariem, 4042, Sousse, Tunisia; Higher Institute of Biotechnology, University of Monastir, Tunisia
| | - Alicia Romero-Ramirez
- Laboratory of Oceanic and Continental Environments and Paleoenvironments, University of Bordeaux, EPOC, UMR 5805, F-33600, Pessac, France
| | - Christelle Clerandeau
- Laboratory of Oceanic and Continental Environments and Paleoenvironments, University of Bordeaux, EPOC, UMR 5805, F-33600, Pessac, France
| | - Pierre-Yves Gourves
- Laboratory of Oceanic and Continental Environments and Paleoenvironments, University of Bordeaux, EPOC, UMR 5805, F-33600, Pessac, France
| | - Jérôme Cachot
- Laboratory of Oceanic and Continental Environments and Paleoenvironments, University of Bordeaux, EPOC, UMR 5805, F-33600, Pessac, France
| |
Collapse
|
8
|
Santos D, Perez M, Perez E, Cabecinha E, Luzio A, Félix L, Monteiro SM, Bellas J. Toxicity of microplastics and copper, alone or combined, in blackspot seabream (Pagellus bogaraveo) larvae. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 91:103835. [PMID: 35227885 DOI: 10.1016/j.etap.2022.103835] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Plastics pose serious risks for fish productivity and a potential constraint for food security. Newly hatched blackspot seabream larvae were exposed to microplastics (MPs), copper (Cu, 10-810 µg/L) and their mixtures (Cu+MPs), during 3 and 9 days. Biochemical biomarkers and the expression of antioxidant and neurotoxicity-related genes were evaluated. In the 3-day exposure, catalase and glutathione-S-transferase activities decreased in MPs, Cu and Cu+MPs groups, followed by an increase of lipid peroxidation in the Cu270 and Cu270 +MPs exposed larvae. In the 9-day exposure, ROS levels increased in MPs and Cu30 groups, but no significant oxidative damage was observed, suggesting that the antioxidant system overcome the induced oxidative stress. However, the acetylcholinesterase transcript was downregulated in MPs, Cu and Cu10+MPs groups, indicating that MPs effects in cholinergic neurotransmission may arise after longer exposures. Overall, MPs and Cu can reduce survival, induce oxidative stress, lipid peroxidation, neurotoxicity, and impact negatively fish larvae fitness.
Collapse
Affiliation(s)
- Dércia Santos
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal.
| | - Montse Perez
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía, IEO-CSIC, Subida a Radio Faro 50, 36390 Vigo, Spain
| | - Evaristo Perez
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía, IEO-CSIC, Subida a Radio Faro 50, 36390 Vigo, Spain
| | - Edna Cabecinha
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Ana Luzio
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Luís Félix
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Sandra M Monteiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, Portugal
| | - Juan Bellas
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía, IEO-CSIC, Subida a Radio Faro 50, 36390 Vigo, Spain
| |
Collapse
|
9
|
Fluoxetine-induced neurotoxicity at environmentally relevant concentrations in adult zebrafish Danio rerio. Neurotoxicology 2022; 90:121-129. [PMID: 35304135 DOI: 10.1016/j.neuro.2022.03.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/08/2021] [Accepted: 03/14/2022] [Indexed: 01/21/2023]
Abstract
Fluoxetine (FLX) exerts its therapeutic effect by inhibiting the presynaptic reuptake of the neurotransmitter serotonin. Nonetheless, at high concentrations of this drug, adverse effects occur in the brain of exposed organisms. Bearing this into account, the objective of this study was to evaluate the neurotoxic effects of the fluoxetine through the evaluation of behavior (Novel tank test), determination of oxidative stress, and determination of acetylcholinesterase (AChE) activity in adult zebrafish Danio rerio. For this purpose, Danio rerio adults were exposed to three environmentally relevant concentrations (5, 10, 16ngL-1) of FLX for 96h. Our results demonstrate fish presented a significant disruption in their behavior, as they remained long-lasting time frozen at the top of the tank. Since we observed a significant reduction of AChE activity in the brain of fish, we believe the above described anxiety-like state is the result of this enzyme impairment. Moreover, as FLX-exposed fish showed a significant increase in the levels of oxidative damage biomarkers, we suggest this AChE disruption is associated with the oxidative stress response fish exhibited. Based on our findings, we believe the environmentally relevant concentration of FLX alters the redox status of the brain, impairing this way the behavior of fish and making them more vulnerable to predation.
Collapse
|
10
|
Albers JL, Steibel JP, Klingler RH, Ivan LN, Garcia-Reyero N, Carvan MJ, Murphy CA. Altered Larval Yellow Perch Swimming Behavior Due to Methylmercury and PCB126 Detected Using Hidden Markov Chain Models. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3514-3523. [PMID: 35201763 DOI: 10.1021/acs.est.1c07505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fish swimming behavior is a commonly measured response in aquatic ecotoxicology because behavior is considered a whole organism-level effect that integrates many sensory systems. Recent advancements in animal behavior models, such as hidden Markov chain models (HMM), suggest an improved analytical approach for toxicology. Using both new and traditional approaches, we examined the sublethal effects of PCB126 and methylmercury on yellow perch (YP) larvae (Perca flavescens) using three doses. Both approaches indicate larvae increase activity after exposure to either chemical. The middle methylmercury-dosed larvae showed multiple altered behavior patterns. First, larvae had a general increase in activity, typically performing more behavior states, more time swimming, and more swimming bouts per second. Second, when larvae were in a slow or medium swimming state, these larvae tended to switch between these states more often. Third, larvae swam slower during the swimming bouts. The upper PCB126-dosed larvae exhibited a higher proportion and a fast swimming state, but the total time spent swimming fast decreased. The middle PCB126-dosed larvae transitioned from fast to slow swimming states less often than the control larvae. These results indicate that developmental exposure to very low doses of these neurotoxicants alters YP larvae overall swimming behaviors, suggesting neurodevelopment alteration.
Collapse
Affiliation(s)
- Janice L Albers
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan 48824, United States
| | - Juan P Steibel
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan 48824, United States
| | - Rebekah H Klingler
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53204, United States
| | - Lori N Ivan
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan 48824, United States
| | - Natàlia Garcia-Reyero
- Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, Mississippi, 39180, United States
| | - Michael J Carvan
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53204, United States
| | - Cheryl A Murphy
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
11
|
Tao Y, Li Z, Yang Y, Jiao Y, Qu J, Wang Y, Zhang Y. Effects of common environmental endocrine-disrupting chemicals on zebrafish behavior. WATER RESEARCH 2022; 208:117826. [PMID: 34785404 DOI: 10.1016/j.watres.2021.117826] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/05/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Environmental endocrine-disrupting chemicals (EDCs), a type of exogenous organic pollutants, are ubiquitous in natural aquatic environments. Therefor, this review focused on the use of the zebrafish as a model to explore the effect of different EDCs on behavior, as well as the molecular mechanisms that drive these effects. Furthermore, our study summarizes the current knowledge on the neuromodulatory effects of different EDCs in zebrafish. This study also reviews the current state of zebrafish behavior research, in addition to the potential mechanisms of single and mixed pollutant-driven behavioral dysregulation at the molecular level, as well as the applications of zebrafish behavior experiments for neuroscience research. This review broadens our understanding of the influence of EDCs on zebrafish behavior and provides guidance for future research.
Collapse
Affiliation(s)
- Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Zixu Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yang Yang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yaqi Jiao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yifan Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
12
|
Lozano IE, Piazza YG, Babay P, Sager E, de la Torre FR, Lo Nostro FL. Ivermectin: A multilevel approach to evaluate effects in Prochilodus lineatus (Valenciennes, 1836) (Characiformes, Prochilodontidae), an inland fishery species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149515. [PMID: 34392219 DOI: 10.1016/j.scitotenv.2021.149515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Ivermectin (IVM) is one of the most widely used antiparasitics worldwide. It is a potent and effective drug for treatment and prevention of internal and external parasitic infections of livestock and humans. IVM is excreted unchanged in manure of treated animals. Thus, residues of IVM may reach aquatic systems, affecting non-target organisms such as fish. Although the presence of IVM in aquatic environments has been reported, a multilevel approach (from cellular to behavioral responses) is necessary to determine the health of exposed organisms and the environmental risks associated. The aim of the present study was to investigate the response of the Neotropical fish Prochilodus lineatus, one of the main target species of South American freshwater fisheries, exposed to environmental concentrations of IVM: low (0.5 μg L-1) and high (1.5 μg L-1). Behavioral responses were assessed in juvenile fish and included water column use, routine swimming, total distance travelled, total activity time and Maximum swimming speed achieved during the escape response. Biochemical/oxidative stress responses assessed included brain acetylcholinesterase (AChE), catalase (CAT) and glutathione S-transferase (GST) activities; total antioxidant competence against peroxyl radicals (ACAP) and lipid oxidative damage (TBARs). Hematological biomarker responses included blood glucose levels, hematocrit, hemoglobin concentration, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, and mean corpuscular volume. Condition factor and hepatosomatic index were also calculated. The lowest IVM concentration caused a significant decrease in GST activity and maximum swimming speed during the escape response. Multivariate analysis with biochemical/stress and behavioral data revealed overall effects of IVM treatments. This multilevel analysis shows detrimental effects related to swimming behavior and predator avoidance which could affect population size and size-structure of P. lineatus. To our knowledge this is the first attempt to assess the effects of IVM on Neotropical fishes using an integrative approach based on biomarkers from different levels of biological organization.
Collapse
Affiliation(s)
- Ismael Esteban Lozano
- Laboratorio de Ecotoxicología Acuática, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA, CONICET-UBA), Argentina
| | - Yanina Grisel Piazza
- Laboratorio de Ecotoxicología Acuática, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA, CONICET-UBA), Argentina
| | - Paola Babay
- Gerencia Química, Comisión Nacional de Energía Atómica (CNEA), Buenos Aires, Argentina
| | - Emanuel Sager
- Grupo de Estudios de Contaminación Antrópica en Peces (GECAP), Instituto de Ecología y Desarrollo Sustentable, Departamento de Ciencias Básicas, CONICET-Universidad Nacional de Luján, Argentina
| | - Fernando Román de la Torre
- Grupo de Estudios de Contaminación Antrópica en Peces (GECAP), Instituto de Ecología y Desarrollo Sustentable, Departamento de Ciencias Básicas, CONICET-Universidad Nacional de Luján, Argentina
| | - Fabiana Laura Lo Nostro
- Laboratorio de Ecotoxicología Acuática, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA, CONICET-UBA), Argentina; Laboratorio de Ecotoxicología Acuática, Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina.
| |
Collapse
|
13
|
Schultz DR, Tang S, Miller C, Gagnon D, Shekh K, Alcaraz AJG, Janz DM, Hecker M. A Multi-Life Stage Comparison of Silver Nanoparticle Toxicity on the Early Development of Three Canadian Fish Species. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:3337-3350. [PMID: 34506650 DOI: 10.1002/etc.5210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/10/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Information on the effects of silver nanoparticles (AgNPs) in fish has mostly been generated from standard laboratory species and short-term toxicity tests. However, there is significant uncertainty regarding AgNP toxicity to native species of concern in North America, particularly in northern freshwater ecosystems. We assessed the chronic toxicity of AgNPs in early life stages of three North American fish species: rainbow trout (Oncorhynchus mykiss), lake trout (Salvelinus namaycush), and northern pike (Esox lucius). Newly fertilized embryos were exposed to nominal aqueous concentrations of 0.1, 0.3, 1.0, 3.0, 10.0, or 30.0 nM AgNPs for 126 (rainbow trout), 210 (lake trout), and 25 (northern pike) days. Endpoints included cumulative developmental time (°C × day or degree-days to 50% life-stage transition), mortality, fork length, embryonic malformations, cumulative survival, and histopathology of gill and liver in larvae/alevins. The results showed life stage-specific differences in responses, with endpoints during the embryonic stage occurring more often and at lower concentrations compared to larval/alevin and juvenile stages. Sensitivities among species were highly dependent on the endpoints measured, although developmental time appeared to be the most consistent endpoint across species. At embryonic and larval/alevin stages, northern pike was the most sensitive species (lowest observable effect concentration of 0.1 nM using developmental time). Rainbow trout displayed similar responses to lake trout across multiple endpoints and therefore seems to be an adequate surrogate for trout species in ecotoxicology studies. Moreover, while mortality during individual life stages was not generally affected, the cumulative mortality across life stages was significantly affected, which highlights the importance of chronic, multi-life-stage studies. Environ Toxicol Chem 2021;40:3337-3350. © 2021 SETAC.
Collapse
Affiliation(s)
- Dayna R Schultz
- Toxicology Graduate Program, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Song Tang
- School of the Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Christie Miller
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Danielle Gagnon
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Kamran Shekh
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Alper J G Alcaraz
- Toxicology Graduate Program, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - David M Janz
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- School of the Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
14
|
Ortiz-Delgado JB, Funes V, Albendín G, Scala E, Sarasquete C. Toxicity of malathion during Senegalese sole, Solea senegalensis larval development and metamorphosis: Histopathological disorders and effects on type B esterases and CYP1A enzymatic systems. ENVIRONMENTAL TOXICOLOGY 2021; 36:1894-1910. [PMID: 34156741 DOI: 10.1002/tox.23310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 05/24/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
The toxicity of malathion to Solea senegalensis was studied in a static renewal bioassay during its first month of larval life (between 4 and 30 dph). Through the use of different biomarkers and biochemical, cellular and molecular approaches (inhibition of cholinesterases [ChEs], changes in cytochrome P450-1A [CYP1A] and the study of histopathological alterations), the effects of three concentrations of malathion (1.56, 3.12, and 6.25 μg/L) have been analyzed. In subacute exposure, malathion inhibited cholinesterase activities (AChE, BChE, CbE) in a dose- and time-dependent manner, ranging the inhibition percentage from 20% to 90%. However, the expression levels of CYP1A and AChE transcripts or proteins were not modified. Additionally, exposure to malathion provoked histopathological alterations in several organ systems of Senegalese sole in a time- and dose dependent way, namely disruption of parenchymal architecture in the liver, epithelial desquamation, pyknotic nuclei and steatosis in the intestine, disorganization of supporting cartilage, and sings of hyperplasia and hypertrophy in the gills and degeneration of the epithelial cells from the renal tubules. Malathion exposure also provoked strong disorganization of cardiac fibers from the heart. The findings provide evidence that exposure to sublethal concentrations of malathion that provoked serious injury to the fish S. senegalensis, were below the expected environmental concentrations reported in many other ecosystems and different fish species,revealing a higher sensitivity for Solea senegalensis to malathion exposure, thus reinforcing its use as sentinel species for environmental pollution in coastal and estuarine environments.
Collapse
Affiliation(s)
- Juan Bosco Ortiz-Delgado
- Instituto de Ciencias Marinas de Andalucía-ICMAN, CSIC Campus Universitario Río San Pedro, Cádiz
| | - Victoria Funes
- IFAPA Centro el Toruño, Camino Tiro de Pichón, Cádiz, Spain
| | - Gemma Albendín
- CEIMAR, Universidad de Cádiz, Campus Universitario Río San Pedro, Cádiz, Spain
| | - Emanuele Scala
- Instituto de Ciencias Marinas de Andalucía-ICMAN, CSIC Campus Universitario Río San Pedro, Cádiz
| | - Carmen Sarasquete
- Instituto de Ciencias Marinas de Andalucía-ICMAN, CSIC Campus Universitario Río San Pedro, Cádiz
| |
Collapse
|
15
|
Nagamatsu PC, Garcia JRE, Esquivel L, Souza ATDC, de Brito IA, de Oliveira Ribeiro CA. Post hatching stages of tropical catfish Rhamdia quelen (Quoy and Gaimard, 1824) are affected by combined toxic metals exposure with risk to population. CHEMOSPHERE 2021; 277:130199. [PMID: 33770691 DOI: 10.1016/j.chemosphere.2021.130199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Toxic metals and silver nanoparticles (AgNPs) are of great importance as pollutants and their frequent use increases the risk of exposure to biota, but few studies have described co-toxic effects in aquatic organisms. In fish, the method using early stages of development are interesting parameters to validate ecotoxicological studies, and more recently, the use of mathematical models has substantially increased the efficiency of the method. Post hatching stages of native catfish Rhamdia quelen were exposed to single or combined mixtures of toxic metals (Mn, Pb, Hg or AgNPs) in order to study its effects. Fertilized eggs were exposed for 24, 48, 72, and 96 h, where hatching and survival rates, malformation frequency, and neuromast structure damages were evaluated. The results showed alterations in hatching rate after single and combined exposure to metals, but mixtures showed effects more severe comparatively with the single exposures. A similar result including a time-dependent effect was observed in survival rates and incidence of deformities. Overall, embryos and larvae were sensitive to toxic metals exposure while the mathematical modeling suggested a population reduction size including risk of local extinction.
Collapse
Affiliation(s)
- Paola Caroline Nagamatsu
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81531-970, Curitiba, PR, Brazil
| | | | - Luíse Esquivel
- Estação de Piscicultura Panamá, Est. Geral Bom Retiro, Paulo Lopes, SC, CEP 88490-000, Brazil
| | - Angie Thaisa da Costa Souza
- Laboratório de Ecologia e Evolução de Interações, Departamento de Física, Universidade Federal do Paraná CEP 81531-990, Curitiba, PR, Brazil
| | - Izabella Andrade de Brito
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81531-970, Curitiba, PR, Brazil
| | - Ciro Alberto de Oliveira Ribeiro
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81531-970, Curitiba, PR, Brazil.
| |
Collapse
|
16
|
Ye X, Rountos KJ, Lee CS, Fisher NS. Effects of methylmercury on the early life stages of an estuarine forage fish using two different dietary sources. MARINE ENVIRONMENTAL RESEARCH 2021; 164:105240. [PMID: 33418125 DOI: 10.1016/j.marenvres.2020.105240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/23/2020] [Accepted: 12/26/2020] [Indexed: 06/12/2023]
Abstract
Marine fish accumulate methylmercury (MeHg) to elevated concentrations, often higher than in freshwater systems. As a neurotoxic compound, high MeHg tissue concentrations could affect fish behavior which in turn could affect their populations. We examined the sublethal effects of MeHg on larvae of the Sheepshead minnow (Cyprinodon variegatus), an estuarine fish, using artificial or natural diets with varying MeHg concentrations (0-4.8 ppm). Larvae were fed control and MeHg-contaminated diets at low or normal (10% of their body mass) daily food rations from 7 to 29 days when they reached juvenile stage. Growth, respiration, swimming activity and prey capture ability were assessed. Food ration affected Hg toxicity in our study. Natural diets containing 3.2 ppm MeHg had no impacts on growth and swimming in fish that were fed normal food rations but depressed growth and swimming at low food rations. MeHg toxicity did not differ between artificial and natural foods, however fish accumulated more MeHg from the former. Artificial food containing 4.8 ppm MeHg only affected prey capture after 21 days of exposure. Sheepshead minnows, a forage fish species occupying a low trophic level in coastal waters, can be MeHg tolerant, especially when food is abundant, and can serve as an enriched Hg source for higher trophic level predators.
Collapse
Affiliation(s)
- Xiayan Ye
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794, USA.
| | - Konstantine J Rountos
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794, USA; Department of Biology, St. Joseph's College, Patchogue, NY, 11772, USA
| | - Cheng-Shiuan Lee
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794, USA; New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, NY, 11790, USA
| | - Nicholas S Fisher
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794, USA
| |
Collapse
|
17
|
Wu M, Qiu X, Chen C, Chen K, Li M, Xu H, Wu X, Shimasaki Y, Oshima Y. Short-term and persistent impacts of sublethal exposure to diazepam on behavioral traits and brain GABA levels in juvenile zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140392. [PMID: 32927558 DOI: 10.1016/j.scitotenv.2020.140392] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/19/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
Environmental pollution by the psychoactive drug diazepam (DZP) has been suggested to disrupt various behavioral traits of fishes. Exposure to DZP in natural waters may be of episodic duration, but there are few reports on the persistence of abnormal behaviors of fishes caused by such acute exposure. In the current study, we exposed juvenile zebrafish (Danio rerio) to sublethal doses of DZP (1200, 120, and 12 μg/L) for four days and evaluated their behavioral traits and brain γ-aminobutyric acid (GABA) levels at days 0 (i.e., immediately after the 4-day exposure), 7, and 21 of the recovery period. Exposure to DZP induced short-term impairment of swimming ability and two-fish interactions of zebrafish. In contrast, DZP induced persistent and/or delayed effects on locomotor activity of zebrafish, i.e., hypoactivity at 1200 μg/L and hyperactivity at 120 and 12 μg/L, that could be still observed on days 7 and/or 21 during the recovery period. DZP exposure also exhibited concentration-specific effects on brain GABA levels in zebrafish, i.e., decreased at 1200 μg/L and increased at 120 and 12 μg/L. Correlation analysis suggested that the changes in brain GABA levels may contribute to the persistence of abnormalities in the locomotor activity of zebrafish. Our findings suggest that zebrafish need a long time to recover from acute exposure to DZP, thus highlighting that the persistence of behavioral abnormalities induced by such psychoactive drugs should be considered in order to better assess their risks in natural ecosystems.
Collapse
Affiliation(s)
- Min Wu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Xuchun Qiu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China; Faculty of Agriculture, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Chen Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Kun Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Ming Li
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Hai Xu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Xiangyang Wu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.
| | - Yohei Shimasaki
- Faculty of Agriculture, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yuji Oshima
- Faculty of Agriculture, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
18
|
Eadie A, Vasquez IC, Liang X, Wang X, Souders CL, El Chehouri J, Hoskote R, Feswick A, Cowie AM, Loughery JR, Martyniuk CJ. Residual molecular and behavioral effects of the phenylpyrazole pesticide fipronil in larval zebrafish (Danio rerio) following a pulse embryonic exposure. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 36:100743. [PMID: 32977147 DOI: 10.1016/j.cbd.2020.100743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 12/30/2022]
Abstract
Pesticides are typically applied to crops as acute applications, and residual effects of such intermittent exposures are not often characterized in developing fish. Fipronil is an agricultural pesticide that inhibits γ-amino-butyric acid (GABA) gated chloride channels. In this study, zebrafish (Danio rerio) embryos were exposed for 48 h (starting at ~3 h post fertilization, hpf) to various concentrations of fipronil (0.02 μg/L up to 4000 μg/L). Following this acute exposure, a subset of fish was transferred to clean water for a 7-day depuration phase. We hypothesized that a pulse exposure to fipronil during critical periods of central nervous system development would adversely affect fish later in life. After a 48 hour pulse exposure, survival was reduced in embryos exposed to 2 μg fipronil/L or greater. However, there was no further mortality during the depuration phase, nor were there changes in body length nor notochord length in larvae 9 dpf (days post-fertilization) compared to controls. Additional experiments were carried out at higher concentrations over 96 h (up to 4 dpf) to also elucidate developmental effects and teratogenicity of fipronil (43.7 μg/L up to 4370 μg/L). Fipronil at these higher concentrations significantly impacted the development of zebrafish, and the following morphometric and teratogenic effects were observed in 4 dpf fish; reduced body length, yolk sac and pericardial edema, reduced midbrain length, reduced optic and otic diameter, and truncation of the lower jaw. In depurated fish, we hypothesized that there would exist residual effects of exposure at the molecular level. Transcriptome profiling was therefore conducted on 9 dpf depurated larvae exposed initially for 48 h to one dose of either 0.2 μg/L, 200 μg/L or 2000 μg/L fipronil. The expression of gene networks associated with glycogen and omega-3-fatty acid metabolism were decreased in larvae exposed to each of the three concentrations of fipronil, suggesting metabolic disruption. Moreover, transcriptomics revealed that fipronil suppressed gene networks related to light-dark adaptation, photoperiod sensing, and circadian rhythm. Based on these data, we tested fish for altered behavioral responses in a Light-Dark preference test. Larvae exposed to >200 μg fipronil/L as embryos showed fewer number of visits (20-30% less) to the dark zone compared to controls. Larvae also spent a lower amount of time in the dark zone compared to controls, suggesting that fipronil strengthened dark avoidance behavior which is indicative of anxiety. This study demonstrates that a short pulse exposure to fipronil can affect transcriptome networks for metabolism, circadian rhythm, and response to light in fish after depuration, and these molecular responses are hypothesized to be related to aberrant behavioral effects observed in the light-dark preference test.
Collapse
Affiliation(s)
- Ashley Eadie
- Department of Biology, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada
| | - Isabel Cristina Vasquez
- Departamento de Ciencias Fisiológicas, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Xuefang Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Xiaohong Wang
- Department of Physiological Sciences, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christopher L Souders
- Department of Physiological Sciences, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Jana El Chehouri
- Department of Physiological Sciences, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Rohit Hoskote
- Department of Physiological Sciences, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - April Feswick
- Department of Biology, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada
| | - Andrew M Cowie
- Department of Biology, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada
| | - Jennifer R Loughery
- Department of Biology, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada
| | - Christopher J Martyniuk
- Department of Biology, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada; Department of Physiological Sciences, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; Canadian Rivers Institute, Canada; Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
19
|
Bechmann RK, Arnberg M, Bamber S, Lyng E, Westerlund S, Rundberget JT, Kringstad A, Seear PJ, Burridge L. Effects of exposing shrimp larvae (Pandalus borealis) to aquaculture pesticides at field relevant concentrations, with and without food limitation. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 222:105453. [PMID: 32112997 DOI: 10.1016/j.aquatox.2020.105453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
Anti-parasitic drugs used in the aquaculture industry are discharged to the sea after treatment of salmon. In this study, the effects of azamethiphos (AZA) in the Salmosan® formulation and deltamethrin (DEL) in the Alpha Max® formulation, have been assessed in Northern shrimp larvae (Pandalus borealis) when administered both separately and in combination. The exposure concentrations were 100 ng/L for AZA and 2 ng/L for DEL, each representing a 1000-fold dilution of the prescribed concentrations for salmon. These two chemicals were combined at these concentrations to give a third treatment (AZA + DEL). When larvae were exposed for two hours on the first, second and third days post hatch (dph), significantly increased mortality and reduced swimming activity were observed for larvae from the DEL and combined AZA + DEL treatments 4 dph, though not in larvae from the AZA treatment. A single pulse exposure, delivered on the first day post hatch, caused similar effects on mortality and swimming activity 4 dph as the three-pulse exposure. Mortality was driven by the presence of DEL in both experiments, with no amplification or reduction of effects observed when DEL and AZA were combined. Larvae were observed for 13 days following the single pulse exposure, with food limitation introduced as an additional stressor on day 4. In the DEL and AZA + DEL treatments mortality continued to increase regardless of food level, with no larvae completing development to stage II. The overriding toxicity of DEL masked any potential effects the reduced food ration may have exerted. Swimming activity was lower for AZA treated larvae than Control larvae 13 dph, when both groups were fed daily, though no other significant changes to mortality, development to stage II, feeding rate or gene expression were observed. Food limited Control and AZA larvae had lower swimming activity and feeding rate than daily fed Control larvae, with expression of pyruvate kinase and myosin genes also downregulated. However, there was no negative effect on survival or successful development to stage II in these treatments. In addition, mesencephalic astrocyte-derived neurotropic factor was downregulated in food limited Control larvae when compared with the daily fed Controls. Results from this study together with reported estimates of dispersion plume concentrations of discharged pesticides indicate that toxic concentrations of deltamethrin could reach shrimp larvae several kilometers from a treated salmon farm.
Collapse
Affiliation(s)
| | - Maj Arnberg
- NORCE Norwegian Research Centre, Mekjarvik 12, 4072, Randaberg, Norway.
| | - Shaw Bamber
- NORCE Norwegian Research Centre, Mekjarvik 12, 4072, Randaberg, Norway.
| | - Emily Lyng
- NORCE Norwegian Research Centre, Mekjarvik 12, 4072, Randaberg, Norway.
| | - Stig Westerlund
- NORCE Norwegian Research Centre, Mekjarvik 12, 4072, Randaberg, Norway.
| | - Jan Thomas Rundberget
- The Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway.
| | - Alfhild Kringstad
- The Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway.
| | - Paul J Seear
- Department of Genetics and Genome Biology, Adrian Building, University Road, University of Leicester, LE1 7RH, Leicester, UK.
| | - Les Burridge
- Burridge Consulting Inc., 61 Emmalee Dr Stratford PE, Canada C1B 0B5, Canada.
| |
Collapse
|
20
|
Forouhar Vajargah M, Mohamadi Yalsuyi A, Sattari M, Prokić MD, Faggio C. Effects of Copper Oxide Nanoparticles (CuO-NPs) on Parturition Time, Survival Rate and Reproductive Success of Guppy Fish, Poecilia reticulata. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01664-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Berezina NA, Lehtonen KK, Ahvo A. Coupled Application of Antioxidant Defense Response and Embryo Development in Amphipod Crustaceans in the Assessment of Sediment Toxicity. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:2020-2031. [PMID: 31189019 DOI: 10.1002/etc.4516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/01/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
Survival rate, frequency of malformed embryos, and antioxidant defense system responses in the benthic amphipod Gmelinoides fasciatus from the Baltic Sea were measured to examine the effects of toxic sediments, and to assess the usefulness of these endpoints in sediment toxicity biotesting. A highly contaminated sediment sample from the Baltic Sea was diluted with sediment from a clean site to come up with a series of 5 test sediments with dilutions from 1:32 to 1:1024, and the reference sediment. The 1:32 dilution of the test sediment was analyzed for organotins (2862 µg tin [Sn] kg dry wt -1 ), polycyclic aromatic hydrocarbons (6064 µg kg dry wt -1 ), and selected trace metals (e.g., copper 352 mg kg dry wt -1 ). The survival rate of G. fasciatus (10-d toxicity test) was 100% in the reference and 1:1024 treatments, and began to decline from the 1:256 dilution onward. In a 28-d experiment, various types of morphological malformations were observed in 11 to 80% of the amphipod embryos in the 1:64, 1:128, and 1:256 dilutions, with only <5% in the reference treatment. Also, elevated activities in the antioxidant defense system enzymes glutathione S-transferase and catalase were observed in amphipods exposed to the contaminated sediments compared with the reference treatment, with responses at lower contamination levels compared with the appearance of malformations in the embryos. The results obtained illustrate the effectiveness of the combined application of embryonic malformations and antioxidant defense system biomarkers in amphipods in the assessment of sediment toxicity, and potentially also of sublethal effects of chemical contamination in aquatic ecosystems. Environ Toxicol Chem 2019;38:2020-2031. © 2019 SETAC.
Collapse
Affiliation(s)
| | - Kari K Lehtonen
- Marine Research Center, Finnish Environment Institute, Helsinki, Finland
| | - Aino Ahvo
- Marine Research Center, Finnish Environment Institute, Helsinki, Finland
| |
Collapse
|
22
|
Jegede OO, Hale BA, Siciliano SD. Multigenerational exposure of populations of Oppia nitens to zinc under pulse and continuous exposure scenarios. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:896-904. [PMID: 30675922 DOI: 10.1002/etc.4369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/06/2018] [Accepted: 01/19/2019] [Indexed: 06/09/2023]
Abstract
Current soil remediation guidelines for metals reflect single-generation laboratory studies, but in the field, organisms are exposed to metals for more than one generation. The present study assessed the multigenerational effect of zinc (Zn) on Oppia nitens under a pulse or continuous exposure scenario. Synchronized adult mites (parents) were exposed to 6 concentrations of Zn in a field soil. For the pulse exposure, juveniles of parent mites from 3 of the 6 concentrations (105, 158, 237, 335, 553, and 800 mg/kg) were kept in clean media and reared until the third generation. At every generation, the sensitivity of the mites to Zn was tested in a dose-response manner. For the continuous exposure, the mites produced from the parents were re-exposed to the same concentration as their parents. According to critical-level estimates like the median effect concentration, all populations of the F2 and F3 generation mites in the pulse exposure were less sensitive to Zn than the parents and were protected at 250 mg/kg of Zn (Canadian Council of Ministers of the Environment [2018] soil quality guideline). However, the mite generations of the continuous exposure remained as sensitive as the parent generation and were not protected by the Zn guideline level. The Zn niche width narrowed considerably for all continuously exposed mite populations, indicating that they were more sensitive than the parent. Our results show that Zn has a deleterious multigenerational effect on continuously exposed populations of mites. Environ Toxicol Chem 2019;38:896-904. © 2019 SETAC.
Collapse
Affiliation(s)
- Olukayode O Jegede
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Beverley A Hale
- Department of Land Resource Science, University of Guelph, Guelph, Ontario, Canada
| | - Steven D Siciliano
- Department of Soil Science, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
23
|
Pereira P, Korbas M, Pereira V, Cappello T, Maisano M, Canário J, Almeida A, Pacheco M. A multidimensional concept for mercury neuronal and sensory toxicity in fish - From toxicokinetics and biochemistry to morphometry and behavior. Biochim Biophys Acta Gen Subj 2019; 1863:129298. [PMID: 30768958 DOI: 10.1016/j.bbagen.2019.01.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/16/2019] [Accepted: 01/30/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Neuronal and sensory toxicity of mercury (Hg) compounds has been largely investigated in humans/mammals with a focus on public health, while research in fish is less prolific and dispersed by different species. Well-established premises for mammals have been governing fish research, but some contradictory findings suggest that knowledge translation between these animal groups needs prudence [e.g. the relative higher neurotoxicity of methylmercury (MeHg) vs. inorganic Hg (iHg)]. Biochemical/physiological differences between the groups (e.g. higher brain regeneration in fish) may determine distinct patterns. This review undertakes the challenge of identifying sensitive cellular targets, Hg-driven biochemical/physiological vulnerabilities in fish, while discriminating specificities for Hg forms. SCOPE OF REVIEW A functional neuroanatomical perspective was conceived, comprising: (i) Hg occurrence in the aquatic environment; (ii) toxicokinetics on central nervous system (CNS)/sensory organs; (iii) effects on neurotransmission; (iv) biochemical/physiological effects on CNS/sensory organs; (v) morpho-structural changes on CNS/sensory organs; (vi) behavioral effects. The literature was also analyzed to generate a multidimensional conceptualization translated into a Rubik's Cube where key factors/processes were proposed. MAJOR CONCLUSIONS Hg neurosensory toxicity was unequivocally demonstrated. Some correspondence with toxicity mechanisms described for mammals (mainly at biochemical level) was identified. Although the research has been dispersed by numerous fish species, 29 key factors/processes were pinpointed. GENERAL SIGNIFICANCE Future trends were identified and translated into 25 factors/processes to be addressed. Unveiling the neurosensory toxicity of Hg in fish has a major motivation of protecting ichtyopopulations and ecosystems, but can also provide fundamental knowledge to the field of human neurodevelopment.
Collapse
Affiliation(s)
- Patrícia Pereira
- Department of Biology and CESAM, University of Aveiro, Aveiro 3810-193, Portugal
| | - Malgorzata Korbas
- Science Division, Canadian Light Source Inc., Saskatoon, Canada; Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Canada
| | - Vitória Pereira
- Department of Biology and CESAM, University of Aveiro, Aveiro 3810-193, Portugal
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Maria Maisano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - João Canário
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| | - Armando Almeida
- Life and Health Sciences Research Institute (ICVS), School of Medicine (EM), University of Minho, Campus of Gualtar, Braga 4750-057, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| | - Mário Pacheco
- Department of Biology and CESAM, University of Aveiro, Aveiro 3810-193, Portugal.
| |
Collapse
|
24
|
Ortiz-Delgado JB, Funes V, Sarasquete C. The organophosphate pesticide -OP- malathion inducing thyroidal disruptions and failures in the metamorphosis of the Senegalese sole, Solea senegalensis. BMC Vet Res 2019; 15:57. [PMID: 30744622 PMCID: PMC6371575 DOI: 10.1186/s12917-019-1786-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/16/2019] [Indexed: 12/14/2022] Open
Abstract
Background Organophosphate pesticides-OP-, like malathion, can alter the normal functioning of neuro-endocrine systems (e.g., hypothalamus-pituitary-thyroid-HPT- axis), and to interfere on the thyroidal homeostasis. Through direct interactions with thyroid receptors, an/or indirectly via up-stream signalling pathways, from the HPT axis (i.e., negative feedback regulation), malathion possess the ability to affect integrity of thyroidal follicular tissue, and it can also block or delay its hormonal functioning. This insecticide can alter the majority of the ontogenetic processes, inducing several deformities, and also provoking decreases in the growth and survival patterns. The present study has been performed to determine the sublethal effects of malathion during the first month of life of the Senegalese sole, Solea senegalensis, and it is mainly focused on the metamorphosis phase. Different transcript expression levels (i.e. thyroid receptors, matrix and bone -Gla-proteins) and immunohistochemical patterns (i.e. thyroid hormones, osteocalcin, cell proliferation) have been analysed during the most critical phases of the flatfish metamorphosis, that is, through differentiation of thyroid system and skeletal development, migration of the eye, and further adaptation to benthic behaviours. Results In early life stages of the Senegalese sole, the exposure to the highest concentration of malathion (6.25 μg/L) affected to the growth patterns, showing the exposed individuals, a reduction around 60 and 92% of the total length and the dry weigth, respectively. In paralell, a significant reduction of the thyroid follicles (i.e., size and number) it was also been recorded, in a dose-dependent way. Abnormal phenotypes induced in the exposed larvae, did not complete the process of metamorphosis, and displayed several morphological abnormalities and developmental disorders, which were mainly associated with the eye migration process, and with thyroidal and skeletal disorders (i.e., transcriptional and protein changes of thyroid hormones and receptors, and of matrix and bone Gla proteins distribution), that conduced to an inadequate adaptation to the benthic life. Conclusions In the Senegalese sole, the majority of the ontogenetic alterations induced by the exposure to malathion were mainly associated to the metamorphosis period, which is a thyroid-driven proccess. In fact, most crucial and transitional ontogenic events, appeared notably disturbed, for e.g., thyroid gland differentiation and functioning, migration of eye, skeletal development and benthonic behaviors.
Collapse
Affiliation(s)
- Juan B Ortiz-Delgado
- Instituto de Ciencias Marinas de Andalucía-ICMAN, CSIC Campus Universitario Río San Pedro, 11510, Puerto Real, Cádiz, Spain.
| | - Victoria Funes
- IFAPA, Centro el Toruño, Junta de Andalucía, Camino Tiro de Pichón s/n, 11500, El Puerto de Santa María, Cádiz, Spain
| | - Carmen Sarasquete
- Instituto de Ciencias Marinas de Andalucía-ICMAN, CSIC Campus Universitario Río San Pedro, 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
25
|
de Farias NO, Oliveira R, Sousa-Moura D, de Oliveira RCS, Rodrigues MAC, Andrade TS, Domingues I, Camargo NS, Muehlmann LA, Grisolia CK. Exposure to low concentration of fluoxetine affects development, behaviour and acetylcholinesterase activity of zebrafish embryos. Comp Biochem Physiol C Toxicol Pharmacol 2019; 215:1-8. [PMID: 30195060 DOI: 10.1016/j.cbpc.2018.08.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/28/2018] [Accepted: 08/31/2018] [Indexed: 12/01/2022]
Abstract
Fluoxetine (FLX) is a selective serotonin reuptake inhibitor (SSRI) antidepressant widely used in clinics and very often found in environmental samples of urban aquatic ecosystems in concentrations ranging from ng/L to μg/L. Fish populations might be especially susceptible to FLX due to the presence of conserved cellular receptors of serotonin. Neurotoxic effects on fish biota of polluted water bodies may be expected, but there are no sufficient studies in the current literature to elucidate this hypothesis. Batteries of embryo larval assays with zebrafish were performed to evaluate the potential effects of FLX exposure, including environmentally relevant concentrations. Evaluated parameters included survival, development, behaviour and neuronal biochemical markers. Regarding acute toxicity, a 168 h-LC50 value of 1.18 mg/L was obtained. Moreover, hatching delay and loss of equilibrium were observed, but at a concentration level much higher than FLX measured environmental concentrations (>100 μg/L). On the other hand, effects on locomotor and acetylcholinesterase activity (≥0.88 and 6 μg/L, respectively) were found at levels close to the maximum reported FLX concentration in surface waters. Altogether, these results suggest that FLX is neurotoxic to early life stages of zebrafish, in a short period of time causing changes in important ecological attributes which can probably be linked from molecular to population level.
Collapse
Affiliation(s)
- Natália Oliveira de Farias
- Laboratório de Genética Toxicológica, Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Asa Norte, 70910-900 Brasília, Distrito Federal, Brazil
| | - Rhaul Oliveira
- Laboratório de Genética Toxicológica, Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Asa Norte, 70910-900 Brasília, Distrito Federal, Brazil; Faculdade de Tecnologia, Universidade Estadual de Campinas, UNICAMP, 13484-332 Limeira, São Paulo, Brazil; Programa de Pós-graduação em Toxicologia e Análises Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, FCF - USP, 05508-000 Butantã, São Paulo, Brazil.
| | - Diego Sousa-Moura
- Laboratório de Genética Toxicológica, Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Asa Norte, 70910-900 Brasília, Distrito Federal, Brazil
| | - Reginaldo Carlyle Silva de Oliveira
- Laboratório de Genética Toxicológica, Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Asa Norte, 70910-900 Brasília, Distrito Federal, Brazil
| | - Maria Augusta Carvalho Rodrigues
- Laboratório de Genética Toxicológica, Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Asa Norte, 70910-900 Brasília, Distrito Federal, Brazil
| | - Thayres Sousa Andrade
- Laboratório de Genética Toxicológica, Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Asa Norte, 70910-900 Brasília, Distrito Federal, Brazil
| | - Inês Domingues
- Departamento de Biologia e CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Níchollas Serafim Camargo
- Laboratório de Nanobiotecnologia, Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Asa Norte, 70910-900 Brasília, Distrito Federal, Brazil; Faculdade da Ceilândia, Universidade de Brasília, 72220-90 Brasília, Distrito Federal, Brazil
| | - Luís Alexandre Muehlmann
- Laboratório de Nanobiotecnologia, Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Asa Norte, 70910-900 Brasília, Distrito Federal, Brazil; Faculdade da Ceilândia, Universidade de Brasília, 72220-90 Brasília, Distrito Federal, Brazil
| | - Cesar Koppe Grisolia
- Laboratório de Genética Toxicológica, Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Asa Norte, 70910-900 Brasília, Distrito Federal, Brazil
| |
Collapse
|
26
|
Puga S, Cardoso V, Pinto-Ribeiro F, Pacheco M, Almeida A, Pereira P. Brain morphometric profiles and their seasonal modulation in fish (Liza aurata) inhabiting a mercury contaminated estuary. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 237:318-328. [PMID: 29499575 DOI: 10.1016/j.envpol.2018.02.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/09/2018] [Accepted: 02/16/2018] [Indexed: 06/08/2023]
Abstract
Mercury (Hg) is a potent neurotoxicant known to induce important adverse effects on fish, but a deeper understanding is lacking regarding how environmental exposure affects the brain morphology and neural plasticity of specific brain regions in wild specimens. In this work, it was evaluated the relative volume and cell density of the lateral pallium, hypothalamus, optic tectum and molecular layer of the cerebellum on wild Liza aurata captured in Hg-contaminated (LAR) and non-contaminated (SJ) sites of a coastal system (Ria de Aveiro, Portugal). Given the season-related variations in the environment that fish are naturally exposed, this assessment was performed in the winter and summer. Hg triggered a deficit in cell density of hypothalamus during the winter that could lead to hormonal dysfunctions, while in the summer Hg promoted larger volumes of the optic tectum and cerebellum, indicating the warm period as the most critical for the manifestation of putative changes in visual acuity and motor-dependent tasks. Moreover, in fish from the SJ site, the lateral pallium relative volume and the cell density of the hypothalamus and optic tectum were higher in the winter than in summer. Thus, season-related stimuli strongly influence the size and/or cell density of specific brain regions in the non-contaminated area, pointing out the ability of fish to adapt to environmental and physiological demands. Conversely, fish from the Hg-contaminated site showed a distinct seasonal profile of brain morphology, presenting a larger optic tectum in the summer, as well as a larger molecular layer of the cerebellum with higher cell density. Moreover, Hg exposure impaired the winter-summer variation of the lateral pallium relative size (as observed at SJ). Altogether, seasonal variations in fish neural morphology and physiology should be considered when performing ecotoxicological studies in order to better discriminate the Hg neurotoxicity.
Collapse
Affiliation(s)
- Sónia Puga
- Life and Health Sciences Research Institute (ICVS), School of Medicine (EM), Campus of Gualtar, University of Minho, 4750-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Vera Cardoso
- Life and Health Sciences Research Institute (ICVS), School of Medicine (EM), Campus of Gualtar, University of Minho, 4750-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Filipa Pinto-Ribeiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine (EM), Campus of Gualtar, University of Minho, 4750-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Mário Pacheco
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Armando Almeida
- Life and Health Sciences Research Institute (ICVS), School of Medicine (EM), Campus of Gualtar, University of Minho, 4750-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Patrícia Pereira
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
27
|
Barboza LGA, Vieira LR, Guilhermino L. Single and combined effects of microplastics and mercury on juveniles of the European seabass (Dicentrarchus labrax): Changes in behavioural responses and reduction of swimming velocity and resistance time. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 236:1014-1019. [PMID: 29449115 DOI: 10.1016/j.envpol.2017.12.082] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 06/08/2023]
Abstract
Microplastics and mercury are environmental pollutants of great concern. The main goal of the present study was to investigate the effects of these pollutants, both individually and in binary mixtures, on the swimming performance of juvenile European seabass, Dicentrarchus labrax. Microplastics alone, mercury alone and all the mixtures caused significant reduction of the swimming velocity and resistance time of fish. Moreover, changes in behavioural responses including lethargic and erratic swimming behaviour were observed. These results highlight that fish behavioural responses can be used as sensitive endpoint to establish the effects of contamination by microplastics and also emphasizes the need to assess the combined effects of microplastics and other environmental contaminants, with special attention to the effects on behavioural responses in fish and other aquatic species.
Collapse
Affiliation(s)
- Luís Gabriel Antão Barboza
- ICBAS - Institute of Biomedical Sciences of Abel Salazar, University of Porto, Department of Populations Study, Laboratory of Ecotoxicology (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Group of Ecotoxicology, Stress Ecology and Environmental Health (ECOTOX), Av. General Norton de Matos, S/n, 289, 4450-208 Matosinhos, Portugal; CAPES Foundation, Ministry of Education of Brazil, 70040-020 Brasília, DF, Brazil.
| | - Luís Russo Vieira
- ICBAS - Institute of Biomedical Sciences of Abel Salazar, University of Porto, Department of Populations Study, Laboratory of Ecotoxicology (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Group of Ecotoxicology, Stress Ecology and Environmental Health (ECOTOX), Av. General Norton de Matos, S/n, 289, 4450-208 Matosinhos, Portugal.
| | - Lúcia Guilhermino
- ICBAS - Institute of Biomedical Sciences of Abel Salazar, University of Porto, Department of Populations Study, Laboratory of Ecotoxicology (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Group of Ecotoxicology, Stress Ecology and Environmental Health (ECOTOX), Av. General Norton de Matos, S/n, 289, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
28
|
Xu C, Li X, Jin M, Sun X, Niu L, Lin C, Liu W. Early life exposure of zebrafish (Danio rerio) to synthetic pyrethroids and their metabolites: a comparison of phenotypic and behavioral indicators and gene expression involved in the HPT axis and innate immune system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:12992-13003. [PMID: 29480392 DOI: 10.1007/s11356-018-1542-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 02/13/2018] [Indexed: 05/06/2023]
Abstract
Ecotoxicological studies have revealed the association between synthetic pyrethroid (SP) exposure and aquatic toxicity in fish; however, research on the toxic effects of SP metabolites is still limited. In this study, the toxicity of two SPs (permethrin (PM) and β-cypermethrin (β-CP)) and their three metabolites (3-phenoxybenzoic alcohol (PBCOH), 3-phenoxybenzaldehyde (PBCHO), and 3-phenoxybenzoic acid (PBCOOH)) towards zebrafish embryos and larvae was evaluated. Both SPs and their metabolites exhibited significant developmental toxicities, caused abnormal vascular development, and changed locomotor activities in larvae. The alteration of gene expression involved in the thyroid system and the innate immune system indicated that SPs and their three metabolites have the potency to induce thyroid disruption and trigger an immune response. The results from the present study suggest that SP metabolites could induce multiple toxic responses similar to parent compounds, and their toxicity should be considered for improving the understanding of environmental risks of SPs.
Collapse
Affiliation(s)
- Chao Xu
- Research Center of Environmental Science, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China.
| | - Xinfang Li
- Research Center of Environmental Science, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Meiqing Jin
- Research Center of Environmental Science, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Xiaohui Sun
- Zhejiang Environmental Monitoring Centre, Hangzhou, 310012, China
| | - Lili Niu
- Research Center of Environmental Science, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China.
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Chunmian Lin
- Research Center of Environmental Science, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Weiping Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
29
|
Qiu X, Nomichi S, Chen K, Honda M, Kang IJ, Shimasaki Y, Oshima Y. Short-term and persistent impacts on behaviors related to locomotion, anxiety, and startle responses of Japanese medaka (Oryzias latipes) induced by acute, sublethal exposure to chlorpyrifos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 192:148-154. [PMID: 28957716 DOI: 10.1016/j.aquatox.2017.09.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/29/2017] [Accepted: 09/12/2017] [Indexed: 06/07/2023]
Abstract
Although most exposures to chlorpyrifos (CPF) in natural flowing waters are brief and episodic, there have been a few reports of the persistence of abnormal fish behaviors caused by such acute exposure. The present study focused on the behavioral and biochemical responses of Japanese medaka (Oryzias latipes) to acute, sublethal exposure to CPF, as well as the persistence of the effects during a 3-week recovery test in CPF-free water. The medaka became hyperactive and exhibited an elevated anxiety state after a 4-day exposure to 0.024mg/L of CPF, but they recovered from these abnormal behavioral responses within 7days of recovery treatment. In contrast, persistent impacts on some startle responses to a sudden stimulation (induced by a ball drop) were observed in medaka exposed to CPF. The reaction latency did not change immediately after the 4-day exposure, but was significantly prolonged by as much as 21days after the termination of exposure. The post-stimulus swimming distance within 5s significantly decreased on the day immediately after the 4-day exposure, but it significantly increased after 7days of recovery treatment. The activity of acetylcholinesterase (AChE) in the brains of medaka was significantly inhibited on the day immediately after the 4-day exposure, but it returned to 80% and 110% of that in control fish on days 7 and 21 of the recovery period, respectively. However, AChE activities in the eyes of exposed medaka were persistently inhibited and declined to 33%, 71%, and 72% of that in control fish on days 0 (immediately after the 4-day exposure), 7, and 21 of recovery, respectively. Correlation analysis suggested that the changes of AChE activities in the brains of medaka may underlie some of the observed acute behavioral changes, and the changes of AChE activities in the eyes may contribute to the persistence of the abnormalities in the reaction latency of the startle response. Our findings suggest that medaka need a long time to recover from acute, sublethal exposure to CPF, and the persistence of the behavioral abnormalities might affect their fitness in natural habitats.
Collapse
Affiliation(s)
- Xuchun Qiu
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan
| | - Sayaka Nomichi
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan
| | - Kun Chen
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan
| | - Masato Honda
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan
| | - Ik Joon Kang
- International Student Center, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan
| | - Yohei Shimasaki
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan
| | - Yuji Oshima
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan.
| |
Collapse
|
30
|
Arambourou H, Decamps A, Quéau H, Dabrin A, Neuzeret D, Chaumot A. Use of Gammarus fossarum (Amphipoda) embryo for toxicity testing: A case study with cadmium. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:2436-2443. [PMID: 28252216 DOI: 10.1002/etc.3779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/17/2017] [Accepted: 02/27/2017] [Indexed: 06/06/2023]
Abstract
The effects of environmental contaminants on arthropod embryo stages have been poorly investigated in ecotoxicology. Moreover, many of these tests used hatching success as the sole metric, although it is possible to detect many more subtle effects. After a detailed description of embryogenesis in Gammarus fossarum, the present study reports on the sublethal effects of cadmium (Cd) exposure during embryonic development in G. fossarum. Embryos were first directly exposed in multiwell plates throughout the entire embryonic cycle (23 d) to increasing Cd concentrations (0, 1.5, and 3.0 μg/L; 120 embryos/concentration). Then, to assess the representativeness of the gammarid embryo assay performed in multiwell plates, embryos were exposed to similar Cd concentrations through the maternal open brood pouch. Next, to pinpoint sensitive periods of development, embryos were directly exposed to 3.0 μg/L of Cd for shorter periods of time: during gastrulation, organogenesis, and hatching. After hatching, the following parameters were measured in the newborn individuals: 1) body mass; 2) activity of the enzyme phenoloxidase, a key enzyme of the arthropod immune system; and 3) locomotor activity. Phenoloxidase activity was strongly inhibited in newborn individuals of embryos exposed (either in multiwell plates or in the maternal brood pouch) to 3.0 μg/L Cd throughout embryonic development. Furthermore, strong detrimental locomotor effects were observed in newborn individuals of embryos directly exposed to 3.0 μg/L. Exposures for shorter periods of time were not sufficient to induce such effects; no sensitive period could be determined. By bringing new insights into a critical time window of exposure, the gammarid embryo assay could provide a novel and interesting addition to existing bioassays in gammarids. Environ Toxicol Chem 2017;36:2436-2443. © 2017 SETAC.
Collapse
Affiliation(s)
- Hélène Arambourou
- Freshwater Systems, Ecology, and Pollution Research Unit, National Research Institute of Science and Technology for the Environment and Agriculture (Irstea), Villeurbanne, France
| | - Alexandre Decamps
- Freshwater Systems, Ecology, and Pollution Research Unit, National Research Institute of Science and Technology for the Environment and Agriculture (Irstea), Villeurbanne, France
| | - Hervé Quéau
- Freshwater Systems, Ecology, and Pollution Research Unit, National Research Institute of Science and Technology for the Environment and Agriculture (Irstea), Villeurbanne, France
| | - Aymeric Dabrin
- Freshwater Systems, Ecology, and Pollution Research Unit, National Research Institute of Science and Technology for the Environment and Agriculture (Irstea), Villeurbanne, France
| | | | - Arnaud Chaumot
- Freshwater Systems, Ecology, and Pollution Research Unit, National Research Institute of Science and Technology for the Environment and Agriculture (Irstea), Villeurbanne, France
| |
Collapse
|
31
|
Cypher AD, Consiglio J, Bagatto B. Hypoxia exacerbates the cardiotoxic effect of the polycyclic aromatic hydrocarbon, phenanthrene in Danio rerio. CHEMOSPHERE 2017; 183:574-581. [PMID: 28570901 DOI: 10.1016/j.chemosphere.2017.05.109] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/16/2017] [Accepted: 05/18/2017] [Indexed: 06/07/2023]
Abstract
The Deepwater Horizon oil spill of 2010 released a mixture of polycyclic aromatic hydrocarbons (PAHs) into the Gulf of Mexico presenting a complex exposure regime for native species. Concurrently, the Gulf has experienced an increase in hypoxic events due to agricultural runoff from the Mississippi River outflow. This combination presents a unique physiological challenge to native species and a challenge for researchers. The purpose of this study was to determine how the cardiotoxic PAH, phenanthrene interacts with hypoxia to affect the cardiovascular system of larval zebrafish (Danio rerio). We exposed zebrafish larvae to 0, 1, 100, and 1000 μg/L of phenanthrene in combination with normoxia and hypoxia. At late hatching, video of hearts and vessels were used to measure heart rate (ƒH), stroke volume (SV), cardiac output (Q), red blood cell velocity, and caudal vessel diameter. We found that the highest concentration of phenanthrene caused a 58, 80, and 84% decrease in ƒH, Q, and arterial red blood cell velocity in normoxia and an 88, 98, and 99% decrease in hypoxia, respectively. Co-exposed larvae also experienced higher rates of edema and lordosis in addition to a 33% increase in mortality rate with co-exposure to hypoxia at the 1000 μg/L concentration of phenanthrene. At 12 dpf, baseline swimming behavior was similar between treatments indicating partial recovery from embryonic exposure. This study shows that phenanthrene decreases cardiac parameters, most significantly heart rate and that this effect is exacerbated by simultaneous exposure to hypoxia.
Collapse
Affiliation(s)
- Alysha D Cypher
- Department of Biology, Integrated Bioscience, The University of Akron, Akron, OH, USA.
| | - Joanna Consiglio
- Department of Biology, Integrated Bioscience, The University of Akron, Akron, OH, USA
| | - Brian Bagatto
- Department of Biology, Integrated Bioscience, The University of Akron, Akron, OH, USA
| |
Collapse
|
32
|
Wilkinson JL, Hooda PS, Swinden J, Barker J, Barton S. Spatial distribution of organic contaminants in three rivers of Southern England bound to suspended particulate material and dissolved in water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 593-594:487-497. [PMID: 28360000 DOI: 10.1016/j.scitotenv.2017.03.167] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 03/17/2017] [Accepted: 03/18/2017] [Indexed: 06/07/2023]
Abstract
The spatial distribution of pharmaceuticals, personal care products (PPCPs) and other emerging contaminants (ECs) such as plasticisers, perflourinated compounds (PFCs) and illicit drug metabolites in water and bound to suspended particulate material (SPM) is not well-understood. Here, we quantify levels of thirteen selected contaminants in water (n=88) and their partition to suspended particulate material (SPM, n=16) in three previously-unstudied rivers of Greater London and Southern England during a key reproduction/spawning period. Analysis was conducted using an in-house validated method for Solid Phase Extraction followed by High-Performance Liquid Chromatography-Tandem Mass-Spectrometry. Analytes were extracted from SPM using an optimised method for ultrasonic-assisted solvent extraction. Detection frequencies of contaminants dissolved in water ranged from 3% (ethinylestradiol) to 100% (bisphenol-A). Overall mean concentrations in the aqueous-phase ranged from 14.7ng/L (benzoylecgonine) to 159ng/L (bisphenol-A). Sewage treatment works (STW) effluent was the predominant source of pharmaceuticals, while plasticisers/perfluorinated compounds may additionally enter rivers via other sources. In SPM, detection frequencies ranged from 44% (PFOA) to 94% (hydroxyacetophenone). Mean quantifiable levels of analytes bound to SPM ranged from 13.5ng/g dry SPM (0.33ng bound/L water) perfluorononanoic acid to 2830ng/g dry SPM (14.3ng bound/L water) perfluorooctanesulfonic acid. Long chain (>C7) amphipathic and acidic PFCs were found to more preferentially bind to SPM than short chain PFCs and other contaminants (Kd=34.1-75.5 vs <5 respectively). Per capita daily contributions of studied contaminants entering rivers ranged from 0.157μg/person/day of benzoylecgonine (cocaine metabolite) to 58.6μg/person/day of bisphenol-A. The large sample size of this work (n=104) enabled ANOVA followed by Tukey HSD post-hoc tests to establish significant trends in PPCP/EC spatial distribution from headwaters through downstream stretches of studied rivers. Novel findings include environmental Kd calculations, the occurrence of contaminants in river headwaters, increases in contaminant metabolite concentrations downstream of STW effluents revealing possible in-river degradation or de-conjugation, the influence of polarity and acidity in the partition of contaminants to particulate-material, among others.
Collapse
Affiliation(s)
- John L Wilkinson
- School of Natural and Built Environments, Kingston University London, Kingston-upon-Thames, Surrey, UK; Environment Department, University of York, York, UK.
| | - Peter S Hooda
- School of Natural and Built Environments, Kingston University London, Kingston-upon-Thames, Surrey, UK
| | - Julian Swinden
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston-upon-Thames, Surrey, UK
| | - James Barker
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston-upon-Thames, Surrey, UK
| | - Stephen Barton
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston-upon-Thames, Surrey, UK
| |
Collapse
|
33
|
Velisek J, Stara A, Zuskova E, Kouba A. Effects of three triazine metabolites and their mixture at environmentally relevant concentrations on early life stages of marbled crayfish (Procambarus fallax f. virginalis). CHEMOSPHERE 2017; 175:440-445. [PMID: 28242459 DOI: 10.1016/j.chemosphere.2017.02.080] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 05/03/2023]
Abstract
The sensitivity of early life stages of marbled crayfish (Procambarus fallax f. virginalis) to chronic exposure of one out of three triazine metabolites (terbuthylazine 2-hydroxy - T2H, terbuthylazine-desethyl - TD, and atrazine 2-hydroxy - A2H) and their mixture at maximal environmentally real concentrations was evaluated under laboratory conditions. The effects were assessed on the basis of mortality, growth, development, oxidative stress biomarkers, antioxidant enzymes activity and histopathology. Single metabolites (T2H - 0.73 μg/L; TD - 1.80 μg/L; A2H - 0.66 μg/L) and their mixture were not associated with negative effects on mortality, behaviour and early ontogeny, however, two metabolites (TD and A2H) and mixtures caused significantly lower growth and significantly higher catalase activity of early life stages of marbled crayfish. No histopathological changes of gills were observed after exposure to all tested triazine treatments, however, apparent histological differences in structural cells organization such as superiority in numbers of lipid resorptive cells were recorded in after exposition to TD and mixture. In conclusion, this study shows potential risk of using triazine herbicides in agriculture due to effects of their degradation products on non-target organisms.
Collapse
Affiliation(s)
- Josef Velisek
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25 Vodnany, Czechia.
| | - Alzbeta Stara
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25 Vodnany, Czechia
| | - Eliska Zuskova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25 Vodnany, Czechia
| | - Antonin Kouba
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25 Vodnany, Czechia
| |
Collapse
|
34
|
Fong PP, Bury TBS, Donovan EE, Lambert OJ, Palmucci JR, Adamczak SK. Exposure to SSRI-type antidepressants increases righting time in the marine snail Ilyanassa obsoleta. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:725-731. [PMID: 27752949 DOI: 10.1007/s11356-016-7855-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/05/2016] [Indexed: 05/27/2023]
Abstract
Exposure to human antidepressants has been shown to disrupt locomotion and other foot-mediated mechanisms in aquatic snails. We tested the effect of three selective serotonin reuptake inhibitor (SSRI)- and one selective serotonin-norepinephrine reuptake inhibitor (SNRI)-type antidepressants on the righting response in the marine snail, Ilyanassa obsoleta. All four antidepressants (fluoxetine, sertraline, paroxetine, venlafaxine) significantly increased righting time compared with controls with an exposure time as short as 1 h. Dose responses were nonmonotonic with effects seen mainly at the lowest exposure concentrations and shortest duration. The lowest concentration to show an effect was 3.45 μg/L fluoxetine with a 2-h exposure period and is about 3.71 times higher than environmental concentrations. Our results highlight rapid disruption of another foot-mediated behavior in aquatic snails by SSRI-type antidepressants. We discuss these and other reported nonmonotonic dose responses caused by antidepressants in terms of the various possible physiological mechanisms of action in nontarget aquatic species.
Collapse
Affiliation(s)
- Peter P Fong
- Department of Biology, Gettysburg College, Gettysburg, PA, 17325, USA.
| | - Taylor B S Bury
- Department of Biology, Gettysburg College, Gettysburg, PA, 17325, USA
| | | | - Olivia J Lambert
- Department of Biology, Gettysburg College, Gettysburg, PA, 17325, USA
| | - Julia R Palmucci
- Department of Biology, Gettysburg College, Gettysburg, PA, 17325, USA
| | | |
Collapse
|
35
|
Voisin AS, Fellous A, Earley RL, Silvestre F. Delayed impacts of developmental exposure to 17-α-ethinylestradiol in the self-fertilizing fish Kryptolebias marmoratus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 180:247-257. [PMID: 27750118 DOI: 10.1016/j.aquatox.2016.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/22/2016] [Accepted: 10/01/2016] [Indexed: 06/06/2023]
Abstract
17-α-ethinylestradiol (EE2) is one of the most potent endocrine disrupting compounds found in the aquatic environments, and is known to strongly alter fish reproduction and fitness. While the effects of direct exposure to EE2 are well studied in adults, there is an increasing need to assess the impacts of exposure during early life stages. Sensitivity to pollutants during this critical window can potentially affect the phenotype later in life or in subsequent generations. This study investigated phenotypic outcome of early-life exposure to 17-α-ethinylestradiol during development and in adults of the mangrove rivulus, Kryptolebias marmoratus. Being one of the only two known self-fertilizing hermaphroditic vertebrates, this fish makes it possible to work with genetically identical individuals. Therefore, using rivulus makes it possible to examine, explicitly, the phenotypic effects of environmental variance while eliminating the effects of genetic variance. Genetically identical rivulus were exposed for the first 28days post hatching (dph) to 0, 4 or 120ng/L of EE2, and then were reared in uncontaminated water until 168dph. Growth, egg laying and steroid hormone levels (estradiol, cortisol, 11-ketotestosterone, testosterone) were measured throughout development. Exposed fish showed a reduction in standard length directly after exposure (28dph), which was more pronounced in the 120ng/L group. This was followed by compensatory growth when reared in clean water: all fish recovered a similar size as controls by 91dph. There was no difference in the age at maturity and the proportions of mature, non-mature and male individuals at 168dph. At 4ng/L, fish layed significantly fewer eggs than controls, while, surprisingly, reproduction was not affected at 120ng/L. Despite a decrease in fecundity at 4ng/L, there were no changes in hormones levels at the lower concentration. In addition, there were no significant differences among treatments immediately after exposure. However, 120ng/L exposed fish exhibited significantly higher levels of testosterone at 91 and 168dph and 11-ketotestosterone at 168dph, up to 140days after exposure. These results indicate that early-life exposure to EE2 had both immediate and delayed impacts on the adult's phenotype. While fish growth was impaired during exposure, compensatory growth, reduced fecundity and modification of the endocrine status were observed after exposure ceased.
Collapse
Affiliation(s)
- Anne-Sophie Voisin
- Laboratory of Evolutionary and Adaptive Physiology, University of Namur, 61 Rue de Bruxelles, B5000 Namur, Belgium.
| | - Alexandre Fellous
- Laboratory of Evolutionary and Adaptive Physiology, University of Namur, 61 Rue de Bruxelles, B5000 Namur, Belgium.
| | - Ryan L Earley
- Department of Biological Sciences, University of Alabama, 300 Hackberry Lane, Box 870344, Tuscaloosa, AL, 35487, USA.
| | - Frédéric Silvestre
- Laboratory of Evolutionary and Adaptive Physiology, University of Namur, 61 Rue de Bruxelles, B5000 Namur, Belgium.
| |
Collapse
|
36
|
Puga S, Pereira P, Pinto-Ribeiro F, O'Driscoll NJ, Mann E, Barata M, Pousão-Ferreira P, Canário J, Almeida A, Pacheco M. Unveiling the neurotoxicity of methylmercury in fish (Diplodus sargus) through a regional morphometric analysis of brain and swimming behavior assessment. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 180:320-333. [PMID: 27780124 DOI: 10.1016/j.aquatox.2016.10.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/11/2016] [Accepted: 10/14/2016] [Indexed: 06/06/2023]
Abstract
The current study aims to shed light on the neurotoxicity of MeHg in fish (white seabream - Diplodus sargus) by the combined assessment of: (i) MeHg toxicokinetics in the brain, (ii) brain morphometry (volume and number of neurons plus glial cells in specific brain regions) and (iii) fish swimming behavior (endpoints associated with the motor performance and the fear/anxiety-like status). Fish were surveyed for all the components after 7 (E7) and 14 (E14) days of dietary exposure to MeHg (8.7μgg-1), as well as after a post-exposure period of 28days (PE28). MeHg was accumulated in the brain of D. sargus after a short time (E7) and reached a maximum at the end of the exposure period (E14), suggesting an efficient transport of this toxicant into fish brain. Divalent inorganic Hg was also detected in fish brain along the experiment (indicating demethylation reactions), although levels were 100-200 times lower than MeHg, which pinpoints the organic counterpart as the great liable for the recorded effects. In this regard, a decreased number of cells in medial pallium and optic tectum, as well as an increased hypothalamic volume, occurred at E7. Such morphometric alterations were followed by an impairment of fish motor condition as evidenced by a decrease in the total swimming time, while the fear/anxiety-like status was not altered. Moreover, at E14 fish swam a greater distance, although no morphometric alterations were found in any of the brain areas, probably due to compensatory mechanisms. Additionally, although MeHg decreased almost two-fold in the brain during post-exposure, the levels were still high and led to a loss of cells in the optic tectum at PE28. This is an interesting result that highlights the optic tectum as particularly vulnerable to MeHg exposure in fish. Despite the morphometric alterations reported in the optic tectum at PE28, no significant changes were found in fish behavior. Globally, the effects of MeHg followed a multiphasic profile, where homeostatic mechanisms prevented circumstantially morphometric alterations in the brain and behavioral shifts. Although it has become clear the complexity of matching brain morphometric changes and behavioral shifts, motor-related alterations induced by MeHg seem to depend on a combination of disruptions in different brain regions.
Collapse
Affiliation(s)
- Sónia Puga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus of Gualtar, University of Minho, 4750-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Patrícia Pereira
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Filipa Pinto-Ribeiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus of Gualtar, University of Minho, 4750-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nelson J O'Driscoll
- Department of Earth and Environmental Science, Center for Analytical Research on the Environment, K.C. Irving Center, Acadia University, Wolfville, Nova Scotia, Canada
| | - Erin Mann
- Department of Earth and Environmental Science, Center for Analytical Research on the Environment, K.C. Irving Center, Acadia University, Wolfville, Nova Scotia, Canada
| | - Marisa Barata
- IPMA - Aquaculture Research Station, 8700-005 Olhão, Portugal
| | | | - João Canário
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Armando Almeida
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus of Gualtar, University of Minho, 4750-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Mário Pacheco
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
37
|
Pietsch C, Junge R. Physiological responses of carp (Cyprinus carpio L.) to dietary exposure to zearalenone (ZEN). Comp Biochem Physiol C Toxicol Pharmacol 2016; 188:52-9. [PMID: 27349726 DOI: 10.1016/j.cbpc.2016.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/30/2016] [Accepted: 06/15/2016] [Indexed: 11/18/2022]
Abstract
Zearalenone (ZEN) is a frequent contaminant of animal feeds, but systemic effects on fish and possible metabolic costs have not yet been investigated. In order to fill this gap a feeding trial with juvenile carp was conducted. The fish were fed ZEN-contaminated diets at three concentrations (low: 332μgkg(-1), medium: 621μgkg(-1), and high: 797μgkg(-1) final feed, respectively) for four weeks. Possible reversible effects of ZEN were evaluated by feeding an additional group with the mycotoxin for four weeks period and the uncontaminated diet for further two weeks. After that possible ZEN effects on enzyme activities in kidney, spleen, liver and muscle tissue were investigated to get an organism-wide aspect of ZEN effects. Most organs appeared to (over)compensate ZEN effects during the exposure to this mycotoxin, which caused metabolic costs. Oxygen consumption increased in fish treated with the two higher ZEN concentrations via the diet. The differences between the treatments persisted also after the recovery phase of two weeks. Thus, the present study provided evidence of effects of ZEN on carbohydrate metabolism, lipid peroxidation in organs and metabolic oxygen demand. This is the first evidence for increased metabolic costs in a fish species due to exposure to the mycotoxin ZEN.
Collapse
Affiliation(s)
- Constanze Pietsch
- Zurich University of Applied Sciences (ZHAW), Institute of Natural Resource Sciences (IUNR), Gruental, P.O. Box, CH-8820 Waedenswil, Switzerland.
| | - Ranka Junge
- Zurich University of Applied Sciences (ZHAW), Institute of Natural Resource Sciences (IUNR), Gruental, P.O. Box, CH-8820 Waedenswil, Switzerland
| |
Collapse
|
38
|
Huang SSY, Noble S, Godoy R, Ekker M, Chan HM. Delayed effects of methylmercury on the mitochondria of dopaminergic neurons and developmental toxicity in zebrafish larvae (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 175:73-80. [PMID: 26994370 DOI: 10.1016/j.aquatox.2016.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/03/2016] [Accepted: 03/04/2016] [Indexed: 06/05/2023]
Abstract
Methylmercury (MeHg) is a known neurotoxicant affecting the central nervous system but effects on dopaminergic (DA) neurons are not well understood. Wild-type zebrafish (Danio rerio) and two transgenic lines: Tg(dat:eGFP) expressing enhanced green fluorescent protein (eGFP) in DA neuron clusters and Tg(dat:tom20 MLS-mCherry) expressing red fluorescence (mCherry) targeted to mitochondria of DA neurons were used to evaluate the effects of micromolar MeHg exposure on DA neuron and whole animal motor function during early development. Three-day-old larvae were exposed to micromolar concentrations of MeHg (0.03, 0.06, and 0.3μM) in system water. Exposure to 0.3μM MeHg caused mortality and significant morphological abnormalities including edema, curvature of the spine, and hemorrhages in zebrafish larvae after a 48h exposure period. At 0.06μM MeHg, the appearance of morphological abnormalities was delayed for 72h and far less severe, whereas 0.03μM MeHg did not cause any morphological defects or mortalities. A delayed but significant reduction in locomotor ability and mCherry fluorescence in specific brain regions in the 0.06μM MeHg exposed larvae suggests that DA neuron function rather than neuron numbers was compromised. Double immunolabeling with tyrosine hydroxylase and pan neural staining showed no effect of MeHg exposure. We have established Tg(dat:tom20 MLS-mCherry) zebrafish larvae as a model which can be used to assess MeHg neurotoxicity and that exposure to low dose MeHg (0.06μM) during development may predispose DA neurons to impairment caused by changes in mitochondrial dynamics.
Collapse
Affiliation(s)
- Susie S Y Huang
- Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ontario K1N 6N5, Canada
| | - Sandra Noble
- Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ontario K1N 6N5, Canada
| | - Rafael Godoy
- Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ontario K1N 6N5, Canada
| | - Marc Ekker
- Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ontario K1N 6N5, Canada
| | - Hing Man Chan
- Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
39
|
Sun L, Xu W, Peng T, Chen H, Ren L, Tan H, Xiao D, Qian H, Fu Z. Developmental exposure of zebrafish larvae to organophosphate flame retardants causes neurotoxicity. Neurotoxicol Teratol 2016; 55:16-22. [DOI: 10.1016/j.ntt.2016.03.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 03/14/2016] [Accepted: 03/20/2016] [Indexed: 10/22/2022]
|
40
|
Kalichak F, Idalencio R, Rosa JGS, de Oliveira TA, Koakoski G, Gusso D, de Abreu MS, Giacomini ACV, Barcellos HHA, Fagundes M, Piato AL, Barcellos LJG. Waterborne psychoactive drugs impair the initial development of Zebrafish. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 41:89-94. [PMID: 26667671 DOI: 10.1016/j.etap.2015.11.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/18/2015] [Accepted: 11/20/2015] [Indexed: 05/25/2023]
Abstract
The contamination of rivers and other natural water bodies, including underground waters, is a current reality. Human occupation and some economic activities generate a wide range of contaminated effluents that reach these water resources, including psychotropic drug residues. Here we show that fluoxetine, diazepam and risperidone affected the initial development of zebrafish. All drugs increased mortality rate and heart frequency and decreased larvae length. In addition, risperidone and fluoxetine decreased egg hatching. The overall results points to a strong potential of these drugs to cause a negative impact on zebrafish initial development and, since the larvae viability was reduced, promote adverse effects at the population level. We hypothesized that eggs and larvae absorbed the drugs that exert its effects in the central nervous system. These effects on early development may have significant environmental implications.
Collapse
Affiliation(s)
- Fabiana Kalichak
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brasil; Laboratório de Fisiologia de Peixes, Universidade de Passo Fundo (UPF), Passo Fundo, RS, Brasil.
| | - Renan Idalencio
- Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo (UPF), Passo Fundo, RS, Brasil; Laboratório de Fisiologia de Peixes, Universidade de Passo Fundo (UPF), Passo Fundo, RS, Brasil.
| | - João Gabriel S Rosa
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brasil; Laboratório de Fisiologia de Peixes, Universidade de Passo Fundo (UPF), Passo Fundo, RS, Brasil.
| | - Thiago A de Oliveira
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brasil; Laboratório de Fisiologia de Peixes, Universidade de Passo Fundo (UPF), Passo Fundo, RS, Brasil.
| | - Gessi Koakoski
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brasil; Laboratório de Fisiologia de Peixes, Universidade de Passo Fundo (UPF), Passo Fundo, RS, Brasil.
| | - Darlan Gusso
- Laboratório de Fisiologia de Peixes, Universidade de Passo Fundo (UPF), Passo Fundo, RS, Brasil.
| | - Murilo S de Abreu
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brasil; Laboratório de Fisiologia de Peixes, Universidade de Passo Fundo (UPF), Passo Fundo, RS, Brasil.
| | - Ana Cristina V Giacomini
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brasil; Laboratório de Fisiologia de Peixes, Universidade de Passo Fundo (UPF), Passo Fundo, RS, Brasil.
| | - Heloísa H A Barcellos
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brasil; Laboratório de Fisiologia de Peixes, Universidade de Passo Fundo (UPF), Passo Fundo, RS, Brasil.
| | - Michele Fagundes
- Laboratório de Fisiologia de Peixes, Universidade de Passo Fundo (UPF), Passo Fundo, RS, Brasil.
| | - Angelo L Piato
- Laboratório de Psicofarmacologia e Comportamento, Programa de Pós-Graduação em Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Leonardo J G Barcellos
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brasil; Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo (UPF), Passo Fundo, RS, Brasil; Laboratório de Fisiologia de Peixes, Universidade de Passo Fundo (UPF), Passo Fundo, RS, Brasil.
| |
Collapse
|
41
|
Wallace DR. Current State of Developmental Neurotoxicology Research. TOXICS 2015; 3:370-372. [PMID: 29051469 PMCID: PMC5606643 DOI: 10.3390/toxics3040370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 09/29/2015] [Accepted: 09/29/2015] [Indexed: 12/11/2022]
Affiliation(s)
- David R Wallace
- Department of Pharmacology & Physiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK, USA.
| |
Collapse
|
42
|
Sun PY, Foley HB, Bao VWW, Leung KMY, Edmands S. Variation in tolerance to common marine pollutants among different populations in two species of the marine copepod Tigriopus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:16143-16152. [PMID: 26070741 DOI: 10.1007/s11356-015-4846-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 06/04/2015] [Indexed: 06/04/2023]
Abstract
Geographical variation in chemical tolerance within a species can significantly influence results of whole animal bioassays, yet a literature survey showed that the majority of articles using bioassays did not provide detail on the original field collection site of their test specimens confounding the ability for accurate replication and comparison of results. Biological variation as a result of population-specific tolerance, if not addressed, can be misinterpreted as experimental error. Our studies of two marine copepod species, Tigriopus japonicus and Tigriopus californicus, found significant intra- and inter-specific variation in tolerance to copper and tributyltin. Because both species tolerate copper concentrations orders of magnitude higher than those found in coastal waters, difference in copper tolerance may be a by-product of adaptation to other stressors such as high temperature. Controlling for inter-population tolerance variation will greatly strengthen the application of bioassays in chemical toxicity tests.
Collapse
Affiliation(s)
- Patrick Y Sun
- Department of Biological Science and Wrigley Institute for Environmental Studies, University of Southern California, 3616 Trousdale PKWY STE 107, Los Angeles, CA, 90089, USA.
| | - Helen B Foley
- Department of Biological Science and Wrigley Institute for Environmental Studies, University of Southern California, 3616 Trousdale PKWY STE 107, Los Angeles, CA, 90089, USA
| | - Vivien W W Bao
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Kenneth M Y Leung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Suzanne Edmands
- Department of Biological Science and Wrigley Institute for Environmental Studies, University of Southern California, 3616 Trousdale PKWY STE 107, Los Angeles, CA, 90089, USA
| |
Collapse
|