1
|
Kalita P, Khatavkar O, Uwase G, Korshunova Y, Hu Y, Wagner ND, Xu J, Pan J, Nix JC, Gross ML, Brody SL, Borek D, Amarasinghe GK, Payton JE, Leung DW. Molecular basis for human respiratory syncytial virus transcriptional regulator NS1 interactions with MED25. Nat Commun 2025; 16:2883. [PMID: 40128225 PMCID: PMC11933697 DOI: 10.1038/s41467-025-58216-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 03/13/2025] [Indexed: 03/26/2025] Open
Abstract
The Mediator complex facilitates interactions between transcription factors and RNA polymerase II, a process that is required for host gene transcription, including in response to viral infections. Among the many subunits in the Mediator complex, the MED25 subunit has been shown to be a target for viral activators during infection. Here we provide the molecular basis for the interaction between human respiratory syncytial virus (hRSV) nonstructural 1 protein (NS1) and the activator interaction domain (ACID) of MED25. The X-ray crystal structure of the complex revealed that NS1 straddles and binds two faces of MED25 ACID. This interaction is distinct from previously known viral activators. Importantly, our data support the conformational flexibility of viral transcriptional regulators. Furthermore, ChIP-seq and RNA-seq analysis identified the ATF3 transcription factor and a role for NS1/Mediator/ATF3 interaction in host gene regulation in hRSV infections. Our findings provide a molecular basis for hRSV NS1-based regulation of host gene transcription and reveal how viruses exploit the conformational heterogeneity at fuzzy transcription activator interfaces.
Collapse
Affiliation(s)
- Parismita Kalita
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Oam Khatavkar
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Grace Uwase
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yulia Korshunova
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yuying Hu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Nicole D Wagner
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
| | - Jian Xu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jiehong Pan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jay C Nix
- Molecular Biology Consortium, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
| | - Steven L Brody
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Dominika Borek
- Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jacqueline E Payton
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Daisy W Leung
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
2
|
Verma S, Ghatak A. Involvement of E3 Ubiquitin Ligases in Viral Infections of the Human Host. Viral Immunol 2024; 37:419-431. [PMID: 39469796 DOI: 10.1089/vim.2024.0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
Viral infections are one of the principal causes of global primary health crises, with increased rate of infection and mortality demonstrated by the newer progeny of viruses. Viral invasion of the host involves utilization of various cellular machinery. Ubiquitination is one of a few central regulatory systems used by viruses for establishment of the infections in the host. Members of the ubiquitination system are involved in carrying out proteasomal degradation or functional modification of proteins in numerous cellular processes. E3 ubiquitin ligases play a major role in this system through recognition and recruitment of protein substrates and catalyzing the transfer of ubiquitin to these substrates. The versatility of ubiquitin ligases frequently makes them useful tools for the viruses, for either utilizing or degrading other cellular machineries, for carrying out their multiplication or inactivating the defensive strategies of the host. Therefore, these ligases are important targets for aiming at major pathways causing viral protein degradation or functional modification of the infection process. In this review, we have discussed the role and mechanism of different types of ubiquitin ligases in the context of infections of mainly human viruses, highlighting the viral proteins directly interacting with the ligases. Knowledge about these direct interactions is central in understanding the ubiquitin-dependent processes. This comprehensive account may also be beneficial for pharmaceutical exploration of E3 ligase-based broad-spectrum antiviral treatment.
Collapse
Affiliation(s)
- Suchanda Verma
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, India
| | - Archana Ghatak
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, India
| |
Collapse
|
3
|
Marougka K, Judith D, Jaouen T, Blouquit-Laye S, Cosentino G, Berlioz-Torrent C, Rameix-Welti MA, Sitterlin D. Antagonism of BST2/Tetherin, a new restriction factor of respiratory syncytial virus, requires the viral NS1 protein. PLoS Pathog 2024; 20:e1012687. [PMID: 39561185 PMCID: PMC11614281 DOI: 10.1371/journal.ppat.1012687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/03/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024] Open
Abstract
Human respiratory syncytial virus (RSV) is an enveloped RNA virus and the leading viral agent responsible for severe pediatric respiratory infections worldwide. Identification of cellular factors able to restrict viral infection is one of the key strategies used to design new drugs against infection. Here, we report for the first time that the cellular protein BST2/Tetherin (a widely known host antiviral molecule) behaves as a restriction factor of RSV infection. We showed that BST2 silencing resulted in a significant rise in viral production during multi-cycle infection, suggesting an inhibitory role during the late steps of RSV's multiplication cycle. Conversely, BST2 overexpression resulted in the decrease of the viral production. Furthermore, BST2 was found associated with envelope proteins and co-localized with viral filaments, suggesting that BST2 tethers RSV particles. Interestingly, RSV naturally downregulates cell surface and global BST2 expression, possibly through a mechanism dependent on ubiquitin. RSV's ability to enhance BST2 degradation was also validated in a model of differentiated cells infected by RSV. Additionally, we found that a virus deleted of NS1 is unable to downregulate BST2 and is significantly more susceptible to BST2 restriction compared to the wild type virus. Moreover, NS1 and BST2 interact in a co- immunoprecipitation experiment. Overall, our data support a model in which BST2 is a restriction factor against RSV infection and that the virus counteracts this effect by limiting the cellular factor's expression through a mechanism involving the viral protein NS1.
Collapse
Affiliation(s)
- Katherine Marougka
- Université Paris-Saclay, Université de Versailles St. Quentin, M3P, UMR 1173, INSERM, Versailles, France
| | - Delphine Judith
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Tristan Jaouen
- Université Paris-Saclay, Université de Versailles St. Quentin, M3P, UMR 1173, INSERM, Versailles, France
- Institut Pasteur, Université Paris Cité, M3P, PARIS, France
| | - Sabine Blouquit-Laye
- Université Paris-Saclay, Université de Versailles St. Quentin, M3P, UMR 1173, INSERM, Versailles, France
| | - Gina Cosentino
- Université Paris-Saclay, Université de Versailles St. Quentin, M3P, UMR 1173, INSERM, Versailles, France
| | | | - Marie-Anne Rameix-Welti
- Institut Pasteur, Université Paris Cité, M3P, PARIS, France
- Université Paris-Saclay, Université de Versailles St. Quentin, UMR 1173, INSERM, Assistance Publique des Hôpitaux de Paris, Hôpital Ambroise Paré, Laboratoire de Microbiologie, DMU15 Versailles, France
| | - Delphine Sitterlin
- Université Paris-Saclay, Université de Versailles St. Quentin, M3P, UMR 1173, INSERM, Versailles, France
- Institut Pasteur, Université Paris Cité, M3P, PARIS, France
| |
Collapse
|
4
|
Viñán Garcés AE, Cáceres E, Gómez JO, Martín-Loeches I, Reyes LF. Inflammatory response to SARS-CoV 2 and other respiratory viruses. Expert Rev Anti Infect Ther 2024; 22:725-738. [PMID: 39228288 DOI: 10.1080/14787210.2024.2400548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/09/2024] [Accepted: 08/31/2024] [Indexed: 09/05/2024]
Abstract
INTRODUCTION Lower respiratory tract infections (LRTI) remain a significant global cause of mortality and disability. Viruses constitute a substantial proportion of LRTI cases, with their pandemic potential posing a latent threat. After the SARS-CoV-2 pandemic, the resurgence of other respiratory viruses, including Influenza and Respiratory Syncytial Virus responsible for LRTI has been observed especially in susceptible populations. AREAS COVERED This review details the inflammatory mechanisms associated with three primary respiratory viruses: SARS-CoV-2, Influenza, and Respiratory Syncytial Virus (RSV). The focus will be on elucidating the activation of inflammatory pathways, understanding cellular contributions to inflammation, exploring the role of interferon and induced cell death in the response to these pathogens and detailing viral evasion mechanisms. Furthermore, the distinctive characteristics of each virus will be explained. EXPERT OPINION The study of viral pneumonia, notably concerning SARS-CoV-2, Influenza, and RSV, offers critical insights into infectious and inflammatory mechanisms with wide-ranging implications. Addressing current limitations, such as diagnostic accuracy and understanding host-virus interactions, requires collaborative efforts and investment in technology. Future research holds promise for uncovering novel therapeutic targets, exploring host microbiome roles, and addressing long-term sequelae. Integrating advances in molecular biology and technology will shape the evolving landscape of viral pneumonia research, potentially enhancing global public health outcomes.
Collapse
Affiliation(s)
- André Emilio Viñán Garcés
- Unisabana Center for Translational Science, School of Medicine, Universidad de La Sabana, Chía, Colombia
- Critical Care Department, Clínica Universidad de La Sabana, Chía, Colombia
| | - Eder Cáceres
- Unisabana Center for Translational Science, School of Medicine, Universidad de La Sabana, Chía, Colombia
- Critical Care Department, Clínica Universidad de La Sabana, Chía, Colombia
- Engineering School, Universidad de La Sabana, Chía, Colombia
| | - Juan Olivella Gómez
- Unisabana Center for Translational Science, School of Medicine, Universidad de La Sabana, Chía, Colombia
- Critical Care Department, Clínica Universidad de La Sabana, Chía, Colombia
| | | | - Luis Felipe Reyes
- Unisabana Center for Translational Science, School of Medicine, Universidad de La Sabana, Chía, Colombia
- Critical Care Department, Clínica Universidad de La Sabana, Chía, Colombia
- Pandemic Sciences Institute, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Zheng Y, Jiang D, Sui C, Wu X, Hu Y, Lee C, Cong X, Li J, Lu Y, Wang Z, Du Y, Qi J, Huang J. PRRSV NSP1α degrades TRIM25 through proteasome system to inhibit host antiviral immune response. Vet Microbiol 2024; 296:110173. [PMID: 38971119 DOI: 10.1016/j.vetmic.2024.110173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/26/2024] [Accepted: 06/30/2024] [Indexed: 07/08/2024]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is the most economically significant disease caused by porcine reproductive and respiratory syndrome virus (PRRSV). Type I interferon (IFN) induces a large number of interferon-stimulated genes (ISGs) expression to inhibit PRRSV infection. To survive in the host, PRRSV has evolved multiple strategies to antagonize host innate immune response. Previous studies have reported that PRRSV N protein decreases the expression of TRIM25 and TRIM25-mediated RIG-I ubiquitination to suppress IFN-β production. However, whether other PRRSV proteins inhibit the antiviral function of TRIM25 is less well understood. In this study, we first found that PRRSV NSP1α decreased ISGylation of TRIM25. Meanwhile, NSP1α significantly suppressed TRIM25-mediated IFN-β production to promote PRRSV replication. Further studies demonstrated that PRRSV NSP1α reduced the protein level of TRIM25 in proteasome system but did not regulate the transcription level of TRIM25. In addition, the function of NSP1α in TRIM25 degradation did not rely on its papain-like cysteine protease activity. Taken together, PRRSV NSP1α antagonizes the antiviral response of TRIM25 by mediating TRIM25 degradation to promote PRRSV replication. Our data identify TRIM25 as a natural target of PRRSV NSP1α and reveal a novel mechanism that PRRSV induces TRIM25 degradation and inhibits host antiviral immune response.
Collapse
Affiliation(s)
- Yuhang Zheng
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Dandan Jiang
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Chao Sui
- Laboratory Animal Center, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xiangju Wu
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yue Hu
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Changhee Lee
- College of Veterinary Medicine and Virus Vaccine Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Xiaoyan Cong
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Juntong Li
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yu Lu
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Nanjing 210014, China.
| | - Zhao Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China; School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250118, China.
| | - Yijun Du
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China; Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| | - Jing Qi
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China; Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| | - Juan Huang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
6
|
Wei Y, Song J, Zhang J, Chen S, Yu Z, He L, Chen J. Exploring TRIM proteins' role in antiviral defense against influenza A virus and respiratory coronaviruses. Front Cell Infect Microbiol 2024; 14:1420854. [PMID: 39077432 PMCID: PMC11284085 DOI: 10.3389/fcimb.2024.1420854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/19/2024] [Indexed: 07/31/2024] Open
Abstract
Numerous tripartite motif (TRIM) proteins, identified as E3 ubiquitin ligases, participate in various viral infections through ubiquitylation, ISGylation, and SUMOylation processes. Respiratory viruses, particularly influenza A virus (IAV) and respiratory coronaviruses (CoVs), have severely threatened public health with high morbidity and mortality, causing incalculable losses. Research on the regulation of TRIM proteins in respiratory virus infections is crucial for disease prevention and control. This review introduces TRIM proteins, summarizes recent discoveries regarding their roles and molecular mechanisms in IAV and CoVs infections, discusses current research gaps, and explores potential future trends in this rapidly developing field. It aims to enhance understanding of virus-host interactions and inform the development of new molecularly targeted therapies.
Collapse
Affiliation(s)
- Ying Wei
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, China
| | - Junzhu Song
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, China
| | - Jingyu Zhang
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, China
| | - Songbiao Chen
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, China
| | - Zuhua Yu
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, China
| | - Lei He
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, China
| | - Jian Chen
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
7
|
Yoneyama M, Kato H, Fujita T. Physiological functions of RIG-I-like receptors. Immunity 2024; 57:731-751. [PMID: 38599168 DOI: 10.1016/j.immuni.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 04/12/2024]
Abstract
RIG-I-like receptors (RLRs) are crucial for pathogen detection and triggering immune responses and have immense physiological importance. In this review, we first summarize the interferon system and innate immunity, which constitute primary and secondary responses. Next, the molecular structure of RLRs and the mechanism of sensing non-self RNA are described. Usually, self RNA is refractory to the RLR; however, there are underlying host mechanisms that prevent immune reactions. Studies have revealed that the regulatory mechanisms of RLRs involve covalent molecular modifications, association with regulatory factors, and subcellular localization. Viruses have evolved to acquire antagonistic RLR functions to escape the host immune reactions. Finally, the pathologies caused by the malfunction of RLR signaling are described.
Collapse
Affiliation(s)
- Mitsutoshi Yoneyama
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan; Division of Pandemic and Post-disaster Infectious Diseases, Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
| | - Hiroki Kato
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Takashi Fujita
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany; Laboratory of Regulatory Information, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
8
|
Cheng J, Tao J, Li B, Shi Y, Liu H. The lncRNA HCG4 regulates the RIG-I-mediated IFN production to suppress H1N1 swine influenza virus replication. Front Microbiol 2024; 14:1324218. [PMID: 38274760 PMCID: PMC10808666 DOI: 10.3389/fmicb.2023.1324218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024] Open
Abstract
Influenza A virus (IAV) non-structural protein 1 (NS1) is a virulence factor that allows the virus to replicate efficiently by suppressing host innate immune responses. Previously, we demonstrated that the serine (S) at position 42 of NS1 in H1N1 swine influenza virus (SIV) is a critical residue in interferon (IFN) resistance, thus facilitating viral infections. Here, by lncRNA-seq, a total of 153 differentially expressed lncRNAs were identified, and the lncRNA HCG4 was selected due to its significantly higher expression after infection with the NS1 S42P mutant virus. Overexpression of HCG4 enhanced IFN-β production and suppressed SIV infection, highlighting the potential antiviral activity of HCG4 against SIV. Further investigation suggested that HCG4 served as a positive feedback mediator for RIG-I signaling. It alleviated the inhibitory effect on RIG-I K63-linked ubiquitination by NS1 protein, thereby resulting in an increase in RIG-I-mediated IFN production. Taken together, our findings demonstrate that HCG4 modulates the innate immune response to SIV infection through K63-linked RIG-I ubiquitination, providing insights into the role of lncRNAs in controlling viral infections.
Collapse
Affiliation(s)
- Jinghua Cheng
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai, China
| | - Jie Tao
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai, China
| | - Benqiang Li
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai, China
| | - Ying Shi
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai, China
| | - Huili Liu
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai, China
| |
Collapse
|
9
|
Merritt TN, Pei J, Leung DW. Pathogenicity and virulence of human respiratory syncytial virus: Multifunctional nonstructural proteins NS1 and NS2. Virulence 2023:2283897. [PMID: 37964591 DOI: 10.1080/21505594.2023.2283897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023] Open
Abstract
Human respiratory syncytial virus (hRSV) is a major cause of acute lower respiratory tract infections in children under the age of two as well as in the elderly and immunocompromised worldwide. Despite its discovery over 60 years ago and the global impact on human health, limited specific and effective prophylactic or therapeutic options have been available for hRSV infections. Part of the lack of treatment options is attributed to the legacy of vaccine failure in the 1960s using a formalin-inactivated RSV (FI-RSV), which led to enhancement of disease post exposure to hRSV infection and hampered subsequent development of vaccine candidates. Recent FDA approval of a vaccine for older adults and impending approval for a maternal vaccine are major advancements but leaves children between 6 months and 5 years of age unprotected. Part of this limitation can be attributed to a lack of complete understanding of the factors that contribute to hRSV pathogenesis. The nonstructural proteins NS1 and NS2 are multifunctional virulence factors that are unique to hRSV and that play critical roles during hRSV infection, including antagonizing interferon (IFN) signalling to modulate host responses to hRSV infection. However, the molecular mechanisms by which the nonstructural proteins mediate their IFN inhibitory functions have not been completely defined. Current progress on the characterization of NS1 and NS2 during infection provides deeper insight into their roles. Furthermore, reverse genetics systems for hRSV provide a viable strategy to generate attenuated viruses by introduction of select mutations while maintaining immunogenicity required to elicit a long-term protective response. Here we will review the current state of knowledge of the nonstructural proteins, their contributions to RSV pathogenesis, and their potential as targets for therapeutic development.
Collapse
Affiliation(s)
- Trudy N Merritt
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jingjing Pei
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Daisy W Leung
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
10
|
Cao J, Shi M, Zhu L, Li X, Li A, Wu SY, Chiang CM, Zhang Y. The matrix protein of respiratory syncytial virus suppresses interferon signaling via RACK1 association. J Virol 2023; 97:e0074723. [PMID: 37712706 PMCID: PMC10617408 DOI: 10.1128/jvi.00747-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/13/2023] [Indexed: 09/16/2023] Open
Abstract
IMPORTANCE Respiratory syncytial virus (RSV) matrix (M) protein is indispensable for virion assembly and release. It is localized to the nucleus during early infection to perturb host transcription. However, the function of RSV M protein in other cellular activities remains poorly understood. In this study, several interferon response-associated host factors, including RACK1, were identified by proteomic analysis as RSV M interactors. Knockdown of RACK1 attenuates RSV-restricted IFN signaling leading to enhanced host defense against RSV infection, unraveling a role of M protein in antagonizing IFN response via association with RACK1. Our study uncovers a previously unrecognized mechanism of immune evasion by RSV M protein and identifies RACK1 as a novel host factor recruited by RSV, highlighting RACK1 as a potential new target for RSV therapeutics development.
Collapse
Affiliation(s)
- Jingjing Cao
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, China
| | - Menghan Shi
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, China
| | - Lina Zhu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, Qingdao, Shandong, China
| | - Xiangzhi Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, Qingdao, Shandong, China
| | - Aiying Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, China
| | - Shwu-Yuan Wu
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Cheng-Ming Chiang
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, China
| |
Collapse
|
11
|
da Silva RP, Thomé BL, da Souza APD. Exploring the Immune Response against RSV and SARS-CoV-2 Infection in Children. BIOLOGY 2023; 12:1223. [PMID: 37759622 PMCID: PMC10525162 DOI: 10.3390/biology12091223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
Viral respiratory tract infections are a significant public health concern, particularly in children. RSV is a prominent cause of lower respiratory tract infections among infants, whereas SARS-CoV-2 has caused a global pandemic with lower overall severity in children than in adults. In this review, we aimed to compare the innate and adaptive immune responses induced by RSV and SARS-CoV-2 to better understand differences in the pathogenesis of infection. Some studies have demonstrated that children present a more robust immune response against SARS-CoV-2 than adults; however, this response is dissimilar to that of RSV. Each virus has a distinctive mechanism to escape the immune response. Understanding the mechanisms underlying these differences is crucial for developing effective treatments and improving the management of pediatric respiratory infections.
Collapse
Affiliation(s)
| | | | - Ana Paula Duarte da Souza
- Laboratory of Clinical and Experimental Immunology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil; (R.P.d.S.); (B.L.T.)
| |
Collapse
|
12
|
Grabowski F, Kochańczyk M, Korwek Z, Czerkies M, Prus W, Lipniacki T. Antagonism between viral infection and innate immunity at the single-cell level. PLoS Pathog 2023; 19:e1011597. [PMID: 37669278 PMCID: PMC10503725 DOI: 10.1371/journal.ppat.1011597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/15/2023] [Accepted: 08/02/2023] [Indexed: 09/07/2023] Open
Abstract
When infected with a virus, cells may secrete interferons (IFNs) that prompt nearby cells to prepare for upcoming infection. Reciprocally, viral proteins often interfere with IFN synthesis and IFN-induced signaling. We modeled the crosstalk between the propagating virus and the innate immune response using an agent-based stochastic approach. By analyzing immunofluorescence microscopy images we observed that the mutual antagonism between the respiratory syncytial virus (RSV) and infected A549 cells leads to dichotomous responses at the single-cell level and complex spatial patterns of cell signaling states. Our analysis indicates that RSV blocks innate responses at three levels: by inhibition of IRF3 activation, inhibition of IFN synthesis, and inhibition of STAT1/2 activation. In turn, proteins coded by IFN-stimulated (STAT1/2-activated) genes inhibit the synthesis of viral RNA and viral proteins. The striking consequence of these inhibitions is a lack of coincidence of viral proteins and IFN expression within single cells. The model enables investigation of the impact of immunostimulatory defective viral particles and signaling network perturbations that could potentially facilitate containment or clearance of the viral infection.
Collapse
Affiliation(s)
- Frederic Grabowski
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Marek Kochańczyk
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Zbigniew Korwek
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Maciej Czerkies
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Wiktor Prus
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Lipniacki
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
- Department of Statistics, Rice University, Houston, Texas, United States of America
| |
Collapse
|
13
|
Zhang B, Cai T, He H, Huang X, Luo Y, Huang S, Luo J, Guo X. TRIM25 Suppresses Rabies Virus Fixed HEP-Flury Strain Production by Activating RIG-1-Mediated Type I Interferons. Genes (Basel) 2023; 14:1555. [PMID: 37628607 PMCID: PMC10454932 DOI: 10.3390/genes14081555] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Rabies remains a great threat to public health worldwide. So far, the mechanism of rabies virus (RABV) infection is not fully understood, and there is no effective treatment for rabies. Identifying more host restriction factors of RABV will spur the development of novel therapeutic interventions against rabies. Accumulating studies suggest that tripartite motif-containing (TRIM) proteins have great effects on virus replication. TRIMs control the antiviral responses through either direct interaction with viral proteins or indirect regulation of innate immune signaling molecules in the host. The role of TRIM25 in rabies virus (RABV) infection is poorly understood. Using next-generation sequencing, we found that TRIM25 is upregulated during HEP-Flury infection. Knockdown of TRIM25 enhances HEP-Flury production, while overexpression of TRIM25 suppresses HEP-Flury replication. Knockdown of interferon α and interferon β weakens the anti-RABV response induced by TRIM25 overexpression, and potentiates RABV production. Furthermore, we found that TRIM25 regulates type-I interferon response by targeting retinoic acid-inducible gene I (RIG-I) during HEP-Flury infection. Knockdown of RIG-I weakens the anti-HEP-Flury response induced by TRIM25 overexpression, indicating that TRIM25 regulates RABV production via the RIG-I-IFN axis. In addition, we observed that TRIM25 does not directly interact with HEP-Flury structural proteins, suggesting that TRIM25 regulates HEP-Flury production indirectly. Taken together, our work identifies TRIM25 as a new host factor involved in HEP-Flury infection, which may be a potential target for the development of antiviral drugs against RABV.
Collapse
Affiliation(s)
- Boyue Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510651, China; (B.Z.); (T.C.); (H.H.); (X.H.); (Y.L.); (J.L.)
| | - Ting Cai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510651, China; (B.Z.); (T.C.); (H.H.); (X.H.); (Y.L.); (J.L.)
| | - Hongling He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510651, China; (B.Z.); (T.C.); (H.H.); (X.H.); (Y.L.); (J.L.)
| | - Xuezhe Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510651, China; (B.Z.); (T.C.); (H.H.); (X.H.); (Y.L.); (J.L.)
| | - Yongwen Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510651, China; (B.Z.); (T.C.); (H.H.); (X.H.); (Y.L.); (J.L.)
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA;
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| | - Jun Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510651, China; (B.Z.); (T.C.); (H.H.); (X.H.); (Y.L.); (J.L.)
| | - Xiaofeng Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510651, China; (B.Z.); (T.C.); (H.H.); (X.H.); (Y.L.); (J.L.)
| |
Collapse
|
14
|
Dinda B, Dinda M, Dinda S, De UC. An overview of anti-SARS-CoV-2 and anti-inflammatory potential of baicalein and its metabolite baicalin: Insights into molecular mechanisms. Eur J Med Chem 2023; 258:115629. [PMID: 37437351 DOI: 10.1016/j.ejmech.2023.115629] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/26/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
The current Coronavirus Disease 2019 (COVID-19) pandemic, caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is highly contagious infection that breaks the healthcare systems of several countries worldwide. Till to date, no effective antiviral drugs against COVID-19 infection have reached the market, and some repurposed drugs and vaccines are prescribed for the treatment and prevention of this disease. The currently prescribed COVID-19 vaccines are less effective against the newly emergent variants of concern of SARS-CoV-2 due to several mutations in viral spike protein and obviously there is an urgency to develop new antiviral drugs against this disease. In this review article, we systematically discussed the anti-SARS-CoV-2 and anti-inflammatory efficacy of two flavonoids, baicalein and its 7-O-glucuronide, baicalin, isolated from Scutellaria baicalensis, Oroxylum indicum, and other plants as well as their pharmacokinetics and oral bioavailability, for development of safe and effective drugs for COVID-19 treatment. Both baicalein and baicalin target the activities of viral S-, 3CL-, PL-, RdRp- and nsp13-proteins, and host mitochondrial OXPHOS for suppression of viral infection. Moreover, these compounds prevent sepsis-related inflammation and organ injury by modulation of host innate immune responses. Several nanoformulated and inclusion complexes of baicalein and baicalin have been reported to increase oral bioavailability, but their safety and efficacy in SARS-CoV-2-infected transgenic animals are not yet evaluated. Future studies on these compounds are required for use in clinical trials of COVID-19 patients.
Collapse
Affiliation(s)
- Biswanath Dinda
- Department of Chemistry, Tripura University, Suryamaninagar, Agartala, Tripura, India.
| | - Manikarna Dinda
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, USA
| | - Subhajit Dinda
- Department of Chemistry, Government Degree College, Kamalpur, Dhalai, Tripura, India
| | - Utpal Chandra De
- Department of Chemistry, Tripura University, Suryamaninagar, Agartala, Tripura, India
| |
Collapse
|
15
|
Abstract
Re-emerging and new viral pathogens have caused significant morbidity and mortality around the world, as evidenced by the recent monkeypox, Ebola and Zika virus outbreaks and the ongoing COVID-19 pandemic. Successful viral infection relies on tactical viral strategies to derail or antagonize host innate immune defenses, in particular the production of type I interferons (IFNs) by infected cells. Viruses can thwart intracellular sensing systems that elicit IFN gene expression (that is, RIG-I-like receptors and the cGAS-STING axis) or obstruct signaling elicited by IFNs. In this Cell Science at a Glance article and the accompanying poster, we review the current knowledge about the major mechanisms employed by viruses to inhibit the activity of intracellular pattern-recognition receptors and their downstream signaling cascades leading to IFN-based antiviral host defenses. Advancing our understanding of viral immune evasion might spur unprecedented opportunities to develop new antiviral compounds or vaccines to prevent viral infectious diseases.
Collapse
Affiliation(s)
- Junji Zhu
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL 34987, USA
| | - Cindy Chiang
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL 34987, USA
| | - Michaela U. Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL 34987, USA
| |
Collapse
|
16
|
Yu L, Zhu Z, Deng J, Tian K, Li X. Antagonisms of ASFV towards Host Defense Mechanisms: Knowledge Gaps in Viral Immune Evasion and Pathogenesis. Viruses 2023; 15:574. [PMID: 36851786 PMCID: PMC9963191 DOI: 10.3390/v15020574] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
African swine fever (ASF) causes high morbidity and mortality of both domestic pigs and wild boars and severely impacts the swine industry worldwide. ASF virus (ASFV), the etiologic agent of ASF epidemics, mainly infects myeloid cells in swine mononuclear phagocyte system (MPS), including blood-circulating monocytes, tissue-resident macrophages, and dendritic cells (DCs). Since their significant roles in bridging host innate and adaptive immunity, these cells provide ASFV with favorable targets to manipulate and block their antiviral activities, leading to immune escape and immunosuppression. To date, vaccines are still being regarded as the most promising measure to prevent and control ASF outbreaks. However, ASF vaccine development is delayed and limited by existing knowledge gaps in viral immune evasion, pathogenesis, etc. Recent studies have revealed that ASFV can employ diverse strategies to interrupt the host defense mechanisms via abundant self-encoded proteins. Thus, this review mainly focuses on the antagonisms of ASFV-encoded proteins towards IFN-I production, IFN-induced antiviral response, NLRP3 inflammasome activation, and GSDMD-mediated pyroptosis. Additionally, we also make a brief discussion concerning the potential challenges in future development of ASF vaccine.
Collapse
Affiliation(s)
- Liangzheng Yu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Zhenbang Zhu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Junhua Deng
- Luoyang Putai Biotech Co., Ltd., Luoyang 471003, China
| | - Kegong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiangdong Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
17
|
Tovo PA, Garazzino S, Savino F, Daprà V, Pruccoli G, Dini M, Filisetti G, Funiciello E, Galliano I, Bergallo M. Expressions of Type I and III Interferons, Endogenous Retroviruses, TRIM28, and SETDB1 in Children with Respiratory Syncytial Virus Bronchiolitis. Curr Issues Mol Biol 2023; 45:1197-1217. [PMID: 36826024 PMCID: PMC9954910 DOI: 10.3390/cimb45020079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Interferons (IFNs) and IFN-stimulated genes (ISGs) play essential roles for the control of viral infections. Their expression in infants with respiratory syncytial virus (RSV) bronchiolitis is poorly defined. Human endogenous retroviruses (HERVs) represent 8% of our genome and modulate inflammatory and immune reactions. TRIM28 and SETDB1 participate in the epigenetic regulation of genes involved in the immune response, including IFNs and HERVs. No study has explored the expression of HERVs, TRIM28, and SETDB1 during RSV bronchiolitis. We assessed, through a PCR real-time Taqman amplification assay, the transcription levels of six IFN-I ISGs, four IFNλs, the pol genes of HERV-H, -K, and -W families, the env genes of Syncytin (SYN)1 and SYN2, and of TRIM28/SETDB1 in whole blood from 37 children hospitalized for severe RSV bronchiolitis and in healthy children (HC). The expression of most IFN-I ISGs was significantly higher in RSV+ patients than in age-matched HC, but it was inhibited by steroid therapy. The mRNA concentrations of IFN-λs were comparable between patients and age-matched HC. This lack of RSV-driven IFN-III activation may result in the defective protection of the airway mucosal surface leading to severe bronchiolitis. The expression of IFN-III showed a positive correlation with age in HC, that could account for the high susceptibility of young children to viral respiratory tract infections. The transcription levels of every HERV gene were significantly lower in RSV+ patients than in HC, while the expressions of TRIM28/SETDB1 were overlapping. Given the negative impact of HERVs and the positive effects of TRIM28/SETDB1 on innate and adaptive immune responses, the downregulation of the former and the normal expression of the latter may contribute to preserving immune functions against infection.
Collapse
Affiliation(s)
- Pier-Angelo Tovo
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
- Correspondence: Correspondence: (P.-A.T.); (M.B.)
| | - Silvia Garazzino
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
- Infectious Diseases Unit, Department of Pediatrics, Regina Margherita Children’s Hospital, Piazza Polonia 94, 10126 Turin, Italy
| | - Francesco Savino
- Early Infancy Special Care Unit, Department of Pediatric Care, Regina Margherita Children’s Hospital, Piazza Polonia 94, 10126 Turin, Italy
| | - Valentina Daprà
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
- Pediatric Laboratory, Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
| | - Giulia Pruccoli
- Infectious Diseases Unit, Department of Pediatrics, Regina Margherita Children’s Hospital, Piazza Polonia 94, 10126 Turin, Italy
| | - Maddalena Dini
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
- Pediatric Laboratory, Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
| | - Giacomo Filisetti
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
- Early Infancy Special Care Unit, Department of Pediatric Care, Regina Margherita Children’s Hospital, Piazza Polonia 94, 10126 Turin, Italy
| | - Elisa Funiciello
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
- Infectious Diseases Unit, Department of Pediatrics, Regina Margherita Children’s Hospital, Piazza Polonia 94, 10126 Turin, Italy
| | - Ilaria Galliano
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
- Pediatric Laboratory, Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
| | - Massimiliano Bergallo
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
- Pediatric Laboratory, Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
- Correspondence: Correspondence: (P.-A.T.); (M.B.)
| |
Collapse
|
18
|
Ottenio de Lourenço I, Toscano Pedroso Quintino E, Henrique Pereira M, Sprengel Lima C, Campos Araújo G, Octávio Regasini L, Alves de Melo F, Pereira de Souza F, Andres Fossey M, Putinhon Caruso Í. Biophysical studies of the interaction of hRSV Non-Structural 1 protein with natural flavonoids and their acetylated derivatives by spectroscopic techniques and computational simulations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 283:121751. [PMID: 35973382 DOI: 10.1016/j.saa.2022.121751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/14/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Human respiratory syncytial virus (hRSV) infections are one of the most causes of acute lower respiratory tract infections in children and elderly. The development of effective antiviral therapies or preventive vaccines against hRSV is not available yet. Thus, it is necessary to search for protein targets to combat this viral infection, as well as potential ways to block them. Non-Structural 1 (NS1) protein is an important factor for viral replication success since reduces the immune response by interacting with proteins in the type I interferon pathway. The influence of NS1 on the cell's immune response denotes the potential of its inhibition, being a possible target of treatment against hRSV infection. Here, it was studied the interaction of hRSV NS1 with natural flavonoids chrysin, morin, kaempferol, and myricetin and their mono-acetylated chrysin and penta-acetylated morin derivatives using spectroscopic techniques and computational simulations. The fluorescence data indicate that the binding affinities are on the order of 105 M-1, which are directly related to the partition coefficient of each flavonoid with Pearson's correlation coefficients of 0.76-0.80. The thermodynamic analysis suggests that hydrophobic interactions play a key role in the formation of the NS1/flavonoid complexes, with positive values of enthalpy and entropy changes. The computational approach proposes that flavonoids bind in a region of NS1 formed between the C-terminal α3-helix and the protein core, important for its biological function, and corroborate with experimental data revealing that hydrophobic contacts are important for the binding. Therefore, the present study provides relevant molecular details for the development of a possible new strategy to fight infections caused by hRSV.
Collapse
Affiliation(s)
- Isabella Ottenio de Lourenço
- Department of Physics, Institute of Biosciences, Letters and Exact Sciences (IBILCE), São Paulo State University "Júlio de Mesquita Filho" (UNESP), São José do Rio Preto, SP 15054-000, Brazil; Multiuser Center for Biomolecular Innovation (CMIB), Department of Physics, Institute of Biosciences, Letters and Exact Sciences (IBILCE), São Paulo State University "Júlio de Mesquita Filho" (UNESP), São José do Rio Preto, SP 15054-000, Brazil
| | - Evelyn Toscano Pedroso Quintino
- Multiuser Center for Biomolecular Innovation (CMIB), Department of Physics, Institute of Biosciences, Letters and Exact Sciences (IBILCE), São Paulo State University "Júlio de Mesquita Filho" (UNESP), São José do Rio Preto, SP 15054-000, Brazil
| | - Matheus Henrique Pereira
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Letters and Exact Sciences (IBILCE), São Paulo State University "Júlio de Mesquita Filho" (UNESP), São José do Rio Preto, SP 15054-000, Brazil
| | - Caroline Sprengel Lima
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Letters and Exact Sciences (IBILCE), São Paulo State University "Júlio de Mesquita Filho" (UNESP), São José do Rio Preto, SP 15054-000, Brazil
| | - Gabriela Campos Araújo
- Department of Physics, Institute of Biosciences, Letters and Exact Sciences (IBILCE), São Paulo State University "Júlio de Mesquita Filho" (UNESP), São José do Rio Preto, SP 15054-000, Brazil
| | - Luis Octávio Regasini
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Letters and Exact Sciences (IBILCE), São Paulo State University "Júlio de Mesquita Filho" (UNESP), São José do Rio Preto, SP 15054-000, Brazil
| | - Fernando Alves de Melo
- Department of Physics, Institute of Biosciences, Letters and Exact Sciences (IBILCE), São Paulo State University "Júlio de Mesquita Filho" (UNESP), São José do Rio Preto, SP 15054-000, Brazil; Multiuser Center for Biomolecular Innovation (CMIB), Department of Physics, Institute of Biosciences, Letters and Exact Sciences (IBILCE), São Paulo State University "Júlio de Mesquita Filho" (UNESP), São José do Rio Preto, SP 15054-000, Brazil
| | - Fátima Pereira de Souza
- Department of Physics, Institute of Biosciences, Letters and Exact Sciences (IBILCE), São Paulo State University "Júlio de Mesquita Filho" (UNESP), São José do Rio Preto, SP 15054-000, Brazil; Multiuser Center for Biomolecular Innovation (CMIB), Department of Physics, Institute of Biosciences, Letters and Exact Sciences (IBILCE), São Paulo State University "Júlio de Mesquita Filho" (UNESP), São José do Rio Preto, SP 15054-000, Brazil
| | - Marcelo Andres Fossey
- Department of Physics, Institute of Biosciences, Letters and Exact Sciences (IBILCE), São Paulo State University "Júlio de Mesquita Filho" (UNESP), São José do Rio Preto, SP 15054-000, Brazil; Multiuser Center for Biomolecular Innovation (CMIB), Department of Physics, Institute of Biosciences, Letters and Exact Sciences (IBILCE), São Paulo State University "Júlio de Mesquita Filho" (UNESP), São José do Rio Preto, SP 15054-000, Brazil.
| | - Ícaro Putinhon Caruso
- Department of Physics, Institute of Biosciences, Letters and Exact Sciences (IBILCE), São Paulo State University "Júlio de Mesquita Filho" (UNESP), São José do Rio Preto, SP 15054-000, Brazil; Multiuser Center for Biomolecular Innovation (CMIB), Department of Physics, Institute of Biosciences, Letters and Exact Sciences (IBILCE), São Paulo State University "Júlio de Mesquita Filho" (UNESP), São José do Rio Preto, SP 15054-000, Brazil; Institute of Medical Biochemistry Leopoldo de Meis and National Center for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil.
| |
Collapse
|
19
|
Huang S, Cheng A, Wang M, Yin Z, Huang J, Jia R. Viruses utilize ubiquitination systems to escape TLR/RLR-mediated innate immunity. Front Immunol 2022; 13:1065211. [PMID: 36505476 PMCID: PMC9732732 DOI: 10.3389/fimmu.2022.1065211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/10/2022] [Indexed: 11/26/2022] Open
Abstract
When the viruses invade the body, they will be recognized by the host pattern recognition receptors (PRRs) such as Toll like receptor (TLR) or retinoic acid-induced gene-I like receptor (RLR), thus causing the activation of downstream antiviral signals to resist the virus invasion. The cross action between ubiquitination and proteins in these signal cascades enhances the antiviral signal. On the contrary, more and more viruses have also been found to use the ubiquitination system to inhibit TLR/RLR mediated innate immunity. Therefore, this review summarizes how the ubiquitination system plays a regulatory role in TLR/RLR mediated innate immunity, and how viruses use the ubiquitination system to complete immune escape.
Collapse
Affiliation(s)
- Shanzhi Huang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,*Correspondence: Renyong Jia,
| |
Collapse
|
20
|
Bergeron HC, Tripp RA. RSV Replication, Transmission, and Disease Are Influenced by the RSV G Protein. Viruses 2022; 14:v14112396. [PMID: 36366494 PMCID: PMC9692685 DOI: 10.3390/v14112396] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 01/31/2023] Open
Abstract
It is important to understand the features affecting virus replication, fitness, and transmissibility as they contribute to the outcome of infection and affect disease intervention approaches. Respiratory syncytial virus (RSV) is a major contributor to respiratory disease, particularly in the infant and elderly populations. Although first described over 60 years ago, there are no approved vaccines and there are limited specific antiviral treatments due in part to our incomplete understanding of the features affecting RSV replication, immunity, and disease. RSV studies have typically focused on using continuous cell lines and conventional RSV strains to establish vaccine development and various antiviral countermeasures. This review outlines how the RSV G protein influences viral features, including replication, transmission, and disease, and how understanding the role of the G protein can improve the understanding of preclinical studies.
Collapse
|
21
|
An Unexpected Encounter: Respiratory Syncytial Virus Nonstructural Protein 1 Interacts with Mediator Subunit MED25. J Virol 2022; 96:e0129722. [PMID: 36102648 PMCID: PMC9555202 DOI: 10.1128/jvi.01297-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Innate immune responses, including the production of type I and III interferons, play a crucial role in the first line of defense against RSV infection. However, only a poor induction of type I IFNs is observed during RSV infection, suggesting that RSV has evolved mechanisms to prevent type I IFN expression by the infected host cell.
Collapse
|
22
|
Córdova-Dávalos LE, Hernández-Mercado A, Barrón-García CB, Rojas-Martínez A, Jiménez M, Salinas E, Cervantes-García D. Impact of genetic polymorphisms related to innate immune response on respiratory syncytial virus infection in children. Virus Genes 2022; 58:501-514. [PMID: 36085536 PMCID: PMC9462631 DOI: 10.1007/s11262-022-01932-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022]
Abstract
Respiratory syncytial virus (RSV) causes lower respiratory tract infections and bronchiolitis, mainly affecting children under 2 years of age and immunocompromised patients. Currently, there are no available vaccines or efficient pharmacological treatments against RSV. In recent years, tremendous efforts have been directed to understand the pathological mechanisms of the disease and generate a vaccine against RSV. Although RSV is highly infectious, not all the patients who get infected develop bronchiolitis and severe disease. Through various sequencing studies, single nucleotide polymorphisms (SNPs) have been discovered in diverse receptors, cytokines, and transcriptional regulators with crucial role in the activation of the innate immune response, which is implicated in the susceptibility to develop or protect from severe forms of the infection. In this review, we highlighted how variations in the key genes affect the development of innate immune response against RSV. This data would provide crucial information about the mechanisms of viral infection, and in the future, could help in generation of new strategies for vaccine development or generation of the pharmacological treatments.
Collapse
Affiliation(s)
- Laura Elena Córdova-Dávalos
- Laboratorio de Inmunología, Departamento de Microbiología, Universidad Autónoma de Aguascalientes, 20100, Aguascalientes, México
| | - Alicia Hernández-Mercado
- Laboratorio de Inmunología, Departamento de Microbiología, Universidad Autónoma de Aguascalientes, 20100, Aguascalientes, México
| | - Claudia Berenice Barrón-García
- Laboratorio de Inmunología, Departamento de Microbiología, Universidad Autónoma de Aguascalientes, 20100, Aguascalientes, México
| | - Augusto Rojas-Martínez
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Av. Morones Prieto 3000 Pte, Los Doctores, 64710, Monterrey, Nuevo León, México
| | - Mariela Jiménez
- Laboratorio de Inmunología, Departamento de Microbiología, Universidad Autónoma de Aguascalientes, 20100, Aguascalientes, México
| | - Eva Salinas
- Laboratorio de Inmunología, Departamento de Microbiología, Universidad Autónoma de Aguascalientes, 20100, Aguascalientes, México.
| | - Daniel Cervantes-García
- Laboratorio de Inmunología, Departamento de Microbiología, Universidad Autónoma de Aguascalientes, 20100, Aguascalientes, México. .,Consejo Nacional de Ciencia y Tecnología, 03940, Ciudad de México, México.
| |
Collapse
|
23
|
Tanaka Y, Morita N, Kitagawa Y, Gotoh B, Komatsu T. Human metapneumovirus M2-2 protein inhibits RIG-I signaling by preventing TRIM25-mediated RIG-I ubiquitination. Front Immunol 2022; 13:970750. [PMID: 36045682 PMCID: PMC9421128 DOI: 10.3389/fimmu.2022.970750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Retinoic acid-inducible gene I (RIG-I) is a receptor that senses viral RNA and interacts with mitochondrial antiviral signaling (MAVS) protein, leading to the production of type I interferons and inflammatory cytokines to establish an antiviral state. This signaling axis is initiated by the K63-linked RIG-I ubiquitination, mediated by E3 ubiquitin ligases such as TRIM25. However, many viruses, including several members of the family Paramyxoviridae and human respiratory syncytial virus (HRSV), a member of the family Pneumoviridae, escape the immune system by targeting RIG-I/TRIM25 signaling. In this study, we screened human metapneumovirus (HMPV) open reading frames (ORFs) for their ability to block RIG-I signaling reconstituted in HEK293T cells by transfection with TRIM25 and RIG-I CARD (an N-terminal CARD domain that is constitutively active in RIG-I signaling). HMPV M2-2 was the most potent inhibitor of RIG-I/TRIM25-mediated interferon (IFN)-β activation. M2-2 silencing induced the activation of transcription factors (IRF and NF-kB) downstream of RIG-I signaling in A549 cells. Moreover, M2-2 inhibited RIG-I ubiquitination and CARD-dependent interactions with MAVS. Immunoprecipitation revealed that M2-2 forms a stable complex with RIG-I CARD/TRIM25 via direct interaction with the SPRY domain of TRIM25. Similarly, HRSV NS1 also formed a stable complex with RIG-I CARD/TRIM25 and inhibited RIG-I ubiquitination. Notably, the inhibitory actions of HMPV M2-2 and HRSV NS1 are similar to those of V proteins of several members of the Paramyxoviridae family. In this study, we have identified a novel mechanism of immune escape by HMPV, similar to that of Pneumoviridae and Paramyxoviridae family members.
Collapse
Affiliation(s)
- Yukie Tanaka
- Department of Integrative Vascular Biology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Naoko Morita
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Aichi, Japan
| | - Yoshinori Kitagawa
- Division of Microbiology and Infectious Diseases, Department of Pathology, Shiga University of Medical Science, Shiga, Japan
| | - Bin Gotoh
- Division of Microbiology and Infectious Diseases, Department of Pathology, Shiga University of Medical Science, Shiga, Japan
| | - Takayuki Komatsu
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Aichi, Japan
- *Correspondence: Takayuki Komatsu,
| |
Collapse
|
24
|
Liu R, Li H, Liu X, Liang B, Qi Y, Meng F, Yang G, Shan S. TRIM25 inhibits spring viraemia of carp virus replication by positively regulating RIG-I signaling pathway in common carp (Cyprinus carpio L.). FISH & SHELLFISH IMMUNOLOGY 2022; 127:306-317. [PMID: 35753558 DOI: 10.1016/j.fsi.2022.06.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/13/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Common carp (Cyprinus carpio L.) is one of the most widely cultivated fish in China. Spring viraemia of carp virus (SVCV) is a highly pathogenic virus and has often caused excessive losses in carp pond fisheries. Innate immune play important roles against virus infection. To better understand the immune response of common carp against SVCV infection, transcriptome analysis was performed using the Illumina Novaseq 6000 platform. It was showed that a total of 3953 differentially expressed unigenes were identified, and the RLR signaling pathway were significantly enriched after SVCV infection. Subsequently, the role of RLR signaling pathway in SVCV infection was studied. The results showed that common carp RIG-I (CcRIG-I) and TRIM25 (CcTRIM25) significantly decreased the replication of SVCV by inducing the phosphorylation of TBK1, IRF3 and p65 and the expression of ifn-1, viperin, isg15 and mx. Further studies illustrated that CcTRIM25 could positive regulate CcRIG-I mediated downstream signaling pathway. Finally, the mechanism of CcTRIM25 promoting CcRIG-I-mediated signaling was investigated. CcTRIM25 could interact with the caspase activation and recruitment domain (CARD) of CcRIG-I and promoted K63-linked polyubiquitination of CcRIG-I. Altogether, the study revealed a mechanism of CcTRIM25 regulating CcRIG-I mediated immune response in SVCV infection.
Collapse
Affiliation(s)
- Rongrong Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No.88 East Wenhua Road, Jinan, 250014, China
| | - Hua Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No.88 East Wenhua Road, Jinan, 250014, China
| | - Xiaoye Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No.88 East Wenhua Road, Jinan, 250014, China
| | - Boyu Liang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No.88 East Wenhua Road, Jinan, 250014, China
| | - Yue Qi
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No.88 East Wenhua Road, Jinan, 250014, China
| | - Fei Meng
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No.88 East Wenhua Road, Jinan, 250014, China
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No.88 East Wenhua Road, Jinan, 250014, China.
| | - Shijuan Shan
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No.88 East Wenhua Road, Jinan, 250014, China.
| |
Collapse
|
25
|
Respiratory Syncytial virus NS1 protein targets the transactivator binding domain of MED25. J Mol Biol 2022; 434:167763. [PMID: 35907573 DOI: 10.1016/j.jmb.2022.167763] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 06/28/2022] [Accepted: 07/21/2022] [Indexed: 11/20/2022]
Abstract
Human RSV is the leading cause of infantile bronchiolitis in the world and one of the major causes of childhood deaths in resource-poor settings. It is a major unmet target for vaccines and anti-viral drugs. Respiratory syncytial virus has evolved a unique strategy to evade host immune response by coding for two non-structural proteins NS1 and NS2. Recently it was shown that in infected cells, nuclear NS1 could be involved in transcription regulation of host genes linked to innate immune response, via interactions with chromatin and the Mediator complex. Here we identified the MED25 Mediator subunit as an NS1 interactor in a yeast two-hybrid screen. We demonstrate that NS1 directly interacts with MED25 in vitro and in cellula, and that this interaction involves the MED25 transactivator binding ACID domain on the one hand, and the C-terminal α3 helix of NS1, with an additional contribution of the globular domain of NS1, on the other hand. By NMR we show that the NS1 α3 sequence primarily binds to the MED25 ACID H2 face, similarly to the α-helical transactivation domains (TADs) of transcription regulators such as Herpex simplex VP16 and ATF6α, a master regulator of ER stress response activated upon viral infection. Moreover, we found out that the NS1 could compete with ATF6α TAD for binding to MED25. These findings point to a mechanism of NS1 interfering with innate immune response by impairing recruitment by cellular TADs of the Mediator via MED25 and hence transcription of specific genes by RNA polymerase II.
Collapse
|
26
|
Luo J, Yang M, Zeng L, Pan X, Liu D, Diao S, Huang L, Chen T, Jia ZJ, Cheng G, Yu Q, Zhang L. Safety and Effectiveness of Inhaling Different Dosage Recombinant Human Interferon α1B for Bronchiolitis in Children: a Systematic Review and Meta-Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:2229735. [PMID: 35529920 PMCID: PMC9068289 DOI: 10.1155/2022/2229735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 11/18/2022]
Abstract
Purpose To systematically evaluate the safety and effectiveness of different dosages of recombinant human interferon α1b (IFNα1b) inhaled for bronchiolitis in children. Methods 7 databases, including PubMed, EMBASE, Cochrane Library, Web of Science, CNKI, Wanfang Database, and VIP, were searched. The search time was from their inception dates to March 28, 2022. A randomized controlled trial (RCT) of 2 μg/kg IFNα1b (low dosage group) monotherapy or in combination with other drugs vs. 4 μg/kg IFNα1b (high dosage group) monotherapy or in combination with the other drugs was included. The risk of bias 2.0 evaluated the RCT's quality, and the grading of recommendations assessment, development and evaluation (GRADE) tool was used for evaluating the overall quality of the evidence. Then, a meta-analysis was performed by RevMan 5.4. Results A total of 13 RCTs with 1719 children were included. The meta-analysis results showed that the high dosage group was significantly shorter than the low dosage group of the duration of hospital stays (MD = -0.40, 95%CI (-0.73, -0.07), P = 0.02) (low quality), three depressions sign disappearing time (MD = -0.60, 95%CI (-1.05, -0.14), P = 0.010) (low quality), and wheeze disappearing time (MD = -0.62, 95%CI (-1.17, -0.06), = 0.03) (low quality). There was no significant difference between the two groups in coughing disappearing time, pulmonary rales disappearing time, wheezing sound disappearing time, or adverse event rates. Conclusions Compared with low dosage IFNα1b, high dosage IFNα1b reduces the duration of hospital stays, the disappearance time of the three depression signs, and the disappearance time of wheeze in the treatment of bronchiolitis in children. Limited by the low quality of the evidence, the conclusions still need to be supported by high-quality studies.
Collapse
Affiliation(s)
- Jiefeng Luo
- West China School of Pharmacy, Sichuan University, Chengdu, China
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Mengting Yang
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Linan Zeng
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Xiangcheng Pan
- West China School of Pharmacy, Sichuan University, Chengdu, China
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Dan Liu
- West China School of Pharmacy, Sichuan University, Chengdu, China
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Sha Diao
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Liang Huang
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Ting Chen
- Department of Pediatrics, West China Second Hospital, Sichuan University, Chengdu, China
| | - Zhi-Jun Jia
- West China School of Pharmacy, Sichuan University, Chengdu, China
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Guo Cheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
- Department of Pediatrics, West China Second Hospital, Sichuan University, Chengdu, China
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Sichuan University, Chengdu, China
| | - Qin Yu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
- National Drug Clinical Trial Institute, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Lingli Zhang
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| |
Collapse
|
27
|
Oxidative Stress-Related Mechanisms in SARS-CoV-2 Infections. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5589089. [PMID: 35281470 PMCID: PMC8906126 DOI: 10.1155/2022/5589089] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/11/2021] [Accepted: 02/07/2022] [Indexed: 12/18/2022]
Abstract
The COVID-19 pandemic caused relatively high mortality in patients, especially in those with concomitant diseases (i.e., diabetes, hypertension, and chronic obstructive pulmonary disease (COPD)). In most of aforementioned comorbidities, the oxidative stress appears to be an important player in their pathogenesis. The direct cause of death in critically ill patients with COVID-19 is still far from being elucidated. Although some preliminary data suggests that the lung vasculature injury and the loss of the functioning part of pulmonary alveolar population are crucial, the precise mechanism is still unclear. On the other hand, at least two classes of medications used with some clinical benefits in COVID-19 treatment seem to have a major influence on ROS (reactive oxygen species) and RNS (reactive nitrogen species) production. However, oxidative stress is one of the important mechanisms in the antiviral immune response and innate immunity. Therefore, it would be of interest to summarize the data regarding the oxidative stress in severe COVID-19. In this review, we discuss the role of oxidative and antioxidant mechanisms in severe COVID-19 based on available studies. We also present the role of ROS and RNS in other viral infections in humans and in animal models. Although reactive oxygen and nitrogen species play an important role in the innate antiviral immune response, in some situations, they might have a deleterious effect, e.g., in some coronaviral infections. The understanding of the redox mechanisms in severe COVID-19 disease may have an impact on its treatment.
Collapse
|
28
|
Ouyang Y, Liao H, Hu Y, Luo K, Hu S, Zhu H. Innate Immune Evasion by Human Respiratory Syncytial Virus. Front Microbiol 2022; 13:865592. [PMID: 35308390 PMCID: PMC8931408 DOI: 10.3389/fmicb.2022.865592] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/17/2022] [Indexed: 01/03/2023] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of severe respiratory infection in young children. Nearly all individuals become infected in their early childhood, and reinfections with RSV are common throughout life. Primary infection with RSV is usually involved in the symptom of bronchiolitis and pneumonia in the lower respiratory tract, which accounts for over 3 million hospitalizations and approximately 66,000 deaths annually worldwide. Despite the widespread prevalence and high morbidity and lethality rates of diseases caused by RSV infection, there is currently no licensed RSV vaccine. During RSV infection, innate immunity plays the first line of defense to suppress RSV infection and replication. However, RSV has evolved multiple mechanisms to evade the host’s innate immune responses to gain a window of opportunity for efficient viral replication. This review discusses the comprehensive interaction between RSV infection and the host antiviral innate immunity and updates recent findings on how RSV modulates the host innate immune response for survival, which may provide novel insights to find potent drug targets and vaccines against RSV.
Collapse
Affiliation(s)
- Yan Ouyang
- Neonatal/Pediatric Intensive Care Unit, Children's Medical Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Hongqun Liao
- Neonatal/Pediatric Intensive Care Unit, Children's Medical Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Immunotherapeutic Drugs Developing for Childhood Leukemia, Ganzhou, China
| | - Yan Hu
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Kaiyuan Luo
- Neonatal/Pediatric Intensive Care Unit, Children's Medical Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Shaowen Hu
- Basic Medical College of Gannan Medical University, Ganzhou, China
| | - Huifang Zhu
- Neonatal/Pediatric Intensive Care Unit, Children's Medical Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Immunotherapeutic Drugs Developing for Childhood Leukemia, Ganzhou, China
- Basic Medical College of Gannan Medical University, Ganzhou, China
- Institute of Children's Medical, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Huifang Zhu,
| |
Collapse
|
29
|
Short-chain fatty acid acetate triggers antiviral response mediated by RIG-I in cells from infants with respiratory syncytial virus bronchiolitis. EBioMedicine 2022; 77:103891. [PMID: 35220042 PMCID: PMC8871125 DOI: 10.1016/j.ebiom.2022.103891] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/26/2022] [Accepted: 02/04/2022] [Indexed: 12/31/2022] Open
Abstract
Background Gut microbiota-derived short-chain fatty-acid (SFCA) acetate protects mice against RSV A2 strain infection by increasing interferon-β production and expression of interferon-stimulated genes (ISGs). However, the role of SFCA in RSV infection using strains isolated from patients is unknown. Methods We first used RSV clinical strains isolated from infants hospitalized with RSV bronchiolitis to investigate the effects of in vitro SCFA-acetate treatment of human pulmonary epithelial cells. We next examined whether SCFA-acetate treatment is beneficial in a mouse model of RSV infection using clinical isolates. We sought to investigate the relationship of gut microbiota and fecal acetate with disease severity among infants hospitalized with RSV bronchiolitis, and whether treating their respiratory epithelial cells with SCFA-acetate ex-vivo impacts viral load and ISG expression. We further treated epithelial cells from SARS-CoV-2 infected patients with SCFA-acetate. Findings In vitro pre-treatment of A549 cells with SCFA-acetate reduced RSV infection with clinical isolates and increased the expression of RIG-I and ISG15. Animals treated with SCFA-acetate intranasally recovered significantly faster, with reduction in the RSV clinical isolates viral load, and increased lung expression of IFNB1 and the RIG-I. Experiments in RIG-I knockout A549 cells demonstrated that the protection relies on RIG-I presence. Gut microbial profile was associated with bronchiolitis severity and with acetate in stool. Increased SCFA-acetate levels were associated with increasing oxygen saturation at admission, and shorter duration of fever. Ex-vivo treatment of patients’ respiratory cells with SCFA-acetate reduced RSV load and increased expression of ISGs OAS1 and ISG15, and virus recognition receptors MAVS and RIG-I, but not IFNB1. These SCFA-acetate effects were not found on cells from SARS-CoV-2 infected patients. Interpretation SCFA-acetate reduces the severity of RSV infection and RSV viral load through modulation of RIG-I expression. Funding FAPERGS (FAPERGS/MS/CNPq/SESRS no. 03/2017 - PPSUS 17/2551-0001380-8 and COVID-19 20/2551-0000258-6); CNPq 312504/2017-9; CAPES) - Finance Code 001.
Collapse
|
30
|
van Gent M, Chiang JJ, Muppala S, Chiang C, Azab W, Kattenhorn L, Knipe DM, Osterrieder N, Gack MU. The US3 Kinase of Herpes Simplex Virus Phosphorylates the RNA Sensor RIG-I To Suppress Innate Immunity. J Virol 2022; 96:e0151021. [PMID: 34935440 PMCID: PMC8865413 DOI: 10.1128/jvi.01510-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/10/2021] [Indexed: 11/20/2022] Open
Abstract
Recent studies have demonstrated that the signaling activity of the cytosolic pathogen sensor retinoic acid-inducible gene-I (RIG-I) is modulated by a variety of posttranslational modifications (PTMs) to fine-tune the antiviral type I interferon (IFN) response. Whereas K63-linked ubiquitination of the RIG-I caspase activation and recruitment domains (CARDs) catalyzed by TRIM25 or other E3 ligases activates RIG-I, phosphorylation of RIG-I at S8 and T170 represses RIG-I signal transduction by preventing the TRIM25-RIG-I interaction and subsequent RIG-I ubiquitination. While strategies to suppress RIG-I signaling by interfering with its K63-polyubiquitin-dependent activation have been identified for several viruses, evasion mechanisms that directly promote RIG-I phosphorylation to escape antiviral immunity are unknown. Here, we show that the serine/threonine (Ser/Thr) kinase US3 of herpes simplex virus 1 (HSV-1) binds to RIG-I and phosphorylates RIG-I specifically at S8. US3-mediated phosphorylation suppressed TRIM25-mediated RIG-I ubiquitination, RIG-I-MAVS binding, and type I IFN induction. We constructed a mutant HSV-1 encoding a catalytically-inactive US3 protein (K220A) and found that, in contrast to the parental virus, the US3 mutant HSV-1 was unable to phosphorylate RIG-I at S8 and elicited higher levels of type I IFNs, IFN-stimulated genes (ISGs), and proinflammatory cytokines in a RIG-I-dependent manner. Finally, we show that this RIG-I evasion mechanism is conserved among the alphaherpesvirus US3 kinase family. Collectively, our study reveals a novel immune evasion mechanism of herpesviruses in which their US3 kinases phosphorylate the sensor RIG-I to keep it in the signaling-repressed state. IMPORTANCE Herpes simplex virus 1 (HSV-1) establishes lifelong latency in the majority of the human population worldwide. HSV-1 occasionally reactivates to produce infectious virus and to facilitate dissemination. While often remaining subclinical, both primary infection and reactivation occasionally cause debilitating eye diseases, which can lead to blindness, as well as life-threatening encephalitis and newborn infections. To identify new therapeutic targets for HSV-1-induced diseases, it is important to understand the HSV-1-host interactions that may influence infection outcome and disease. Our work uncovered direct phosphorylation of the pathogen sensor RIG-I by alphaherpesvirus-encoded kinases as a novel viral immune escape strategy and also underscores the importance of RNA sensors in surveilling DNA virus infection.
Collapse
Affiliation(s)
- Michiel van Gent
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, USA
- Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| | - Jessica J. Chiang
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Santoshi Muppala
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, USA
| | - Cindy Chiang
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, USA
- Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| | - Walid Azab
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Berlin, Germany
| | - Lisa Kattenhorn
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| | - David M. Knipe
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Nikolaus Osterrieder
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Berlin, Germany
| | - Michaela U. Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, USA
- Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
31
|
Van Royen T, Rossey I, Sedeyn K, Schepens B, Saelens X. How RSV Proteins Join Forces to Overcome the Host Innate Immune Response. Viruses 2022; 14:v14020419. [PMID: 35216012 PMCID: PMC8874859 DOI: 10.3390/v14020419] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/10/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of severe acute lower respiratory tract infections in infants worldwide. Although several pattern recognition receptors (PRRs) can sense RSV-derived pathogen-associated molecular patterns (PAMPs), infection with RSV is typically associated with low to undetectable levels of type I interferons (IFNs). Multiple RSV proteins can hinder the host’s innate immune response. The main players are NS1 and NS2 which suppress type I IFN production and signalling in multiple ways. The recruitment of innate immune cells and the production of several cytokines are reduced by RSV G. Next, RSV N can sequester immunostimulatory proteins to inclusion bodies (IBs). N might also facilitate the assembly of a multiprotein complex that is responsible for the negative regulation of innate immune pathways. Furthermore, RSV M modulates the host’s innate immune response. The nuclear accumulation of RSV M has been linked to an impaired host gene transcription, in particular for nuclear-encoded mitochondrial proteins. In addition, RSV M might also directly target mitochondrial proteins which results in a reduced mitochondrion-mediated innate immune recognition of RSV. Lastly, RSV SH might prolong the viral replication in infected cells and influence cytokine production.
Collapse
Affiliation(s)
- Tessa Van Royen
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium; (T.V.R.); (I.R.); (K.S.); (B.S.)
- Department for Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Iebe Rossey
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium; (T.V.R.); (I.R.); (K.S.); (B.S.)
- Department for Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Koen Sedeyn
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium; (T.V.R.); (I.R.); (K.S.); (B.S.)
- Department for Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Bert Schepens
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium; (T.V.R.); (I.R.); (K.S.); (B.S.)
- Department for Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium; (T.V.R.); (I.R.); (K.S.); (B.S.)
- Department for Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
- Correspondence:
| |
Collapse
|
32
|
Guo-Parke H, Linden D, Weldon S, Kidney JC, Taggart CC. Deciphering Respiratory-Virus-Associated Interferon Signaling in COPD Airway Epithelium. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:121. [PMID: 35056429 PMCID: PMC8781535 DOI: 10.3390/medicina58010121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 01/08/2023]
Abstract
COPD is a chronic lung disorder characterized by a progressive and irreversible airflow obstruction, and persistent pulmonary inflammation. It has become a global epidemic affecting 10% of the population, and is the third leading cause of death worldwide. Respiratory viruses are a primary cause of COPD exacerbations, often leading to secondary bacterial infections in the lower respiratory tract. COPD patients are more susceptible to viral infections and associated severe disease, leading to accelerated lung function deterioration, hospitalization, and an increased risk of mortality. The airway epithelium plays an essential role in maintaining immune homeostasis, and orchestrates the innate and adaptive responses of the lung against inhaled and pathogen insults. A healthy airway epithelium acts as the first line of host defense by maintaining barrier integrity and the mucociliary escalator, secreting an array of inflammatory mediators, and initiating an antiviral state through the interferon (IFN) response. The airway epithelium is a major site of viral infection, and the interaction between respiratory viruses and airway epithelial cells activates host defense mechanisms, resulting in rapid virus clearance. As such, the production of IFNs and the activation of IFN signaling cascades directly contributes to host defense against viral infections and subsequent innate and adaptive immunity. However, the COPD airway epithelium exhibits an altered antiviral response, leading to enhanced susceptibility to severe disease and impaired IFN signaling. Despite decades of research, there is no effective antiviral therapy for COPD patients. Herein, we review current insights into understanding the mechanisms of viral evasion and host IFN antiviral defense signaling impairment in COPD airway epithelium. Understanding how antiviral mechanisms operate in COPD exacerbations will facilitate the discovery of potential therapeutic interventions to reduce COPD hospitalization and disease severity.
Collapse
Affiliation(s)
- Hong Guo-Parke
- Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queens University Belfast, Belfast BT9 7AE, UK; (H.G.-P.); (D.L.); (S.W.)
| | - Dermot Linden
- Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queens University Belfast, Belfast BT9 7AE, UK; (H.G.-P.); (D.L.); (S.W.)
| | - Sinéad Weldon
- Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queens University Belfast, Belfast BT9 7AE, UK; (H.G.-P.); (D.L.); (S.W.)
| | - Joseph C. Kidney
- Department of Respiratory Medicine, Mater Hospital Belfast, Belfast BT14 6AB, UK;
| | - Clifford C. Taggart
- Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queens University Belfast, Belfast BT9 7AE, UK; (H.G.-P.); (D.L.); (S.W.)
| |
Collapse
|
33
|
Jia J, Fu J, Tang H. Activation and Evasion of RLR Signaling by DNA Virus Infection. Front Microbiol 2022; 12:804511. [PMID: 34987495 PMCID: PMC8721196 DOI: 10.3389/fmicb.2021.804511] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/02/2021] [Indexed: 12/24/2022] Open
Abstract
Antiviral innate immune response triggered by nucleic acid recognition plays an extremely important role in controlling viral infections. The initiation of antiviral immune response against RNA viruses through ligand recognition of retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) was extensively studied. RLR’s role in DNA virus infection, which is less known, is increasing attention. Here, we review the research progress of the ligand recognition of RLRs during the DNA virus infection process and the viral evasion mechanism from host immune responses.
Collapse
Affiliation(s)
- Junli Jia
- Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Jiangan Fu
- Genor Biopharma Co., Ltd., Shanghai, China
| | - Huamin Tang
- Department of Immunology, Nanjing Medical University, Nanjing, China.,Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, China.,Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
34
|
Pei J, Beri NR, Zou AJ, Hubel P, Dorando HK, Bergant V, Andrews RD, Pan J, Andrews JM, Sheehan KCF, Pichlmair A, Amarasinghe GK, Brody SL, Payton JE, Leung DW. Nuclear-localized human respiratory syncytial virus NS1 protein modulates host gene transcription. Cell Rep 2021; 37:109803. [PMID: 34644581 PMCID: PMC8609347 DOI: 10.1016/j.celrep.2021.109803] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 04/28/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022] Open
Abstract
Human respiratory syncytial virus (RSV) is a common cause of lower respiratory tract infections in the pediatric, elderly, and immunocompromised individuals. RSV non-structural protein NS1 is a known cytosolic immune antagonist, but how NS1 modulates host responses remains poorly defined. Here, we observe NS1 partitioning into the nucleus of RSV-infected cells, including the human airway epithelium. Nuclear NS1 coimmunoprecipitates with Mediator complex and is chromatin associated. Chromatin-immunoprecipitation demonstrates enrichment of NS1 that overlaps Mediator and transcription factor binding within the promoters and enhancers of differentially expressed genes during RSV infection. Mutation of the NS1 C-terminal helix reduces NS1 impact on host gene expression. These data suggest that nuclear NS1 alters host responses to RSV infection by binding at regulatory elements of immune response genes and modulating host gene transcription. Our study identifies another layer of regulation by virally encoded proteins that shapes host response and impacts immunity to RSV.
Collapse
Affiliation(s)
- Jingjing Pei
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nina R Beri
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Angela J Zou
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Philipp Hubel
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried/Munich 82152, Germany
| | - Hannah K Dorando
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Valter Bergant
- Institute for Virology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Rebecca D Andrews
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jiehong Pan
- Department of Medicine, Division of Pulmonary and Critical Care, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jared M Andrews
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kathleen C F Sheehan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andreas Pichlmair
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried/Munich 82152, Germany; Institute for Virology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven L Brody
- Department of Medicine, Division of Pulmonary and Critical Care, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jacqueline E Payton
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Daisy W Leung
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
35
|
Atkinson SC, Heaton SM, Audsley MD, Kleifeld O, Borg NA. TRIM25 and DEAD-Box RNA Helicase DDX3X Cooperate to Regulate RIG-I-Mediated Antiviral Immunity. Int J Mol Sci 2021; 22:9094. [PMID: 34445801 PMCID: PMC8396550 DOI: 10.3390/ijms22169094] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 12/25/2022] Open
Abstract
The cytoplasmic retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) initiate interferon (IFN) production and antiviral gene expression in response to RNA virus infection. Consequently, RLR signalling is tightly regulated by both host and viral factors. Tripartite motif protein 25 (TRIM25) is an E3 ligase that ubiquitinates multiple substrates within the RLR signalling cascade, playing both ubiquitination-dependent and -independent roles in RIG-I-mediated IFN induction. However, additional regulatory roles are emerging. Here, we show a novel interaction between TRIM25 and another protein in the RLR pathway that is essential for type I IFN induction, DEAD-box helicase 3X (DDX3X). In vitro assays and knockdown studies reveal that TRIM25 ubiquitinates DDX3X at lysine 55 (K55) and that TRIM25 and DDX3X cooperatively enhance IFNB1 induction following RIG-I activation, but the latter is independent of TRIM25's catalytic activity. Furthermore, we found that the influenza A virus non-structural protein 1 (NS1) disrupts the TRIM25:DDX3X interaction, abrogating both TRIM25-mediated ubiquitination of DDX3X and cooperative activation of the IFNB1 promoter. Thus, our results reveal a new interplay between two RLR-host proteins that cooperatively enhance IFN-β production. We also uncover a new and further mechanism by which influenza A virus NS1 suppresses host antiviral defence.
Collapse
Affiliation(s)
- Sarah C. Atkinson
- Immunity and Immune Evasion Laboratory, Chronic Infectious and Inflammatory Diseases Research, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (S.C.A.); (M.D.A.)
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia;
| | - Steven M. Heaton
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia;
| | - Michelle D. Audsley
- Immunity and Immune Evasion Laboratory, Chronic Infectious and Inflammatory Diseases Research, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (S.C.A.); (M.D.A.)
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia;
| | - Oded Kleifeld
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel;
| | - Natalie A. Borg
- Immunity and Immune Evasion Laboratory, Chronic Infectious and Inflammatory Diseases Research, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (S.C.A.); (M.D.A.)
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia;
| |
Collapse
|
36
|
Brezgin S, Kostyusheva A, Bayurova E, Volchkova E, Gegechkori V, Gordeychuk I, Glebe D, Kostyushev D, Chulanov V. Immunity and Viral Infections: Modulating Antiviral Response via CRISPR-Cas Systems. Viruses 2021; 13:1373. [PMID: 34372578 PMCID: PMC8310348 DOI: 10.3390/v13071373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 12/13/2022] Open
Abstract
Viral infections cause a variety of acute and chronic human diseases, sometimes resulting in small local outbreaks, or in some cases spreading across the globe and leading to global pandemics. Understanding and exploiting virus-host interactions is instrumental for identifying host factors involved in viral replication, developing effective antiviral agents, and mitigating the severity of virus-borne infectious diseases. The diversity of CRISPR systems and CRISPR-based tools enables the specific modulation of innate immune responses and has contributed impressively to the fields of virology and immunology in a very short time. In this review, we describe the most recent advances in the use of CRISPR systems for basic and translational studies of virus-host interactions.
Collapse
Affiliation(s)
- Sergey Brezgin
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994 Moscow, Russia; (S.B.); (A.K.); (V.C.)
- Institute of Immunology, Federal Medical Biological Agency, 115522 Moscow, Russia
- Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Anastasiya Kostyusheva
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994 Moscow, Russia; (S.B.); (A.K.); (V.C.)
| | - Ekaterina Bayurova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; (E.B.); (I.G.)
| | - Elena Volchkova
- Department of Infectious Diseases, Sechenov University, 119991 Moscow, Russia;
| | - Vladimir Gegechkori
- Department of Pharmaceutical and Toxicological Chemistry, Sechenov University, 119991 Moscow, Russia;
| | - Ilya Gordeychuk
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; (E.B.); (I.G.)
- Department of Organization and Technology of Immunobiological Drugs, Sechenov University, 119991 Moscow, Russia
| | - Dieter Glebe
- National Reference Center for Hepatitis B Viruses and Hepatitis D Viruses, Institute of Medical Virology, Justus Liebig University of Giessen, 35392 Giessen, Germany;
| | - Dmitry Kostyushev
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994 Moscow, Russia; (S.B.); (A.K.); (V.C.)
- Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Vladimir Chulanov
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994 Moscow, Russia; (S.B.); (A.K.); (V.C.)
- Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
- Department of Infectious Diseases, Sechenov University, 119991 Moscow, Russia;
| |
Collapse
|
37
|
De Falco F, Cutarelli A, Gentile I, Cerino P, Uleri V, Catoi AF, Roperto S. Bovine Delta Papillomavirus E5 Oncoprotein Interacts With TRIM25 and Hampers Antiviral Innate Immune Response Mediated by RIG-I-Like Receptors. Front Immunol 2021; 12:658762. [PMID: 34177899 PMCID: PMC8223750 DOI: 10.3389/fimmu.2021.658762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/20/2021] [Indexed: 12/25/2022] Open
Abstract
Persistent infection and tumourigenesis by papillomaviruses (PVs) require viral manipulation of various of cellular processes, including those involved in innate immune responses. Herein, we showed that bovine PV (BPV) E5 oncoprotein interacts with a tripartite motif-containing 25 (TRIM25) but not with Riplet in spontaneous BPV infection of urothelial cells of cattle. Statistically significant reduced protein levels of TRIM25, retinoic acid-inducible gene I (RIG-I), and melanoma differentiation-associated gene 5 (MDA5) were detected by Western blot analysis. Real-time quantitative PCR revealed marked transcriptional downregulation of RIG-I and MDA5 in E5-expressing cells compared with healthy urothelial cells. Mitochondrial antiviral signalling (MAVS) protein expression did not vary significantly between diseased and healthy cells. Co-immunoprecipitation studies showed that MAVS interacted with a protein network composed of Sec13, which is a positive regulator of MAVS-mediated RLR antiviral signalling, phosphorylated TANK binding kinase 1 (TBK1), and phosphorylated interferon regulatory factor 3 (IRF3). Immunoblotting revealed significantly low expression levels of Sec13 in BPV-infected cells. Low levels of Sec13 resulted in a weaker host antiviral immune response, as it attenuates MAVS-mediated IRF3 activation. Furthermore, western blot analysis revealed significantly reduced expression levels of pTBK1, which plays an essential role in the activation and phosphorylation of IRF3, a prerequisite for the latter to enter the nucleus to activate type 1 IFN genes. Our results suggested that the innate immune signalling pathway mediated by RIG-I-like receptors (RLRs) was impaired in cells infected with BPVs. Therefore, an effective immune response is not elicited against these viruses, which facilitates persistent viral infection.
Collapse
Affiliation(s)
- Francesca De Falco
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Anna Cutarelli
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Italy
| | - Ivan Gentile
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Pellegrino Cerino
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Italy
| | - Valeria Uleri
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Adriana Florinela Catoi
- Physiopathology Department, Faculty of Medicine "Iuliu Hatieganu", University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Sante Roperto
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Università degli Studi di Napoli Federico II, Napoli, Italy
| |
Collapse
|
38
|
Mann M, Brasier AR. Evolution of proteomics technologies for understanding respiratory syncytial virus pathogenesis. Expert Rev Proteomics 2021; 18:379-394. [PMID: 34018899 PMCID: PMC8277732 DOI: 10.1080/14789450.2021.1931130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/14/2021] [Indexed: 10/21/2022]
Abstract
Introduction: Respiratory syncytial virus (RSV) is a major human pathogen associated with long term morbidity. RSV replication occurs primarily in the epithelium, producing a complex cellular response associated with acute inflammation and long-lived changes in pulmonary function and allergic disease. Proteomics approaches provide important insights into post-transcriptional regulatory processes including alterations in cellular complexes regulating the coordinated innate response and epigenome.Areas covered: Peer-reviewed proteomics studies of host responses to RSV infections and proteomics techniques were analyzed. Methodologies identified include 1)." bottom-up" discovery proteomics, 2). Organellar proteomics by LC-gel fractionation; 3). Dynamic changes in protein interaction networks by LC-MS; and 4). selective reaction monitoring MS. We introduce recent developments in single-cell proteomics, top-down mass spectrometry, and photo-cleavable surfactant chemistries that will have impact on understanding how RSV induces extracellular matrix (ECM) composition and airway remodeling.Expert opinion: RSV replication induces global changes in the cellular proteome, dynamic shifts in nuclear proteins, and remodeling of epigenetic regulatory complexes linked to the innate response. Pathways discovered by proteomics technologies have led to deeper mechanistic understanding of the roles of heat shock proteins, redox response, transcriptional elongation complex remodeling and ECM secretion remodeling in host responses to RSV infections and pathological sequelae.
Collapse
Affiliation(s)
- Morgan Mann
- Department of Internal Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, USA
| | - Allan R Brasier
- Department of Internal Medicine and Institute for Clinical and Translational Research (ICTR), University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
39
|
Shen Z, Wei L, Yu ZB, Yao ZY, Cheng J, Wang YT, Song XT, Li M. The Roles of TRIMs in Antiviral Innate Immune Signaling. Front Cell Infect Microbiol 2021; 11:628275. [PMID: 33791238 PMCID: PMC8005608 DOI: 10.3389/fcimb.2021.628275] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/02/2021] [Indexed: 01/06/2023] Open
Abstract
The Tripartite motif (TRIM) protein family, which contains over 80 members in human sapiens, is the largest subfamily of the RING-type E3 ubiquitin ligase family. It is implicated in regulating various cellular functions, including cell cycle process, autophagy, and immune response. The dysfunction of TRIMs may lead to numerous diseases, such as systemic lupus erythematosus (SLE). Lots of studies in recent years have demonstrated that many TRIM proteins exert antiviral roles. TRIM proteins could affect viral replication by regulating the signaling pathways of antiviral innate immune responses. Besides, TRIM proteins can directly target viral components, which can lead to the degradation or functional inhibition of viral protein through degradative or non-degradative mechanisms and consequently interrupt the viral lifecycle. However, new evidence suggests that some viruses may manipulate TRIM proteins for their replication. Here, we summarize the latest discoveries on the interactions between TRIM protein and virus, especially TRIM proteins’ role in the signaling pathway of antiviral innate immune response and the direct “game” between them.
Collapse
Affiliation(s)
- Zhou Shen
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Department of Immunology, Hebei Medical University, Shijiazhuang, China.,Center Laboratory, Affiliated Hospital of Hebei University, Baoding, China
| | - Lin Wei
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Department of Immunology, Hebei Medical University, Shijiazhuang, China
| | - Zhi-Bo Yu
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Department of Immunology, Hebei Medical University, Shijiazhuang, China
| | - Zhi-Yan Yao
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Department of Immunology, Hebei Medical University, Shijiazhuang, China
| | - Jing Cheng
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Department of Immunology, Hebei Medical University, Shijiazhuang, China
| | - Yu-Tong Wang
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Department of Immunology, Hebei Medical University, Shijiazhuang, China
| | - Xiao-Tian Song
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Department of Immunology, Hebei Medical University, Shijiazhuang, China
| | - Miao Li
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Department of Immunology, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
40
|
Pei J, Wagner ND, Zou AJ, Chatterjee S, Borek D, Cole AR, Kim PJ, Basler CF, Otwinowski Z, Gross ML, Amarasinghe GK, Leung DW. Structural basis for IFN antagonism by human respiratory syncytial virus nonstructural protein 2. Proc Natl Acad Sci U S A 2021; 118:e2020587118. [PMID: 33649232 PMCID: PMC7958447 DOI: 10.1073/pnas.2020587118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human respiratory syncytial virus (RSV) nonstructural protein 2 (NS2) inhibits host interferon (IFN) responses stimulated by RSV infection by targeting early steps in the IFN-signaling pathway. But the molecular mechanisms related to how NS2 regulates these processes remain incompletely understood. To address this gap, here we solved the X-ray crystal structure of NS2. This structure revealed a unique fold that is distinct from other known viral IFN antagonists, including RSV NS1. We also show that NS2 directly interacts with an inactive conformation of the RIG-I-like receptors (RLRs) RIG-I and MDA5. NS2 binding prevents RLR ubiquitination, a process critical for prolonged activation of downstream signaling. Structural analysis, including by hydrogen-deuterium exchange coupled to mass spectrometry, revealed that the N terminus of NS2 is essential for binding to the RIG-I caspase activation and recruitment domains. N-terminal mutations significantly diminish RIG-I interactions and result in increased IFNβ messenger RNA levels. Collectively, our studies uncover a previously unappreciated regulatory mechanism by which NS2 further modulates host responses and define an approach for targeting host responses.
Collapse
Affiliation(s)
- Jingjing Pei
- John T. Milliken Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO 63110
| | - Nicole D Wagner
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63110
| | - Angela J Zou
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Srirupa Chatterjee
- John T. Milliken Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO 63110
| | - Dominika Borek
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Aidan R Cole
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Preston J Kim
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Christopher F Basler
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303
| | - Zbyszek Otwinowski
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63110
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Daisy W Leung
- John T. Milliken Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO 63110;
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
41
|
Onomoto K, Onoguchi K, Yoneyama M. Regulation of RIG-I-like receptor-mediated signaling: interaction between host and viral factors. Cell Mol Immunol 2021; 18:539-555. [PMID: 33462384 PMCID: PMC7812568 DOI: 10.1038/s41423-020-00602-7] [Citation(s) in RCA: 230] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/17/2020] [Indexed: 01/31/2023] Open
Abstract
Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) are RNA sensor molecules that play essential roles in innate antiviral immunity. Among the three RLRs encoded by the human genome, RIG-I and melanoma differentiation-associated gene 5, which contain N-terminal caspase recruitment domains, are activated upon the detection of viral RNAs in the cytoplasm of virus-infected cells. Activated RLRs induce downstream signaling via their interactions with mitochondrial antiviral signaling proteins and activate the production of type I and III interferons and inflammatory cytokines. Recent studies have shown that RLR-mediated signaling is regulated by interactions with endogenous RNAs and host proteins, such as those involved in stress responses and posttranslational modifications. Since RLR-mediated cytokine production is also involved in the regulation of acquired immunity, the deregulation of RLR-mediated signaling is associated with autoimmune and autoinflammatory disorders. Moreover, RLR-mediated signaling might be involved in the aberrant cytokine production observed in coronavirus disease 2019. Since the discovery of RLRs in 2004, significant progress has been made in understanding the mechanisms underlying the activation and regulation of RLR-mediated signaling pathways. Here, we review the recent advances in the understanding of regulated RNA recognition and signal activation by RLRs, focusing on the interactions between various host and viral factors.
Collapse
Affiliation(s)
- Koji Onomoto
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8673, Japan
| | - Kazuhide Onoguchi
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8673, Japan
| | - Mitsutoshi Yoneyama
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8673, Japan.
| |
Collapse
|
42
|
Malinczak CA, Parolia A, Fonseca W, Morris S, Rasky AJ, Bawa P, Zhang Y, Mire MM, Ziegler SF, Ptaschinski C, Chinnaiyan AM, Lukacs NW. TSLP-Driven Chromatin Remodeling and Trained Systemic Immunity after Neonatal Respiratory Viral Infection. THE JOURNAL OF IMMUNOLOGY 2021; 206:1315-1328. [PMID: 33514510 DOI: 10.4049/jimmunol.2001205] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/04/2021] [Indexed: 12/26/2022]
Abstract
Our studies have previously shown a role for persistent TSLP production in the lungs of mice after early-life respiratory syncytial virus (RSV) infection that leads to an altered immune phenotype, including accumulation of "inflammatory" dendritic cells (DC). This study investigates the role of TSLP driving systemic trained immunity in DC in early-life RSV-infected mice. Bone marrow-derived DCs (BMDC) from early-life RSV-infected mice at 4 wk postinfection showed enhanced expression of costimulatory molecules and cytokines, including Tslp, that regulate immune cell function. The adoptive transfer of BMDC grown from early-life RSV-infected mice was sufficient to exacerbate allergic disease development. The addition of recombinant TSLP during differentiation of BMDC from naive mice induced a similar altered phenotype as BMDC grown from early-life RSV-infected mice, suggesting a role for TSLP in the phenotypic changes. To assess the role of TSLP in these changes, global transcriptomic characterization of TSLPR-/- BMDC infected with RSV was performed and showed a higher upregulation of type 1 IFN genes and concomitant downregulation of inflammatory genes. Assay for transposase-accessible chromatin using sequencing analysis demonstrated that TSLPR-/- BMDC had a parallel gain in physical chromatin accessibility near type 1 genes and loss in accessibility near genes related to RSV pathology, with IFN regulatory factor 4 (IRF4) and STAT3 predicted as top transcription factors binding within differentially accessible regions in wild-type. Importantly, these studies show that in the absence of TSLP signaling, BMDC are able to mount an appropriate type 1 IFN-associated antiviral response to RSV. In summary, RSV-induced TSLP alters chromatin structure in DC to drive trained innate immunity and activates pathogenic gene programs in mice.
Collapse
Affiliation(s)
| | - Abhijit Parolia
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Wendy Fonseca
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Susan Morris
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Andrew J Rasky
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Pushpinder Bawa
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Yuping Zhang
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Mohamed M Mire
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Steven F Ziegler
- Department of Immunology, Benaroya Research Institute, Seattle, WA 98101
| | - Catherine Ptaschinski
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109.,Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI 48109
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109.,Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109; and.,Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109
| | - Nicholas W Lukacs
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109.,Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
43
|
Chiang C, Liu G, Gack MU. Viral Evasion of RIG-I-Like Receptor-Mediated Immunity through Dysregulation of Ubiquitination and ISGylation. Viruses 2021; 13:182. [PMID: 33530371 PMCID: PMC7910861 DOI: 10.3390/v13020182] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/15/2022] Open
Abstract
Viral dysregulation or suppression of innate immune responses is a key determinant of virus-induced pathogenesis. Important sensors for the detection of virus infection are the RIG-I-like receptors (RLRs), which, in turn, are antagonized by many RNA viruses and DNA viruses. Among the different escape strategies are viral mechanisms to dysregulate the post-translational modifications (PTMs) that play pivotal roles in RLR regulation. In this review, we present the current knowledge of immune evasion by viral pathogens that manipulate ubiquitin- or ISG15-dependent mechanisms of RLR activation. Key viral strategies to evade RLR signaling include direct targeting of ubiquitin E3 ligases, active deubiquitination using viral deubiquitinating enzymes (DUBs), and the upregulation of cellular DUBs that regulate RLR signaling. Additionally, we summarize emerging new evidence that shows that enzymes of certain coronaviruses such as SARS-CoV-2, the causative agent of the current COVID-19 pandemic, actively deISGylate key molecules in the RLR pathway to escape type I interferon (IFN)-mediated antiviral responses. Finally, we discuss the possibility of targeting virally-encoded proteins that manipulate ubiquitin- or ISG15-mediated innate immune responses for the development of new antivirals and vaccines.
Collapse
Affiliation(s)
| | | | - Michaela U. Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA; (C.C.); (G.L.)
| |
Collapse
|
44
|
Verma R. Exploiting Ubiquitin Ligases for Induced Target Degradation as an Antiviral Strategy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1322:339-357. [PMID: 34258747 DOI: 10.1007/978-981-16-0267-2_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Posttranslational modifications of targeted substrates alter their cellular fate. Ubiquitin is a highly conserved and ubiquitous covalent modifier protein that tags substrates with a single molecule or with a polyubiquitin chain. Monoubiquitination affects trafficking and signaling patterns of modified proteins. In contrast, polyubiquitination, particularly K48-linked polyubiquitination, targets the protein for degradation by the Ubiquitin-Proteasome System (UPS) resulting in a committed fate through irreversible inactivation of substrate. Given the diversity of cellular functions impacted by ubiquitination, it is no surprise that the wily pathogenic viruses have co-opted the UPS in myriad ways to ensure their survival. In this review, I describe viral exploitation of nondegradative ubiquitin signaling pathways to effect entry, replication, and egress. Additionally, viruses also harness the UPS to degrade antiviral cellular host factors. Finally, I describe how we can exploit the same proteolytic machinery to enable PROTACs (Proteolysis-Targeting Chimeras) to degrade essential viral proteins. Successful implementation of this modality will add to the arsenal of emerging antiviral therapies.
Collapse
Affiliation(s)
- Rati Verma
- AMGEN Research, One Amgen Center Drive, Thousand Oaks, CA, USA.
| |
Collapse
|
45
|
Abstract
Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) are key sensors of virus infection, mediating the transcriptional induction of type I interferons and other genes that collectively establish an antiviral host response. Recent studies have revealed that both viral and host-derived RNAs can trigger RLR activation; this can lead to an effective antiviral response but also immunopathology if RLR activities are uncontrolled. In this Review, we discuss recent advances in our understanding of the types of RNA sensed by RLRs in the contexts of viral infection, malignancies and autoimmune diseases. We further describe how the activity of RLRs is controlled by host regulatory mechanisms, including RLR-interacting proteins, post-translational modifications and non-coding RNAs. Finally, we discuss key outstanding questions in the RLR field, including how our knowledge of RLR biology could be translated into new therapeutics.
Collapse
Affiliation(s)
- Jan Rehwinkel
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| | - Michaela U Gack
- Department of Microbiology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
46
|
Min YQ, Ning YJ, Wang H, Deng F. A RIG-I-like receptor directs antiviral responses to a bunyavirus and is antagonized by virus-induced blockade of TRIM25-mediated ubiquitination. J Biol Chem 2020; 295:9691-9711. [PMID: 32471869 PMCID: PMC7363118 DOI: 10.1074/jbc.ra120.013973] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/28/2020] [Indexed: 12/18/2022] Open
Abstract
The RIG-I-like receptors (RLRs) retinoic acid-inducible gene I protein (RIG-I) and melanoma differentiation-associated protein 5 (MDA5) are cytosolic pattern recognition receptors that recognize specific viral RNA products and initiate antiviral innate immunity. Severe fever with thrombocytopenia syndrome virus (SFTSV) is a highly pathogenic member of the Bunyavirales RIG-I, but not MDA5, has been suggested to sense some bunyavirus infections; however, the roles of RLRs in anti-SFTSV immune responses remain unclear. Here, we show that SFTSV infection induces an antiviral response accompanied by significant induction of antiviral and inflammatory cytokines and that RIG-I plays a main role in this induction by recognizing viral 5'-triphosphorylated RNAs and by signaling via the adaptor mitochondrial antiviral signaling protein. Moreover, MDA5 may also sense SFTSV infection and contribute to IFN induction, but to a lesser extent. We further demonstrate that the RLR-mediated anti-SFTSV signaling can be antagonized by SFTSV nonstructural protein (NSs) at the level of RIG-I activation. Protein interaction and MS-based analyses revealed that NSs interacts with the host protein tripartite motif-containing 25 (TRIM25), a critical RIG-I-activating ubiquitin E3 ligase, but not with RIG-I or Riplet, another E3 ligase required for RIG-I ubiquitination. NSs specifically trapped TRIM25 into viral inclusion bodies and inhibited TRIM25-mediated RIG-I-Lys-63-linked ubiquitination/activation, contributing to suppression of RLR-mediated antiviral signaling at its initial stage. These results provide insights into immune responses to SFTSV infection and clarify a mechanism of the viral immune evasion, which may help inform the development of antiviral therapeutics.
Collapse
Affiliation(s)
- Yuan-Qin Min
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Yun-Jia Ning
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Hualin Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
47
|
Hage A, Rajsbaum R. To TRIM or not to TRIM: the balance of host-virus interactions mediated by the ubiquitin system. J Gen Virol 2020; 100:1641-1662. [PMID: 31661051 DOI: 10.1099/jgv.0.001341] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The innate immune system responds rapidly to protect against viral infections, but an overactive response can cause harmful damage. To avoid this, the response is tightly regulated by post-translational modifications (PTMs). The ubiquitin system represents a powerful PTM machinery that allows for the reversible linkage of ubiquitin to activate and deactivate a target's function. A precise enzymatic cascade of ubiquitin-activating, conjugating and ligating enzymes facilitates ubiquitination. Viruses have evolved to take advantage of the ubiquitin pathway either by targeting factors to dampen the antiviral response or by hijacking the system to enhance their replication. The tripartite motif (TRIM) family of E3 ubiquitin ligases has garnered attention as a major contributor to innate immunity. Many TRIM family members limit viruses either indirectly as components in innate immune signalling, or directly by targeting viral proteins for degradation. In spite of this, TRIMs and other ubiquitin ligases can be appropriated by viruses and repurposed as valuable tools in viral replication. This duality of function suggests a new frontier of research for TRIMs and raises new challenges for discerning the subtleties of these pro-viral mechanisms. Here, we review current findings regarding the involvement of TRIMs in host-virus interactions. We examine ongoing developments in the field, including novel roles for unanchored ubiquitin in innate immunity, the direct involvement of ubiquitin ligases in promoting viral replication, recent controversies on the role of ubiquitin and TRIM25 in activation of the pattern recognition receptor RIG-I, and we discuss the implications these studies have on future research directions.
Collapse
Affiliation(s)
- Adam Hage
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ricardo Rajsbaum
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
48
|
Gu H, Jan Fada B. Specificity in Ubiquitination Triggered by Virus Infection. Int J Mol Sci 2020; 21:E4088. [PMID: 32521668 PMCID: PMC7313089 DOI: 10.3390/ijms21114088] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
Ubiquitination is a prominent posttranslational modification, in which the ubiquitin moiety is covalently attached to a target protein to influence protein stability, interaction partner and biological function. All seven lysine residues of ubiquitin, along with the N-terminal methionine, can each serve as a substrate for further ubiquitination, which effectuates a diverse combination of mono- or poly-ubiquitinated proteins with linear or branched ubiquitin chains. The intricately composed ubiquitin codes are then recognized by a large variety of ubiquitin binding domain (UBD)-containing proteins to participate in the regulation of various pathways to modulate the cell behavior. Viruses, as obligate parasites, involve many aspects of the cell pathways to overcome host defenses and subjugate cellular machineries. In the virus-host interactions, both the virus and the host tap into the rich source of versatile ubiquitination code in order to compete, combat, and co-evolve. Here, we review the recent literature to discuss the role of ubiquitin system as the infection progresses in virus life cycle and the importance of ubiquitin specificity in the regulation of virus-host relation.
Collapse
Affiliation(s)
- Haidong Gu
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA;
| | | |
Collapse
|
49
|
Wu W, Choi EJ, Lee I, Lee YS, Bao X. Non-Coding RNAs and Their Role in Respiratory Syncytial Virus (RSV) and Human Metapneumovirus (hMPV) Infections. Viruses 2020; 12:v12030345. [PMID: 32245206 PMCID: PMC7150941 DOI: 10.3390/v12030345] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/14/2020] [Accepted: 03/18/2020] [Indexed: 12/17/2022] Open
Abstract
Recent high-throughput sequencing revealed that only 2% of the transcribed human genome codes for proteins, while the majority of transcriptional products are non-coding RNAs (ncRNAs). Herein, we review the current knowledge regarding ncRNAs, both host- and virus-derived, and their role in respiratory syncytial virus (RSV) and human metapneumovirus (hMPV) infections. RSV is known as the most common cause of lower respiratory tract infection (LRTI) in children, while hMPV is also a significant contributor to LRTI in the pediatrics population. Although RSV and hMPV are close members, belonging to the Pneumoviridae family, they induce distinct changes in the ncRNA profile. Several types of host ncRNAs, including long ncRNA (lncRNA), microRNAs (miRNAs), and transfer RNA (tRNA)-derived RNA fragments (tRFs), are involved as playing roles in RSV and/or hMPV infection. Given the importance of ncRNAs in regulating the expression and functions of genes and proteins, comprehensively understanding the roles of ncRNAs in RSV/hMPV infection could shed light upon the disease mechanisms of RSV and hMPV, potentially providing insights into the development of prevention strategies and antiviral therapy. The presence of viral-derived RNAs and the potential of using ncRNAs as diagnostic biomarkers are also discussed in this review.
Collapse
Affiliation(s)
- Wenzhe Wu
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX 77555, USA; (W.W.); (E.-J.C.)
| | - Eun-Jin Choi
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX 77555, USA; (W.W.); (E.-J.C.)
| | | | - Yong Sun Lee
- Department of Cancer System Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si Gyeonggi-do 10408, Korea;
| | - Xiaoyong Bao
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX 77555, USA; (W.W.); (E.-J.C.)
- Sealy Center for Molecular Medicine, The University of Texas Medical Branch, Galveston, TX 77555, USA
- The Institute of Translational Sciences, The University of Texas Medical Branch, Galveston, TX 77555, USA
- The Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, TX 77555, USA
- Correspondence: ; Tel.: +409-772-1777
| |
Collapse
|
50
|
Choudhury NR, Heikel G, Michlewski G. TRIM25 and its emerging RNA-binding roles in antiviral defense. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 11:e1588. [PMID: 31990130 DOI: 10.1002/wrna.1588] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/25/2022]
Abstract
The innate immune system is the body's first line of defense against viruses, with pattern recognition receptors (PRRs) recognizing molecules unique to viruses and triggering the expression of interferons and other anti-viral cytokines, leading to the formation of an anti-viral state. The tripartite motif containing 25 (TRIM25) is an E3 ubiquitin ligase thought to be a key component in the activation of signaling by the PRR retinoic acid-inducible gene I protein (RIG-I). TRIM25 has recently been identified as an RNA-binding protein, raising the question of whether its RNA-binding activity is important for its role in innate immunity. Here, we review TRIM25's mechanisms and pathways in noninfected and infected cells. We also introduce models that explain how TRIM25 binding to RNA could modulate its functions and play part in the antiviral response. These findings have opened new lines of investigations into functional and molecular roles of TRIM25 and other E3 ubiquitin ligases in cell biology and control of pathogenic infections. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition.
Collapse
Affiliation(s)
| | - Gregory Heikel
- Infection Medicine, University of Edinburgh, Edinburgh, UK
| | - Gracjan Michlewski
- Infection Medicine, University of Edinburgh, Edinburgh, UK.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Zhejiang, People's Republic of China
| |
Collapse
|