1
|
Byun HR, Rieu MS, Ji SR, Nam HY, Seo S, Choi CY, Linh BK, Thanh HL, Kaewthamasorn M, Sahara A, Galay RL, Wang SL, Erdenechimeg T, Batbayar N, Matsui S, Kawaji N, Avais M, Chae JS. Detection of tick-borne pathogens in blood-fed ticks from animals across nine Asian countries. Microbiol Spectr 2025; 13:e0244924. [PMID: 39902978 PMCID: PMC11878029 DOI: 10.1128/spectrum.02449-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/28/2024] [Indexed: 02/06/2025] Open
Abstract
Climate change, land development, and increased outdoor human activity have increased the prevalence and distribution of tick-borne pathogens, causing public health issues. Asia is a pivotal region of emerging infectious diseases caused by zoonotic disease. Therefore, this study aimed to construct effective surveillance systems and establish preventive strategies against novel tick-borne diseases. Next-generation sequencing (NGS) was performed to detect tick-borne pathogens from animal blood-fed ticks. Ticks (n = 261) were collected from different animals across nine Asian countries between 2022 and 2023. Five genera of adults and nymphal ticks were used, namely, Amblyomma, Haemaphysalis, Hyalomma, Rhipicephalus, and Ixodes. The animals from which the ticks were collected were wild, domestic animals, birds, and reptiles, living in the natural environment. After NGS, clean reads of 18,382,262-30,460,619 DNA viruses, 22,744,384-32,400,471 RNA viruses, 134,506-286,282 16S rRNA of bacteria, and 147,154-352,826 18S rRNA of protozoa were obtained from nine Asian countries. After analysis of the species, 28 RNA, 13 DNA viruses, 16 bacteria, and 4 protozoa were detected. Several tick-borne pathogens, including those in families that cause zoonotic diseases, such as Phenuiviridae, Nairoviridae, Rickettsiaceae, and Borreliaceae, were identified. This study is distinctive in that it involved cooperative studies with nine Asian countries to prevent the spread of tick-borne diseases. The results suggest that pathogens, which were detected in animal blood-fed ticks, can circulate in animals and may be transmitted to humans. In addition, this study can provide a basis for effective surveillance systems to prevent novel pathogens. IMPORTANCE Surveillance systems against novel tick-borne diseases are significant for global health. Climate and other environmental changes have contributed to an expanding range of ticks and tick-borne diseases. Areas in Asia constitute key areas of emerging infectious diseases. Through analysis of blood-fed ticks, collected from various animals living in the natural environment, we suggest that tick-borne pathogens may harbor animals and environment and have potential risk of transmission in humans. Understanding the distribution of tick-borne pathogens requires cooperative studying and, thus, can construct standardized surveillance systems.
Collapse
Affiliation(s)
- Hye-Ryung Byun
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Centre, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Mi-Sun Rieu
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Centre, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Seong-Ryeong Ji
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Centre, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Hyun-Young Nam
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Seulgi Seo
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Chang-Yong Choi
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Department of Agriculture, Forestry, and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Bui Khanh Linh
- Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Hien Le Thanh
- Department of Infectious Diseases and Veterinary Public Health, Faculty of Animal Science and Veterinary Medicine, Nong Lam University, Ho Chi Minh, Vietnam
| | - Morakot Kaewthamasorn
- Veterinary Parasitology Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Ana Sahara
- Department of Parasitology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Remil L. Galay
- Department of Veterinary Paraclinical Sciences, College of Veterinary Medicine, University of the Philippines Los Baños, Laguna, Philippines
| | - Shang-Lin Wang
- Institute of Veterinary Clinical Sciences, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | | | - Nyambayar Batbayar
- Wildlife Science and Conservation Center of Mongolia, Ulaanbaatar, Mongolia
| | - Shin Matsui
- School of Biological Sciences, Tokai University, Sapporo, Hokkaido, Japan
| | - Noritomo Kawaji
- Hokkaido Research Center, Forestry and Forest Products Research Institute, Sapporo, Hokkaido, Japan
| | - Muhammad Avais
- Department of Veterinary Medicine, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Joon-Seok Chae
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Centre, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| |
Collapse
|
2
|
Vaughn J, Brown HJ, Ogunbadewa A, Odemuyiwa S, Anderson DM, Halsey SJ. Detection of Amblyomma maculatum and Rickettsia parkeri in prairies of Central Missouri. Vet Parasitol Reg Stud Reports 2025; 57:101190. [PMID: 39855875 DOI: 10.1016/j.vprsr.2024.101190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/09/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025]
Abstract
The destruction and decline of prairie habitats due to landscape repurposing have profoundly impacted the diversity of plant, animal, and insect life. In the Central United States, the reconstruction of prairie habitats from farmland is a widely applied strategy to raise diversity and recreate a healthy, complex ecosystem. In Central Missouri, we examine the consequences of reconstruction efforts on the prevalence of zoonotic diseases and their associated pathogens by performing tick-flagging at two prairie sites. In doing so, we have observed large populations of Dog ticks, Dermacentor variabilis, and Lone Star ticks, Amblyomma americanum, as well as the first recorded instance of the Gulf Coast tick, Amblyomma maculatum, in Callaway County. The Gulf Coast tick is traditionally found mainly along the Atlantic and Gulf Coast regions but has been undergoing geographic expansion in the last decade. Since detection in 2020, the number of Gulf Coast ticks has increased. Upon screening 193 Gulf Coast ticks in 105 pools via PCR, we found that 6.67 % of ticks were positive for pathogenic Rickettsia parkeri, which causes spotted fever rickettsiosis in animals and humans, with most ticks coming from the reconstructed prairie site. These observations suggest that reconstruction of prairie habitat has the potential to support the sylvatic cycle of Rickettsia parkeri. Collectively, our observations show that the reconstructed prairie are capable of harboring large tick populations as compared to remnant prairies and demonstrates a potential increase in disease risk as a result. This works highlights the importance of proactive surveillance of ticks, especially with land-use change.
Collapse
Affiliation(s)
- Jaylon Vaughn
- Applied Computational Ecology Lab, School of Natural Resources, University of Missouri, Columbia, MO, 65211, United States of America; Department of Veterinary Pathobiology University of Missouri, Columbia, MO, 65211, United States of America
| | - Haylie J Brown
- Applied Computational Ecology Lab, School of Natural Resources, University of Missouri, Columbia, MO, 65211, United States of America
| | - Anthony Ogunbadewa
- Department of Veterinary Pathobiology University of Missouri, Columbia, MO, 65211, United States of America; Veterinary Diagnostic Laboratory, University of Missouri, Columbia, MO, 65211, United States of America
| | - Solomon Odemuyiwa
- Department of Veterinary Pathobiology University of Missouri, Columbia, MO, 65211, United States of America; Veterinary Diagnostic Laboratory, University of Missouri, Columbia, MO, 65211, United States of America
| | - Deborah M Anderson
- Department of Veterinary Pathobiology University of Missouri, Columbia, MO, 65211, United States of America
| | - Samniqueka J Halsey
- Applied Computational Ecology Lab, School of Natural Resources, University of Missouri, Columbia, MO, 65211, United States of America.
| |
Collapse
|
3
|
Vaughn J, Brown HJ, Ogunbadewa A, Odemuyiwa S, Anderson DM, Halsey SJ. WITHDRAWN: Detection of Amblyomma maculatum and Rickettsia parkeri in prairies of Central Missouri. Vet Parasitol Reg Stud Reports 2024; 56:101126. [PMID: 39550200 DOI: 10.1016/j.vprsr.2024.101126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/25/2024] [Indexed: 11/18/2024]
Abstract
This article has been withdrawn: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/policies/article-withdrawal). This article has been withdrawn at the request of the editor and publisher. The publisher regrets that an error occurred which led to the premature publication of this paper. This error bears no reflection on the article or its authors. The publisher apologizes to the authors and the readers for this unfortunate error.
Collapse
Affiliation(s)
- Jaylon Vaughn
- Applied Computational Ecology Lab, School of Natural Resources, University of Missouri, Columbia, MO, 65211, United States of America; Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, United States of America
| | - Haylie J Brown
- Applied Computational Ecology Lab, School of Natural Resources, University of Missouri, Columbia, MO, 65211, United States of America
| | - Anthony Ogunbadewa
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, United States of America; Veterinary Diagnostic Laboratory, University of Missouri, Columbia, MO, 65211, United States of America
| | - Solomon Odemuyiwa
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, United States of America; Veterinary Diagnostic Laboratory, University of Missouri, Columbia, MO, 65211, United States of America
| | - Deborah M Anderson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, United States of America
| | - Samniqueka J Halsey
- Applied Computational Ecology Lab, School of Natural Resources, University of Missouri, Columbia, MO, 65211, United States of America.
| |
Collapse
|
4
|
Martyn C, Hayes BM, Lauko D, Midthun E, Castaneda G, Bosco-Lauth A, Salkeld DJ, Kistler A, Pollard KS, Chou S. Metatranscriptomic investigation of single Ixodes pacificus ticks reveals diverse microbes, viruses, and novel mRNA-like endogenous viral elements. mSystems 2024; 9:e0032124. [PMID: 38742892 PMCID: PMC11237458 DOI: 10.1128/msystems.00321-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 03/27/2024] [Indexed: 05/16/2024] Open
Abstract
Ticks are increasingly important vectors of human and agricultural diseases. While many studies have focused on tick-borne bacteria, far less is known about tick-associated viruses and their roles in public health or tick physiology. To address this, we investigated patterns of bacterial and viral communities across two field populations of western black-legged ticks (Ixodes pacificus). Through metatranscriptomic analysis of 100 individual ticks, we quantified taxon prevalence, abundance, and co-occurrence with other members of the tick microbiome. In addition to commonly found tick-associated microbes, we assembled 11 novel RNA virus genomes from Rhabdoviridae, Chuviridae, Picornaviridae, Phenuiviridae, Reoviridae, Solemovidiae, Narnaviridae and two highly divergent RNA virus genomes lacking sequence similarity to any known viral families. We experimentally verified the presence of these in I. pacificus ticks across several life stages. We also unexpectedly identified numerous virus-like transcripts that are likely encoded by tick genomic DNA, and which are distinct from known endogenous viral element-mediated immunity pathways in invertebrates. Taken together, our work reveals that I. pacificus ticks carry a greater diversity of viruses than previously appreciated, in some cases resulting in evolutionarily acquired virus-like transcripts. Our findings highlight how pervasive and intimate tick-virus interactions are, with major implications for both the fundamental biology and vectorial capacity of I. pacificus ticks. IMPORTANCE Ticks are increasingly important vectors of disease, particularly in the United States where expanding tick ranges and intrusion into previously wild areas has resulted in increasing human exposure to ticks. Emerging human pathogens have been identified in ticks at an increasing rate, and yet little is known about the full community of microbes circulating in various tick species, a crucial first step to understanding how they interact with each and their tick host, as well as their ability to cause disease in humans. We investigated the bacterial and viral communities of the Western blacklegged tick in California and found 11 previously uncharacterized viruses circulating in this population.
Collapse
Affiliation(s)
- Calla Martyn
- Department of Biochemistry & Biophysics, University of California–San Francisco, San Francisco, California, USA
- Gladstone Institute of Data Science & Biotechnology, San Francisco, California, USA
| | - Beth M. Hayes
- Department of Biochemistry & Biophysics, University of California–San Francisco, San Francisco, California, USA
- One Health Institute, Colorado State University–Fort Collins, Fort Collins, Colorado, USA
| | - Domokos Lauko
- Department of Biochemistry & Biophysics, University of California–San Francisco, San Francisco, California, USA
| | - Edward Midthun
- Department of Biomedical Sciences, Colorado State University–Fort Collins, Fort Collins, Colorado, USA
| | - Gloria Castaneda
- Chan Zuckerberg Biohub, San Francisco, San Francisco, California, USA
| | - Angela Bosco-Lauth
- Department of Biomedical Sciences, Colorado State University–Fort Collins, Fort Collins, Colorado, USA
| | - Daniel J. Salkeld
- Department of Biology, Colorado State University–Fort Collins, Fort Collins, Colorado, USA
| | - Amy Kistler
- Chan Zuckerberg Biohub, San Francisco, San Francisco, California, USA
| | - Katherine S. Pollard
- Gladstone Institute of Data Science & Biotechnology, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, San Francisco, California, USA
- Department of Epidemiology & Biostatistics, University of California San Francisco, San Francisco, California, USA
| | - Seemay Chou
- Department of Biochemistry & Biophysics, University of California–San Francisco, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, San Francisco, California, USA
| |
Collapse
|
5
|
Liu Z, Hu R, Cao H, Huang P, Yan H, Meng P, Xiong Z, Dai X, Yang F, Wang L, Qiu Q, Yan L, Zhang T. Identification and phylogenetic analysis of Jingmen tick virus in Jiangxi Province, China. Front Vet Sci 2024; 11:1375852. [PMID: 38756509 PMCID: PMC11096534 DOI: 10.3389/fvets.2024.1375852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/10/2024] [Indexed: 05/18/2024] Open
Abstract
Jingmen tick virus (JMTV) is a newly identified segmented flavivirus that has been recognized in multiple hosts, such as humans, buffalos, bats, rodents, mosquitos and ticks. Various clinical cases and studies manifested that JMTV is a true arbovirus with wide host spectrum and showed potential threats toward public health. JMTV has been reported in multiple countries in Asia, Europe, Africa, and America. Moreover, wild boars serve as an important intermediary between humans and the wild ecological system. In China, it has been reported in nine provinces, while the prevalence and the distribution of JMTV in most regions including Jiangxi Province are still unknown. Thus, to profile the distribution of JMTV in Jiangxi Province, an epidemiological investigation was carried out from 2020 to 2022. In current study, 66 ticks were collected from 17 wild boars in Jiangxi Province. The results showed that 12 out of 66 ticks were JMTV positive, indicating JMTV is prevalent in ticks and boars in Jiangxi Province. The genome sequences of JMTV strain WY01 were sequenced to profile viral evolution of JMTV in China. Phylogenetic analysis divided JMTV strains into two genotypes, Group I and Group II. WY01 belongs to Group II and it shares the closest evolutionary relationship with the Japan strains rather than the strains from neighboring provinces in China suggesting that JMTV might have complex transmission routes. Overall, current study, for the first time, reported that JMTV is prevalent in Jiangxi Province and provided additional information concerning JMTV distribution and evolution in China.
Collapse
Affiliation(s)
- Zirui Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Ruiming Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Engineering Research Center for Animal Health Products, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Peng Huang
- Jiangxi Wildlife and Plant Conservation Center, Nanchang, China
| | - Hui Yan
- Jiangxi Wildlife and Plant Conservation Center, Nanchang, China
| | - Puyan Meng
- Jiangxi Academy of Forestry, Nanchang, China
| | - Zhiwei Xiong
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Biotechnology Vocational College, Nanchang, China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Li Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Qian Qiu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Linjie Yan
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Tao Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
6
|
Antúnez MP, Marín Montesinos JC, Corduneanu A, Obregón D, Moutailler S, Cabezas-Cruz A. Tick-borne viruses and their risk to public health in the Caribbean: Spotlight on bats as reservoirs in Cuba. Heliyon 2024; 10:e26118. [PMID: 38375245 PMCID: PMC10875593 DOI: 10.1016/j.heliyon.2024.e26118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/21/2024] Open
Abstract
In recent decades, tick-borne diseases (TBDs) have surged and expanded globally due to factors like changes in human activities, land use patterns, and climate change, and it have been associated with the emergence of zoonotic diseases. Cuba faces the impact of ticks on human health and the economy. Although Cuba has studied TBDs extensively for the past 50 years, focus on tick-borne viral pathogens affecting humans remains scant. Despite TBDs not currently being a major health concern in Cuba, factors like inadequate clinician awareness, climate conditions, global tick emergence, and evidence of zoonotic pathogens in ticks underscore the importance of enhanced TBD surveillance in the country. Here we revised the available information on ticks as vectors of pathogenic viruses to humans, spotlighting bats as potential reservoirs of tick-borne viruses (TBVs). Ticks on bats have gained interest as potential reservoirs of pathogenic viruses to humans in Cuba and worldwide. Understanding their role in maintaining viruses and their potential transmission to humans is crucial for the implementation of surveillance and control programs to reduce the risk of tick-borne viral diseases and public health management.
Collapse
Affiliation(s)
- Maritza Pupo Antúnez
- Laboratorio de Virología. Departamento de Microbiología y Virología. Facultad de Biología, Universidad de la Habana, C.P. 10400, Plaza de la Revolución, Cuba
| | - José Carlos Marín Montesinos
- Laboratorio de Virología. Departamento de Microbiología y Virología. Facultad de Biología, Universidad de la Habana, C.P. 10400, Plaza de la Revolución, Cuba
| | - Alexandra Corduneanu
- Department of Animal Breeding and Animal Production, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca-Napoca, Romania
| | - Dasiel Obregón
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Sara Moutailler
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| |
Collapse
|
7
|
Ye RZ, Li YY, Xu DL, Wang BH, Wang XY, Zhang MZ, Wang N, Gao WY, Li C, Han XY, Du LF, Xia LY, Song K, Xu Q, Liu J, Cheng N, Li ZH, Du YD, Yu HJ, Shi XY, Jiang JF, Sun Y, Cui XM, Ding SJ, Zhao L, Cao WC. Virome diversity shaped by genetic evolution and ecological landscape of Haemaphysalis longicornis. MICROBIOME 2024; 12:35. [PMID: 38378577 PMCID: PMC10880243 DOI: 10.1186/s40168-024-01753-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/04/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND Haemaphysalis longicornis is drawing attentions for its geographic invasion, extending population, and emerging disease threat. However, there are still substantial gaps in our knowledge of viral composition in relation to genetic diversity of H. longicornis and ecological factors, which are important for us to understand interactions between virus and vector, as well as between vector and ecological elements. RESULTS We conducted the meta-transcriptomic sequencing of 136 pools of H. longicornis and identified 508 RNA viruses of 48 viral species, 22 of which have never been reported. Phylogenetic analysis of mitochondrion sequences divided the ticks into two genetic clades, each of which was geographically clustered and significantly associated with ecological factors, including altitude, precipitation, and normalized difference vegetation index. The two clades showed significant difference in virome diversity and shared about one fifth number of viral species that might have evolved to "generalists." Notably, Bandavirus dabieense, the pathogen of severe fever with thrombocytopenia syndrome was only detected in ticks of clade 1, and half number of clade 2-specific viruses were aquatic-animal-associated. CONCLUSIONS These findings highlight that the virome diversity is shaped by internal genetic evolution and external ecological landscape of H. longicornis and provide the new foundation for promoting the studies on virus-vector-ecology interaction and eventually for evaluating the risk of H. longicornis for transmitting the viruses to humans and animals. Video Abstract.
Collapse
Affiliation(s)
- Run-Ze Ye
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Yu-Yu Li
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Da-Li Xu
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
- Shandong Provincial Key Laboratory of Communicable Disease Control and Prevention, Department of Communicable Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan, Shandong, People's Republic of China
| | - Bai-Hui Wang
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Xiao-Yang Wang
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Ming-Zhu Zhang
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Ning Wang
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Wan-Ying Gao
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Cheng Li
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Xiao-Yu Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Li-Feng Du
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Luo-Yuan Xia
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Ke Song
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Qing Xu
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Jing Liu
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Nuo Cheng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Ze-Hui Li
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Yi-Di Du
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Hui-Jun Yu
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Xiao-Yu Shi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Jia-Fu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Yi Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Xiao-Ming Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China.
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.
| | - Shu-Jun Ding
- Shandong Provincial Key Laboratory of Communicable Disease Control and Prevention, Department of Communicable Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan, Shandong, People's Republic of China.
| | - Lin Zhao
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.
| | - Wu-Chun Cao
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China.
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.
| |
Collapse
|
8
|
Ergunay K, Bourke BP, Achee N, Jiang L, Grieco J, Linton YM. Vector-borne pathogen surveillance in a metagenomic world. PLoS Negl Trop Dis 2024; 18:e0011943. [PMID: 38386620 PMCID: PMC10883548 DOI: 10.1371/journal.pntd.0011943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Affiliation(s)
- Koray Ergunay
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution, Museum Support Center, Suitland, Maryland, United States of America
- One Health Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland, United States of America
- Department of Entomology, Smithsonian Institution–National Museum of Natural History (NMNH), Washington, DC, United States of America
- Department of Medical Microbiology, Virology Unit, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Brian P. Bourke
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution, Museum Support Center, Suitland, Maryland, United States of America
- One Health Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland, United States of America
- Department of Entomology, Smithsonian Institution–National Museum of Natural History (NMNH), Washington, DC, United States of America
| | - Nicole Achee
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Le Jiang
- Naval Medical Research Center (NMRC), Silver Spring, Maryland, United States of America
| | - John Grieco
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Yvonne-Marie Linton
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution, Museum Support Center, Suitland, Maryland, United States of America
- One Health Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland, United States of America
- Department of Entomology, Smithsonian Institution–National Museum of Natural History (NMNH), Washington, DC, United States of America
| |
Collapse
|
9
|
Lin Y, Pascall DJ. Characterisation of putative novel tick viruses and zoonotic risk prediction. Ecol Evol 2024; 14:e10814. [PMID: 38259958 PMCID: PMC10800298 DOI: 10.1002/ece3.10814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 11/02/2023] [Accepted: 11/24/2023] [Indexed: 01/24/2024] Open
Abstract
Tick-associated viruses remain a substantial zoonotic risk worldwide, so knowledge of the diversity of tick viruses has potential health consequences. Despite their importance, large amounts of sequences in public data sets from tick meta-genomic and -transcriptomic projects remain unannotated, sequence data that could contain undocumented viruses. Through data mining and bioinformatic analysis of more than 37,800 public meta-genomic and -transcriptomic data sets, we found 83 unannotated contigs exhibiting high identity with known tick viruses. These putative viral contigs were classified into three RNA viral families (Alphatetraviridae, Orthomyxoviridae and Chuviridae) and one DNA viral family (Asfarviridae). After manual checking of quality and dissimilarity towards other sequences in the data set, these 83 contigs were reduced to five contigs in the Alphatetraviridae from four putative viruses, four in the Orthomyxoviridae from two putative viruses and one in the Chuviridae which clustered with known tick-associated viruses, forming a separate clade within the viral families. We further attempted to assess which previously known tick viruses likely represent zoonotic risks and thus deserve further investigation. We ranked the human infection potential of 133 known tick-associated viruses using a genome composition-based machine learning model. We found five high-risk tick-associated viruses (Langat virus, Lonestar tick chuvirus 1, Grotenhout virus, Taggert virus and Johnston Atoll virus) that have not been known to infect human and two viral families (Nairoviridae and Phenuiviridae) that contain a large proportion of potential zoonotic tick-associated viruses. This adds to the knowledge of tick virus diversity and highlights the importance of surveillance of newly emerging tick-associated diseases.
Collapse
Affiliation(s)
- Yuting Lin
- MRC Biostatistics UnitUniversity of CambridgeCambridgeUK
- Royal Veterinary CollegeUniversity of LondonLondonUK
| | | |
Collapse
|
10
|
Stegmüller S, Qi W, Torgerson PR, Fraefel C, Kubacki J. Hazard potential of Swiss Ixodes ricinus ticks: Virome composition and presence of selected bacterial and protozoan pathogens. PLoS One 2023; 18:e0290942. [PMID: 37956168 PMCID: PMC10642849 DOI: 10.1371/journal.pone.0290942] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Ticks play an important role in transmitting many different emerging zoonotic pathogens that pose a significant threat to human and animal health. In Switzerland and abroad, the number of tick-borne diseases, in particular tick-borne encephalitis (TBE), has been increasing over the last few years. Thus, it remains essential to investigate the pathogen spectrum of ticks to rapidly detect emerging pathogens and initiate the necessary measures. To assess the risk of tick-borne diseases in different regions of Switzerland, we collected a total of 10'286 ticks from rural and urban areas in ten cantons in 2021 and 2022. Ticks were pooled according to species, developmental stage, gender, and collection site, and analyzed using next generation sequencing (NGS) and quantitative polymerase chain reaction (qPCR). The metagenomic analysis revealed for the first time the presence of Alongshan virus (ALSV) in Swiss ticks. Interestingly, the pool-prevalence of ALSV was higher than that of tick-borne encephalitis virus (TBEV). Furthermore, several TBEV foci have been identified and pool prevalence of selected non-viral pathogens determined.
Collapse
Affiliation(s)
- Stefanie Stegmüller
- Institute of Virology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Weihong Qi
- Functional Genomics Center Zurich, Zurich, Switzerland
| | - Paul R. Torgerson
- Section of Epidemiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Cornel Fraefel
- Institute of Virology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Jakub Kubacki
- Institute of Virology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology (DIP), Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
11
|
Zhou H, Xu L, Shi W. The human-infection potential of emerging tick-borne viruses is a global public health concern. Nat Rev Microbiol 2023; 21:215-217. [PMID: 36526809 DOI: 10.1038/s41579-022-00845-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Hong Zhou
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Lin Xu
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Weifeng Shi
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China. .,Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Shanghai Institute of Virology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
12
|
Ortiz-Baez AS, Jaenson TGT, Holmes EC, Pettersson JHO, Wilhelmsson P. Substantial viral and bacterial diversity at the bat-tick interface. Microb Genom 2023; 9. [PMID: 36862584 PMCID: PMC10132063 DOI: 10.1099/mgen.0.000942] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Ticks harbour a high diversity of viruses, bacteria and protozoa. The soft tick Carios vespertilionis (Argasidae) is a common ectoparasite of bats in the Palearctic region and is suspected to be vector and reservoir of viruses and other microbial species in bat populations, some of which may act as zoonotic agents for human disease. The Soprano pipistrelle (Pipistrellus pygmaeus, Vespertilionidae) is widely distributed in Europe, where it can be found inside or close to human habitation. We used meta-transcriptomic sequencing to determine the RNA virome and common microbiota in blood-fed C. vespertilionis ticks collected from a Soprano pipistrelle bat roosting site in south-central Sweden. Our analyses identified 16 viruses from 11 virus families, of which 15 viruses were novel. For the first time in Sweden we identified Issuk-Kul virus, a zoonotic arthropod-borne virus previously associated with outbreaks of acute febrile illness in humans. Probable bat-associated and tick-borne viruses were classified within the families Nairoviridae, Caliciviridae and Hepeviridae, while other invertebrate-associated viruses included members of the Dicistroviridae, Iflaviridae, Nodaviridae, Partitiviridae, Permutotetraviridae, Polycipiviridae and Solemoviridae. Similarly, we found abundant bacteria in C. vespertilionis, including genera with known tick-borne bacteria, such as Coxiella spp. and Rickettsia spp. These findings demonstrate the remarkable diversity of RNA viruses and bacteria present in C. vespertilionis and highlight the importance of bat-associated ectoparasite surveillance as an effective and non-invasive means to track viruses and bacteria circulating in bats and ticks.
Collapse
Affiliation(s)
- Ayda Susana Ortiz-Baez
- Sydney Institute for Infectious Diseases, School of Medical Sciences, the University of Sydney, Sydney, New South Wales 2006, Australia
| | - Thomas G T Jaenson
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, SE-752 36, Uppsala, Sweden
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, the University of Sydney, Sydney, New South Wales 2006, Australia
| | - John H-O Pettersson
- Sydney Institute for Infectious Diseases, School of Medical Sciences, the University of Sydney, Sydney, New South Wales 2006, Australia.,Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, University of Uppsala, SE-751 23 Uppsala, Sweden.,Clinical Microbiology and Hospital Hygiene, Uppsala University Hospital, 75237 Uppsala, Sweden
| | - Peter Wilhelmsson
- Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection, Linköping University, SE-581 83 Linköping, Sweden.,Department of Clinical Microbiology, Region Jönköping County, SE-553 05 Jönköping, Sweden
| |
Collapse
|
13
|
Human pathogens in ticks removed from humans in Hebei, China. Heliyon 2023; 9:e13859. [PMID: 36873472 PMCID: PMC9982027 DOI: 10.1016/j.heliyon.2023.e13859] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Ticks are the hosts or vectors of many human pathogens, including viruses, bacteria and protozoa, and can transmit these causative agents to humans when feeding on human bodies. In this study, 26 ticks removed from humans in Hebei, China were tested for the presence of human-pathogenic microorganisms by Polymerase Chain Reaction (PCR) or Reversed Transcript PCR (RT-PCR). As a result, 11 ticks tested positive for at least one human pathogen. Specifically, four validated human pathogens, including Rickettsia raoultii, Candidatus Rickettsia tarasevichiae, Babesia venatorum, and Borrelia garinii, as well as Anaplasma ovis with zoonotic potential, were identified in Ixodes persulcatus, Dermacentor silvarum and Haemaphysalis concinna. Importantly, this is the first report of Anaplasma and Babesia species pathogenic to humans in Hebei province. Moreover, the co-infections, including double infection and quadruple infection were observed. In addition, Candidatus R. principis with unknown pathogenicity was identified in one tick, which may be the same species as Candidatus R. hongyuanensis based on the nucleotide identity and phylogenetic analysis. Concluding, four validated tick-borne pathogens and one with zoonotic potential were identified in ticks parasitizing humans, suggesting the potential high public health risk in the local human population.
Collapse
|
14
|
Metavirome of 31 tick species provides a compendium of 1,801 RNA virus genomes. Nat Microbiol 2023; 8:162-173. [PMID: 36604510 PMCID: PMC9816062 DOI: 10.1038/s41564-022-01275-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 10/20/2022] [Indexed: 01/07/2023]
Abstract
The increasing prevalence and expanding distribution of tick-borne viruses globally have raised health concerns, but the full repertoire of the tick virome has not been assessed. We sequenced the meta-transcriptomes of 31 different tick species in the Ixodidae and Argasidae families from across mainland China, and identified 724 RNA viruses with distinctive virome compositions among genera. A total of 1,801 assembled and complete or nearly complete viral genomes revealed an extensive diversity of genome architectures of tick-associated viruses, highlighting ticks as a reservoir of RNA viruses. We examined the phylogenies of different virus families to investigate virome evolution and found that the most diverse tick-associated viruses are positive-strand RNA virus families that demonstrate more ancient divergence than other arboviruses. Tick-specific viruses are often associated with only a few tick species, whereas virus clades that can infect vertebrates are found in a wider range of tick species. We hypothesize that tick viruses can exhibit both 'specialist' and 'generalist' evolutionary trends. We hope that our virome dataset will enable much-needed research on vertebrate-pathogenic tick-associated viruses.
Collapse
|
15
|
Abstract
Blood-sucking ticks are obligate parasites and vectors of a variety of human and animal viruses. Some tick-borne viruses have been identified as pathogens of infectious diseases in humans or animals, potentially imposing significant public health burdens and threats to the husbandry industry. Therefore, identifying the profiles of tick-borne viruses will provide valuable information about the evolution and pathogen ecology of tick-borne viruses. In this study, we investigated the viromes of parasitic ticks collected from the body surfaces of herbivores in Xinjiang Uyghur Autonomous Region and Inner Mongolia Autonomous Region of China, two regions in northwest China. By using a metatranscriptomic approach, 17 RNA viruses with high diversity in genomic organization and evolution were identified. Among them, nine are proposed to be novel species. The classified viruses belonged to six viral families, including Phenuiviridae, Rhabdoviridae, Peribunyaviridae, Lispiviridae, Chuviridae, and Reoviridae, and unclassified viruses were also identified. In addition, although some viruses from different sampling locations shared significant similarities, the abundance and diversity of viruses notably varied among the different collection locations. This study demonstrates the diversity of tick-borne viruses in Xinjiang and Inner Mongolia and provides informative data for further study of the evolution and pathogenicity of these RNA viruses. IMPORTANCE Ticks are widely distributed in pastoral areas in northwestern China and act as vectors that carry and transmit a variety of pathogens, especially viruses. Our study revealed the diversity of tick viruses in Xinjiang and Inner Mongolia and uncovered the phylogenetic relationships of some RNA viruses, especially the important zoonotic tick-borne severe fever with thrombocytopenia syndrome virus in Inner Mongolia. These data suggest a complex and diverse evolutionary history and potential ecological factors associated with pathogenic viruses. The pathogenicity of these tick-borne viruses currently remains unclear. Therefore, future research should focus on evaluating the transmissability and pathogenicity of these tick-borne viruses.
Collapse
|
16
|
A global dataset of microbial community in ticks from metagenome study. Sci Data 2022; 9:560. [PMID: 36088366 PMCID: PMC9464217 DOI: 10.1038/s41597-022-01679-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/04/2022] [Indexed: 11/15/2022] Open
Abstract
Ticks are important vectors of various zoonotic pathogens that can infect animals and humans, and most documented tick-borne pathogens have a strong bias towards microorganisms with strong disease phenotypes. The recent development of next-generation sequencing (NGS) has enabled the study of microbial communities, referred to as microbiome. Herein, we undertake a systematic review of published literature to build a comprehensive global dataset of microbiome determined by NGS in field-collected ticks. The dataset comprised 4418 records from 76 literature involving geo-referenced occurrences for 46 species of ticks and 219 microorganism families, revealing a total of 83 emerging viruses identified from 24 tick species belonging to 6 tick genera since 1980. The viral, bacterial and eukaryotic composition was compared regarding the tick species, their live stage and types of the specimens, or the geographic location. The data can assist the further investigation of ecological, biogeographical and epidemiological features of the tick-borne disease. Measurement(s) | microbial community | Technology Type(s) | Next Generation Sequencing | Factor Type(s) | tick | Sample Characteristic - Organism | tick | Sample Characteristic - Environment | microbial community | Sample Characteristic - Location | Whole world |
Collapse
|
17
|
Pang Z, Jin Y, Pan M, Zhang Y, Wu Z, Liu L, Niu G. Geographical distribution and phylogenetic analysis of Jingmen tick virus in China. iScience 2022; 25:105007. [PMID: 36097615 PMCID: PMC9463580 DOI: 10.1016/j.isci.2022.105007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/08/2022] [Accepted: 08/19/2022] [Indexed: 11/26/2022] Open
Abstract
Jingmen tick virus (JMTV) is a novel tick-borne segmented RNA virus that is closely related to un-segmental RNA virus in evolution. It has been confirmed that JMTV could be a causative agent of human disease. In this study, a total of 3658 ticks were sampled from 7 provinces of China and then divided into 545 pools according to the location and species. QRT-PCR and nested PCR were performed to confirm the presence of JMTV. The results showed JMTV was identified in 5 out of 7 provinces with an average infection rate of 1.4% (51/3658). Phylogenetic analysis indicated that all JMTV strains identified in this study were closely related to each other and formed a well-supported sub-lineage. Our results provide molecular evidence of JMTV in different species of ticks from endemic and non-endemic regions and demonstrate that JMTV, as a natural foci pathogen, may be widely distributed all over China. JMTV was first identified in unrecognized endemic regions of China Two complete genomes and 13 partial S1 segments of JMTV were sequenced and analyzed JMTV was relatively conservative in evolution JMTV was widely distributed in China as a potential health threat to humans and animals
Collapse
|
18
|
Metwally NH, Abd-Elmoety AS. Novel fluorinated pyrazolo[1,5-a]pyrimidines: In a way from synthesis and docking studies to biological evaluation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
19
|
Wu-Chuang A, Hodžić A, Mateos-Hernández L, Estrada-Peña A, Obregon D, Cabezas-Cruz A. Current debates and advances in tick microbiome research. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2022; 1:100036. [PMID: 35284884 PMCID: PMC8906078 DOI: 10.1016/j.crpvbd.2021.100036] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022]
Abstract
The main importance of ticks resides in their ability to harbor pathogens that can be transmitted to terrestrial vertebrates including humans. Recently, studies have focused on the taxonomic and functional composition of the tick microbiome, its microbial diversity and variation under different factors including tick species, sex, and environment among others. Of special interest are the interactions between the tick, the microbiome and pathogens since tick microbiome can influence pathogen colonization within the tick vector, and potentially, transmission to the vertebrate host. In this review, we tackled a synthesis on the growing field of tick microbiomes. We focus on the current state of tick microbiome research, addressing controversial and hotly debated topics and advances in the precise manipulation of tick microbiome. Furthermore, we discuss the innovative anti-tick microbiota vaccines as a possible tool for microbiome modulation and thus, control of tick-borne diseases. Deciphering tick-microbiome pathogen interactions can spur new strategies to control tick-borne diseases via modulation of tick microbiome. Whether the diversity observed in tick microbiomes concerns the biology or the methodology remains an open question. Tick immunity must play a major role in selecting ‘who stays and who leaves’ the microbiome. Anti-tick microbiota vaccines can target specific bacteria and subsequently modulate tick microbiome.
Collapse
Affiliation(s)
- Alejandra Wu-Chuang
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| | - Adnan Hodžić
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Lourdes Mateos-Hernández
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| | | | - Dasiel Obregon
- School of Environmental Sciences University of Guelph, Guelph, Ontario, N1G 2W1, Canada
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, 13400-970, Brazil
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
- Corresponding author.
| |
Collapse
|
20
|
Li LJ, Ning NZ, Zheng YC, Chu YL, Cui XM, Zhang MZ, Guo WB, Wei R, Liu HB, Sun Y, Ye JL, Jiang BG, Yuan TT, Li J, Bian C, Bell-Sakyi L, Wang H, Jiang JF, Song JL, Cao WC, Tsan-Yuk Lam T, Ni XB, Jia N. Virome and Blood Meal-Associated Host Responses in Ixodes persulcatus Naturally Fed on Patients. Front Microbiol 2022; 12:728996. [PMID: 35250897 PMCID: PMC8891964 DOI: 10.3389/fmicb.2021.728996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022] Open
Abstract
The long-lasting co-evolution of ticks with pathogens results in mutual adaptation. Blood-feeding is one of the critical physiological behaviors that have been associated with the tick microbiome; however, most knowledge was gained through the study of laboratory-reared ticks. Here we detached Ixodes persulcatus ticks at different stages of blood-feeding from human patients and performed high-throughput transcriptomic analysis on them to identify their virome and genes differentially expressed between flat and fully fed ticks. We also traced bloodmeal sources of those ticks and identified bats and three other potential mammalian hosts, highlighting the public health significance. We found Jingmen tick virus and 13 putative new viruses belonging to 11 viral families, three of which even exhibited high genetic divergence from viruses previously reported in the same tick species from the same geographic region. Furthermore, differential expression analysis suggested a downregulation of antioxidant genes in the fully fed I. persulcatus ticks, which might be related to bloodmeal-related redox homeostasis. Our work highlights the significance of active surveillance of tick viromes and suggests a role of reactive oxygen species (ROS) in modulating changes in the microbiome during blood-feeding.
Collapse
Affiliation(s)
- Liang-Jing Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Nian-Zhi Ning
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | | | - Yan-Li Chu
- Mudanjiang Forestry Central Hospital, Mudanjiang, China
| | - Xiao-Ming Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ming-Zhu Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Wen-Bin Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ran Wei
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hong-Bo Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Yi Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jin-Ling Ye
- Mudanjiang Forestry Central Hospital, Mudanjiang, China
| | - Bao-Gui Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ting-Ting Yuan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai, China
| | - Jie Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Cai Bian
- Mudanjiang Forestry Central Hospital, Mudanjiang, China
| | - Lesley Bell-Sakyi
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary, and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Hui Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jia-Fu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ju-Liang Song
- Mudanjiang Forestry Central Hospital, Mudanjiang, China
| | - Wu-Chun Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tommy Tsan-Yuk Lam
- State Key Laboratory of Emerging Infectious Diseases and Centre of Influenza Research, School of Public Health, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
- Joint Institute of Virology (SU/HKU), Shantou University, Shantou, China
| | - Xue-Bing Ni
- State Key Laboratory of Emerging Infectious Diseases and Centre of Influenza Research, School of Public Health, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
- *Correspondence: Xue-Bing Ni,
| | - Na Jia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- Na Jia,
| |
Collapse
|
21
|
Viglietta M, Bellone R, Blisnick AA, Failloux AB. Vector Specificity of Arbovirus Transmission. Front Microbiol 2021; 12:773211. [PMID: 34956136 PMCID: PMC8696169 DOI: 10.3389/fmicb.2021.773211] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/19/2021] [Indexed: 12/20/2022] Open
Abstract
More than 25% of human infectious diseases are vector-borne diseases (VBDs). These diseases, caused by pathogens shared between animals and humans, are a growing threat to global health with more than 2.5 million annual deaths. Mosquitoes and ticks are the main vectors of arboviruses including flaviviruses, which greatly affect humans. However, all tick or mosquito species are not able to transmit all viruses, suggesting important molecular mechanisms regulating viral infection, dissemination, and transmission by vectors. Despite the large distribution of arthropods (mosquitoes and ticks) and arboviruses, only a few pairings of arthropods (family, genus, and population) and viruses (family, genus, and genotype) successfully transmit. Here, we review the factors that might limit pathogen transmission: internal (vector genetics, immune responses, microbiome including insect-specific viruses, and coinfections) and external, either biotic (adult and larvae nutrition) or abiotic (temperature, chemicals, and altitude). This review will demonstrate the dynamic nature and complexity of virus–vector interactions to help in designing appropriate practices in surveillance and prevention to reduce VBD threats.
Collapse
Affiliation(s)
- Marine Viglietta
- Unit of Arboviruses and Insect Vectors, Institut Pasteur, Sorbonne Université, Paris, France
| | - Rachel Bellone
- Unit of Arboviruses and Insect Vectors, Institut Pasteur, Sorbonne Université, Paris, France
| | - Adrien Albert Blisnick
- Unit of Arboviruses and Insect Vectors, Institut Pasteur, Sorbonne Université, Paris, France
| | - Anna-Bella Failloux
- Unit of Arboviruses and Insect Vectors, Institut Pasteur, Sorbonne Université, Paris, France
| |
Collapse
|
22
|
Virome analysis of three Ixodidae ticks species from Colombia: A potential strategy for discovering and surveying tick-borne viruses. INFECTION GENETICS AND EVOLUTION 2021; 96:105103. [PMID: 34619391 DOI: 10.1016/j.meegid.2021.105103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/28/2022]
Abstract
Ticks are a group of obligate blood-sucking ectoparasites that play a critical role in transmitting several important zoonotic pathogens that can infect animals and humans. Viruses are part of the tick microbiome and are involved in the transmission of important diseases. Furthermore, the little information on these as etiological agents of zoonoses suggests the need to study these microorganisms. For this reason, in this study, we sought to characterize the virome in Rhipicephalus microplus, Dermacentor nitens, and Rhipicephalus sanguineus s.l., which were collected from different domestic animals in Antioquia, Colombia. RNA sequencing was used for virome characterization in these three tick species, using RNA-dependent polymerase as a marker gene. Forty-eight sequences corresponding to 14 different viruses were identified, some of which were previously identified in the tick's virome. Overall, these data indicate that ticks from domestic animals in cattle farms harbor a wide viral diversity at the local scale. Thus, the metatranscriptomic approach provides important baseline information for monitoring the tick virome and to develop future studies on their biology, host-virus interactions, host range, worldwide distribution, and finally, their potential role as emerging vector-borne agents.
Collapse
|
23
|
Pérez-Sautu U, Wiley MR, Prieto K, Chitty JA, Haddow AD, Sánchez-Lockhart M, Klein TA, Kim HC, Chong ST, Kim YJ, Choi BS, Palacios GF. Novel viruses in hard ticks collected in the Republic of Korea unveiled by metagenomic high-throughput sequencing analysis. Ticks Tick Borne Dis 2021; 12:101820. [PMID: 34555711 DOI: 10.1016/j.ttbdis.2021.101820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 11/25/2022]
Abstract
Ticks are vectors of a wide range of zoonotic viruses of medical and veterinary importance. Recently, metagenomics studies demonstrated that they are also the source of potentially pathogenic novel viruses. During the period from 2015 to 2017, questing ticks were collected by dragging the vegetation from geographically distant locations in the Republic of Korea (ROK) and a target-independent high-throughput sequencing method was utilized to study their virome. A total of seven viruses, including six putative novel viral entities, were identified. Genomic analysis showed that the novel viruses were most closely related to members in the orders Jingchuvirales and Bunyavirales. Phylogenetic reconstruction showed that the Bunyavirales-like viruses grouped in the same clade with other viruses within the Nairovirus and Phlebovirus genera, while the novel Jingchuvirales-like virus grouped together with other viruses within the family Chuviridae. Real-time RT-PCR was used to determine the geographic distribution and prevalence of these viruses in adult ticks. These novel viruses have a wide geographic distribution in the ROK with prevalences ranging from 2% to 18%. Our study expands the knowledge about the composition of the tick virome and highlights the wide diversity of viruses they harbor in the ROK. The discovery of novel viruses associated with ticks in the ROK highlights the need for an active tick-borne disease surveillance program to identify possible reservoirs of putative novel human pathogens.
Collapse
Affiliation(s)
- Unai Pérez-Sautu
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, 21702, Maryland, USA.
| | - Michael R Wiley
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, 21702, Maryland, USA; College of Public Health, University of Nebraska Medical Center, Omaha, 68198, Nebraska, USA
| | - Karla Prieto
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, 21702, Maryland, USA; College of Public Health, University of Nebraska Medical Center, Omaha, 68198, Nebraska, USA
| | - Joseph A Chitty
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, 21702, Maryland, USA
| | - Andrew D Haddow
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, 21702, Maryland, USA; Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, 30144, Georgia, USA
| | - Mariano Sánchez-Lockhart
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, 21702, Maryland, USA; Department of Pathology & Microbiology, University of Nebraska Medical Centre, Omaha, 68198, Nebraska, USA
| | - Terry A Klein
- Force Health Protection and Preventive Medicine, Medical Department Activity-Korea /65(th) Medical Brigade, Unit 15281, APO AP 96271, USA
| | - Heung-Chul Kim
- Force Health Protection and Preventive Medicine, Medical Department Activity-Korea /65(th) Medical Brigade, Unit 15281, APO AP 96271, USA
| | - Sung-Tae Chong
- Force Health Protection and Preventive Medicine, Medical Department Activity-Korea /65(th) Medical Brigade, Unit 15281, APO AP 96271, USA
| | - Yu-Jin Kim
- Army Headquarters, Gyeryong-si, 32800, Republic of Korea
| | | | - Gustavo F Palacios
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, 21702, Maryland, USA
| |
Collapse
|
24
|
Tokarz R, Lipkin WI. Discovery and Surveillance of Tick-Borne Pathogens. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1525-1535. [PMID: 33313662 PMCID: PMC8285023 DOI: 10.1093/jme/tjaa269] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Indexed: 05/06/2023]
Abstract
Within the past 30 yr molecular assays have largely supplanted classical methods for detection of tick-borne agents. Enhancements provided by molecular assays, including speed, throughput, sensitivity, and specificity, have resulted in a rapid increase in the number of newly characterized tick-borne agents. The use of unbiased high throughput sequencing has enabled the prompt identification of new pathogens and the examination of tick microbiomes. These efforts have led to the identification of hundreds of new tick-borne agents in the last decade alone. However, little is currently known about the majority of these agents beyond their phylogenetic classification. Our article outlines the primary methods involved in tick-borne agent discovery and the current status of our understanding of tick-borne agent diversity.
Collapse
Affiliation(s)
- Rafal Tokarz
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY
- Corresponding author, e-mail:
| | - W Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY
| |
Collapse
|
25
|
Wang YC, Wei Z, Lv X, Han S, Wang Z, Fan C, Zhang X, Shao J, Zhao YH, Sui L, Chen C, Liao M, Wang B, Jin N, Li C, Ma J, Hou ZJ, Yang Z, Han Z, Zhang Y, Niu J, Wang W, Wang Y, Liu Q. A new nairo-like virus associated with human febrile illness in China. Emerg Microbes Infect 2021; 10:1200-1208. [PMID: 34044749 PMCID: PMC8212832 DOI: 10.1080/22221751.2021.1936197] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Several nairo-like viruses have been discovered in ticks in recent years, but their relevance to public health remains unknown. Here, we found a patient who had a history of tick bite and suffered from a febrile illness was infected with a previously discovered RNA virus, Beiji nairovirus (BJNV), in the nairo-like virus group of the order Bunyavirales. We isolated the virus by cell culture assay. BJNV could induce cytopathic effects in the baby hamster kidney and human hepatocellular carcinoma cells. Negative-stain electron microscopy revealed enveloped and spherical viral particles, morphologically similar to those of nairoviruses. We identified 67 patients as BJNV infection in 2017–2018. The median age of patients was 48 years (interquartile range 41–53 years); the median incubation period was 7 days (interquartile range 3–12 days). Most patients were men (70%), and a few (10%) had underlying diseases. Common symptoms of infected patients included fever (100%), headache (99%), depression (63%), coma (63%), and fatigue (54%), myalgia or arthralgia (45%); two (3%) patients became critically ill and one died. BJNV could cause growth retardation, viremia and histopathological changes in infected suckling mice. BJNV was also detected in sheep, cattle, and multiple tick species. These findings demonstrated that the newly discovered nairo-like virus may be associated with a febrile illness, with the potential vectors of ticks and reservoirs of sheep and cattle, highlighting its public health significance and necessity of further investigation in the tick-endemic areas worldwide.
Collapse
Affiliation(s)
- Yan-Chun Wang
- Department of Emerging Infectious Diseases, The First Hospital of Jilin University, Changchun, People's Republic of China.,Military Veterinary Institute, Academy of Military Medical Sciences, Changchun, People's Republic of China
| | - Zhengkai Wei
- College of Life Sciences and Engineering, Foshan University, Foshan, People's Republic of China
| | - Xiaolong Lv
- The Second Affiliated Hospital of Inner Mongolia University for the Nationalities, Inner Mongolia General Forestry Hospital, Yakeshi, People's Republic of China
| | - Shuzheng Han
- The Second Affiliated Hospital of Inner Mongolia University for the Nationalities, Inner Mongolia General Forestry Hospital, Yakeshi, People's Republic of China
| | - Zedong Wang
- Department of Emerging Infectious Diseases, The First Hospital of Jilin University, Changchun, People's Republic of China.,Military Veterinary Institute, Academy of Military Medical Sciences, Changchun, People's Republic of China
| | - Changfa Fan
- National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Xu Zhang
- College of Life Sciences and Engineering, Foshan University, Foshan, People's Republic of China
| | - Jianwei Shao
- College of Life Sciences and Engineering, Foshan University, Foshan, People's Republic of China
| | - Ying-Hua Zhao
- Department of Emerging Infectious Diseases, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Liyan Sui
- Department of Emerging Infectious Diseases, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Chen Chen
- Department of Emerging Infectious Diseases, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Ming Liao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, South China Agricultural University, Guangzhou, People's Republic of China
| | - Bo Wang
- The Second Affiliated Hospital of Inner Mongolia University for the Nationalities, Inner Mongolia General Forestry Hospital, Yakeshi, People's Republic of China
| | - Ningyi Jin
- Military Veterinary Institute, Academy of Military Medical Sciences, Changchun, People's Republic of China
| | - Chang Li
- Military Veterinary Institute, Academy of Military Medical Sciences, Changchun, People's Republic of China
| | - Jun Ma
- College of Life Sciences and Engineering, Foshan University, Foshan, People's Republic of China
| | - Zhi-Jun Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, People's Republic of China
| | - Zhengtao Yang
- College of Life Sciences and Engineering, Foshan University, Foshan, People's Republic of China
| | - Zhen Han
- College of Life Sciences and Engineering, Foshan University, Foshan, People's Republic of China
| | - Yong Zhang
- College of Life Sciences and Engineering, Foshan University, Foshan, People's Republic of China
| | - Junqi Niu
- Department of Emerging Infectious Diseases, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Wei Wang
- The Second Affiliated Hospital of Inner Mongolia University for the Nationalities, Inner Mongolia General Forestry Hospital, Yakeshi, People's Republic of China
| | - Youchun Wang
- National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Quan Liu
- Department of Emerging Infectious Diseases, The First Hospital of Jilin University, Changchun, People's Republic of China.,Military Veterinary Institute, Academy of Military Medical Sciences, Changchun, People's Republic of China.,College of Life Sciences and Engineering, Foshan University, Foshan, People's Republic of China.,College of Wildlife and Protected Area, Northeast Forestry University, Harbin, People's Republic of China
| |
Collapse
|
26
|
Sequence diversity and evolution of a group of iflaviruses associated with ticks. Arch Virol 2021; 166:1843-1852. [PMID: 33870470 PMCID: PMC8195936 DOI: 10.1007/s00705-021-05060-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/15/2021] [Indexed: 11/21/2022]
Abstract
We studied a group of tick-associated viruses with characteristics of members of the family Iflaviridae, a family of viruses frequently found in arthropods. Our aim was to gain insight into the evolutionary dynamics of this group of viruses, which may be linked to the biology of ticks. We explored assembled RNA-Seq data sets for different species of ticks. We identified members of five different iflavirus species, four of them novel, and discovered nine new genome sequences, including variants. Five variants represented a virus species associated with Ixodes ricinus. Unexpectedly, a sequence found in the Ixodes scapularis cell line ISE6 was nearly identical to the sequences of I. ricinus variants, suggesting a contamination of this cell line by I. ricinus material. Analysing patterns of substitutions between these variants, we detected a strong excess of synonymous mutations, suggesting evolution under strong positive selection. The phylogenies of the viruses and of their tick hosts were not congruent, suggesting recurrent host changes across tick genera during their evolution. Overall, our work constitutes a step in the understanding of the interactions between this family of viruses and ticks.
Collapse
|
27
|
Della-Giustina D, Duke C, Goldflam K. Underrecognized Tickborne Illnesses: Borrelia Miyamotoi and Powassan Virus. Wilderness Environ Med 2021; 32:240-246. [PMID: 33839017 DOI: 10.1016/j.wem.2021.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 11/16/2022]
Abstract
Over the past 2 decades, tickborne disease has been increasingly recognized as a threat to humans as a result of the growing geographic range of ticks. This review describes 2 tickborne diseases, Borrelia miyamotoi and Powassan virus, that likely have a significant impact on humans, yet are underdiagnosed compared to most other tickborne diseases. We performed a literature search from 2015 to 2020. Borrelia miyamotoi is a tickborne pathogen that infects and co-infects ticks along with other pathogens, including Borrelia burgdorferi. Because B miyamotoi infects the same Ixodes ticks as B burgdorferi, B miyamotoi may cover a similar geographic range. B miyamotoi infection may be underdiagnosed for 2 reasons. First, a presumptive treatment approach to Lyme disease may result in B miyamotoi infection treatment without identification of the actual cause. Second, the absence of readily available testing and diagnostic criteria makes it difficult to diagnose B miyamotoi infection. Powassan virus is a tickborne flavivirus similar to the dengue virus. Powassan virus disease appears to have an asymptomatic or minimally symptomatic presentation in most people but can cause devastating and fatal encephalitis. The Powassan virus may be transmitted in less than 15 min of tick feeding. Powassan virus disease is a difficult diagnosis because testing capabilities are limited and because there may be co-infection with other tickborne pathogens.
Collapse
Affiliation(s)
| | - Charles Duke
- Yale School of Medicine, Department of Emergency Medicine, New Haven, CT
| | - Katja Goldflam
- Yale School of Medicine, Department of Emergency Medicine, New Haven, CT
| |
Collapse
|
28
|
Vandegrift KJ, Kumar A, Sharma H, Murthy S, Kramer LD, Ostfeld R, Hudson PJ, Kapoor A. Presence of Segmented Flavivirus Infections in North America. Emerg Infect Dis 2020; 26:1810-1817. [PMID: 32687041 PMCID: PMC7392405 DOI: 10.3201/eid2608.190986] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Identifying viruses in synanthropic animals is necessary for understanding the origin of many viruses that can infect humans and developing strategies to prevent new zoonotic infections. The white-footed mouse, Peromyscus leucopus, is one of the most abundant rodent species in the northeastern United States. We characterized the serum virome of 978 free-ranging P. leucopus mice caught in Pennsylvania. We identified many new viruses belonging to 26 different virus families. Among these viruses was a highly divergent segmented flavivirus whose genetic relatives were recently identified in ticks, mosquitoes, and vertebrates, including febrile humans. This novel flavi-like segmented virus was found in rodents and shares ≤70% aa identity with known viruses in the highly conserved region of the viral polymerase. Our data will enable researchers to develop molecular reagents to further characterize this virus and its relatives infecting other hosts and to curtail their spread, if necessary.
Collapse
|
29
|
Balinandi S, Chitimia-Dobler L, Grandi G, Nakayiki T, Kabasa W, Bbira J, Lutwama JJ, Bakkes DK, Malmberg M, Mugisha L. Morphological and molecular identification of ixodid tick species (Acari: Ixodidae) infesting cattle in Uganda. Parasitol Res 2020; 119:2411-2420. [PMID: 32533261 PMCID: PMC7366568 DOI: 10.1007/s00436-020-06742-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022]
Abstract
In Uganda, the role of ticks in zoonotic disease transmission is not well described, partly, due to limited available information on tick diversity. This study aimed to identify the tick species that infest cattle. Between September and November 2017, ticks (n = 4362) were collected from 5 districts across Uganda (Kasese, Hoima, Gulu, Soroti, and Moroto) and identified morphologically at Uganda Virus Research Institute. Morphological and genetic validation was performed in Germany on representative identified specimens and on all unidentified ticks. Ticks were belonging to 15 species: 8 Rhipicephalus species (Rhipicephalus appendiculatus, Rhipicephalus evertsi evertsi, Rhipicephalus microplus, Rhipicephalus decoloratus, Rhipicephalus afranicus, Rhipicephalus pulchellus, Rhipicephalus simus, and Rhipicephalus sanguineus tropical lineage); 5 Amblyomma species (Amblyomma lepidum, Amblyomma variegatum, Amblyomma cohaerens, Amblyomma gemma, and Amblyomma paulopunctatum); and 2 Hyalomma species (Hyalomma rufipes and Hyalomma truncatum). The most common species were R. appendiculatus (51.8%), A. lepidum (21.0%), A. variegatum (14.3%), R. evertsi evertsi (8.2%), and R. decoloratus (2.4%). R. afranicus is a new species recently described in South Africa and we report its presence in Uganda for the first time. The sequences of R. afranicus were 2.4% divergent from those obtained in Southern Africa. We confirm the presence of the invasive R. microplus in two districts (Soroti and Gulu). Species diversity was highest in Moroto district (p = 0.004) and geographical predominance by specific ticks was observed (p = 0.001). The study expands the knowledge on tick fauna in Uganda and demonstrates that multiple tick species with potential to transmit several tick-borne diseases including zoonotic pathogens are infesting cattle.
Collapse
Affiliation(s)
- Stephen Balinandi
- Uganda Virus Research Institute, P.O. Box 49, Entebbe, Uganda.,College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P.O. Box 7062, Kampala, Uganda
| | | | - Giulio Grandi
- Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, 750 07, Uppsala, Sweden
| | - Teddy Nakayiki
- Uganda Virus Research Institute, P.O. Box 49, Entebbe, Uganda
| | - William Kabasa
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Johnson Bbira
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P.O. Box 7062, Kampala, Uganda
| | | | - Deon K Bakkes
- Gertrud Theiler Tick Museum, Epidemiology, Parasites and Vectors, Agricultural Research Council - Onderstepoort Veterinary Research, Pretoria, 0110, South Africa.,Evolutionary Genomics Group, Department of Botany and Zoology, Stellenbosch University, Merriman Street, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Maja Malmberg
- Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, 750 07, Uppsala, Sweden. .,SLU Global Bioinformatics Centre, Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7023, 750 07, Uppsala, Sweden.
| | - Lawrence Mugisha
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P.O. Box 7062, Kampala, Uganda.,Ecohealth Research Group, Conservation & Ecosystem Health Alliance, P.O. Box 34153, Kampala, Uganda
| |
Collapse
|
30
|
|
31
|
Xu Z, Yan Y, Cao J, Zhou Y, Zhang H, Xu Q, Zhou J. A family of serine protease inhibitors (serpins) and its expression profiles in the ovaries of Rhipicephalus haemaphysaloides. INFECTION GENETICS AND EVOLUTION 2020; 84:104346. [PMID: 32360539 DOI: 10.1016/j.meegid.2020.104346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/28/2022]
Abstract
Serpins are evolutionarily conserved serine protease inhibitors found in many organisms. In arthropods, serpins are involved in feeding, development, oviposition, anti-coagulation and innate immune responses. We characterized of 11 serpins in the tick Rhipicephalus haemaphysaloides. These serpins have orthologous genes in other ticks, as indicated by phylogenetic analysis. Analysis of the reactive center loop and hinge regions of the protein sequences indicated that RHS7 encodes proteins that may lack proteinase inhibitor activity. All R. haemaphysaloides serpins had high amino acid sequence identities to Rhipicephalus microplus serpins. Tissue and temporal transcriptional profiling of eight R. haemaphysaloides serpins located in the ovaries demonstrated that they are transcribed during feeding and oviposition. These suggested their participation in the regulation of tick physiology. Immune serum from rabbits repeatedly infested with larvae, nymphs and adults of R. haemaphysaloides can recognize multiple recombinant serpins, respectively. After gene silencing, the blood feeding to repletion time was significantly longer and the 24 h attachment rate was significantly lower in the RHS3 and RHS7 knock down groups. The RHS9 and RHS11 silenced ticks had significant reduction in repletion time and egg-laying rate. Egg hatchability was significantly decreased in RHS4, RHS5 and RHS9 silenced ticks. All groups had significant reductions in engorged body weight. This study increases information on the serpins of R. haemaphysaloides and suggests that some RHSs are potential targets for development of tick vaccines.
Collapse
Affiliation(s)
- Zhengmao Xu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yijie Yan
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China; College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.
| | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.
| | - Qianming Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.
| |
Collapse
|
32
|
Garry CE, Garry RF. Proteomics Computational Analyses Suggest That the Envelope Glycoproteins of Segmented Jingmen Flavi-Like Viruses are Class II Viral Fusion Proteins (b-Penetrenes) with Mucin-Like Domains. Viruses 2020; 12:v12030260. [PMID: 32120884 PMCID: PMC7150890 DOI: 10.3390/v12030260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 12/27/2022] Open
Abstract
Jingmen viruses are newly described segmented flavi-like viruses that have a worldwide distribution in ticks and have been associated with febrile illnesses in humans. Computational analyses were used to predict that Jingmen flavi-like virus glycoproteins have structural features of class II viral fusion proteins, including an ectodomain consisting of beta-sheets and short alpha-helices, a fusion peptide with interfacial hydrophobicity and a three-domain architecture. Jingmen flavi-like virus glycoproteins have a sequence enriched in serine, threonine, and proline at the amino terminus, which is a feature of mucin-like domains. Several of the serines and threonines are predicted be modified by the addition of O-linked glycans. Some of the glycoproteins are predicted to have an additional mucin-like domain located prior to the transmembrane anchor, whereas others are predicted to have a stem consisting of two alpha-helices. The flavivirus envelope protein and Jingmen flavi-virus glycoproteins may have diverged from a common class II precursor glycoprotein with a mucin-like domain or domains acquired after divergence.
Collapse
Affiliation(s)
- Courtney E. Garry
- School of Nursing, Johns Hopkins University, Baltimore, MD 21205, USA;
| | - Robert F. Garry
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Zalgen Labs, Germantown, MD 20876, USA
- Correspondence: ; Tel.: +1-504-988-2027
| |
Collapse
|
33
|
Ergünay K. Revisiting new tick-associated viruses: what comes next? Future Virol 2020. [DOI: 10.2217/fvl-2019-0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tick-borne viral infections continue to cause diseases with considerable impact on humans, livestock, companion animals and wildlife. Many lack specific therapeutics and vaccines are available for only a few. Tick-borne viruses will continue to emerge, facilitated by anthroponotic factors related to the modern lifestyle. We persistently identify and are obliged to cope with new examples of emerging tick-borne viral diseases and novel viruses today. Many new strains have been detected in vertebrates and arthropods, some causing severe diseases likely to challenge public and veterinary health. This manuscript aims to provide a narrative overview of recently-described tick-associated viruses, with perspectives on changing paradigms in identification, screening and control.
Collapse
Affiliation(s)
- Koray Ergünay
- Hacettepe University, Faculty of Medicine, Department of Medical Microbiology, Virology Unit, Ankara 06100, Turkey
| |
Collapse
|
34
|
Novel Viruses Found in Antricola Ticks Collected in Bat Caves in the Western Amazonia of Brazil. Viruses 2019; 12:v12010048. [PMID: 31906098 PMCID: PMC7019218 DOI: 10.3390/v12010048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/20/2019] [Accepted: 12/26/2019] [Indexed: 12/12/2022] Open
Abstract
In this study, we describe the viral composition of adult Antricola delacruzi ticks collected in a hot bat cave in the state of Rondônia, Western Amazonia, Brazil. A. delacruzi ticks, are special, compared to many other ticks, in that they feed on both bats (larval blood feeding) and bat guano (nymphal and adult feeding) instead of feeding exclusively on vertebrate hosts (blood feeding). Considering this unique life-cycle it is potentially possible that these ticks can pick up/be infected by viruses not only present in the blood of viremic bats but also by virus shed through the bat guano. The viral metagenomic investigation of adult ticks showed that single-stranded negative-sense RNA viruses were the dominant group of viruses identified in the investigated ticks. Out of these, members of the Nairoviridae family were in clear majority constituting 88% of all viral reads in the data set. Genetic and phylogenetic analyses indicate the presence of several different orthonairoviruses in the investigated ticks with only distant relationship to previously described ones. In addition, identification of viral sequences belonging to Orthomyxoviridae, Iflaviridae, Dicistroviridae, Polycipiviridae, Reoviridae and different unclassified RNA viruses showed the presence of viruses with low sequence similarity to previously described viruses.
Collapse
|
35
|
Dinçer E, Hacıoğlu S, Kar S, Emanet N, Brinkmann A, Nitsche A, Özkul A, Linton YM, Ergünay K. Survey and Characterization of Jingmen Tick Virus Variants. Viruses 2019; 11:v11111071. [PMID: 31744216 PMCID: PMC6893481 DOI: 10.3390/v11111071] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/05/2019] [Indexed: 12/18/2022] Open
Abstract
We obtained a Jingmen tick virus (JMTV) isolate, following inoculation of a tick pool with detectable Crimean-Congo hemorrhagic fever virus (CCHFV) RNA. We subsequently screened 7223 ticks, representing 15 species in five genera, collected from various regions in Anatolia and eastern Thrace, Turkey. Moreover, we tested specimens from various patient cohorts (n = 103), and canine (n = 60), bovine (n = 20) and avian specimens (n = 65). JMTV nucleic acids were detected in 3.9% of the tick pools, including those from several tick species from the genera Rhipicephalus and Haemaphysalis, and Hyalomma marginatum, the main vector of CCHFV in Turkey. Phylogenetic analysis supported two separate clades, independent of host or location, suggesting ubiquitous distribution in ticks. JMTV was not recovered from any human, animal or bird specimens tested. Near-complete viral genomes were sequenced from the prototype isolate and from three infected tick pools. Genome topology and functional organization were identical to the members of Jingmen group viruses. Phylogenetic reconstruction of individual viral genome segments and functional elements further supported the close relationship of the strains from Kosovo. We further identified probable recombination events in the JMTV genome, involving closely-related strains from Anatolia or China.
Collapse
Affiliation(s)
- Ender Dinçer
- Research and Application Center, Advanced Technology Education, Mersin University, Mersin 33110, Turkey;
| | - Sabri Hacıoğlu
- Department of Virology, Faculty of Veterinary Medicine, Ankara University, Ankara 06110, Turkey; (S.H.)
| | - Sırrı Kar
- Department of Biology, Namık Kemal University, Tekirdağ 33110, Turkey;
- Department of Microbiology and Immunology and Galveston National Laboratory, University of Texas Medical Branch, Galveston, GX 77555, USA
| | - Nergis Emanet
- Virology Unit, Department of Medical Microbiology, Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey;
| | - Annika Brinkmann
- Center for Biological Threats and Special Pathogens 1 (ZBS-1), Robert Koch Institute, 13352 Berlin, Germany; (A.B.); (A.N.)
| | - Andreas Nitsche
- Center for Biological Threats and Special Pathogens 1 (ZBS-1), Robert Koch Institute, 13352 Berlin, Germany; (A.B.); (A.N.)
| | - Aykut Özkul
- Department of Virology, Faculty of Veterinary Medicine, Ankara University, Ankara 06110, Turkey; (S.H.)
| | - Yvonne-Marie Linton
- Department of Entomology, Smithsonian Institution-National Museum of Natural History, Washington, DC 20560, USA
- Walter Reed Biosystematics Unit, Smithsonian Institution Museum Support Center, Suitland, MD 20746, USA
| | - Koray Ergünay
- Virology Unit, Department of Medical Microbiology, Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey;
- Correspondence: ; Tel.: +90-312-305-1560 (ext. 1465); Fax: 90-312-305-2161
| |
Collapse
|