1
|
Jancarova M, Polanska N, Thiesson A, Arnaud F, Stejskalova M, Rehbergerova M, Kohl A, Viginier B, Volf P, Ratinier M. Susceptibility of diverse sand fly species to Toscana virus. PLoS Negl Trop Dis 2025; 19:e0013031. [PMID: 40315233 PMCID: PMC12047804 DOI: 10.1371/journal.pntd.0013031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 04/01/2025] [Indexed: 05/04/2025] Open
Abstract
Toscana virus (TOSV) is an emerging but neglected human pathogen currently circulating around the Mediterranean basin including North Africa. Human illness ranges from asymptomatic or mild flu-like syndromes to severe neurological diseases such as meningitis or meningoencephalitis. Despite its significant impact, understanding of TOSV transmission and epidemiology remains limited. Sand flies (Diptera: Phlebotominae), specifically Phlebotomus perniciosus and Phlebotomus perfiliewi, are believed to be the primary vectors of TOSV. However, the spread of TOSV to new geographical areas and its detection in other sand fly species suggest that additional species play a role in the circulation and transmission of this virus. This study investigated the vector competence of four sand fly species - P. tobbi, P. sergenti, P. papatasi, and Sergentomyia schwetzi - for two TOSV strains: 1500590 (TOSV A lineage) and MRS20104319501 (TOSV B lineage). Sand flies were orally challenged with TOSV via bloodmeals. None of the tested species showed susceptibility to the TOSV A strain. However, for TOSV B strain, P. tobbi demonstrated a high potential as a new vector, exhibiting high infection and dissemination rates. P. sergenti also showed some susceptibility to TOSV B, with the virus dissemination observed in all infected females. These finding suggests that P. tobbi and P. sergenti are new potential vectors for TOSV B. Given that P. tobbi and P. sergenti are the primary vectors of human leishmaniases in the Balkans, Turkey and Middle East, their susceptibility to TOSV could have significant epidemiological consequences. On the other hand, P. papatasi and S. schwetzi appeared refractory to TOSV B infection. Refractoriness of P. papatasi, a highly anthropophilic species distributed from the Mediterranean to the Middle East and India, suggests that this species does not contribute to TOSV circulation.
Collapse
Affiliation(s)
- Magdalena Jancarova
- Laboratory of Vector Biology, Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Nikola Polanska
- Laboratory of Vector Biology, Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Adrien Thiesson
- IVPC UMR754, INRAE, Universite Claude Bernard Lyon 1, EPHE, Université PSL, Lyon, France
| | - Frédérick Arnaud
- IVPC UMR754, INRAE, Universite Claude Bernard Lyon 1, EPHE, Université PSL, Lyon, France
| | - Marketa Stejskalova
- Laboratory of Vector Biology, Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Marketa Rehbergerova
- Laboratory of Vector Biology, Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
- Centre for Neglected Tropical Diseases, Departments of Tropical Disease Biology and Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Barbara Viginier
- IVPC UMR754, INRAE, Universite Claude Bernard Lyon 1, EPHE, Université PSL, Lyon, France
| | - Petr Volf
- Laboratory of Vector Biology, Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Maxime Ratinier
- IVPC UMR754, INRAE, Universite Claude Bernard Lyon 1, EPHE, Université PSL, Lyon, France
| |
Collapse
|
2
|
Ware-Gilmore F, Jones MJ, Mejia AJ, Dennington NL, Audsley MD, Hall MD, Sgrò CM, Buckley T, Anand GS, Jose J, McGraw EA. Evolution and adaptation of dengue virus in response to high-temperature passaging in mosquito cells. Virus Evol 2025; 11:veaf016. [PMID: 40330315 PMCID: PMC12054504 DOI: 10.1093/ve/veaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/14/2025] [Accepted: 04/23/2025] [Indexed: 05/08/2025] Open
Abstract
The incidence of arboviral diseases like dengue, chikungunya, and yellow fever continues to rise in association with the expanding geographic ranges of their vectors, Aedes aegypti and Aedes albopictus. The distribution of these vectors is believed to be driven in part by climate change and increasing urbanization. Arboviruses navigate a wide range of temperatures as they transition from ectothermic vectors (from 15°C to 35°C) to humans (37°C) and back again, but the role that temperature plays in driving the evolution of arboviruses remains largely unknown. Here, we passaged replicate dengue serotype-2 virus populations 10 times at either 26°C (Low) or 37°C (High) in C6/36 Aedes albopictus cells to explore the differences in adaptation to these thermal environments. We then deep-sequenced the resulting passaged dengue virus populations and tested their replicative fitness in an all-cross temperature regime. We also assessed the ability of the passaged viruses to replicate in the insect vector. While viruses from both thermal regimes accumulated substitutions, only those reared in the 37°C treatments exhibited nonsynonymous changes, including several in the E, or envelope protein, and multiple non-structural genes. Passaging at the higher temperature also led to reduced replicative ability at 26°C in both cells and mosquitoes. One of the mutations in the E gene involved the loss of a glycosylation site previously shown to reduce infectivity in the vector. These findings suggest that viruses selected for growth at higher ambient temperatures may experience tradeoffs between thermostability and replication in the vector. Such associations might also have implications for the suitability of virus transmission under a changing climate.
Collapse
Affiliation(s)
- Fhallon Ware-Gilmore
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
- The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Matthew J Jones
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Austin J Mejia
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
- The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Nina L Dennington
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Michelle D Audsley
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Matthew D Hall
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Carla M Sgrò
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Theresa Buckley
- The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ganesh S Anand
- The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Joyce Jose
- The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Elizabeth A McGraw
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
3
|
Dong S, Ciomperlik-Patton J, Zhao Y, Dong Y, Myles KM, Dimopoulos G. Enhancing Tissue-Specific Antiviral Immunity to Disrupt Arbovirus Transmission by Mosquitoes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.04.647234. [PMID: 40236013 PMCID: PMC11996529 DOI: 10.1101/2025.04.04.647234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Arboviruses, including dengue virus (DENV), Zika virus (ZIKV), and chikungunya virus (CHIKV), pose a significant global health and economic burden, with Aedes aegypti serving as their primary vector. Arbovirus infection in Ae. aegypti progresses sequentially through the midgut (MG), carcass (CA), and salivary glands (SG), with each tissue exhibiting distinct antiviral responses. Here, we investigate tissue-specific antiviral mechanisms, focusing on the small interfering RNA (siRNA) pathway in SGs. Our results reveal that SGs possess weaker antiviral defense and are more susceptible to arboviral infection compared to MGs and CAs. Notably, overexpression of Dicer2 ( Dcr2 ), a key component of the siRNA pathway, in SGs leads to a significant decrease in arboviral replication. Conversely, Dcr2 overexpression in fat bodies, the primary tissue in CAs, only moderately suppresses DENV2 infection and has no notable effect on Mayaro virus (MAYV) infection. Remarkably, the simultaneous overexpression of Dcr2 in both MGs and SGs enhances antiviral activity, effectively blocking the transmission of multiple arboviruses. These findings reveal the tissue-specific dynamics of mosquito antiviral immunity and underscore the potential for targeting SG-specific immunity to disrupt arbovirus transmission, providing a promising approach for controlling mosquito-borne diseases.
Collapse
|
4
|
Zaib S, Rana N, Ali HS, Ur Rehman M, Awwad NS, Ibrahium HA, Khan I. Identification of potential inhibitors targeting yellow fever virus helicase through ligand and structure-based computational studies. J Biomol Struct Dyn 2025; 43:3031-3048. [PMID: 38109183 DOI: 10.1080/07391102.2023.2294839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
Yellow fever is a flavivirus having plus-sensed RNA which encodes a single polyprotein. Host proteases cut this polyprotein into seven nonstructural proteins including a vital NS3 protein. The present study aims to identify the most effective inhibitor against the helicase (NS3) using different advanced ligand and structure-based computational studies. A set of 300 ligands was selected against helicase by chemical structural similarity model, which are similar to S-adenosyl-l-cysteine using infiniSee. This tool screens billions of compounds through a similarity search from in-built chemical spaces (CHEMriya, Galaxi, KnowledgeSpace and REALSpace). The pharmacophore was designed from ligands in the library that showed same features. According to the sequence of ligands, six compounds (29, 87, 99, 116, 148, and 208) were taken for pharmacophore designing against helicase protein. Subsequently, compounds from the library which showed the best pharmacophore shared-features were docked using FlexX functionality of SeeSAR and their optibrium properties were analyzed. Afterward, their ADME was improved by replacing the unfavorable fragments, which resulted in the generation of new compounds. The selected best compounds (301, 302, 303 and 304) were docked using SeeSAR and their pharmacokinetics and toxicological properties were evaluated using SwissADME. The optimal inhibitor for yellow fever helicase was 2-amino-N-(4-(dimethylamino)thiazol-2-yl)-4-methyloxazole-5-carboxamide (302), which exhibits promising potential for drug development.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Nehal Rana
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Hafiz Saqib Ali
- Chemistry Research Laboratory, Department of Chemistry and the INEOS Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK
| | - Mujeeb Ur Rehman
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Nasser S Awwad
- Department of Chemistry, King Khalid University, Abha, Saudi Arabia
| | - Hala A Ibrahium
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Imtiaz Khan
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| |
Collapse
|
5
|
Anyango VO, Langat S, Mulwa F, Mutisya J, Koka H, Okoyo C, Chepkorir E, Konongoi S, Karanja A, Kerubo G, Sang R, Lutomiah J. Genetic diversity of Aedes aegypti populations from Kisumu and Busia counties, western Kenya, and their vector competence for chikungunya virus. PLoS One 2025; 20:e0289191. [PMID: 40131886 PMCID: PMC11936183 DOI: 10.1371/journal.pone.0289191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 02/13/2025] [Indexed: 03/27/2025] Open
Abstract
Aedes aegypti (Ae. aegypti) is the primary vector of several arboviruses, including dengue virus (DENV), chikungunya virus (CHIKV), yellow fever virus (YFV), and Zika virus (ZIKV). This vector is widespread globally in tropical and subtropical areas but also found in temperate areas. Kenya experienced its first chikungunya outbreak in Lamu County in 2004, followed by subsequent outbreaks in Mandera in 2016 and Mombasa in 2017. Despite the presence of Ae. aegypti in Kisumu and Busia counties, no outbreaks of chikungunya fever have been reported in these two western Kenya counties. To investigate this phenomenon, we collected Ae. aegypti mosquitoes from the county headquarter towns of Kisumu and Busia. The mosquitoes were reared under controlled laboratory conditions, and their genetic diversity assessed using COI gene sequences. Additionally, neutrality tests, including Tajima's D and Fu's FS, were subsequently performed to infer evolutionary dynamics. The mosquitoes were then evaluated for their ability to transmit CHIKV by challenging laboratory-reared F1 generations of field-collected mosquitoes with an infectious blood meal containing CHIKV. Genetic analysis revealed the presence of both Ae. aegypti subspecies, (Ae. aegypti aegypti [Aaa] and Ae. aegypti formosus [Aaf]) in the two western Kenya counties, with Aaf being dominant (19:8 for Kisumu samples and 25:6 for Busia samples). The populations exhibited high haplotype diversity (0.96011 in Kisumu and 0.93763 in Busia) and low nucleotide diversity (0.00913 in Kisumu and 0.00757 in Busia), indicating significant genetic polymorphism at the loci examined. Additionally, negative neutrality tests, including Tajima's D (-1.87530 for Kisumu and -1.09547 for Busia) and Fu's FS (-10.223 for Kisumu and -15.249 for Busia), coupled with a smooth mismatch distribution, suggest that recent evolutionary events may have significantly shaped the genetic structure of these populations. The assessment of vector competence of Ae. aegypti populations from Kisumu and Busia counties revealed their capacity to support CHIKV transmission. Specifically, we demonstrated infection, dissemination, and transmission rates of 55.2%, 85.5%, and 27.1% for Kisumu, and 57.8%, 71.8%, and 25% for Busia, respectively. However, statistical analysis indicated no significant difference in vector competence between the two populations. These findings underscore the uniform potential of Ae. aegypti mosquitoes from both Kisumu and Busia to facilitate the spread of CHIKV, highlighting the need for consistent surveillance and vector management strategies across these regions.
Collapse
Affiliation(s)
- Victor O. Anyango
- Department of Microbiology, School of Biochemistry, Microbiology, and Biotechnology, Kenyatta University, Nairobi, Kenya
- Division of Arboviruses and Viral Hemorrhagic Fevers Research, Center for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Solomon Langat
- Division of Arboviruses and Viral Hemorrhagic Fevers Research, Center for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Francis Mulwa
- Division of Arboviruses and Viral Hemorrhagic Fevers Research, Center for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - James Mutisya
- Division of Arboviruses and Viral Hemorrhagic Fevers Research, Center for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Hellen Koka
- Division of Arboviruses and Viral Hemorrhagic Fevers Research, Center for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Collins Okoyo
- Division of Arboviruses and Viral Hemorrhagic Fevers Research, Center for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Edith Chepkorir
- Division of Arboviruses and Viral Hemorrhagic Fevers Research, Center for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Samson Konongoi
- Division of Arboviruses and Viral Hemorrhagic Fevers Research, Center for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Anncarol Karanja
- Department of Microbiology, School of Biochemistry, Microbiology, and Biotechnology, Kenyatta University, Nairobi, Kenya
| | - Glennah Kerubo
- Department of Microbiology, School of Biochemistry, Microbiology, and Biotechnology, Kenyatta University, Nairobi, Kenya
| | - Rosemary Sang
- International Center of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
| | - Joel Lutomiah
- Division of Arboviruses and Viral Hemorrhagic Fevers Research, Center for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| |
Collapse
|
6
|
Zhu C, Jiang Y, Zhang Q, Gao J, Li C, Li C, Dong Y, Xing D, Zhang H, Zhao T, Guo X, Zhao T. Transcriptome analysis of Aedes aegypti midgut and salivary gland post-Zika virus infection. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2025; 7:100251. [PMID: 40166081 PMCID: PMC11957795 DOI: 10.1016/j.crpvbd.2025.100251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 04/02/2025]
Abstract
This study aimed to investigate the transcriptomic changes in the midgut and salivary glands of Aedes aegypti mosquitoes infected with Zika virus (ZIKV), in order to explore the molecular mechanisms underlying the interaction between the virus and the mosquito vector. Aedes aegypti from Jiegao (JG) and Mengding (MD) in China were experimentally infected with ZIKV, and the midgut and salivary gland tissues were collected at 2-, 4- and 6 days post-infection (dpi). High-throughput sequencing was performed to analyze the transcriptomic changes between ZIKV-infected and non-infected Ae. aegypti midgut and salivary gland tissues. Bioinformatics tools were employed for further analysis of the transcriptomic data. The expression levels of 8 significantly differentially expressed genes (DEGs) were validated using RT-qPCR. A conjoint analysis of small RNA-seq and mRNA-seq was performed to screen interactional miRNA-mRNA pairs during ZIKV infection. Using the Search Tool for the Retrieval of Interacting Genes, we constructed a protein-protein interaction network of genes and subsequently identified hub genes. The most significant transcriptional changes in Ae. aegypti occurred at 2 dpi. On 2, 4 and 6 dpi, 11 genes showed significant changes in both the midgut and salivary glands of the same mosquito strain, while 25 genes exhibited significant changes in the same tissue between the JG and MD strains. The expression tendencies of 8 DEGs obtained by RNA-Seq were similar to those detected by RT-qPCR. Furthermore, we individually identified 10 hub genes in the midgut and salivary glands. Based on previous miRNA research, we discovered the involvement of 9 miRNAs in the regulation of these hub genes. Our findings demonstrate that Ae. aegypti exhibit distinct transcriptomic changes in response to ZIKV infection. The identification of the hub genes and their regulatory miRNAs provides valuable insights into the molecular mechanisms underlying ZIKV infection in mosquitoes. This study contributes to a better understanding of the pathogen-vector interactions and may aid in the development of targeted strategies for ZIKV control.
Collapse
Affiliation(s)
- Chunling Zhu
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Diseases, Institute of Microbiology and Epidemiology, Beijing Key Laboratory, Beijing, 100071, China
- Department of Clinical Laboratory, Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530201, Guangxi, China
| | - Yuting Jiang
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Diseases, Institute of Microbiology and Epidemiology, Beijing Key Laboratory, Beijing, 100071, China
| | - Qianghui Zhang
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Diseases, Institute of Microbiology and Epidemiology, Beijing Key Laboratory, Beijing, 100071, China
| | - Jian Gao
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Diseases, Institute of Microbiology and Epidemiology, Beijing Key Laboratory, Beijing, 100071, China
| | - Chaojie Li
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Diseases, Institute of Microbiology and Epidemiology, Beijing Key Laboratory, Beijing, 100071, China
| | - Chunxiao Li
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Diseases, Institute of Microbiology and Epidemiology, Beijing Key Laboratory, Beijing, 100071, China
| | - Yande Dong
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Diseases, Institute of Microbiology and Epidemiology, Beijing Key Laboratory, Beijing, 100071, China
| | - Dan Xing
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Diseases, Institute of Microbiology and Epidemiology, Beijing Key Laboratory, Beijing, 100071, China
| | - Hengduan Zhang
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Diseases, Institute of Microbiology and Epidemiology, Beijing Key Laboratory, Beijing, 100071, China
| | - Teng Zhao
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Diseases, Institute of Microbiology and Epidemiology, Beijing Key Laboratory, Beijing, 100071, China
| | - Xiaoxia Guo
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Diseases, Institute of Microbiology and Epidemiology, Beijing Key Laboratory, Beijing, 100071, China
| | - Tongyan Zhao
- Department of Vector Biology and Control, State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Diseases, Institute of Microbiology and Epidemiology, Beijing Key Laboratory, Beijing, 100071, China
| |
Collapse
|
7
|
Kokusho R, Katsuma S. Baculoviruses remodel the cytoskeleton of insect hemocytes to breach the host basal lamina. Commun Biol 2025; 8:268. [PMID: 40011612 DOI: 10.1038/s42003-025-07579-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 01/20/2025] [Indexed: 02/28/2025] Open
Abstract
Many pathogens and endosymbionts hijack the host's cytoskeleton for efficient propagation and transfer within or between host cells. Once released into the host's circulatory system, however, they have to confront structural barriers without utilizing host cell functions. Many insect viruses and insect-borne viruses can re-enter from the hemolymph into insect tissues despite the barrier of the basal lamina (BL), but the molecular mechanism remains unclear in many cases. Here, we demonstrate that Bombyx mori nucleopolyhedrovirus (BmNPV) remodels host hemocytes to breach the BL. We found that the viral membrane protein actin rearrangement-inducing factor 1 (ARIF-1) induces filopodia-like protrusions and invadosome-like structures in hemocytes, which play a critical role in attaching to the tissue surface, penetrating the tracheal BL and thus facilitating the transport of viral nucleocapsids into host tissues. Our findings clearly show the role of hemocyte infection in viral systemic spread and its molecular basis.
Collapse
Affiliation(s)
- Ryuhei Kokusho
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| | - Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
8
|
Santana-Román ME, Ramírez-Carreto S, Maycotte P, Pando-Robles V. Alteration of mitochondrial function in arthropods during arboviruses infection: a review of the literature. Front Physiol 2025; 16:1507059. [PMID: 40017802 PMCID: PMC11865064 DOI: 10.3389/fphys.2025.1507059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/20/2025] [Indexed: 03/01/2025] Open
Abstract
Arthropods serve as vectors for numerous arboviruses responsible for diseases worldwide. Despite their medical, veterinary, and economic significance, the interaction between arboviruses and arthropods remains poorly understood. Mitochondria in arthropods play a crucial role by supplying energy for cell survival and viral replication. Some arboviruses can replicate within arthropod vectors without harming the host. Successful transmission depends on efficient viral replication in the vector's tissues, ultimately reaching the salivary glands for transmission to a vertebrate host, including humans, via blood-feeding. This review summarizes current knowledge of mitochondrial function in arthropods during arbovirus infection, highlighting gaps compared to studies in mammals and other pathogens relevant to arthropods. It emphasizes mitochondrial processes in insects that require further investigation to uncover the mechanisms underlying arthropod-borne transmission.
Collapse
Affiliation(s)
- María E. Santana-Román
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Santos Ramírez-Carreto
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Paola Maycotte
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Puebla, Mexico
| | - Victoria Pando-Robles
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| |
Collapse
|
9
|
Khan A, Zakirullah, Wahab S, Hong ST. Advances in antiviral strategies targeting mosquito-borne viruses: cellular, viral, and immune-related approaches. Virol J 2025; 22:26. [PMID: 39905499 PMCID: PMC11792744 DOI: 10.1186/s12985-025-02622-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/03/2025] [Indexed: 02/06/2025] Open
Abstract
Mosquito-borne viruses (MBVs) are a major global health threat, causing significant morbidity and mortality. MBVs belong to several distinct viral families, each with unique characteristics. The primary families include Flaviviridae (e.g., Dengue, Zika, West Nile, Yellow Fever, Japanese Encephalitis), transmitted predominantly by Aedes and Culex mosquitoes; Togaviridae, which consists of the genus Alphavirus (e.g., Chikungunya, Eastern and Western Equine Encephalitis viruses), also transmitted by Aedes and Culex; Bunyaviridae (recently reorganized), containing viruses like Rift Valley Fever and Oropouche virus, transmitted by mosquitoes and sometimes sandflies; and Reoviridae, which includes the genus Orbivirus (e.g., West Nile and Bluetongue viruses), primarily affecting animals and transmitted by mosquitoes and sandflies. Despite extensive research, effective antiviral treatments for MBVs remain scarce, and current therapies mainly provide symptomatic relief and supportive care. This review examines the viral components and cellular and immune factors involved in the life cycle of MBVs. It also highlights recent advances in antiviral strategies targeting host factors such as lipid metabolism, ion channels, and proteasomes, as well as viral targets like NS2B-NS3 proteases and nonstructural proteins. Additionally, it explores immunomodulatory therapies to enhance antiviral responses and emphasizes the potential of drug repurposing, bioinformatics, artificial intelligence, and deep learning in identifying novel antiviral candidates. Continued research is crucial in mitigating MBVs' impact and preventing future outbreaks.
Collapse
Affiliation(s)
- Ayyaz Khan
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, 54907, South Korea
| | - Zakirullah
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Shahid Wahab
- Department of Agriculture, Jeonbuk National University, Jeonju-si, Republic of Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, 54907, South Korea.
| |
Collapse
|
10
|
Terhzaz S, Kerrigan D, Almire F, Szemiel AM, Hughes J, Parvy JP, Palmarini M, Kohl A, Shi X, Pondeville E. NSm is a critical determinant for bunyavirus transmission between vertebrate and mosquito hosts. Nat Commun 2025; 16:1214. [PMID: 39890788 PMCID: PMC11785797 DOI: 10.1038/s41467-024-54809-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 11/21/2024] [Indexed: 02/03/2025] Open
Abstract
Bunyavirales is a very large order including viruses infecting a variety of taxonomic groups such as arthropods, vertebrates, plants, and protozoa. Some bunyaviruses are transmitted between vertebrate hosts by blood-sucking arthropods and cause major diseases in humans and animals. It is not understood why only some bunyaviruses have evolved the capacity to be transmitted by arthropod vectors. Here we show that only vector-borne bunyaviruses express a non-structural protein, NSm, whose function has so far remained largely elusive. Using as experimental system Bunyamwera virus (BUNV) and its invertebrate host, Aedes aegypti, we show that NSm is dispensable for viral replication in mosquito cells in vitro but is absolutely required for successful infection in the female mosquito following a blood meal. More specifically, NSm is required for cell-to-cell spread and egress from the mosquito midgut, a known barrier to viral infection. Notably, the requirement for NSm is specific to the midgut; bypassing this barrier by experimental intrathoracic infection of the mosquito eliminates the necessity of NSm for virus spread in other tissues, including the salivary glands. Overall, we unveiled a key evolutionary process that allows the transmission of vector-borne bunyaviruses between arthropod and vertebrate hosts.
Collapse
Affiliation(s)
- Selim Terhzaz
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, Scotland, UK
| | - David Kerrigan
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, Scotland, UK
| | - Floriane Almire
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, Scotland, UK
| | - Agnieszka M Szemiel
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, Scotland, UK
| | - Joseph Hughes
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, Scotland, UK
| | - Jean-Philippe Parvy
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, Scotland, UK
| | - Massimo Palmarini
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, Scotland, UK
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, Scotland, UK
- Departments of Tropical Disease Biology and Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Xiaohong Shi
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, Scotland, UK.
| | - Emilie Pondeville
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, Scotland, UK.
| |
Collapse
|
11
|
Torii S, Lord JS, Lavina M, Prot M, Lecuyer A, Diagne CT, Faye O, Faye O, Sall AA, Bonsall MB, Simon-Lorière E, Montagutelli X, Lambrechts L. Polygenic viral factors enable efficient mosquito-borne transmission of African Zika virus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.23.634482. [PMID: 39896559 PMCID: PMC11785240 DOI: 10.1101/2025.01.23.634482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus primarily transmitted among humans by Aedes aegypti. Over the past two decades, it has caused significant outbreaks associated with birth defects and neurological disorders. Phylogenetically, ZIKV consists of two main genotypes referred to as the African and Asian lineages, each exhibiting distinct biological properties. African lineage strains are transmitted more efficiently by mosquitoes, but pinpointing the genetic basis of this difference has remained challenging. Here, we address this question by comparing recent African and Asian strains using chimeric viruses, in which segments of the parental genomes are swapped. Our results show that the structural genes from the African strain enhance viral internalization, while the non-structural genes improve genome replication and infectious particle production in mosquito cells. In vivo mosquito transmission is most significantly influenced by the structural genes, although no single viral gene alone determines this effect. Additionally, we develop a stochastic model of in vivo viral dynamics in mosquitoes that mirrors the observed patterns, suggesting that the primary difference between the African and Asian strains lies in their ability to traverse the mosquito salivary glands. Overall, our findings suggest that the polygenic nature of ZIKV transmissibility has prevented Asian lineage strains from achieving the same epidemic potential as African lineage strains, underscoring the importance of lineage-specific adaptive landscapes in shaping ZIKV evolution and emergence.
Collapse
Affiliation(s)
- Shiho Torii
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, Paris, France
| | - Jennifer S. Lord
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Morgane Lavina
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, Paris, France
| | - Matthieu Prot
- Institut Pasteur, Université Paris Cité, Paris, Evolutionary Genomics of RNA Viruses Unit, Paris France
| | - Alicia Lecuyer
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, Paris, France
| | - Cheikh T. Diagne
- Arbovirus and Viral Hemorrhagic Fevers Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Oumar Faye
- Arbovirus and Viral Hemorrhagic Fevers Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Ousmane Faye
- Arbovirus and Viral Hemorrhagic Fevers Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Amadou A. Sall
- Arbovirus and Viral Hemorrhagic Fevers Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | | | - Etienne Simon-Lorière
- Institut Pasteur, Université Paris Cité, Paris, Evolutionary Genomics of RNA Viruses Unit, Paris France
| | - Xavier Montagutelli
- Institut Pasteur, Université Paris Cité, Mouse Genetics Laboratory, Paris, France
| | - Louis Lambrechts
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, Paris, France
| |
Collapse
|
12
|
Körsten C, Schäfer M. Experimental arboviral infection of mosquito larvae: A novel approach for vector competence studies. J Virol Methods 2025; 331:115061. [PMID: 39515662 DOI: 10.1016/j.jviromet.2024.115061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Vector competence studies in mosquitoes present valuable opportunities to explore arboviral transmission and virus-vector interactions. However, oral infection studies in mosquitoes can be challenging. An alternative approach is to infect mosquitoes during their aquatic larval stage, resulting in the emergence of infected adults. To investigate the potential of this method, Culex pipiens biotype molestus larvae were infected with Usutu virus (USUV, Orthoflavivirus usutuense). For this purpose, larvae were exposed to USUV-infected mammalian and mosquito cell cultures for 24 h before being reared to adults. Subsequent analysis via RT-qPCR revealed that the Culex larvae successfully acquired USUV from the infected cells and exhibited high susceptibility to infection. Immediately after emergence, 32.10 % (26/81) of male and 41.03 % (16/39) of female mosquitoes tested positive for USUV RNA. Notably, females that were incubated for 15 days post-emergence demonstrated even higher infection rates, reaching 100.00 % (23/23). In addition, viral RNA and infectious particles were detected in some saliva samples, indicating the potential for transmission. This experimental infection of mosquito larvae thus offers the opportunity to produce infected adult mosquitoes for studies enhancing our understanding of virus-vector interactions, co-infections, and transmission routes. Such research contributes to better public health strategies addressing arboviral diseases.
Collapse
Affiliation(s)
- Christin Körsten
- Friedrich-Loeffler-Institut - Federal Research Institute for Animal Health (FLI), Institute of Infectology, Südufer 10, Greifswald, Insel Riems 17493, Germany.
| | - Mandy Schäfer
- Friedrich-Loeffler-Institut - Federal Research Institute for Animal Health (FLI), Institute of Infectology, Südufer 10, Greifswald, Insel Riems 17493, Germany
| |
Collapse
|
13
|
Freppel W, Silva LA, Stapleford KA, Herrero LJ. Pathogenicity and virulence of chikungunya virus. Virulence 2024; 15:2396484. [PMID: 39193780 PMCID: PMC11370967 DOI: 10.1080/21505594.2024.2396484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted, RNA virus that causes an often-severe musculoskeletal illness characterized by fever, joint pain, and a range of debilitating symptoms. The virus has re-emerged as a global health threat in recent decades, spreading from its origin in Africa across Asia and the Americas, leading to widespread outbreaks impacting millions of people. Despite more than 50 years of research into the pathogenesis of CHIKV, there is still no curative treatment available. Current management of CHIKV infections primarily involves providing supportive care to alleviate symptoms and improve the patient's quality of life. Given the ongoing threat of CHIKV, there is an urgent need to better understand its pathogenesis. This understanding is crucial for deciphering the mechanisms underlying the disease and for developing effective strategies for both prevention and management. This review aims to provide a comprehensive overview of CHIKV and its pathogenesis, shedding light on the complex interactions of viral genetics, host factors, immune responses, and vector-related factors. By exploring these intricate connections, the review seeks to contribute to the knowledge base surrounding CHIKV, offering insights that may ultimately lead to more effective prevention and management strategies for this re-emerging global health threat.
Collapse
Affiliation(s)
- Wesley Freppel
- Institute for Biomedicine and Glycomics, Gold Coast Campus, Griffith University, Southport, Australia
| | - Laurie A. Silva
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kenneth A. Stapleford
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Lara J. Herrero
- Institute for Biomedicine and Glycomics, Gold Coast Campus, Griffith University, Southport, Australia
| |
Collapse
|
14
|
Kantor AM, Talyuli OAC, Reid WR, Alvarenga PH, Booker J, Lin J, Franz AWE, Barillas-Mury C. Identification of a dengue 2 virus envelope protein receptor in Aedes aegypti critical for viral midgut infection. Proc Natl Acad Sci U S A 2024; 121:e2417750121. [PMID: 39565309 PMCID: PMC11621822 DOI: 10.1073/pnas.2417750121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/21/2024] [Indexed: 11/21/2024] Open
Abstract
The establishment of a productive dengue virus (DENV) infection in the midgut epithelial cells of Aedes aegypti is critical for the viral transmission cycle. The hypothesis that DENV virions interact directly with specific mosquito midgut proteins was explored. We found that DENV serotype 2 (DENV2) pretreated with trypsin interacted with a single 31 kDa protein, identified as AAEL011180 by protein mass spectrometry. This putative receptor is a highly conserved protein and has orthologs in culicine and anopheline mosquitoes. We confirmed that impairing the expression of AAEL011180 in the midgut of Ae. aegypti females abolished the interaction with DENV2, and the virus also bound to immobilized recombinant purified receptor. Furthermore, recombinant DENV2 surface E glycoprotein bound to recombinant AAEL011180 with high affinity (38.2 nM) in binding kinetic analysis using surface plasmon resonance. The gene for this DENV2 E protein receptor (EPrRec) was disrupted, but since the gene is essential in Ae. aegypti, only heterozygote knockout (ΔEPrRec+/-) females could be recovered. Further reducing EPrRec mRNA expression in the midgut of ΔEPrRec+/- females by systemic dsRNA injection significantly reduced the prevalence of DENV2 midgut infection. EPrRec also interacts with heat shock protein 70 cognate 3 (Hsc70-3), and silencing Hsc70-3 expression in ΔEPrRec females also reduced the prevalence of DENV2 midgut infection.
Collapse
Affiliation(s)
- Asher M. Kantor
- Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, NIH, Rockville, MD20852
| | - Octavio A. C. Talyuli
- Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, NIH, Rockville, MD20852
| | - William R. Reid
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO65211
| | - Patricia Hessab Alvarenga
- Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, NIH, Rockville, MD20852
| | - Jasmine Booker
- Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, NIH, Rockville, MD20852
| | - Jingyi Lin
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO65211
| | | | - Carolina Barillas-Mury
- Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, NIH, Rockville, MD20852
| |
Collapse
|
15
|
Marmé R, Tomaz F, Sousa CA, Pinto J, Lanzaro GC, Parreira R, Seixas G. Vector Competence of Aedes aegypti from São Tomé and Príncipe for West Nile Virus Transmission. Microorganisms 2024; 12:2038. [PMID: 39458347 PMCID: PMC11509904 DOI: 10.3390/microorganisms12102038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
The global distribution of Aedes aegypti mosquitoes, particularly in tropical regions, poses a significant public health risk due to their apparent ability to transmit arboviruses such as West Nile virus (WNV). This study aimed to evaluate the vector competence of Ae. aegypti from São Tomé and Príncipe (STP) for the transmission of the WNV PT6.39 strain, considering its potential role as a bridge vector in a region where Culex quinquefasciatus would be the main vector. Aedes aegypti mosquitoes were collected, reared, and experimentally infected with WNV, with viral dissemination and transmission potential assessed 7, 14, and 21 days post infection (dpi). The results showed an increasing trend in infection rates, from 5% at 7 dpi to 35% at 21 dpi, with corresponding dissemination rates of 0%, 100%, and 43%. The transmission rates also increased from 0% at 7 dpi to 67% at 21 dpi, with a maximum transmission efficiency of 10% observed at the final time point. Although Ae. aegypti from STP demonstrated the potential to transmit WNV, the overall transmission efficiency remained relatively low. These findings provide necessary insights into the vector competence of Ae. aegypti in this region, highlighting the importance of continued monitoring and targeted vector control measures to mitigate the risk of potential WNV outbreaks.
Collapse
Affiliation(s)
- Rafael Marmé
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (R.M.); (F.T.); (C.A.S.); (J.P.); (R.P.)
| | - Filipe Tomaz
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (R.M.); (F.T.); (C.A.S.); (J.P.); (R.P.)
| | - Carla A. Sousa
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (R.M.); (F.T.); (C.A.S.); (J.P.); (R.P.)
| | - João Pinto
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (R.M.); (F.T.); (C.A.S.); (J.P.); (R.P.)
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, University of California, 1089 Veterinary Medicine, 4225 V3 MB, Davis, CA 95616, USA;
| | - Gregory C. Lanzaro
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, University of California, 1089 Veterinary Medicine, 4225 V3 MB, Davis, CA 95616, USA;
| | - Ricardo Parreira
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (R.M.); (F.T.); (C.A.S.); (J.P.); (R.P.)
| | - Gonçalo Seixas
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (R.M.); (F.T.); (C.A.S.); (J.P.); (R.P.)
| |
Collapse
|
16
|
vom Hemdt A, Thienel AL, Ciupka K, Wieseler J, Proksch HM, Schlee M, Kümmerer BM. 2'-O-methyltransferase-deficient yellow fever virus: Restricted replication in the midgut and secondary tissues of Aedes aegypti mosquitoes severely limits dissemination. PLoS Pathog 2024; 20:e1012607. [PMID: 39356716 PMCID: PMC11472933 DOI: 10.1371/journal.ppat.1012607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 10/14/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
The RNA genome of orthoflaviviruses encodes a methyltransferase within the non-structural protein NS5, which is involved in 2'-O-methylation of the 5'-terminal nucleotide of the viral genome resulting in a cap1 structure. While a 2'-O-unmethylated cap0 structure is recognized in vertebrates by the RNA sensor RIG-I, the cap1 structure allows orthoflaviviruses to evade the vertebrate innate immune system. Here, we analyzed whether the cap0 structure is also recognized in mosquitoes. Replication analyses of 2'-O-methyltransferase deficient yellow fever virus mutants (YFV NS5-E218A) of the vaccine 17D and the wild-type Asibi strain in mosquito cells revealed a distinct downregulation of the cap0 viruses. Interestingly, the level of inhibition differed for various mosquito cells. The most striking difference was found in Aedes albopictus-derived C6/36 cells with YFV-17D cap0 replication being completely blocked. Replication of YFV-Asibi cap0 was also suppressed in mosquito cells but to a lower extent. Analyses using chimeras between YFV-17D and YFV-Asibi suggest that a synergistic effect of several mutations across the viral genome accompanied by a faster initial growth rate of YFV-Asibi cap1 correlates with the lower level of YFV-Asibi cap0 attenuation. Viral growth analyses in Dicer-2 knockout cells demonstrated that Dicer-2 is entirely dispensable for attenuating the YFV cap0 viruses. Translation of a replication-incompetent cap0 reporter YFV-17D genome was reduced in mosquito cells, indicating a cap0 sensing translation regulation mechanism. Further, oral infection of Aedes aegypti mosquitoes resulted in lower infection rates for YFV-Asibi cap0. The latter is related to lower viral loads found in the midguts, which largely diminished dissemination to secondary tissues. After intrathoracic infection, YFV-Asibi cap0 replicated slower and to decreased amounts in secondary tissues compared to YFV-Asibi cap1. These results suggest the existence of an ubiquitously expressed innate antiviral protein recognizing 5'-terminal RNA cap-modifications in mosquitoes, both in the midgut as well as in secondary tissues.
Collapse
Affiliation(s)
- Anja vom Hemdt
- Institute of Virology, Medical Faculty, University of Bonn, Bonn, Germany
| | | | - Katrin Ciupka
- Institute of Clinical Chemistry and Clinical Pharmacology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Janett Wieseler
- Institute of Virology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Hannah M. Proksch
- Institute of Virology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Martin Schlee
- Institute of Clinical Chemistry and Clinical Pharmacology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Beate M. Kümmerer
- Institute of Virology, Medical Faculty, University of Bonn, Bonn, Germany
- German Centre for Infection Research, Partner Site Bonn-Cologne, Bonn, Germany
| |
Collapse
|
17
|
Hodoameda P, Ditter RE, Santos SR, Clem RJ. Differing Transcriptomic Responses in High Titer versus Low Titer Aedes aegypti Mosquitoes after Oral Infection with Sindbis Virus. Viruses 2024; 16:1487. [PMID: 39339963 PMCID: PMC11437473 DOI: 10.3390/v16091487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Oral infection of mosquitoes by arboviruses often results in a large degree of variation in the amount of infectious virus between individual mosquitoes, even when the mosquitoes are from inbred laboratory strains. This variability in arbovirus load has been shown to affect virus transmissibility. Previously, our group described population genetic and specific infectivity differences between the virus populations found in high and low titer Aedes aegypti mosquitoes that had been orally infected with Sindbis virus (SINV). In this study, we sought to investigate whether there were also differences in transcriptomic response between these high and low titer mosquitoes. Results from the transcriptomic data analysis showed that more genes involved in antiviral activity, endopeptidase activity, and methyltransferase activity were upregulated in low titer mosquitoes than in high titer mosquitoes, relative to blood-fed controls. Meanwhile, genes involved in ion transport, energy metabolism, acetylation, glycosylation, lipid metabolism, and transport tended to be upregulated in high titer mosquitoes more than in low titer mosquitoes, relative to blood-fed mosquitoes. Overall, genes involved in antiviral activities tended to be upregulated in low titer mosquitoes while genes involved in proviral activities were mostly upregulated in high titer mosquitoes. This study has identified a number of candidate mosquito genes that are putatively associated with SINV titer variability after oral infection of Ae. aegypti, and these can now be investigated in order to ascertain their roles in virus replication and their contributions to determining vector competence.
Collapse
Affiliation(s)
- Peter Hodoameda
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA;
| | - Robert E. Ditter
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14261, USA;
| | - Scott R. Santos
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14261, USA;
| | - Rollie J. Clem
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA;
| |
Collapse
|
18
|
Hodgson JJ, Chen RY, Blissard GW, Buchon N. Viral and cellular determinants of polarized trafficking of viral envelope proteins from insect-specific and insect-vectored viruses in insect midgut and salivary gland cells. J Virol 2024; 98:e0054024. [PMID: 39162433 PMCID: PMC11406959 DOI: 10.1128/jvi.00540-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/09/2024] [Indexed: 08/21/2024] Open
Abstract
Systemic viral infection of insects typically begins with the primary infection of midgut epithelial cells (enterocytes) and subsequent transit of the progeny virus in an apical-to-basal orientation into the hemocoel. For insect-vectored viruses, an oppositely oriented process (basal-to-apical transit) occurs upon secondary infection of salivary glands and is necessary for virus transmission to non-insect hosts. To examine this inversely oriented virus transit in these polarized tissues, we assessed the intracellular trafficking of two model viral envelope proteins (baculovirus GP64 and vesicular stomatitis virus G) in the midgut and salivary gland cells of the model insect, Drosophila melanogaster. Using fly lines that inducibly express either GP64 or VSV G, we found that each protein, expressed alone, was trafficked basally in midgut enterocytes. In salivary gland cells, VSV G was trafficked apically in most but not all cells, whereas GP64 was consistently trafficked basally. We demonstrated that a YxxØ motif present in both proteins was critical for basal trafficking in midgut enterocytes but dispensable for trafficking in salivary gland cells. Using RNAi, we found that clathrin adaptor protein complexes AP-1 and AP-3, as well as seven Rab GTPases, were involved in polarized VSV G trafficking in midgut enterocytes. Our results indicate that these viral envelope proteins encode the requisite information and require no other viral factors for appropriately polarized trafficking. In addition, they exploit tissue-specific differences in protein trafficking pathways to facilitate virus egress in the appropriate orientation for establishing systemic infections and vectoring infection to other hosts. IMPORTANCE Viruses that use insects as hosts must navigate specific routes through different insect tissues to complete their life cycles. The routes may differ substantially depending on the life cycle of the virus. Both insect pathogenic viruses and insect-vectored viruses must navigate through the polarized cells of the midgut epithelium to establish a systemic infection. In addition, insect-vectored viruses must also navigate through the polarized salivary gland epithelium for transmission. Thus, insect-vectored viruses appear to traffic in opposite directions in these two tissues. In this study, we asked whether two viral envelope proteins (VSV G and baculovirus GP64) alone encode the signals necessary for the polarized trafficking associated with their respective life cycles. Using Drosophila as a model to examine tissue-specific polarized trafficking of these viral envelope proteins, we identified one of the virus-encoded signals and several host proteins associated with regulating the polarized trafficking in the midgut epithelium.
Collapse
Affiliation(s)
- Jeffrey J. Hodgson
- Department of Entomology, Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, USA
- Boyce Thompson Institute at Cornell University, Ithaca, New York, USA
| | - Robin Y. Chen
- Department of Entomology, Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, USA
| | - Gary W. Blissard
- Boyce Thompson Institute at Cornell University, Ithaca, New York, USA
| | - Nicolas Buchon
- Department of Entomology, Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, USA
| |
Collapse
|
19
|
Taylor-Robinson AW. Complex transmission epidemiology of neglected Australian arboviruses: diverse non-human vertebrate hosts and competent arthropod invertebrate vectors. Front Microbiol 2024; 15:1469710. [PMID: 39296304 PMCID: PMC11408357 DOI: 10.3389/fmicb.2024.1469710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 08/20/2024] [Indexed: 09/21/2024] Open
Abstract
More than 75 arboviruses are indigenous to Australia, of which at least 13 are known to cause disease in humans. Alphaviruses are the most common arboviruses, notably including Ross River and Barmah Forest viruses, which contribute a significant public health and economic burden in Australia. Both can cause febrile illness with arthritic symptoms. Each circulates nationally across diverse climates and environments, and has multi-host, multi-vector dynamics. Several medically important flaviviruses also circulate in Australia. Infection with Murray Valley encephalitis or Kunjin viruses is less common but is associated with brain inflammation. Key research priorities for Australian arboviruses aim to understand clinical manifestations, develop timely diagnostics, and identify transmission cycles that permit the maintenance of arboviruses. While these can now be answered for a handful of notifiable alpha- and flaviviruses there are others for which non-human vertebrate hosts and competent arthropod invertebrate vectors are still to be identified and/or whose role in transmission is not well understood. One or more of these 'neglected' arboviruses may be the causative agent of a proportion of the many thousands of fever-related illnesses reported annually in Australia that at present remain undiagnosed. Here, what is known about enzootic cycling of viruses between arthropod vectors and mammalian and avian reservoir hosts is summarised. How and to what extent these interactions influence the epidemiology of arbovirus transmission and infection is discussed.
Collapse
Affiliation(s)
- Andrew W Taylor-Robinson
- College of Health Sciences, VinUniversity, Hanoi, Vietnam
- Center for Global Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- College of Health and Human Sciences, Charles Darwin University, Casuarina, NT, Australia
| |
Collapse
|
20
|
Bursali F, Touray M. The complexities of blood-feeding patterns in mosquitoes and sandflies and the burden of disease: A minireview. Vet Med Sci 2024; 10:e1580. [PMID: 39171609 PMCID: PMC11339650 DOI: 10.1002/vms3.1580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Mosquitoes and sandflies exhibit a wide range of blood feeding patterns, targeting a wide range of vertebrate species, including birds, mammals, reptiles, and amphibians, for proteins vital for egg development. This broad host range increases the opportunity for them to acquire pathogens of numerous debilitating-and-fatal diseases from various animal reservoirs, playing a significant role in disease crossover between animals and humans, also known as zoonotic transmission. This review focuses on the intricate blood-feeding habits of these dipteran vectors, their sensory systems and the complex dance between host and pathogen during disease transmission. We delve into the influence of blood sources on pathogen spread by examining the insect immune response and its intricate interplay with pathogens. The remarkable sense of smell guiding them towards food sources and hosts is explored, highlighting the interplay of multiple sensory cues in their navigation. Finally, we examine the challenges in mosquito control strategies and explore innovations in this field, emphasizing the need for sustainable solutions to combat this global health threat. By understanding the biology and behaviour of these insects, we can develop more effective strategies to protect ourselves and mitigate the burden of vector-borne diseases.
Collapse
Affiliation(s)
- Fatma Bursali
- Biology Department, Faculty of ScienceAydin Adnan Menderes UniversityAydinTürkiye
| | - Mustapha Touray
- Biology Department, Faculty of ScienceAydin Adnan Menderes UniversityAydinTürkiye
| |
Collapse
|
21
|
Hick TAH, Geertsema C, Nguyen W, Bishop CR, van Oosten L, Abbo SR, Dumenil T, van Kuppeveld FJM, Langereis MA, Rawle DJ, Tang B, Yan K, van Oers MM, Suhrbier A, Pijlman GP. Safety concern of recombination between self-amplifying mRNA vaccines and viruses is mitigated in vivo. Mol Ther 2024; 32:2519-2534. [PMID: 38894543 PMCID: PMC11405153 DOI: 10.1016/j.ymthe.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/02/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024] Open
Abstract
Self-amplifying mRNA (SAM) vaccines can be rapidly deployed in the event of disease outbreaks. A legitimate safety concern is the potential for recombination between alphavirus-based SAM vaccines and circulating viruses. This theoretical risk needs to be assessed in the regulatory process for SAM vaccine approval. Herein, we undertake extensive in vitro and in vivo assessments to explore recombination between SAM vaccine and a wide selection of alphaviruses and a coronavirus. SAM vaccines were found to effectively limit alphavirus co-infection through superinfection exclusion, although some co-replication was still possible. Using sensitive cell-based assays, replication-competent alphavirus chimeras were generated in vitro as a result of rare, but reproducible, RNA recombination events. The chimeras displayed no increased fitness in cell culture. Viable alphavirus chimeras were not detected in vivo in C57BL/6J, Rag1-/- and Ifnar-/- mice, in which high levels of SAM vaccine and alphavirus co-replicated in the same tissue. Furthermore, recombination between a SAM-spike vaccine and a swine coronavirus was not observed. In conclusion we state that although the ability of SAM vaccines to recombine with alphaviruses might be viewed as an environmental safety concern, several key factors substantially mitigate against in vivo emergence of chimeric viruses from SAM vaccine recipients.
Collapse
Affiliation(s)
- Tessy A H Hick
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
| | - Corinne Geertsema
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
| | - Wilson Nguyen
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Cameron R Bishop
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Linda van Oosten
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
| | - Sandra R Abbo
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
| | - Troy Dumenil
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Frank J M van Kuppeveld
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, the Netherlands
| | - Martijn A Langereis
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, the Netherlands
| | - Daniel J Rawle
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Bing Tang
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Kexin Yan
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Monique M van Oers
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
| | - Andreas Suhrbier
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia; Global Virus Network Centre of Excellence, Australian Infectious Diseases Research Centre, Brisbane, QLD 4072 and 4029, Australia.
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands.
| |
Collapse
|
22
|
Marti A, Nater A, Pego Magalhaes J, Almeida L, Lewandowska M, Liniger M, Ruggli N, Grau-Roma L, Brito F, Alnaji FG, Vignuzzi M, García-Nicolás O, Summerfield A. Fitness adaptations of Japanese encephalitis virus in pigs following vector-free serial passaging. PLoS Pathog 2024; 20:e1012059. [PMID: 39186783 PMCID: PMC11379391 DOI: 10.1371/journal.ppat.1012059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 09/06/2024] [Accepted: 08/02/2024] [Indexed: 08/28/2024] Open
Abstract
Japanese encephalitis virus (JEV) is a zoonotic mosquito-transmitted Flavivirus circulating in birds and pigs. In humans, JEV can cause severe viral encephalitis with high mortality. Considering that vector-free direct virus transmission was observed in experimentally infected pigs, JEV introduction into an immunologically naïve pig population could result in a series of direct transmissions disrupting the alternating host cycling between vertebrates and mosquitoes. To assess the potential consequences of such a realistic scenario, we passaged JEV ten times in pigs. This resulted in higher in vivo viral replication, increased shedding, and stronger innate immune responses in pigs. Nevertheless, the viral tissue tropism remained similar, and frequency of direct transmission was not enhanced. Next generation sequencing showed single nucleotide deviations in 10% of the genome during passaging. In total, 25 point mutations were selected to reach a frequency of at least 35% in one of the passages. From these, six mutations resulted in amino acid changes located in the precursor of membrane, the envelope, the non-structural 3 and the non-structural 5 proteins. In a competition experiment with two lines of passaging, the mutation M374L in the envelope protein and N275D in the non-structural protein 5 showed a fitness advantage in pigs. Altogether, the interruption of the alternating host cycle of JEV caused a prominent selection of viral quasispecies as well as selection of de novo mutations associated with fitness gains in pigs, albeit without enhancing direct transmission frequency.
Collapse
Affiliation(s)
- Andrea Marti
- Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Alexander Nater
- Interfaculty Bioinformatics Unit (IBU) and Swiss Institute of Bioinformatics (SIB), University of Bern, Bern, Switzerland
| | - Jenny Pego Magalhaes
- Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Lea Almeida
- Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Marta Lewandowska
- Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Matthias Liniger
- Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Nicolas Ruggli
- Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Llorenç Grau-Roma
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Institute of Animal Pathology, COMPATH, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Francisco Brito
- Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Fadi G Alnaji
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Marco Vignuzzi
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Obdulio García-Nicolás
- Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Artur Summerfield
- Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
23
|
Cui Y, Megawati D, Lin J, Rehard DG, Grant DG, Liu P, Jurkevich A, Reid WR, Mooney BP, Franz AW. Cytoskeleton-associated gelsolin responds to the midgut distention process in saline meal-fed Aedes aegypti and affects arbovirus dissemination from the midgut. FASEB J 2024; 38:e23764. [PMID: 39042395 PMCID: PMC11268798 DOI: 10.1096/fj.202302684rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/06/2024] [Accepted: 06/13/2024] [Indexed: 07/24/2024]
Abstract
The mosquito, Aedes aegypti, is the principal vector for several arboviruses. The mosquito midgut is the initial tissue that gets infected with an arbovirus acquired along with a blood meal from a vertebrate host. Blood meal ingestion leads to midgut tissue distention thereby increasing the pore size of the surrounding basal lamina. This allows newly synthesized virions to exit the midgut by traversing the distended basal lamina to infect secondary tissues of the mosquito. We conducted a quantitative label-free proteomic time course analysis with saline meal-fed Ae. aegypti females to identify host factors involved in midgut tissue distention. Around 2000 proteins were detected during each of the seven sampling time points and 164 of those were uniquely expressed. Forty-five of 97 differentially expressed proteins were upregulated during the 96-h time course and most of those were involved in cytoskeleton modulation, metabolic activity, and vesicle/vacuole formation. The F-actin-modulating Ae. aegypti (Aa)-gelsolin was selected for further functional studies. Stable knockout of Aa-gelsolin resulted in a mosquito line, which showed distorted actin filaments in midgut-associated tissues likely due to diminished F-actin processing by gelsolin. Zika virus dissemination from the midgut of these mosquitoes was diminished and delayed. The loss of Aa-gelsolin function was associated with an increased induction of apoptosis in midgut tissue indicating an involvement of Aa-gelsolin in apoptotic signaling in mosquitoes. Here, we used proteomics to discover a novel host factor, Aa-gelsolin, which affects the midgut escape barrier for arboviruses in mosquitoes and apoptotic signaling in the midgut.
Collapse
Affiliation(s)
- Yingjun Cui
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
| | - Dewi Megawati
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
- Department of Microbiology and Parasitology, School of Medicine, Warmadewa University, Bali, Indonesia
| | - Jingyi Lin
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
| | - David G. Rehard
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
| | - DeAna G. Grant
- Electron Microscopy Core, University of Missouri, Columbia, Missouri, USA
| | - Pei Liu
- Charles W. Gehrke Proteomics Center, University of Missouri, Columbia, Missouri, USA
| | - Alexander Jurkevich
- Advanced Light Microscopy Core, University of Missouri, Columbia, Missouri, USA
| | - William R. Reid
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
| | - Brian P. Mooney
- Charles W. Gehrke Proteomics Center, University of Missouri, Columbia, Missouri, USA
| | - Alexander W.E. Franz
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
24
|
Chen TY, Raduwan H, Marín-López A, Cui Y, Fikrig E. Zika virus exists in enterocytes and enteroendocrine cells of the Aedes aegypti midgut. iScience 2024; 27:110353. [PMID: 39055935 PMCID: PMC11269924 DOI: 10.1016/j.isci.2024.110353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/21/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
The Aedes aegypti midgut is crucial for blood digestion, nutrition, reproduction, and pathogen interaction. Using single-cell RNA sequencing, we explored virus infection and transcriptomic changes at the cellular level. We identified 12 distinct cell clusters in the Ae. aegypti midgut post-Zika virus infection, including intestinal stem cells, enteroblasts, enteroendocrine cells (EE), and enterocytes (ECs). The virus was found mainly in specific subsets of ECs and EE. Infection altered transcriptional profiles related to metabolism, signaling, and immune responses. Functional studies highlighted three significantly differentially expressed genes in infected cells. Notably, silencing apolipophorin III reduced virus RNA copy number in the midgut, emphasizing the role of specific genes in viral infection. These findings enhance our understanding of mosquito midgut cell processes during Zika virus infection and suggest potential targets for vector control.
Collapse
Affiliation(s)
- Tse-Yu Chen
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Hamidah Raduwan
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Alejandro Marín-López
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Yingjun Cui
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
25
|
Madhav M, Blasdell KR, Trewin B, Paradkar PN, López-Denman AJ. Culex-Transmitted Diseases: Mechanisms, Impact, and Future Control Strategies using Wolbachia. Viruses 2024; 16:1134. [PMID: 39066296 PMCID: PMC11281716 DOI: 10.3390/v16071134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Mosquitoes of the Culex genus are responsible for a large burden of zoonotic virus transmission globally. Collectively, they play a significant role in the transmission of medically significant diseases such as Japanese encephalitis virus and West Nile virus. Climate change, global trade, habitat transformation and increased urbanisation are leading to the establishment of Culex mosquitoes in new geographical regions. These novel mosquito incursions are intensifying concerns about the emergence of Culex-transmitted diseases and outbreaks in previously unaffected areas. New mosquito control methods are currently being developed and deployed globally. Understanding the complex interaction between pathogens and mosquitoes is essential for developing new control strategies for Culex species mosquitoes. This article reviews the role of Culex mosquitos as vectors of zoonotic disease, discussing the transmission of viruses across different species, and the potential use of Wolbachia technologies to control disease spread. By leveraging the insights gained from recent successful field trials of Wolbachia against Aedes-borne diseases, we comprehensively discuss the feasibility of using this technique to control Culex mosquitoes and the potential for the development of next generational Wolbachia-based control methods.
Collapse
Affiliation(s)
- Mukund Madhav
- Australian Centre for Disease Preparedness, CSIRO Health and Biosecurity, Geelong, VIC 3220, Australia
| | - Kim R. Blasdell
- Australian Centre for Disease Preparedness, CSIRO Health and Biosecurity, Geelong, VIC 3220, Australia
| | - Brendan Trewin
- CSIRO Health and Biosecurity, Dutton Park, Brisbane, QLD 4102, Australia
| | - Prasad N. Paradkar
- Australian Centre for Disease Preparedness, CSIRO Health and Biosecurity, Geelong, VIC 3220, Australia
| | - Adam J. López-Denman
- Australian Centre for Disease Preparedness, CSIRO Health and Biosecurity, Geelong, VIC 3220, Australia
| |
Collapse
|
26
|
Wang S, Huang Y, Wang F, Han Q, Ren N, Wang X, Cui Y, Yuan Z, Xia H. A cell atlas of the adult female Aedes aegypti midgut revealed by single-cell RNA sequencing. Sci Data 2024; 11:587. [PMID: 38839790 PMCID: PMC11153528 DOI: 10.1038/s41597-024-03432-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/28/2024] [Indexed: 06/07/2024] Open
Abstract
Aedes aegypti is a primary vector for transmitting various arboviruses, including Yellow fever, dengue and Zika virus. The mosquito midgut is the principal organ for blood meal digestion, nutrient absorption and the initial site of arbovirus infection. Although a previous study delineated midgut's transcriptome of Ae. aegypti at the single-nucleus resolution, there still lacks an established protocol for isolating and RNA sequencing of single cells of Ae. aegypti midgut, which is required for investigating arbovirus-midgut interaction at the single-cell level. Here, we established an atlas of the midgut cells for Ae. aegypti by single-cell RNA sequencing. We annotated the cell clusters including intestinal stem cells/enteroblasts (ISC/EB), cardia cells (Cardia), enterocytes (EC, EC-like), enteroendocrine cells (EE), visceral muscle (VM), fat body cells (FBC) and hemocyte cells (HC). This study will provide a foundation for further studies of arbovirus infection in mosquito midgut at the single-cell level.
Collapse
Affiliation(s)
- Shunlong Wang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430200, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Huang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430200, China
| | - Fei Wang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430200, China
| | - Qian Han
- Hainan One Health Key Laboratory, Hainan University, Haikou, 570228, China
| | - Nanjie Ren
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430200, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyu Wang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430200, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingjun Cui
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, 06520, USA.
| | - Zhiming Yuan
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430200, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Han Xia
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430200, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Hubei Jiangxia Laboratory, Wuhan, 430207, China.
| |
Collapse
|
27
|
Prat M, Jeanneau M, Rakotoarivony I, Duhayon M, Simonin Y, Savini G, Labbé P, Alout H. Virulence and transmission vary between Usutu virus lineages in Culex pipiens. PLoS Negl Trop Dis 2024; 18:e0012295. [PMID: 38935783 PMCID: PMC11236178 DOI: 10.1371/journal.pntd.0012295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/10/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024] Open
Abstract
Usutu virus (USUV) is a zoonotic arbovirus infecting mainly wild birds. It is transmitted by ornithophilic mosquitoes, mainly of the genus Culex from birds to birds and to several vertebrate dead-end hosts. Several USUV lineages, differing in their virulence have emerged in the last decades and now co-circulate in Europe, impacting human populations. However, their relative transmission and effects on their mosquito vectors is still not known. We thus compared the vector competence and survival of Culex pipiens mosquitoes experimentally infected with two distinct USUV lineages, EU2 and EU3, that are known to differ in their virulence and replication in vertebrate hosts. Infection rate was variable among blood feeding assays but variations between EU2 and EU3 lineages were consistent suggesting that Culex pipiens was equally susceptible to infection by both lineages. However, EU3 viral load increased with viral titer in the blood meal while EU2 viral load was high at all titers which suggest a greater replication of EU2 than EU3 in mosquito. While their relative transmission efficiencies are similar, at least at low blood meal titer, positive correlation between transmission and blood meal titer was observed for EU3 only. Contrary to published results in vertebrates, EU3 induced a higher mortality to mosquitoes (i.e. virulence) than EU2 whatever the blood meal titer. Therefore, we found evidence of lineage-specific differences in vectorial capacity and virulence to both the vector and vertebrate host which lead to balanced propagation of both viral lineages. These results highlight the need to decipher the interactions between vectors, vertebrate hosts, and the diversity of arbovirus lineages to fully understand transmission dynamics.
Collapse
Affiliation(s)
- Maxime Prat
- Institut des Sciences de l'Evolution de Montpellier, Université de Montpellier-CNRS-IRD, Montpellier, France
- UMR ASTRE, Univ Montpellier, INRAE-CIRAD, Montpellier, France
| | | | | | - Maxime Duhayon
- UMR ASTRE, Univ Montpellier, INRAE-CIRAD, Montpellier, France
| | - Yannick Simonin
- Pathogenesis and Control of Chronic Infections, Université de Montpellier-INSERM-EFS, Montpellier, France
| | - Giovanni Savini
- OIE Reference Centre for West Nile Disease, Istituto Zooprofilattico Sperimentale "G. Caporale", Teramo, Italy
| | - Pierrick Labbé
- Institut des Sciences de l'Evolution de Montpellier, Université de Montpellier-CNRS-IRD, Montpellier, France
| | - Haoues Alout
- UMR ASTRE, Univ Montpellier, INRAE-CIRAD, Montpellier, France
| |
Collapse
|
28
|
Riana E, Sri-In C, Songkasupa T, Bartholomay LC, Thontiravong A, Tiawsirisup S. Infection, dissemination, and transmission of lumpy skin disease virus in Aedes aegypti (Linnaeus), Culex tritaeniorhynchus (Giles), and Culex quinquefasciatus (Say) mosquitoes. Acta Trop 2024; 254:107205. [PMID: 38579960 DOI: 10.1016/j.actatropica.2024.107205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/24/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Lumpy skin disease virus (LSDV) is a transboundary viral disease in cattle and water buffaloes. Although this Poxvirus is supposedly transmitted by mechanical vectors, only a few studies have investigated the role of local vectors in the transmission of LSDV. This study examined the infection, dissemination, and transmission rates of LSDV in Aedes aegypti, Culex tritaeniorhynchus, and Culex quinquefasciatus following artificial membrane feeding of 102.7, 103.7, 104.7 TCID50/mL LSDV in sheep blood. The results demonstrated that these mosquito species were susceptible to LSDV, with Cx tritaeniorhynchus exhibiting significantly different characteristics from Ae. aegypti and Cx. quinquefasciatus. These three mosquito species were susceptible to LSDV. Ae. aegypti showed it as early as 2 days post-infection (dpi), indicating swift dissemination in this particular species. The extrinsic incubation period (EIP) of LSDV in Cx. tritaeniorhynchus and Cx. quinquefasciatus was 8 and 14 dpi, respectively. Ingestion of different viral titers in blood did not affect the infection, dissemination, or transmission rates of Cx. tritaeniorhynchus and Cx. quinquefasciatus. All rates remained consistently high at 8-14 dpi for Cx. tritaeniorhynchus. In all three species, LSDV remained detectable until 14 dpi. The present findings indicate that, Ae. aegypti, Cx. tritaeniorhynchus, and Cx. quinquefasciatus may act as vectors during the LSDV outbreak; their involvement may extend beyond being solely mechanical vectors.
Collapse
Affiliation(s)
- Elizabeth Riana
- The International Graduate Program of Veterinary Science and Technology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand; Center of Excellence in Animal Vector-Borne Diseases, Veterinary Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Chalida Sri-In
- Center of Excellence in Animal Vector-Borne Diseases, Veterinary Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Tapanut Songkasupa
- Virology section, National Institute of Animal Health, Department of Livestock Development, Bangkok, Thailand
| | - Lyric C Bartholomay
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Aunyaratana Thontiravong
- Center of Excellence in Animal Vector-Borne Diseases, Veterinary Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand; Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sonthaya Tiawsirisup
- Center of Excellence in Animal Vector-Borne Diseases, Veterinary Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
29
|
Beranek MD, Giayetto O, Fischer S, Diaz A. Assessment of Mayaro virus vector competence of the mosquito Aedes aegypti (Linnaeus, 1762) populations in Argentine using dose-response assays. MEDICAL AND VETERINARY ENTOMOLOGY 2024; 38:234-243. [PMID: 38489505 DOI: 10.1111/mve.12712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/23/2024] [Indexed: 03/17/2024]
Abstract
Mayaro virus (MAYV; Alphavirus: Togaviridae) is an emerging pathogen in Latin America, causing fever and polyarthritis. Sporadic outbreaks of MAYV have occurred in the region, with reported human cases being imported to Europe and North America. Although primarily a risk for those residing in the Amazon basin's tropical forests, recent reports highlight that urbanization would increase the risk of MAYV transmission in Latin America. Urban emergence depends on human susceptibility and the ability of mosquitos like Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae) to transmit MAYV. Despite the absence of active MAYV transmission in Argentine, the risk of introduction is substantial due to human movement and the presence of Ae. aegypti in the region. This study aimed to evaluate the susceptibility of different Argentine Ae. aegypti populations to MAYV genotype L (MAYV-L) using dose-response assays and determine barriers to virus infection, dissemination and transmission. Immature mosquito stages were collected in Buenos Aires, Córdoba and Rosario cities. Female Ae. aegypti (F2) were orally infected by feeding on five concentrations of MAYV-L, ranging from 1.0 to 6.0 log10 PFU/mL. Abdomens, legs and saliva were analysed using viral plaque assays. Results revealed that MAYV-L between infection and dissemination were associated with viral doses rather than the population origin. Infection rates varied between 3% and 65%, with a 50% infectious dose >5.5 log10 PFU/mL. Dissemination occurred at 39%, with a 50% dissemination dose of ~6.0 log10 PFU/mL. Dissemination among infected mosquitoes ranged from 60% to 86%, and transmission from disseminated mosquitoes ranged from 11% to 20%. Argentine Ae. aegypti populations exhibited a need for higher viral doses of MAYV-L than those typically found in humans to become infected. In addition, only a small proportion of infected mosquitoes were capable of transmitting the virus. Understanding MAYV transmission in urban areas is crucial for public health interventions.
Collapse
Affiliation(s)
- Mauricio Daniel Beranek
- Laboratorio de Arbovirus, Instituto de Virología "Dr. J. M. Vanella", Facultad de Medicina, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Octavio Giayetto
- Laboratorio de Arbovirus, Instituto de Virología "Dr. J. M. Vanella", Facultad de Medicina, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Investigaciones Biológicas y Tecnológicas, CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Sylvia Fischer
- Departamento de Ecología, Genética y Evolución Instituto de Ecología, Genética y Evolución de Buenos Aires, Facultad de Ciencias Exactas Físicas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Adrián Diaz
- Laboratorio de Arbovirus, Instituto de Virología "Dr. J. M. Vanella", Facultad de Medicina, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
30
|
Liu S, Wang X, Wang F, Zaman W, Yang C, Huang D, Ma H, Wang J, Liu Q, Yuan Z, Xia H. Evaluating the mosquito vector range for two orthobunyaviruses: Oya virus and Ebinur Lake virus. Parasit Vectors 2024; 17:204. [PMID: 38715075 PMCID: PMC11077878 DOI: 10.1186/s13071-024-06295-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/21/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Mosquito-borne viruses cause various infectious diseases in humans and animals. Oya virus (OYAV) and Ebinur Lake virus (EBIV), belonging to the genus Orthobunyavirus within the family Peribunyaviridae, are recognized as neglected viruses with the potential to pose threats to animal or public health. The evaluation of vector competence is essential for predicting the arbovirus transmission risk. METHODS To investigate the range of mosquito vectors for OYAV (strain SZC50) and EBIV (strain Cu20-XJ), the susceptibility of four mosquito species (Culex pipiens pallens, Cx. quinquefasciatus, Aedes albopictus, and Ae. aegypti) was measured through artificial oral infection. Then, mosquito species with a high infection rate (IR) were chosen to further evaluate the dissemination rate (DR), transmission rate (TR), and transmission efficiency. The viral RNA in each mosquito sample was determined by RT-qPCR. RESULTS The results revealed that for OYAV, Cx. pipiens pallens had the highest IR (up to 40.0%) among the four species, but the DR and TR were 4.8% and 0.0%, respectively. For EBIV, Cx. pipiens pallens and Cx. quinquefasciatus had higher IR compared to Ae. albopictus (1.7%). However, the EBIV RNA and infectious virus were detected in Cx. pipiens pallens, with a TR of up to 15.4% and a transmission efficiency of 3.3%. CONCLUSIONS The findings indicate that Cx. pipiens pallens was susceptible to OYAV but had an extremely low risk of transmitting the virus. Culex pipiens pallens and Cx. quinquefasciatus were susceptible to EBIV, and Cx. pipiens pallens had a higher transmission risk to EBIV than Cx. quinquefasciatus.
Collapse
Affiliation(s)
- Siyuan Liu
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyu Wang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fei Wang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Wahid Zaman
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cihan Yang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Doudou Huang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Haixia Ma
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Jinglin Wang
- Yunnan Tropical and Subtropical Animal Virus Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Qiyong Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhiming Yuan
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Han Xia
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Hubei Jiangxia Laboratory, Wuhan, China.
| |
Collapse
|
31
|
Chang YC, Liu WL, Fang PH, Li JC, Liu KL, Huang JL, Chen HW, Kao CF, Chen CH. Effect of C-type lectin 16 on dengue virus infection in Aedes aegypti salivary glands. PNAS NEXUS 2024; 3:pgae188. [PMID: 38813522 PMCID: PMC11134184 DOI: 10.1093/pnasnexus/pgae188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/29/2024] [Indexed: 05/31/2024]
Abstract
C-type lectins (CTLs) are a family of carbohydrate-binding proteins and an important component of mosquito saliva. Although CTLs play key roles in immune activation and viral pathogenesis, little is known about their role in regulating dengue virus (DENV) infection and transmission. In this study, we established a homozygous CTL16 knockout Aedes aegypti mutant line using CRISPR/Cas9 to study the interaction between CTL16 and viruses in mosquito vectors. Furthermore, mouse experiments were conducted to confirm the transmission of DENV by CTL16-/- A. aegypti mutants. We found that CTL16 was mainly expressed in the medial lobe of the salivary glands (SGs) in female A. aegypti. CTL16 knockout increased DENV replication and accumulation in the SGs of female A. aegypti, suggesting that CTL16 plays an important role in DENV transmission. We also found a reduced expression of immunodeficiency and Janus kinase/signal transducer and activator of transcription pathway components correlated with increased DENV viral titer, infection rate, and transmission efficiency in the CTL16 mutant strain. The findings of this study provide insights not only for guiding future investigations on the influence of CTLs on immune responses in mosquitoes but also for developing novel mutants that can be used as vector control tools.
Collapse
Affiliation(s)
- Ya-Chen Chang
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli 35053, Taiwan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Wei-Liang Liu
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Pai-Hsiang Fang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Jian-Chiuan Li
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Kun-Lin Liu
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Jau-Ling Huang
- Department of Bioscience Technology, Chang Jung Christian University, Tainan 711301, Taiwan
| | - Hsin-Wei Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Chih-Fei Kao
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Chun-Hong Chen
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli 35053, Taiwan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan
| |
Collapse
|
32
|
Zhang L, Wang D, Shi P, Li J, Niu J, Chen J, Wang G, Wu L, Chen L, Yang Z, Li S, Meng J, Ruan F, He Y, Zhao H, Ren Z, Wang Y, Liu Y, Shi X, Wang Y, Liu Q, Li J, Wang P, Wang J, Zhu Y, Cheng G. A naturally isolated symbiotic bacterium suppresses flavivirus transmission by Aedes mosquitoes. Science 2024; 384:eadn9524. [PMID: 38669573 DOI: 10.1126/science.adn9524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/15/2024] [Indexed: 04/28/2024]
Abstract
The commensal microbiota of the mosquito gut plays a complex role in determining the vector competence for arboviruses. In this study, we identified a bacterium from the gut of field Aedes albopictus mosquitoes named Rosenbergiella sp. YN46 (Rosenbergiella_YN46) that rendered mosquitoes refractory to infection with dengue and Zika viruses. Inoculation of 1.6 × 103 colony forming units (CFUs) of Rosenbergiella_YN46 into A. albopictus mosquitoes effectively prevents viral infection. Mechanistically, this bacterium secretes glucose dehydrogenase (RyGDH), which acidifies the gut lumen of fed mosquitoes, causing irreversible conformational changes in the flavivirus envelope protein that prevent viral entry into cells. In semifield conditions, Rosenbergiella_YN46 exhibits effective transstadial transmission in field mosquitoes, which blocks transmission of dengue virus by newly emerged adult mosquitoes. The prevalence of Rosenbergiella_YN46 is greater in mosquitoes from low-dengue areas (52.9 to ~91.7%) than in those from dengue-endemic regions (0 to ~6.7%). Rosenbergiella_YN46 may offer an effective and safe lead for flavivirus biocontrol.
Collapse
Affiliation(s)
- Liming Zhang
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Daxi Wang
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen 518083, China
| | - Peibo Shi
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juzhen Li
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Jichen Niu
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Jielong Chen
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Gang Wang
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Linjuan Wu
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Lu Chen
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Zhenxing Yang
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan 650000, China
| | - Susheng Li
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan 650000, China
| | - Jinxin Meng
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan 650000, China
| | - Fangchao Ruan
- Kunming Medical University, Kunming, Yunnan 650000, China
| | - Yuwen He
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan 650000, China
| | - Hailong Zhao
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen 518083, China
| | - Zirui Ren
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen 518083, China
| | - Yibaina Wang
- China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Yang Liu
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Xiaolu Shi
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Yunfu Wang
- Institute of Neuroscience, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Qiyong Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Junhua Li
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen 518083, China
| | - Penghua Wang
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Jinglin Wang
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan 650000, China
| | - Yibin Zhu
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Gong Cheng
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
- Southwest United Graduate School, Kunming 650092, China
| |
Collapse
|
33
|
Hall DR, Johnson RM, Kwon H, Ferdous Z, Laredo-Tiscareño SV, Blitvich BJ, Brackney DE, Smith RC. Mosquito immune cells enhance dengue and Zika virus dissemination in Aedes aegypti. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.587950. [PMID: 38617257 PMCID: PMC11014501 DOI: 10.1101/2024.04.03.587950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Mosquito-borne viruses cause more than 400 million annual infections and place over half of the world's population at risk. Despite this importance, the mechanisms by which arboviruses infect the mosquito host and disseminate to tissues required for transmission are not well understood. Here, we provide evidence that mosquito immune cells, known as hemocytes, play an integral role in the dissemination of dengue virus (DENV) and Zika virus (ZIKV) in the mosquito Aedes aegypti. We establish that phagocytic hemocytes are a focal point for virus infection and demonstrate that these immune cell populations facilitate virus dissemination to the ovaries and salivary glands. Additional transfer experiments confirm that virus-infected hemocytes confer a virus infection to non-infected mosquitoes more efficiently than free virus in acellular hemolymph, revealing that hemocytes are an important tropism to enhance virus dissemination in the mosquito host. These data support a "trojan horse" model of virus dissemination where infected hemocytes transport virus through the hemolymph to deliver virus to mosquito tissues required for transmission and parallels vertebrate systems where immune cell populations promote virus dissemination to secondary sites of infection. In summary, this study significantly advances our understanding of virus infection dynamics in mosquitoes and highlights conserved roles of immune cells in virus dissemination across vertebrate and invertebrate systems.
Collapse
Affiliation(s)
- David R. Hall
- Interdepartmental Program in Genetics and Genomics, Iowa State University, Ames, Iowa
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, Iowa
| | - Rebecca M. Johnson
- Center for Vector-Borne and Zoonotic Diseases, Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut
| | - Hyeogsun Kwon
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, Iowa
| | - Zannatul Ferdous
- Center for Vector-Borne and Zoonotic Diseases, Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut
| | | | - Bradley J. Blitvich
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, Iowa
| | - Doug E. Brackney
- Center for Vector-Borne and Zoonotic Diseases, Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut
| | - Ryan C. Smith
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, Iowa
| |
Collapse
|
34
|
Chen RY, Zhao T, Guo JJ, Zhu F, Zhang NN, Li XF, Liu HT, Wang F, Deng YQ, Qin CF. The infection kinetics and transmission potential of two Guaico Culex viruses in Culex quinquefasciatus mosquitoes. Virol Sin 2024; 39:228-234. [PMID: 38461965 PMCID: PMC11074636 DOI: 10.1016/j.virs.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 03/05/2024] [Indexed: 03/12/2024] Open
Abstract
Guaico Culex virus (GCXV) is a newly identified segmented Jingmenvirus from Culex spp. mosquitoes in Central and South America. The genome of GCXV is composed of four or five single-stranded positive RNA segments. However, the infection kinetics and transmission capability of GCXV in mosquitoes remain unknown. In this study, we used reverse genetics to rescue two GCXVs (4S and 5S) that contained four and five RNA segments, respectively, in C6/36 cells. Further in vitro characterization revealed that the two GCXVs exhibited comparable replication kinetics, protein expression and viral titers. Importantly, GCXV RNAs were detected in the bodies, salivary glands, midguts and ovaries of Culex quinquefasciatus at 4-10 days after oral infection. In addition, two GCXVs can colonize Cx. quinquefasciatus eggs, resulting in positive rates of 15%-35% for the second gonotrophic cycle. In conclusion, our results demonstrated that GCXVs with four or five RNA segments can be detected in Cx. quinquefasciatus eggs during the first and second gonotrophic cycles after oral infection.
Collapse
Affiliation(s)
- Ru-Yi Chen
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China; State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, China
| | - Teng Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, China
| | - Jing-Jing Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, China
| | - Feng Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, China; School of Life Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Na-Na Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, China
| | - Xiao-Feng Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, China
| | - Hai-Tao Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, China
| | - Fei Wang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Yong-Qiang Deng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, China.
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, China.
| |
Collapse
|
35
|
Ochwoto M, Offerdahl DK, Leung JM, Schwartz CL, Long D, Rosenke R, Stewart PE, Saturday GA, Bloom ME. Cytoarchitecture of ex vivo midgut cultures of unfed Ixodes scapularis infected with a tick-borne flavivirus. Ticks Tick Borne Dis 2024; 15:102301. [PMID: 38134511 PMCID: PMC10923016 DOI: 10.1016/j.ttbdis.2023.102301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
A bite from an infected tick is the primary means of transmission for tick-borne flaviviruses (TBFV). Ticks ingest the virus while feeding on infected blood. The traditional view is that the virus first replicates in and transits the tick midgut prior to dissemination to other organs, including salivary glands. Thus, understanding TBFV infection in the tick midgut is a key first step in identifying potential countermeasures against infection. Ex vivo midgut cultures prepared from unfed adult female Ixodes scapularis ticks were viable and remained morphologically intact for more than 8 days. The midgut consisted of two clearly defined cell layers separated by a basement membrane: an exterior network of smooth muscle cells and an internal epithelium composed of digestive generative cells. The smooth muscle cells were arranged in a stellate circumferential pattern spaced at regular intervals along the long axis of midgut diverticula. When the cultures were infected with the TBFV Langat virus (LGTV), virus production increased by two logs with a peak at 96 hours post-infection. Infected cells were readily identified by immunofluorescence staining for the viral envelope protein, nonstructural protein 3 (NS3) and dsRNA. Microscopy of the stained cultures suggested that generative cells were the primary target for virus infection in the midgut. Infected cells exhibited an expansion of membranes derived from the endoplasmic reticulum; a finding consistent with TBFV infected cell cultures. Electron microscopy of infected cultures revealed virus particles in the basolateral region between epithelial cells. These results demonstrated LGTV replication in midgut generative cells of artificially infected, ex vivo cultures of unfed adult female I. scapularis ticks.
Collapse
Affiliation(s)
- Missiani Ochwoto
- Biology of Vector Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, USA.
| | - Danielle K Offerdahl
- Biology of Vector Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, USA
| | - Jacqueline M Leung
- Research Technologies Branch, Rocky Mountain Laboratories, NIAID, NIH, USA
| | - Cindi L Schwartz
- Research Technologies Branch, Rocky Mountain Laboratories, NIAID, NIH, USA
| | - Dan Long
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, NIAID, NIH, USA
| | - Rebecca Rosenke
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, NIAID, NIH, USA
| | - Philip E Stewart
- Biology of Vector Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, USA
| | - Greg A Saturday
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, NIAID, NIH, USA
| | - Marshall E Bloom
- Biology of Vector Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, USA.
| |
Collapse
|
36
|
Puig-Torrents M, Díez J. Controlling arbovirus infection: high-throughput transcriptome and proteome insights. Front Microbiol 2024; 15:1330303. [PMID: 38414768 PMCID: PMC10896924 DOI: 10.3389/fmicb.2024.1330303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/22/2024] [Indexed: 02/29/2024] Open
Abstract
Arboviruses pose a significant threat to public health globally, demanding innovative approaches for their control. For this, a better understanding of the complex web of interactions established in arbovirus-infected mosquitoes is fundamental. High-throughput analyses allow a genome-wide view of arbovirus-induced alterations at different gene expression levels. This review provides a comprehensive perspective into the current literature in transcriptome and proteome landscapes in mosquitoes infected with arboviruses. It also proposes a coordinated research effort to define the critical nodes that determine arbovirus infection and transmission.
Collapse
Affiliation(s)
| | - Juana Díez
- Molecular Virology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
37
|
Hodoameda P, Ebel GD, Mukhopadhyay S, Clem RJ. Extreme infectious titer variability in individual Aedes aegypti mosquitoes infected with Sindbis virus is associated with both differences in virus population structure and dramatic disparities in specific infectivity. PLoS Pathog 2024; 20:e1012047. [PMID: 38412195 PMCID: PMC10923411 DOI: 10.1371/journal.ppat.1012047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 03/08/2024] [Accepted: 02/13/2024] [Indexed: 02/29/2024] Open
Abstract
Variability in how individuals respond to pathogens is a hallmark of infectious disease, yet the basis for individual variation in host response is often poorly understood. The titer of infectious virus among individual mosquitoes infected with arboviruses is frequently observed to vary by several orders of magnitude in a single experiment, even when the mosquitoes are highly inbred. To better understand the basis for this titer variation, we sequenced populations of Sindbis virus (SINV) obtained from individual infected Aedes aegypti mosquitoes that, despite being from a highly inbred laboratory colony, differed in their titers of infectious virus by approximately 10,000-fold. We observed genetic differences between these virus populations that indicated the virus present in the midguts of low titer mosquitoes was less fit than that of high titer mosquitoes, possibly due to founder effects that occurred during midgut infection. Furthermore, we found dramatic differences in the specific infectivity or SI (the ratio of infectious units/viral genome equivalents) between these virus populations, with the SI of low titer mosquitoes being up to 10,000-fold lower than that of high titer mosquitoes. Despite having similar amounts of viral genomes, low titer mosquitoes appeared to contain less viral particles, suggesting that viral genomes were packaged into virions less efficiently than in high titer mosquitoes. Finally, antibiotic treatment, which has been shown to suppress mosquito antiviral immunity, caused an increase in SI. Our results indicate that the extreme variation that is observed in SINV infectious titer between individual Ae. aegypti mosquitoes is due to both genetic differences between virus populations and to differences in the proportion of genomes that are packaged into infectious particles.
Collapse
Affiliation(s)
- Peter Hodoameda
- Division of Biology, Kansas State University, Manhattan, Kansas United States of America
| | - Gregory D. Ebel
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado United States of America
| | - Suchetana Mukhopadhyay
- Department of Biology, Indiana University, Bloomington, Indiana United States of America
| | - Rollie J. Clem
- Division of Biology, Kansas State University, Manhattan, Kansas United States of America
| |
Collapse
|
38
|
Jeffries CL, Tantely LM, Kadriaj P, Blagrove MSC, Lytra I, Orsborne J, Al-Amin HM, Mohammed AR, Alam MS, Girod R, Afrane YA, Bino S, Robert V, Boyer S, Baylis M, Velo E, Hughes GL, Walker T. Mitochondrial and microbial diversity of the invasive mosquito vector species Culex tritaeniorhynchus across its extensive inter-continental geographic range. Wellcome Open Res 2024; 9:18. [PMID: 38800519 PMCID: PMC11128058 DOI: 10.12688/wellcomeopenres.20761.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 05/29/2024] Open
Abstract
Background Culex (Cx.) tritaeniorhynchus is an invasive mosquito species with an extensive and expanding inter-continental distribution, currently reported across Asia, Africa, the Middle East, Europe and now Australia. It is an important vector of medical and veterinary pathogens which cause significant morbidity and mortality in human and animal populations. Across regions endemic for Japanese encephalitis virus (JEV), Cx. tritaeniorhynchus is considered the major vector and has also been shown to contribute to the transmission of several other zoonotic arboviruses including Rift Valley fever virus (RVFV) and West Nile virus (WNV). Methods In this study, we used laboratory vector competence experiments to determine if Cx. tritaeniorhynchus from a Southern European population were competent JEV vectors. We also obtained samples from multiple geographically dispersed Cx. tritaeniorhynchus populations from countries within Europe, Africa, Eurasia and Asia to perform phylogenetic analysis to measure the level of mitochondrial divergence using the cytochrome oxidase subunit 1 ( CO1) gene. We also undertook bacterial 16S rRNA gene amplicon sequencing to determine microbial diversity and used multi-locus sequence typing (MLST) to determine any evidence for the presence of strains of the naturally occurring endosymbiotic bacterium Wolbachia. Results Cx. tritaeniorhynchus from a Greek population were shown be be competent vectors of JEV with high levels of virus present in saliva. We found a signficant level of mitochondrial genetic diversity using the mosquito CO1 gene between geographically dispersed populations. Furthermore, we report diverse microbiomes identified by 16S rRNA gene amplicon sequencing within and between geographical populations. Evidence for the detection of the endosymbiotic bacteria Wolbachia was confirmed using Wolbachia-specific PCR and MLST. Conclusions This study enhances our understanding of the diversity of Cx. tritaeniorhynchus and the associated microbiome across its inter-continental range and highlights the need for greater surveillance of this invasive vector species in Europe.
Collapse
Affiliation(s)
- Claire L. Jeffries
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Luciano M Tantely
- Unite d'entomologie medicale, Institute Pasteur de Madagascar, Antanarivo, Madagascar
| | - Perparim Kadriaj
- Vector Control Unit, Control of Infectious Diseases Department, Institute of Public Health, Tirana, Albania
| | - Marcus S C Blagrove
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, England, UK
- Health Protection Research Unit on Emerging and Zoonotic Infections, University of Liverpool, Liverpool, England, UK
| | - Ioanna Lytra
- Department of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, Athens, Greece
| | - James Orsborne
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Hasan Mohammad Al-Amin
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
- Berghofer Medical Research Institute, Queensland Institute of Medical Research, Brisbane, Australia
| | - Abdul Rahim Mohammed
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Accra, Greater Accra Region, Ghana
| | - Mohammad Shafiul Alam
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Romain Girod
- Unite d'entomologie medicale, Institute Pasteur de Madagascar, Antanarivo, Madagascar
| | - Yaw A Afrane
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Accra, Greater Accra Region, Ghana
| | - Silvia Bino
- Vector Control Unit, Control of Infectious Diseases Department, Institute of Public Health, Tirana, Albania
| | - Vincent Robert
- MIVEGEC, CNRS, Institute of Research for Development (IRD), University of Montpellier, Montpellier, France
| | - Sebastien Boyer
- Unite d'entomologie medicale, Institute Pasteur de Madagascar, Antanarivo, Madagascar
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Matthew Baylis
- Health Protection Research Unit on Emerging and Zoonotic Infections, University of Liverpool, Liverpool, England, UK
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, England, UK
| | - Enkelejda Velo
- Vector Control Unit, Control of Infectious Diseases Department, Institute of Public Health, Tirana, Albania
| | - Grant L Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, University of Liverpool, Liverpool, England, UK
| | - Thomas Walker
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
- School of Life Sciences, University of Warwick, Coventry, England, UK
| |
Collapse
|
39
|
Janjoter S, Kataria D, Yadav M, Dahiya N, Sehrawat N. Transovarial transmission of mosquito-borne viruses: a systematic review. Front Cell Infect Microbiol 2024; 13:1304938. [PMID: 38235494 PMCID: PMC10791847 DOI: 10.3389/fcimb.2023.1304938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/24/2023] [Indexed: 01/19/2024] Open
Abstract
Background A number of mosquito-borne viruses (MBVs), such as dengue virus (DENV), zika virus (ZIKV), chikungunya (CHIKV), West Nile virus (WNV), and yellow fever virus (YFV) exert adverse health impacts on the global population. Aedes aegypti and Aedes albopictus are the prime vectors responsible for the transmission of these viruses. The viruses have acquired a number of routes for successful transmission, including horizontal and vertical transmission. Transovarial transmission is a subset/type of vertical transmission adopted by mosquitoes for the transmission of viruses from females to their offspring through eggs/ovaries. It provides a mechanism for these MBVs to persist and maintain their lineage during adverse climatic conditions of extremely hot and cold temperatures, during the dry season, or in the absence of susceptible vertebrate host when horizontal transmission is not possible. Methods The publications discussed in this systematic review were searched for using the PubMed, Scopus, and Web of Science databases, and websites such as those of the World Health Organization (WHO) and the European Centre for Disease Prevention and Control, using the search terms "transovarial transmission" and "mosquito-borne viruses" from 16 May 2023 to 20 September 2023. Results A total of 2,391 articles were searched, of which 123 were chosen for full text evaluation, and 60 were then included in the study after screening and removing duplicates. Conclusion The present systematic review focuses on understanding the above diseases, their pathogenesis, epidemiology and host-parasite interactions. The factors affecting transovarial transmission, potential implications, mosquito antiviral defense mechanism, and the control strategies for these mosquito-borne viral diseases (MBVDs) are also be included in this review.
Collapse
Affiliation(s)
| | | | | | | | - Neelam Sehrawat
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
40
|
Lewis J, Gallichotte EN, Randall J, Glass A, Foy BD, Ebel GD, Kading RC. Intrinsic factors driving mosquito vector competence and viral evolution: a review. Front Cell Infect Microbiol 2023; 13:1330600. [PMID: 38188633 PMCID: PMC10771300 DOI: 10.3389/fcimb.2023.1330600] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024] Open
Abstract
Mosquitoes are responsible for the transmission of numerous viruses of global health significance. The term "vector competence" describes the intrinsic ability of an arthropod vector to transmit an infectious agent. Prior to transmission, the mosquito itself presents a complex and hostile environment through which a virus must transit to ensure propagation and transmission to the next host. Viruses imbibed in an infectious blood meal must pass in and out of the mosquito midgut, traffic through the body cavity or hemocoel, invade the salivary glands, and be expelled with the saliva when the vector takes a subsequent blood meal. Viruses encounter physical, cellular, microbial, and immunological barriers, which are influenced by the genetic background of the mosquito vector as well as environmental conditions. Collectively, these factors place significant selective pressure on the virus that impact its evolution and transmission. Here, we provide an overview of the current state of the field in understanding the mosquito-specific factors that underpin vector competence and how each of these mechanisms may influence virus evolution.
Collapse
Affiliation(s)
- Juliette Lewis
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Emily N. Gallichotte
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Jenna Randall
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Arielle Glass
- Department of Cellular and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Brian D. Foy
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Gregory D. Ebel
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Rebekah C. Kading
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
41
|
Phengchat R, Pakparnich P, Pethrak C, Pengon J, Sartsanga C, Chotiwan N, Uppakara K, Suksirisawat K, Lambrechts L, Jupatanakul N. Differential intra-host infection kinetics in Aedes aegypti underlie superior transmissibility of African relative to Asian Zika virus. mSphere 2023; 8:e0054523. [PMID: 37943061 PMCID: PMC10732021 DOI: 10.1128/msphere.00545-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 11/10/2023] Open
Abstract
IMPORTANCE The recent Zika virus (ZIKV) epidemic in the Americas highlights its potential public health threat. While the Asian ZIKV lineage has been identified as the main cause of the epidemic, the African lineage, which has been primarily confined to Africa, has shown evidence of higher transmissibility in Aedes mosquitoes. To gain a deeper understanding of this differential transmissibility, our study employed a combination of tissue-level infection kinetics and single-cell-level infection kinetics using in situ immunofluorescent staining. We discovered that the African ZIKV lineage propagates more rapidly and spreads more efficiently within mosquito cells and tissues than its Asian counterpart. This information lays the groundwork for future exploration of the viral and host determinants driving these variations in propagation efficiency.
Collapse
Affiliation(s)
- Rinyaporn Phengchat
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Khlong Luang, Pathum Thani, Thailand
| | - Phonchanan Pakparnich
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Khlong Luang, Pathum Thani, Thailand
| | - Chatpong Pethrak
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Khlong Luang, Pathum Thani, Thailand
| | - Jutharat Pengon
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Khlong Luang, Pathum Thani, Thailand
| | - Channarong Sartsanga
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Khlong Luang, Pathum Thani, Thailand
| | - Nunya Chotiwan
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Kwanchanok Uppakara
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Kittitat Suksirisawat
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Khlong Luang, Pathum Thani, Thailand
| | - Louis Lambrechts
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, Paris, France
| | - Natapong Jupatanakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Khlong Luang, Pathum Thani, Thailand
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, Paris, France
| |
Collapse
|
42
|
Xia Q, Yang Y, Zhang Y, Zhou L, Ma X, Xiao C, Zhang J, Li Z, Liu K, Li B, Shao D, Qiu Y, Wei J, Ma Z. Shift in dominant genotypes of Japanese encephalitis virus and its impact on current vaccination strategies. Front Microbiol 2023; 14:1302101. [PMID: 38045034 PMCID: PMC10690641 DOI: 10.3389/fmicb.2023.1302101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/01/2023] [Indexed: 12/05/2023] Open
Abstract
Japanese encephalitis (JE) is a zoonotic ailment from the Japanese encephalitis virus (JEV). JEV belongs to the flavivirus genus and is categorized into a solitary serotype consisting of five genetically diverse genotypes (I, II, III, IV, and V). The JEV genotype III (GIII) was the prevailing strain responsible for multiple outbreaks in countries endemic to JEV until 1990. In recent years, significant improvements have occurred in the epidemiology of JE, encompassing the geographical expansion of the epidemic zone and the displacement of prevailing genotypes. The dominant genotype of the JEV has undergone a progressive shift from GIII to GI due to variations in its adaptability within avian populations. From 2021 to 2022, Australia encountered an epidemic of viral encephalitis resulting from infection with the GIV JEV pathogen. The current human viral encephalitis caused by GIV JEV is the initial outbreak since its initial discovery in Indonesia during the late 1970s. Furthermore, following a time frame of 50 years, the detection and isolation of GV JEV have been reported in Culex mosquitoes across China and South Korea. Evidence suggests that the prevalence of GIV and GV JEV epidemic regions may be on the rise, posing a significant threat to public safety and the sustainable growth of animal husbandry. The global approach to preventing and managing JE predominantly revolves around utilizing the GIII strain vaccine for vaccination purposes. Nevertheless, research has demonstrated that the antibodies generated by the GIII strain vaccine exhibit limited capacity to neutralize the GI and GV strains. Consequently, these antibodies cannot protect against JEV challenge caused by animal GI and GV strains. The limited cross-protective and neutralizing effects observed between various genotypes may be attributed to the low homology of the E protein with other genotypes. In addition, due to the GIV JEV outbreak in Australia, further experiments are needed to evaluate the protective efficiency of the current GIII based JE vaccine against GIV JEV. The alteration of the prevailing genotype of JEV and the subsequent enlargement of the geographical extent of the epidemic have presented novel obstacles in JE prevention and control. This paper examines the emerging features of the JE epidemic in recent years and the associated problems concerning prevention and control.
Collapse
Affiliation(s)
- Qiqi Xia
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yang Yang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yan Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Lujia Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xiaochun Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Changguang Xiao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Junjie Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zongjie Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Donghua Shao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
43
|
Guimerà Busquets M, Brown FV, Carpenter ST, Darpel KE, Sanders CJ. Visualisation of Bluetongue Virus in the Salivary Apparatus of Culicoides Biting Midges Highlights the Accessory Glands as a Primary Arboviral Infection Site. Biol Proced Online 2023; 25:27. [PMID: 37932658 PMCID: PMC10626815 DOI: 10.1186/s12575-023-00221-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/06/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Arthropods transmit a wide range of pathogens of importance for the global health of humans, animals, and plants. One group of these arthropod vectors, Culicoides biting midges (Diptera: Ceratopogonidae), is the biological vector of several human and animal pathogens, including economically important livestock viruses like bluetongue virus (BTV). Like other arthropod-borne viruses (arboviruses), Culicoides-borne viruses must reach and replicate in the salivary apparatus, from where they can be transmitted to susceptible hosts through the saliva during subsequent blood feeding. Despite the importance of the salivary gland apparatus for pathogen transmission to susceptible animals from the bite of infected Culicoides, these structures have received relatively little attention, perhaps due to the small size and fragility of these vectors. RESULTS In this study, we developed techniques to visualize the infection of the salivary glands and other soft tissues with BTV, in some of the smallest known arbovirus vectors, Culicoides biting midges, using three-dimensional immunofluorescence confocal microscopy. We showed BTV infection of specific structures of the salivary gland apparatus of female Culicoides vectors following oral virus uptake, related visualisation of viral infection in the salivary apparatus to high viral RNA copies in the body, and demonstrated for the first time, that the accessory glands are a primary site for BTV replication within the salivary apparatus. CONCLUSIONS Our work has revealed a novel site of virus-vector interactions, and a novel role of the accessory glands of Culicoides in arbovirus amplification and transmission. Our approach would also be applicable to a wide range of arbovirus vector groups including sand flies (Diptera: Psychodidae), as well as provide a powerful tool to investigate arbovirus infection and dissemination, particularly where there are practical challenges in the visualization of small size and delicate tissues of arthropods.
Collapse
Affiliation(s)
| | - Faye V Brown
- The Pirbright Institute, Ash Road, Woking, GU24 0NF, UK
| | - Simon T Carpenter
- The Pirbright Institute, Ash Road, Woking, GU24 0NF, UK
- The School of the Biological Sciences, University of Cambridge, Mill Lane, Cambridge, CB2 1RX, UK
| | - Karin E Darpel
- The Pirbright Institute, Ash Road, Woking, GU24 0NF, UK
- Institute of Virology and Immunology, Mittelhäusern, 3147, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, 3012, Switzerland
| | | |
Collapse
|
44
|
Shi H, Yu X, Cheng G. Impact of the microbiome on mosquito-borne diseases. Protein Cell 2023; 14:743-761. [PMID: 37186167 PMCID: PMC10599646 DOI: 10.1093/procel/pwad021] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Mosquito-borne diseases present a significant threat to human health, with the possibility of outbreaks of new mosquito-borne diseases always looming. Unfortunately, current measures to combat these diseases such as vaccines and drugs are often either unavailable or ineffective. However, recent studies on microbiomes may reveal promising strategies to fight these diseases. In this review, we examine recent advances in our understanding of the effects of both the mosquito and vertebrate microbiomes on mosquito-borne diseases. We argue that the mosquito microbiome can have direct and indirect impacts on the transmission of these diseases, with mosquito symbiotic microorganisms, particularly Wolbachia bacteria, showing potential for controlling mosquito-borne diseases. Moreover, the skin microbiome of vertebrates plays a significant role in mosquito preferences, while the gut microbiome has an impact on the progression of mosquito-borne diseases in humans. As researchers continue to explore the role of microbiomes in mosquito-borne diseases, we highlight some promising future directions for this field. Ultimately, a better understanding of the interplay between mosquitoes, their hosts, pathogens, and the microbiomes of mosquitoes and hosts may hold the key to preventing and controlling mosquito-borne diseases.
Collapse
Affiliation(s)
- Huicheng Shi
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Xi Yu
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Gong Cheng
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
- Department of Parasitology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| |
Collapse
|
45
|
Fitzmeyer EA, Gallichotte EN, Weger-Lucarelli J, Kapuscinski ML, Abdo Z, Pyron K, Young MC, Ebel GD. Loss of West Nile virus genetic diversity during mosquito infection due to species-dependent population bottlenecks. iScience 2023; 26:107711. [PMID: 37701570 PMCID: PMC10494182 DOI: 10.1016/j.isci.2023.107711] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/13/2023] [Accepted: 08/23/2023] [Indexed: 09/14/2023] Open
Abstract
Vector competence (VC) refers to the efficiency of pathogen transmission by vectors. Each step in the infection of a mosquito vector constitutes a barrier to transmission that may impose bottlenecks on virus populations. West Nile virus (WNV) is maintained by multiple mosquito species with varying VC. However, the extent to which bottlenecks and VC are linked is poorly understood. Similarly, quantitative analyses of mosquito-imposed bottlenecks on virus populations are limited. We used molecularly barcoded WNV to quantify tissue-associated population bottlenecks in three variably competent WNV vectors. Our results confirm strong population bottlenecks during mosquito infection that are capable of dramatically reshaping virus population structure in a non-selective manner. In addition, we found that mosquitoes with differing VC uniquely shape WNV population structure: highly competent vectors are more likely to contribute to the maintenance of rare viral genotypes. These findings have important implications for arbovirus emergence and evolution.
Collapse
Affiliation(s)
- Emily A. Fitzmeyer
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Emily N. Gallichotte
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - James Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Marylee L. Kapuscinski
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Zaid Abdo
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Kyra Pyron
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Michael C. Young
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Gregory D. Ebel
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
46
|
Huang Q, Gavor E, Tulsian NK, Fan J, Lin Q, Mok YK, Kini RM, Sivaraman J. Structural and functional characterization of Aedes aegypti pupal cuticle protein that controls dengue virus infection. Protein Sci 2023; 32:e4761. [PMID: 37593853 PMCID: PMC10510476 DOI: 10.1002/pro.4761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
The pupal cuticle protein from Aedes aegypti (AaPC) inhibits dengue virus (DENV) infection; however, the underlying mechanism of this inhibition remains unknown. Here, we report that AaPC is an intrinsically disordered protein and interacts with domain I/II of the DENV envelope protein via residues Asp59, Asp61, Glu71, Asp73, Ser75, and Asp80. AaPC can directly bind to and cause the aggregation of DENV, which in turn blocks virus infection during the virus-cell fusion stage. AaPC may also influence viral recognition and attachment by interacting with human immune receptors DC-SIGN and CD4. These findings enhance our understanding of the role of AaPC in mitigating viral infection and suggest that AaPC is a potential target for developing inhibitors or antibodies to control dengue virus infection.
Collapse
Affiliation(s)
- Qingqing Huang
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| | - Edem Gavor
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| | - Nikhil Kumar Tulsian
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
- Department of BiochemistryNational University of SingaporeSingaporeSingapore
| | - Jingsong Fan
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| | - Qingsong Lin
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| | - Yu Keung Mok
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| | - R. Manjunatha Kini
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
- Department of Pharmacology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - J. Sivaraman
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| |
Collapse
|
47
|
Liu Z, Zhang Q, Li L, He J, Guo J, Wang Z, Huang Y, Xi Z, Yuan F, Li Y, Li T. The effect of temperature on dengue virus transmission by Aedes mosquitoes. Front Cell Infect Microbiol 2023; 13:1242173. [PMID: 37808907 PMCID: PMC10552155 DOI: 10.3389/fcimb.2023.1242173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
Dengue is prevalent in tropical and subtropical regions. As an arbovirus disease, it is mainly transmitted by Aedes aegypti and Aedes albopictus. According to the previous studies, temperature is closely related to the survival of Aedes mosquitoes, the proliferation of dengue virus (DENV) and the vector competence of Aedes to transmit DENV. This review describes the correlations between temperature and dengue epidemics, and explores the potential reasons including the distribution and development of Aedes mosquitoes, the structure of DENV, and the vector competence of Aedes mosquitoes. In addition, the immune and metabolic mechanism are discussed on how temperature affects the vector competence of Aedes mosquitoes to transmit DENV.
Collapse
Affiliation(s)
- Zhuanzhuan Liu
- Department of Pathogen Biology, Center for Tropical Disease Control and Research, School of Basic Medical Sciences and Life Sciences, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
- Department of Pathogen Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Qingxin Zhang
- School of Imaging Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Liya Li
- School of Imaging Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Junjie He
- School of Imaging Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Jinyang Guo
- School of Imaging Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Zichen Wang
- School of Imaging Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Yige Huang
- School of Imaging Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Zimeng Xi
- School of Imaging Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Fei Yuan
- Department of Pathogen Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Yiji Li
- Department of Pathogen Biology, Center for Tropical Disease Control and Research, School of Basic Medical Sciences and Life Sciences, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Tingting Li
- Department of Pathogen Biology, Center for Tropical Disease Control and Research, School of Basic Medical Sciences and Life Sciences, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| |
Collapse
|
48
|
Merkling SH, Crist AB, Henrion-Lacritick A, Frangeul L, Couderc E, Gausson V, Blanc H, Bergman A, Baidaliuk A, Romoli O, Saleh MC, Lambrechts L. Multifaceted contributions of Dicer2 to arbovirus transmission by Aedes aegypti. Cell Rep 2023; 42:112977. [PMID: 37573505 DOI: 10.1016/j.celrep.2023.112977] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 06/20/2023] [Accepted: 07/28/2023] [Indexed: 08/15/2023] Open
Abstract
Arthropod-borne viruses (arboviruses) transmitted by Aedes aegypti mosquitoes are an increasing threat to global health. The small interfering RNA (siRNA) pathway is considered the main antiviral immune pathway of insects, but its effective impact on arbovirus transmission is surprisingly poorly understood. Here, we use CRISPR-Cas9-mediated gene editing in vivo to mutate Dicer2, a gene encoding the RNA sensor and key component of the siRNA pathway. The loss of Dicer2 enhances early viral replication and systemic viral dissemination of four medically significant arboviruses (chikungunya, Mayaro, dengue, and Zika viruses) representing two viral families. However, Dicer2 mutants and wild-type mosquitoes display overall similar levels of vector competence. In addition, Dicer2 mutants undergo significant virus-induced mortality during infection with chikungunya virus. Together, our results define a multifaceted role for Dicer2 in the transmission of arboviruses by Ae. aegypti mosquitoes and pave the way for further mechanistic investigations.
Collapse
Affiliation(s)
- Sarah Hélène Merkling
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, 75015 Paris, France
| | - Anna Beth Crist
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, 75015 Paris, France
| | - Annabelle Henrion-Lacritick
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, 75015 Paris, France
| | - Lionel Frangeul
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, 75015 Paris, France
| | - Elodie Couderc
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, 75015 Paris, France; Sorbonne Université, Collège Doctoral, 75005 Paris, France
| | - Valérie Gausson
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, 75015 Paris, France
| | - Hervé Blanc
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, 75015 Paris, France
| | - Alexander Bergman
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, 75015 Paris, France
| | - Artem Baidaliuk
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, 75015 Paris, France; Sorbonne Université, Collège Doctoral, 75005 Paris, France
| | - Ottavia Romoli
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, 75015 Paris, France
| | - Maria-Carla Saleh
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, 75015 Paris, France.
| | - Louis Lambrechts
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, 75015 Paris, France.
| |
Collapse
|
49
|
Körsten C, Vasić A, AL-Hosary AA, Tews BA, Răileanu C, Silaghi C, Schäfer M. Excretion Dynamics of Arboviruses in Mosquitoes and the Potential Use in Vector Competence Studies and Arbovirus Surveillance. Trop Med Infect Dis 2023; 8:410. [PMID: 37624347 PMCID: PMC10459540 DOI: 10.3390/tropicalmed8080410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/19/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023] Open
Abstract
The increasing threat of arboviruses such as West Nile virus (WNV) and Usutu virus (USUV) requires the fast and efficient surveillance of these viruses. The examination of mosquitoes takes up an important part; however, these investigations are usually very time-consuming. An alternative sample type for arbovirus surveillance might be mosquito excreta. In order to determine the excretion dynamics under laboratory conditions, laboratory colonies of Aedes vexans and Culex pipiens biotype molestus were infected with WNV, USUV or tick-borne encephalitis virus (TBEV). After infection, the excreta were sampled and investigated for viral RNA. Excretion of viral RNA together with infectious blood meal could be detected up to five days after infection. Further excretion seemed to correlate with a disseminated infection in mosquitoes, at least after USUV infection. In addition, it could be determined that the amount of viral RNA in the excretions correlated positively with the viral load in the mosquito bodies. Overall, this study shows that the usage of mosquito excreta as a sample type for surveillance enables the detection of endemic viruses (WNV, USUV) as well as non-mosquito-borne viruses (TBEV). In addition, examination of viral shedding during vector competence studies can provide insights into the course of infection without sacrificing animals.
Collapse
Affiliation(s)
- Christin Körsten
- Institute of Infectology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, 17493 Greifswald, Germany; (C.K.)
| | - Ana Vasić
- Institute of Infectology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, 17493 Greifswald, Germany; (C.K.)
- Scientific Institute of Veterinary Medicine of Serbia, 11000 Belgrade, Serbia
| | - Amira A. AL-Hosary
- Institute of Infectology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, 17493 Greifswald, Germany; (C.K.)
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - Birke A. Tews
- Institute of Infectology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, 17493 Greifswald, Germany; (C.K.)
| | - Cristian Răileanu
- Institute of Infectology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, 17493 Greifswald, Germany; (C.K.)
| | - Cornelia Silaghi
- Institute of Infectology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, 17493 Greifswald, Germany; (C.K.)
| | - Mandy Schäfer
- Institute of Infectology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, 17493 Greifswald, Germany; (C.K.)
| |
Collapse
|
50
|
Kay GA, Patterson EI, Hughes GL, Lord JS, Reimer LJ. Knockdown resistance allele L1014F introduced by CRISPR/Cas9 is not associated with altered vector competence of Anopheles gambiae for o'nyong nyong virus. PLoS One 2023; 18:e0288994. [PMID: 37561739 PMCID: PMC10414658 DOI: 10.1371/journal.pone.0288994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/09/2023] [Indexed: 08/12/2023] Open
Abstract
Knockdown resistance (kdr) alleles conferring resistance to pyrethroid insecticides are widespread amongst vector populations. Previous research has suggested that these alleles are associated with changes in the vector competence of mosquitoes for arboviruses and Plasmodium, however non-target genetic differences between mosquito strains may have had a confounding effect. Here, to minimise genetic differences, the laboratory Anopheles gambiae Kisumu strain was compared to a CRISPR/Cas9 homozygous kdr L1014F mutant Kisumu-kdr line in order to examine associations with vector competence for o'nyong nyong virus (ONNV). Mosquitoes were infected using either blood feeds or intrathoracic microinjections. There were no significant differences in the prevalence of virus in mosquito body parts between kdr mutant and wildtype lines from either oral or intrathoracic injection routes. The ONNV titre was significantly higher in the legs of the wildtype strain at 7dpi following intrathoracic microinjection, but no other significant differences in viral titre were detected. ONNV was not detected in the saliva of mosquitoes from either strain. Our findings from per os infections suggest that the kdr L1014F allele is not associated with altered infection prevalence for ONNV, a key component of vector competence.
Collapse
Affiliation(s)
- Grant A. Kay
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Grant L. Hughes
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Jennifer S. Lord
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Lisa J. Reimer
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|