1
|
Chaabane L, Jaafar Z, Chaaben M, Chaaben S, Ghali AE, Msaddek M, Beyou E, Baouab MHV. Dual-function advanced magnetic bacterial cellulose materials: From enhanced adsorption phenomena to an unprecedented circular green catalytic strategy. J Colloid Interface Sci 2025; 686:1215-1229. [PMID: 39951983 DOI: 10.1016/j.jcis.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/27/2025] [Accepted: 02/01/2025] [Indexed: 02/17/2025]
Abstract
With the growing emphasis on circular catalysis principles and green chemistry, addressing the dual challenge of wastewater treatment and sustainable catalysis has become increasingly critical. Although the adsorption of copper ions using magnetic biomaterials has been widely investigated, its full potential is still not fully understood. In particular, the reutilization of Cu(II)-loaded magnetic bacterial cellulose in circular green catalytic reactions remains underexplored. This study presents a novel magnetic bacterial cellulose-based material, designated as (BC-BPEM)@Fe3O4NPs, engineered through advanced chemical modifications to address these challenges. The adsorption kinetics followed a pseudo-second-order model, indicating chemisorption as the predominant mechanism. A key challenge addressed in this study was the efficient reuse of Cu(II)-loaded magnetic bacterial cellulose-based material. The recovered material was successfully employed as a catalyst in the synthesis of novel 1,4-disubstituted bis-1,2,3-triazoles under green conditions. Notably, the reaction achieved an impressive rate of 0.219 ± 0.006 mmol.gcat-1.min-1 and a 99 % yield within 15 min, using green deep eutectic solvents (ChCl/Gly) and glutathione as a reducing agent. Remarkably, the catalyst retained its high catalytic performance over 20 cycles, maintaining yields consistently between 99 % and 97 %. This study not only emphasizes the seamless integration of adsorption and catalytic recycling but also highlights the sustainability of the approach. Environmental metrics revealed an E-factor of 0.442 kg waste/kg product, a PMI of 1.442 kg materials/kg product, and an RME of 99.83 %, reinforcing the potential of catalyst in both sustainable catalysis and environmental remediation.
Collapse
Affiliation(s)
- Laroussi Chaabane
- Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium; Ingénierie des Matériaux Polymères (IMP), Villeurbanne F-69622, Université de Lyon, F-69003 Lyon, France.
| | - Zouhour Jaafar
- CSPBAT, CNRS UMR 7244, F-93017, University Paris 13, Sorbonne Paris City, Bobigny, France; Laboratory of Heterocyclic Chemistry Natural Products and Reactivity/CHPNR, Faculty of Science of Monastir, University of Monastir, 5019 Monastir, Tunisia
| | - Marwa Chaaben
- Physico-Chemistry Laboratory of Innovative Materials (LR 24ES16), Preparatory Institute for Engineering Studies of Monastir, University of Monastir, Tunisia; Département de Chimie, Université du Québec à Montréal, Montréal, Québec H3C 3P8, Canada
| | - Safa Chaaben
- Physico-Chemistry Laboratory of Innovative Materials (LR 24ES16), Preparatory Institute for Engineering Studies of Monastir, University of Monastir, Tunisia; Institut National de la Recherche Scientifique-Centre Énergie Matériaux Télécommunications (INRS-EMT), 1650 Boulevard Lionel-Boulet, Varennes, QC J3X 1P7, Canada
| | - Amel El Ghali
- Physico-Chemistry Laboratory of Innovative Materials (LR 24ES16), Preparatory Institute for Engineering Studies of Monastir, University of Monastir, Tunisia
| | - Moncef Msaddek
- Laboratory of Heterocyclic Chemistry Natural Products and Reactivity/CHPNR, Faculty of Science of Monastir, University of Monastir, 5019 Monastir, Tunisia
| | - Emmanuel Beyou
- Ingénierie des Matériaux Polymères (IMP), Villeurbanne F-69622, Université de Lyon, F-69003 Lyon, France
| | - Mohammed Hassen V Baouab
- Physico-Chemistry Laboratory of Innovative Materials (LR 24ES16), Preparatory Institute for Engineering Studies of Monastir, University of Monastir, Tunisia
| |
Collapse
|
2
|
Pazouki S, Raoof JB, Ghani M. Fabrication of dual layered double hydroxide/cobalt oxide sorbent on pencil graphite for solid-phase microextraction and HPLC analysis of environmental pollutants. Talanta 2025; 285:127294. [PMID: 39616757 DOI: 10.1016/j.talanta.2024.127294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 11/10/2024] [Accepted: 11/25/2024] [Indexed: 01/23/2025]
Abstract
This study describes the synthesis of Co/Al-LDH through an electrochemical method on a pencil graphite substrate, followed by the partial conversion of Co/Al-LDH to Co3O4 via a calcination method on the same substrate. The obtained sorbent served as an extraction phase for the direct solid-phase microextraction (SPME) of environmental pollutants, including chlorophenols and aromatic hydrocarbons, from wastewater samples. The extracted analytes were quantified using high-performance liquid chromatography-ultraviolet detection (HPLC-UV). Under optimal conditions, the linear dynamic range (LDR) extended for each extracted analyte over a concentration range of 1-500 μg L-1. The coefficients of determination (R2) for the target analytes ranged from 0.9946 to 0.9987. The limits of detection (LODs) were in the range of 0.29-0.69 μg L-1, while the limits of quantification (LOQs) ranged from 0.96-2.1 μg L-1. Moreover, spike recovery (SR) for real samples ranged from 90.0 to 113.0 %, indicating the effectiveness of the proposed method. The developed coating showed excellent efficiency and sensitivity for the extraction of chlorophenols and aromatic hydrocarbons from real samples. This work is novel in that it enables the simultaneous extraction of analytes with different polarities using two types of sorbents on the same substrate.
Collapse
Affiliation(s)
- Sima Pazouki
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Jahan Bakhsh Raoof
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.
| | - Milad Ghani
- Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
3
|
Beljin J, Đukanović N, Anojčić J, Simetić T, Apostolović T, Mutić S, Maletić S. Biochar in the Remediation of Organic Pollutants in Water: A Review of Polycyclic Aromatic Hydrocarbon and Pesticide Removal. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 15:26. [PMID: 39791785 PMCID: PMC11722649 DOI: 10.3390/nano15010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025]
Abstract
This review explores biochar's potential as a sustainable and cost-effective solution for remediating organic pollutants, particularly polycyclic aromatic hydrocarbons (PAHs) and pesticides, in water. Biochar, a carbon-rich material produced from biomass pyrolysis, has demonstrated adsorption efficiencies exceeding 90% under optimal conditions, depending on the feedstock type, pyrolysis temperature, and functionalization. High surface area (up to 1500 m2/g), porosity, and modifiable surface functional groups make biochar effective in adsorbing a wide range of contaminants, including toxic metals, organic pollutants, and nutrients. Recent advancements in biochar production, such as chemical activation and post-treatment modifications, have enhanced adsorption capacities, with engineered biochar achieving superior performance in treating industrial, municipal, and agricultural effluents. However, scaling up biochar applications from laboratory research to field-scale wastewater treatment poses significant challenges. These include inconsistencies in adsorption performance under variable environmental conditions, the high cost of large-scale biochar production, logistical challenges in handling and deploying biochar at scale, and the need for integration with existing treatment systems. Such challenges impact the practical implementation of biochar-based remediation technologies, requiring further investigation into cost-effective production methods, long-term performance assessments, and field-level optimization strategies. This review underscores the importance of addressing these barriers and highlights biochar's potential to offer a sustainable, environmentally friendly, and economically viable solution for large-scale wastewater treatment.
Collapse
Affiliation(s)
- Jelena Beljin
- Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia; (N.Đ.); (J.A.); (T.A.); (S.M.); (S.M.)
| | | | | | | | | | | | | |
Collapse
|
4
|
Lilli B, Wassersleben S, Schulze T, Otto A, Enke D. Additive effects of rice husk-based carbon-silica composites on adsorption of diclofenac sodium and carbamazepine from aqueous solutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176389. [PMID: 39304145 DOI: 10.1016/j.scitotenv.2024.176389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/06/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
The present study investigated the adsorption of diclofenac sodium (DCF) and carbamazepine (CBZ) on carbon-silica composites (CSC), activated carbon (RH-AC) and biogenic silica (RH-BS) based on rice husks from aqueous solutions. The materials were characterised using scanning electron microscopy, infrared spectroscopy, inductively coupled plasma optical emission spectroscopy, nitrogen sorption and elemental analysis. These methods provided essential information on the morphology, chemical composition, textural properties and surface characteristics of porous materials. The results of the adsorption studies demonstrate that the investigated materials exhibit varying adsorption capacities for DCF and CBZ. The maximum adsorption capacity was achieved by CSCs, with 1111 mg g-1 for DCF and 455 mg g-1 for CBZ and indicates additive effects on the adsorption capacity of CSCs compared to RH-AC and RH-BS. In addition to the hydrogen bonds and the π-π electron donor-acceptor interactions of the carbon component, further hydrogen bonds are formed by the silanol groups of the silica component. The CSCs derived from rice husks represent an innovative approach to the more efficient removal of pharmaceutical residues from wastewater. This is accomplished by utilizing a single starting material for both components, thereby yielding a unique structural combination.
Collapse
Affiliation(s)
- Bettina Lilli
- Institute of Chemical Technology, Leipzig University, Linnéstr. 3, 04103 Leipzig, Germany.
| | - Susan Wassersleben
- Institute of Chemical Technology, Leipzig University, Linnéstr. 3, 04103 Leipzig, Germany
| | - Tanja Schulze
- HeGo Biotec GmbH, Goerzallee 305b, 14167 Berlin, Germany
| | - Andreas Otto
- HeGo Biotec GmbH, Goerzallee 305b, 14167 Berlin, Germany
| | - Dirk Enke
- Institute of Chemical Technology, Leipzig University, Linnéstr. 3, 04103 Leipzig, Germany
| |
Collapse
|
5
|
Zango ZU, Khoo KS, Ali AF, Abidin AZ, Zango MU, Lim JW, Wadi IA, Eisa MH, Alhathlool R, Abu Alrub S, Aldaghri O, Suresh S, Ibnaouf KH. Development of inorganic and mixed matrix membranes for application in toxic dyes-contaminated industrial effluents with in-situ treatments. ENVIRONMENTAL RESEARCH 2024; 256:119235. [PMID: 38810826 DOI: 10.1016/j.envres.2024.119235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/13/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
Dyes are the most ubiquitous organic pollutants in industrial effluents. They are highly toxic to both plants and animals; thus, their removal is paramount to the sustainability of ecosystem. However, they have shown resistance to photolysis and various biological, physical, and chemical wastewater remediation processes. Membrane removal technology has been vital for the filtration/separation of the dyes. In comparison to polymeric membranes, inorganic and mixed matrix (MM) membranes have shown potentials to the removal of dyes. The inorganic and MM membranes are particularly effective due to their high porosity, enhanced stability, improved permeability, higher enhanced selectivity and good stability and resistance to harsh chemical and thermal conditions. They have shown prospects in filtration/separation, adsorption, and catalytic degradation of the dyes. This review highlighted the advantages of the inorganic and MM membranes for the various removal techniques for the treatments of the dyes. Methods for the membranes production have been reviewed. Their application for the filtration/separation and adsorption have been critically analyzed. Their application as support for advanced oxidation processes such as persulfate, photo-Fenton and photocatalytic degradations have been highlighted. The mechanisms underscoring the efficiency of the processes have been cited. Lastly, comments were given on the prospects and challenges of both inorganic and MM membranes towards removal of the dyes from industrial effluents.
Collapse
Affiliation(s)
- Zakariyya Uba Zango
- Department of Chemistry, College of Natural and Applied Science, Al-Qalam University Katsina, 2137, Katsina, Nigeria; Institute of Semi-Arid Zone Studies, Al-Qalam University Katsina, 2137, Katsina, Nigeria.
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Ahmed Fate Ali
- Department of Environmental Management, Bayero University, 3011, Kano State, Nigeria
| | - Asmaa Zainal Abidin
- Department of Chemistry and Biology, Centre for Defense Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000, Kuala Lumpur, Malaysia
| | - Muttaqa Uba Zango
- Department of Civil Engineering, Kano University of Science and Technology, Wudil, P.M.B. 3244, Kano, Nigeria
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Sustainable Energy, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Ismael A Wadi
- Prince Sattam Bin Abdulaziz University, Basic Science Unit, Alkharj, 16278, Alkharj, Saudi Arabia
| | - M H Eisa
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Riyadh, Saudi Arabia
| | - Raed Alhathlool
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Riyadh, Saudi Arabia
| | - S Abu Alrub
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Riyadh, Saudi Arabia
| | - Osamah Aldaghri
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Riyadh, Saudi Arabia
| | - Sagadevan Suresh
- Nanotechnology & Catalysis Research Centre, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Khalid Hassan Ibnaouf
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Riyadh, Saudi Arabia.
| |
Collapse
|
6
|
Khoj MA. Fabrication of silica/calcium alginate nanocomposite based on rice husk ash for efficient adsorption of phenol from water. RSC Adv 2024; 14:24322-24334. [PMID: 39104561 PMCID: PMC11298972 DOI: 10.1039/d4ra04070h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024] Open
Abstract
The current work discusses the synthesis of three different solid adsorbents: silica nanoparticles derived from rice husk (RS), calcium alginate beads (AG), and silica/alginate nanocomposite (RSG). The fabricated solid adsorbents were characterized by using different physicochemical techniques such as TGA, XRD, nitrogen adsorption/desorption analysis, ATR-FTIR, pHPZC, SEM, and TEM. The adsorption efficiencies of the prepared solid adsorbents were considered for the removal of phenol as a selected hazardous pollutant. Because of its improved adsorption capacity and environmentally friendly character, a composite made of biosilica nanoparticles and naturally occurring alginate biopolymer by click chemistry is significant in environmental treatment. Adding silica nanoparticles to the alginate biopolymer hydrogel has many advantages, including increased surface area, easier recovery of the solid adsorbent, and additional surface chemical functional groups. The silica/alginate nanocomposite showed surface heterogeneity with many chemical functional groups present, whereas silica nanoparticles had the highest surface area (893.1 m2 g-1). It has been found that the average TEM particle size of RS, AG, and RSG was between 18 and 82 nm. RSG displayed the maximum adsorption capacity of phenol (100.55 mg g-1) at pH 7 and 120 min as equilibrium adsorption time. Adsorption of phenol onto the solid adsorbents fit well with a nonlinear Langmuir isotherm with favorable adsorption. Kinetic and thermodynamic studies prove that the adsorption process follows a pseudo-second-order kinetic model, endothermic process, physical, and spontaneous adsorption. Sodium hydroxide is effective in desorbing 94% of the loaded phenols, according to desorption investigations. Solid reusability tests showed that, after seven cycles of phenol adsorption/desorption, RSG lost only 8.8% of its adsorption activity.
Collapse
Affiliation(s)
- Manal A Khoj
- Department of Chemistry, Faculty of Science, Umm Al-Qura University Makkah Saudi Arabia +966563266152
| |
Collapse
|
7
|
Chang X, Wang Y, Zain A, Yu H, Huang W. Antifungal Activity of Difenoconazole-Loaded Microcapsules against Curvularia lunata. J Fungi (Basel) 2024; 10:519. [PMID: 39194845 DOI: 10.3390/jof10080519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 08/29/2024] Open
Abstract
Difenoconazole-loaded (CS-DIF) microcapsules were synthesized by encapsulating difenoconazole into biocompatible chitosan. The physical and chemical properties indicated that the encapsulation and chemical loading rates were 85.58% and 61.98%, respectively. The microcapsules exhibited prominent controlled-release and surface stability performance. The cumulative release rate was only 33.6% in 168 h, and the contact angle decreased by 11.73° at 120 s compared with difenoconazole. The antifungal activity of the CS-DIF microcapsules against Curvularia lunata was confirmed through observations of colony growth, in vitro and in vivo inoculation, mycelium morphology, as well as DNA and protein leakage. The antioxidant enzyme activity of superoxide dismutase, peroxidase, and catalase decreased by 65.1%, 84.9%, and 69.7%, respectively, when Curvularia lunata was treated with 200 μg/mL microcapsules, compared with the control in 24 h. The enzymatic activity of polyphenol oxidase decreased by 323.8%. The reactive oxygen species contents of hydrogen peroxide and superoxide anions increased by 204.6% and 164%, respectively. Additionally, the soluble sugar and soluble protein contents decreased by 65.5% and 69.6%, respectively. These findings provided a novel approach to control the growth of C. lunata efficiently, laying a foundation for reducing the quantity and enhancing the efficiency of chemical pesticides. The CS-DIF microcapsules exhibited a strong inhibitory effect on fungus, effectively preventing and controlling leaf spot disease and showing potential for field applications. This study might be of great significance in ensuring plant protection strategies.
Collapse
Affiliation(s)
- Xiaoyu Chang
- College of Resources and Environment, Anhui Science and Technology University, Chuzhou 233100, China
| | - Yuyan Wang
- College of Resources and Environment, Anhui Science and Technology University, Chuzhou 233100, China
| | - Abbas Zain
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China
| | - Haibing Yu
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China
| | - Weidong Huang
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China
| |
Collapse
|
8
|
Zango ZU, Khoo KS, Garba A, Garba ZN, Danmallam UN, Aldaghri O, Ibnaouf KH, Ahmad NM, Binzowaimil AM, Lim JW, Bhattu M, Ramesh MD. A review on titanium oxide nanoparticles modified metal-organic frameworks for effective CO 2 conversion and efficient wastewater remediation. ENVIRONMENTAL RESEARCH 2024; 252:119024. [PMID: 38692419 DOI: 10.1016/j.envres.2024.119024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/06/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Environmental pollution has been increasing since last decade due to increasing industrialisation and urbanisation. Various kinds ofenvironmental pollutants including carbon dioxide (CO2), dyes, pharmaceuticals, phenols, heavy metals along with many organic and inorganic species have been discovered in the various environmental compartments which possess harmful impacts tox human health, wildlife, and ecosystems. Thus, various efforts have been made through regulations, technological advancements, and public awareness campaigns to reduce the impact of the pollution. However, finding suitable alternatives to mitigate their impacts remained a challenge. Metal-organic frameworks (MOFs) are one of the advanced materials with unique features such as high porosity and stability which exhibit versatile applications in environmental remediation. Their composites with titanium oxide nanoparticles (TiO2) have been discovered to offer potential feature such as light harvesting capacity and catalytic activity. The composite integration and properties have been confirmed through characterization using surface area analysis, scanning electron/transmission electron microscopy, atomic force microscopy, fourier transformed infrared spectroscopy, X-ray diffraction analysis, X-ray photoelectron spectroscopy, thermogravimetric analysis, and others. Thus, this work rigorously discussed potential applications of the MOF@TiO2 nanomaterials for the CO2 capture and effective utilization in methanol, ethanol, acetone, acetaldehyde, and other useful products that served as fuel to various industrial processes. Additionally, the work highlights the effective performance of the materials towards photocatalytic degradation of both organic and inorganic pollutants with indepth mechanistic insights. The article will offer significant contribution for the development of sustainable and efficient technologies for the environmental monitoring and pollution mitigation.
Collapse
Affiliation(s)
- Zakariyya Uba Zango
- Department of Chemistry, College of Natural and Applied Science, Al-Qalam University Katsina, Katsina City 2137, Katsina, Nigeria; Institute of Semi-Arid Zone Studies, Al-Qalam University Katsina, Katsina City 2137, Katsina, Nigeria.
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Abdurrahman Garba
- Department of Chemistry, College of Natural and Applied Science, Al-Qalam University Katsina, Katsina City 2137, Katsina, Nigeria
| | - Zaharaddeen N Garba
- Department of Chemistry, Ahmadu Bello University, 810107, Zaria. Nigeria, India
| | | | - Osamah Aldaghri
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Riyadh, Saudi Arabia
| | - Khalid Hassan Ibnaouf
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Riyadh, Saudi Arabia.
| | - Nasir M Ahmad
- School of Physics, Universiti Sains Malaysia, Penang 11800, Malaysia; Laser and Optoelectronics Engineering Department, Dijlah University College, Baghdad, Iraq
| | - Ayed M Binzowaimil
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Riyadh, Saudi Arabia
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Monika Bhattu
- Department of Chemistry, University Centre for Research and Development, Chandigarh University, Mohali-140413, Punjab, India
| | - M D Ramesh
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica-1000000, Chile
| |
Collapse
|
9
|
Munyengabe A, Banda M, Augustyn W, Netshiongolwe K, Ramutshatsha-Makhwedzha D. Application of coal fly ash for trace metal adsorption from wastewater: A review. Heliyon 2024; 10:e31494. [PMID: 38803871 PMCID: PMC11128527 DOI: 10.1016/j.heliyon.2024.e31494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
Environmental pollution has become a global issue due to continuing anthropogenic activities that result in the production of enormous amounts of waste and the subsequent release of hazardous trace metals. The increasing levels of trace metals in the environment must be monitored regularly and reduced to prevent contamination of food chain. Numerous conventional technologies that are widely used for the removal of trace metals from environmental matrices have many drawbacks. Currently, the preferred method to remove trace metal ions is the adsorption process, which normally uses adsorbents. This review investigated the applications of coal fly ash (CFA) as a cost-effective adsorbent and the role it plays in the improved properties of nanomaterials that are used for treatment of trace metals in water. The use of CFA and its role in chemical modification processes results to high removal efficiency of trace metals. CFA is a by-product of coal combustion which is available in abundance and therefore its use is not only beneficial in water treatment processes, but also reduce the burden of solid waste disposal.
Collapse
Affiliation(s)
- Alexis Munyengabe
- Faculty of Science, Tshwane University of Technology, Department of Chemistry, Pretoria, X0001, South Africa
| | - Maria Banda
- Faculty of Science, Tshwane University of Technology, Department of Chemistry, Pretoria, X0001, South Africa
| | - Wilma Augustyn
- Faculty of Science, Tshwane University of Technology, Department of Chemistry, Pretoria, X0001, South Africa
| | - Khathutshelo Netshiongolwe
- Faculty of Science, Tshwane University of Technology, Department of Chemistry, Pretoria, X0001, South Africa
| | - Denga Ramutshatsha-Makhwedzha
- Faculty of Engineering and the Built Environment, Tshwane University of Technology, Department of Chemical, Metallurgical and Materials Engineering, Pretoria West Campus, Pretoria, X680, South Africa
| |
Collapse
|
10
|
Subash A, Naebe M, Wang X, Kandasubramanian B. Tailoring electrospun nanocomposite fibers of polylactic acid for seamless methylene blue dye adsorption applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33393-9. [PMID: 38709414 DOI: 10.1007/s11356-024-33393-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/16/2024] [Indexed: 05/07/2024]
Abstract
The introduction of biopolymers, which are sustainable and green materials, desegregated nature's water purification proficiency with science and technology, opens a new sustainable methodology in water reclamation. In order to introduce an efficacious adsorbent system for MB dye-toxic pollutant, adsorption, providing robust mechanical properties and facile processability, a facile system was introduced via electrospinning utilizing polylactic acid (PLA) and Ti3C2Tx, viz., PMX. The addition of 3 wt.% Ti3C2Tx led to a 3-fold substantial augmentation in the uptake capacity of the membrane from 197.28 to 307 mg/g when the adsorbate concentration was 100 ppm. The adsorption followed a PSO behavior, proposing that the rate-limiting stage is chemisorption and data best fitted to Freundlich isotherm, indicating heterogeneous adsorption sites and multi-layer adsorption. Further, biodegradability was studied by simulating natural environmental conditions where the nanofibers exhibited 42-64% degradation after 270 days. Based on the result with PLA, it is anticipated that the prepared fibrous system will introduce a new perspective as a potential candidate for MB removal from wastewater, opening new directions toward the research and development in wastewater treatment with electrospun biopolymer fibers using waste PLA.
Collapse
Affiliation(s)
- Alsha Subash
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong, Victoria, 3216, Australia
- Nano Surface Texturing Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune, Maharashtra, 411025, India
| | - Minoo Naebe
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong, Victoria, 3216, Australia
| | - Xungai Wang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Balasubramanian Kandasubramanian
- Nano Surface Texturing Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune, Maharashtra, 411025, India.
| |
Collapse
|
11
|
Mansab S, Rafique U. Adsorption simulation of 2,4-D pesticide on novel zinc-based 2-amino-4-(1H-1,2,4-triazole-4-yl)benzoic acid coordination complexes using machine learning approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:36814-36833. [PMID: 38760604 DOI: 10.1007/s11356-024-33668-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024]
Abstract
The capacity of zinc-based 2-amino-4-(1H-1,2,4-triazole-4-yl)benzoic acid coordination complex (Zn(NH2-TBA)2) and modified Zn(NH-TBA)2COMe complex for removal of 2,4-dichlorophenoxyacetic acid (2,4-D) from aqueous solutions was investigated through adsorption modeling and artificial intelligence tools. Analyzing the adsorption characteristics of pesticides helps in studying the groundwater pollution by pesticides in agriculture area.In this study, Zn(NH2-TBA)2 was synthesized using Schiff base and its surface was modified using acetic anhydride group and their physical characteristics were identified using proton NMR, FTIR, and XRD. NMR results showed maximum modification yield obtained was 65% after 5 days. The porous structure and surface area monitored using nitrogen isotherm and BET surface area analysis presented relatively less surface area and porosity after modification. Adsorption modelling indicated that Toth model with a maximum adsorption capacity of 150.8 mg/g and 100.7 mg/g represents the homogenous adsorption systems which satisfy both low- and high-end boundary of adsorbate concentration in all settings according to the optimum point, while the kinetics and rate of 2,4-D adsorption follow the pseudo-first-order kinetic model in all situations. Artificial neural network (ANN), support vector regression, and particle swarm optimized least squares-support vector regression (PSO-LSSVR) were used for the optimization and modelling of adsorbent mass, adsorbate concentration, contact time, and temperature to develop predictive equations for the simulation of the adsorption efficiency of 2,4-D pesticide. The obtained results exhibited the better performance of ANN and PSO-LSSVR for prediction of adsorption results. The mean square error values of ANN (0.001, 0.012) and PSO-LSSVR (0.121, 0.105) were obtained for Zn(NH2-TBA)2 and Zn(NH-TBA)2COMe, respectively, while their respective coefficient of determination (R2) obtained were 0.999 and 0.988 for ANN and 0.980 and 0.825 for PSO-LSSVR. The study specified that machine learning predictive behavior performed better for Zn(NH2-TBA)2 compared to Zn(NH-TBA)2COMe that is also supported by theoretical kinetics and isotherm models. The research concludes that artificial intelligence models are the most efficient tools for studying the predictive behavior of adsorption data.
Collapse
Affiliation(s)
- Saira Mansab
- Department of Environmental Sciences, The Women University Multan, Multan, Pakistan.
| | - Uzaira Rafique
- Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, Pakistan
| |
Collapse
|
12
|
Zango ZU, Khoo KS, Garba A, Lawal MA, Abidin AZ, Wadi IA, Eisa MH, Aldaghri O, Ibnaouf KH, Lim JW, Da Oh W. A review on carbon-based biowaste and organic polymer materials for sustainable treatment of sulfonamides from pharmaceutical wastewater. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:145. [PMID: 38568460 DOI: 10.1007/s10653-024-01936-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 02/22/2024] [Indexed: 04/05/2024]
Abstract
Frequent detection of sulfonamides (SAs) pharmaceuticals in wastewater has necessitated the discovery of suitable technology for their sustainable remediation. Adsorption has been widely investigated due to its effectiveness, simplicity, and availability of various adsorbent materials from natural and artificial sources. This review highlighted the potentials of carbon-based adsorbents derived from agricultural wastes such as lignocellulose, biochar, activated carbon, carbon nanotubes graphene materials as well as organic polymers such as chitosan, molecularly imprinted polymers, metal, and covalent frameworks for SAs removal from wastewater. The promising features of these materials including higher porosity, rich carbon-content, robustness, good stability as well as ease of modification have been emphasized. Thus, the materials have demonstrated excellent performance towards the SAs removal, attributed to their porous nature that provided sufficient active sites for the adsorption of SAs molecules. The modification of physico-chemical features of the materials have been discussed as efficient means for enhancing their adsorption and reusable performance. The article also proposed various interactive mechanisms for the SAs adsorption. Lastly, the prospects and challenges have been highlighted to expand the knowledge gap on the application of the materials for the sustainable removal of the SAs.
Collapse
Affiliation(s)
- Zakariyya Uba Zango
- Department of Chemistry, College of Natural and Applied Science, Al-Qalam University Katsina, Katsina City, 2137, Katsina, Nigeria.
- Institute of Semi-Arid Zone Studies, Al-Qalam University Katsina, Katsina CityKatsina, 2137, Nigeria.
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, 603103, India
| | - Abdurrahman Garba
- Department of Chemistry, College of Natural and Applied Science, Al-Qalam University Katsina, Katsina City, 2137, Katsina, Nigeria
| | | | - Asmaa' Zainal Abidin
- Department of Chemistry and Biology, Centre for Defense Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000, Kuala Lumpur, Malaysia
| | - Ismael A Wadi
- Basic Science Unit, Prince Sattam Bin Abdulaziz University, 16278, Alkharj, Alkharj, Saudi Arabia
| | - M H Eisa
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 13318, Riyadh, Riyadh, Saudi Arabia
| | - Osamah Aldaghri
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 13318, Riyadh, Riyadh, Saudi Arabia
| | - Khalid Hassan Ibnaouf
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 13318, Riyadh, Riyadh, Saudi Arabia.
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Wen Da Oh
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| |
Collapse
|
13
|
Yabalak E, Aminzai MT, Gizir AM, Yang Y. A Review: Subcritical Water Extraction of Organic Pollutants from Environmental Matrices. Molecules 2024; 29:258. [PMID: 38202840 PMCID: PMC10780272 DOI: 10.3390/molecules29010258] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/26/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
Most organic pollutants are serious environmental concerns globally due to their resistance to biological, chemical, and photolytic degradation. The vast array of uses of organic compounds in daily life causes a massive annual release of these substances into the air, water, and soil. Typical examples of these substances include pesticides, polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs). Since they are persistent and hazardous in the environment, as well as bio-accumulative, sensitive and efficient extraction and detection techniques are required to estimate the level of pollution and assess the ecological consequences. A wide variety of extraction methods, including pressurized liquid extraction, microwave-assisted extraction, supercritical fluid extraction, and subcritical water extraction, have been recently used for the extraction of organic pollutants from the environment. However, subcritical water has proven to be the most effective approach for the extraction of a wide range of organic pollutants from the environment. In this review article, we provide a brief overview of the subcritical water extraction technique and its application to the extraction of PAHs, PCBs, pesticides, pharmaceuticals, and others form environmental matrices. Furthermore, we briefly discuss the influence of key extraction parameters, such as extraction time, pressure, and temperature, on extraction efficiency and recovery.
Collapse
Affiliation(s)
- Erdal Yabalak
- Department of Nanotechnology and Advanced Materials, Mersin University, TR-33343 Mersin, Türkiye
| | - Mohammad Tahir Aminzai
- Department of Organic Chemistry, Faculty of Chemistry, Kabul University, Kabul 1006, Afghanistan;
| | - Ahmet Murat Gizir
- Department of Chemistry, Faculty of Science, Mersin University, TR-33343 Mersin, Türkiye;
| | - Yu Yang
- Department of Chemistry, East Carolina University, Greenville, NC 27858, USA
| |
Collapse
|
14
|
Rana S, Handa S, Aggarwal Y, Puri S, Chatterjee M. Role of Candida in the bioremediation of pollutants: a review. Lett Appl Microbiol 2023; 76:ovad103. [PMID: 37673682 DOI: 10.1093/lambio/ovad103] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 06/30/2023] [Accepted: 09/04/2023] [Indexed: 09/08/2023]
Abstract
The population and modernization of society have increased dramatically from past few decades. In order to meet societal expectations, there has been a massive industrialization and resource exploitation. Anthropogenic practices like disposal of hazardous waste, large carbon footprint release variety of xenobiotic substances into the environment, which endanger the health of the natural ecosystem. Therefore, discovering proper long-term treatment approaches is a global concern. Various physical and chemical approaches are employed to remove contaminants. However, these technologies possess limitations like high cost and low efficacy. Consequently, bioremediation is regarded as one of the most promising remedies to these problems. It creates the option of either totally removing pollutants or transforming them into nonhazardous compounds with the use of natural biological agents. Several microorganisms are being utilized for bioremediation among which yeasts possess benefits such as high biodegradability, ease of cultivation etc. The yeast of Candida genus has the capability to effectively eliminate heavy metal ions, as well as to degrade and emulsify hydrocarbons which makes it a promising candidate for this purpose. The review highlights many potential uses of Candida in various remediation strategies and discusses future directions for research in this field.
Collapse
Affiliation(s)
- Samriti Rana
- Biotechnology Branch, University Institute of Engineering and Technology, Panjab University, Chandigarh 160014, India
| | - Shristi Handa
- Biotechnology Branch, University Institute of Engineering and Technology, Panjab University, Chandigarh 160014, India
| | - Yadu Aggarwal
- Biotechnology Branch, University Institute of Engineering and Technology, Panjab University, Chandigarh 160014, India
| | - Sanjeev Puri
- Biotechnology Branch, University Institute of Engineering and Technology, Panjab University, Chandigarh 160014, India
| | - Mary Chatterjee
- Biotechnology Branch, University Institute of Engineering and Technology, Panjab University, Chandigarh 160014, India
| |
Collapse
|
15
|
Zango ZU, Ethiraj B, Al-Mubaddel FS, Alam MM, Lawal MA, Kadir HA, Khoo KS, Garba ZN, Usman F, Zango MU, Lim JW. An overview on human exposure, toxicity, solid-phase microextraction and adsorptive removal of perfluoroalkyl carboxylic acids (PFCAs) from water matrices. ENVIRONMENTAL RESEARCH 2023; 231:116102. [PMID: 37196688 DOI: 10.1016/j.envres.2023.116102] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/02/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Perfluoroalkyl carboxylic acids (PFCAs) are sub-class of perfluoroalkyl substances commonly detected in water matrices. They are persistent in the environment, hence highly toxic to living organisms. Their occurrence at trace amount, complex nature and prone to matrix interference make their extraction and detection a challenge. This study consolidates current advancements in solid-phase extraction (SPE) techniques for the trace-level analysis of PFCAs from water matrices. The advantages of the methods in terms of ease of applications, low-cost, robustness, low solvents consumption, high pre-concentration factors, better extraction efficiency, good selectivity and recovery of the analytes have been emphasized. The article also demonstrated effectiveness of some porous materials for the adsorptive removal of the PFCAs from the water matrices. Mechanisms of the SPE/adsorption techniques have been discussed. The success and limitations of the processes have been elucidated.
Collapse
Affiliation(s)
- Zakariyya Uba Zango
- Department of Chemistry, College of Natural and Applied Science, Al-Qalam University Katsina, 2137, Katsina, Nigeria; Institute of Semi-Arid Zone Studies, Al-Qalam University Katsina, 2137, Katsina, Nigeria.
| | - Baranitharan Ethiraj
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India
| | - Fahad S Al-Mubaddel
- Department of Chemical Engineering, College of Engineering, King Saud University, Riyadh, 11421, Saudi Arabia; Fellow, King Abdullah City for Renewable and Atomic Energy: Energy Research and Innovation Center, (ERIC), Riyadh, 11451, Saudi Arabia
| | - Mohammad Mahtab Alam
- Department of Basic Medical Sciences, College of Applied Medical Science, King Khalid University, Abha, 61421, Saudi Arabia
| | | | - Haliru Aivada Kadir
- Department of Quality Assurance and Control, Dangote Cement Plc, Kogi State, Nigeria
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan.
| | | | - Fahad Usman
- Institute of Semi-Arid Zone Studies, Al-Qalam University Katsina, 2137, Katsina, Nigeria
| | - Muttaqa Uba Zango
- Department of Civil Engineering, Kano University of Science and Technology, Wudil, P.M.B. 3244, Kano, Nigeria
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| |
Collapse
|
16
|
Ramesh B, Saravanan A, Senthil Kumar P, Yaashikaa PR, Thamarai P, Shaji A, Rangasamy G. A review on algae biosorption for the removal of hazardous pollutants from wastewater: Limiting factors, prospects and recommendations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121572. [PMID: 37028793 DOI: 10.1016/j.envpol.2023.121572] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/21/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
Heavy metals, dyes and pharmaceutical pollutants in water environment are considered as serious threat to the human and animal health globally. Rapid development of industrialization and agricultural activities are the major source for eliminating the toxic pollutants into the aquatic environment. Several conventional treatment methods have been suggested for the removal of emerging contaminants from wastewater. Algal biosorption, among other strategies and techniques, is demonstrating to be a limited technical remedy that is more focused and inherently more efficient and helps remove dangerous contaminants from water sources. The different environmental effects of harmful contaminants, including heavy metals, dyes, and pharmaceutical chemicals, as well as their sources, were briefly compiled in the current review. This paper provides a comprehensive definition of the future possibilities in heavy compound decomposition by using algal technology, from aggregation to numerous biosorption procedures. Functionalized materials produced from algal sources were clearly proposed. This review further highlights the limiting factors of algal biosorption to eliminate the hazardous material. Finally, this study showed how the existence of algae indicates a potential, effective, affordable, and sustainable sorbent biomaterial for minimizing environmental pollution.
Collapse
Affiliation(s)
- B Ramesh
- Department of Civil Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Thamarai
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Alan Shaji
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| |
Collapse
|
17
|
Gutierrez AM, Dziubla TD, Hilt JZ. The Impact of Solution Ionic Strength, Hardness, and pH on the Sorption Efficiency of Polychlorinated Biphenyls in Magnetic Nanocomposite Microparticle (MNM) Gels. Gels 2023; 9:gels9040344. [PMID: 37102956 PMCID: PMC10137716 DOI: 10.3390/gels9040344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/04/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023] Open
Abstract
Environmental conditions of groundwater and surface water greatly vary as a function of location. Factors such as ionic strength, water hardness, and solution pH can change the physical and chemical properties of the nanocomposites used in remediation and the pollutants of interest. In this work, magnetic nanocomposite microparticle (MNM) gels are used as sorbents for remediation of PCB 126 as model organic contaminant. Three MNM systems are used: curcumin multiacrylate MNMs (CMA MNMs), quercetin multiacrylate MNMs (QMA MNMs), and polyethylene glycol-400-dimethacrylate MNMs (PEG MNMs). The effect of ionic strength, water hardness, and pH were studied on the sorption efficiency of the MNMs for PCB 126 by performing equilibrium binding studies. It is seen that the ionic strength and water hardness have a minimal effect on the MNM gel system sorption of PCB 126. However, a decrease in binding was observed when the pH increased from 6.5 to 8.5, attributed to anion-π interactions between the buffer ions in solution and the PCB molecules as well as with the aromatic rings of the MNM gel systems. Overall, the results indicate that the developed MNM gels can be used as magnetic sorbents for polychlorinated biphenyls in groundwater and surface water remediation, provided that the solution pH is controlled.
Collapse
Affiliation(s)
- Angela M Gutierrez
- Department of Civil Engineering, University of Kentucky, Lexington, KY 40506, USA
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Thomas D Dziubla
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
- Superfund Research Center, University of Kentucky, Lexington, KY 40506, USA
| | - J Zach Hilt
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
- Superfund Research Center, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
18
|
Wang Z, Ng K, Warner RD, Stockmann R, Fang Z. Application of cellulose- and chitosan-based edible coatings for quality and safety of deep-fried foods. Compr Rev Food Sci Food Saf 2023; 22:1418-1437. [PMID: 36717375 DOI: 10.1111/1541-4337.13116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/21/2022] [Accepted: 01/15/2023] [Indexed: 02/01/2023]
Abstract
Excessive oil uptake and formation of carcinogens, such as acrylamide (AA), heterocyclic amines (HCAs), and polycyclic aromatic hydrocarbons (PAHs), during deep-frying are a potential threat for food quality and safety. Cellulose- and chitosan-based edible coatings have been widely applied to deep-fried foods for reduction of oil uptake because of their barrier property to limit oil ingress, and their apparent inhibition of AA formation. Cellulose- and chitosan-based edible coatings have low negative impacts on sensory attributes of fried foods and are low cost, nontoxic, and nonallergenic. They also show great potential for reducing HCAs and PAHs in fried foods. The incorporation of nanoparticles improves mechanical and barrier properties of cellulose and chitosan coatings, which may also contribute to reducing carcinogens derived from deep-frying. Considering the potential for positive health outcomes, cellulose- and chitosan-based edible coatings could be a valuable method for the food industry to improve the quality and safety of deep-fried foods.
Collapse
Affiliation(s)
- Zun Wang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Ken Ng
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Robyn Dorothy Warner
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | | | - Zhongxiang Fang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
19
|
Synthesis, characterization, and activation of metal organic frameworks (MOFs) for the removal of emerging organic contaminants through the adsorption-oriented process: A review. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
|
20
|
Cao H, Zhou Z, Wang C, Sun H. Adsorption of Phenanthrene on Multi-Walled Carbon Nanotubes in the Presence of Nonionic Surfactants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3648. [PMID: 36834341 PMCID: PMC9959379 DOI: 10.3390/ijerph20043648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
The bioavailability and mobility of phenanthrene (Phe) adsorbed by multi-walled carbon nanotubes (MWCNTs) may be substantially influenced by nonionic surfactants used both in the synthesis and dispersion of MWCNTs. The adsorption mechanisms of Phe adsorbed onto MWCNTs under the different nonionic surfactants Tween 80 (TW-80) and Triton X-100 (TX-100) in the aqueous phase were investigated in terms of changes in the MWCNTs' compositions and structures. The results showed that TW-80 and TX-100 were easily adsorbed onto MWCNTs. Phe adsorption data onto MWCNTs were better suited to the Langmuir equation than the Freundlich equation. Both TW-80 and TX-100 reduced the adsorption capacity of Phe onto MWCNTs. When TW-80 and TX-100 were added in the adsorption system, the saturated adsorption mass of Phe decreased from 35.97 mg/g to 27.10 and 29.79 mg/g, respectively, which can be attributed to the following three reasons. Firstly, the hydrophobic interactions between MWCNTs and Phe became weakened in the presence of nonionic surfactants. Secondly, the nonionic surfactants covered the adsorption sites of MWCNTs, which caused Phe adsorption to be reduced. Finally, nonionic surfactants can also promote the desorption of Phe from MWCNTs.
Collapse
Affiliation(s)
| | | | - Cuiping Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | | |
Collapse
|
21
|
Advancements in Clay Materials for Trace Level Determination and Remediation of Phenols from Wastewater: A Review. SEPARATIONS 2023. [DOI: 10.3390/separations10020125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
The wide spread of phenols and their toxicity in the environment pose a severe threat to the existence and sustainability of living organisms. Rapid detection of these pollutants in wastewaters has attracted the attention of researchers from various fields of environmental science and engineering. Discoveries regarding materials and method developments are deemed necessary for the effective detection and remediation of wastewater. Although various advanced materials such as organic and inorganic materials have been developed, secondary pollution due to material leaching has become a major concern. Therefore, a natural-based material is preferable. Clay is one of the potential natural-based sorbents for the detection and remediation of phenols. It has a high porosity and polarity, good mechanical strength, moisture resistance, chemical and thermal stability, and cation exchange capacity, which will benefit the detection and adsorptive removal of phenols. Several attempts have been made to improve the capabilities of natural clay as sorbent. This manuscript will discuss the potential of clays as sorbents for the remediation of phenols. The activation, modification, and application of clays have been discussed. The achievements, challenges, and concluding remarks were provided.
Collapse
|
22
|
Sun L, Zhang M, Xie L, Xu X, Xu P, Xu L. Computational prediction of Lee retention indices of polycyclic aromatic hydrocarbons by using machine learning. Chem Biol Drug Des 2023; 101:380-394. [PMID: 36102275 DOI: 10.1111/cbdd.14137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/15/2022] [Accepted: 08/28/2022] [Indexed: 01/14/2023]
Abstract
Given the difficult of experimental determination, quantitative structure-property relationship (QSPR) and deep learning (DL) provide an important tool to predict physicochemical property of chemical compounds. In this paper, partial least squares (PLS), genetic function approximation (GFA), and deep neural network (DNN) were used to predict the Lee retention index (Lee-RI) of PAHs in SE-52 and DB-5 stationary phases. Four molecular descriptors, molecular weight (MW), quantitative estimate of drug-likeness (QED), atomic charge weighted negative surface area (Jurs_PNSA_3), and relative negative charge (Jurs_RNCG) were selected to construct regression models based on genetic algorithm. For SE-52, PLS model showed best prediction power, followed by DNN and GFA. The relative error (RE), root mean square error (RMSE), and regression coefficient (R2 ) of best PLS regression model are 1.228%, 5.407, and 0.980. For DB-5, DNN model showed best prediction power, followed by GFA and PLS. The RE, RMSE and R2 of best DNN regression model for DB-5-1 and DB-5-2 are 1.058%, 4.325%, 0.976%, 0.821%, 3.795%, and 0.970%, respectively. The three regression models not only show good predictive ability, but also highlight the stability and ductility of the models.
Collapse
Affiliation(s)
- Linkang Sun
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Min Zhang
- School of Computer Engineering, Jiangsu University of Technology, Changzhou, China
| | - Liangxu Xie
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Xiaojun Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Peng Xu
- Department of Orthopedics, Second Military Medical University Affiliated Changzheng Hospital, Shanghai, China
| | - Lei Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| |
Collapse
|
23
|
Souza FPS, Heinzelmann G, Caramori GF. Investigating the Solvent Effects on Binding Affinity of PAHs-ExBox 4+ Complexes: An Alchemical Approach. J Phys Chem B 2023; 127:249-260. [PMID: 36594853 DOI: 10.1021/acs.jpcb.2c06271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are polluting agents, produced naturally or artificially, widely dispersed in the environment and potentially carcinogenic and immunotoxic to humans and animals, mainly for marine life. Recently, a tetracationic box-shaped cyclophane (ExBox4+) was synthesized, fully characterized, and revealed to form host-guest complexes with PAHs in acetonitrile, demonstrating the potential ability for it to act as a PAHs scavenger. This work investigates, through Molecular Dynamics (MD) simulations, the binding affinity between different PAHs and ExBox4+ in different solvents: chloroform (nonpolar), acetonitrile (polar protic), and water (polar protic). An alchemical method of simultaneous decoupling-recoupling (SDR) was used and implemented in a newly developed Python program called GHOAT, which fully automates the calculation of binding free energies and invokes the AMBER 2020 simulation package. The results showed that the affinity between ExBox4+ and PAHs in water is much larger than in organic media, with free energies between -5 and -20 kcal/mol, being able to act as a PHAs scavenger with great potential for applications in environmental chemistry such as soil washing. The results also reveal a significant correlation with the experimental available ΔG values. The methodology employed presents itself as an important tool for the in silico determination of binding affinities, not only available for charged cyclophanes but also extensible to several other HG supramolecular systems in condensed media, aiding in the rational design of host-guest systems in a significant way.
Collapse
Affiliation(s)
- Fábio P S Souza
- Departamento de Química, Universidade Federal de Santa Catarina (UFSC), Campus Universitário Trindade, 88040-900, Florianópolis, Santa Catarina, Brazil.,Instituto Federal Catarinense, 89070-270, Blumenau, Santa Catarina, Brazil
| | - Germano Heinzelmann
- Departamento de Física, Universidade Federal de Santa Catarina (UFSC), Campus Universitário Trindade, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Giovanni F Caramori
- Departamento de Química, Universidade Federal de Santa Catarina (UFSC), Campus Universitário Trindade, 88040-900, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
24
|
Research Progress on Adsorption and Separation of Petroleum Hydrocarbon Molecules by Porous Materials. SEPARATIONS 2022. [DOI: 10.3390/separations10010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Petroleum is an indispensable chemical product in industrial production and daily life. The hydrocarbon molecules in petroleum are important raw materials in the organic chemical industry. The hydrocarbons currently used in industry are usually obtained by fractional distillation of petroleum, which not only consumes more energy, but has poor separation selectivity for some hydrocarbons. Adsorption separation technology has many advantages such as energy saving and high efficiency. It can adsorb and separate hydrocarbon molecules in petroleum with low energy consumption and high selectivity under mild conditions. In this paper, the research progress of adsorption and separation of hydrocarbon molecules in petroleum is reviewed, and various new catalysts and the rules of adsorption and desorption are analyzed.
Collapse
|
25
|
Raghavendra N, N M, Hublikar LV, Basappa Koujalagi S, Prabhu S, Mahale N. Evaluation of PANI-Averraoha bilimbi leaves activated carbon nanocomposite for Cd2+ and Pb2+ removal from wastewater. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
26
|
Khiaophong W, Jaroensan J, Kachangoon R, Vichapong J, Burakham R, Santaladchaiyakit Y, Srijaranai S. Modified Peanut Shell as an Eco-Friendly Biosorbent for Effective Extraction of Triazole Fungicide Residues in Surface Water and Honey Samples before Their Determination by High-Performance Liquid Chromatography. ACS OMEGA 2022; 7:34877-34887. [PMID: 36211057 PMCID: PMC9535652 DOI: 10.1021/acsomega.2c03410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
An eco-friendly sample preparation method that is based on the use of a modified peanut shell as an efficient biosorbent for the extraction of triazole residues before their analysis by high-performance liquid chromatography was reported. The four triazole fungicides were separated on a Purospher STAR RP-18 endcapped (4.6 × 150 mm, 5 μm) column with a mobile phase of 50% (v/v) acetonitrile at a flow rate of 1.0 mL min-1 and detection wavelength set at 220 nm. Peanut shells modified by didodecyldimethylammonium bromide were selected as an effective biosorbent material in the microextraction method. Scanning electron microscopy, transmission electron microscopy, and Fourier transform infrared spectroscopy were used to characterize the biosorbent. The effect of dominant parameters on the proposed microextraction method including the amount of sorbent, kind and concentration of surfactant, sodium hydroxide concentration, kind and amount of salt, sample volume, adsorption time, kind and volume desorption solvent, and desorption time was studied. Under the optimum condition, a good analytical performance for the proposed microextraction method was obtained with a wide linear range within the range of 9-1000 μg L-1, and low limits of detection (0.03 μg L-1 for all analytes) were obtained. Enrichment factors were achieved within the range of 30-51. The intra and interday precision values were evaluated in terms of percentage relative standard deviations (%RSD) and were less than 0.09 and 5.34% for the retention time and peak area, respectively. The proposed microextraction methods were used for extraction and analysis of triazole fungicides in water and honey samples. The recoveries in a satisfactory range of 70.0-118.8% were obtained.
Collapse
Affiliation(s)
- Wannipha Khiaophong
- Creative
Chemistry and Innovation Research Unit, Department of Chemistry and
Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand
| | - Jedsada Jaroensan
- Creative
Chemistry and Innovation Research Unit, Department of Chemistry and
Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand
| | - Rawikan Kachangoon
- Creative
Chemistry and Innovation Research Unit, Department of Chemistry and
Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand
| | - Jitlada Vichapong
- Creative
Chemistry and Innovation Research Unit, Department of Chemistry and
Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand
- Multidisciplinary
Research Unit of Pure and Applied Chemistry (MRUPAC), Department of
Chemistry and Center of Excellent for Innovation in Chemistry, Faculty
of Science, Mahasarakham University, Maha Sarakham 44150, Thailand
| | - Rodjana Burakham
- Materials
Chemistry Research Center, Department of Chemistry and Center of Excellence
for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Yanawath Santaladchaiyakit
- Department
of Chemistry, Faculty of Engineering, Rajamangala
University of Technology Isan, Khon Kaen Campus, Khon Kaen 40000, Thailand
| | - Supalax Srijaranai
- Materials
Chemistry Research Center, Department of Chemistry and Center of Excellence
for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
27
|
Kumar VV, Venkataraman S, Kumar PS, George J, Rajendran DS, Shaji A, Lawrence N, Saikia K, Rathankumar AK. Laccase production by Pleurotus ostreatus using cassava waste and its application in remediation of phenolic and polycyclic aromatic hydrocarbon-contaminated lignocellulosic biorefinery wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119729. [PMID: 35809710 DOI: 10.1016/j.envpol.2022.119729] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/21/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The treatment of contaminants from lignocellulosic biorefinery effluent has recently been identified as a unique challenge. This study focuses on removing phenolic contaminants and polycyclic aromatic hydrocarbons (PAHs) from lignocellulosic biorefinery wastewater (BRW) applying a laccase-assisted approach. Cassava waste was used as a substrate to produce the maximum yield of laccase enzyme (3.9 U/g) from Pleurotus ostreatus. Among the different inducers supplemented, CuSO4 (0.5 mM) showed an eight-fold increase in enzyme production (30.8 U/g) after 240 h of incubation. The catalytic efficiency of laccase was observed as 128.7 ± 8.47 S-1mM-1 for syringaldazine oxidation at optimum pH 4.0 and 40 °C. Laccase activity was completely inhibited by lead (II) ion, mercury (II) ion, sodium dodecyl sulphate, sodium azide and 1,4 dithiothretiol and induced significantly by manganese (II) ion and rhamnolipid. After treating BRW with laccase, the concentrations of PAHs and phenolic contaminants of 1144 μg/L and 46160 μg/L were reduced to 96 μg/L and 16100 μg/L, respectively. The ability of laccase to effectively degrade PAHs in the presence of different phenolic compounds implies that phenolic contaminants may play a role in PAHs degradation. After 240 h, organic contaminants were removed from BRW in the following order: phenol >2,4-dinitrophenol > 2-methyl-4,6-dinitrophenol > 2,3,4,6-tetrachlorophenol > acenaphthene > fluorine > phenanthrene > fluoranthene > pyrene > anthracene > chrysene > naphthalene > benzo(a)anthracene > benzo(a)pyrene > benzo(b)fluoranthene > pentachlorophenol > indeno(1,2,3-cd)pyrene > benzo(j) fluoranthene > benzo[k]fluoranthène. The multiple contaminant remediation from the BRW by enzymatic method, clearly suggests that the laccase can be used as a bioremediation tool for the treatment of wastewater from various industries.
Collapse
Affiliation(s)
- Vaidyanathan Vinoth Kumar
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), Kattankulathur, 603 203, India
| | - Swethaa Venkataraman
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), Kattankulathur, 603 203, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, Tamilnadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, Tamilnadu, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India.
| | - Jenet George
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), Kattankulathur, 603 203, India
| | - Devi Sri Rajendran
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), Kattankulathur, 603 203, India
| | - Anna Shaji
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), Kattankulathur, 603 203, India
| | - Nicole Lawrence
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), Kattankulathur, 603 203, India
| | - Kongkona Saikia
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), Kattankulathur, 603 203, India; Department of Biochemistry, Faculty of Arts, Science and Humanities, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641050, India
| | - Abiram Karanam Rathankumar
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), Kattankulathur, 603 203, India; Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641050, India
| |
Collapse
|
28
|
Holzinger A, Mair MM, Lücker D, Seidenath D, Opel T, Langhof N, Otti O, Feldhaar H. Comparison of fitness effects in the earthworm Eisenia fetida after exposure to single or multiple anthropogenic pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156387. [PMID: 35660620 DOI: 10.1016/j.scitotenv.2022.156387] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 05/16/2023]
Abstract
Terrestrial ecosystems are exposed to many anthropogenic pollutants. Non-target effects of pesticides and fertilizers have put agricultural intensification in the focus as a driver for biodiversity loss. However, other pollutants, such as heavy metals, particulate matter, or microplastic also enter the environment, e.g. via traffic and industrial activities in urban areas. As soil acts as a potential sink for such pollutants, soil invertebrates like earthworms may be particularly affected by them. Under natural conditions soil invertebrates will likely be exposed to combinations of pollutants simultaneously, which may result in stronger negative effects if pollutants act synergistically. Within this work we study how multiple pollutants affect the soil-dwelling, substrate feeding earthworm Eisenia fetida. We compared the effects of the single stressors, polystyrene microplastic fragments, polystyrene fibers, brake dust and carbon black, with the combined effect of these pollutants when applied as a mixture. Endpoints measured were survival, increase in body weight, reproductive fitness, and changes in three oxidative stress markers (glutathione S-transferase, catalase and malondialdehyde). We found that among single pollutant treatments, brake dust imposed the strongest negative effects on earthworms in all measured endpoints including increased mortality rates. Sub-lethal effects were found for all pollutants. Exposing earthworms to all four pollutants simultaneously led to effects on mortality and oxidative stress markers that were smaller than expected by the respective null models. These antagonistic effects are likely a result of the adsorption of toxic substances found in brake dust to the other pollutants. With this study we show that effects of combinations of pollutants cannot necessarily be predicted from their individual effects and that combined effects will likely depend on identity and concentration of the pollutants.
Collapse
Affiliation(s)
- Anja Holzinger
- Animal Population Ecology, Animal Ecology I, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Magdalena M Mair
- Statistical Ecotoxicology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany.
| | - Darleen Lücker
- Animal Population Ecology, Animal Ecology I, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Dimitri Seidenath
- Animal Population Ecology, Animal Ecology I, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Thorsten Opel
- Department of Ceramic Materials Engineering, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Nico Langhof
- Department of Ceramic Materials Engineering, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Oliver Otti
- Animal Population Ecology, Animal Ecology I, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Heike Feldhaar
- Animal Population Ecology, Animal Ecology I, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| |
Collapse
|
29
|
SiO2 based nanocomposite for simultaneous magnetic removal and discrimination of small pollutants in water. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127905] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
30
|
Shee N, Jo HJ, Kim HJ. Coordination framework materials fabricated by the self-assembly of Sn(IV) porphyrins with Ag(I) ions for the photocatalytic degradation of organic dyes in wastewater. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01615f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two porphyrin-based coordination frameworks, [Ag2(TPyP)Sn(OH)2](NO3)2●(solv)x (1) and [Ag2(TPyP)Sn(INA)2](OTf)2●(CH3CN)2 (2) (INA = isonicotinato anion, OTf = CF3SO3-), were constructed by the self-assembly of hexacoordinated (meso-tetra-(4-pyridyl)porphyrinato)Sn(IV) building blocks with Ag(I) ions. They...
Collapse
|
31
|
Rezania S, Cho J, Derakhshan Nejad Z, Barghi A, Yadav KK, Ahmed EM, Cabral-Pinto MM, Park J, Mehranzamir K. Microporous metal-organic frameworks against endocrine-disruptor bisphenol A: parametric evaluation and optimization. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
32
|
Halfadji A, Naous M, Bettiche F, Touabet A. Human Health Assessment of Sixteen Priority Polycyclic Aromatic Hydrocarbons in Contaminated Soils of Northwestern Algeria. J Health Pollut 2021; 11:210914. [PMID: 34434606 PMCID: PMC8383786 DOI: 10.5696/2156-9614-11.31.210914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental organic contaminants generated by incomplete combustion of organic materials that are widely distributed in soils. OBJECTIVES This study represents the first attempt to examine the health toxicity of 16 detected PAHs in contaminated soil, via different exposure pathways to populations in northwestern Algeria. METHODS The toxicity equivalency quotients (TEQ) of PAHs were evaluated. The carcinogenic risk assessment of incremental lifetime cancer risk (ILCR) from ingestion, inhalation, and dermal exposure pathways to each PAH in soil are described. RESULTS Incremental lifetime cancer risk values were in the upper limit of the tolerable range (10-6-10-4) for adults and children. The total cancer risk of PAH-contaminated soils for children, adolescents and adults was 2.48×10-5, 2.04×10-5 and 3.12×10-5mg.kg-1d-1, respectively. The highest potential cancer risks were identified for adults and children, with adolescents having the lowest risks. Across exposure pathways, the dermal contact and ingestion pathways had the greatest contributions to the carcinogenic risk of human exposure to PAHs. CONCLUSIONS Further research and guidelines are needed for risk assessments of PAHs in agricultural, residential/urban, and industrial areas, and further risk assessments should include risks posed by exposure through air. COMPETING INTERESTS The authors declare no competing financial interests.
Collapse
Affiliation(s)
- Ahmed Halfadji
- Department of Sciences and Technology, Faculty of Applied Sciences, Ibn-Khaldoun University of Tiaret, Algeria
- Synthesis and Catalysis Laboratory, Ibn-Khaldoun University of Tiaret, Algeria
- Laboratory of Functional Organic Analysis, Faculty of Chemistry, Houari Boumediene University of Sciences and Technology, Algiers, Algeria
| | - Mohamed Naous
- Department of Sciences and Technology, Faculty of Applied Sciences, Ibn-Khaldoun University of Tiaret, Algeria
- Laboratory of Macromolecular Physical Chemistry, Department of Chemistry, University Oran 1 Ahmed Ben Bella, Algeria
| | - Farida Bettiche
- Scientific and Technical Research Centre on Arid Regions, Campus Universitaire El Alia Nord, Biskra, Algeria
| | - Abdelkrim Touabet
- Laboratory of Functional Organic Analysis, Faculty of Chemistry, Houari Boumediene University of Sciences and Technology, Algiers, Algeria
| |
Collapse
|
33
|
Yang J, Chen X, Zhang J, Wang Y, Wen H, Xie J. Role of chitosan-based hydrogels in pollutants adsorption and freshwater harvesting: A critical review. Int J Biol Macromol 2021; 189:53-64. [PMID: 34390747 DOI: 10.1016/j.ijbiomac.2021.08.047] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 02/08/2023]
Abstract
The shortage of freshwater resources is an urgent problem worldwide, especially for some areas that lack rainfall conditions. The development of reliable wastewater treatment and freshwater harvesting equipment has become an urgent demand. Hydrogel is a porous 3D network structure with good pollutant adsorption capacity, water holding capacity, water adsorption capacity, and reversible swelling ability, which has been widely used in water treatment. Chitosan (CH), as the abundant bioactive material in nature, is commonly used to prepare hydrogels with low-cost, favorable stability, good antimicrobial activity, high mechanical properties, biodegradability, and environmental friendliness. Therefore, this review presents a comprehensive review of the various applications of CH-based hydrogels in water treatment including various pollutant adsorption, oil-water separation, seawater desalination, and atmospheric condensation. The relevant mechanisms, application potential, and challenge are also illustrated. This review aims to provide a viable idea to address the shortage of freshwater resources.
Collapse
Affiliation(s)
- Jun Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xianxiang Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jiahui Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yuanxing Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Huiliang Wen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation, Nanchang University, Nanchang 330200, China.
| |
Collapse
|
34
|
De Nino A, Olivito F, Algieri V, Costanzo P, Jiritano A, Tallarida MA, Maiuolo L. Efficient and Fast Removal of Oils from Water Surfaces via Highly Oleophilic Polyurethane Composites. TOXICS 2021; 9:186. [PMID: 34437504 PMCID: PMC8402441 DOI: 10.3390/toxics9080186] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 11/29/2022]
Abstract
In this study we evaluated the oil adsorption capacity of an aliphatic polyurethane foam (PU 1) and two of its composites, produced through surface coating using microparticles of silica (PU-Si 2) and activated carbon (PU-ac 3). The oil adsorption capacity in diesel was improved up to 36% using the composite with silica and up to 50% using the composite with activated carbon with respect to the initial PU 1. Excellent performances were retained in gasoline and motor oil. The adsorption was complete after a few seconds. The process follows a monolayer adsorption fitted by the Langmuir isotherm, with a maximum adsorption capacity of 29.50 g/g of diesel for the composite with activated carbon (PU-ac 3). These materials were proved to be highly oleophilic for oil removal from fresh water and sea water samples. Regeneration and reuse can be repeated up to 50 times by centrifugation, without a significant loss in adsorption capacity.
Collapse
Affiliation(s)
- Antonio De Nino
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende (CS), Italy; (V.A.); (P.C.); (A.J.); (M.A.T.)
| | - Fabrizio Olivito
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende (CS), Italy; (V.A.); (P.C.); (A.J.); (M.A.T.)
| | | | | | | | | | - Loredana Maiuolo
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende (CS), Italy; (V.A.); (P.C.); (A.J.); (M.A.T.)
| |
Collapse
|
35
|
Inbaraj BS, Sridhar K, Chen BH. Removal of polycyclic aromatic hydrocarbons from water by magnetic activated carbon nanocomposite from green tea waste. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125701. [PMID: 34088189 DOI: 10.1016/j.jhazmat.2021.125701] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/28/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
This study aims to synthesize a magnetic activated carbon nanocomposite from green tea leaf waste (MNPs-GTAC) for evaluation of adsorption efficiency of 4 priority polycyclic aromatic hydrocarbons (PAHs). MNPs-GTAC contained spherically-shaped MNPs with cubic spinel structure, surface area at 118.8 m2/g, particle size at 8.6 nm and saturation magnetization at 34.2 emu/g. PAH adsorption reached a plateau at an MNPs-GTAC dose of 50 or 60 mg/L, pH of 2-4 and ionic strength of 0.1-10%, with PAH reduction in the presence of humic acid being compensated by addition of 0.1% sodium chloride. Kinetics was rapid attaining 80% removal within 5 min and the pseudo-second-order rate decreased in this order: Benzo[a]anthracene>Chrysene>Benzo[b]fluoranthene>Benzo[a]pyrene. Isotherm modeling revealed a Langmuir type-2 shape with the maximum adsorption capacity being 28.08, 22.75, 19.14 and 15.86 mg/g for Benzo[b]fluoranthene, Benzo[a]pyrene, Chrysene and Benzo[a]anthracene, respectively. Temperature study showed the PAH adsorption to be an endothermic and spontaneous process with increased randomness at solid-solution interface. Acetonitrile could completely recover the adsorbed PAH and MNPs-GTAC was successfully recycled 5 times with a minimum loss. Application to mineral water showed 86-98% and 72-89% removal for PAHs spiked respectively at 0.1 and 1 mg/L, while a complete removal was attained in tap and river waters.
Collapse
Affiliation(s)
| | - Kandi Sridhar
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Bing-Huei Chen
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242, Taiwan; Department of Nutrition, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
36
|
A Review on the Treatment of Petroleum Refinery Wastewater Using Advanced Oxidation Processes. Catalysts 2021. [DOI: 10.3390/catal11070782] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The petroleum industry is one of the most rapidly developing industries and is projected to grow faster in the coming years. The recent environmental activities and global requirements for cleaner methods are pushing the petroleum refining industries for the use of green techniques and industrial wastewater treatment. Petroleum industry wastewater contains a broad diversity of contaminants such as petroleum hydrocarbons, oil and grease, phenol, ammonia, sulfides, and other organic composites, etc. All of these compounds within discharged water from the petroleum industry exist in an extremely complicated form, which is unsafe for the environment. Conventional treatment systems treating refinery wastewater have shown major drawbacks including low efficiency, high capital and operating cost, and sensitivity to low biodegradability and toxicity. The advanced oxidation process (AOP) method is one of the methods applied for petroleum refinery wastewater treatment. The objective of this work is to review the current application of AOP technologies in the treatment of petroleum industry wastewater. The petroleum wastewater treatment using AOP methods includes Fenton and photo-Fenton, H2O2/UV, photocatalysis, ozonation, and biological processes. This review reports that the treatment efficiencies strongly depend on the chosen AOP type, the physical and chemical properties of target contaminants, and the operating conditions. It is reported that other mechanisms, as well as hydroxyl radical oxidation, might occur throughout the AOP treatment and donate to the decrease in target contaminants. Mainly, the recent advances in the AOP treatment of petroleum wastewater are discussed. Moreover, the review identifies scientific literature on knowledge gaps, and future research ways are provided to assess the effects of these technologies in the treatment of petroleum wastewater.
Collapse
|
37
|
Abstract
The growing world energy consumption, with reliance on conventional energy sources and the associated environmental pollution, are considered the most serious threats faced by mankind. Heterogeneous photocatalysis has become one of the most frequently investigated technologies, due to its dual functionality, i.e., environmental remediation and converting solar energy into chemical energy, especially molecular hydrogen. H2 burns cleanly and has the highest gravimetric gross calorific value among all fuels. However, the use of a suitable electron donor, in what so-called “photocatalytic reforming”, is required to achieve acceptable efficiency. This oxidation half-reaction can be exploited to oxidize the dissolved organic pollutants, thus, simultaneously improving the water quality. Such pollutants would replace other potentially costly electron donors, achieving the dual-functionality purpose. Since the aromatic compounds are widely spread in the environment, they are considered attractive targets to apply this technology. In this review, different aspects are highlighted, including the employing of different polymorphs of pristine titanium dioxide as photocatalysts in the photocatalytic processes, also improving the photocatalytic activity of TiO2 by loading different types of metal co-catalysts, especially platinum nanoparticles, and comparing the effect of various loading methods of such metal co-catalysts. Finally, the photocatalytic reforming of aromatic compounds employing TiO2-based semiconductors is presented.
Collapse
|
38
|
Zango ZU, Jumbri K, Sambudi NS, Ramli A, Abu Bakar NHH, Saad B, Rozaini MNH, Isiyaka HA, Jagaba AH, Aldaghri O, Sulieman A. A Critical Review on Metal-Organic Frameworks and Their Composites as Advanced Materials for Adsorption and Photocatalytic Degradation of Emerging Organic Pollutants from Wastewater. Polymers (Basel) 2020; 12:E2648. [PMID: 33182825 PMCID: PMC7698011 DOI: 10.3390/polym12112648] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/01/2020] [Accepted: 11/06/2020] [Indexed: 11/22/2022] Open
Abstract
Water-borne emerging pollutants are among the greatest concern of our modern society. Many of these pollutants are categorized as endocrine disruptors due to their environmental toxicities. They are harmful to humans, aquatic animals, and plants, to the larger extent, destroying the ecosystem. Thus, effective environmental remediations of these pollutants became necessary. Among the various remediation techniques, adsorption and photocatalytic degradation have been single out as the most promising. This review is devoted to the compilations and analysis of the role of metal-organic frameworks (MOFs) and their composites as potential materials for such applications. Emerging organic pollutants, like dyes, herbicides, pesticides, pharmaceutical products, phenols, polycyclic aromatic hydrocarbons, and perfluorinated alkyl substances, have been extensively studied. Important parameters that affect these processes, such as surface area, bandgap, percentage removal, equilibrium time, adsorption capacity, and recyclability, are documented. Finally, we paint the current scenario and challenges that need to be addressed for MOFs and their composites to be exploited for commercial applications.
Collapse
Affiliation(s)
- Zakariyya Uba Zango
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (A.R.); (B.S.); (M.N.H.R.); (H.A.I.)
- Chemistry Department, Al-Qalam University Katsina, Katsina 2137, Nigeria
| | - Khairulazhar Jumbri
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (A.R.); (B.S.); (M.N.H.R.); (H.A.I.)
| | - Nonni Soraya Sambudi
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia;
| | - Anita Ramli
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (A.R.); (B.S.); (M.N.H.R.); (H.A.I.)
| | | | - Bahruddin Saad
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (A.R.); (B.S.); (M.N.H.R.); (H.A.I.)
| | - Muhammad Nur’ Hafiz Rozaini
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (A.R.); (B.S.); (M.N.H.R.); (H.A.I.)
| | - Hamza Ahmad Isiyaka
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (A.R.); (B.S.); (M.N.H.R.); (H.A.I.)
| | - Ahmad Hussaini Jagaba
- Civil Engineering Department, Abubakar Tafawa Balewa University, Bauchi 740272, Nigeria;
| | - Osamah Aldaghri
- Physics Department, College of Science, Al-Imam Muhammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia;
| | - Abdelmoneim Sulieman
- Radiology and Medical Imaging Department, College of Applied Medical Sciences, Prince Sattam Bin Abduaziz University, Alkharj 11942, Saudi Arabia;
| |
Collapse
|