1
|
Townsend J, Gross N, Peng Z, Peñagaricano F, Yang Z, Ahsan N, Khatib H. The embryonic DPPA3 gene stimulates the expression of pregnancy-related genes in bovine endometrial cells. J Dairy Sci 2025; 108:6471-6487. [PMID: 40222672 DOI: 10.3168/jds.2024-25872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/12/2025] [Indexed: 04/15/2025]
Abstract
Extracellular vesicles (EV) released by cells contain mRNAs, microRNAs, long noncoding RNAs, lipids, and proteins, playing crucial roles in cell-cell communication. Although full-length mRNA transcripts have been documented in EV secreted by cancer cells, there are no reports on full transcripts secreted by embryos. Our study aimed to identify EV mRNAs in the culture medium of bovine embryos and investigate their roles in embryo-maternal communication. Following the isolation of EV from in vitro fertilization media samples and RNA sequencing, we identified a full mRNA transcript of DPPA3, known to play an essential role in embryo development. To examine the role of DPPA3 in embryo-maternal communication, an in vitro transcribed mRNA of DPPA3 was transfected into bovine endometrial epithelial cells. Transfected and control cells were subsequently analyzed with RNA sequencing and proteomics to assess the effects of DPPA3 on gene expression. A total of 24 genes were found to be upregulated, and 1 gene was downregulated (false discovery rate <0.01) following DPPA3 transfection, many with known functions in pregnancy recognition. Proteomic analysis revealed 28 differentially expressed proteins, with 17 upregulated and 11 downregulated. Two proteins, ISG15 and MX1, overlapped with the differentially expressed mRNAs. To mimic the natural transfer of EV from embryos to endometrial cells, we performed coculture with d-8 blastocysts or supplemented the cells with embryo-conditioned culture medium. DPPA3 presence was detected in endometrial cells exposed to embryo-conditioned medium after just 30 min. Overall, our study highlights the significant role of EV in cell-cell communication through mRNA signaling from the embryo to the mother.
Collapse
Affiliation(s)
- Jessica Townsend
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706
| | - Nicole Gross
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706
| | - Zongkai Peng
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | | | - Zhibo Yang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Nagib Ahsan
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019; Mass Spectrometry, Proteomics and Metabolomics Core Facility, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK 73019
| | - Hasan Khatib
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706.
| |
Collapse
|
2
|
Lu Q, Li J, Chen W, Wang Z, Wang D, Liu C, Sun Y, Jiang H, Zhang C, Chang Y, Zhou J, Wu X, Gao Y, Ning S. NetLnc: A Network-Based Computational Framework to Identify Immune Checkpoint-Related lncRNAs for Immunotherapy Response in Melanoma. Int J Mol Sci 2025; 26:4557. [PMID: 40429702 PMCID: PMC12110832 DOI: 10.3390/ijms26104557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/27/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) could alter the tumor immune microenvironment and regulate the expression of immune checkpoints (ICPs) by regulating target genes in tumors. However, only a few lncRNAs have precise functions in immunity and potential for predicting ICP inhibitors (ICI) response. Here, we developed a computational multi-step framework that leverages interaction network-based analysis to identify cancer- and immune-context ICP-related lncRNAs (NetLnc). Based on bulk and single-cell RNA sequencing data, these lncRNAs were significantly correlated with immune cell infiltration and immune expression signature. Specific hub ICP-related lncRNAs such as BANCR, MIAT, and SNHG15 could predict three- and five-year prognosis of melanoma in independent datasets. We also validated that some NetLnc-based predictions could better effectively predict ICI response compared to single molecules using three kinds of machine learning algorithms following independent datasets. Taken together, this study presents the use of a network-based framework to efficiently select ICP-related lncRNAs, which contributes to a comprehensive understanding of lncRNA functions and accelerates the discovery of lncRNA-based biomarkers in ICI treatment.
Collapse
Affiliation(s)
- Qianyi Lu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Jian Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Wenli Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Zhuoru Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Di Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Chenyu Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yue Sun
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Han Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Caiyu Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yetong Chang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Jiajun Zhou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Xiaohong Wu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin 150081, China;
| | - Yue Gao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Shangwei Ning
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
3
|
Elieh-Ali-Komi D, Shafaghat F, Alipoor SD, Kazemi T, Atiakshin D, Pyatilova P, Maurer M. Immunomodulatory Significance of Mast Cell Exosomes (MC-EXOs) in Immune Response Coordination. Clin Rev Allergy Immunol 2025; 68:20. [PMID: 39976807 PMCID: PMC11842441 DOI: 10.1007/s12016-025-09033-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2025] [Indexed: 02/23/2025]
Abstract
Mast cells (MCs) communicate with other cells by direct cell-to-cell interaction, secreting mediators, and releasing exosomes (EXOs). MC-exosomes (MC-EXOs) contain proteins, lipids, mRNAs, and noncoding RNAs (ncRNAs), exhibit typical EXO markers such as heat shock proteins, tetraspanins, tumor susceptibility gene 101 protein (TSG101), and ALG-2-interacting protein X (ALIX), and are released constitutively or following MC degranulation. MC-EXOs also have signature MC markers like FcεRI and KIT (CD117), which allows for their identification and comparison with other EXO populations. Following their release, MC-EXOs may interact with the recipient cell(s) directly or be internalized and then release their protein and nucleic acid content. This may contribute to the regulation of immune responses and other biological processes and reprogramming of recipient cells. MC-EXO proteins may integrate and become a functional part of the recipient cell membrane. The mRNA transferred by MC-EXOs is functional and the transfer of exosomal RNA to other MCs results in the expression of donor MC proteins in the recipient MCs. Moreover, MCs may function as the recipients of EXOs that are released by other non-immune and immune cells, altering the secretome of MCs. In this review, we focus on how MC-EXOs modulate the biology of other cells and vice versa; and we highlight the role of MC-EXOs in the pathogenesis of allergic and non-allergic diseases.
Collapse
Affiliation(s)
- Daniel Elieh-Ali-Komi
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany.
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany.
| | - Farzaneh Shafaghat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shamila D Alipoor
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Tohid Kazemi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dmitrii Atiakshin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultra-Structural Analysis Innovative Technologies, Peoples' Friendship University of Russia, 6 Miklukho-Maklaya St, 117198, Moscow, Russia
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036, Voronezh, Russia
| | - Polina Pyatilova
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Marcus Maurer
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| |
Collapse
|
4
|
Yamamoto K, Chiba M. MicroRNA‑21‑5p expression in extracellular vesicles is increased in the blood of aging mice and in vascular endothelial cells induced by ionizing radiation. Exp Ther Med 2025; 29:22. [PMID: 39650777 PMCID: PMC11621913 DOI: 10.3892/etm.2024.12772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/25/2024] [Indexed: 12/11/2024] Open
Abstract
In recent years, the Japanese population has been aging and the risk of contracting various age-related diseases has increased. Thus, there is a need to analyze components that are characteristic of aging and examine their association with diseases to detect age-related diseases at an early stage. In the present study, microRNAs (miRNAs/miRs) in serum extracellular vesicles (EVs) of 82-102-week-old mice were analyzed to identify miRNAs characteristic of aging. Increased expression of mmu-miR-21a-5p was observed. These miRNAs may be derived from senescent vascular endothelial cells, and RNA-sequencing data (GSE130727) of HUVECs induced to senesce by 4 Gy of radiation revealed that the miRNAs were involved in the cell cycle and DNA repair. Annotations to senescence-related pathways were also identified. Reduced expression of the miR-21-5p target gene, which has an identical sequence in humans and mice, was confirmed. In HUVECs induced to age under similar conditions, increased senescence-associated β-galactosidase activity and increased intracellular miR-21-5p expression were observed. A portion of the miR-21-5p was secreted extracellularly by internalizing tetraspanin-positive EVs, and miR-21-5p was secreted into the extracellular space. The present study also demonstrated that miR-21-5p expression was upregulated and extracellular secretion of miR-21-5p was enhanced during vascular endothelial cell senescence. These findings suggested that increased serum miR-21-5p represents a biomarker for vascular endothelial cell senescence.
Collapse
Affiliation(s)
- Keisuke Yamamoto
- Department of Bioscience and Laboratory Medicine, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Mitsuru Chiba
- Department of Bioscience and Laboratory Medicine, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
- Research Center for Biomedical Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| |
Collapse
|
5
|
Bakhashab S, Banafea GH, Ahmed F, Bagatian N, Subhi O, Schulten HJ, Pushparaj PN. Interleukin-33 mediated regulation of microRNAs in human cord blood-derived mast cells: Implications for infection, immunity, and inflammation. PLoS One 2024; 19:e0314446. [PMID: 39591475 PMCID: PMC11594431 DOI: 10.1371/journal.pone.0314446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Mast cell (MCs) activation is the driving force of immune responses in several inflammatory diseases, including asthma and allergies. MCs are immune cells found throughout the body and are equipped with numerous surface receptors that allow them to respond to external signals from parasites and bacteria as well as to intrinsic signals such as cytokines. Upon activation, MCs release various mediators and proteases that contribute to inflammation. This study aimed to identify microRNAs (miRNAs) that regulate MC response to interleukin-33 and their target genes using a model of human cord blood-derived mast cells (hCBMCs). hCBMCs were induced with 10 and 20 ng of recombinant human interleukin-33 (rhIL-33) for 6 and 24 h, respectively. Total RNA was extracted from these cells and miRNA profiling was performed using high-throughput microarrays. Differential expression of miRNAs and target analysis were performed using Transcriptome Analysis Console and Ingenuity Pathway Analysis. The most significant miRNAs in each condition were miR-6836-5p (fold change = 1.76, p = 3E-03), miR-6883-5p (fold change = -2.13, p = 7E-05), miR-1229-5p (fold change = 2.46, p = 8E-04), and miR-3613-5p (fold change = 66.7, p = 1E-06). Target analysis revealed that these miRNAs regulate mast cell responsiveness and degranulation by modulating the expression of surface receptors, adaptors, and signaling molecules in response to rhIL-33 stimulation. This study is the first miRNA profiling and target analysis of hCBMCs that will further enhance our understanding of the role of miRNAs in the immune response in a timely manner and their relevance for the development of a new therapeutic target for inflammatory disorders.
Collapse
Affiliation(s)
- Sherin Bakhashab
- Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
- Institute of Genomic Medicine Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ghalya H. Banafea
- Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Farid Ahmed
- Institute of Genomic Medicine Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nadia Bagatian
- Institute of Genomic Medicine Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ohoud Subhi
- Institute of Genomic Medicine Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hans-Juergen Schulten
- Institute of Genomic Medicine Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Peter Natesan Pushparaj
- Institute of Genomic Medicine Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacology, Center for Transdisciplinary Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| |
Collapse
|
6
|
Sharma S, Artner T, Preissner KT, Lang IM. Nucleic acid liquid biopsies in cardiovascular disease: Cell-free RNA liquid biopsies in cardiovascular disease. Atherosclerosis 2024; 398:118584. [PMID: 39306538 DOI: 10.1016/j.atherosclerosis.2024.118584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/15/2024] [Accepted: 08/29/2024] [Indexed: 11/17/2024]
Abstract
Cardiovascular diseases (CVD) and their complications continue to be the leading cause of mortality globally. With recent advancements in molecular analytics, individualized treatments are gradually applied to the diagnosis and treatment of CVD. In the field of diagnostics, liquid biopsy combined with modern analytical technologies is the most popular natural source to identify disease biomarkers, as has been successfully demonstrated in the cancer field. While it is not easy to obtain any diseased tissue for different types of CVD such as atherosclerosis, deep vein thrombosis or stroke, liquid biopsies provide a simple and non-invasive alternative to surgical tissue specimens to obtain dynamic molecular information reflecting disease states. The release of cell-free ribonucleic acids (cfRNA) from stressed/damaged/dying and/or necrotic cells is a common physiological phenomenon. CfRNAs are a heterogeneous population of various types of extracellular RNA found in body fluids (blood, urine, saliva, cerebrospinal fluid) or in association with vascular/atherosclerotic tissue, offering insights into disease pathology on a diagnostic front. In particular, cf-ribosomal RNA has been shown to act as a damaging molecule in several cardio-vascular disease conditions. Moreover, such pathophysiological functions of cfRNA in CVD have been successfully antagonized by the administration of RNases. In this review, we discuss the origin, structure, types, and potential utilization of cfRNA in the diagnosis of CVD. Together with the analysis of established CVD biomarkers, the profiling of cfRNA in body fluids may thereby provide a promising approach for early disease detection and monitoring.
Collapse
Affiliation(s)
- Smriti Sharma
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Vienna, Austria
| | - Tyler Artner
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Vienna, Austria
| | - Klaus T Preissner
- Kerckhoff-Heart Research Institute, Department Cardiology, Justus-Liebig-University, Giessen, Germany
| | - Irene M Lang
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
7
|
Mirgh D, Sonar S, Ghosh S, Adhikari MD, Subramaniyan V, Gorai S, Anand K. Landscape of exosomes to modified exosomes: a state of the art in cancer therapy. RSC Adv 2024; 14:30807-30829. [PMID: 39328877 PMCID: PMC11426072 DOI: 10.1039/d4ra04512b] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
Exosomes are a subpopulation of extracellular vesicles (EVs) that naturally originate from endosomes. They play a significant role in cellular communication. Tumor-secreted exosomes play a crucial role in cancer development and significantly contribute to tumorigenesis, angiogenesis, and metastasis by intracellular communication. Tumor-derived exosomes (TEXs) are a promising biomarker source of cancer detection in the early stages. On the other hand, they offer revolutionary cutting-edge approaches to cancer therapeutics. Exosomes offer a cell-free approach to cancer therapeutics, which overcomes immune cell and stem cell therapeutics-based limitations (complication, toxicity, and cost of treatment). There are multiple sources of therapeutic exosomes present (stem cells, immune cells, plant cells, and synthetic and modified exosomes). This article explores the dynamic source of exosomes (plants, mesenchymal stem cells, and immune cells) and their modification (chimeric, hybrid exosomes, exosome-based CRISPR, and drug delivery) based on cancer therapeutic development. This review also highlights exosomes based clinical trials and the challenges and future orientation of exosome research. We hope that this article will inspire researchers to further explore exosome-based cancer therapeutic platforms for precision oncology.
Collapse
Affiliation(s)
- Divya Mirgh
- Vaccine and Immunotherapy Centre, Massachusetts General Hospital Boston USA
| | - Swarup Sonar
- Center for Global Health Research, Saveetha Medical College & Hospitals, Saveetha Institute of Medical and Technical Sciences Chennai Tamil Nadu 602105 India
| | - Srestha Ghosh
- Department of Microbiology, Lady Brabourne College Kolkata West Bengal 700017 India
| | - Manab Deb Adhikari
- Department of Biotechnology, University of North Bengal Darjeeling West Bengal India
| | - Vetriselvan Subramaniyan
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University Bandar Sunway Subang Jaya Selangor 47500 Malaysia
| | - Sukhamoy Gorai
- Department of Neurological Sciences, Rush University Medical Center Chicago IL USA
| | - Krishnan Anand
- Precision Medicine and Integrated Nano-Diagnostics (P-MIND) Research Group, Faculty of Health Sciences, University of the Free State Bloemfontein 9300 South Africa
| |
Collapse
|
8
|
Leandro K, Rufino-Ramos D, Breyne K, Di Ianni E, Lopes SM, Jorge Nobre R, Kleinstiver BP, Perdigão PRL, Breakefield XO, Pereira de Almeida L. Exploring the potential of cell-derived vesicles for transient delivery of gene editing payloads. Adv Drug Deliv Rev 2024; 211:115346. [PMID: 38849005 PMCID: PMC11366383 DOI: 10.1016/j.addr.2024.115346] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024]
Abstract
Gene editing technologies have the potential to correct genetic disorders by modifying, inserting, or deleting specific DNA sequences or genes, paving the way for a new class of genetic therapies. While gene editing tools continue to be improved to increase their precision and efficiency, the limited efficacy of in vivo delivery remains a major hurdle for clinical use. An ideal delivery vehicle should be able to target a sufficient number of diseased cells in a transient time window to maximize on-target editing and mitigate off-target events and immunogenicity. Here, we review major advances in novel delivery platforms based on cell-derived vesicles - extracellular vesicles and virus-like particles - for transient delivery of gene editing payloads. We discuss major findings regarding packaging, in vivo biodistribution, therapeutic efficacy, and safety concerns of cell-derived vesicles delivery of gene editing cargos and their potential for clinical translation.
Collapse
Affiliation(s)
- Kevin Leandro
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; GeneT - Gene Therapy Center of Excellence Portugal, University of Coimbra, Coimbra, Portugal
| | - David Rufino-Ramos
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; GeneT - Gene Therapy Center of Excellence Portugal, University of Coimbra, Coimbra, Portugal; Center for Genomic Medicine and Department of Pathology, Massachusetts General Hospital, Boston, MA 02115, USA; Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | - Koen Breyne
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA 02129, USA
| | - Emilio Di Ianni
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA 02129, USA
| | - Sara M Lopes
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; GeneT - Gene Therapy Center of Excellence Portugal, University of Coimbra, Coimbra, Portugal; IIIUC - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Rui Jorge Nobre
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; GeneT - Gene Therapy Center of Excellence Portugal, University of Coimbra, Coimbra, Portugal; IIIUC - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal; ViraVector - Viral Vector for Gene Transfer Core Facility, University of Coimbra, Coimbra 3004-504, Portugal
| | - Benjamin P Kleinstiver
- Center for Genomic Medicine and Department of Pathology, Massachusetts General Hospital, Boston, MA 02115, USA; Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | - Pedro R L Perdigão
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; GeneT - Gene Therapy Center of Excellence Portugal, University of Coimbra, Coimbra, Portugal; IIIUC - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Xandra O Breakefield
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA 02129, USA
| | - Luís Pereira de Almeida
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; GeneT - Gene Therapy Center of Excellence Portugal, University of Coimbra, Coimbra, Portugal; ViraVector - Viral Vector for Gene Transfer Core Facility, University of Coimbra, Coimbra 3004-504, Portugal.
| |
Collapse
|
9
|
Perez Hurtado EC, Henao Agudelo JS, Foganholi da Silva RA, Viração TA, Fernandes CJDC. The role of extracellular vesicles in cancer. CURRENT TOPICS IN MEMBRANES 2024; 94:247-285. [PMID: 39370209 DOI: 10.1016/bs.ctm.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Extracellular vesicles (EVs), which include small EVs such as exosomes, play a critical role in intercellular communication and are produced by both cancer and non-cancer cells. Several studies have shown that cancer cells exploit various strategies to regulate the biogenesis, composition, and functions of EVs primarily to promote cancer progression. Given that exosomes originate from major sorting hubs at the limiting membrane of endosomes, they are central to a signaling network that connects external stimuli with intrinsic tumor cell features. Exosomes contain diverse repertoires of molecular cargos, such as proteins, lipids, and nucleic acids, which determine their heterogeneity and functional properties in cancer progression. Therefore, targeting exosome biogenesis will enhance our understanding of tumorigenesis and also promote the discovery of novel approaches for cancer therapy. In this chapter we summarize the machinery of exosome biogenesis and the local, distant, and systemic effects of exosomes released by cancer cells. Furthermore, we explore how these exosomes regulate the anti-tumor immune response and epigenetic mechanisms to sustain cancer progression and their implications in cancer prevention and treatment.
Collapse
Affiliation(s)
| | | | | | - Thiago Albuquerque Viração
- Graduate Program in Environmental and Experimental Pathology, Paulista University, São Paulo, São Paulo, Brazil
| | - Célio Junior da Costa Fernandes
- Department of Biophysics and Pharmacology, Institute of Biosciences, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Botucatu, São Paulo, Brazil
| |
Collapse
|
10
|
Menjivar NG, Oropallo J, Gebremedhn S, Souza LA, Gad A, Puttlitz CM, Tesfaye D. MicroRNA Nano-Shuttles: Engineering Extracellular Vesicles as a Cutting-Edge Biotechnology Platform for Clinical Use in Therapeutics. Biol Proced Online 2024; 26:14. [PMID: 38773366 PMCID: PMC11106895 DOI: 10.1186/s12575-024-00241-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 04/30/2024] [Indexed: 05/23/2024] Open
Abstract
Extracellular vesicles (EVs) are nano-sized, membranous transporters of various active biomolecules with inflicting phenotypic capabilities, that are naturally secreted by almost all cells with a promising vantage point as a potential leading drug delivery platform. The intrinsic characteristics of their low toxicity, superior structural stability, and cargo loading capacity continue to fuel a multitude of research avenues dedicated to loading EVs with therapeutic and diagnostic cargos (pharmaceutical compounds, nucleic acids, proteins, and nanomaterials) in attempts to generate superior natural nanoscale delivery systems for clinical application in therapeutics. In addition to their well-known role in intercellular communication, EVs harbor microRNAs (miRNAs), which can alter the translational potential of receiving cells and thus act as important mediators in numerous biological and pathological processes. To leverage this potential, EVs can be structurally engineered to shuttle therapeutic miRNAs to diseased recipient cells as a potential targeted 'treatment' or 'therapy'. Herein, this review focuses on the therapeutic potential of EV-coupled miRNAs; summarizing the biogenesis, contents, and function of EVs, as well as providing both a comprehensive discussion of current EV loading techniques and an update on miRNA-engineered EVs as a next-generation platform piloting benchtop studies to propel potential clinical translation on the forefront of nanomedicine.
Collapse
Affiliation(s)
- Nico G Menjivar
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jaiden Oropallo
- Orthopaedic Bioengineering Research Laboratory (OBRL), Translational Medicine Institute (TMI), Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, 80523, USA
- Orthopaedic Research Center (ORC), Translational Medicine Institute (TMI), Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Science, Colorado State University, Fort Collins, CO, 80523, USA
| | - Samuel Gebremedhn
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
- J.R. Simplot Company, 1099 W. Front St, Boise, ID, 83702, USA
| | - Luca A Souza
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, 225 Av. Duque de Caxias Norte, Pirassununga, SP, 13635-900, Brazil
| | - Ahmed Gad
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Christian M Puttlitz
- Orthopaedic Bioengineering Research Laboratory (OBRL), Translational Medicine Institute (TMI), Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, 80523, USA
| | - Dawit Tesfaye
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
11
|
Garcia LFC, Wowk PF, Albrecht L. Unraveling the Impact of Extracellular Vesicle-Depleted Serum on Endothelial Cell Characteristics over Time. Int J Mol Sci 2024; 25:4761. [PMID: 38731980 PMCID: PMC11084606 DOI: 10.3390/ijms25094761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 05/13/2024] Open
Abstract
Extracellular vesicles (EVs) are produced by all kinds of cells, including endothelial cells. It has been observed that EVs present in fetal bovine serum (FBS), broadly used in cell culture, can be a confounding factor and lead to misinterpretation of results. To investigate this phenomenon, human brain microvascular endothelial cells (HBMECs) were cultured for 2 or 24 h in the presence of EV-depleted FBS (EVdS). Cell death, gene and protein expression, and the presence of EVs isolated from these cells were evaluated. The uptake of EVs, intercellular adhesion molecule 1 (ICAM-1) expression, and monocyte adhesion to endothelial cells exposed to EVs were also evaluated. Our results revealed higher apoptosis rates in cells cultured with EVdS for 2 and 24 h. There was an increase in interleukin 8 (IL8) expression after 2 h and a decrease in interleukin 6 (IL6) and IL8 expression after 24 h of culture. Among the proteins identified in EVs isolated from cells cultured for 2 h (EV2h), several were related to ribosomes and carbon metabolism. EVs from cells cultured for 24 h (EV24h) presented a protein profile associated with cell adhesion and platelet activation. Additionally, HBMECs exhibited increased uptake of EV2h. Treatment of endothelial cells with EV2h resulted in greater ICAM-1 expression and greater adherence to monocytes than did treatment with EV24h. According to our data, HBMEC cultivated with EVdS produce EVs with different physical characteristics and protein levels that vary over time.
Collapse
Affiliation(s)
| | - Pryscilla Fanini Wowk
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fiocruz, Curitiba 81350-010, PR, Brazil;
| | - Letusa Albrecht
- Laboratório de Pesquisa em Apicomplexa, ICC-Fiocruz-PR, Curitiba 81350-010, PR, Brazil;
| |
Collapse
|
12
|
Essola JM, Zhang M, Yang H, Li F, Xia B, Mavoungou JF, Hussain A, Huang Y. Exosome regulation of immune response mechanism: Pros and cons in immunotherapy. Bioact Mater 2024; 32:124-146. [PMID: 37927901 PMCID: PMC10622742 DOI: 10.1016/j.bioactmat.2023.09.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/06/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
Due to its multiple features, including the ability to orchestrate remote communication between different tissues, the exosomes are the extracellular vesicles arousing the highest interest in the scientific community. Their size, established as an average of 30-150 nm, allows them to be easily uptaken by most cells. According to the type of cells-derived exosomes, they may carry specific biomolecular cargoes used to reprogram the cells they are interacting with. In certain circumstances, exosomes stimulate the immune response by facilitating or amplifying the release of foreign antigens-killing cells, inflammatory factors, or antibodies (immune activation). Meanwhile, in other cases, they are efficiently used by malignant elements such as cancer cells to mislead the immune recognition mechanism, carrying and transferring their cancerous cargoes to distant healthy cells, thus contributing to antigenic invasion (immune suppression). Exosome dichotomic patterns upon immune system regulation present broad advantages in immunotherapy. Its perfect comprehension, from its early biogenesis to its specific interaction with recipient cells, will promote a significant enhancement of immunotherapy employing molecular biology, nanomedicine, and nanotechnology.
Collapse
Affiliation(s)
- Julien Milon Essola
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, PR China
- University of Chinese Academy of Sciences. Beijing 100049, PR China
| | - Mengjie Zhang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Haiyin Yang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Fangzhou Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, PR China
| | - Bozhang Xia
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, PR China
- University of Chinese Academy of Sciences. Beijing 100049, PR China
| | - Jacques François Mavoungou
- Université Internationale de Libreville, Libreville, 20411, Gabon
- Central and West African Virus Epidemiology, Libreville, 2263, Gabon
- Département de phytotechnologies, Institut National Supérieur d’Agronomie et de Biotechnologie, Université des Sciences et Techniques de Masuku, Franceville, 901, Gabon
- Institut de Recherches Agronomiques et Forestiers, Centre National de la Recherche Scientifique et du développement Technologique, Libreville, 16182, Gabon
| | - Abid Hussain
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Rigerna Therapeutics Co. Ltd., China
| |
Collapse
|
13
|
Zmorzynski S, Kimicka-Szajwaj A, Szajwaj A, Czerwik-Marcinkowska J, Wojcierowski J. Genetic Changes in Mastocytes and Their Significance in Mast Cell Tumor Prognosis and Treatment. Genes (Basel) 2024; 15:137. [PMID: 38275618 PMCID: PMC10815783 DOI: 10.3390/genes15010137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/12/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024] Open
Abstract
Mast cell tumors are a large group of diseases occurring in dogs, cats, mice, as well as in humans. Systemic mastocytosis (SM) is a disease involving the accumulation of mast cells in organs. KIT gene mutations are very often seen in abnormal mast cells. In SM, high KIT/CD117 expression is observed; however, there are usually no KIT gene mutations present. Mastocytoma (MCT)-a form of cutaneous neoplasm-is common in animals but quite rare in humans. KIT/CD117 receptor mutations were studied as the typical changes for human mastocytosis. In 80% of human cases, the KIT gene substitution p.D816H was present. In about 25% of MCTs, metastasis was observed. Changes in the gene expression of certain genes, such as overexpression of the DNAJ3A3 gene, promote metastasis. In contrast, the SNORD93 gene blocks the expression of metastasis genes. The panel of miR-21-5p, miR-379, and miR-885 has a good efficiency in discriminating healthy and MCT-affected dogs, as well as MCT-affected dogs with and without nodal metastasis. Further studies on the pathobiology of mast cells can lead to clinical improvements, such as better MCT diagnosis and treatment. Our paper reviews studies on the topic of mast cells, which have been carried out over the past few years.
Collapse
|
14
|
Ma Y, Wang S, Wang H, Chen X, Shuai Y, Wang H, Mao Y, He F. Mesenchymal stem cells and dental implant osseointegration during aging: from mechanisms to therapy. Stem Cell Res Ther 2023; 14:382. [PMID: 38124153 PMCID: PMC10734190 DOI: 10.1186/s13287-023-03611-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Dental implants are widely used to replace missing teeth, providing patients with unparalleled levels of effectiveness, convenience, and affordability. The biological basis for the clinical success of dental implants is osseointegration. Bone aging is a high-risk factor for the reduced osseointegration and survival rates of dental implants. In aged individuals, mesenchymal stem cells (MSCs) in the bone marrow show imbalanced differentiation with a reduction in osteogenesis and an increase in adipogenesis. This leads to impaired osseointegration and implant failure. This review focuses on the molecular mechanisms underlying the dysfunctional differentiation of aged MSCs, which primarily include autophagy, transcription factors, extracellular vesicle secretion, signaling pathways, epigenetic modifications, microRNAs, and oxidative stress. Furthermore, this review addresses the pathological changes in MSCs that affect osseointegration and discusses potential therapeutic interventions to enhance osseointegration by manipulating the mechanisms underlying MSC aging.
Collapse
Affiliation(s)
- Yang Ma
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Siyuan Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Hui Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Xiaoyu Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Yi Shuai
- Nanjing Jinling Hospital: East Region Military Command General Hospital, Nanjing, China
| | - Huiming Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China.
| | - Yingjie Mao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China.
| | - Fuming He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China.
| |
Collapse
|
15
|
Ma F, Zhang S, Akanyibah FA, Zhang W, Chen K, Ocansey DKW, Lyu C, Mao F. Exosome-mediated macrophage regulation for inflammatory bowel disease repair: a potential target of gut inflammation. Am J Transl Res 2023; 15:6970-6987. [PMID: 38186999 PMCID: PMC10767518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/14/2023] [Indexed: 01/09/2024]
Abstract
Inflammatory bowel disease (IBD), which includes Crohn's disease (CD) and ulcerative colitis (UC), is a complex condition without a definite cause. During IBD, immune cells such as macrophages release proinflammatory cytokines and chemokines, contributing to intestinal barrier integrity dysfunction. IBD is largely influenced by macrophages, which are classified into subtypes M1 and M2. M1 macrophages have been found to contribute to the development of IBD, whereas M2 macrophages alleviate IBD. Hence, agents that cause increased polarization of the M2 phenotype could help repair IBD. Exosomes, as ubiquitous conveyors of intercellular messages, are involved in immune responses and immune-mediated disease processes. Exosomes and their microRNA (miRNA) from healthy cells have been found to polarize macrophages to M2 to repair IBD due to their anti-inflammatory properties; however, those from inflammatory-driven cells and disease cells promote M1 macrophages to perpetuate IBD. Here, we review the biogenesis, biochemical composition, and sources of exosomes, as well as the roles of exosomes as extracellular vesicles in regulation of macrophages to repair IBD.
Collapse
Affiliation(s)
- Feifei Ma
- School of Medical Technology, Shangqiu Medical CollegeShangqiu 476100, Henan, P. R. China
| | - Shiheng Zhang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, P. R. China
| | - Francis Atim Akanyibah
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, P. R. China
| | - Weibin Zhang
- School of Medical Technology, Shangqiu Medical CollegeShangqiu 476100, Henan, P. R. China
| | - Kangjing Chen
- School of Medical Technology, Shangqiu Medical CollegeShangqiu 476100, Henan, P. R. China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, P. R. China
- Directorate of University Health Services, University of Cape CoastCape Coast CC0959347, Ghana
| | - Changkun Lyu
- School of Medical Technology, Shangqiu Medical CollegeShangqiu 476100, Henan, P. R. China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, P. R. China
| |
Collapse
|
16
|
Molderings GJ, Afrin LB. A survey of the currently known mast cell mediators with potential relevance for therapy of mast cell-induced symptoms. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2881-2891. [PMID: 37243761 PMCID: PMC10567897 DOI: 10.1007/s00210-023-02545-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
Mast cells (MCs) occupy a central role in immunological as well as non-immunological processes as reflected in the variety of the mediators by which MCs influence other cells. Published lists of MC mediators have all shown only subsets-usually quite small-of the full repertoire. The full repertoire of MC mediators released by exocytosis is comprehensively compiled here for the first time. The compilation of the data is essentially based on the largely cytokine-focused database COPE®, supplemented with data on the expression of substances in human MCs published in several articles, plus extensive research in the PubMed database. Three hundred and ninety substances could be identified as mediators of human MCs which can be secreted into the extracellular space by activation of the MC. This number might still be an underestimate of the actual number of MC mediators since, in principle, all substances produced by MCs can become mediators because of the possibility of their release by diffusion into the extracellular space, mast cell extracellular traps, and intercellular exchange via nanotubules. When human MCs release mediators in inappropriate manners, this may lead to symptoms in any or all organs/tissues. Thus, such MC activation disorders may clinically present with a myriad of potential combinations of symptoms ranging from trivial to disabling or even life-threatening. The present compilation can be consulted by physicians when trying to gain clarity about MC mediators which may be involved in patients with MC disease symptoms refractory to most therapies.
Collapse
Affiliation(s)
- Gerhard J Molderings
- Institute for Human Genetics, University Hospital of Bonn, Venusberg-Campus 1, D-53127, Bonn, Germany.
| | | |
Collapse
|
17
|
Gao Y, Wang X, Dong L, Qu C, Lu Q, Wang P, Xin M, Zheng W, Liu C, Ning S. Identifying immune checkpoint-related lncRNA biomarkers for immunotherapy response and prognosis in cancers. Sci Data 2023; 10:663. [PMID: 37770497 PMCID: PMC10539355 DOI: 10.1038/s41597-023-02550-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/07/2023] [Indexed: 09/30/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) could modulate expression of immune checkpoints (ICPs) in tumor-immune. However, precise functions in immunity and potential for predicting ICP inhibitors (ICI) response have been described for only a few lncRNAs. Here, a multiple-step pipeline was developed to identify cancer- and immune-context ICP and lncRNA cooperative regulation pairs (ICPaLncCRPs) across cancers. Immune-related ICPs and lncRNAs were extracted follow immune cell lines and immunologic constant of rejection groups. ICPaLncCRP networks were constructed, which likely to modulate tumor-immune by specific patterns. Common and specific hub ICPaLncs such as MIR155HG, TRG-AS1 and PCED1B-AS1 maybe play central roles in prognosis and circulating. Moreover, these hub ICPaLncs were significantly correlated with immune cell infiltration based on bulk and single-cell RNA sequencing data. Some ICPaLncCRPs such as IDO1-MIR155HG could predict three- and five-year prognosis of melanoma in two independent datasets. We also validated that some ICPaLncCRPs could effectively predict ICI-response follow six independent datasets. Collectively, this study will enhance our understanding of lncRNA functions and accelerate discovery of lncRNA-based biomarkers in ICI treatment.
Collapse
Affiliation(s)
- Yue Gao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xinyue Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Longlong Dong
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Changfan Qu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Qianyi Lu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Peng Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Mengyu Xin
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Wen Zheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Chenyu Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Shangwei Ning
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
18
|
Moya-Guzmán MJ, de Solminihac J, Padilla C, Rojas C, Pinto C, Himmel T, Pino-Lagos K. Extracellular Vesicles from Immune Cells: A Biomedical Perspective. Int J Mol Sci 2023; 24:13775. [PMID: 37762077 PMCID: PMC10531060 DOI: 10.3390/ijms241813775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Research on the role of extracellular vesicles (sEV) in physiology has demonstrated their undoubted importance in processes such as the transportation of molecules with significance for cell metabolism, cell communication, and the regulation of mechanisms such as cell differentiation, inflammation, and immunity. Although the role of EVs in the immune response is actively investigated, there is little literature revising, in a comprehensive manner, the role of small EVs produced by immune cells. Here, we present a review of studies reporting the release of sEV by different types of leukocytes and the implications of such observations on cellular homeostasis. We also discuss the function of immune cell-derived sEV and their relationship with pathological states, highlighting their potential application in the biomedical field.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Karina Pino-Lagos
- Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Av. Plaza 2501, Las Condes, Santiago 755000, Chile
| |
Collapse
|
19
|
Nielsen MH, Bæk R, Jorgensen MM, Mellergaard M, Handberg A. Increased extracellular vesicles (EVs) related to T cell-mediated inflammation and vascular function in familial hypercholesterolemia. ATHEROSCLEROSIS PLUS 2023; 53:16-25. [PMID: 37637934 PMCID: PMC10457578 DOI: 10.1016/j.athplu.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/05/2023] [Accepted: 06/19/2023] [Indexed: 08/29/2023]
Abstract
Background and aims OxLDL modulates innate and adaptive immunity, and extracellular vesicles (EVs) released from both non-immune and immune cells are proposed key players in atherosclerosis development. In the present study, we aimed to investigate EVs expressing markers related to adaptive immunity-driven inflammation and endothelial activation/dysfunction in hypercholesterolemic patients. Methods EVs were phenotyped in thirty patients with familial hypercholesterolemia (FH) and twenty-three healthy controls using the Extracellular Vesicle (EV) Array with antibodies targeting proteins expressed on B and T cells, and endothelial cells. Results FH patients had a higher atherosclerotic burden, as determined by the mean carotid intima-media thickness (IMT) (0.64 ± 0.12 mm vs. 0.58 ± 0.07 mm; p = 0.033), higher oxLDL levels (p < 0.0001), and showed increased levels of EV-specific markers: CD9 (p = 0.017), CD63 (p = 0.045), CD81 (p = 0.003), Annexin V (p = 0.018), and EV markers related to adaptive/lymphocyte immunity: CD28 (p = 0.034), CD4 (p = 0.049), CD152 (p = 0.029), LFA-1 (p = 0.024), and endothelial function: CD62E (p = 0.032), CD144 (p = 0.018), tPA (p = 0.017), CD31 (p = 0.024). Linear regression revealed a positive relationship between carotid IMT and several of the increased markers observed within the FH group, including CD9 (β = 0.33; p = 0.022), CD63 (β = 0.35; p 225 = 0.026), CD28 (β = 0.37; p = 0.026), CD4 (β = 0.40; p = 0.025), CD152 (β = 0.41; p = 0.017), LFA-1 (β = 0.42; p = 0.014) and CD62E (β = 0.38; p = 0.024). Conclusion EVs associated with adaptive immunity and endothelial dysfunction are elevated in FH patients, and several markers related to a higher atherosclerotic burden.
Collapse
Affiliation(s)
| | - Rikke Bæk
- Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark
| | - Malene Moller Jorgensen
- Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Maiken Mellergaard
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Aase Handberg
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
20
|
Li J, Zhang Y, Dong PY, Yang GM, Gurunathan S. A comprehensive review on the composition, biogenesis, purification, and multifunctional role of exosome as delivery vehicles for cancer therapy. Biomed Pharmacother 2023; 165:115087. [PMID: 37392659 DOI: 10.1016/j.biopha.2023.115087] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023] Open
Abstract
All forms of life produce nanosized extracellular vesicles called exosomes, which are enclosed in lipid bilayer membranes. Exosomes engage in cell-to-cell communication and participate in a variety of physiological and pathological processes. Exosomes function via their bioactive components, which are delivered to target cells in the form of proteins, nucleic acids, and lipids. Exosomes function as drug delivery vehicles due to their unique properties of innate stability, low immunogenicity, biocompatibility, biodistribution, accumulation in desired tissues, low toxicity in normal tissues, and the stimulation of anti-cancer immune responses, and penetration capacity into distance organs. Exosomes mediate cellular communications by delivering various bioactive molecules including oncogenes, oncomiRs, proteins, specific DNA, messenger RNA (mRNA), microRNA (miRNA), small interfering RNA (siRNA), and circular RNA (circRNA). These bioactive substances can be transferred to change the transcriptome of target cells and influence tumor-related signaling pathways. After considering all of the available literature, in this review we discuss the biogenesis, composition, production, and purification of exosomes. We briefly review exosome isolation and purification techniques. We explore great-length exosomes as a mechanism for delivering a variety of substances, including proteins, nucleic acids, small chemicals, and chemotherapeutic drugs. We also talk about the benefits and drawbacks of exosomes. This review concludes with a discussion future perspective and challenges. We hope that this review will provide us a better understanding of the current state of nanomedicine and exosome applications in biomedicine.
Collapse
Affiliation(s)
- Jian Li
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ye Zhang
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250014, China
| | - Pei-Yu Dong
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Guo-Ming Yang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Sangiliyandi Gurunathan
- Department of Biotechnology, Rathinam College of Arts and Science, Pollachi Road, Eachanari, Coimbatore, Tamil Nadu 641021, India.
| |
Collapse
|
21
|
Lin L, Liang Y, Cao T, Huang Y, Li W, Li J, Wang J, Peng X, Ge Y, Li Y, Li L. Transcriptome profiling and ceRNA network of small extracellular vesicles from resting and degranulated mast cells. Epigenomics 2023; 15:845-862. [PMID: 37846550 DOI: 10.2217/epi-2023-0175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
Aim: This study aimed to investigate the transcriptomic characteristics and interactions between competitive endogenous RNAs (ceRNAs) within small extracellular vesicles (sEVs) derived from mast cells (MCs). Methods: Transcriptome sequencing analyzed lncRNA, circRNA and mRNA expression in resting and degranulated MC-derived sEVs. Constructed ceRNA regulatory network through correlation analysis and target gene prediction. Results: Differentially expressed 1673 mRNAs, 173 lncRNAs and 531 circRNAs were observed between resting and degranulated MCs-derived sEVs. Enrichment analysis revealed involvement of neurodegeneration, infection and tumor pathways. CeRNA networks included interactions between lncRNA-miRNA, circRNA-miRNA and miRNA-mRNA, targeting genes in the hippo and wnt signaling pathways linked to tumor immune regulation. Conclusion: This study provides valuable insights into MC-sEV molecular mechanisms, offering significant data resources for further investigations.
Collapse
Affiliation(s)
- Lihui Lin
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P.R. China
| | - Yuting Liang
- Center for Clinical Laboratory, The First Affiliated Hospital of Soochow University Suzhou, Jiangsu, 215006, P.R. China
| | - Tianyu Cao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P.R. China
| | - Yuji Huang
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P.R. China
| | - Weize Li
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P.R. China
| | - Jia Li
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P.R. China
| | - Juan Wang
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P.R. China
| | - Xia Peng
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P.R. China
| | - Yiqin Ge
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P.R. China
| | - Yanning Li
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P.R. China
| | - Li Li
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P.R. China
| |
Collapse
|
22
|
Kunze R, Fischer S, Marti HH, Preissner KT. Brain alarm by self-extracellular nucleic acids: from neuroinflammation to neurodegeneration. J Biomed Sci 2023; 30:64. [PMID: 37550658 PMCID: PMC10405513 DOI: 10.1186/s12929-023-00954-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/22/2023] [Indexed: 08/09/2023] Open
Abstract
Neurological disorders such as stroke, multiple sclerosis, as well as the neurodegenerative diseases Parkinson's or Alzheimer's disease are accompanied or even powered by danger associated molecular patterns (DAMPs), defined as endogenous molecules released from stressed or damaged tissue. Besides protein-related DAMPs or "alarmins", numerous nucleic acid DAMPs exist in body fluids, such as cell-free nuclear and mitochondrial DNA as well as different species of extracellular RNA, collectively termed as self-extracellular nucleic acids (SENAs). Among these, microRNA, long non-coding RNAs, circular RNAs and extracellular ribosomal RNA constitute the majority of RNA-based DAMPs. Upon tissue injury, necrosis or apoptosis, such SENAs are released from neuronal, immune and other cells predominantly in association with extracellular vesicles and may be translocated to target cells where they can induce intracellular regulatory pathways in gene transcription and translation. The majority of SENA-induced signaling reactions in the brain appear to be related to neuroinflammatory processes, often causally associated with the onset or progression of the respective disease. In this review, the impact of the diverse types of SENAs on neuroinflammatory and neurodegenerative diseases will be discussed. Based on the accumulating knowledge in this field, several specific antagonistic approaches are presented that could serve as therapeutic interventions to lower the pathological outcome of the indicated brain disorders.
Collapse
Affiliation(s)
- Reiner Kunze
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Ruprecht-Karls-University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Silvia Fischer
- Department of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany
| | - Hugo H. Marti
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Ruprecht-Karls-University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Klaus T. Preissner
- Department of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany
- Kerckhoff-Heart-Research-Institute, Department of Cardiology, Medical School, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
23
|
Guzewska MM, Szuszkiewicz J, Kaczmarek MM. Extracellular vesicles: Focus on peri-implantation period of pregnancy in pigs. Mol Reprod Dev 2023; 90:634-645. [PMID: 36645872 DOI: 10.1002/mrd.23664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 01/18/2023]
Abstract
The establishment of cell-to-cell communication between the endometrium and the developing embryo is the most important step in successful mammalian pregnancy. Close interaction between the uterine luminal epithelium and trophoblast cells requires triggering timely molecular dialog for successful maternal recognition of pregnancy, embryo implantation, and placenta development. Quite recently, extracellular vesicles (EVs) carrying unique molecular cargo emerged as evolutionarily conserved mediators of cell-to-cell communication during early pregnancy. To date, the presence of EVs at the embryo-maternal interface has been demonstrated in numerous mammals, including domestic livestock, such as pigs. However, few studies have focused on revealing the mechanism of EV-mediated crosstalk between developing early embryos and receptive endometrium. Over the past years, it has appeared that understanding the role of EVs in mammalian reproduction can substantially improve our understanding of the biological challenges of successful reproductive performance. This review describes current knowledge of EVs, specifically in relation to the peri-implantation period in pigs, characterized by common features of embryo implantation and high embryonic mortality in mammals.
Collapse
Affiliation(s)
- Maria M Guzewska
- Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Joanna Szuszkiewicz
- Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Monika M Kaczmarek
- Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
- Molecular Biology Laboratory, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
24
|
Functions and cellular signaling by ribosomal extracellular RNA (rexRNA): Facts and hypotheses on a non-typical DAMP. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119408. [PMID: 36503009 DOI: 10.1016/j.bbamcr.2022.119408] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/07/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
Upon microbial infections with the subsequent host response of innate immunity, a variety of fragmented RNA- and DNA-based "Pathogen-associated molecular patterns" (PAMPs) are recognized mainly by endosomal or cytoplasmic host cell "Pattern recognition receptors" (PRRs), particularly "Toll-like receptors" (TLRs). Concomitantly, various self-extracellular RNA species (exRNAs) are present in extracellular body fluids where they contribute to diverse physiological and homeostatic processes. In principle, such exRNAs, including the most abundant one, ribosomal exRNA (rexRNA), are designated as "Danger-associated molecular patterns" (DAMPs) and are prevented by e.g. natural modifications from uncontrolled signaling via TLRs to avoid hyper-inflammatory responses or autoimmunity. Upon cellular stress or tissue damage/necrosis, the levels and composition of released self-exRNA species, either in free form, in complex with proteins or in association with extracellular vesicles (EVs), can change considerably. Among the self-exRNAs, rexRNA is considered as a non-typical DAMP, since it may induce inflammatory responses by cell membrane receptors, both in the absence or presence of PAMPs. Yet, its mode of receptor activation to mount inflammatory responses remains obscure. RexRNA also serves as a universal damaging factor in cardiovascular and other diseases independent of PRRs. In general, RNase1 provides a profound antagonist in these pathologies and in rexRNA-mediated inflammatory cell responses. Based on the extrapolation of the here described aspects of rexRNA-biology, further activities of this molecular entity are hypothesized that may stimulate additional research in this area.
Collapse
|
25
|
Potential Regulation of miRNA-29 and miRNA-9 by Estrogens in Neurodegenerative Disorders: An Insightful Perspective. Brain Sci 2023; 13:brainsci13020243. [PMID: 36831786 PMCID: PMC9954655 DOI: 10.3390/brainsci13020243] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 02/04/2023] Open
Abstract
Finding a link between a hormone and microRNAs (miRNAs) is of great importance since it enables the adjustment of genetic composition or cellular functions without needing gene-level interventions. The dicer-mediated cleavage of precursor miRNAs is an interface link between miRNA and its regulators; any disruption in this process can affect neurogenesis. Besides, the hormonal regulation of miRNAs can occur at the molecular and cellular levels, both directly, through binding to the promoter elements of miRNAs, and indirectly, via regulation of the signaling effects of the post-transcriptional processing proteins. Estrogenic hormones have many roles in regulating miRNAs in the brain. This review discusses miRNAs, their detailed biogenesis, activities, and both the general and estrogen-dependent regulations. Additionally, we highlight the relationship between miR-29, miR-9, and estrogens in the nervous system. Such a relationship could be a possible etiological route for developing various neurodegenerative disorders.
Collapse
|
26
|
Zabrodskaya Y, Plotnikova M, Gavrilova N, Lozhkov A, Klotchenko S, Kiselev A, Burdakov V, Ramsay E, Purvinsh L, Egorova M, Vysochinskaya V, Baranovskaya I, Brodskaya A, Povalikhin R, Vasin A. Exosomes Released by Influenza-Virus-Infected Cells Carry Factors Capable of Suppressing Immune Defense Genes in Naïve Cells. Viruses 2022; 14:2690. [PMID: 36560694 PMCID: PMC9781497 DOI: 10.3390/v14122690] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Background: Exosomes are involved in intercellular communication and can transfer regulatory molecules between cells. Consequently, they can participate in host immune response regulation. For the influenza A virus (IAV), there is very limited information on changes in exosome composition during cell infection shedding light on the potential role of these extracellular membrane vesicles. Thus, the aim of our work was to study changes in exosomal composition following IAV infection of cells, as well as to evaluate their effect on uninfected cells. Methods: To characterize changes in the composition of cellular miRNAs and mRNAs of exosomes during IAV infection of A549 cells, NGS was used, as well as PCR to identify viral genes. Naïve A549 cells were stimulated with infected-cell-secreted exosomes for studying their activity. Changes in the expression of genes associated with the cell's immune response were shown using PCR. The effect of exosomes on IAV replication was shown in MDCK cells using In-Cell ELISA and PCR of the supernatants. Results: A change in the miRNA composition (miR-21-3p, miR-26a-5p, miR-23a-5p, miR-548c-5p) and mRNA composition (RPL13A, MKNK2, TRIB3) of exosomes under the influence of the IAV was shown. Many RNAs were involved in the regulation of the immune response of the cell, mainly by suppressing it. After exosome stimulation of naïve cells, a significant decrease in the expression of genes involved in the immune response was shown (RIG1, IFIT1, MDA5, COX2, NFκB, AnxA1, PKR, IL6, IL18). When infecting MDCK cells, a significant decrease in nucleoprotein levels was observed in the presence of exosomes secreted by mock-infected cells. Viral levels in supernatants also decreased. Conclusions: Exosomes secreted by IAV-infected cells could reduce the immune response of neighboring intact cells, leading to more effective IAV replication. This may be associated both with regulatory functions of cellular miRNAs and mRNAs carried by exosomes, or with the presence of viral mRNAs encoding proteins with an immunosuppressive function.
Collapse
Affiliation(s)
- Yana Zabrodskaya
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, 194064 St. Petersburg, Russia
- Smorodintsev Research Institute of Influenza, 15/17 Ulitsa Professora Popova, 197376 St. Petersburg, Russia
| | - Marina Plotnikova
- Smorodintsev Research Institute of Influenza, 15/17 Ulitsa Professora Popova, 197376 St. Petersburg, Russia
| | - Nina Gavrilova
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, 194064 St. Petersburg, Russia
- Smorodintsev Research Institute of Influenza, 15/17 Ulitsa Professora Popova, 197376 St. Petersburg, Russia
| | - Alexey Lozhkov
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, 194064 St. Petersburg, Russia
- Smorodintsev Research Institute of Influenza, 15/17 Ulitsa Professora Popova, 197376 St. Petersburg, Russia
| | - Sergey Klotchenko
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, 194064 St. Petersburg, Russia
- Smorodintsev Research Institute of Influenza, 15/17 Ulitsa Professora Popova, 197376 St. Petersburg, Russia
| | - Artem Kiselev
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, 775 Woodlot Dr, East Lansing, MI 48824, USA
| | - Vladimir Burdakov
- Petersburg Nuclear Physics Institute Named by B. P. Konstantinov of National Research Center, Kurchatov Institute, 1 mkr. Orlova roshcha, 188300 Gatchina, Russia
| | - Edward Ramsay
- Saint Petersburg Pasteur Institute, 14 Ulitsa Mira, 197101 St. Petersburg, Russia
| | - Lada Purvinsh
- Biology Science Department, The University of Chicago, 947 E. 58th St., Chicago, IL 60637, USA
| | - Marja Egorova
- Smorodintsev Research Institute of Influenza, 15/17 Ulitsa Professora Popova, 197376 St. Petersburg, Russia
| | - Vera Vysochinskaya
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, 194064 St. Petersburg, Russia
- Smorodintsev Research Institute of Influenza, 15/17 Ulitsa Professora Popova, 197376 St. Petersburg, Russia
| | - Irina Baranovskaya
- Smorodintsev Research Institute of Influenza, 15/17 Ulitsa Professora Popova, 197376 St. Petersburg, Russia
- Department of Physiology, Augusta University, 1462 Laney Walker Blvd, CA-3149, Augusta, GA 30912, USA
| | - Alexandra Brodskaya
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, 194064 St. Petersburg, Russia
- Smorodintsev Research Institute of Influenza, 15/17 Ulitsa Professora Popova, 197376 St. Petersburg, Russia
| | - Roman Povalikhin
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, 194064 St. Petersburg, Russia
| | - Andrey Vasin
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, 194064 St. Petersburg, Russia
- Smorodintsev Research Institute of Influenza, 15/17 Ulitsa Professora Popova, 197376 St. Petersburg, Russia
| |
Collapse
|
27
|
Yu W, Li S, Zhang G, Xu HHK, Zhang K, Bai Y. New frontiers of oral sciences: Focus on the source and biomedical application of extracellular vesicles. Front Bioeng Biotechnol 2022; 10:1023700. [PMID: 36338125 PMCID: PMC9627311 DOI: 10.3389/fbioe.2022.1023700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/04/2022] [Indexed: 12/05/2022] Open
Abstract
Extracellular vesicles (EVs) are a class of nanoparticles that are derived from almost any type of cell in the organism tested thus far and are present in all body fluids. With the capacity to transfer "functional cargo and biological information" to regulate local and distant intercellular communication, EVs have developed into an attractive focus of research for various physiological and pathological conditions. The oral cavity is a special organ of the human body. It includes multiple types of tissue, and it is also the beginning of the digestive tract. Moreover, the oral cavity harbors thousands of bacteria. The importance and particularity of oral function indicate that EVs derived from oral cavity are quite complex but promising for further research. This review will discuss the extensive source of EVs in the oral cavity, including both cell sources and cell-independent sources. Besides, accumulating evidence supports extensive biomedical applications of extracellular vesicles in oral tissue regeneration and development, diagnosis and treatment of head and neck tumors, diagnosis and therapy of systemic disease, drug delivery, and horizontal gene transfer (HGT). The immune cell source, odontoblasts and ameloblasts sources, diet source and the application of EVs in tooth development and HGT were reviewed for the first time. In conclusion, we concentrate on the extensive source and potential applications offered by these nanovesicles in oral science.
Collapse
Affiliation(s)
- Wenting Yu
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Shengnan Li
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Guohao Zhang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology and National Center of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Hockin H. K. Xu
- Biomaterials and Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, United States
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Ke Zhang
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Yuxing Bai
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
28
|
Soccio P, Moriondo G, Lacedonia D, Tondo P, Quarato CMI, Foschino Barbaro MP, Scioscia G. EVs-miRNA: The New Molecular Markers for Chronic Respiratory Diseases. Life (Basel) 2022; 12:1544. [PMID: 36294979 PMCID: PMC9605003 DOI: 10.3390/life12101544] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/16/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD), asthma and sleep disorders are chronic respiratory diseases that affect the airways, compromising lung function over time. These diseases affect hundreds of millions of people around the world and their frequency seems to be increasing every year. Extracellular vesicles (EVs) are small-sized vesicles released by every cell in the body. They are present in most body fluids and contain various biomolecules including proteins, lipids, mRNA and non-coding RNA (micro-RNA). The EVs can release their cargo, specifically micro-RNAs (miRNAs), to both neighboring and/or distal cells, playing a fundamental role in cell-cell communication. Recent studies have shown their possible role in the pathogenesis of various chronic respiratory diseases. The expression of miRNAs and, in particular, of miRNAs contained within the extracellular vesicles seems to be a good starting point in order to identify new potential biomarkers of disease, allowing a non-invasive clinical diagnosis. In this review we summarize some studies, present in the literature, about the functions of extracellular vesicles and miRNAs contained in extracellular vesicles in chronic respiratory diseases and we discuss the potential clinical applications of EVs and EVs-miRNAs for their possible use such as future biomarkers.
Collapse
Affiliation(s)
- Piera Soccio
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Giorgia Moriondo
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Donato Lacedonia
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Institute of Respiratory Diseases, Policlinico Riuniti of Foggia, 71122 Foggia, Italy
| | - Pasquale Tondo
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Carla Maria Irene Quarato
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Institute of Respiratory Diseases, Policlinico Riuniti of Foggia, 71122 Foggia, Italy
| | - Maria Pia Foschino Barbaro
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Institute of Respiratory Diseases, Policlinico Riuniti of Foggia, 71122 Foggia, Italy
| | - Giulia Scioscia
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Institute of Respiratory Diseases, Policlinico Riuniti of Foggia, 71122 Foggia, Italy
| |
Collapse
|
29
|
Zhou Y, Xiao Z, Zhu W. The roles of small extracellular vesicles as prognostic biomarkers and treatment approaches in triple-negative breast cancer. Front Oncol 2022; 12:998964. [PMID: 36212432 PMCID: PMC9537600 DOI: 10.3389/fonc.2022.998964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/24/2022] [Indexed: 12/03/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a particularly aggressive and invasive breast cancer subtype and is associated with poor clinical outcomes. Treatment approaches for TNBC remain limited partly due to the lack of expression of well-known molecular targets. Small extracellular vesicles (sEVs) carrying a variety of bioactive contents play an important role in intercellular communications. The biomolecules including nucleic acids, proteins, and metabolites can be transferred locally or systematically to recipient cells and regulate their biological states and are involved in physiological and pathological processes. Recently, despite the extensive attraction to the physiological functions of sEVs, few studies focus on the roles of sEVs in TNBC. In this review, we will summarize the involvement of sEVs in the tumor microenvironment of TNBC. Moreover, we will discuss the potential roles of sEVs as diagnostic markers and treatment therapy in this heterogeneous breast cancer subtype. We finally summarize the clinical application of sEVs in TNBC.
Collapse
Affiliation(s)
- Yueyuan Zhou
- Department of Clinical Medical Engineering, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
- *Correspondence: Yueyuan Zhou,
| | - Zhongdang Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Wei Zhu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
30
|
Lu B, Ku J, Flojo R, Olson C, Bengford D, Marriott G. Exosome- and extracellular vesicle-based approaches for the treatment of lysosomal storage disorders. Adv Drug Deliv Rev 2022; 188:114465. [PMID: 35878794 DOI: 10.1016/j.addr.2022.114465] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 06/22/2022] [Accepted: 07/19/2022] [Indexed: 12/16/2022]
Abstract
Cell-generated extracellular vesicles (EVs) are being engineered as biologically-inspired vehicles for targeted delivery of therapeutic agents to treat difficult-to-manage human diseases, including lysosomal storage disorders (LSDs). Engineered EVs offer distinct advantages for targeted delivery of therapeutics compared to existing synthetic and semi-synthetic nanoscale systems, for example with regard to their biocompatibility, circulation lifetime, efficiencies in delivery of drugs and biologics to target cells, and clearance from the body. Here, we review literature related to the design and preparation of EVs as therapeutic carriers for targeted delivery and therapy of drugs and biologics with a focus on LSDs. First, we introduce the basic pathophysiology of LDSs and summarize current approaches to diagnose and treat LSDs. Second, we will provide specific details about EVs, including subtypes, biogenesis, biological properties and their potential to treat LSDs. Third, we review state-of-the-art approaches to engineer EVs for treatments of LSDs. Finally, we summarize explorative basic research and applied applications of engineered EVs for LSDs, and highlight current challenges, and new directions in developing EV-based therapies and their potential impact on clinical medicine.
Collapse
Affiliation(s)
- Biao Lu
- Department of Bioengineering, School of Engineering, Santa Clara University, 500 El Camino Real, Santa Clara, California 95053, USA
| | - Joy Ku
- Department of Bioengineering, School of Engineering, Santa Clara University, 500 El Camino Real, Santa Clara, California 95053, USA
| | - Renceh Flojo
- Department of Bioengineering, School of Engineering, Santa Clara University, 500 El Camino Real, Santa Clara, California 95053, USA
| | - Chris Olson
- Department of Bioengineering, School of Engineering, Santa Clara University, 500 El Camino Real, Santa Clara, California 95053, USA
| | - David Bengford
- Department of Bioengineering, School of Engineering, Santa Clara University, 500 El Camino Real, Santa Clara, California 95053, USA
| | - Gerard Marriott
- Department of Bioengineering, University of California at Berkeley, California 94720, USA.
| |
Collapse
|
31
|
Effects of Hypoxia on RNA Cargo in Extracellular Vesicles from Human Adipose-Derived Stromal/Stem Cells. Int J Mol Sci 2022; 23:ijms23137384. [PMID: 35806391 PMCID: PMC9266528 DOI: 10.3390/ijms23137384] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 02/01/2023] Open
Abstract
Mesenchymal stromal/stem cells and their derivates are the most promising cell source for cell therapies in regenerative medicine. The application of extracellular vesicles (EVs) as cell-free therapeuticals requires particles with a maximum regenerative capability to enhance tissue and organ regeneration. The cargo of mRNA and microRNA (miR) in EVs after hypoxic preconditioning has not been extensively investigated. Therefore, the aim of our study was the characterization of mRNA and the miR loading of EVs. We further investigated the effects of the isolated EVs on renal tubular epithelial cells in vitro. We found 3131 transcripts to be significantly regulated upon hypoxia. Only 15 of these were downregulated, but 3116 were up-regulated. In addition, we found 190 small RNAs, 169 of these were miRs and 21 were piwi-interacting RNAs (piR). However, only 18 of the small RNAs were significantly altered, seven were miRs and 11 were piRs. Interestingly, all seven miRs were down-regulated after hypoxic pretreatment, whereas all 11 piRs were up-regulated. Gene ontology term enrichment and miR-target enrichment analysis of the mRNAs and miR were also performed in order to study the biological background. Finally, the therapeutic effect of EVs on human renal tubular epithelial cells was shown by the increased expression of three anti-inflammatory molecules after incubation with EVs from hypoxic pretreatment. In summary, our study demonstrates the altered mRNA and miR load in EVs after hypoxic preconditioning, and their anti-inflammatory effect on epithelial cells.
Collapse
|
32
|
Xu W, Zhang Z, Yao L, Xue B, Xi H, Wang X, Sun S. Exploration of Shared Gene Signatures and Molecular Mechanisms Between Periodontitis and Nonalcoholic Fatty Liver Disease. Front Genet 2022; 13:939751. [PMID: 35836570 PMCID: PMC9273910 DOI: 10.3389/fgene.2022.939751] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 12/28/2022] Open
Abstract
Background: Periodontitis is associated with periodontal tissue damage and teeth loss. Nonalcoholic fatty liver disease (NAFLD) has an intimate relationship with periodontitis. Nevertheless, interacted mechanisms between them have not been clear. This study was intended for the exploration of shared gene signatures and latent therapeutic targets in periodontitis and NAFLD. Methods: Microarray datasets of periodontitis and NAFLD were obtained from the Gene Expression Omnibus (GEO) database. The weighted gene co-expression network analysis (WGCNA) was utilized for the acquisition of modules bound up with NAFLD and periodontitis. We used ClueGO to carry out biological analysis on shared genes to search their latent effects in NAFLD and periodontitis. Another cohort composed of differential gene analysis verified the results. The common microRNAs (miRNAs) in NAFLD and periodontitis were acquired in the light of the Human microRNA Disease Database (HMDD). According to miRTarbase, miRDB, and Targetscan databases, latent target genes of miRNAs were forecasted. Finally, the miRNAs–mRNAs network was designed. Results: Significant modules with periodontitis and NAFLD were obtained via WGCNA. GO enrichment analysis with GlueGo indicated that damaged migration of dendritic cells (DCs) might be a common pathophysiologic feature of NAFLD and periodontitis. In addition, we revealed common genes in NAFLD and periodontitis, including IGK, IGLJ3, IGHM, MME, SELL, ENPP2, VCAN, LCP1, IGHD, FCGR2C, ALOX5AP, IGJ, MMP9, FABP4, IL32, HBB, FMO1, ALPK2, PLA2G7, MNDA, HLA-DRA, and SLC16A7. The results of differential analysis in another cohort were highly accordant with the findings of WGCNA. We established a comorbidity model to explain the underlying mechanism of NAFLD secondary to periodontitis. Finally, the analysis of miRNA pointed out that hsa-mir-125b-5p, hsa-mir-17-5p, and hsa-mir-21-5p might provide potential therapeutic targets. Conclusion: Our study initially established a comorbidity model to explain the underlying mechanism of NAFLD secondary to periodontitis, found that damaged migration of DCs might be a common pathophysiological feature of NAFLD and periodontitis, and provided potential therapeutic targets.
Collapse
Affiliation(s)
- Wanqiu Xu
- Department of Dentistry, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhengwei Zhang
- Ward 7, Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lihong Yao
- Department of Dentistry, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bing Xue
- Department of Dentistry, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hualei Xi
- Department of Dentistry, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiumei Wang
- Department of Dentistry, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Xiumei Wang, ; Shibo Sun,
| | - Shibo Sun
- Ward 7, Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Xiumei Wang, ; Shibo Sun,
| |
Collapse
|
33
|
Ran Z, Wu S, Ma Z, Chen X, Liu J, Yang J. Advances in exosome biomarkers for cervical cancer. Cancer Med 2022; 11:4966-4978. [PMID: 35578572 PMCID: PMC9761094 DOI: 10.1002/cam4.4828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/10/2022] [Accepted: 04/18/2022] [Indexed: 02/03/2023] Open
Abstract
Cervical cancer (CC) ranks as the fourth most frequently diagnosed malignancy in females worldwide. Exosomes are a subclass of extracellular vesicles released by nearly all types of cells that act as cargo transport vehicles, carrying proteins, and genetic material (such as miRNAs, long noncoding RNAs, and mRNAs) derived from their parent cells may affect receiving cells and thus have emerged as key players in several biological processes, including inflammatory pathways. In this review, we concentrated on the findings of exosome investigations in CC, particularly their components. They direct the actions of CC cells by inducing surface molecules associated with various biological pathways. We summarized the current knowledge of exosomal RNAs and proteins from CC cells and discussed the feasibility of exosomes as potential biomarkers for CC. We suggest that cancer-derived exosomes promote metastasis in CC by supporting EMT, controlling the proliferation, invasion, or migration of cancer cells, as well as influencing immune escape and aiding angiogenesis. Overall, cancer-derived exosomes are critical in the progression of CC, and further studies are necessary to advance our understanding of the clinical value of exosomes in CC.
Collapse
Affiliation(s)
- Zihan Ran
- Department of ResearchShanghai University of Medicine & Health Sciences Affiliated Zhoupu HospitalShanghaiChina,Inspection and Quarantine Department, The College of Medical TechnologyShanghai University of Medicine & Health SciencesShanghaiChina,The Genius Medicine Consortium (TGMC)ShanghaiChina
| | - Shaobo Wu
- Inspection and Quarantine Department, The College of Medical TechnologyShanghai University of Medicine & Health SciencesShanghaiChina,The Genius Medicine Consortium (TGMC)ShanghaiChina
| | - Zijng Ma
- Inspection and Quarantine Department, The College of Medical TechnologyShanghai University of Medicine & Health SciencesShanghaiChina,The Genius Medicine Consortium (TGMC)ShanghaiChina
| | - Xiuwen Chen
- Inspection and Quarantine Department, The College of Medical TechnologyShanghai University of Medicine & Health SciencesShanghaiChina,The Genius Medicine Consortium (TGMC)ShanghaiChina
| | - Jing Liu
- Inspection and Quarantine Department, The College of Medical TechnologyShanghai University of Medicine & Health SciencesShanghaiChina
| | - Jingcheng Yang
- The Genius Medicine Consortium (TGMC)ShanghaiChina,State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer CenterFudan UniversityShanghaiChina,Greater Bay Area Institute of Precision MedicineGuangzhouChina
| |
Collapse
|
34
|
Dellar ER, Hill C, Melling GE, Carter DR, Baena‐Lopez LA. Unpacking extracellular vesicles: RNA cargo loading and function. JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e40. [PMID: 38939528 PMCID: PMC11080855 DOI: 10.1002/jex2.40] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 06/29/2024]
Abstract
Extracellular vesicles (EVs) are a heterogeneous group of membrane-enclosed structures produced by prokaryotic and eukaryotic cells. EVs carry a range of biological cargoes, including RNA, protein, and lipids, which may have both metabolic significance and signalling potential. EV release has been suggested to play a critical role in maintaining intracellular homeostasis by eliminating unnecessary biological material from EV producing cells, and as a delivery system to enable cellular communication between both neighbouring and distant cells without physical contact. In this review, we give an overview of what is known about the relative enrichment of the different types of RNA that have been associated with EVs in the most recent research efforts. We then examine the selective and non-selective incorporation of these different RNA biotypes into EVs, the molecular systems of RNA sorting into EVs that have been elucidated so far, and the role of this process in EV-producing cells. Finally, we also discuss the model systems providing evidence for EV-mediated delivery of RNA to recipient cells, and the implications of this evidence for the relevance of this RNA delivery process in both physiological and pathological scenarios.
Collapse
Affiliation(s)
- Elizabeth R. Dellar
- Department of Biological and Medical SciencesOxford Brookes UniversityGipsy LaneOxfordUK
- Sir William Dunn School of PathologyUniversity of OxfordSouth Parks RoadOxfordUK
- Nuffield Department of Clinical NeurosciencesJohn Radcliffe HospitalUniversity of OxfordOxfordUK
| | - Claire Hill
- Sir William Dunn School of PathologyUniversity of OxfordSouth Parks RoadOxfordUK
| | - Genevieve E. Melling
- Department of Biological and Medical SciencesOxford Brookes UniversityGipsy LaneOxfordUK
- Institute of Clinical SciencesSchool of Biomedical SciencesCollege of Medical and Dental SciencesUniversity of BirminghamEdgbastonBirminghamUK
| | - David R.F Carter
- Department of Biological and Medical SciencesOxford Brookes UniversityGipsy LaneOxfordUK
| | | |
Collapse
|
35
|
Chen Z, Yuan R, Hu S, Yuan W, Sun Z. Roles of the Exosomes Derived From Myeloid-Derived Suppressor Cells in Tumor Immunity and Cancer Progression. Front Immunol 2022; 13:817942. [PMID: 35154134 PMCID: PMC8829028 DOI: 10.3389/fimmu.2022.817942] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/12/2022] [Indexed: 12/23/2022] Open
Abstract
Tumor immunity is involved in malignant tumor progression. Myeloid-derived suppressor cells (MDSCs) play an irreplaceable role in tumor immunity. MDSCs are composed of immature myeloid cells and exhibit obvious immunomodulatory functions. Exosomes released by MDSCs (MDSCs-Exos) have similar effects to parental MDSCs in regulating tumor immunity. In this review, we provided a comprehensive description of the characteristics, functions and mechanisms of exosomes. We analyzed the immunosuppressive, angiogenesis and metastatic effects of MDSCs-Exos in different tumors through multiple perspectives. Immunotherapy targeting MDSCs-Exos has demonstrated great potential in cancers and non-cancerous diseases.
Collapse
Affiliation(s)
- Zhuang Chen
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rui Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shengyun Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
36
|
Su J, Chen S, Dou Y, Zhao Z, Jia X, Ding X, Song S. Smartphone-Based Electrochemical Biosensors for Directly Detecting Serum-Derived Exosomes and Monitoring Their Secretion. Anal Chem 2022; 94:3235-3244. [PMID: 35084842 DOI: 10.1021/acs.analchem.1c04910] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Exosomes are potential biomarkers, which play an important role in early diagnosis and prognosis prediction of cancer-related diseases. Nevertheless, direct quantification of exosomes in biological fluid, especially in point-of-care tests (POCTs), remains extremely challenging. Herein, we developed a sensitive and portable electrochemical biosensor in combination with smartphones for quantitative analysis of exosomes. The improved double-antibody sandwich method-based poly-enzyme signal amplification was adopted to detect exosomes. We could detect as low as 7.23 ng of CD63-positive exosomes in 5 μL of serum within 2 h. Importantly, we demonstrated that the biosensor worked well with microliter-level serum and cell culture supernatant. The biosensor holds great potential for the detection of CD-63-expressing exosomes in early diagnosis of prostate disease because CD63-positive exosomes were less detected from the prostate patient serum. Also, the biosensor was used to monitor the secretion of exosomes with the drug therapy, showing a close relationship between the secretion of exosomes and the concentration of cisplatin. The biosensing platform provides a novel way toward POCT for the diagnosis and prognosis prediction of prostate disease and other diseases via biomarker expression levels of exosomes.
Collapse
Affiliation(s)
- Jing Su
- Center for Research and Interdisciplinary, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Shixing Chen
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Yanzhi Dou
- University of Chinese Academy of Sciences, Beijing 100049, China.,Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Zhihan Zhao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Xiaolong Jia
- Department of Urology, Ningbo First Hospital Ningbo, Hospital of Zhejiang University, 17 Ningbo, Ningbo 315010, Zhejiang Province, China
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Shiping Song
- Center for Research and Interdisciplinary, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
37
|
Exosome as a Delivery Vehicle for Cancer Therapy. Cells 2022; 11:cells11030316. [PMID: 35159126 PMCID: PMC8834560 DOI: 10.3390/cells11030316] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/07/2023] Open
Abstract
Exosomes are small extracellular vesicles that are naturally produced and carry biomolecules such as proteins, microRNAs, and metabolites. Because of their small size and low level of biomolecule expression, the biological function of exosomes has only been identified recently. Despite the short history of investigation, exosomes seem to have remarkable potential as a delivery vehicle. With regards to cancer therapy, numerous antitumor agents demonstrate serious side effects (or toxicity), which has led to the unmet need for improving their selectivity and stability. Exosomes, either produced naturally or generated artificially, provide an attractive platform to load many types of molecules such as small molecules, biologics, and other therapeutic agents. Furthermore, the features of exosomes can be designed by selecting their source cells, or they can be engineered to incorporate affinity tags; thus, exosomes show promise as effective delivery vehicles for the complex tumor microenvironment. In this review, we focus on various exosomes produced from different cell types and their potential uses. Moreover, we summarize the current state of artificial exosomes as a drug carrier and provide an overview of the techniques used for their production.
Collapse
|
38
|
Engeroff P, Vogel M. The Potential of Exosomes in Allergy Immunotherapy. Vaccines (Basel) 2022; 10:vaccines10010133. [PMID: 35062793 PMCID: PMC8780385 DOI: 10.3390/vaccines10010133] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/01/2023] Open
Abstract
Allergic diseases represent a global health and economic burden of increasing significance. The lack of disease-modifying therapies besides specific allergen immunotherapy (AIT) which is not available for all types of allergies, necessitates the study of novel therapeutic approaches. Exosomes are small endosome-derived vesicles delivering cargo between cells and thus allowing inter-cellular communication. Since immune cells make use of exosomes to boost, deviate, or suppress immune responses, exosomes are intriguing candidates for immunotherapy. Here, we review the role of exosomes in allergic sensitization and inflammation, and we discuss the mechanisms by which exosomes could potentially be used in immunotherapeutic approaches for the treatment of allergic diseases. We propose the following approaches: (a) Mast cell-derived exosomes expressing IgE receptor FcεRI could absorb IgE and down-regulate systemic IgE levels. (b) Tolerogenic exosomes could suppress allergic immune responses via induction of regulatory T cells. (c) Exosomes could promote TH1-like responses towards an allergen. (d) Exosomes could modulate IgE-facilitated antigen presentation.
Collapse
Affiliation(s)
- Paul Engeroff
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), F-75005 Paris, France;
| | - Monique Vogel
- Department of Immunology, University Hospital for Rheumatology, Immunology, and Allergology, 3010 Bern, Switzerland
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Correspondence:
| |
Collapse
|
39
|
Huang K, Huang L, Zhang X, Zhang M, Wang Q, Lin H, Yu Z, Li X, Liu XB, Wu Q, Wang Y, Wang J, Jin X, Gao H, Han X, Lin R, Cen S, Liu Z, Huang B. Mast cells-derived exosomes worsen the development of experimental cerebral malaria. Acta Trop 2021; 224:106145. [PMID: 34562426 DOI: 10.1016/j.actatropica.2021.106145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/21/2022]
Abstract
Cerebral malaria (CM) is the most severe neurological complication caused by Plasmodium falciparum infection. The accumulating evidence demonstrated that mast cells (MCs) and its mediators played a critical role in mediating malaria severity. Earlier studies identified that exosomes were emerging as key mediators of intercellular communication and can be released from several kinds of MCs. However, the potential functions and pathological mechanisms of MCs-derived exosomes (MCs-Exo) impacting on CM pathogenesis remain largely unknown. Herein, we utilized an experimental CM (ECM) model (C57BL/6 mice infected with P. berghei ANKA strain), and then intravenously (i.v.) injected MCs-Exo into P. berghei ANKA-infected mice to unfold this mechanism and investigate the effect of MCs-Exo on ECM pathogenies. We also used an in vitro model by investigating the pathogenesis development of brain microvascular endothelial cells line (bEnd.3 cells) co-cultured with P. berghei ANKA blood-stage soluble antigen (PbAg) after MCs-Exo treatment. The higher numbers of MCs and levels of MCs degranulation were observed in skin, cervical lymph node, and brain of ECM mice than those of the uninfected mice. Exosomes were successfully isolated from culture supernatants of mouse MCs line (P815 cells) and characterized by spherical vesicles with the diameter of 30-150 nm, and expression of typical exosomal markers (e.g., CD9, CD63, and CD81). The i.v. injection of MCs-Exo dramatically elevated incidence of ECM in the P. berghei ANKA-infected mice, exacerbated liver and brain histopathological damage, promoted Th1 cytokine response, aggravated brain vascular endothelial activation and blood brain barrier breakdown in ECM mice. In addition, the treatment of MCs-Exo led to the decrease of cells viability and mRNA levels of Ang-1, ZO-1, and Claudin-5, but increase of mRNA levels of Ang-2, CCL2, CXCL1, and CXCL9 in bEnd.3 cells co-cultured with PbAg in vitro. Taken together, our data indicated that MCs-Exo could worsen pathogenesis of ECM in mice.
Collapse
|
40
|
Chiabotto G, Ceccotti E, Tapparo M, Camussi G, Bruno S. Human Liver Stem Cell-Derived Extracellular Vesicles Target Hepatic Stellate Cells and Attenuate Their Pro-fibrotic Phenotype. Front Cell Dev Biol 2021; 9:777462. [PMID: 34796180 PMCID: PMC8593217 DOI: 10.3389/fcell.2021.777462] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis occurs in response to chronic liver injury and is characterized by an excessive deposition of extracellular matrix. Activated hepatic stellate cells are primarily responsible for this process. A possible strategy to counteract the development of hepatic fibrosis could be the reversion of the activated phenotype of hepatic stellate cells. Extracellular vesicles (EVs) are nanosized membrane vesicles involved in intercellular communication. Our previous studies have demonstrated that EVs derived from human liver stem cells (HLSCs), a multipotent population of adult stem cells of the liver with mesenchymal-like phenotype, exert in vivo anti-fibrotic activity in the liver. However, the mechanism of action of these EVs remains to be determined. We set up an in vitro model of hepatic fibrosis using a human hepatic stellate cell line (LX-2) activated by transforming growth factor-beta 1 (TGF-β1). Then, we investigated the effect of EVs obtained from HLSCs and from human bone marrow-derived mesenchymal stromal cells (MSCs) on activated LX-2. The incubation of activated LX-2 with HLSC-EVs reduced the expression level of alpha-smooth muscle actin (α-SMA). Conversely, MSC-derived EVs induced an increase in the expression of pro-fibrotic markers in activated LX-2. The analysis of the RNA cargo of HLSC-EVs revealed the presence of several miRNAs involved in the regulation of fibrosis and inflammation. Predictive target analysis indicated that several microRNAs (miRNAs) contained into HLSC-EVs could possibly target pro-fibrotic transcripts. In particular, we demonstrated that HLSC-EVs shuttled miR-146a-5p and that treatment with HLSC-EVs increased miR-146a-5p expression in LX-2. In conclusion, this study demonstrates that HLSC-EVs can attenuate the activated phenotype of hepatic stellate cells and that their biological effect may be mediated by the delivery of anti-fibrotic miRNAs, such as miR-146a-5p.
Collapse
Affiliation(s)
- Giulia Chiabotto
- Department of Medical Sciences, University of Torino, Turin, Italy.,Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Elena Ceccotti
- Department of Medical Sciences, University of Torino, Turin, Italy.,Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Marta Tapparo
- Department of Medical Sciences, University of Torino, Turin, Italy.,Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, Turin, Italy.,Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Stefania Bruno
- Department of Medical Sciences, University of Torino, Turin, Italy.,Molecular Biotechnology Center, University of Torino, Turin, Italy
| |
Collapse
|
41
|
Ma B, Jiang H, Luo Y, Liao T, Xu W, Wang X, Dong C, Ji Q, Wang Y. Tumor-Infiltrating Immune-Related Long Non-Coding RNAs Indicate Prognoses and Response to PD-1 Blockade in Head and Neck Squamous Cell Carcinoma. Front Immunol 2021; 12:692079. [PMID: 34737735 PMCID: PMC8562720 DOI: 10.3389/fimmu.2021.692079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) in immune cells play critical roles in tumor cell–immune cell interactions. This study aimed to characterize the landscape of tumor-infiltrating immune-related lncRNAs (Ti-lncRNAs) and reveal their correlations with prognoses and immunotherapy response in head and neck squamous cell carcinoma (HNSCC). We developed a computational model to identify Ti-lncRNAs in HNSCC and analyzed their associations with clinicopathological features, molecular alterations, and immunotherapy response. A signature of nine Ti-lncRNAs demonstrated an independent prognostic factor for both overall survival and disease-free survival among the cohorts from Fudan University Shanghai Cancer Center, The Cancer Genome Atlas, GSE41613, and GSE42743. The Ti-lncRNA signature scores in immune cells showed significant associations with TP53 mutation, CDKN2A mutation, and hypoxia. Inferior signature scores were enriched in patients with high levels of PDCD1 and CTLA4 and high expanded immune gene signature (IGS) scores, who displayed good response to PD-1 blockade in HNSCC. Consistently, superior clinical response emerged in melanoma patients with low signature scores undergoing anti-PD-1 therapy. Moreover, the Ti-lncRNA signature was a prognostic factor independent of PDCD1, CTLA4, and the expanded IGS score. In conclusion, tumor-infiltrating immune profiling identified a prognostic Ti-lncRNA signature indicative of clinical response to PD-1 blockade in HNSCC.
Collapse
Affiliation(s)
- Ben Ma
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hongyi Jiang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Luo
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tian Liao
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weibo Xu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chuanpeng Dong
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Biohealth Informatics, School of Informatics and Computing, Indiana University, Indianapolis, IN, United States
| | - Qinghai Ji
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
42
|
Mirzaei R, Zamani F, Hajibaba M, Rasouli-Saravani A, Noroozbeygi M, Gorgani M, Hosseini-Fard SR, Jalalifar S, Ajdarkosh H, Abedi SH, Keyvani H, Karampoor S. The pathogenic, therapeutic and diagnostic role of exosomal microRNA in the autoimmune diseases. J Neuroimmunol 2021; 358:577640. [PMID: 34224949 DOI: 10.1016/j.jneuroim.2021.577640] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 02/08/2023]
Abstract
Exosomes are a nano-vesicle surrounded by a bilipid layer that can release from almost all cells and could be detected in tissues and biological liquids. These vesicles contain lipids, proteins, and nucleic acids (including DNA, mRNA, and miRNA) inside and on the exosomes' surface constitute their content. Exosomes can transfer their cargo into the recipient cell, which can modify recipient cells' biological activities. Recently it has been deciphering that the miRNA pattern of exosomes reveals the cellular pathophysiological situation and modifies various biological processes. Increasing data regarding exosomes highlights that the exosomes and their cargo, especially miRNAs, are implicated in the pathophysiology of various disorders, such as autoimmune disease. The current evidence on the deciphering of mechanisms in which exosomal miRNAs contributed to autoimmunity was indicated that exosomal miRNA might hold information that can reprogram the function of many of the immune cells involved in autoimmune diseases' pathogenesis. In the present study, we summarized the pathogenic role of exosomal miRNAs in several autoimmune diseases, including myasthenia gravis (MG), psoriasis, inflammatory bowel disease (IBD), type 1 diabetes (T1D), multiple sclerosis (MS), systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), Sjogren's Syndrome (SS), systemic sclerosis (SSc), vitiligo, and autoimmune thyroid diseases (AITD). Moreover, in this work, we present evidence of the potential role of exosomal miRNAs as therapeutic and diagnostic agents in autoimmune diseases.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Farhad Zamani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Marzieh Hajibaba
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ashkan Rasouli-Saravani
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mina Noroozbeygi
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Melika Gorgani
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saba Jalalifar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Ajdarkosh
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Hassnan Abedi
- Department of Internal Medicine, Rohani Hospital, Babol University of Medical Science, Babol, Iran
| | - Hossein Keyvani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
43
|
Extracellular Vesicles as Emerging Players in Intercellular Communication: Relevance in Mast Cell-Mediated Pathophysiology. Int J Mol Sci 2021; 22:ijms22179176. [PMID: 34502083 PMCID: PMC8431297 DOI: 10.3390/ijms22179176] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
Mast cells are major effector cells in eliciting allergic responses. They also play a significant role in establishing innate and adaptive immune responses, as well as in modulating tumor growth. Mast cells can be activated upon engagement of the high-affinity receptor FcεRI with specific IgE to multivalent antigens or in response to several FcεRI-independent mechanisms. Upon stimulation, mast cells secrete various preformed and newly synthesized mediators. Emerging evidence indicates their ability to be a rich source of secreted extracellular vesicles (EVs), including exosomes and microvesicles, which convey biological functions. Mast cell-derived EVs can interact with and affect other cells located nearby or at distant sites and modulate inflammation, allergic response, and tumor progression. Mast cells are also affected by EVs derived from other cells in the immune system or in the tumor microenvironment, which may activate mast cells to release different mediators. In this review, we summarize the latest data regarding the ability of mast cells to release or respond to EVs and their role in allergic responses, inflammation, and tumor progression. Understanding the release, composition, and uptake of EVs by cells located near to or at sites distant from mast cells in a variety of clinical conditions, such as allergic inflammation, mastocytosis, and lung cancer will contribute to developing novel therapeutic approaches.
Collapse
|
44
|
Padmasekar M, Savai R, Seeger W, Pullamsetti SS. Exposomes to Exosomes: Exosomes as Tools to Study Epigenetic Adaptive Mechanisms in High-Altitude Humans. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:8280. [PMID: 34444030 PMCID: PMC8392481 DOI: 10.3390/ijerph18168280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 12/29/2022]
Abstract
Humans on earth inhabit a wide range of environmental conditions and some environments are more challenging for human survival than others. However, many living beings, including humans, have developed adaptive mechanisms to live in such inhospitable, harsh environments. Among different difficult environments, high-altitude living is especially demanding because of diminished partial pressure of oxygen and resulting chronic hypobaric hypoxia. This results in poor blood oxygenation and reduces aerobic oxidative respiration in the mitochondria, leading to increased reactive oxygen species generation and activation of hypoxia-inducible gene expression. Genetic mechanisms in the adaptation to high altitude is well-studied, but there are only limited studies regarding the role of epigenetic mechanisms. The purpose of this review is to understand the epigenetic mechanisms behind high-altitude adaptive and maladaptive phenotypes. Hypobaric hypoxia is a form of cellular hypoxia, which is similar to the one suffered by critically-ill hypoxemia patients. Thus, understanding the adaptive epigenetic signals operating in in high-altitude adjusted indigenous populations may help in therapeutically modulating signaling pathways in hypoxemia patients by copying the most successful epigenotype. In addition, we have summarized the current information about exosomes in hypoxia research and prospects to use them as diagnostic tools to study the epigenome of high-altitude adapted healthy or maladapted individuals.
Collapse
Affiliation(s)
- Manju Padmasekar
- Max-Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany; (M.P.); (R.S.); (W.S.)
| | - Rajkumar Savai
- Max-Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany; (M.P.); (R.S.); (W.S.)
- Institute for Lung Health (ILH), Justus Liebig University, 35392 Giessen, Germany
- Department of Internal Medicine, Justus-Liebig University Giessen, Member of the DZL, Member of CPI, 35392 Giessen, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, 60438 Frankfurt am Main, Germany
| | - Werner Seeger
- Max-Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany; (M.P.); (R.S.); (W.S.)
- Institute for Lung Health (ILH), Justus Liebig University, 35392 Giessen, Germany
- Department of Internal Medicine, Justus-Liebig University Giessen, Member of the DZL, Member of CPI, 35392 Giessen, Germany
| | - Soni Savai Pullamsetti
- Max-Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany; (M.P.); (R.S.); (W.S.)
- Institute for Lung Health (ILH), Justus Liebig University, 35392 Giessen, Germany
- Department of Internal Medicine, Justus-Liebig University Giessen, Member of the DZL, Member of CPI, 35392 Giessen, Germany
| |
Collapse
|
45
|
Zhang H, Yang M, Wu X, Li Q, Li X, Zhao Y, Du F, Chen Y, Wu Z, Xiao Z, Shen J, Wen Q, Hu W, Cho CH, Chen M, Zhou Y, Li M. The distinct roles of exosomes in tumor-stroma crosstalk within gastric tumor microenvironment. Pharmacol Res 2021; 171:105785. [PMID: 34311072 DOI: 10.1016/j.phrs.2021.105785] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
Gastric cancer (GC) development is a complex process displaying polytropic cell and molecular landscape within gastric tumor microenvironment (TME). Stromal cells in TME, including fibroblasts, endothelial cells, mesenchymal stem cells, and various immune cells, support tumor growth, metastasis, and recurrence, functioning as the soil for gastric tumorigenesis. Importantly, exosomes secreted by either stromal cells or tumor cells during tumor-stroma crosstalk perform as crucial transporter of agents including RNAs and proteins for cell-cell communication in GC pathogenesis. Therefore, given the distinct roles of exosomes secreted by various cell types in GC TME, increasing evidence has indicated that exosomes present as new biomarkers for GC diagnosis and prognosis and shed light on novel approaches for GC treatment.
Collapse
Affiliation(s)
- Hanyu Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; Nanchong Key Laboratory of Individualized Drug Therapy, Department of Pharmacy, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Min Yang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Qianxiu Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Xin Li
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Zhigui Wu
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Wei Hu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, Guangzhou, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Meijuan Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Yejiang Zhou
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China.
| |
Collapse
|
46
|
Srinivasan A, Sundar IK. Recent updates on the role of extracellular vesicles in the pathogenesis of allergic asthma. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2021; 2:127-147. [PMID: 34414402 PMCID: PMC8372030 DOI: 10.20517/evcna.2021.03] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Asthma is a chronic inflammatory disease of the airway diagnosed with different endotypes and phenotypes, characterized by airway obstruction in response to allergens, bacterial/viral infections, or pollutants. Several cell types such as the airway epithelial cells, mesenchymal stem cells and different immune cells including dendritic cells (DCs), T and B cells and mast cells play an essential role during the pathobiology of asthma. Extracellular vesicles (EVs) are membranous nanovesicles produced by every cell type that facilitates intercellular communications. EVs contain heterogeneous cargos that primarily depend on the composition or cell type of origin and they can alter the physiological state of the target cells. EVs encompass a wide variety of proteins including Tetraspanins, MHC classes I and II, co-stimulatory molecules, nucleic acids such as RNA, miRNA, piRNA, circRNA, and lipids like ceramides and sphingolipids. Recent literature indicates that EVs play a pivotal role in the pathophysiology of allergic asthma and may potentially be used as a novel biomarker to determine endotypes and phenotypes in severe asthmatics. Based on the prior reports, we speculate that regulation of EVs biogenesis and release might be under the control of circadian rhythms. Thus, circadian rhythms may influence the composition of the EVs, which alter the microenvironment that results in the induction of an immune-inflammatory response to various environmental insults or allergens such as air pollutants, ozone, diesel exhaust particles, pollens, outdoor molds, environmental tobacco smoke, etc. In this mini-review, we summarize the recent updates on the novel role of EVs in the pathogenesis of asthma, and highlight the link between circadian rhythms and EVs that may be important to identify molecular mechanisms to target during the pathogenesis of chronic inflammatory lung disease such as asthma.
Collapse
Affiliation(s)
- Ashokkumar Srinivasan
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Lawrence, KS 66160, USA
| | - Isaac Kirubakaran Sundar
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Lawrence, KS 66160, USA
| |
Collapse
|
47
|
Examining the evidence for extracellular RNA function in mammals. Nat Rev Genet 2021; 22:448-458. [PMID: 33824487 DOI: 10.1038/s41576-021-00346-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2021] [Indexed: 12/21/2022]
Abstract
The presence of RNAs in the extracellular milieu has sparked the hypothesis that RNA may play a role in mammalian cell-cell communication. As functional nucleic acids transfer from cell to cell in plants and nematodes, the idea that mammalian cells also transfer functional extracellular RNA (exRNA) is enticing. However, untangling the role of mammalian exRNAs poses considerable experimental challenges. This Review discusses the evidence for and against functional exRNAs in mammals and their proposed roles in health and disease, such as cancer and cardiovascular disease. We conclude with a discussion of the forward-looking prospects for studying the potential of mammalian exRNAs as mediators of cell-cell communication.
Collapse
|
48
|
Reszka E, Jabłońska E, Wieczorek E, Valent P, Arock M, Nilsson G, Nedoszytko B, Niedoszytko M. Epigenetic Changes in Neoplastic Mast Cells and Potential Impact in Mastocytosis. Int J Mol Sci 2021; 22:2964. [PMID: 33803981 PMCID: PMC7999363 DOI: 10.3390/ijms22062964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/23/2022] Open
Abstract
Systemic mastocytosis (SM) is a hematologic neoplasm with abnormal accumulation of mast cells in various organ systems such as the bone marrow, other visceral organs and skin. So far, only little is known about epigenetic changes contributing to the pathogenesis of SM. In the current article, we provide an overview of epigenetic changes that may occur and be relevant to mastocytosis, including mutations in genes involved in epigenetic processes, such as TET2, DNMT3A and ASXL1, and global and gene-specific methylation patterns in neoplastic cells. Moreover, we discuss methylation-specific pathways and other epigenetic events that may trigger disease progression in mast cell neoplasms. Finally, we discuss epigenetic targets and the effects of epigenetic drugs, such as demethylating agents and BET-targeting drugs, on growth and viability of neoplastic mast cells. The definitive impact of these targets and the efficacy of epigenetic therapies in advanced SM need to be explored in future preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Edyta Reszka
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, 91-348 Lodz, Poland; (E.J.); (E.W.)
| | - Ewa Jabłońska
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, 91-348 Lodz, Poland; (E.J.); (E.W.)
| | - Edyta Wieczorek
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, 91-348 Lodz, Poland; (E.J.); (E.W.)
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria;
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Michel Arock
- Department of Hematological Biology, Pitié-Sapêtrière Hospital, Sorbonne University, 75013 Paris, France;
| | - Gunnar Nilsson
- Division of Immunology and Allergy, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, SE-171 76 Stockholm, Sweden;
| | - Bogusław Nedoszytko
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, 80-211 Gdansk, Poland;
- Invicta Fertility and Reproductive Center, Molecular Laboratory, Polna 64, 81-740 Sopot, Poland
| | - Marek Niedoszytko
- Department of Allergology, Medical University of Gdansk, 80-211 Gdansk, Poland
| |
Collapse
|
49
|
Hu L, Si L, Dai X, Dong H, Ma Z, Sun Z, Li N, Sha H, Chen Y, Qian Y, Zhang Z. Exosomal miR-409-3p secreted from activated mast cells promotes microglial migration, activation and neuroinflammation by targeting Nr4a2 to activate the NF-κB pathway. J Neuroinflammation 2021; 18:68. [PMID: 33750404 PMCID: PMC7945321 DOI: 10.1186/s12974-021-02110-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 02/16/2021] [Indexed: 02/07/2023] Open
Abstract
Objective Neuroinflammation plays a critical role in central nervous system diseases. Exosomal miRNAs released from various cells are implicated in cell-to-cell communication. Prior studies have placed substantial emphasis on the role of cytokines in mast cell-microglia interactions during neuroinflammation. However, it has never been clearly determined whether exosomal miRNAs participate in the interaction between mast cells and microglia and thus mediate neuroinflammation. Methods The characteristics of exosomes isolated from cell culture supernatants were confirmed by transmission electron microscopy (TEM), nanoparticle-tracking analysis (NTA) and Western blot. The transfer of PKH67-labelled exosomes and Cy3-labelled miR-409-3p was observed by fluorescence microscopy. Migration and activation of murine BV-2 microglial cells were evaluated through Transwell assays and immunofluorescence staining for Iba1 and CD68. CD86, IL-1β, IL-6 and TNF-α were assessed via qRT-PCR and ELISA. MiR-409-3p was detected by qRT-PCR. Nr4a2 and NF-κB levels were measured by western blot. Regulatory effects were identified by luciferase reporter assays. Results Lipopolysaccharide (LPS)-stimulated murine P815 mast cells secreted exosomes that were efficiently taken up by murine BV-2 cells, which promoted murine BV-2 cell migration and activation. LPS-P815 exosomes increased the CD86, IL-1β, IL-6 and TNF-α levels in murine BV-2 microglia. Furthermore, activated mast cells delivered exosomal miR-409-3p to murine BV-2 microglia. Upregulated miR-409-3p promoted murine BV-2 microglial migration, activation and neuroinflammation by targeting Nr4a2 to activate the NF-κB pathway. Conclusion Exosomal miR-409-3p secreted from activated mast cells promotes microglial migration, activation and neuroinflammation by targeting Nr4a2 to activate the NF-κB pathway, which provides evidence that not only cytokines but also exosomal miRNAs participate in neuroinflammation. In the future, targeting exosomal miRNAs may provide new insights into neuroinflammation.
Collapse
Affiliation(s)
- Liuqing Hu
- Department of Anesthesiology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Linjie Si
- Department of Cardiovascular Surgery, the First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Xiaonan Dai
- Department of Obstetrics, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China
| | - Hongquan Dong
- Department of Anesthesiology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Zijian Ma
- Department of Thoracic Surgery, the First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Zhaochu Sun
- Department of Anesthesiology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Nana Li
- Department of Anesthesiology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Huanhuan Sha
- Department of Anesthesiology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Yinan Chen
- Department of Anesthesiology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Yanning Qian
- Department of Anesthesiology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China.
| | - Zhiyuan Zhang
- Department of Pathology, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
50
|
Wu X, Crawford R, Xiao Y, Mao X, Prasadam I. Osteoarthritic Subchondral Bone Release Exosomes That Promote Cartilage Degeneration. Cells 2021; 10:cells10020251. [PMID: 33525381 PMCID: PMC7911822 DOI: 10.3390/cells10020251] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/07/2020] [Accepted: 12/19/2020] [Indexed: 12/19/2022] Open
Abstract
Altered subchondral bone and articular cartilage interactions have been implicated in the pathogenesis of osteoarthritis (OA); however, the mechanisms remain unknown. Exosomes are membrane-derived vesicles that have recently been recognized as important mediators of intercellular communication. Herein, we investigated if OA subchondral bone derived exosomes alter transcriptional and bioenergetic signatures of chondrocytes. Exosomes were isolated and purified from osteoblasts of nonsclerotic or sclerotic zones of human OA subchondral bone and their role on the articular cartilage chondrocytes was evaluated by measuring the extent of extracellular matrix production, cellular bioenergetics, and the expression of chondrocyte activity associated marker genes. Exosomal microRNAs were analyzed using RNA sequencing and validated by quantitative real-time PCR and loss-of-function. In coculture studies, chondrocytes internalized OA sclerotic subchondral bone osteoblast derived exosomes and triggered catabolic gene expression and reduced chondrocyte-specific marker expression a phenomenon that is often observed in OA cartilage. RNA sequencing and miRNA profiling have identified miR-210-5p, which is highly enriched in OA sclerotic subchondral bone osteoblast exosomes, triggered the catabolic gene expression in articular cartilage chondrocytes. Importantly, we demonstrate that miR-210-5p suppresses the oxygen consumption rate of chondrocytes, altering their bioenergetic state that is often observed in OA conditions. These effects were markedly inhibited by the addition of a miR-210-5p inhibitor. Our study indicates that exosomes released by OA sclerotic subchondral bone osteoblasts plays a critical role in progression of cartilage degeneration and might be a potential target for therapeutic intervention in OA.
Collapse
Affiliation(s)
- Xiaoxin Wu
- Department of Orthopaedic Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, China;
- Institute of Health and Biomedical Innovation, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane 4059, Australia; (R.C.); (Y.X.)
| | - Ross Crawford
- Institute of Health and Biomedical Innovation, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane 4059, Australia; (R.C.); (Y.X.)
- Orthopedic Department, the Prince Charles Hospital, Brisbane 4059, Australia
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane 4059, Australia; (R.C.); (Y.X.)
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane 4059, Australia
| | - Xinzhan Mao
- Department of Orthopaedic Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, China;
- Correspondence: (X.M.); (I.P.); Tel.: +617-3138-6137 (I.P.)
| | - Indira Prasadam
- Institute of Health and Biomedical Innovation, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane 4059, Australia; (R.C.); (Y.X.)
- Correspondence: (X.M.); (I.P.); Tel.: +617-3138-6137 (I.P.)
| |
Collapse
|