1
|
Shi J, Wang W, Xu J, Yin W. Regulation of lipid metabolism: a new strategy for platelet storage. Platelets 2025; 36:2465321. [PMID: 39950500 DOI: 10.1080/09537104.2025.2465321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 05/09/2025]
Abstract
Transfusions of platelets are often used as prophylaxis in patients with hematologic malignancies and as treatment for active bleeding. However, platelets are in short supply due to the fact that they could only be kept for 5-7 days in vitro and they lose some of their functionality as a result of platelet storage lesions. To address this issue, refrigeration, cryopreservation and platelet additive solutions have been researched to determine their abilities to extend platelet storage duration. However, refrigerated platelets are quickly cleared after transfusion, while platelets in platelet additive solutions still present issues such as platelets quality and the risk of allergic reactions. Recent studies showed that changes in lipid metabolites during platelet storage and inadequate of fatty acid metabolism may also limit platelet shelf life and function. In this review, we address the principles of lipid metabolism during platelet storage and discuss the strategies for effective platelet storage systems. The findings of this review highlight the role of lipid metabolism during platelet storage, providing insights into future research focused on extending the preservation period and function of platelet.
Collapse
Affiliation(s)
- Jieyun Shi
- College of Life Sciences, Northwest University, Xi'an, China
- Department of Transfusion Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Wenting Wang
- Department of Transfusion Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Jinmei Xu
- Department of Transfusion Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Wen Yin
- Department of Transfusion Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| |
Collapse
|
2
|
Xia W, Tan Y, Liu Y, Xie N, Zhu H. Prospect of extracellular vesicles in tumor immunotherapy. Front Immunol 2025; 16:1525052. [PMID: 40078996 PMCID: PMC11897508 DOI: 10.3389/fimmu.2025.1525052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/28/2025] [Indexed: 03/14/2025] Open
Abstract
Extracellular vesicles (EVs), as cell-derived small vesicles, facilitate intercellular communication within the tumor microenvironment (TME) by transporting biomolecules. EVs from different sources have varied contents, demonstrating differentiated functions that can either promote or inhibit cancer progression. Thus, regulating the formation, secretion, and intake of EVs becomes a new strategy for cancer intervention. Advancements in EV isolation techniques have spurred interest in EV-based therapies, particularly for tumor immunotherapy. This review explores the multifaceted functions of EVs from various sources in tumor immunotherapy, highlighting their potential in cancer vaccines and adoptive cell therapy. Furthermore, we explore the potential of EVs as nanoparticle delivery systems in tumor immunotherapy. Finally, we discuss the current state of EVs in clinical settings and future directions, aiming to provide crucial information to advance the development and clinical application of EVs for cancer treatment.
Collapse
Affiliation(s)
- Wenbo Xia
- Department of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yunhan Tan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yongen Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Na Xie
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Huili Zhu
- Department of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Beitia M, Guadilla J, Mercader Ruiz J, Marijuan Pinel D, Sánchez P, Iriondo A, Andrade R, Espregueira-Mendes J, Delgado D, Sánchez M. The Effect of Long-Term Cryopreservation on the Properties and Functionality of Platelet-Rich Plasma. Int J Mol Sci 2025; 26:721. [PMID: 39859436 PMCID: PMC11766244 DOI: 10.3390/ijms26020721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Platelet-Rich Plasma (PRP) is a biological treatment widely used in regenerative medicine for its restorative capacity. Although PRP is typically applied at the time of obtention, long-term storage and preservation could enhance its versatility and clinical applications. The objective of this study was to evaluate the effect of long-term freezing on PRP. For that, PRP and Platelet Lysates (PL) were collected and preserved at -20 °C and -80 °C for 6 and 12 months. The parameters analyzed included platelet count and size, fibrinogen levels, platelet activation percentage, growth factor (GF) levels, and bioactivity on cultured dermal fibroblasts. No significant changes in platelet count were found; however, variations in platelet size were observed. Platelets stored at -20 °C and -80 °C showed structural changes and increased activation over time, including membrane roughness and possible aggregation. GF analysis revealed a reduction in platelet-derived growth factors (PDGF-AB and VEGF), while extraplatelet factors like IGF-1 remained stable. Fibroblast cultures showed comparable cell viability when exposed to fresh and cryopreserved PRP and PL samples. These findings suggest that cryopreserving PRP at -20 °C or -80 °C for up to 12 months is a feasible approach for retaining its therapeutic potential, supporting its use in biobanking, and expanding clinical accessibility.
Collapse
Affiliation(s)
- Maider Beitia
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, 01008 Vitoria-Gasteiz, Spain; (M.B.); (J.M.R.); (D.M.P.); (D.D.)
| | - Jorge Guadilla
- Arthroscopic Surgery Unit, Hospital Vithas Vitoria, 01008 Vitoria-Gasteiz, Spain; (J.G.); (A.I.)
| | - Jon Mercader Ruiz
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, 01008 Vitoria-Gasteiz, Spain; (M.B.); (J.M.R.); (D.M.P.); (D.D.)
| | - Daniel Marijuan Pinel
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, 01008 Vitoria-Gasteiz, Spain; (M.B.); (J.M.R.); (D.M.P.); (D.D.)
| | - Pello Sánchez
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, 01008 Vitoria-Gasteiz, Spain; (M.B.); (J.M.R.); (D.M.P.); (D.D.)
- Arthroscopic Surgery Unit, Hospital Vithas Vitoria, 01008 Vitoria-Gasteiz, Spain; (J.G.); (A.I.)
| | - Ane Iriondo
- Arthroscopic Surgery Unit, Hospital Vithas Vitoria, 01008 Vitoria-Gasteiz, Spain; (J.G.); (A.I.)
| | - Renato Andrade
- Clínica Espregueira—FIFA Medical Centre of Excellence, 4350-415 Porto, Portugal; (R.A.); (J.E.-M.)
- Dom Henrique Research Centre, 4350-415 Porto, Portugal
- Porto Biomechanics Laboratory (LABIOMEP), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
| | - João Espregueira-Mendes
- Clínica Espregueira—FIFA Medical Centre of Excellence, 4350-415 Porto, Portugal; (R.A.); (J.E.-M.)
- Dom Henrique Research Centre, 4350-415 Porto, Portugal
- School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga, Portugal
- 3B’s Research Group—Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, 4805-694 Guimarães, Portugal
| | - Diego Delgado
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, 01008 Vitoria-Gasteiz, Spain; (M.B.); (J.M.R.); (D.M.P.); (D.D.)
| | - Mikel Sánchez
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, 01008 Vitoria-Gasteiz, Spain; (M.B.); (J.M.R.); (D.M.P.); (D.D.)
- Arthroscopic Surgery Unit, Hospital Vithas Vitoria, 01008 Vitoria-Gasteiz, Spain; (J.G.); (A.I.)
| |
Collapse
|
4
|
Karnas E, Zając M, Kmiotek-Wasylewska K, Kamiński K, Yusa SI, Kędracka-Krok S, Dudek P, Szczubiałka K, Nowakowska M, Zuba-Surma EK. Polyelectrolytes Are Effective Cryoprotectants for Extracellular Vesicles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:70174-70186. [PMID: 39667739 DOI: 10.1021/acsami.4c11852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Extracellular vesicles (EVs) have been widely recognized as a heterogeneous group of membrane-coated submicrometer particles released by different types of cells, including stem cells (SCs). Due to their ability to harbor and transfer bioactive cargo into the recipient cells, EVs have been reported as important paracrine factors involved in the regulation of a variety of biological processes. Growing data demonstrate that EVs may serve as potential next-generation cell-free therapeutic factors. However, clinical application of EVs in tissue regeneration requires the development of standardized procedures for their long-term storage, without the loss of structural integrity and biological activity. In the current study, we developed a procedure of EV cryoprotection based on coating them with ultrathin polyelectrolyte bilayer consisting of cationic poly(ethylene glycol)-block- poly(3-(methacryloylamino)propyl)trimethylammonium chloride) (PEGn-b-PMAPTACm) and anionic of poly(2-acrylamido-2-methylpropanesulfonic acid) (PAMPS). Based on the nanoparticle tracking analysis, high-resolution flow cytometry, and mass spectrometry, we studied the vesicle integrity following single- or multiple freezing-thawing cycles and long-term storage. Additionally, we evaluated the effect of cryopreservation on the EVs functional activity in vitro. Obtained data indicate that coating with polyelectrolytes improves the structural integrity of EVs and preserves their biological activity in vitro. Additionally, proteomic analysis confirmed the effect of particle stabilization, as well as an enrichment in EV proteins in samples cryopreserved in the presence of tested polymers. Taking together, our study indicates that the application of polyelectrolytes may be a novel, effective way of facilitating long-term storage of EV preparations for their further use in the biomedical applications.
Collapse
Affiliation(s)
- Elżbieta Karnas
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Mateusz Zając
- Department of Physical Chemistry, Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland
| | - Katarzyna Kmiotek-Wasylewska
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Kamil Kamiński
- Department of Physical Chemistry, Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland
| | - Shin-Ichi Yusa
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji, Hyogo 671-2280, Japan
| | - Sylwia Kędracka-Krok
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Patrycja Dudek
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Krzysztof Szczubiałka
- Department of Physical Chemistry, Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland
| | - Maria Nowakowska
- Department of Physical Chemistry, Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland
| | - Ewa K Zuba-Surma
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| |
Collapse
|
5
|
Kaur M, Fusco S, Van den Broek B, Aseervatham J, Rostami A, Iacovitti L, Grassi C, Lukomska B, Srivastava AK. Most recent advances and applications of extracellular vesicles in tackling neurological challenges. Med Res Rev 2024; 44:1923-1966. [PMID: 38500405 DOI: 10.1002/med.22035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024]
Abstract
Over the past few decades, there has been a notable increase in the global burden of central nervous system (CNS) diseases. Despite advances in technology and therapeutic options, neurological and neurodegenerative disorders persist as significant challenges in treatment and cure. Recently, there has been a remarkable surge of interest in extracellular vesicles (EVs) as pivotal mediators of intercellular communication. As carriers of molecular cargo, EVs demonstrate the ability to traverse the blood-brain barrier, enabling bidirectional communication. As a result, they have garnered attention as potential biomarkers and therapeutic agents, whether in their natural form or after being engineered for use in the CNS. This review article aims to provide a comprehensive introduction to EVs, encompassing various aspects such as their diverse isolation methods, characterization, handling, storage, and different routes for EV administration. Additionally, it underscores the recent advances in their potential applications in neurodegenerative disorder therapeutics. By exploring their unique capabilities, this study sheds light on the promising future of EVs in clinical research. It considers the inherent challenges and limitations of these emerging applications while incorporating the most recent updates in the field.
Collapse
Affiliation(s)
- Mandeep Kaur
- Department of Medicine, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Salvatore Fusco
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Bram Van den Broek
- Department of Neurology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jaya Aseervatham
- Department of Neurology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Abdolmohamad Rostami
- Department of Neurology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Lorraine Iacovitti
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Jefferson Stem Cell and Regenerative Neuroscience Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Barbara Lukomska
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Amit K Srivastava
- Department of Medicine, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
De Paoli SH, Patel M, Elhelu OK, Tarandovskiy ID, Tegegn TZ, Simak J. Structural analysis of platelet fragments and extracellular vesicles produced by apheresis platelets during storage. Blood Adv 2024; 8:207-218. [PMID: 37967384 PMCID: PMC10787271 DOI: 10.1182/bloodadvances.2023011325] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/01/2023] [Accepted: 11/04/2023] [Indexed: 11/17/2023] Open
Abstract
ABSTRACT Platelets (PLTs) for transfusion can be stored for up to 7 days at room temperature (RT). The quality of apheresis PLTs decreases over storage time, which affects PLT hemostatic functions. Here, we characterized the membranous particles produced by PLT storage lesion (PSLPs), including degranulated PLTs, PLT ghosts, membrane fragments, and extracellular membrane vesicles (PEVs). The PSLPs generated in apheresis platelet units were analyzed on days 1, 3, 5, and 7 of RT storage. A differential centrifugation and a sucrose density gradient were used to separate PSLP populations. PSLPs were characterized using scanning and transmission electron microscopy (EM), flow cytometry (FC), and nanoparticle tracking analysis (NTA). PSLPs have different morphologies and a broad size distribution; FC and NTA showed that the concentration of small and large PSLPs increases with storage time. The density gradient separated 3 PSLP populations: (1) degranulated PLTs, PLT ghosts, and large PLT fragments; (2) PEVs originated from PLT activation and organelles released by necrotic PLTs; and (3) PEV ghosts. Most PSLPs expressed phosphatidyl serine and induced thrombin generation in the plasma. PSLPs contained extracellular mitochondria and some had the autophagosome marker LC3. PSLPs encompass degranulated PLTs, PLT ghosts, large PLT fragments, large and dense PEVs, and low-density PEV ghosts. The activation-related PSLPs are released, particularly during early stage of storage (days 1-3), and the release of apoptosis- and necrosis-related PSLPs prevails after that. No elevation of LC3- and TOM20-positive PSLPs indicates that the increase of extracellular mitochondria during later-stage storage is not associated with PLT mitophagy.
Collapse
Affiliation(s)
- Silvia H De Paoli
- Laboratory of Cellular Hematology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD
| | - Mehulkumar Patel
- Laboratory of Cellular Hematology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD
| | - Oumsalama K Elhelu
- Laboratory of Cellular Hematology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD
| | - Ivan D Tarandovskiy
- Laboratory of Cellular Hematology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD
- Hemostasis Branch, Office of Therapeutic Products, Center of Biologics Evaluations and Research, US Food and Drug Administration, Silver Spring, MD
| | - Tseday Z Tegegn
- Laboratory of Cellular Hematology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD
| | - Jan Simak
- Laboratory of Cellular Hematology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD
| |
Collapse
|
7
|
Liu C, Su Y, Guo W, Ma X, Qiao R. The platelet storage lesion, what are we working for? J Clin Lab Anal 2024; 38:e24994. [PMID: 38069592 PMCID: PMC10829691 DOI: 10.1002/jcla.24994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 11/04/2023] [Accepted: 11/26/2023] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Platelet concentrate (PC) transfusions are crucial in prevention and treatment of bleeding in infection, surgery, leukemia, and thrombocytopenia patients. Although the technology for platelet preparation and storage has evolved over the decades, there are still challenges in the demand for platelets in blood banks because the platelet shelf life is limited to 5 days due to bacterial contamination and platelet storage lesions (PSLs) at 20-24°C under constant horizontal agitation. In addition, the relations between some adverse effects of platelet transfusions and PSLs have also been considered. Therefore, understanding the mechanisms of PSLs is conducive to obtaining high quality platelets and facilitating safe and effective platelet transfusions. OBJECTIVE This review summarizes developments in mechanistic research of PSLs and their relationship with clinical practice, providing insights for future research. METHODS Authors conducted a search on PubMed and Web of Science using the professional terms "PSL" and "platelet transfusion." The obtained literature was then roughly categorized based on their research content. Similar studies were grouped into the same sections, and further searches were conducted based on the keywords of each section. RESULTS Different studies have explored PSLs from various perspectives, including changes in platelet morphology, surface molecules, biological response modifiers (BMRs), metabolism, and proteins and RNA, in an attempt to monitor PSLs and identify intervention targets that could alleviate PSLs. Moreover, novel platelet storage conditions, including platelet additive solutions (PAS) and reconsidered cold storage methods, are explored. There are two approaches to obtaining high-quality platelets. One approach simulates the in vivo environment to maintain platelet activity, while the other keeps platelets at a low activity level in vitro under low temperatures. CONCLUSION Understanding PSLs helps us identify good intervention targets and assess the therapeutic effects of different PSLs stages for different patients.
Collapse
Affiliation(s)
- Cheng Liu
- Peking University Third HospitalBeijingChina
| | - Yang Su
- Peking University Third HospitalBeijingChina
| | - Wanwan Guo
- Peking University Third HospitalBeijingChina
| | - Xiaolong Ma
- Peking University Third HospitalBeijingChina
| | - Rui Qiao
- Peking University Third HospitalBeijingChina
| |
Collapse
|
8
|
Ma C, Ding R, Hao K, Du W, Xu L, Gao Q, Yu C. Storage Stability of Blood Samples for miRNAs in Glycosylated Extracellular Vesicles. Molecules 2023; 29:103. [PMID: 38202686 PMCID: PMC10780163 DOI: 10.3390/molecules29010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Extracellular vesicle (EV) miRNAs are promising biomarkers for clinical diagnosis. However, their stability is a crucial concern affecting reliability and accuracy. Factors such as sample collection, processing, storage conditions, and experimental procedures impact EV miRNA stability. Studying EV miRNA stability aims to find optimal handling and storage methods, ensuring integrity and functionality throughout research. In this study, we used RT-qPCR and GlyExo-Capture technology, which can specifically capture glycosylated EVs by lectin, to assess the stability of glycosylated EV miRNAs. We found that slow acceleration centrifugation and two-step centrifugation methods were suitable for subsequent experiments. To ensure uniformity, we recommend using the two-step centrifugation method. We also studied blood storage before serum separation and recommend separation within 2 h at 4 °C or 25 °C. For separated serum samples, higher temperatures accelerated miRNA degradation, and the storage duration should be adjusted based on laboratory conditions. Short-term storage at -20 °C is acceptable for up to 3 months while avoiding repeated freeze-thaw cycles. We developed protective agents to extend the storage time at 25 °C, meeting clinical requirements. Additionally, Lakebio's cfRNA storage tubes effectively preserved the stability of miRNAs in plasma glycosylated EVs. Understanding EV miRNA stability provides insights into optimizing sample handling, storage strategies, and enhancing reliability in clinical applications.
Collapse
Affiliation(s)
- Cuidie Ma
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China;
| | - Rui Ding
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China;
| | - Kun Hao
- Beijing Hotgen Biotech Co., Ltd., Beijing 102600, China; (K.H.); (W.D.); (L.X.)
| | - Wenqian Du
- Beijing Hotgen Biotech Co., Ltd., Beijing 102600, China; (K.H.); (W.D.); (L.X.)
| | - Lida Xu
- Beijing Hotgen Biotech Co., Ltd., Beijing 102600, China; (K.H.); (W.D.); (L.X.)
| | - Qi Gao
- Beijing Hotgen Biotech Co., Ltd., Beijing 102600, China; (K.H.); (W.D.); (L.X.)
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China;
| |
Collapse
|
9
|
Gavioli G, Razzoli A, Bedolla DE, Di Bartolomeo E, Quartieri E, Iotti B, Berni P, Birarda G, Vaccari L, Schiroli D, Marraccini C, Baricchi R, Merolle L. Cryopreservation affects platelet macromolecular composition over time after thawing and differently impacts on cancer cells behavior in vitro. Platelets 2023; 34:2281943. [PMID: 38010129 DOI: 10.1080/09537104.2023.2281943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023]
Abstract
Cryopreservation affects platelets' function, questioning their use for cancer patients. We aimed to investigate the biochemical events that occur over time after thawing to optimize transfusion timing and evaluate the effect of platelet supernatants on tumor cell behavior in vitro. We compared fresh (Fresh-PLT) with Cryopreserved platelets (Cryo-PLT) at 1 h, 3 h and 6 h after thawing. MCF-7 and HL-60 cells were cultured with Fresh- or 1 h Cryo-PLT supernatants to investigate cell proliferation, migration, and PLT-cell adhesion. We noticed a significant impairment of hemostatic activity accompanied by a post-thaw decrease of CD42b+ , which identifies the CD62P--population. FTIR spectroscopy revealed a decrease in the total protein content together with changes in their conformational structure, which identified two sub-groups: 1) Fresh and 1 h Cryo-PLT; 2) 3 h and 6 h cryo-PLT. Extracellular vesicle shedding and phosphatidylserine externalization (PS) increased after thawing. Cryo-PLT supernatants inhibited cell proliferation, impaired MCF-7 cell migration, and reduced ability to adhere to tumor cells. Within the first 3 hours after thawing, irreversible alterations of biomolecular structure occur in Cryo-PLT. Nevertheless, Cryo-PLT should be considered safe for the transfusion of cancer patients because of their insufficient capability to promote cancer cell proliferation, adhesion, or migration.
Collapse
Affiliation(s)
- Gaia Gavioli
- AUSL-IRCCS di Reggio Emilia, Transfusion Medicine Unit, Reggio Emilia, Italy
- Clinical and Experimental PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Agnese Razzoli
- AUSL-IRCCS di Reggio Emilia, Transfusion Medicine Unit, Reggio Emilia, Italy
- Clinical and Experimental PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Diana E Bedolla
- Elettra - Sincrotrone Trieste S.C.p.A, Basovizza, Italy
- Molecular Pathology Lab, International Center for Genetic Engineering and Biotechnology (ICGEB), Area Science Park, Trieste, Italy
- Center for Biospectroscopy and School of Chemistry, Monash University, Clayton, VIC, Australia
| | | | - Eleonora Quartieri
- AUSL-IRCCS di Reggio Emilia, Transfusion Medicine Unit, Reggio Emilia, Italy
| | - Barbara Iotti
- AUSL-IRCCS di Reggio Emilia, Transfusion Medicine Unit, Reggio Emilia, Italy
| | - Pamela Berni
- AUSL-IRCCS di Reggio Emilia, Transfusion Medicine Unit, Reggio Emilia, Italy
| | | | - Lisa Vaccari
- Elettra - Sincrotrone Trieste S.C.p.A, Basovizza, Italy
| | - Davide Schiroli
- AUSL-IRCCS di Reggio Emilia, Transfusion Medicine Unit, Reggio Emilia, Italy
| | - Chiara Marraccini
- AUSL-IRCCS di Reggio Emilia, Transfusion Medicine Unit, Reggio Emilia, Italy
| | - Roberto Baricchi
- AUSL-IRCCS di Reggio Emilia, Transfusion Medicine Unit, Reggio Emilia, Italy
| | - Lucia Merolle
- AUSL-IRCCS di Reggio Emilia, Transfusion Medicine Unit, Reggio Emilia, Italy
| |
Collapse
|
10
|
Susa F, Limongi T, Borgione F, Peiretti S, Vallino M, Cauda V, Pisano R. Comparative Studies of Different Preservation Methods and Relative Freeze-Drying Formulations for Extracellular Vesicle Pharmaceutical Applications. ACS Biomater Sci Eng 2023; 9:5871-5885. [PMID: 37671648 PMCID: PMC10565719 DOI: 10.1021/acsbiomaterials.3c00678] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/15/2023] [Indexed: 09/07/2023]
Abstract
Extracellular vesicles (EVs) have been studied for years for their role as effectors and mediators of cell-to-cell communication and their potential application to develop new and increasingly performing nanotechnological systems for the diagnosis and/or treatment of many diseases. Given all the EVs applications as just isolated, functionalized, or even engineered cellular-derived pharmaceuticals, the standardization of reliable and reproducible methods for their preservation is urgently needed. In this study, we isolated EVs from a healthy blood cell line, B lymphocytes, and compared the effectiveness of different storage methods and relative freeze-drying formulations to preserve some of the most important EVs' key features, i.e., concentration, mean size, protein content, and surface antigen's expression. To develop a preservation method that minimally affects the EVs' integrity and functionality, we applied the freeze-drying process in combination with different excipients. Since EVs are isolated not only from body fluids but also from culture media conditioned by the cells growing there, we decided to test both the effects of the traditional pharmaceutical excipient and of biological media to develop EVs solidified products with desirable appearance and performance properties. Results showed that some of the tested excipients, i.e., sugars in combination with dextran and glycine, successfully maintained the stability and integrity of EVs upon lyophilization. In addition, to evaluate the preservation of the EVs' biological activity, we assessed the cytotoxicity and internalization ability of the reconstituted EVs in healthy (B lymphocytes) and tumoral (Burkitt's lymphoma) cells. Reconstituted EVs demonstrated toxicity only toward the cancerous cells, opening new therapeutic opportunities for the oncological field. Furthermore, our study showed how some biological or cellular-conditioned fluids, commonly used in the field of cell cultures, can act not only as cryoprotectants but also as active pharmaceutical ingredients, significantly tuning the therapeutic effect of EVs, even increasing their cellular internalization.
Collapse
Affiliation(s)
- Francesca Susa
- Department
of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Tania Limongi
- Department
of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Francesca Borgione
- Department
of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Silvia Peiretti
- Department
of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Marta Vallino
- Consiglio
Nazionale delle Ricerche di Torino, Strada delle Cacce 73, 10129 Turin, Italy
| | - Valentina Cauda
- Department
of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Roberto Pisano
- Department
of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| |
Collapse
|
11
|
Kawai-Harada Y, El Itawi H, Komuro H, Harada M. Evaluation of EV Storage Buffer for Efficient Preservation of Engineered Extracellular Vesicles. Int J Mol Sci 2023; 24:12841. [PMID: 37629020 PMCID: PMC10454675 DOI: 10.3390/ijms241612841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Extracellular vesicles (EVs), detectable in all bodily fluids, mediate intercellular communication by transporting molecules between cells. The capacity of EVs to transport molecules between distant organs has drawn interest for clinical applications in diagnostics and therapeutics. Although EVs hold potential for nucleic-acid-based and other molecular therapeutics, the lack of standardized technologies, including isolation, characterization, and storage, leaves many challenges for clinical applications, potentially resulting in misinterpretation of crucial findings. Previously, several groups demonstrated the problems of commonly used storage methods that distort EV integrity. This work aims to evaluate the process to optimize the storage conditions of EVs and then characterize them according to the experimental conditions and the models used previously. Our study reports a highly efficient EV storage condition, focusing on EV capacity to protect their molecular cargo from biological, chemical, and mechanical damage. Compared with commonly used EV storage conditions, our EV storage buffer leads to less size and particle number variation at both 4 °C and -80 °C, enhancing the ability to protect EVs while maintaining targeting functionality.
Collapse
Affiliation(s)
- Yuki Kawai-Harada
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA; (Y.K.-H.)
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Hanine El Itawi
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA; (Y.K.-H.)
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Hiroaki Komuro
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA; (Y.K.-H.)
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Masako Harada
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA; (Y.K.-H.)
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
12
|
Pincela Lins PM, Pirlet E, Szymonik M, Bronckaers A, Nelissen I. Manufacture of extracellular vesicles derived from mesenchymal stromal cells. Trends Biotechnol 2023; 41:965-981. [PMID: 36750391 DOI: 10.1016/j.tibtech.2023.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/09/2022] [Accepted: 01/05/2023] [Indexed: 02/08/2023]
Abstract
Mesenchymal stromal cells (MSCs) are a promising therapy for various diseases ranging from ischemic stroke to wound healing and cancer. Their therapeutic effects are mainly mediated by secretome-derived paracrine factors, with extracellular vesicles (EVs) proven to play a key role. This has led to promising research on the potential of MSC-EVs as regenerative, off-the-shelf therapeutic agents. However, the translation of MSC-EVs into the clinic is hampered by the poor scalability of their production. Recently, new advanced methods have been developed to upscale MSC cultivation and EV production yields, ranging from new cell culture devices to priming procedures. This review gives an overview of these innovative strategies for manufacturing MSC-EVs.
Collapse
Affiliation(s)
- Paula M Pincela Lins
- Hasselt University, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Agoralaan, 3590 Diepenbeek, Belgium; Flemish Institute for Technological Research (VITO), Health Department, Boeretang, 2400 Mol, Belgium
| | - Elke Pirlet
- Hasselt University, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Agoralaan, 3590 Diepenbeek, Belgium
| | - Michal Szymonik
- Flemish Institute for Technological Research (VITO), Health Department, Boeretang, 2400 Mol, Belgium
| | - Annelies Bronckaers
- Hasselt University, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Agoralaan, 3590 Diepenbeek, Belgium.
| | - Inge Nelissen
- Flemish Institute for Technological Research (VITO), Health Department, Boeretang, 2400 Mol, Belgium.
| |
Collapse
|
13
|
Petroni D, Fabbri C, Babboni S, Menichetti L, Basta G, Del Turco S. Extracellular Vesicles and Intercellular Communication: Challenges for In Vivo Molecular Imaging and Tracking. Pharmaceutics 2023; 15:1639. [PMID: 37376087 PMCID: PMC10301899 DOI: 10.3390/pharmaceutics15061639] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Extracellular vesicles (EVs) are a heterogeneous class of cell-derived membrane vesicles released by various cell types that serve as mediators of intercellular signaling. When released into circulation, EVs may convey their cargo and serve as intermediaries for intracellular communication, reaching nearby cells and possibly also distant organs. In cardiovascular biology, EVs released by activated or apoptotic endothelial cells (EC-EVs) disseminate biological information at short and long distances, contributing to the development and progression of cardiovascular disease and related disorders. The significance of EC-EVs as mediators of cell-cell communication has advanced, but a thorough knowledge of the role that intercommunication plays in healthy and vascular disease is still lacking. Most data on EVs derive from in vitro studies, but there are still little reliable data available on biodistribution and specific homing EVs in vivo tissues. Molecular imaging techniques for EVs are crucial to monitoring in vivo biodistribution and the homing of EVs and their communication networks both in basal and pathological circumstances. This narrative review provides an overview of EC-EVs, trying to highlight their role as messengers of cell-cell interaction in vascular homeostasis and disease, and describes emerging applications of various imaging modalities for EVs visualization in vivo.
Collapse
Affiliation(s)
- Debora Petroni
- Institute of Clinical Physiology, CNR San Cataldo Research Area, Via Moruzzi 1, 56124 Pisa, Italy
| | - Costanza Fabbri
- Institute of Clinical Physiology, CNR San Cataldo Research Area, Via Moruzzi 1, 56124 Pisa, Italy
- Institute of Life Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | - Serena Babboni
- Institute of Clinical Physiology, CNR San Cataldo Research Area, Via Moruzzi 1, 56124 Pisa, Italy
| | - Luca Menichetti
- Institute of Clinical Physiology, CNR San Cataldo Research Area, Via Moruzzi 1, 56124 Pisa, Italy
| | - Giuseppina Basta
- Institute of Clinical Physiology, CNR San Cataldo Research Area, Via Moruzzi 1, 56124 Pisa, Italy
| | - Serena Del Turco
- Institute of Clinical Physiology, CNR San Cataldo Research Area, Via Moruzzi 1, 56124 Pisa, Italy
| |
Collapse
|
14
|
Levy D, Jeyaram A, Born LJ, Chang KH, Abadchi SN, Hsu ATW, Solomon T, Aranda A, Stewart S, He X, Harmon JW, Jay SM. Impact of storage conditions and duration on function of native and cargo-loaded mesenchymal stromal cell extracellular vesicles. Cytotherapy 2023; 25:502-509. [PMID: 36513574 PMCID: PMC10079553 DOI: 10.1016/j.jcyt.2022.11.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND AIMS As evidenced by ongoing clinical trials and increased activity in the commercial sector, extracellular vesicle (EV)-based therapies have begun the transition from bench to bedside. As this progression continues, one critical aspect of EV clinical translation is understanding the effects of storage and transport conditions. Several studies have assessed the impact of storage on EV characteristics such as morphology, uptake and component content, but effects of storage duration and temperature on EV functional bioactivity and, especially, loaded cargo are rarely reported. METHODS The authors assessed EV outcomes following storage at different temperatures (room temperature, 4°C, -20°C, -80°C) for various durations as well as after lyophilization. RESULTS Mesenchymal stromal cell (MSC) EVs were observed to retain key aspects of their bioactivity (pro-vascularization, anti-inflammation) for up to 4-6 weeks at -20°C and -80°C and after lyophilization. Furthermore, via in vitro assays and an in vivo wound healing model, these same storage conditions were also demonstrated to enable preservation of the functionality of loaded microRNA and long non-coding RNA cargo in MSC EVs. CONCLUSIONS These findings extend the current understanding of how EV therapeutic potential is impacted by storage conditions and may inform best practices for handling and storing MSC EVs for both basic research and translational purposes.
Collapse
Affiliation(s)
- Daniel Levy
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - Anjana Jeyaram
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - Louis J Born
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - Kai-Hua Chang
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Angela Ting Wei Hsu
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Talia Solomon
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - Amaya Aranda
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - Samantha Stewart
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - John W Harmon
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Steven M Jay
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA; Program in Molecular and Cell Biology, University of Maryland, College Park, Maryland, USA.
| |
Collapse
|
15
|
Noorman F, Rijnhout TWH, de Kort B, Hoencamp R. Frozen for combat: Quality of deep-frozen thrombocytes, produced and used by The Netherlands Armed Forces 2001-2021. Transfusion 2023; 63:203-216. [PMID: 36318083 PMCID: PMC10092739 DOI: 10.1111/trf.17166] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/19/2022] [Accepted: 10/08/2022] [Indexed: 01/15/2023]
Abstract
BACKGROUND The Netherlands Armed Forces (NLAF) are using -80°C deep-frozen thrombocyte concentrate (DTC) since 2001. The aim of this study is to investigate the effect of storage duration and alterations in production/measurement techniques on DTC quality. It is expected that DTC quality is unaffected by storage duration and in compliance with the European guidelines for fresh and cryopreserved platelets. STUDY DESIGN AND METHODS Pre-freeze and post-thaw product platelet content and recovery were collected to analyze the effects of dimethyl sulfoxide (DMSO) type, duration of frozen storage (DMSO-1 max 12 years and DMSO-2 frozen DTC max 4 years at -80°C) and type of plasma used to suspend DTC. Coagulation characteristics of thawed DTC, plasma and supernatant of DTC (2× 2500 G) were measured with Kaolin thromboelastography (TEG) and phospholipid (PPL) activity assay. RESULTS Platelet content and recovery of DTC is ±10%-15% lower in short-stored products and remained stable when stored beyond 0.5 years. Thawed DTC (n = 1724) were compliant to the European guidelines (98.1% post-thaw product recovery ≥50% from original product, 98.3% ≥200 × 109 platelets/unit). Compared to DMSO-1, products frozen with DMSO-2 showed ±8% reduced thaw-freeze recovery, a higher TEG clot strength (MA 58 [6] vs. 64 [8] mm) and same ±11 s PPL clotting time. The use of cold-stored thawed plasma instead of fresh thawed plasma did not influence product recovery or TEG-MA. DISCUSSION Regardless of alterations, product quality was in compliance with European guidelines and unaffected by storage duration up to 12 years of -80°C frozen storage.
Collapse
Affiliation(s)
- Femke Noorman
- Military Blood Bank, Ministry of Defense, Utrecht, The Netherlands
| | - Tim W H Rijnhout
- Department of Surgery, Alrijne Medical Centre, Leiderdorp, The Netherlands.,Trauma Research Unit Department of Surgery, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Bob de Kort
- Military Blood Bank, Ministry of Defense, Utrecht, The Netherlands
| | - Rigo Hoencamp
- Department of Surgery, Alrijne Medical Centre, Leiderdorp, The Netherlands.,Trauma Research Unit Department of Surgery, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands.,Defense Healthcare Organization, Ministry of Defense, Utrecht, The Netherlands.,Department of Surgery, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
16
|
Jin M, Zhang S, Wang M, Li Q, Ren J, Luo Y, Sun X. Exosomes in pathogenesis, diagnosis, and therapy of ischemic stroke. Front Bioeng Biotechnol 2022; 10:980548. [PMID: 36588958 PMCID: PMC9800834 DOI: 10.3389/fbioe.2022.980548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Ischemic stroke is one of the major contributors to death and disability worldwide. Thus, there is an urgent need to develop early brain tissue perfusion therapies following acute stroke and to enhance functional recovery in stroke survivors. The morbidity, therapy, and recovery processes are highly orchestrated interactions involving the brain with other tissues. Exosomes are natural and ideal mediators of intercellular information transfer and recognized as biomarkers for disease diagnosis and prognosis. Changes in exosome contents express throughout the physiological process. Accumulating evidence demonstrates the use of exosomes in exploring unknown cellular and molecular mechanisms of intercellular communication and organ homeostasis and indicates their potential role in ischemic stroke. Inspired by the unique properties of exosomes, this review focuses on the communication, diagnosis, and therapeutic role of various derived exosomes, and their development and challenges for the treatment of cerebral ischemic stroke.
Collapse
Affiliation(s)
- Meiqi Jin
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China,NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
| | - Shuxia Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China,NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
| | - Mengchen Wang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China,NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
| | - Qiaoyu Li
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China,NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
| | - Jiahui Ren
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China,NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China,*Correspondence: Yun Luo, ; Xiaobo Sun,
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China,NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China,*Correspondence: Yun Luo, ; Xiaobo Sun,
| |
Collapse
|
17
|
Song J, Song B, Yuan L, Yang G. Multiplexed strategies toward clinical translation of extracellular vesicles. Theranostics 2022; 12:6740-6761. [PMID: 36185609 PMCID: PMC9516239 DOI: 10.7150/thno.75899] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/07/2022] [Indexed: 11/22/2022] Open
Abstract
Extracellular vesicles (EVs), of which exosomes are a representative subgroup, are naturally secreted nanoparticles with a variety of payloads. With the intrinsic merits of stability, biocompatibility, low immunogenicity, and large capacity, EVs are widely regarded as effective carriers of drug delivery. However, disadvantages, such as low yield, complicated isolation procedures, and low loading efficiency, hinder its clinical translation. In this review, we systematically summarize the advances in EV (especially exosomes) engineering for clinical application, focusing on strategies toward high yield, facile isolation, efficient cargo loading, improved delivery, and optimized manufacturing, which might unleash the infinite power of EVs in clinical translation.
Collapse
Affiliation(s)
- Junying Song
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
- Cadet Team 6 of School of Basic Medicine, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Baoqiang Song
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Lijun Yuan
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| | - Guodong Yang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| |
Collapse
|
18
|
Wang S, Liu Q, Cheng L, Wang L, Xu F, Yao C. Targeting biophysical cues to address platelet storage lesions. Acta Biomater 2022; 151:118-133. [PMID: 36028196 DOI: 10.1016/j.actbio.2022.08.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/06/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022]
Abstract
Platelets play vital roles in vascular repair, especially in primary hemostasis, and have been widely used in transfusion to prevent bleeding or manage active bleeding. Recently, platelets have been used in tissue repair (e.g., bone, skin, and dental alveolar tissue) and cell engineering as drug delivery carriers. However, the biomedical applications of platelets have been associated with platelet storage lesions (PSLs), resulting in poor clinical outcomes with reduced recovery, survival, and hemostatic function after transfusion. Accumulating evidence has shown that biophysical cues play important roles in platelet lesions, such as granule secretion caused by shear stress, adhesion affected by substrate stiffness, and apoptosis caused by low temperature. This review summarizes four major biophysical cues (i.e., shear stress, substrate stiffness, hydrostatic pressure, and thermal microenvironment) involved in the platelet preparation and storage processes, and discusses how they may synergistically induce PSLs such as platelet shape change, activation, apoptosis and clearance. We also review emerging methods for studying these biophysical cues in vitro and existing strategies targeting biophysical cues for mitigating PSLs. We conclude with a perspective on the future direction of biophysics-based strategies for inhibiting PSLs. STATEMENT OF SIGNIFICANCE: Platelet storage lesions (PSLs) involve a series of structural and functional changes. It has long been accepted that PSLs are initiated by biochemical cues. Our manuscript is the first to propose four major biophysical cues (shear stress, substrate stiffness, hydrostatic pressure, and thermal microenvironment) that platelets experience in each operation step during platelet preparation and storage processes in vitro, which may synergistically contribute to PSLs. We first clarify these biophysical cues and how they induce PSLs. Strategies targeting each biophysical cue to improve PSLs are also summarized. Our review is designed to draw the attention from a broad range of audience, including clinical doctors, biologists, physical scientists, engineers and materials scientists, and immunologist, who study on platelets physiology and pathology.
Collapse
Affiliation(s)
- Shichun Wang
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Qi Liu
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Lihan Cheng
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Lu Wang
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China.
| | - Chunyan Yao
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China; State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing 400038, PR China.
| |
Collapse
|
19
|
Feng ZY, Zhang QY, Tan J, Xie HQ. Techniques for increasing the yield of stem cell-derived exosomes: what factors may be involved? SCIENCE CHINA. LIFE SCIENCES 2022; 65:1325-1341. [PMID: 34637101 PMCID: PMC8506103 DOI: 10.1007/s11427-021-1997-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/11/2021] [Indexed: 02/05/2023]
Abstract
Exosomes are nano-scale extracellular vesicles secreted by cells and constitute an important part in the cell-cell communication. The main contents of the exosomes include proteins, microRNAs, and lipids. The mechanism and safety of stem cell-derived exosomes have rendered them a promising therapeutic strategy for regenerative medicine. Nevertheless, limited yield has restrained full explication of their functions and clinical applications To address this, various attempts have been made to explore the up- and down-stream manipulations in a bid to increase the production of exosomes. This review has recapitulated factors which may influence the yield of stem cell-derived exosomes, including selection and culture of stem cells, isolation and preservation of the exosomes, and development of artificial exosomes.
Collapse
Affiliation(s)
- Zi-Yuan Feng
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qing-Yi Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Tan
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
20
|
Görgens A, Corso G, Hagey DW, Jawad Wiklander R, Gustafsson MO, Felldin U, Lee Y, Bostancioglu RB, Sork H, Liang X, Zheng W, Mohammad DK, van de Wakker SI, Vader P, Zickler AM, Mamand DR, Ma L, Holme MN, Stevens MM, Wiklander OPB, EL Andaloussi S. Identification of storage conditions stabilizing extracellular vesicles preparations. J Extracell Vesicles 2022; 11:e12238. [PMID: 35716060 PMCID: PMC9206228 DOI: 10.1002/jev2.12238] [Citation(s) in RCA: 187] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/23/2022] [Accepted: 05/16/2022] [Indexed: 12/31/2022] Open
Abstract
Extracellular vesicles (EVs) play a key role in many physiological and pathophysiological processes and hold great potential for therapeutic and diagnostic use. Despite significant advances within the last decade, the key issue of EV storage stability remains unresolved and under investigated. Here, we aimed to identify storage conditions stabilizing EVs and comprehensively compared the impact of various storage buffer formulations at different temperatures on EVs derived from different cellular sources for up to 2 years. EV features including concentration, diameter, surface protein profile and nucleic acid contents were assessed by complementary methods, and engineered EVs containing fluorophores or functionalized surface proteins were utilized to compare cellular uptake and ligand binding. We show that storing EVs in PBS over time leads to drastically reduced recovery particularly for pure EV samples at all temperatures tested, starting already within days. We further report that using PBS as diluent was found to result in severely reduced EV recovery rates already within minutes. Several of the tested new buffer conditions largely prevented the observed effects, the lead candidate being PBS supplemented with human albumin and trehalose (PBS-HAT). We report that PBS-HAT buffer facilitates clearly improved short-term and long-term EV preservation for samples stored at -80°C, stability throughout several freeze-thaw cycles, and drastically improved EV recovery when using a diluent for EV samples for downstream applications.
Collapse
Affiliation(s)
- André Görgens
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
- Institute for Transfusion MedicineUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
- Evox Therapeutics LimitedOxfordUK
| | - Giulia Corso
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
| | - Daniel W. Hagey
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
| | - Rim Jawad Wiklander
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
| | - Manuela O. Gustafsson
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
| | - Ulrika Felldin
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
| | - Yi Lee
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
| | - R. Beklem Bostancioglu
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
| | - Helena Sork
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
- Institute of TechnologyUniversity of TartuTartuEstonia
| | - Xiuming Liang
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
| | - Wenyi Zheng
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
| | - Dara K. Mohammad
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
- College of Agricultural Engineering SciencesSalahaddin University‐ErbilErbilKurdistan RegionIraq
| | - Simonides I. van de Wakker
- Department of CardiologyExperimental Cardiology LaboratoryUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Pieter Vader
- Department of CardiologyExperimental Cardiology LaboratoryUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
- CDL ResearchUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Antje M. Zickler
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
| | - Doste R. Mamand
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
| | - Li Ma
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| | - Margaret N. Holme
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| | - Molly M. Stevens
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
- Department of MaterialsDepartment of Bioengineeringand Institute of Biomedical EngineeringImperial College LondonLondonUK
| | - Oscar P. B. Wiklander
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
- Evox Therapeutics LimitedOxfordUK
| | - Samir EL Andaloussi
- Department of Laboratory Medicine, Clinical Research CenterKarolinska InstitutetStockholmSweden
- Evox Therapeutics LimitedOxfordUK
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| |
Collapse
|
21
|
Imanbekova M, Suarasan S, Lu Y, Jurchuk S, Wachsmann-Hogiu S. Recent advances in optical label-free characterization of extracellular vesicles. NANOPHOTONICS 2022; 11:2827-2863. [PMID: 35880114 PMCID: PMC9128385 DOI: 10.1515/nanoph-2022-0057] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/16/2022] [Indexed: 05/04/2023]
Abstract
Extracellular vesicles (EVs) are complex biological nanoparticles endogenously secreted by all eukaryotic cells. EVs carry a specific molecular cargo of proteins, lipids, and nucleic acids derived from cells of origin and play a significant role in the physiology and pathology of cells, organs, and organisms. Upon release, they may be found in different body fluids that can be easily accessed via noninvasive methodologies. Due to the unique information encoded in their molecular cargo, they may reflect the state of the parent cell and therefore EVs are recognized as a rich source of biomarkers for early diagnostics involving liquid biopsy. However, body fluids contain a mixture of EVs released by different types of healthy and diseased cells, making the detection of the EVs of interest very challenging. Recent research efforts have been focused on the detection and characterization of diagnostically relevant subpopulations of EVs, with emphasis on label-free methods that simplify sample preparation and are free of interfering signals. Therefore, in this paper, we review the recent progress of the label-free optical methods employed for the detection, counting, and morphological and chemical characterization of EVs. We will first briefly discuss the biology and functions of EVs, and then introduce different optical label-free techniques for rapid, precise, and nondestructive characterization of EVs such as nanoparticle tracking analysis, dynamic light scattering, atomic force microscopy, surface plasmon resonance spectroscopy, Raman spectroscopy, and SERS spectroscopy. In the end, we will discuss their applications in the detection of neurodegenerative diseases and cancer and provide an outlook on the future impact and challenges of these technologies to the field of liquid biopsy via EVs.
Collapse
Affiliation(s)
- Meruyert Imanbekova
- Bioengineering, McGill University Faculty of Engineering, Montreal, QC, Canada
| | - Sorina Suarasan
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian 42, 400271, Cluj-Napoca, Romania
| | - Yao Lu
- Bioengineering, McGill University Faculty of Engineering, 3480 Rue Universite, 1006, Montreal, QC, H3C6W1, Canada
| | - Sarah Jurchuk
- Bioengineering, McGill University Faculty of Engineering, 3480 Rue Universite, Rm#350, Montreal, QC, H3A 0E9, Canada
| | - Sebastian Wachsmann-Hogiu
- Bioengineering, McGill University Faculty of Engineering, 3480 University St., MC362, Montreal, H3A 0E9l, Canada
| |
Collapse
|
22
|
Sivanantham A, Jin Y. Impact of Storage Conditions on EV Integrity/Surface Markers and Cargos. Life (Basel) 2022; 12:life12050697. [PMID: 35629364 PMCID: PMC9146501 DOI: 10.3390/life12050697] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are small biological particles released into biofluids by every cell. Based on their size, they are classified into small EVs (<100 nm or <200 nm) and medium or large EVs (>200 nm). In recent years, EVs have garnered interest for their potential medical applications, including disease diagnosis, cell-based biotherapies, targeted drug delivery systems, and others. Currently, the long-term and short-term storage temperatures for biofluids and EVs are −80 °C and 4 °C, respectively. The storage capacity of EVs can depend on their number, size, function, temperature, duration, and freeze−thaw cycles. While these parameters are increasingly studied, the effects of preservation and storage conditions of EVs on their integrity remain to be understood. Knowledge gaps in these areas may ultimately impede the widespread applicability of EVs. Therefore, this review summarizes the current knowledge on the effect of storage conditions on EVs and their stability and critically explores prospective ways for improving long-term storage conditions to ensure EV stability.
Collapse
Affiliation(s)
| | - Yang Jin
- Correspondence: ; Tel.: +1-617-358-1356
| |
Collapse
|
23
|
Gelibter S, Marostica G, Mandelli A, Siciliani S, Podini P, Finardi A, Furlan R. The impact of storage on extracellular vesicles: A systematic study. J Extracell Vesicles 2022; 11:e12162. [PMID: 35102719 PMCID: PMC8804350 DOI: 10.1002/jev2.12162] [Citation(s) in RCA: 156] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/31/2021] [Accepted: 10/08/2021] [Indexed: 02/06/2023] Open
Abstract
Mounting evidence suggests that storage has an impact on extracellular vesicles (EVs) properties. While -80°C storage is a widespread approach, some authors proposed improved storage strategies with conflicting results. Here, we designed a systematic study to assess the impact of -80°C storage and freeze-thaw cycles on EVs. We tested the differences among eight storage strategies and investigated the possible fusion phenomena occurring during storage. EVs were collected from human plasma and murine microglia culture by size exclusion chromatography and ultracentrifugation, respectively. The analysis included: concentration, size and zeta potential (tunable resistive pulse sensing), contaminant protein assessment; flow cytometry for the analysis of two single fluorescent-tagged EVs populations (GFP and mCherry), mixed before preservation. We found that -80°C storage reduces EVs concentration and sample purity in a time-dependent manner. Furthermore, it increases the particle size and size variability and modifies EVs zeta potential, with a shift of EVs in size-charge plots. None of the tested conditions prevented the observed effects. Freeze-thaw cycles lead to an EVs reduction after the first cycle and to a cycle-dependent increase in particle size. With flow cytometry, after storage, we observed a significant population of double-positive EVs (GFP+ -mCherry+ ). This observation may suggest the occurrence of fusion phenomena during storage. Our findings show a significant impact of storage on EVs samples in terms of particle loss, purity reduction and fusion phenomena leading to artefactual particles. Depending on downstream analyses and experimental settings, EVs should probably be processed from fresh, non-archival, samples in majority of cases.
Collapse
Affiliation(s)
- Stefano Gelibter
- Clinical Neuroimmunology UnitInstitute of Experimental NeurologyDivision of NeuroscienceIRCCS Ospedale San RaffaeleMilanItaly
| | - Giulia Marostica
- Clinical Neuroimmunology UnitInstitute of Experimental NeurologyDivision of NeuroscienceIRCCS Ospedale San RaffaeleMilanItaly
| | - Alessandra Mandelli
- Clinical Neuroimmunology UnitInstitute of Experimental NeurologyDivision of NeuroscienceIRCCS Ospedale San RaffaeleMilanItaly
| | - Stella Siciliani
- Neuroimmunology UnitInstitute of Experimental NeurologyDivision of NeuroscienceIRCCS Ospedale San RaffaeleMilanItaly
| | - Paola Podini
- Neuropathology UnitInstitute of Experimental NeurologyDivision of NeuroscienceIRCCS Ospedale San RaffaeleMilanItaly
| | - Annamaria Finardi
- Clinical Neuroimmunology UnitInstitute of Experimental NeurologyDivision of NeuroscienceIRCCS Ospedale San RaffaeleMilanItaly
| | - Roberto Furlan
- Clinical Neuroimmunology UnitInstitute of Experimental NeurologyDivision of NeuroscienceIRCCS Ospedale San RaffaeleMilanItaly
| |
Collapse
|
24
|
Ramirez-Garrastacho M, Bajo-Santos C, Line A, Martens-Uzunova ES, de la Fuente JM, Moros M, Soekmadji C, Tasken KA, Llorente A. Extracellular vesicles as a source of prostate cancer biomarkers in liquid biopsies: a decade of research. Br J Cancer 2022; 126:331-350. [PMID: 34811504 PMCID: PMC8810769 DOI: 10.1038/s41416-021-01610-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 01/02/2023] Open
Abstract
Prostate cancer is a global cancer burden and considerable effort has been made through the years to identify biomarkers for the disease. Approximately a decade ago, the potential of analysing extracellular vesicles in liquid biopsies started to be envisaged. This was the beginning of a new exciting area of research investigating the rich molecular treasure found in extracellular vesicles to identify biomarkers for a variety of diseases. Vesicles released from prostate cancer cells and cells of the tumour microenvironment carry molecular information about the disease that can be analysed in several biological fluids. Numerous studies document the interest of researchers in this field of research. However, methodological issues such as the isolation of vesicles have been challenging. Remarkably, novel technologies, including those based on nanotechnology, show promise for the further development and clinical use of extracellular vesicles as liquid biomarkers. Development of biomarkers is a long and complicated process, and there are still not many biomarkers based on extracellular vesicles in clinical use. However, the knowledge acquired during the last decade constitutes a solid basis for the future development of liquid biopsy tests for prostate cancer. These are urgently needed to bring prostate cancer treatment to the next level in precision medicine.
Collapse
Affiliation(s)
- Manuel Ramirez-Garrastacho
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | | | - Aija Line
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Elena S Martens-Uzunova
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Urology, Laboratory of Experimental Urology, Erasmus MC, Rotterdam, The Netherlands
| | - Jesus Martinez de la Fuente
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Maria Moros
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Carolina Soekmadji
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Kristin Austlid Tasken
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
- Department for Mechanical, Electronics and Chemical Engineering, Oslo Metropolitan University, Oslo, Norway.
| |
Collapse
|
25
|
Tarandovskiy ID, Buehler PW, Karnaukhova E. C1-inhibitor influence on platelet activation by thrombin receptors agonists. Clin Appl Thromb Hemost 2022; 28:10760296221120422. [PMID: 35996317 PMCID: PMC9421059 DOI: 10.1177/10760296221120422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Protease activated receptors 1 (PAR1) and 4 (PAR4) agonists are used to study platelet activation. Data on platelet activation are extrapolated across experimental settings. C1-inhibitor (C1INH) is a protease inhibitor present in plasma but not in isolated platelet suspensions. Here we show that C1INH affects platelet activation through PAR1 and PAR4 agonists. METHODS Platelets were isolated from healthy donor whole blood and then labeled with anti-CD62P and PAC1 antibodies. The platelet suspensions were exposed to PAR1 agonists SFLLRN, TFLLR and TFLLRN; PAR4 agonists AYPGKF and GYPGQV; ADP and thrombin. Flow-cytometric measurements were performed in 5, 10 and 15 min after activation. RESULTS 0.25 mg/ml C1INH addition made platelets to faster expose CD62P and glycoprotein IIb/IIIa complex after activation with PAR1 agonists. Conversely, C1INH addition led to inhibition of platelet activation with PAR4 agonists and thrombin. Activation with ADP was not affected by C1INH. CONCLUSIONS Our results suggest that C1INH can modify platelet activation in the presence of synthetic PAR agonists used in platelet research. These observations may be relevant to the development of new methods to assess platelet function.
Collapse
Affiliation(s)
- Ivan D Tarandovskiy
- Hemostasis Branch, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Paul W Buehler
- Department of Pathology and The Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Elena Karnaukhova
- Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
26
|
Christodoulides A, Zeng Z, Alves NJ. In-vitro thromboelastographic characterization of reconstituted whole blood utilizing cryopreserved platelets. Blood Coagul Fibrinolysis 2021; 32:556-563. [PMID: 34475333 DOI: 10.1097/mbc.0000000000001075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Conducting in-vitro thrombosis research presents numerous challenges, the primary of which is working with blood products, whether whole blood or fractionated whole blood, that have limited functional shelf-lives. As a result, being able to significantly prolong the clotting functionality of whole blood via fractionation and recombination promises greater accessibility via resource minimization in the realm of thrombosis research. Whole blood with CPDA1 from healthy volunteers was fractionated and stored as frozen platelet-free plasma (PFP, -20°C), refrigerated packed red blood cells (pRBCs, 4°C) and cryopreserved platelets (-80°C). Subsequent recombination of the above components into their native ratios were tested via thromboelastography (TEG) to capture clotting dynamics over a storage period of 13 weeks in comparison to refrigerated unfractionated WB+CPDA1. Reconstituted whole blood utilizing PFP, pRCBs and cryopreserved platelets were able to maintain clot strength (maximum amplitude) akin to day-0 whole blood even after 13 weeks of storage. Clots formed by reconstituted whole blood exhibited quicker clotting dynamics with nearly two-fold shorter R-times and nearly 1.3-fold increase in fibrin deposition rate as measured by TEG. Storage of fractionated whole blood components, in their respective ideal conditions, provides a means of prolonging the usable life of whole blood for in-vitro thrombosis research. Cryopreserved platelets, when recombined with frozen PFP and refrigerated pRBCs, are able to form clots that nearly mirror the overall clotting profile expected of freshly drawn WB.
Collapse
Affiliation(s)
| | - Ziqian Zeng
- Emergency Medicine Department, Indiana University School of Medicine, Indianapolis
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Nathan J Alves
- Emergency Medicine Department, Indiana University School of Medicine, Indianapolis
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
27
|
Jimenez-Marco T, Castrillo A, Hierro-Riu F, Vicente V, Rivera J. Frozen and cold-stored platelets: reconsidered platelet products. Platelets 2021; 33:27-34. [PMID: 34423718 DOI: 10.1080/09537104.2021.1967917] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Platelet transfusion, both prophylactic and therapeutic, is a key element in modern medicine. Currently, the standard platelet product for clinical use is platelet concentrates at room temperature (20-24°C) under gentle agitation. As this temperature favors bacterial growth, storage is limited to 5-7 days, which result in high wastage rate, and complicates inventory and product availability at remote areas. Frozen and/or cold storage would ameliorate those disadvantages by reducing the risk of bacterial contamination and by extending the product shelf-life to weeks or even years. Consequently, the usefulness in transfusion medicine of platelet cryopreservation and refrigeration, two old and scarcely used platelet storage approaches, is reemerging. Indeed, there have been substantial recent research efforts to characterize both cold and cryopreserved platelets. Most recent studies indicate that cryopreserved and cold platelets display a pro-coagulant profile that may produce the rapid hemostatic response which is needed in bleeding patients. Thus, it seems appropriate that blood banks and blood transfusion centers explore the possibility of split platelet inventories consisting of platelets stored at room temperature and cryopreserved and cold-stored platelets.
Collapse
Affiliation(s)
- Teresa Jimenez-Marco
- Fundació Banc De Sang I Teixits De Les Illes Balears, Majorca, Spain.,Institut d'Investigació Sanitària Illes Balears (Idisba), Majorca, Spain
| | - Azucena Castrillo
- Axencia Galega De Sangue, Órganos E Tecidos. Santiago De Compostela, A Coruña, Spain
| | | | - Vicente Vicente
- Servicio De Hematología Y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional De Hemodonación, Universidad De Murcia, IMIB-Arrixaca, Murcia, Spain
| | - José Rivera
- Servicio De Hematología Y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional De Hemodonación, Universidad De Murcia, IMIB-Arrixaca, Murcia, Spain
| |
Collapse
|
28
|
Thrombin generation test based on a 96-channel pipettor for evaluation of FXIa procoagulant activity in pharmaceuticals. Nat Protoc 2021; 16:3981-4003. [PMID: 34215864 DOI: 10.1038/s41596-021-00568-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/04/2021] [Indexed: 02/06/2023]
Abstract
Thrombin generation (TG) assays are used widely to investigate both diseases and drugs that impact thrombosis and bleeding. TG assays were also instrumental in the identification of thrombogenic impurities in immune globulin products, which were associated with thrombotic adverse events in patients. TG assays are therefore now used by quality control laboratories of plasma derivative drug manufacturers and regulatory agencies responsible for the safety testing and release of immune globulin products. In this protocol, we describe a robust and sensitive version of the TG assay for quantitative measurement of thrombogenic activity in immune globulin products. Compared with the version of the assay commonly used in clinical laboratories that compares individual patient plasma samples with normal donor samples, our TG assay is suitable for quick (170-260 min) semiautomated analysis of multiple drug samples against the World Health Organization international standard for factor XIa. Commercially available reagents can be used for the assay, and it does not require specialized equipment. The protocol can be easily adapted for the measurement of the procoagulant activity of other biopharmaceuticals, e.g., coagulation factors.
Collapse
|
29
|
Rimmer MP, Gregory CD, Mitchell RT. Extracellular vesicles in urological malignancies. Biochim Biophys Acta Rev Cancer 2021; 1876:188570. [PMID: 34019971 PMCID: PMC8351753 DOI: 10.1016/j.bbcan.2021.188570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs) are small lipid bound structures released from cells containing bioactive cargoes. Both the type of cargo and amount loaded varies compared to that of the parent cell. The characterisation of EVs in cancers of the male urogenital tract has identified several cargoes with promising diagnostic and disease monitoring potential. EVs released by cancers of the male urogenital tract promote cell-to-cell communication, migration, cancer progression and manipulate the immune system promoting metastasis by evading the immune response. Their use as diagnostic biomarkers represents a new area of screening and disease detection, potentially reducing the need for invasive biopsies. Many validated EV cargoes have been found to have superior sensitivity and specificity than current diagnostic tools currently in use. The use of EVs to improve disease monitoring and develop novel therapeutics will enable clinicians to individualise patient management in the exciting era of personalised medicine.
Collapse
Affiliation(s)
- Michael P Rimmer
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, UK.
| | - Christopher D Gregory
- Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, UK
| | - Rod T Mitchell
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, UK.
| |
Collapse
|
30
|
Yuan F, Li YM, Wang Z. Preserving extracellular vesicles for biomedical applications: consideration of storage stability before and after isolation. Drug Deliv 2021; 28:1501-1509. [PMID: 34259095 PMCID: PMC8281093 DOI: 10.1080/10717544.2021.1951896] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) are nanovesicles released by various cell types. EVs are known for cell-to-cell communications and have potent biological activities. Despite great progress in recent years for studies exploring the potentials of EVs for early disease detection, therapeutic application and drug delivery, determination of the favorable storage conditions of EVs has been challenging. The understanding of the impact of storage conditions on EVs before and after isolation is still limited. Storage may change the size, number, contents, functions, and behaviors of EVs. Here, we summarized current studies about the stability of EVs in different conditions, focusing on temperatures, durations, and freezing and thawing cycles. -80 °C seems to remain the most favorable condition for storage of biofluids and isolated EVs, while isolated EVs may be stored at 4 °C shortly. Lyophilization is promising for storage of EV products. Challenges remain in the understanding of storage-mediated change in EVs and in the development of advanced preservation techniques of EVs.
Collapse
Affiliation(s)
- Fumin Yuan
- Department of Clinical Medicine, Grade 2018, Xiangya School of Medicine of Central South University, Changsha, China
| | - Ya-Min Li
- Clinical Nursing Teaching and Research Section, Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhuhui Wang
- Hunan Testing Institute for Medical Devices, Changsha, China
| |
Collapse
|
31
|
Jimenez-Marco T, Ballester-Servera C, Quetglas-Oliver M, Morell-Garcia D, Torres-Reverte N, Bautista-Gili AM, Serra-Ramon N, Girona-Llobera E. Cryopreservation of platelets treated with riboflavin and UV light and stored at -80°C for 1 year. Transfusion 2021; 61:1235-1246. [PMID: 33694171 DOI: 10.1111/trf.16324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 01/04/2021] [Accepted: 01/10/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND The combination of pathogen reduction technologies (PRTs) and cryopreservation can contribute to building a safe and durable platelet (PLT) inventory. Information about cryopreserved riboflavin and UV light-treated PLTs is scarce. STUDY DESIGN AND METHODS Twenty-four buffy coat (BC) PLT concentrates were grouped into 12 type-matched pairs, pooled, and divided into 12 non-PRT-treated control units and 12 riboflavin and UV light PRT-treated test units. Both were cryopreserved with 5% DMSO and stored at -80°C for 1 year. The cryopreservation method used was designed to avoid the formation of aggregates. PLT variables (PLT recovery, swirling, pH, MPV, and LDH) and hemostatic function measured by thromboelastography (TEG) were analyzed before cryopreservation (day 1) and post-cryopreservation at day 14 and months 3, 6, and 12 of storage at -80°C. The analyses were carried out within 1-h post-thaw. RESULTS No aggregates were found in either PLT group at any time. Swirling was observed in both groups. MPV increased and mean pH values decreased over time (p < .001), but the mean pH value was never below 6.4 in either group after 12 months of storage at -80°C. PLT recovery was good and clotting time became significantly shorter over the storage period in both groups (p < .001). CONCLUSION Our cryopreservation and thawing method prevented aggregate formation in cryopreserved riboflavin-UV-light-treated PLTs, which exhibited good recovery, swirling, pH > 6.4, and procoagulant potential, as evidenced by a reduced clotting time after 12 months of storage at -80°C. The clinical relevance of these findings should be further investigated in clinical trials.
Collapse
Affiliation(s)
- Teresa Jimenez-Marco
- Fundació Banc de Sang i Teixits de les Illes Balears, Majorca, Spain.,Institut d'Investigació Sanitària Illes Balears (IdISBa), Majorca, Spain
| | | | | | - Daniel Morell-Garcia
- Institut d'Investigació Sanitària Illes Balears (IdISBa), Majorca, Spain.,Servicio de Análisis Clínicos, Hospital Universitari Son Espases, Majorca, Spain
| | | | - Antonia M Bautista-Gili
- Fundació Banc de Sang i Teixits de les Illes Balears, Majorca, Spain.,Institut d'Investigació Sanitària Illes Balears (IdISBa), Majorca, Spain
| | - Neus Serra-Ramon
- Fundació Banc de Sang i Teixits de les Illes Balears, Majorca, Spain
| | - Enrique Girona-Llobera
- Fundació Banc de Sang i Teixits de les Illes Balears, Majorca, Spain.,Institut d'Investigació Sanitària Illes Balears (IdISBa), Majorca, Spain
| |
Collapse
|
32
|
Qin B, Zhang Q, Hu XM, Mi TY, Yu HY, Liu SS, Zhang B, Tang M, Huang JF, Xiong K. How does temperature play a role in the storage of extracellular vesicles? J Cell Physiol 2020; 235:7663-7680. [PMID: 32324279 DOI: 10.1002/jcp.29700] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs) contain specific proteins, lipids, and nucleic acids that can be passed to other cells as signal molecules to alter their function. However, there are many problems and challenges in the conversion and clinical application of EVs. Storage and protection of EVs is one of the issues that need further research. To adapt to potential clinical applications, this type of problem must be solved. This review summarizes the storage practices of EVs in recent years, and explains the impact of temperature on the quality and stability of EVs during storage based on current research, and explains the potential mechanisms involved in this effect as much as possible.
Collapse
Affiliation(s)
- Bo Qin
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Qi Zhang
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xi-Min Hu
- Clinical Medicine Eight-year Program, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Tuo-Yang Mi
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Hai-Yang Yu
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Shen-Shen Liu
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Bin Zhang
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Mu Tang
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Ju-Fang Huang
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China
| | - Kun Xiong
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China
| |
Collapse
|
33
|
Johnson L, Vekariya S, Tan S, Padula MP, Marks DC. Extended storage of thawed platelets: Refrigeration supports postthaw quality for 10 days. Transfusion 2020; 60:2969-2981. [DOI: 10.1111/trf.16127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/10/2020] [Accepted: 09/14/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Lacey Johnson
- Research and Development Australian Red Cross Lifeblood (formerly the Australian Red Cross Blood Service) Alexandria New South Wales Australia
| | - Shuchna Vekariya
- Research and Development Australian Red Cross Lifeblood (formerly the Australian Red Cross Blood Service) Alexandria New South Wales Australia
- Faculty of Science School of Life Sciences and Proteomics Core Facility, University of Technology Sydney Sydney New South Wales Australia
| | - Shereen Tan
- Research and Development Australian Red Cross Lifeblood (formerly the Australian Red Cross Blood Service) Alexandria New South Wales Australia
| | - Matthew P. Padula
- Faculty of Science School of Life Sciences and Proteomics Core Facility, University of Technology Sydney Sydney New South Wales Australia
| | - Denese C. Marks
- Research and Development Australian Red Cross Lifeblood (formerly the Australian Red Cross Blood Service) Alexandria New South Wales Australia
- Sydney Medical School The University of Sydney Camperdown New South Wales Australia
| |
Collapse
|
34
|
Almenar-Pérez E, Sarría L, Nathanson L, Oltra E. Assessing diagnostic value of microRNAs from peripheral blood mononuclear cells and extracellular vesicles in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Sci Rep 2020; 10:2064. [PMID: 32034172 PMCID: PMC7005890 DOI: 10.1038/s41598-020-58506-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/15/2020] [Indexed: 02/08/2023] Open
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a debilitating multisystemic disease of unknown etiology, affecting thousands of individuals worldwide. Its diagnosis still relies on ruling out medical problems leading to unexplained fatigue due to a complete lack of disease-specific biomarkers. Our group and others have explored the potential value of microRNA profiles (miRNomes) as diagnostic tools for this disease. However, heterogeneity of participants, low numbers, the variety of samples assayed, and other pre-analytical variables, have hampered the identification of disease-associated miRNomes. In this study, our team has evaluated, for the first time, ME/CFS miRNomes in peripheral blood mononuclear cells (PBMCs) and extracellular vesicles (EVs) from severely ill patients recruited at the monographic UK ME biobank to assess, using standard operating procedures (SOPs), blood fractions with optimal diagnostic power for a rapid translation of a miR-based diagnostic method into the clinic. Our results show that routine creatine kinase (CK) blood values, plasma EVs physical characteristics (including counts, size and zeta-potential), and a limited number of differentially expressed PBMC and EV miRNAs appear significantly associated with severe ME/CFS (p < 0.05). Gene enrichment analysis points to epigenetic and neuroimmune dysregulated pathways, in agreement with previous reports. Population validation by a cost-effective approach limited to these few potentially discriminating variables is granted.
Collapse
Affiliation(s)
- Eloy Almenar-Pérez
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Leonor Sarría
- Institute for Neuro Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Lubov Nathanson
- Institute for Neuro Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Elisa Oltra
- School of Medicine, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain.
| |
Collapse
|
35
|
Platelet Biochemistry and Morphology after Cryopreservation. Int J Mol Sci 2020; 21:ijms21030935. [PMID: 32023815 PMCID: PMC7036941 DOI: 10.3390/ijms21030935] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 12/25/2022] Open
Abstract
Platelet cryopreservation has been investigated for several decades as an alternative to room temperature storage of platelet concentrates. The use of dimethylsulfoxide as a cryoprotectant has improved platelet storage and cryopreserved concentrates can be kept at −80 °C for two years. Cryopreserved platelets can serve as emergency backup to support stock crises or to disburden difficult logistic areas like rural or military regions. Cryopreservation significantly influences platelet morphology, decreases platelet activation and severely abrogates platelet aggregation. Recent data indicate that cryopreserved platelets have a procoagulant phenotype because thrombin and fibrin formation kicks in earlier compared to room temperature stored platelets. This happens both in static and hydrodynamic conditions. In a clinical setting, low 1-h post transfusion recoveries of cryopreserved platelets represent fast clearance from circulation which may be explained by changes to the platelet GPIbα receptor. Cryopreservation splits the concentrate in two platelet subpopulations depending on GPIbα expression levels. Further research is needed to unravel its physiological importance. Proving clinical efficacy of cryopreserved platelets is difficult because of the heterogeneity of indications and the ambiguity of outcome measures. The procoagulant character of cryopreserved platelets has increased interest for use in trauma stressing the need for double-blinded randomized clinical trials in actively bleeding patients.
Collapse
|
36
|
Patel A, Clementelli CM, Jarocha D, Mosoyan G, Else C, Kintali M, Fong H, Tong J, Gordon R, Gillespie V, Keyzner A, Poncz M, Hoffman R, Iancu-Rubin C. Pre-clinical development of a cryopreservable megakaryocytic cell product capable of sustained platelet production in mice. Transfusion 2019; 59:3698-3713. [PMID: 31802511 DOI: 10.1111/trf.15546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Platelet (PLT) transfusions are the most effective treatments for patients with thrombocytopenia. The growing demand for PLT transfusion products is compounded by a limited supply due to dependency on volunteer donors, a short shelf-life, risk of contaminating pathogens, and alloimmunization. This study provides preclinical evidence that a third-party, cryopreservable source of PLT-generating cells has the potential to complement presently available PLT transfusion products. STUDY DESIGN AND METHODS CD34+ hematopoietic stem/progenitor cells derived from umbilical cord blood (UCB) units were used in a simple and efficient culture system to generate a cell product consisting of megakaryocytes (MKs) at different stages of development. The cultures thus generated were evaluated ex vivo and in vivo before and after cryopreservation. RESULTS We generated a megakaryocytic cell product that can be cryopreserved without altering its phenotypical and functional capabilities. The infusion of such a product, either fresh or cryopreserved, into immune-deficient mice led to production of functional human PLTs which were observed within a week after infusion and persisted for 8 weeks, orders of magnitude longer than that observed after the infusion of traditional PLT transfusion products. The sustained human PLT engraftment was accompanied by a robust presence of human cells in the bone marrow (BM), spleen, and lungs of recipient mice. CONCLUSION This is a proof-of-principle study demonstrating the creation of a cryopreservable megakaryocytic cell product which releases functional PLTs in vivo. Clinical development of such a product is currently being pursued for the treatment of thrombocytopenia in patients with hematological malignancies.
Collapse
Affiliation(s)
- Ami Patel
- Division of Hematology and Medical Oncology, Tisch Cancer Institute and the Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Cara Marie Clementelli
- Division of Hematology and Medical Oncology, Tisch Cancer Institute and the Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Danuta Jarocha
- Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Gohar Mosoyan
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Cindy Else
- Comparative Pathology Laboratory in the Center for Comparative Medicine and Surgery, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Manisha Kintali
- Division of Hematology and Medical Oncology, Tisch Cancer Institute and the Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Helen Fong
- Sangamo Therapeutics, Inc., Richmond, California
| | - Jay Tong
- AllCells, LLC, Alameda, California
| | - Ronald Gordon
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Virginia Gillespie
- Comparative Pathology Laboratory in the Center for Comparative Medicine and Surgery, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alla Keyzner
- Division of Hematology and Medical Oncology, Tisch Cancer Institute and the Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Mortimer Poncz
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ronald Hoffman
- Division of Hematology and Medical Oncology, Tisch Cancer Institute and the Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Camelia Iancu-Rubin
- Division of Hematology and Medical Oncology, Tisch Cancer Institute and the Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
37
|
Matsumura S, Minamisawa T, Suga K, Kishita H, Akagi T, Ichiki T, Ichikawa Y, Shiba K. Subtypes of tumour cell-derived small extracellular vesicles having differently externalized phosphatidylserine. J Extracell Vesicles 2019; 8:1579541. [PMID: 30834072 PMCID: PMC6394288 DOI: 10.1080/20013078.2019.1579541] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 01/30/2019] [Accepted: 02/03/2019] [Indexed: 01/08/2023] Open
Abstract
Phosphatidylserine (PS) has skewed distributions in the plasma membrane and is preferentially located in the inner leaflet of normal cells. Tumour cells, however, expose PS at the outer leaflet of cell surfaces, thereby potentially modulating the bio-signalling of cells. Interestingly, exosomes - or, more properly, small extracellular vesicles (sEVs) - which are secreted from tumour cells, are enriched with externalized PS, have been proposed as being involved in the progression of cancers, and could be used as a marker for tumour diagnostics. However, the sEV fractions prepared from various methods are composed of different subtypes of vesicles, and knowledge about the subtypes enriched with exposed PS is still limited. Here, we differentiated sEVs from cancer cell lines by density gradient centrifugation and characterized the separated fractions by using gold-labelling of PS in atomic force microscopy, thrombin generation assay, size and zeta potential measurements, and western blot analysis. These analyses revealed a previously unreported PS+-enriched sEV subtype, which is characterized by a lower density than that of canonical exosomes (1.06 g/ml vs. 1.08 g/ml), larger size (122 nm vs. 105 nm), more negative zeta potential (-28 mV vs. -21 mV), and lower abundance of canonical exosomal markers. The identification of the PS-exposed subtype of sEVs will provide deeper insight into the role of EVs in tumour biology and enhance the development of EV-based tumour diagnosis and therapy.
Collapse
Affiliation(s)
- Sachiko Matsumura
- Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Tamiko Minamisawa
- Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kanako Suga
- Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hiromi Kishita
- Department of Material Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Takanori Akagi
- Department of Material Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Takanori Ichiki
- Department of Material Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | | | - Kiyotaka Shiba
- Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
38
|
De Paoli SH, Tegegn TZ, Elhelu OK, Strader MB, Patel M, Diduch LL, Tarandovskiy ID, Wu Y, Zheng J, Ovanesov MV, Alayash A, Simak J. Dissecting the biochemical architecture and morphological release pathways of the human platelet extracellular vesiculome. Cell Mol Life Sci 2018; 75:3781-3801. [PMID: 29427073 PMCID: PMC11105464 DOI: 10.1007/s00018-018-2771-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/11/2018] [Accepted: 02/01/2018] [Indexed: 01/08/2023]
Abstract
Platelet extracellular vesicles (PEVs) have emerged as potential mediators in intercellular communication. PEVs exhibit several activities with pathophysiological importance and may serve as diagnostic biomarkers. Here, imaging and analytical techniques were employed to unveil morphological pathways of the release, structure, composition, and surface properties of PEVs derived from human platelets (PLTs) activated with the thrombin receptor activating peptide (TRAP). Based on extensive electron microscopy analysis, we propose four morphological pathways for PEVs release from TRAP-activated PLTs: (1) plasma membrane budding, (2) extrusion of multivesicular α-granules and cytoplasmic vacuoles, (3) plasma membrane blistering and (4) "pearling" of PLT pseudopodia. The PLT extracellular vesiculome encompasses ectosomes, exosomes, free mitochondria, mitochondria-containing vesicles, "podiasomes" and PLT "ghosts". Interestingly, a flow cytometry showed a population of TOM20+LC3+ PEVs, likely products of platelet mitophagy. We found that lipidomic and proteomic profiles were different between the small PEV (S-PEVs; mean diameter 103 nm) and the large vesicle (L-PEVs; mean diameter 350 nm) fractions separated by differential centrifugation. In addition, the majority of PEVs released by activated PLTs was composed of S-PEVs which have markedly higher thrombin generation activity per unit of PEV surface area compared to L-PEVs, and contribute approximately 60% of the PLT vesiculome procoagulant potency.
Collapse
Affiliation(s)
- Silvia H De Paoli
- Laboratory of Cellular Hematology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, WO Bldg. 52/72, Room 4210, Silver Spring, MD, USA
| | - Tseday Z Tegegn
- Laboratory of Cellular Hematology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, WO Bldg. 52/72, Room 4210, Silver Spring, MD, USA
| | - Oumsalama K Elhelu
- Laboratory of Cellular Hematology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, WO Bldg. 52/72, Room 4210, Silver Spring, MD, USA
| | - Michael B Strader
- Laboratory of Biochemistry and Vascular Biology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, WO Bldg. 52/72, Silver Spring, MD, 20993-0002, USA
| | - Mehulkumar Patel
- Laboratory of Cellular Hematology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, WO Bldg. 52/72, Room 4210, Silver Spring, MD, USA
| | - Lukas L Diduch
- Dakota Consulting, Inc., 1110 Bonifant St., Silver Spring, MD, USA
| | - Ivan D Tarandovskiy
- Laboratory of Cellular Hematology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, WO Bldg. 52/72, Room 4210, Silver Spring, MD, USA
| | - Yong Wu
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Jiwen Zheng
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Mikhail V Ovanesov
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, USA
| | - Abdu Alayash
- Laboratory of Biochemistry and Vascular Biology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, WO Bldg. 52/72, Silver Spring, MD, 20993-0002, USA
| | - Jan Simak
- Laboratory of Cellular Hematology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, WO Bldg. 52/72, Room 4210, Silver Spring, MD, USA.
| |
Collapse
|
39
|
Marks DC, Johnson L. Assays for phenotypic and functional characterization of cryopreserved platelets. Platelets 2018; 30:48-55. [DOI: 10.1080/09537104.2018.1514108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Denese C Marks
- Research and Development, Australian Red Cross Blood Service, Sydney, NSW, Australia
- Sydney Medical School, the University of Sydney, Sydney, NSW, Australia
| | - Lacey Johnson
- Research and Development, Australian Red Cross Blood Service, Sydney, NSW, Australia
| |
Collapse
|
40
|
Marks DC. Cryopreserved platelets: are we there yet? Transfusion 2018; 58:2092-2094. [DOI: 10.1111/trf.14887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Denese C. Marks
- Research and Development; The Australian Red Cross Blood Service
- Sydney Medical School; The University of Sydney; Sydney Australia
| |
Collapse
|
41
|
Jeyaram A, Jay SM. Preservation and Storage Stability of Extracellular Vesicles for Therapeutic Applications. AAPS JOURNAL 2017; 20:1. [PMID: 29181730 DOI: 10.1208/s12248-017-0160-y] [Citation(s) in RCA: 296] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/06/2017] [Indexed: 02/08/2023]
Abstract
Recently, extracellular vesicles (EVs)-including exosomes, microvesicles, and others-have attracted interest as cell-derived biotherapeutics and drug delivery vehicles for a variety of applications. This interest stems from favorable properties of EVs, including their status as mediators of cell-cell communication via transfer of biological cargo and their reported ability to cross biological barriers that impede many delivery systems. However, there are many challenges to translation and widespread application of EV-based therapeutics. One such challenge that has yet to be extensively studied involves EV preservation and storage, which must be addressed to enable use of therapeutic EVs beyond resource-intensive settings. Studies to date suggest that the most promising mode of storage is - 80°C; however, understanding of storage-mediated effects is still limited. Additionally, the effects of storage appear to vary with sample source. The lack of knowledge about and standardization of EV storage may ultimately hinder widespread clinical translation. This mini-review reports current knowledge in the field of EV preservation and storage stability and highlights future directions in the area that could be critical to eventual development of EV therapies.
Collapse
Affiliation(s)
- Anjana Jeyaram
- Fischell Department of Bioengineering, University of Maryland, 3234 Jeong Kim Engineering Building, College Park, Maryland, 20742, USA
| | - Steven M Jay
- Fischell Department of Bioengineering, University of Maryland, 3234 Jeong Kim Engineering Building, College Park, Maryland, 20742, USA. .,Program in Molecular and Cellular Biology, University of Maryland, College Park, Maryland, USA. .,Greenebaum Comprehensive Cancer Center, University of Maryland, College Park, Maryland, USA.
| |
Collapse
|
42
|
Cohn C, Dumont L, Lozano M, Marks D, Johnson L, Ismay S, Bondar N, T'Sas F, Yokoyama A, Kutner J, Acker J, Bohonek M, Sailliol A, Martinaud C, Pogłód R, Antoniewicz-Papis J, Lachert E, Pun P, Lu J, Cid J, Guijarro F, Puig L, Gerber B, Alberio L, Schanz U, Buser A, Noorman F, Zoodsma M, van der Meer P, de Korte D, Wagner S, O'Neill M. Vox Sanguinis International Forum on platelet cryopreservation. Vox Sang 2017; 112:e69-e85. [DOI: 10.1111/vox.12532] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
| | | | | | - D.C. Marks
- Australian Red Cross Blood Service; 17 O'Riordan Street Alexandria NSW 2015 Australia
| | - L. Johnson
- Australian Red Cross Blood Service; 17 O'Riordan Street Alexandria NSW 2015 Australia
| | - S. Ismay
- Australian Red Cross Blood Service; 17 O'Riordan Street Alexandria NSW 2015 Australia
| | - N. Bondar
- Australian Red Cross Blood Service; 17 O'Riordan Street Alexandria NSW 2015 Australia
| | - F. T'Sas
- HMRA - Service Militaire de Transfusion Sanguine; Rue Bruyn 1 1120 Bruxelles Belgique
| | - A.P.H. Yokoyama
- Departamento de Hemoterapia; Hospital Israelita Albert Einstein; Av. Albert Einstein, 627 Sao Paulo SP 05651-901 Brazil
| | - J.M. Kutner
- Departamento de Hemoterapia; Hospital Israelita Albert Einstein; Av. Albert Einstein, 627 Sao Paulo SP 05651-901 Brazil
| | - J.P. Acker
- Canadian Blood Services; 8249-114 Street Edmonton AB T6G 2R8 Canada
| | - M. Bohonek
- Department of Hematology and Blood Transfusion; Military University Hospital Prague; U Vojenske nemocnice 1200 Prague 169 02 Czech Republic
| | - A. Sailliol
- French Military Blood Institute; 1 rue de Lieutenant Batany Clamart 92140 France
| | - C. Martinaud
- French Military Blood Institute; 1 rue de Lieutenant Batany Clamart 92140 France
| | - R. Pogłód
- Zakład Transfuzjologii; Instytut Hematologii i Transfuzjologii; ul. I. Gandhi 14 Warszawa 02-776 Poland
| | - J. Antoniewicz-Papis
- Institute of Hematology and Transfusion Medicine; Indiry Gandhi 14 Warsaw 02-776 Poland
| | - E. Lachert
- Institute of Hematology and Transfusion Medicine; Indiry Gandhi 14 Warsaw 02-776 Poland
| | - P.B.L. Pun
- Defence Medical & Environmental Research Institute; DSO National Laboratories (Kent Ridge); 27 Medical Drive Singapore 117510
| | - J. Lu
- Defence Medical & Environmental Research Institute; DSO National Laboratories (Kent Ridge); 27 Medical Drive Singapore 117510
| | - J. Cid
- Apheresis Unit; Department of Hemotherapy and Hemostasis; ICMHO; Hospital Clínic; Villarroel 170 Barcelona Catalonia 08036 Spain
| | - F. Guijarro
- Apheresis Unit; Department of Hemotherapy and Hemostasis; ICMHO; IDIBAPS; Hospital Clínic; University of Barcelona; Barcelona Spain
| | - L. Puig
- Banc de Sang i Teixits de Catalunya; Transfusion Safety Laboratory; Barcelona Spain
| | - B. Gerber
- Division of Hematology; Oncology Institute of Southern Switzerland; Bellinzona CH-6500 Switzerland
| | - L. Alberio
- Division of Hematology and Central Hematology Laboratory; CHUV; Lausanne University Hospital; Lausanne Switzerland
| | - U. Schanz
- Division of Hematology; University and University Hospital Zurich; Zurich Switzerland
| | - A. Buser
- Hematology; University Hospital Basel; Basel Switzerland
| | - F. Noorman
- Military Blood Bank; Plesmanlaan 1c 2333 BZ The Netherlands
| | - M. Zoodsma
- Military Blood Bank; Plesmanlaan 1c 2333 BZ The Netherlands
| | - P.F. van der Meer
- Department of Product and Process Development; Sanquin Blood Bank; Plesmanlaan 125 Amsterdam 1066 CX The Netherlands
| | - D. de Korte
- Sanquin Blood Bank North West Region; Plesmanlaan 125 Amsterdam 1066 CX The Netherlands
| | - S. Wagner
- Transfusion Innovation Dept.; American Red Cross Holland Lab; 15601 Crabbs Branch Way Rockville MD 20855 USA
| | - M. O'Neill
- American Red Cross Medical Office; 180 Rustcraft Rd Dedham MA 020206 USA
| |
Collapse
|
43
|
Acker JP, Marks DC, Sheffield WP. Quality Assessment of Established and Emerging Blood Components for Transfusion. JOURNAL OF BLOOD TRANSFUSION 2016; 2016:4860284. [PMID: 28070448 PMCID: PMC5192317 DOI: 10.1155/2016/4860284] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/02/2016] [Indexed: 12/16/2022]
Abstract
Blood is donated either as whole blood, with subsequent component processing, or through the use of apheresis devices that extract one or more components and return the rest of the donation to the donor. Blood component therapy supplanted whole blood transfusion in industrialized countries in the middle of the twentieth century and remains the standard of care for the majority of patients receiving a transfusion. Traditionally, blood has been processed into three main blood products: red blood cell concentrates; platelet concentrates; and transfusable plasma. Ensuring that these products are of high quality and that they deliver their intended benefits to patients throughout their shelf-life is a complex task. Further complexity has been added with the development of products stored under nonstandard conditions or subjected to additional manufacturing steps (e.g., cryopreserved platelets, irradiated red cells, and lyophilized plasma). Here we review established and emerging methodologies for assessing blood product quality and address controversies and uncertainties in this thriving and active field of investigation.
Collapse
Affiliation(s)
- Jason P. Acker
- Centre for Innovation, Canadian Blood Services, Edmonton, AB, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Denese C. Marks
- Research and Development, Australian Red Cross Blood Service, Sydney, NSW, Australia
| | - William P. Sheffield
- Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
44
|
Lannigan J, Erdbruegger U. Imaging flow cytometry for the characterization of extracellular vesicles. Methods 2016; 112:55-67. [PMID: 27721015 DOI: 10.1016/j.ymeth.2016.09.018] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/15/2016] [Accepted: 09/30/2016] [Indexed: 12/21/2022] Open
Abstract
Extracellular Vesicles (EVs) are potent bio-activators and inter-cellular communicators that play an important role in both health and disease. It is for this reason there is a strong interest in understanding their composition and origin, with the hope of using them as important biomarkers or therapeutics. Due to their very small size, heterogeneity, and large numbers there has been a need for better tools to measure them in an accurate and high throughput manner. While traditional flow cytometry has been widely used for this purpose, there are inherent problems with this approach, as these instruments have traditionally been developed to measure whole cells, which are orders of magnitude larger and express many more molecules of identifying epitopes. Imaging flow cytometry, as performed with the ImagestreamX MKII, with its combination of increased fluorescence sensitivity, low background, image confirmation ability and powerful data analysis tools, provides a great tool to accurately evaluate EVs. We present here a comprehensive approach in applying this technology to the study of EVs.
Collapse
Affiliation(s)
- Joanne Lannigan
- University of Virginia, School of Medicine, Flow Cytometry Core, 1300 Jefferson Park Avenue, Charlottesville, VA 22908-0734, USA.
| | - Uta Erdbruegger
- University of Virginia, Department of Medicine/Nephrology Division, 1300 Jefferson Park Avenue, Charlottesville, VA 22908-0133, USA.
| |
Collapse
|