1
|
Seidel T, Ohri N, Glaß M, Sunami Y, Müller LP, Kleeff J. Stromal Cells in Early Inflammation-Related Pancreatic Carcinogenesis-Biology and Its Potential Role in Therapeutic Targeting. Cancers (Basel) 2025; 17:1541. [PMID: 40361466 DOI: 10.3390/cancers17091541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 04/28/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
The stroma of healthy pancreases contains various non-hematopoietic, non-endothelial mesenchymal cells. It is altered by chronic inflammation which in turn is a major contributor to the development of pancreatic adenocarcinoma (PDAC). In PDAC, the stroma plays a decisive and well-investigated role for tumor progression and therapy response. This review addresses the central role of stromal cells in the early inflammation-driven development of PDAC. It focuses on major subpopulations of pancreatic mesenchymal cells, i.e., fibroblasts, pancreatic stellate cells, and multipotent stroma cells, particularly their activation and functional alterations upon chronic inflammation including the development of different types of carcinoma-associated fibroblasts. In the second part, the current knowledge on the impact of activated stroma cells on acinar-to-ductal metaplasia and the transition to pancreatic intraepithelial neoplasia is summarized. Finally, putative strategies to target stroma cells and their signaling in early pancreatic carcinogenesis are reflected. In summary, the current data show that the activation of pancreatic stroma cells and the resulting fibrotic changes has pro- and anti-carcinogenetic effects but, overall, creates a carcinogenesis-promoting microenvironment. However, this is a dynamic process and the therapeutic targeting of specific pathways and cells requires in-depth knowledge of the molecular interplay of various cell types.
Collapse
Affiliation(s)
- Tina Seidel
- Department of Internal Medicine, University Hospital Halle, 06120 Halle (Saale), Germany
| | - Nupur Ohri
- Department of Visceral, Vascular and Endocrine Surgery, University Hospital Halle, 06120 Halle (Saale), Germany
| | - Markus Glaß
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, 06108 Halle (Saale), Germany
| | - Yoshiaki Sunami
- Department of Visceral, Vascular and Endocrine Surgery, University Hospital Halle, 06120 Halle (Saale), Germany
| | - Lutz P Müller
- Department of Internal Medicine, University Hospital Halle, 06120 Halle (Saale), Germany
| | - Jörg Kleeff
- Department of Visceral, Vascular and Endocrine Surgery, University Hospital Halle, 06120 Halle (Saale), Germany
| |
Collapse
|
2
|
Wu J, Cheng Y, Qian K, Yang P, Zhou L, Xu M, Sheng D, Wang T, Li Y, Yang X, Wei Y, Zhang Q. siRNA-Encapsulated Biomimetic Liposomes Effectively Inhibit Tumor Cells' Hexosamine Biosynthesis Pathway for Attenuating Hyaluronan Barriers to Pancreatic Cancer Chemotherapy. ACS NANO 2025; 19:7928-7947. [PMID: 39978787 DOI: 10.1021/acsnano.4c14969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) poses significant therapeutic challenges due to excessive hyaluronic acid (HA) accumulation, which impedes drug delivery. Here, we present a targeted approach to reduce HA production by specifically silencing glutamine-fructose-6-phosphate aminotransferase 1 (GFAT1), a key enzyme of the hexosamine biosynthesis pathway (HBP) in pancreatic cancer cells. An engineered liposomal system for siGFAT1 delivery, PMLip@siGFAT1, characterized by macrophage membrane camouflage, LFC131 peptide-mediated targeting, and calcium phosphate (CaP) as the core, was designed to ensure prolonged circulation, enhanced inflamed vascular endothelial penetration, and subsequent effective tumor cell uptake and endosomal escape. Consequently, PMLip@siGFAT1 markedly downregulated the HA level in the PDAC microenvironment, decompressing the tumor vasculature and weakening the stromal barrier, which in turn improved the permeability of chemotherapeutics. In combination with Doxil, PMLip@siGFAT1 demonstrated potent antitumor efficacy with minimal systemic toxicity. Importantly, unlike PEGPH20 (hyaluronidase), PMLip@siGFAT1 reduced tumor invasiveness, while preserving skeletal muscle integrity. These findings highlight that PMLip@siGFAT1 holds great potential to revitalize HA downregulation strategies in pancreatic cancer for enhanced drug delivery and efficacy.
Collapse
Affiliation(s)
- Jing Wu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yunlong Cheng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, School of Pharmacy, Fudan University, Shanghai 201203, China
- Institute of Traditional Chinese Medicine, & Key Laboratory of TCM Drug Delivery, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, Shaanxi 710003, China
| | - Kang Qian
- Key Laboratory of Smart Drug Delivery, Ministry of Education, National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Peng Yang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Lingling Zhou
- Key Laboratory of Smart Drug Delivery, Ministry of Education, National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Minjun Xu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Dongyu Sheng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Tianying Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yixian Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xiyu Yang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yan Wei
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Qizhi Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
3
|
De Vleeschauwer SI, van de Ven M, Oudin A, Debusschere K, Connor K, Byrne AT, Ram D, Rhebergen AM, Raeves YD, Dahlhoff M, Dangles-Marie V, Hermans ER. OBSERVE: guidelines for the refinement of rodent cancer models. Nat Protoc 2024; 19:2571-2596. [PMID: 38992214 DOI: 10.1038/s41596-024-00998-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 02/23/2024] [Indexed: 07/13/2024]
Abstract
Existing guidelines on the preparation (Planning Research and Experimental Procedures on Animals: Recommendations for Excellence (PREPARE)) and reporting (Animal Research: Reporting of In Vivo Experiments (ARRIVE)) of animal experiments do not provide a clear and standardized approach for refinement during in vivo cancer studies, resulting in the publication of generic methodological sections that poorly reflect the attempts made at accurately monitoring different pathologies. Compliance with the 3Rs guidelines has mainly focused on reduction and replacement; however, refinement has been harder to implement. The Oncology Best-practices: Signs, Endpoints and Refinements for in Vivo Experiments (OBSERVE) guidelines are the result of a European initiative supported by EurOPDX and INFRAFRONTIER, and aim to facilitate the refinement of studies using in vivo cancer models by offering robust and practical recommendations on approaches to research scientists and animal care staff. We listed cancer-specific clinical signs as a reference point and from there developed sets of guidelines for a wide variety of rodent models, including genetically engineered models and patient derived xenografts. In this Consensus Statement, we systematically and comprehensively address refinement and monitoring approaches during the design and execution of murine cancer studies. We elaborate on the appropriate preparation of tumor-initiating biologicals and the refinement of tumor-implantation methods. We describe the clinical signs to monitor associated with tumor growth, the appropriate follow-up of animals tailored to varying clinical signs and humane endpoints, and an overview of severity assessment in relation to clinical signs, implantation method and tumor characteristics. The guidelines provide oncology researchers clear and robust guidance for the refinement of in vivo cancer models.
Collapse
Affiliation(s)
| | - Marieke van de Ven
- Laboratory Animal Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Anaïs Oudin
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Karlijn Debusschere
- Animal Core Facility VUB, Brussels, Belgium
- Core ARTH Animal Facilities, Medicine and Health Sciences Ghent University, Ghent, Belgium
| | - Kate Connor
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Annette T Byrne
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Doreen Ram
- Laboratory Animal Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | | | - Maik Dahlhoff
- Institute of in vivo and in vitro Models, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Els R Hermans
- Laboratory Animal Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
4
|
Pereye OB, Nakagawa Y, Sato T, Fukunaka A, Aoyama S, Nishida Y, Mizutani W, Kobayashi N, Morishita Y, Oyama T, Kawabata-Iwakawa R, Watada H, Mizukami H, Fukuda A, Fujitani Y. Identification of Ppy-lineage cells as a novel origin of pancreatic ductal adenocarcinoma. J Pathol 2024; 263:429-441. [PMID: 38837231 DOI: 10.1002/path.6295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/26/2024] [Accepted: 04/13/2024] [Indexed: 06/07/2024]
Abstract
The Ppy gene encodes pancreatic polypeptide (PP) secreted by PP- or γ-cells, which are a subtype of endocrine cells localised mainly in the islet periphery. For a detailed characterisation of PP cells, we aimed to establish PP cell lines. To this end, we generated a mouse model harbouring the SV40 large T antigen (TAg) in the Rosa26 locus, which is expressed upon Ppy-promoter-mediated Cre-loxP recombination. Whereas Insulin1-CreERT-mediated TAg expression in beta cells resulted in insulinoma, surprisingly, Ppy-Cre-mediated TAg expression resulted in the malignant transformation of Ppy-lineage cells. These mice showed distorted islet structural integrity at 5 days of age compared with normal islets. CK19+ duct-like lesions contiguous with the islets were observed at 2 weeks of age, and mice developed aggressive pancreatic ductal adenocarcinoma (PDAC) at 4 weeks of age, suggesting that PDAC can originate from the islet/endocrine pancreas. This was unexpected as PDAC is believed to originate from the exocrine pancreas. RNA-sequencing analysis of Ppy-lineage islet cells from 7-day-old TAg+ mice showed a downregulation and an upregulation of endocrine and exocrine genes, respectively, in addition to the upregulation of genes and pathways associated with PDAC. These results suggest that the expression of an oncogene in Ppy-lineage cells induces a switch from endocrine cell fate to PDAC. Our findings demonstrate that Ppy-lineage cells may be an origin of PDAC and may provide novel insights into the pathogenesis of pancreatic cancer, as well as possible therapeutic strategies. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
MESH Headings
- Animals
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Cell Lineage
- Mice
- Mice, Transgenic
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Cell Transformation, Neoplastic/metabolism
- Islets of Langerhans/pathology
- Islets of Langerhans/metabolism
- Antigens, Polyomavirus Transforming/genetics
- Antigens, Polyomavirus Transforming/metabolism
- Gene Expression Regulation, Neoplastic
- Humans
Collapse
Affiliation(s)
- Ofejiro Blessing Pereye
- Laboratory of Developmental Biology and Metabolism, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Gunma, Japan
| | - Yuko Nakagawa
- Laboratory of Developmental Biology and Metabolism, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Gunma, Japan
| | - Takashi Sato
- Laboratory of Developmental Biology and Metabolism, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Gunma, Japan
| | - Ayako Fukunaka
- Laboratory of Developmental Biology and Metabolism, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Gunma, Japan
| | - Shuhei Aoyama
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuya Nishida
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Wakana Mizutani
- Laboratory of Developmental Biology and Metabolism, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Gunma, Japan
| | - Nanami Kobayashi
- Laboratory of Developmental Biology and Metabolism, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Gunma, Japan
| | - Yohei Morishita
- Laboratory for Analytical Instruments, Education and Research Support Centre, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Tetsunari Oyama
- Department of Diagnostic Pathology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Reika Kawabata-Iwakawa
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Gunma, Japan
| | - Hirotaka Watada
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiroki Mizukami
- Department of Pathology and Molecular Medicine, Biomedical Research Centre, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Akihisa Fukuda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshio Fujitani
- Laboratory of Developmental Biology and Metabolism, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Gunma, Japan
| |
Collapse
|
5
|
Ferrari DP, Ramos-Gomes F, Alves F, Markus MA. KPC-luciferase-expressing cells elicit an anti-tumor immune response in a mouse model of pancreatic cancer. Sci Rep 2024; 14:13602. [PMID: 38866899 PMCID: PMC11169258 DOI: 10.1038/s41598-024-64053-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024] Open
Abstract
Mouse models for the study of pancreatic ductal adenocarcinoma (PDAC) are well-established and representative of many key features observed in human PDAC. To monitor tumor growth, cancer cells that are implanted in mice are often transfected with reporter genes, such as firefly luciferase (Luc), enabling in vivo optical imaging over time. Since Luc can induce an immune response, we aimed to evaluate whether the expression of Luc could affect the growth of KPC tumors in mice by inducing immunogenicity. Although both cell lines, KPC and Luc transduced KPC (KPC-Luc), had the same proliferation rate, KPC-Luc tumors had significantly smaller sizes or were absent 13 days after orthotopic cell implantation, compared to KPC tumors. This coincided with the loss of bioluminescence signal over the tumor region. Immunophenotyping of blood and spleen from KPC-Luc tumor-bearing mice showed a decreased number of macrophages and CD4+ T cells, and an increased accumulation of natural killer (NK) cells in comparison to KPC tumor mice. Higher infiltration of CD8+ T cells was found in KPC-Luc tumors than in their controls. Moreover, the immune response against Luc peptide was stronger in splenocytes from mice implanted with KPC-Luc cells compared to those isolated from KPC wild-type mice, indicating increased immunogenicity elicited by the presence of Luc in the PDAC tumor cells. These results must be considered when evaluating the efficacy of anti-cancer therapies including immunotherapies in immunocompetent PDAC or other cancer mouse models that use Luc as a reporter for bioluminescence imaging.
Collapse
Affiliation(s)
- Daniele Pereira Ferrari
- Translational Molecular Imaging, Max-Planck-Institute for Multidisciplinary Sciences, Hermann Rein‑Straße 3, 37075, Göttingen, Germany
| | - Fernanda Ramos-Gomes
- Translational Molecular Imaging, Max-Planck-Institute for Multidisciplinary Sciences, Hermann Rein‑Straße 3, 37075, Göttingen, Germany
| | - Frauke Alves
- Translational Molecular Imaging, Max-Planck-Institute for Multidisciplinary Sciences, Hermann Rein‑Straße 3, 37075, Göttingen, Germany
- Institute of Diagnostic and Interventional Radiology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- Department of Haematology and Medical Oncology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - M Andrea Markus
- Translational Molecular Imaging, Max-Planck-Institute for Multidisciplinary Sciences, Hermann Rein‑Straße 3, 37075, Göttingen, Germany.
| |
Collapse
|
6
|
Brown NF, Murray ER, Cutmore LC, Howard P, Masterson L, Zammarchi F, Hartley JA, van Berkel PH, Marshall JF. Integrin-αvβ6 targeted peptide-toxin therapy in a novel αvβ6-expressing immunocompetent model of pancreatic cancer. Pancreatology 2024; 24:445-455. [PMID: 38519394 DOI: 10.1016/j.pan.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/24/2024]
Abstract
Previously we reported that a novel αvβ6-specific peptide-drug conjugate (SG3299) could eliminate established human pancreatic ductal adenocarcinoma (PDAC) xenografts. However the development of effective therapies for PDAC, which is an essential need, must show efficacy in relevant immunocompetent animals. Previously we reported that the KPC mouse transgenic PDAC model that closely recapitulates most stages of development of human PDAC, unlike in humans, failed to express αvβ6 on their tumours or metastases. In this study we have taken the KPC-derived PDAC line TB32043 and engineered a variant line (TB32043mb6S2) that expresses mouse integrin αvβ6. We report that orthotopic implantation of the αvβ6 over-expressing TB32043mb6S2 cells promotes shorter overall survival and increase in metastases. Moreover, systemic treatment of mice with established TB32043mb6S2 tumours in the pancreas with SG2399 lived significantly longer (p < 0.001; mean OS 48d) compared with PBS or control SG3511 (mean OS 25.5d and 26d, respectively). Thus SG3299 is confirmed as a promising candidate therapeutic for the therapy of PDAC.
Collapse
Affiliation(s)
- Nicholas F Brown
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Elizabeth R Murray
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Lauren C Cutmore
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Philip Howard
- Spirogen, QMB Innovation Centre, 42 New Road, London, E1 2AX, UK
| | - Luke Masterson
- Spirogen, QMB Innovation Centre, 42 New Road, London, E1 2AX, UK
| | - Francesca Zammarchi
- ADC Therapeutics (UK) Ltd, Translation & Innovation Hub Building, Imperial College White City Campus, 84 Wood Lane, London, W12 0BZ, UK
| | - John A Hartley
- Cancer Research UK Drug-DNA Interactions Research Group, University College London Cancer Institute, 72 Huntley Street, London, WC1E 6BT, UK
| | - Patrick H van Berkel
- ADC Therapeutics (UK) Ltd, Translation & Innovation Hub Building, Imperial College White City Campus, 84 Wood Lane, London, W12 0BZ, UK
| | - John F Marshall
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
7
|
Tanaka HY, Nakazawa T, Miyazaki T, Cabral H, Masamune A, Kano MR. Targeting ROCK2 improves macromolecular permeability in a 3D fibrotic pancreatic cancer microenvironment model. J Control Release 2024; 369:283-295. [PMID: 38522816 DOI: 10.1016/j.jconrel.2024.03.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Pancreatic cancer is characterized by a densely fibrotic stroma. The fibrotic stroma hinders the intratumoral penetration of nanomedicine and diminishes therapeutic efficacy. Fibrosis is characterized by an abnormal organization of extracellular matrix (ECM) components, namely the abnormal deposition and/or orientation of collagen and fibronectin. Abnormal ECM organization is chiefly driven by pathological signaling in pancreatic stellate cells (PSCs), the main cell type involved in fibrogenesis. However, whether targeting signaling pathways involved in abnormal ECM organization improves the intratumoral penetration of nanomedicines is unknown. Here, we show that targeting transforming growth factor-β (TGFβ)/Rho-associated kinase (ROCK) 1/2 signaling in PSCs normalizes ECM organization and concomitantly improves macromolecular permeability of the fibrotic stroma. Using a 3-dimensional cell culture model of the fibrotic pancreatic cancer microenvironment, we found that pharmacological inhibition of TGFβ or ROCK1/2 improves the permeation of various macromolecules. By using an isoform-specific pharmacological inhibitor and siRNAs, we show that targeting ROCK2, but not ROCK1, alone is sufficient to normalize ECM organization and improve macromolecular permeability. Moreover, we found that ROCK2 inhibition/knockdown attenuates Yes-associated protein (YAP) nuclear localization in fibroblasts co-cultured with pancreatic cancer cells in 3D. Finally, pharmacological inhibition or siRNA-mediated knockdown of YAP normalized ECM organization and improved macromolecular permeability. Our results together suggest that the TGFβ/ROCK2/YAP signaling axis may be therapeutically targeted to normalize ECM organization and improve macromolecular permeability to augment therapeutic efficacy of nanomedicines in pancreatic cancer.
Collapse
Affiliation(s)
- Hiroyoshi Y Tanaka
- Department of Pharmaceutical Biomedicine, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi, Okayama 700-8530, Japan
| | - Takuya Nakazawa
- Department of Pharmaceutical Biomedicine, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi, Okayama 700-8530, Japan
| | - Takuya Miyazaki
- Kanagawa Institute of Industrial Science and Technology (KISTEC), 705-1 Shimoimaizumi, Ebina-shi, Kanagawa 243-0435, Japan
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai-shi, Miyagi 980-8574, Japan
| | - Mitsunobu R Kano
- Department of Pharmaceutical Biomedicine, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi, Okayama 700-8530, Japan.
| |
Collapse
|
8
|
Yuan J, Zhu Z, Zhang P, Ashrafizadeh M, Abd El-Aty AM, Hacımüftüoğlu A, Linnebacher CS, Linnebacher M, Sethi G, Gong P, Zhang X. SKP2 promotes the metastasis of pancreatic ductal adenocarcinoma by suppressing TRIM21-mediated PSPC1 degradation. Cancer Lett 2024; 587:216733. [PMID: 38360141 DOI: 10.1016/j.canlet.2024.216733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/30/2024] [Accepted: 02/13/2024] [Indexed: 02/17/2024]
Abstract
Despite significant advances in diagnostic techniques and treatment approaches, the prognosis of pancreatic ductal adenocarcinoma (PDAC) is still poor. Previous studies have reported that S-phase kinase-associated protein 2 (SKP2), a subunit of the SCF E3 ubiquitin ligase complex, is engaged in the malignant biological behavior of some tumor entities. However, SKP2 has not been fully investigated in PDAC. In the present study, it was observed that high expression of SKP2 significantly correlates with decreased survival time. Further experiments suggested that SKP2 promotes metastasis by interacting with the putative transcription factor paraspeckle component 1 (PSPC1). According to the results of coimmunoprecipitation and ubiquitination assays, SKP2 depletion resulted in the polyubiquitination of PSPC1, followed by its degradation. Furthermore, the SKP2-mediated ubiquitination of PSPC1 partially depended on the activity of the E3 ligase TRIM21. In addition, inhibition of the SKP2/PSPC1 axis by SMIP004, a traditional inhibitor of SKP2, impaired the migration of PDAC cells. In summary, this study provides novel insight into the mechanisms involved in PDAC malignant progression. Targeting the SKP2/PSPC1 axis is a promising strategy for the treatment of PDAC.
Collapse
Affiliation(s)
- Jiahui Yuan
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China; International Association for Diagnosis and Treatment of Cancer, Shenzhen, Guangdong, 518055, China
| | - Zeyao Zhu
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Pingping Zhang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China; International Association for Diagnosis and Treatment of Cancer, Shenzhen, Guangdong, 518055, China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, 25070, Turkey
| | - Ahmet Hacımüftüoğlu
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, 25070, Turkey
| | - Christina Susanne Linnebacher
- Clinic of General Surgery, Molecular Oncology and Immunotherapy, Rostock University Medical Center, Rostock, 18059, Germany
| | - Michael Linnebacher
- Clinic of General Surgery, Molecular Oncology and Immunotherapy, Rostock University Medical Center, Rostock, 18059, Germany
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Peng Gong
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Xianbin Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China; International Association for Diagnosis and Treatment of Cancer, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
9
|
Gamradt P, Thierry K, Masmoudi M, Wu Z, Hernandez-Vargas H, Bachy S, Antonio T, Savas B, Hussain Z, Tomasini R, Milani P, Bertolino P, Hennino A. Stiffness-induced cancer-associated fibroblasts are responsible for immunosuppression in a platelet-derived growth factor ligand-dependent manner. PNAS NEXUS 2023; 2:pgad405. [PMID: 38111825 PMCID: PMC10727001 DOI: 10.1093/pnasnexus/pgad405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/02/2023] [Indexed: 12/20/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is associated with a vast stromal reaction that arises mainly from cancer-associated fibroblasts (CAFs) and promotes both immune escape and tumor growth. Here, we used a mouse model with deletion of the activin A receptor ALK4 in the context of the KrasG12D mutation, which strongly drives collagen deposition that leads to tissue stiffness. By ligand-receptor analysis of single-cell RNA-sequencing data, we identified that, in stiff conditions, neoplastic ductal cells instructed CAFs through sustained platelet-derived growth factor (PDGF) signaling. Tumor-associated tissue rigidity resulted in the emergence of stiffness-induced CAFs (siCAFs) in vitro and in vivo. Similar results were confirmed in human data. siCAFs were able to strongly inhibit CD8+ T-cell responses in vitro and in vivo, promoting local immunosuppression. More importantly, targeting PDGF signaling led to diminished siCAF and reduced tumor growth. Our data show for the first time that early paracrine signaling leads to profound changes in tissue mechanics, impacting immune responses and tumor progression. Our study highlights that PDGF ligand neutralization can normalize the tissue architecture independent of the genetic background, indicating that finely tuned stromal therapy may open new therapeutic avenues in pancreatic cancer.
Collapse
Affiliation(s)
- Pia Gamradt
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
| | - Kevin Thierry
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
| | - Melissa Masmoudi
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
- StromaCare, Lyon F-69008, France
| | - Zhichong Wu
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hector Hernandez-Vargas
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
| | - Sophie Bachy
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
- StromaCare, Lyon F-69008, France
| | - Tiffanie Antonio
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
| | - Berkan Savas
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
| | | | | | | | - Philippe Bertolino
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
| | - Ana Hennino
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
- StromaCare, Lyon F-69008, France
| |
Collapse
|
10
|
Muzzolini M, Belhabib I, Cardot V, Tijeras-Raballand A, Neuzillet C, Bousquet C, Lupinacci RM, Jean C. Pancreatic cancer orthotopic graft in a murine model. Acta Cir Bras 2023; 38:e382823. [PMID: 37556720 PMCID: PMC10403245 DOI: 10.1590/acb382823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/28/2023] [Indexed: 08/11/2023] Open
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers with increasing incidence. Even if progress have been made, the five-year overall survival remains lower than 10%. There is a desperate need in therapeutic improvements. In the last two decades, new in-vitro models have been developed and improved, including tridimensional-culture spheroids and organoids. However, animal studies remain mandatory in the upscaling before clinical studies. Orthotopic and syngeneic grafting is a robust model to test a drug efficiency in a tumor and its microenvironment. METHODS We described a method for orthotopic and syngeneic graft of KRAS mutated, p53 wildtype, 8305 cells in a C57BL/6J mouse model. RESULTS With this microsurgical method, 30 mice were grafted, 24 by a junior and six by a senior, resulting in 95,8 and 100% of (partial and total) successful tumoral implantation, respectively. Twenty mice underwent ultrasound follow-up. It was an efficient method for the tumoral growth evaluation. At day 16 after grafting, 85% of the tumors were detectable by ultrasound, and at day 22 all tumors were detected. CONCLUSIONS The presented method appears to be a robust and reliable method for pre-clinical studies. A junior master student can provide positive results using this technique, which can be improved with training.
Collapse
Affiliation(s)
- Milena Muzzolini
- Ambroise Paré Hospital – Oncologic and Metabolic Surgery – Department of Digestive – Boulogne-Billancourt, France
- Paris Cité University Santé, France – Université des Sciences de la Santé – Santé, France
| | - Ismahane Belhabib
- Université Toulouse III-Paul Sabatier – Université de Toulouse – Centre de Recherche en Cancérologie de Toulouse – Institut National de la Santé et de la Recherche Médicale – Toulouse, France
| | | | | | - Cindy Neuzillet
- Ambroise Paré Hospital – Oncologic and Metabolic Surgery – Department of Digestive – Boulogne-Billancourt, France
- Versailles St-Quentin en-Yvelines/Paris Saclay University – UFR Simone Veil – Santé, France
- Institut Curie Saint Cloud – Saint-Cloud, France
| | - Corinne Bousquet
- Université Toulouse III-Paul Sabatier – Université de Toulouse – Centre de Recherche en Cancérologie de Toulouse – Institut National de la Santé et de la Recherche Médicale – Toulouse, France
| | - Renato Micelli Lupinacci
- Ambroise Paré Hospital – Oncologic and Metabolic Surgery – Department of Digestive – Boulogne-Billancourt, France
- Versailles St-Quentin en-Yvelines/Paris Saclay University – UFR Simone Veil – Santé, France
| | - Christine Jean
- Université Toulouse III-Paul Sabatier – Université de Toulouse – Centre de Recherche en Cancérologie de Toulouse – Institut National de la Santé et de la Recherche Médicale – Toulouse, France
| |
Collapse
|
11
|
Tanaka HY, Nakazawa T, Enomoto A, Masamune A, Kano MR. Therapeutic Strategies to Overcome Fibrotic Barriers to Nanomedicine in the Pancreatic Tumor Microenvironment. Cancers (Basel) 2023; 15:cancers15030724. [PMID: 36765684 PMCID: PMC9913712 DOI: 10.3390/cancers15030724] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
Pancreatic cancer is notorious for its dismal prognosis. The enhanced permeability and retention (EPR) effect theory posits that nanomedicines (therapeutics in the size range of approximately 10-200 nm) selectively accumulate in tumors. Nanomedicine has thus been suggested to be the "magic bullet"-both effective and safe-to treat pancreatic cancer. However, the densely fibrotic tumor microenvironment of pancreatic cancer impedes nanomedicine delivery. The EPR effect is thus insufficient to achieve a significant therapeutic effect. Intratumoral fibrosis is chiefly driven by aberrantly activated fibroblasts and the extracellular matrix (ECM) components secreted. Fibroblast and ECM abnormalities offer various potential targets for therapeutic intervention. In this review, we detail the diverse strategies being tested to overcome the fibrotic barriers to nanomedicine in pancreatic cancer. Strategies that target the fibrotic tissue/process are discussed first, which are followed by strategies to optimize nanomedicine design. We provide an overview of how a deeper understanding, increasingly at single-cell resolution, of fibroblast biology is revealing the complex role of the fibrotic stroma in pancreatic cancer pathogenesis and consider the therapeutic implications. Finally, we discuss critical gaps in our understanding and how we might better formulate strategies to successfully overcome the fibrotic barriers in pancreatic cancer.
Collapse
Affiliation(s)
- Hiroyoshi Y. Tanaka
- Department of Pharmaceutical Biomedicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
| | - Takuya Nakazawa
- Department of Pharmaceutical Biomedicine, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
| | - Atsushi Enomoto
- Department of Pathology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya-shi 466-8550, Aichi, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai-shi 980-8574, Miyagi, Japan
| | - Mitsunobu R. Kano
- Department of Pharmaceutical Biomedicine, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
- Correspondence:
| |
Collapse
|
12
|
Senturk ZN, Akdag I, Deniz B, Sayi-Yazgan A. Pancreatic cancer: Emerging field of regulatory B-cell-targeted immunotherapies. Front Immunol 2023; 14:1152551. [PMID: 37033931 PMCID: PMC10076755 DOI: 10.3389/fimmu.2023.1152551] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the most common type of pancreatic cancer, is characterized by a high mortality rate and poor prognosis. Current treatments for PDAC, are ineffective due to a prominent immunosuppressive PDAC tumor microenvironment (TME). Although B lymphocytes are highly infiltrated into PDAC, the importance of B lymphocytes in tumorigenesis is largely neglected. B cells play a dual role in the PDAC tumor microenvironment, acting as either anti-tumorigenic or pro-tumorigenic depending on where they are localized. Tumor-infiltrating B cells, which reside in ectopic lymph nodes, namely tertiary lymphoid structures (TLS), produce anti-tumor antibodies and present tumor antigens to T cells to contribute to cancer immunosurveillance. Alternatively, regulatory B cells (Bregs), dispersed inside the TME, contribute to the dampening of anti-tumor immune responses by secreting anti-inflammatory cytokines (IL-10 and IL-35), which promote tumor growth and metastasis. Determining the role of Bregs in the PDAC microenvironment is thus becoming increasingly attractive for developing novel immunotherapeutic approaches. In this minireview, we shed light on the emerging role of B cells in PDAC development and progression, with an emphasis on regulatory B cells (Bregs). Furthermore, we discussed the potential link of Bregs to immunotherapies in PDAC. These current findings will help us in understanding the full potential of B cells in immunotherapy.
Collapse
|
13
|
Li X, Holtrop T, Jansen FAC, Olson B, Levasseur P, Zhu X, Poland M, Schalwijk W, Witkamp RF, Marks DL, van Norren K. Lipopolysaccharide-induced hypothalamic inflammation in cancer cachexia-anorexia is amplified by tumour-derived prostaglandin E2. J Cachexia Sarcopenia Muscle 2022; 13:3014-3027. [PMID: 36303458 PMCID: PMC9745464 DOI: 10.1002/jcsm.13093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 08/17/2022] [Accepted: 09/02/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cachexia-anorexia syndrome is a complex metabolic condition characterized by skeletal muscle wasting, reduced food intake and prominent involvement of systemic and central inflammation. Here, the gut barrier function was investigated in pancreatic cancer-induced cachexia mouse models by relating intestinal permeability to the degree of cachexia. We further investigated the involvement of the gut-brain axis and the crosstalk between tumour, gut and hypothalamus in vitro. METHODS Two distinct mouse models of pancreatic cancer cachexia (KPC and 4662) were used. Intestinal inflammation and permeability were assessed through fluorescein isothiocyanate dextran (FITC-dextran) and lipopolysaccharide (LPS), and hypothalamic and systemic inflammation through mRNA expression and plasma cytokines, respectively. To simulate the tumour-gut-brain crosstalk, hypothalamic (HypoE-N46) cells were incubated with cachexia-inducing tumour secretomes and LPS. A synthetic mimic of C26 secretome was produced based on its secreted inflammatory mediators. Each component of the mimic was systematically omitted to narrow down the key mediator(s) with an amplifying inflammation. To substantiate its contribution, cyclooxygenase-2 (COX-2) inhibitor was used. RESULTS In vivo experiments showed FITC-dextran was enhanced in the KPC group (362.3 vs. sham 111.4 ng/mL, P < 0.001). LPS was increased to 140.9 ng/mL in the KPC group, compared with sham and 4662 groups (115.8 and 115.8 ng/mL, P < 0.05). Hypothalamic inflammatory gene expression of Ccl2 was up-regulated in the KPC group (6.3 vs. sham 1, P < 0.0001, 4662 1.3, P < 0.001), which significantly correlated with LPS concentration (r = 0.4948, P = 0.0226). These data suggest that intestinal permeability is positively related to the cachexic degree. Prostaglandin E2 (PGE2) was confirmed to be present in the plasma and PGE2 concentration (log10) in the KPC group was much higher than in 4662 group (1.85 and 0.56 ng/mL, P < 0.001), indicating a role for PGE2 in pancreatic cancer-induced cachexia. Parallel to in vivo findings, in vitro experiments revealed that the cachexia-inducing tumour secretomes (C26, LLC, KPC and 4662) amplified LPS-induced hypothalamic IL-6 secretion (419%, 321%, 294%, 160%). COX-2 inhibitor to the tumour cells reduced PGE2 content (from 105 to 102 pg/mL) in the secretomes and eliminated the amplified hypothalamic IL-6 production. Moreover, results could be reproduced by addition of PGE2 alone, indicating that the increased hypothalamic inflammation is directly related to the PGE2 from tumour. CONCLUSIONS PGE2 secreted by the tumour may play a role in amplifying the effects of bacteria-derived LPS on the inflammatory hypothalamic response. The cachexia-inducing potential of tumour mice models parallels the loss of intestinal barrier function. Tumour-derived PGE2 might play a key role in cancer-related cachexia-anorexia syndrome via tumour-gut-brain crosstalk.
Collapse
Affiliation(s)
- Xiaolin Li
- Nutritional Biology, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Tosca Holtrop
- Nutritional Biology, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands.,Papé Family Pediatric Research Institute, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Fleur A C Jansen
- Nutritional Biology, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Brennan Olson
- Papé Family Pediatric Research Institute, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Pete Levasseur
- Papé Family Pediatric Research Institute, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Xinxia Zhu
- Papé Family Pediatric Research Institute, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Mieke Poland
- Nutritional Biology, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Winni Schalwijk
- Nutritional Biology, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Renger F Witkamp
- Nutritional Biology, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Daniel L Marks
- Papé Family Pediatric Research Institute, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Klaske van Norren
- Nutritional Biology, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
14
|
Huber MA, Nadella S, Cao H, Kallakury B, Tucker RD, Gay MD, Shivapurkar N, Edmondson EF, Yue Y, Dou W, Fang HB, Smith JP. Does Chronic Use of High Dose Proton Pump Inhibitors Increase Risk for Pancreatic Cancer? Pancreas 2022; 51:1118-1127. [PMID: 37078934 PMCID: PMC10119745 DOI: 10.1097/mpa.0000000000002145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
OBJECTIVES To analyze whether use of proton pump inhibitors increase the risk for pancreatic cancer in a mouse model and human clinical cohorts. METHODS p48-Cre/LSL-KrasG12D mice that develop precancerous pancreatic intraepithelial neoplasia (PanINs) were treated with low- or high-dose proton pump inhibitors (PPIs) orally for 1 and 4 months. The mechanism for the cholecystokinin receptor 2 (CCK-2R) activation was investigated in vitro. Two resources were employed to analyze the risk of pancreatic cancer in human subjects with PPI use. RESULTS Serum gastrin levels were increased 8-fold (P < 0.0001) in mice treated with chronic high-dose PPIs, and this change correlated with an increase (P = 0.02) in PanIN grade and the development of microinvasive cancer. The CCK-2R expression was regulated by microRNA-148a in the p48-Cre/LSL-KrasG12D mice pancreas and in human pancreatic cancer cells in vitro. Proton pump inhibitor consumption in human subjects was correlated with pancreatic cancer risk (odds ratio, 1.54). A validation analysis conducted using the large-scale United Kingdom Biobank database confirmed the correlation (odds ratio, 1.9; P = 0.00761) of pancreatic cancer risk with PPI exposure. CONCLUSIONS This investigation revealed in both murine models and human subjects, PPI use is correlated with a risk for development of pancreatic cancer.
Collapse
Affiliation(s)
| | | | | | | | - Robin D Tucker
- Department of Pathology, Georgetown University, Washington, DC
| | | | | | | | - Yuanzhen Yue
- Biostatistics, Bioinformatics and Biomathematics, Georgetown University, Washington, DC
| | - Wenyu Dou
- Biostatistics, Bioinformatics and Biomathematics, Georgetown University, Washington, DC
| | - Hong-Bin Fang
- Biostatistics, Bioinformatics and Biomathematics, Georgetown University, Washington, DC
| | | |
Collapse
|
15
|
DNA Polymerase Theta Plays a Critical Role in Pancreatic Cancer Development and Metastasis. Cancers (Basel) 2022; 14:cancers14174077. [PMID: 36077614 PMCID: PMC9454495 DOI: 10.3390/cancers14174077] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), due to its genomic heterogeneity and lack of effective treatment, despite decades of intensive research, will become the second leading cause of cancer-related deaths by 2030. Step-wise acquisition of mutations, due to genomic instability, is considered to drive the development of PDAC; the KRAS mutation occurs in 95 to 100% of human PDAC, and is already detectable in early premalignant lesions designated as pancreatic intraepithelial neoplasia (PanIN). This mutation is possibly the key event leading to genomic instability and PDAC development. Our study aimed to investigate the role of the error-prone DNA double-strand breaks (DSBs) repair pathway, alt-EJ, in the presence of the KRAS G12D mutation in pancreatic cancer development. Our findings show that oncogenic KRAS contributes to increasing the expression of Polθ, Lig3, and Mre11, key components of alt-EJ in both mouse and human PDAC models. We further confirm increased catalytic activity of alt-EJ in a mouse and human model of PDAC bearing the KRAS G12D mutation. Subsequently, we focused on estimating the impact of alt-EJ inactivation by polymerase theta (Polθ) deletion on pancreatic cancer development, and survival in genetically engineered mouse models (GEMMs) and cancer patients. Here, we show that even though Polθ deficiency does not fully prevent the development of pancreatic cancer, it significantly delays the onset of PanIN formation, prolongs the overall survival of experimental mice, and correlates with the overall survival of pancreatic cancer patients in the TCGA database. Our study clearly demonstrates the role of alt-EJ in the development of PDAC, and alt-EJ may be an attractive therapeutic target for pancreatic cancer patients.
Collapse
|
16
|
Sun L, Gai Y, Li Z, Li H, Li J, Muschler J, Kang R, Tang D, Zeng D. Heterodimeric RGD-NGR PET Tracer for the Early Detection of Pancreatic Cancer. Mol Imaging Biol 2022; 24:580-589. [PMID: 35229260 DOI: 10.1007/s11307-022-01704-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/01/2022] [Accepted: 01/11/2022] [Indexed: 12/15/2022]
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is the most lethal gastrointestinal cancer, and its poor prognosis is highly associated with the lack of an efficient early detection technology. Here, we report that RGD-NGR heterodimer labeled with PET isotope could be applied in PDAC early detection. PROCEDURES The RGD-NGR tracer was first compared with its corresponding monomeric counterparts via PET imaging studies using mice bearing a subcutaneous BxPC3 tumor. Subsequently, the RGD-NGR tracer was evaluated in autochthonous mouse models with spontaneously developed late stage PanIN lesions (KCER mice) or PDAC (KPC mice) via both PET imaging studies and ex vivo biodistribution studies. Furthermore, a comparison between 2-deoxy-2[18F]fluoro-D-glucose ([18F]F-FDG) and the RGD-NGR tracer was conducted via PET imaging of the same KCH mouse bearing spontaneously developed PDAC. H&E staining was performed to confirm the malignant pancreatic tissue in the KCH mouse. Immunofluorescence staining was performed to confirm the expression of integrin αVβ3 and CD13. RESULTS The RGD-NGR tracer exhibited improved in vivo performance as compared with its corresponding monomeric counterparts on the subcutaneous BxPC3 tumor mouse model. Subsequent evaluation in autochthonous mouse models demonstrated its capability to detect both pre-malignant and malignant pancreases. Further comparison with [18F]F-FDG revealed the superiority of the proposed heterodimer in imaging spontaneously developed PDAC. H&E staining confirmed the malignant pancreatic tissue in the KCH mouse, while the expression of both integrin αVβ3 and CD13 receptors was demonstrated with immunofluorescence staining. CONCLUSION The proposed RGD-NGR heterodimer possesses the potential to be applied in the PDAC early detection for high-risk populations.
Collapse
Affiliation(s)
- Lingyi Sun
- Department of Diagnostic Radiology, Oregon Health & Science University, Portland, OR, 97229, USA.
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| | - Yongkang Gai
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Zhonghan Li
- Department of Diagnostic Radiology, Oregon Health & Science University, Portland, OR, 97229, USA
| | - Huiqiang Li
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Jianchun Li
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - John Muschler
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, 97229, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Dexing Zeng
- Department of Diagnostic Radiology, Oregon Health & Science University, Portland, OR, 97229, USA.
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
17
|
Navarro-Serer B, Wood LD. Organoids: A Promising Preclinical Model for Pancreatic Cancer Research. Pancreas 2022; 51:608-616. [PMID: 36206467 DOI: 10.1097/mpa.0000000000002084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
ABSTRACT Pancreatic cancer is one of the most lethal cancer types, estimated to become the second leading cause of cancer-related deaths in the United States in 2030. The use of 3-dimensional culture systems has greatly expanded over the past few years, providing a valuable tool for the study of pancreatic cancer. In this review, we highlight some of the preclinical in vitro and in vivo models used in pancreatic cancer research, each with its own advantages and disadvantages, and focus on one of the recently used 3-dimensional culture models: organoids. Organoids are multicellular units derived from tissue samples and embedded within extracellular matrix gels after mechanical and enzymatic digestion. We define organoids, differentiate them from other 3-dimensional culture systems such as spheroids, and describe some applications of this model that have recently advanced our understanding of pancreatic cancer and its tumor microenvironment. Organoids have provided valuable insights into pancreatic cancer progression, heterogeneity, and invasion, and they have enabled the creation of biobanks, providing a platform for drug screening. In addition, we discuss some of the future directions and challenges in this model when addressing research questions.
Collapse
Affiliation(s)
- Bernat Navarro-Serer
- From the Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine
| | | |
Collapse
|
18
|
Chen YC, Lan YW, Huang SM, Yen CC, Chen W, Wu WJ, Staniczek T, Chong KY, Chen CM. Human amniotic fluid mesenchymal stem cells attenuate pancreatic cancer cell proliferation and tumor growth in an orthotopic xenograft mouse model. Stem Cell Res Ther 2022; 13:235. [PMID: 35659367 PMCID: PMC9166578 DOI: 10.1186/s13287-022-02910-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 05/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a malignant cancer and chemotherapy ineffectively treats PDAC, leading to the requirement for alternative tumor-targeted treatment. Human amniotic fluid mesenchymal stem cells (hAFMSCs) have been revealed to suppress tumor growth in various cancers and they are a strong candidate for treating PDAC. METHODS To evaluate the effects of hAFMSCs on human pancreatic carcinoma cells (PANC1, AsPC1 and BxPC3 cell lines) and the possible mechanism involved, an in vitro cell coculture system was used. A PANC1 orthotopic xenograft mouse model was established and hAFMSCs were injected intravenously at 4 weeks post-xenograft. RESULTS An in vitro coculture assay showed that hAFMSCs inhibited PANC1 cell proliferation by inducing S phase cell cycle arrest and increased cell apoptosis in a time-dependent manner. In PANC1 cells, hAFMSCs caused the downregulation of Cyclin A and Cyclin B1 as well as the upregulation of p21 (CDKN1A) at 24 h post coculture. The upregulation of pro-apoptotic factors Caspase-3/-8 and Bax at 24 h post coculture reduced the migration and invasion ability of PANC1 cells through inhibiting the epithelial-mesenchymal transition (EMT) process. In a PANC1 orthotopic xenograft mouse model, a single injection of hAFMSCs showed significant tumor growth inhibition with evidence of the modulation of cell cycle and pro-apoptotic regulatory genes and various genes involved in matrix metallopeptidase 7 (MMP7) signaling-triggered EMT process. Histopathological staining showed lower Ki67 levels in tumors from hAFMSCs-treated mice. CONCLUSIONS Our data demonstrated that hAFMSCs strongly inhibit PDAC cell proliferation, tumor growth and invasion, possibly by altering cell cycle arrest and MMP7 signaling-triggered EMT.
Collapse
Affiliation(s)
- Ying-Cheng Chen
- Department of Life Sciences, and Ph.D. Program in Translational Medicine, College of Life Sciences, National Chung Hsing University, Kuo Kuang Rd, Taichung, 402 Taiwan
| | - Ying-Wei Lan
- Department of Life Sciences, and Ph.D. Program in Translational Medicine, College of Life Sciences, National Chung Hsing University, Kuo Kuang Rd, Taichung, 402 Taiwan
| | - Shiaw-Min Huang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, 300 Taiwan
| | - Chih-Ching Yen
- Department of Internal Medicine, China Medical University Hospital, and College of Health Care, China Medical University, Taichung, 404 Taiwan
| | - Wei Chen
- Division of Pulmonary and Critical Care Medicine, Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Wan-Ju Wu
- Department of Life Sciences, and Ph.D. Program in Translational Medicine, College of Life Sciences, National Chung Hsing University, Kuo Kuang Rd, Taichung, 402 Taiwan
| | - Theresa Staniczek
- Department of Life Sciences, and Ph.D. Program in Translational Medicine, College of Life Sciences, National Chung Hsing University, Kuo Kuang Rd, Taichung, 402 Taiwan
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, and Center of Excellence in Dermatology, Heidelberg University, 69117 Mannheim, Germany
| | - Kowit-Yu Chong
- Department of Medical Biotechnology and Laboratory Science and Division of Biotechnology, College of Medicine, Chang Gung University, Taoyuan, 333 Taiwan
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan 333 Taiwan
| | - Chuan-Mu Chen
- Department of Life Sciences, and Ph.D. Program in Translational Medicine, College of Life Sciences, National Chung Hsing University, Kuo Kuang Rd, Taichung, 402 Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 402 Taiwan
- Rong Hsing Research Center for Translational Medicine, Taichung Veterans General Hospital, Taichung, 407 Taiwan
| |
Collapse
|
19
|
Minici C, Testoni S, Della-Torre E. B-Lymphocytes in the Pathophysiology of Pancreatic Adenocarcinoma. Front Immunol 2022; 13:867902. [PMID: 35359944 PMCID: PMC8963963 DOI: 10.3389/fimmu.2022.867902] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/23/2022] [Indexed: 12/12/2022] Open
Abstract
Pancreatic adenocarcinoma is highly infiltrated by B lymphocytes but the relevance of these immune cells in tumor development has been surprisingly overlooked until recently. Based on available evidence from other solid tumors, interaction between B lymphocytes and neoplastic cells is probably not uniformly stimulatory or inhibitory. Although presentation of tumor antigens to T cells and production of antitumor immunoglobulins might intuitively suggest a prominent tumor suppressive activity, specific subsets of B lymphocytes can secrete growth factors for neoplastic cells and immunosuppressive cytokines thus promoting escape from immunosurveillance and cancer progression. Because many of these mechanisms might also be implicated in the development of PDAC, and immune-modulation of B-cell activity is nowadays possible at different levels, determining the role of B-lymphocytes in this lethal cancer becomes of utmost importance to design novel therapeutic strategies. This review aims to discuss the emerging role of B cells in PDAC tumorigenesis, progression, and associated stromal reaction.
Collapse
Affiliation(s)
- Claudia Minici
- Università Vita-Salute San Raffaele, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sabrina Testoni
- Pancreato-Biliary Endoscopy and Endosonography Division, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Division of Pancreatic Surgery, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Emanuel Della-Torre
- Università Vita-Salute San Raffaele, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Division of Pancreatic Surgery, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
20
|
RNAi-Based Approaches for Pancreatic Cancer Therapy. Pharmaceutics 2021; 13:pharmaceutics13101638. [PMID: 34683931 PMCID: PMC8541396 DOI: 10.3390/pharmaceutics13101638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 01/17/2023] Open
Abstract
Pancreatic cancer is one of the most lethal forms of cancer, predicted to be the second leading cause of cancer-associated death by 2025. Despite intensive research for effective treatment strategies and novel anticancer drugs over the past decade, the overall patient survival rate remains low. RNA interference (RNAi) is capable of interfering with expression of specific genes and has emerged as a promising approach for pancreatic cancer because genetic aberrations and dysregulated signaling are the drivers for tumor formation and the stromal barrier to conventional therapy. Despite its therapeutic potential, RNA-based drugs have remaining hurdles such as poor tumor delivery and susceptibility to serum degradation, which could be overcome with the incorporation of nanocarriers for clinical applications. Here we summarize the use of small interfering RNA (siRNA) and microRNA (miRNA) in pancreatic cancer therapy in preclinical reports with approaches for targeting either the tumor or tumor microenvironment (TME) using various types of nanocarriers. In these studies, inhibition of oncogene expression and induction of a tumor suppressive response in cancer cells and surrounding immune cells in TME exhibited a strong anticancer effect in pancreatic cancer models. The review discusses the remaining challenges and prospective strategies suggesting the potential of RNAi-based therapeutics for pancreatic cancer.
Collapse
|
21
|
Silke J, O’Reilly LA. NF-κB and Pancreatic Cancer; Chapter and Verse. Cancers (Basel) 2021; 13:4510. [PMID: 34572737 PMCID: PMC8469693 DOI: 10.3390/cancers13184510] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is one of the world's most lethal cancers. An increase in occurrence, coupled with, presently limited treatment options, necessitates the pursuit of new therapeutic approaches. Many human cancers, including PDAC are initiated by unresolved inflammation. The transcription factor NF-κB coordinates many signals that drive cellular activation and proliferation during immunity but also those involved in inflammation and autophagy which may instigate tumorigenesis. It is not surprising therefore, that activation of canonical and non-canonical NF-κB pathways is increasingly recognized as an important driver of pancreatic injury, progression to tumorigenesis and drug resistance. Paradoxically, NF-κB dysregulation has also been shown to inhibit pancreatic inflammation and pancreatic cancer, depending on the context. A pro-oncogenic or pro-suppressive role for individual components of the NF-κB pathway appears to be cell type, microenvironment and even stage dependent. This review provides an outline of NF-κB signaling, focusing on the role of the various NF-κB family members in the evolving inflammatory PDAC microenvironment. Finally, we discuss pharmacological control of NF-κB to curb inflammation, focussing on novel anti-cancer agents which reinstate the process of cancer cell death, the Smac mimetics and their pre-clinical and early clinical trials.
Collapse
Affiliation(s)
- John Silke
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research (WEHI), Parkville, VIC 3052, Australia;
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Lorraine Ann O’Reilly
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research (WEHI), Parkville, VIC 3052, Australia;
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
22
|
Heinrich MA, Mostafa AMRH, Morton JP, Hawinkels LJAC, Prakash J. Translating complexity and heterogeneity of pancreatic tumor: 3D in vitro to in vivo models. Adv Drug Deliv Rev 2021; 174:265-293. [PMID: 33895214 DOI: 10.1016/j.addr.2021.04.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 02/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive type of cancer with an overall survival rate of less than 7-8%, emphasizing the need for novel effective therapeutics against PDAC. However only a fraction of therapeutics which seemed promising in the laboratory environment will eventually reach the clinic. One of the main reasons behind this low success rate is the complex tumor microenvironment (TME) of PDAC, a highly fibrotic and dense stroma surrounding tumor cells, which supports tumor progression as well as increases the resistance against the treatment. In particular, the growing understanding of the PDAC TME points out a different challenge in the development of efficient therapeutics - a lack of biologically relevant in vitro and in vivo models that resemble the complexity and heterogeneity of PDAC observed in patients. The purpose and scope of this review is to provide an overview of the recent developments in different in vitro and in vivo models, which aim to recapitulate the complexity of PDAC in a laboratory environment, as well to describe how 3D in vitro models can be integrated into drug development pipelines that are already including sophisticated in vivo models. Hereby a special focus will be given on the complexity of in vivo models and the challenges in vitro models face to reach the same levels of complexity in a controllable manner. First, a brief introduction of novel developments in two dimensional (2D) models and ex vivo models is provided. Next, recent developments in three dimensional (3D) in vitro models are described ranging from spheroids, organoids, scaffold models, bioprinted models to organ-on-chip models including a discussion on advantages and limitations for each model. Furthermore, we will provide a detailed overview on the current PDAC in vivo models including chemically-induced models, syngeneic and xenogeneic models, highlighting hetero- and orthotopic, patient-derived tissues (PDX) models, and genetically engineered mouse models. Finally, we will provide a discussion on overall limitations of both, in vitro and in vivo models, and discuss necessary steps to overcome these limitations to reach an efficient drug development pipeline, as well as discuss possibilities to include novel in silico models in the process.
Collapse
Affiliation(s)
- Marcel A Heinrich
- Department of Biomaterials Science and Technology, Section Targeted Therapeutics, Technical Medical Centre, University of Twente, 7500AE Enschede, the Netherlands
| | - Ahmed M R H Mostafa
- Department of Biomaterials Science and Technology, Section Targeted Therapeutics, Technical Medical Centre, University of Twente, 7500AE Enschede, the Netherlands
| | - Jennifer P Morton
- Cancer Research UK, Beatson Institute, Garscube Estate, Switchback Rd, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Rd, Glasgow G61 1QH, UK
| | - Lukas J A C Hawinkels
- Department of Gastroenterology-Hepatology, Leiden University Medical Centre, PO-box 9600, 2300 RC Leiden, the Netherlands
| | - Jai Prakash
- Department of Biomaterials Science and Technology, Section Targeted Therapeutics, Technical Medical Centre, University of Twente, 7500AE Enschede, the Netherlands.
| |
Collapse
|
23
|
Urrutia G, de Assuncao TM, Mathison AJ, Salmonson A, Kerketta R, Zeighami A, Stodola TJ, Adsay V, Pehlivanoglu B, Dwinell MB, Zimmermann MT, Iovanna JL, Urrutia R, Lomberk G. Inactivation of the Euchromatic Histone-Lysine N-Methyltransferase 2 Pathway in Pancreatic Epithelial Cells Antagonizes Cancer Initiation and Pancreatitis-Associated Promotion by Altering Growth and Immune Gene Expression Networks. Front Cell Dev Biol 2021; 9:681153. [PMID: 34249932 PMCID: PMC8261250 DOI: 10.3389/fcell.2021.681153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/27/2021] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive, painful disease with a 5-year survival rate of only 9%. Recent evidence indicates that distinct epigenomic landscapes underlie PDAC progression, identifying the H3K9me pathway as important to its pathobiology. Here, we delineate the role of Euchromatic Histone-lysine N-Methyltransferase 2 (EHMT2), the enzyme that generates H3K9me, as a downstream effector of oncogenic KRAS during PDAC initiation and pancreatitis-associated promotion. EHMT2 inactivation in pancreatic cells reduces H3K9me2 and antagonizes Kras G12D -mediated acinar-to-ductal metaplasia (ADM) and Pancreatic Intraepithelial Neoplasia (PanIN) formation in both the Pdx1-Cre and P48 Cre/+ Kras G12D mouse models. Ex vivo acinar explants also show impaired EGFR-KRAS-MAPK pathway-mediated ADM upon EHMT2 deletion. Notably, Kras G12D increases EHMT2 protein levels and EHMT2-EHMT1-WIZ complex formation. Transcriptome analysis reveals that EHMT2 inactivation upregulates a cell cycle inhibitory gene expression network that converges on the Cdkn1a/p21-Chek2 pathway. Congruently, pancreas tissue from Kras G12D animals with EHMT2 inactivation have increased P21 protein levels and enhanced senescence. Furthermore, loss of EHMT2 reduces inflammatory cell infiltration typically induced during Kras G12D -mediated initiation. The inhibitory effect on Kras G12D -induced growth is maintained in the pancreatitis-accelerated model, while simultaneously modifying immunoregulatory gene networks that also contribute to carcinogenesis. This study outlines the existence of a novel KRAS-EHMT2 pathway that is critical for mediating the growth-promoting and immunoregulatory effects of this oncogene in vivo, extending human observations to support a pathophysiological role for the H3K9me pathway in PDAC.
Collapse
Affiliation(s)
- Guillermo Urrutia
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Thiago Milech de Assuncao
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Angela J. Mathison
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ann Salmonson
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Romica Kerketta
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Atefeh Zeighami
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Timothy J. Stodola
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Volkan Adsay
- Department of Pathology, Koç University Hospital, Istanbul, Turkey
| | - Burcin Pehlivanoglu
- Department of Pathology, Adiyaman University Training and Research Hospital, Adiyaman, Turkey
| | - Michael B. Dwinell
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
- Center for Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
- LaBahn Pancreatic Cancer Program, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Michael T. Zimmermann
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
- Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Juan L. Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Raul Urrutia
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States
- LaBahn Pancreatic Cancer Program, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Gwen Lomberk
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States
- LaBahn Pancreatic Cancer Program, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
24
|
Mallya K, Gautam SK, Aithal A, Batra SK, Jain M. Modeling pancreatic cancer in mice for experimental therapeutics. Biochim Biophys Acta Rev Cancer 2021; 1876:188554. [PMID: 33945847 DOI: 10.1016/j.bbcan.2021.188554] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy that is characterized by early metastasis, low resectability, high recurrence, and therapy resistance. The experimental mouse models have played a central role in understanding the pathobiology of PDAC and in the preclinical evaluation of various therapeutic modalities. Different mouse models with targetable pathological hallmarks have been developed and employed to address the unique challenges associated with PDAC progression, metastasis, and stromal heterogeneity. Over the years, mouse models have evolved from simple cell line-based heterotopic and orthotopic xenografts in immunocompromised mice to more complex and realistic genetically engineered mouse models (GEMMs) involving multi-gene manipulations. The GEMMs, mostly driven by KRAS mutation(s), have been widely accepted for therapeutic optimization due to their high penetrance and ability to recapitulate the histological, molecular, and pathological hallmarks of human PDAC, including comparable precursor lesions, extensive metastasis, desmoplasia, perineural invasion, and immunosuppressive tumor microenvironment. Advanced GEMMs modified to express fluorescent proteins have allowed cell lineage tracing to provide novel insights and a new understanding about the origin and contribution of various cell types in PDAC pathobiology. The syngeneic mouse models, GEMMs, and target-specific transgenic mice have been extensively used to evaluate immunotherapies and study therapy-induced immune modulation in PDAC yielding meaningful results to guide various clinical trials. The emerging mouse models for parabiosis, hepatic metastasis, cachexia, and image-guided implantation, are increasingly appreciated for their high translational significance. In this article, we describe the contribution of various experimental mouse models to the current understanding of PDAC pathobiology and their utility in evaluating and optimizing therapeutic modalities for this lethal malignancy.
Collapse
Affiliation(s)
- Kavita Mallya
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Shailendra K Gautam
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| | - Abhijit Aithal
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
25
|
Holbrook MC, Goad DW, Grdzelishvili VZ. Expanding the Spectrum of Pancreatic Cancers Responsive to Vesicular Stomatitis Virus-Based Oncolytic Virotherapy: Challenges and Solutions. Cancers (Basel) 2021; 13:1171. [PMID: 33803211 PMCID: PMC7963195 DOI: 10.3390/cancers13051171] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating malignancy with poor prognosis and a dismal survival rate, expected to become the second leading cause of cancer-related deaths in the United States. Oncolytic virus (OV) is an anticancer approach that utilizes replication-competent viruses to preferentially infect and kill tumor cells. Vesicular stomatitis virus (VSV), one such OV, is already in several phase I clinical trials against different malignancies. VSV-based recombinant viruses are effective OVs against a majority of tested PDAC cell lines. However, some PDAC cell lines are resistant to VSV. Upregulated type I IFN signaling and constitutive expression of a subset of interferon-simulated genes (ISGs) play a major role in such resistance, while other mechanisms, such as inefficient viral attachment and resistance to VSV-mediated apoptosis, also play a role in some PDACs. Several alternative approaches have been shown to break the resistance of PDACs to VSV without compromising VSV oncoselectivity, including (i) combinations of VSV with JAK1/2 inhibitors (such as ruxolitinib); (ii) triple combinations of VSV with ruxolitinib and polycations improving both VSV replication and attachment; (iii) combinations of VSV with chemotherapeutic drugs (such as paclitaxel) arresting cells in the G2/M phase; (iv) arming VSV with p53 transgenes; (v) directed evolution approach producing more effective OVs. The latter study demonstrated impressive long-term genomic stability of complex VSV recombinants encoding large transgenes, supporting further clinical development of VSV as safe therapeutics for PDAC.
Collapse
Affiliation(s)
| | | | - Valery Z. Grdzelishvili
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (M.C.H.); (D.W.G.)
| |
Collapse
|
26
|
Sánchez-Salazar MG, Álvarez MM, Trujillo-de Santiago G. Advances in 3D bioprinting for the biofabrication of tumor models. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.bprint.2020.e00120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Al-Share B, Hammad N, Diab M. Pancreatic adenocarcinoma: molecular drivers and the role of targeted therapy. Cancer Metastasis Rev 2021; 40:355-371. [PMID: 33398620 DOI: 10.1007/s10555-020-09948-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/15/2020] [Indexed: 01/05/2023]
Abstract
Prognosis from pancreatic ductal adenocarcinoma (PDAC) continues to be poor despite the many efforts channeled to improve its management. Although the mainstay treatment is still traditional chemotherapy, recent advances highlighted a promising potential for targeted therapy in the management of this disease. Those advances emphasize the significance of timely genomic profiling of tumor tissue as well as germline testing of patients to identify potential markers of targeted therapy. While targeted therapy is reserved for a relatively small subset of patients with PDAC, ongoing research is uncovering additional markers, and targeted agents, that will hopefully translate to better outcomes for patients.
Collapse
Affiliation(s)
- Bayan Al-Share
- Department of Oncology, Wayne State University, Karmanos Cancer Institute, Detroit, MI, USA
| | - Nour Hammad
- Department of Oncology, Ascension Providence Hospital and Medical Center/Michigan State University/Collage of Human Medicine, Southfield, MI, USA
| | - Maria Diab
- Department of Oncology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
28
|
Jugniot N, Bam R, Meuillet EJ, Unger EC, Paulmurugan R. Current status of targeted microbubbles in diagnostic molecular imaging of pancreatic cancer. Bioeng Transl Med 2021; 6:e10183. [PMID: 33532585 PMCID: PMC7823123 DOI: 10.1002/btm2.10183] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is often associated with a poor prognosis due to silent onset, resistance to therapies, and rapid spreading. Most patients are ineligible for curable surgery as they present with advanced disease at the time of diagnosis. Present diagnostic methods relying on anatomical changes have various limitations including difficulty to discriminate between benign and malignant conditions, invasiveness, the ambiguity of imaging results, or the inability to detect molecular biomarkers of PDAC initiation and progression. Therefore, new imaging technologies with high sensitivity and specificity are critically needed for accurately detecting PDAC and noninvasively characterizing molecular features driving its pathogenesis. Contrast enhanced targeted ultrasound (CETUS) is an upcoming molecular imaging modality that specifically addresses these issues. Unlike anatomical imaging modalities such as CT and MRI, molecular imaging using CETUS is promising for early and accurate detection of PDAC. The use of molecularly targeted microbubbles that bind to neovascular targets can enhance the ultrasound signal specifically from malignant PDAC tissues. This review discusses the current state of diagnostic imaging modalities for pancreatic cancer and places a special focus on ultrasound targeted-microbubble technology together with its clinical translatability for PDAC detection.
Collapse
Affiliation(s)
- Natacha Jugniot
- Department of RadiologyMolecular Imaging Program at Stanford, Stanford UniversityPalo AltoCaliforniaUSA
| | - Rakesh Bam
- Department of RadiologyMolecular Imaging Program at Stanford, Stanford UniversityPalo AltoCaliforniaUSA
| | | | | | - Ramasamy Paulmurugan
- Department of RadiologyMolecular Imaging Program at Stanford, Stanford UniversityPalo AltoCaliforniaUSA
| |
Collapse
|
29
|
Tsang ES, Topham JT, Karasinska JM, Lee MKC, Williamson LM, Mendis S, Denroche RE, Jang GH, Kalloger SE, Moore RA, Mungall AJ, Bathe OF, Tang PA, Notta F, Wilson JM, Laskin J, O'Kane GM, Knox JJ, Goodwin RA, Loree JM, Jones SJM, Marra MA, Gallinger S, Schaeffer DF, Renouf DJ. Delving into Early-onset Pancreatic Ductal Adenocarcinoma: How Does Age Fit In? Clin Cancer Res 2020; 27:246-254. [PMID: 32958704 DOI: 10.1158/1078-0432.ccr-20-1042] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/15/2020] [Accepted: 09/14/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE With the rising incidence of early-onset pancreatic cancer (EOPC), molecular characteristics that distinguish early-onset pancreatic ductal adenocarcinoma (PDAC) tumors from those arising at a later age are not well understood. EXPERIMENTAL DESIGN We performed bioinformatic analysis of genomic and transcriptomic data generated from 269 advanced (metastatic or locally advanced) and 277 resectable PDAC tumor samples. Patient samples were stratified into EOPC (age of onset ≤55 years; n = 117), intermediate (age of onset 55-70 years; n = 264), and average (age of onset ≥70 years; n = 165) groups. Frequency of somatic mutations affecting genes commonly implicated in PDAC, as well as gene expression patterns, were compared between EOPC and all other groups. RESULTS EOPC tumors showed significantly lower frequency of somatic single-nucleotide variant (SNV)/insertions/deletions (indel) in CDKN2A (P = 0.0017), and were more likely to achieve biallelic mutation of CDKN2A through homozygous copy loss as opposed to heterozygous copy loss coupled with a loss-of-function SNV/indel mutation, the latter of which was more common for tumors with later ages of onset (P = 1.5e-4). Transcription factor forkhead box protein C2 (FOXC2) was significantly upregulated in EOPC tumors (P = 0.032). Genes significantly correlated with FOXC2 in PDAC samples were enriched for gene sets related to epithelial-to-mesenchymal transition (EMT) and included VIM (P = 1.8e-8), CDH11 (P = 6.5e-5), and CDH2 (P = 2.4e-2). CONCLUSIONS Our comprehensive analysis of sequencing data generated from a large cohort of PDAC patient samples highlights a distinctive pattern of biallelic CDKN2A mutation in EOPC tumors. Increased expression of FOXC2 in EOPC, with the correlation between FOXC2 and EMT pathways, represents novel molecular characteristics of EOPC.See related commentary by Lou, p. 8.
Collapse
Affiliation(s)
- Erica S Tsang
- BC Cancer, Vancouver, British Columbia, Canada.,Pancreas Centre BC, Vancouver, British Columba, Canada
| | | | | | - Michael K C Lee
- BC Cancer, Vancouver, British Columbia, Canada.,Pancreas Centre BC, Vancouver, British Columba, Canada
| | - Laura M Williamson
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Shehara Mendis
- BC Cancer, Vancouver, British Columbia, Canada.,Pancreas Centre BC, Vancouver, British Columba, Canada
| | | | - Gun Ho Jang
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | | | - Richard A Moore
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Andrew J Mungall
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
| | | | | | - Faiyaz Notta
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Julie M Wilson
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | | | | | - Jennifer J Knox
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Rachel A Goodwin
- The Ottawa Hospital Cancer Centre, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Jonathan M Loree
- BC Cancer, Vancouver, British Columbia, Canada.,Pancreas Centre BC, Vancouver, British Columba, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
| | | | - David F Schaeffer
- Pancreas Centre BC, Vancouver, British Columba, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel J Renouf
- BC Cancer, Vancouver, British Columbia, Canada. .,Pancreas Centre BC, Vancouver, British Columba, Canada
| |
Collapse
|
30
|
Khurana N, Dodhiawala PB, Bulle A, Lim KH. Deciphering the Role of Innate Immune NF-ĸB Pathway in Pancreatic Cancer. Cancers (Basel) 2020; 12:cancers12092675. [PMID: 32961746 PMCID: PMC7564842 DOI: 10.3390/cancers12092675] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Chronic inflammation is a major mechanism that underlies the aggressive nature and treatment resistance of pancreatic cancer. In many ways, the molecular mechanisms that drive chronic inflammation in pancreatic cancer are very similar to our body’s normal innate immune response to injury or invading microorganisms. Therefore, during cancer development, pancreatic cancer cells hijack the innate immune pathway to foster a chronically inflamed tumor environment that helps shield them from immune attack and therapeutics. While blocking the innate immune pathway is theoretically reasonable, untoward side effects must also be addressed. In this review, we comprehensively summarize the literature that describe the role of innate immune signaling in pancreatic cancer, emphasizing the specific role of this pathway in different cell types. We review the interaction of the innate immune pathway and cancer-driving signaling in pancreatic cancer and provide an updated overview of novel therapeutic opportunities against this mechanism. Abstract Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers with no effective treatment option. A predominant hallmark of PDAC is the intense fibro-inflammatory stroma which not only physically collapses vasculature but also functionally suppresses anti-tumor immunity. Constitutive and induced activation of the NF-κB transcription factors is a major mechanism that drives inflammation in PDAC. While targeting this pathway is widely supported as a promising therapeutic strategy, clinical success is elusive due to a lack of safe and effective anti-NF-κB pathway therapeutics. Furthermore, the cell type-specific contribution of this pathway, specifically in neoplastic cells, stromal fibroblasts, and immune cells, has not been critically appraised. In this article, we highlighted seminal and recent literature on molecular mechanisms that drive NF-κB activity in each of these major cell types in PDAC, focusing specifically on the innate immune Toll-like/IL-1 receptor pathway. We reviewed recent evidence on the signaling interplay between the NF-κB and oncogenic KRAS signaling pathways in PDAC cells and their collective contribution to cancer inflammation. Lastly, we reviewed clinical trials on agents that target the NF-κB pathway and novel therapeutic strategies that have been proposed in preclinical studies.
Collapse
Affiliation(s)
- Namrata Khurana
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Paarth B Dodhiawala
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ashenafi Bulle
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kian-Huat Lim
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
31
|
Cohen AS, Li J, Hight MR, McKinley E, Fu A, Payne A, Liu Y, Zhang D, Xie Q, Bai M, Ayers GD, Tantawy MN, Smith JA, Revetta F, Washington MK, Shi C, Merchant N, Manning HC. TSPO-targeted PET and Optical Probes for the Detection and Localization of Premalignant and Malignant Pancreatic Lesions. Clin Cancer Res 2020; 26:5914-5925. [PMID: 32933996 DOI: 10.1158/1078-0432.ccr-20-1214] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/24/2020] [Accepted: 09/10/2020] [Indexed: 12/28/2022]
Abstract
PURPOSE Pancreatic cancer is among the most aggressive malignancies and is rarely discovered early. However, pancreatic "incidentalomas," particularly cysts, are frequently identified in asymptomatic patients through anatomic imaging for unrelated causes. Accurate determination of the malignant potential of cystic lesions could lead to life-saving surgery or spare patients with indolent disease undue risk. Current risk assessment of pancreatic cysts requires invasive sampling, with attendant morbidity and sampling errors. Here, we sought to identify imaging biomarkers of high-risk pancreatic cancer precursor lesions. EXPERIMENTAL DESIGN Translocator protein (TSPO) expression, which is associated with cholesterol metabolism, was evaluated in premalignant and pancreatic cancer lesions from human and genetically engineered mouse (GEM) tissues. In vivo imaging was performed with [18F]V-1008, a TSPO-targeted PET agent, in two GEM models. For image-guided surgery (IGS), V-1520, a TSPO ligand for near-IR optical imaging based upon the V-1008 pharmacophore, was developed and evaluated. RESULTS TSPO was highly expressed in human and murine pancreatic cancer. Notably, TSPO expression was associated with high-grade, premalignant intraductal papillary mucinous neoplasms (IPMNs) and pancreatic intraepithelial neoplasia (PanIN) lesions. In GEM models, [18F]V-1008 exhibited robust uptake in early pancreatic cancer, detectable by PET. Furthermore, V-1520 localized to premalignant pancreatic lesions and advanced tumors enabling real-time IGS. CONCLUSIONS We anticipate that combined TSPO PET/IGS represents a translational approach for precision pancreatic cancer care through discrimination of high-risk indeterminate lesions and actionable surgery.
Collapse
Affiliation(s)
- Allison S Cohen
- Vanderbilt Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jun Li
- Vanderbilt Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Matthew R Hight
- Vanderbilt Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Eliot McKinley
- Vanderbilt Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - Allie Fu
- Vanderbilt Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Adria Payne
- Vanderbilt Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yang Liu
- Vanderbilt Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Dawei Zhang
- Vanderbilt Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Qing Xie
- Vanderbilt Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mingfeng Bai
- Vanderbilt Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Gregory D Ayers
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mohammed Noor Tantawy
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jarrod A Smith
- Vanderbilt University Center for Structural Biology, Vanderbilt University, Nashville, Tennessee
| | - Frank Revetta
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - M Kay Washington
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Chanjuan Shi
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Nipun Merchant
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - H Charles Manning
- Vanderbilt Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, Tennessee. .,Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
32
|
Armacki M, Polaschek S, Waldenmaier M, Morawe M, Ruhland C, Schmid R, Lechel A, Tharehalli U, Steup C, Bektas Y, Li H, Kraus JM, Kestler HA, Kruger S, Ormanns S, Walther P, Eiseler T, Seufferlein T. Protein Kinase D1, Reduced in Human Pancreatic Tumors, Increases Secretion of Small Extracellular Vesicles From Cancer Cells That Promote Metastasis to Lung in Mice. Gastroenterology 2020; 159:1019-1035.e22. [PMID: 32446697 DOI: 10.1053/j.gastro.2020.05.052] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 04/21/2020] [Accepted: 05/13/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Pancreatic tumor cells release small extracellular vesicles (sEVs, exosomes) that contain lipids and proteins, RNA, and DNA molecules that might promote formation of metastases. It is not clear what cargo these vesicles contain and how they are released. Protein kinase D1 (PRKD1) inhibits cell motility and is believed to be dysregulated in pancreatic ductal adenocarcinomas. We investigated whether it regulates production of sEVs in pancreatic cancer cells and their ability to form premetastatic niches for pancreatic cancer cells in mice. METHODS We analyzed data from UALCAN and human pancreatic tissue microarrays to compare levels of PRKD1 between tumor and nontumor tissues. We studied mice with pancreas-specific disruption of Prkd1 (PRKD1KO mice), mice that express oncogenic KRAS (KC mice), and KC mice with disruption of Prkd1 (PRKD1KO-KC mice). Subcutaneous xenograft tumors were grown in NSG mice from Panc1 cells; some mice were then given injections of sEVs. Pancreata and lung tissues from mice were analyzed by histology, immunohistochemistry, and/or quantitative polymerase chain reaction; we performed nanoparticle tracking analysis of plasma sEVs. The Prkd1 gene was disrupted in Panc1 cells using CRISPR-Cas9 or knocked down with small hairpin RNAs, or PRKD1 activity was inhibited with the selective inhibitor CRT0066101. Pancreatic cancer cell lines were analyzed by gene-expression microarray, quantitative polymerase chain reaction, immunoblot, and immunofluorescence analyses. sEVs secreted by Panc1 cell lines were analyzed by flow cytometry, transmission electron microscopy, and mass spectrometry. RESULTS Levels of PRKD1 were reduced in human pancreatic ductal adenocarcinoma tissues compared with nontumor tissues. PRKD1KO-KC mice developed more pancreatic intraepithelial neoplasia, at a faster rate, than KC mice, and had more lung metastases and significantly shorter average survival time. Serum from PRKD1KO-KC mice had increased levels of sEVs compared with KC mice. Pancreatic cancer cells with loss or inhibition of PRKD1 increased secretion of sEVs; loss of PRKD1 reduced phosphorylation of its substrate, cortactin, resulting in increased F-actin levels at the plasma membrane. sEVs from cells with loss or reduced expression of PRKD1 had altered content, and injection of these sEVs into mice increased metastasis of xenograft tumors to lung, compared with sEVs from pancreatic cells that expressed PRKD1. PRKD1-deficient pancreatic cancer cells showed increased loading of integrin α6β4 into sEVs-a process that required CD82. CONCLUSIONS Human pancreatic ductal adenocarcinoma has reduced levels of PRKD1 compared with nontumor pancreatic tissues. Loss of PRKD1 results in reduced phosphorylation of cortactin in pancreatic cancer cell lines, resulting in increased in F-actin at the plasma membrane and increased release of sEVs, with altered content. These sEVs promote metastasis of xenograft and pancreatic tumors to lung in mice.
Collapse
Affiliation(s)
- Milena Armacki
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Sandra Polaschek
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | | | - Mareen Morawe
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Claudia Ruhland
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Rebecca Schmid
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - André Lechel
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Umesh Tharehalli
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Christoph Steup
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Yasin Bektas
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Hongxia Li
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Johann M Kraus
- Institute of Medical Systems Biology, Ulm University, Ulm, Germany
| | - Hans A Kestler
- Institute of Medical Systems Biology, Ulm University, Ulm, Germany
| | - Stephan Kruger
- Department of Medicine III, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Steffen Ormanns
- Institute of Pathology, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, University of Ulm, Ulm, Germany
| | - Tim Eiseler
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany.
| | - Thomas Seufferlein
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany.
| |
Collapse
|
33
|
Ji Y, Liu X, Li J, Xie X, Huang M, Jiang J, Liao YP, Donahue T, Meng H. Use of ratiometrically designed nanocarrier targeting CDK4/6 and autophagy pathways for effective pancreatic cancer treatment. Nat Commun 2020; 11:4249. [PMID: 32843618 PMCID: PMC7447818 DOI: 10.1038/s41467-020-17996-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 07/28/2020] [Indexed: 12/17/2022] Open
Abstract
Aberrant cell cycle machinery and loss of the CDKN2A tumor suppressor locus make CDK4/6 a potential target in pancreatic ductal adenocarcinoma (PDAC). However, a vast majority of PDAC cases do not harbor a durable response to monotherapy of CDK4/6 inhibitor. Utilizing remote loading to co-encapsulate CDK4/6 inhibitor palbociclib (PAL) and an autophagy inhibitor hydroxychloroquine (HCQ), we demonstrate a ratiometrically designed mesoporous silica nanoformulation with synergistic efficacy in subcutaneous and orthotopic PDAC mouse models. The synergism is attributed to the effective intratumoral buildup of PAL/HCQ, which otherwise exhibit distinctly different circulatory and biodistribution profile. PAL/HCQ co-delivery nanoparticles lead to the most effective shrinkage of PDAC compared to various controls, including free drug mixture. Immunohistochemistry reveals that PAL/HCQ co-delivery nanoparticles trigger anti-apoptotic pathway after repetitive intravenous administrations in mice. When combined with a Bcl inhibitor, the performance of co-delivery nanoparticles is further improved, leading to a long-lasting anti-PDAC effect in vivo. Aberrant cell cycle machinery and loss of the CDKN2A tumor suppressor locus make CDK4/6 a potential target in pancreatic ductal adenocarcinoma (PDAC). Here, the authors use ratiometrically designed nanoparticles to codeliver the CDK4/6 inhibitor palbociclib and the autophagy inhibitor hydroxychloroquine, and show their synergistic therapeutic effects in mouse model of PDAC.
Collapse
Affiliation(s)
- Ying Ji
- Division of NanoMedicine, Department of Medicine, California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA.,California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA.,Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hunghom, Kowloon, Hong Kong, China
| | - Xiangsheng Liu
- Division of NanoMedicine, Department of Medicine, California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA.,California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Juan Li
- Division of NanoMedicine, Department of Medicine, California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA.,Key Laboratory of Biomedical Effects of Nanomaterial & Nanosafety, Chinese Academy of Science, 100049, Beijing, China
| | - Xiaodong Xie
- Division of NanoMedicine, Department of Medicine, California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Max Huang
- Division of NanoMedicine, Department of Medicine, California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Jinhong Jiang
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Yu-Pei Liao
- Division of NanoMedicine, Department of Medicine, California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Timothy Donahue
- Department of Surgery, University of California, Los Angeles, CA, 90095, USA.,Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Huan Meng
- Division of NanoMedicine, Department of Medicine, California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA. .,California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
34
|
He M, Henderson M, Muth S, Murphy A, Zheng L. Preclinical mouse models for immunotherapeutic and non-immunotherapeutic drug development for pancreatic ductal adenocarcinoma. ACTA ACUST UNITED AC 2020; 3. [PMID: 32832900 PMCID: PMC7440242 DOI: 10.21037/apc.2020.03.03] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is in urgent need of better diagnostic and therapeutic methods due to its late diagnosis, limited treatment options and poor prognosis. Finding the right animal models to recapitulate the tumor molecular pathogenesis and tumor microenvironment (TME) complexity is critical for preclinical immunotherapeutic and non-immunotherapeutic treatment developments. In this review, we summarize and evaluate popular preclinical animal models including patient-derived xenograft models, humanized mouse models, genetically engineered mouse models, and syngeneic mouse models. Through comparisons between these models in different research settings, we hope to provide guidance in finding the most relevant preclinical models to suit various research purposes.
Collapse
Affiliation(s)
- Mengni He
- Department of Cell Biology, Baltimore, MD, USA
| | - MacKenzie Henderson
- Department of Oncology, Baltimore, MD, USA.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephen Muth
- Department of Oncology, Baltimore, MD, USA.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Adrian Murphy
- Department of Oncology, Baltimore, MD, USA.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,The Precision Medicine Center of Excellence (PMCoE) Program for Pancreatic Cancer, Baltimore, MD, USA
| | - Lei Zheng
- Department of Oncology, Baltimore, MD, USA.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,The Precision Medicine Center of Excellence (PMCoE) Program for Pancreatic Cancer, Baltimore, MD, USA
| |
Collapse
|
35
|
Morita T, Kodama Y, Shiokawa M, Kuriyama K, Marui S, Kuwada T, Sogabe Y, Matsumori T, Kakiuchi N, Tomono T, Mima A, Ueda T, Tsuda M, Yamauchi Y, Nishikawa Y, Sakuma Y, Ota Y, Maruno T, Uza N, Nagasawa T, Chiba T, Seno H. CXCR4 in Tumor Epithelial Cells Mediates Desmoplastic Reaction in Pancreatic Ductal Adenocarcinoma. Cancer Res 2020; 80:4058-4070. [PMID: 32606001 DOI: 10.1158/0008-5472.can-19-2745] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 02/06/2020] [Accepted: 06/25/2020] [Indexed: 11/16/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) features abundant stromal cells with an excessive extracellular matrix (ECM), termed the desmoplastic reaction. CXCR4 is a cytokine receptor for stromal cell-derived factor-1 (CXCL12) expressed in PDAC, but its roles in PDAC and the characteristic desmoplastic reaction remain unclear. Here, we generated a mouse model of PDAC with conditional knockout of Cxcr4 (KPC-Cxcr4-KO) by crossing Cxcr4 flox mice with Pdx1-Cre;KrasLSL-G12D/+;Trp53LSL-R172H/+ (KPC-Cxcr4-WT) mice to assess the development of pancreatic intraepithelial neoplasia (PanIN) and pancreatic cancers. Tumor cell characteristics of those two types were analyzed in vitro. In addition, CXCR4 expression in human pancreatic cancer specimens was evaluated by IHC staining. In KPC-Cxcr4-KO mice, the number and pathologic grade of PanIN lesions were reduced, but the frequency of pancreatic cancers did not differ from that in KPC-Cxcr4-WT mice. The pancreatic tumor phenotype in KPC-Cxcr4-KO mice was significantly larger and undifferentiated, characterized by abundant vimentin-expressing cancer cells, significantly fewer fibroblasts, and markedly less deposition of ECM. In vitro, KPC-Cxcr4-KO tumor cells exhibited higher proliferative and migratory activity than KPC-Cxcr4-WT tumor cells. Myofibroblasts induced invasion activity in KPC-Cxcr4-WT tumor cells, showing an epithelial-mesenchymal interaction, whereas KPC-Cxcr4-KO tumor cells were unaffected by myofibroblasts, suggesting their unique nature. In human pancreatic cancer, undifferentiated carcinoma did not express CXCR4 and exhibited histologic and IHC features similar to those in KPC-Cxcr4-KO mice. In summary, the CXCL12/CXCR4 axis may play an important role in the desmoplastic reaction in PDAC, and loss of CXCR4 induces phenotype changes in undifferentiated carcinoma without a desmoplastic reaction. SIGNIFICANCE: The current study uncovers CXCR4 as a key regulator of desmoplastic reaction in PDAC and opens the way for new therapeutic approaches to overcome the chemoresistance in patients with PDAC.
Collapse
Affiliation(s)
- Toshihiro Morita
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Yuzo Kodama
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan. .,Department of Gastroenterology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Masahiro Shiokawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Katsutoshi Kuriyama
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Saiko Marui
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Takeshi Kuwada
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Yuko Sogabe
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Tomoaki Matsumori
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Nobuyuki Kakiuchi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Teruko Tomono
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Atsushi Mima
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Tatsuki Ueda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Motoyuki Tsuda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Yuki Yamauchi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Yoshihiro Nishikawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Yojiro Sakuma
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Yuji Ota
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Takahisa Maruno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Norimitsu Uza
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Takashi Nagasawa
- Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tsutomu Chiba
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan.,Kansai Electric Power Hospital, Fukushima-ku, Osaka, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
36
|
Shankar S, Tien JCY, Siebenaler RF, Chugh S, Dommeti VL, Zelenka-Wang S, Wang XM, Apel IJ, Waninger J, Eyunni S, Xu A, Mody M, Goodrum A, Zhang Y, Tesmer JJ, Mannan R, Cao X, Vats P, Pitchiaya S, Ellison SJ, Shi J, Kumar-Sinha C, Crawford HC, Chinnaiyan AM. An essential role for Argonaute 2 in EGFR-KRAS signaling in pancreatic cancer development. Nat Commun 2020; 11:2817. [PMID: 32499547 PMCID: PMC7272436 DOI: 10.1038/s41467-020-16309-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 04/20/2020] [Indexed: 01/14/2023] Open
Abstract
Both KRAS and EGFR are essential mediators of pancreatic cancer development and interact with Argonaute 2 (AGO2) to perturb its function. Here, in a mouse model of mutant KRAS-driven pancreatic cancer, loss of AGO2 allows precursor lesion (PanIN) formation yet prevents progression to pancreatic ductal adenocarcinoma (PDAC). Precursor lesions with AGO2 ablation undergo oncogene-induced senescence with altered microRNA expression and EGFR/RAS signaling, bypassed by loss of p53. In mouse and human pancreatic tissues, PDAC progression is associated with increased plasma membrane localization of RAS/AGO2. Furthermore, phosphorylation of AGO2Y393 disrupts both the wild-type and oncogenic KRAS-AGO2 interaction, albeit under different conditions. ARS-1620 (G12C-specific inhibitor) disrupts the KRASG12C-AGO2 interaction, suggesting that the interaction is targetable. Altogether, our study supports a biphasic model of pancreatic cancer development: an AGO2-independent early phase of PanIN formation reliant on EGFR-RAS signaling, and an AGO2-dependent phase wherein the mutant KRAS-AGO2 interaction is critical for PDAC progression.
Collapse
Affiliation(s)
- Sunita Shankar
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jean Ching-Yi Tien
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ronald F Siebenaler
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Seema Chugh
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Vijaya L Dommeti
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sylvia Zelenka-Wang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xiao-Ming Wang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ingrid J Apel
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jessica Waninger
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sanjana Eyunni
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alice Xu
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Malay Mody
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Andrew Goodrum
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yuping Zhang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - John J Tesmer
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Rahul Mannan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xuhong Cao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Pankaj Vats
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sethuramasundaram Pitchiaya
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Stephanie J Ellison
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jiaqi Shi
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Chandan Kumar-Sinha
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Howard C Crawford
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
- Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA.
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Urology, University of Michigan, Ann Arbor, MI, 48109, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
37
|
Garcia PL, Miller AL, Yoon KJ. Patient-Derived Xenograft Models of Pancreatic Cancer: Overview and Comparison with Other Types of Models. Cancers (Basel) 2020; 12:E1327. [PMID: 32456018 PMCID: PMC7281668 DOI: 10.3390/cancers12051327] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/11/2020] [Accepted: 05/19/2020] [Indexed: 12/19/2022] Open
Abstract
Pancreatic cancer (PC) is anticipated to be second only to lung cancer as the leading cause of cancer-related deaths in the United States by 2030. Surgery remains the only potentially curative treatment for patients with pancreatic ductal adenocarcinoma (PDAC), the most common form of PC. Multiple recent preclinical studies focus on identifying effective treatments for PDAC, but the models available for these studies often fail to reproduce the heterogeneity of this tumor type. Data generated with such models are of unknown clinical relevance. Patient-derived xenograft (PDX) models offer several advantages over human cell line-based in vitro and in vivo models and models of non-human origin. PDX models retain genetic characteristics of the human tumor specimens from which they were derived, have intact stromal components, and are more predictive of patient response than traditional models. This review briefly describes the advantages and disadvantages of 2D cultures, organoids and genetically engineered mouse (GEM) models of PDAC, and focuses on the applications, characteristics, advantages, limitations, and the future potential of PDX models for improving the management of PDAC.
Collapse
Affiliation(s)
| | | | - Karina J. Yoon
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (P.L.G.); (A.L.M.)
| |
Collapse
|
38
|
Nelson SR, Walsh N. Genetic Alterations Featuring Biological Models to Tailor Clinical Management of Pancreatic Cancer Patients. Cancers (Basel) 2020; 12:E1233. [PMID: 32423157 PMCID: PMC7281628 DOI: 10.3390/cancers12051233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/19/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-related death worldwide. This high mortality rate is due to the disease's lack of symptoms, resulting in a late diagnosis. Biomarkers and treatment options for pancreatic cancer are also limited. In order to overcome this, new research models and novel approaches to discovering PDAC biomarkers are required. In this review, we outline the hereditary and somatic causes of PDAC and provide an overview of the recent genome wide association studies (GWAS) and pathway analysis studies. We also provide a summary of some of the systems used to study PDAC, including established and primary cell lines, patient-derived xenografts (PDX), and newer models such as organoids and organ-on-chip. These ex vitro laboratory systems allow for critical research into the development and progression of PDAC.
Collapse
Affiliation(s)
| | - Naomi Walsh
- National Institute for Cellular Biotechnology, School of Biotechnology, Dublin City University, Dublin 9, Ireland;
| |
Collapse
|
39
|
Bozza M, Green EW, Espinet E, De Roia A, Klein C, Vogel V, Offringa R, Williams JA, Sprick M, Harbottle RP. Novel Non-integrating DNA Nano-S/MAR Vectors Restore Gene Function in Isogenic Patient-Derived Pancreatic Tumor Models. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:957-968. [PMID: 32420409 PMCID: PMC7218229 DOI: 10.1016/j.omtm.2020.04.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/22/2020] [Indexed: 12/22/2022]
Abstract
We describe herein non-integrating minimally sized nano-S/MAR DNA vectors, which can be used to genetically modify dividing cells in place of integrating vectors. They represent a unique genetic tool, which avoids vector-mediated damage. Previous work has shown that DNA vectors comprising a mammalian S/MAR element can provide persistent mitotic stability over hundreds of cell divisions, resisting epigenetic silencing and thereby allowing sustained transgene expression. The composition of the original S/MAR vectors does present some inherent limitations that can provoke cellular toxicity. Herein, we present a new system, the nano-S/MAR, which drives higher transgene expression and has improved efficiency of establishment, due to the minimal impact on cellular processes and perturbation of the endogenous transcriptome. We show that these features enable the hitherto challenging genetic modification of patient-derived cells to stably restore the tumor suppressor gene SMAD4 to a patient-derived SMAD4 knockout pancreatic cancer line. Nano-S/MAR modification does not alter the molecular or phenotypic integrity of the patient-derived cells in cell culture and xenograft mouse models. In conclusion, we show that these DNA vectors can be used to persistently modify a range of cells, providing sustained transgene expression while avoiding the risks of insertional mutagenesis and other vector-mediated toxicity.
Collapse
Affiliation(s)
- Matthias Bozza
- DNA Vector Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Edward W Green
- Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Elisa Espinet
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Alice De Roia
- DNA Vector Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Corinna Klein
- Stem Cells and Metastasis, Hi-Stem Heidelberg, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Vanessa Vogel
- Stem Cells and Metastasis, Hi-Stem Heidelberg, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Rienk Offringa
- Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | - Martin Sprick
- Stem Cells and Metastasis, Hi-Stem Heidelberg, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Richard P Harbottle
- DNA Vector Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| |
Collapse
|
40
|
Hakobyan D, Médina C, Dusserre N, Stachowicz ML, Handschin C, Fricain JC, Guillermet-Guibert J, Oliveira H. Laser-assisted 3D bioprinting of exocrine pancreas spheroid models for cancer initiation study. Biofabrication 2020; 12:035001. [PMID: 32131058 DOI: 10.1088/1758-5090/ab7cb8] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common malignancy of the pancreas. It has shown a poor prognosis and a rising incidence in the developed world. Other pathologies associated with this tissue include pancreatitis, a risk condition for pancreatic cancer. The onset of both pancreatitis and pancreatic cancer follows a common pattern: exocrine pancreatic acinar cells undergo a transdifferentiation to duct cells that triggers a 3D restructuration of the pancreatic tissue. However, the exact mechanism underlying this process remains partially undefined. Further understanding the cellular events leading to PDAC could open new avenues in the development of novel therapeutic approaches. Since current 2D cell culture models fail to mimic the tridimensional complexity of the pancreatic tissue, new in vitro models are urgently needed. Here, we generated 3D pancreatic cell spheroid arrays using laser-assisted bioprinting and characterized their phenotypic evolution over time through image analysis and phenotypic characterization. We show that these bioprinted spheroids, composed of both acinar and ductal cells, can replicate the initial stages of PDAC development. This bioprinted miniaturized spheroid-based array model should prove useful for the study of the internal and external factors that contribute to the formation of precursor PDAC lesions and to cancer progression, and may therefore shed light on future PDAC therapy strategies.
Collapse
Affiliation(s)
- Davit Hakobyan
- Bioingénierie tissulaire, Université de Bordeaux, 146, rue Léo Saignat 33076, Bordeaux, France. Bioingénierie tissulaire, Inserm U1026, 146, rue Léo Saignat 33076, Bordeaux, France. Both authors have contributed equally to this work
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Sodir NM, Kortlever RM, Barthet VJA, Campos T, Pellegrinet L, Kupczak S, Anastasiou P, Swigart LB, Soucek L, Arends MJ, Littlewood TD, Evan GI. MYC Instructs and Maintains Pancreatic Adenocarcinoma Phenotype. Cancer Discov 2020; 10:588-607. [PMID: 31941709 DOI: 10.1158/2159-8290.cd-19-0435] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 11/30/2019] [Accepted: 01/10/2020] [Indexed: 11/16/2022]
Abstract
The signature features of pancreatic ductal adenocarcinoma (PDAC) are its fibroinflammatory stroma, poor immune activity, and dismal prognosis. We show that acute activation of Myc in indolent pancreatic intraepithelial neoplasm (PanIN) epithelial cells in vivo is, alone, sufficient to trigger immediate release of instructive signals that together coordinate changes in multiple stromal and immune-cell types and drive transition to pancreatic adenocarcinomas that share all the characteristic stromal features of their spontaneous human counterpart. We also demonstrate that this Myc-driven PDAC switch is completely and immediately reversible: Myc deactivation/inhibition triggers meticulous disassembly of advanced PDAC tumor and stroma and concomitant death of tumor cells. Hence, both the formation and deconstruction of the complex PDAC phenotype are continuously dependent on a single, reversible Myc switch. SIGNIFICANCE: We show that Myc activation in indolent Kras G12D-induced PanIN epithelium acts as an immediate pleiotropic switch, triggering tissue-specific signals that instruct all the diverse signature stromal features of spontaneous human PDAC. Subsequent Myc deactivation or inhibition immediately triggers a program that coordinately disassembles PDAC back to PanIN.See related commentary by English and Sears, p. 495.
Collapse
Affiliation(s)
- Nicole M Sodir
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Roderik M Kortlever
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | | | - Tania Campos
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Luca Pellegrinet
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Steven Kupczak
- Cambridge Research Institute, Li Ka Shing Centre, Cambridge, United Kingdom
| | | | - Lamorna Brown Swigart
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California
| | - Laura Soucek
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Mark J Arends
- Division of Pathology, Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Trevor D Littlewood
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Gerard I Evan
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
42
|
Ruscetti M, Morris JP, Mezzadra R, Russell J, Leibold J, Romesser PB, Simon J, Kulick A, Ho YJ, Fennell M, Li J, Norgard RJ, Wilkinson JE, Alonso-Curbelo D, Sridharan R, Heller DA, de Stanchina E, Stanger BZ, Sherr CJ, Lowe SW. Senescence-Induced Vascular Remodeling Creates Therapeutic Vulnerabilities in Pancreas Cancer. Cell 2020; 181:424-441.e21. [PMID: 32234521 DOI: 10.1016/j.cell.2020.03.008] [Citation(s) in RCA: 266] [Impact Index Per Article: 53.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/20/2019] [Accepted: 02/21/2020] [Indexed: 12/18/2022]
Abstract
KRAS mutant pancreatic ductal adenocarcinoma (PDAC) is characterized by a desmoplastic response that promotes hypovascularity, immunosuppression, and resistance to chemo- and immunotherapies. We show that a combination of MEK and CDK4/6 inhibitors that target KRAS-directed oncogenic signaling can suppress PDAC proliferation through induction of retinoblastoma (RB) protein-mediated senescence. In preclinical mouse models of PDAC, this senescence-inducing therapy produces a senescence-associated secretory phenotype (SASP) that includes pro-angiogenic factors that promote tumor vascularization, which in turn enhances drug delivery and efficacy of cytotoxic gemcitabine chemotherapy. In addition, SASP-mediated endothelial cell activation stimulates the accumulation of CD8+ T cells into otherwise immunologically "cold" tumors, sensitizing tumors to PD-1 checkpoint blockade. Therefore, in PDAC models, therapy-induced senescence can establish emergent susceptibilities to otherwise ineffective chemo- and immunotherapies through SASP-dependent effects on the tumor vasculature and immune system.
Collapse
Affiliation(s)
- Marcus Ruscetti
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - John P Morris
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Riccardo Mezzadra
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - James Russell
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Josef Leibold
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Paul B Romesser
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Janelle Simon
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Amanda Kulick
- Department of Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yu-Jui Ho
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Myles Fennell
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jinyang Li
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert J Norgard
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John E Wilkinson
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Direna Alonso-Curbelo
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ramya Sridharan
- Department of Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Daniel A Heller
- Department of Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Elisa de Stanchina
- Department of Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ben Z Stanger
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charles J Sherr
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Scott W Lowe
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
43
|
Chang YJ, Bae J, Zhao Y, Lee G, Han J, Lee YH, Koo OJ, Seo S, Choi YK, Yeom SC. In vivo multiplex gene targeting with Streptococcus pyogens and Campylobacter jejuni Cas9 for pancreatic cancer modeling in wild-type animal. J Vet Sci 2020; 21:e26. [PMID: 32233134 PMCID: PMC7113579 DOI: 10.4142/jvs.2020.21.e26] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma is a lethal cancer type that is associated with multiple gene mutations in somatic cells. Genetically engineered mouse is hardly applicable for developing a pancreatic cancer model, and the xenograft model poses a limitation in the reflection of early stage pancreatic cancer. Thus, in vivo somatic cell gene engineering with clustered regularly interspaced short palindromic repeats is drawing increasing attention for generating an animal model of pancreatic cancer. In this study, we selected Kras, Trp53, Ink4a, Smad4, and Brca2 as target genes, and applied Campylobacter jejuni Cas9 (CjCas9) and Streptococcus pyogens Cas9 (SpCas9) for developing pancreatic cancer using adeno associated virus (AAV) transduction. After confirming multifocal and diffuse transduction of AAV2, we generated SpCas9 overexpression mice, which exhibited high double-strand DNA breakage (DSB) in target genes and pancreatic intraepithelial neoplasia (PanIN) lesions with two AAV transductions; however, wild-type (WT) mice with three AAV transductions did not develop PanIN. Furthermore, small-sized Cjcas9 was applied to WT mice with two AAV system, which, in addition, developed high extensive DSB and PanIN lesions. Histological changes and expression of cancer markers such as Ki67, cytokeratin, Mucin5a, alpha smooth muscle actin in duct and islet cells were observed. In addition, the study revealed several findings such as 1) multiple DSB potential of AAV-CjCas9, 2) peri-ductal lymphocyte infiltration, 3) multi-focal cancer marker expression, and 4) requirement of > 12 months for initiation of PanIN in AAV mediated targeting. In this study, we present a useful tool for in vivo cancer modeling that would be applicable for other disease models as well.
Collapse
Affiliation(s)
- Yoo Jin Chang
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Korea
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jihyeon Bae
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Yang Zhao
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Geonseong Lee
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Jeongpil Han
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Yoon Hoo Lee
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Korea
| | | | - Sunmin Seo
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Yang Kyu Choi
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Su Cheong Yeom
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Korea
- Designed Animal and Transplantation Research Institute, Greenbio Research and Technology, Seoul National University, Pyeongchang 25354, Korea.
| |
Collapse
|
44
|
Gupta S, Prajapati A, Gulati M, Gautam SK, Kumar S, Dalal V, Talmon GA, Rachagani S, Jain M. Irreversible and sustained upregulation of endothelin axis during oncogene-associated pancreatic inflammation and cancer. Neoplasia 2020; 22:98-110. [PMID: 31923844 PMCID: PMC6951489 DOI: 10.1016/j.neo.2019.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/13/2022]
Abstract
Endothelin-1 (ET-1) and its two receptors, endothelin receptor A (ETAR) and endothelin receptor B (ETBR) exhibit deregulated overexprerssion in pancreatic ductal adenocarcinoma (PDAC) and pancreatitis. We examined the expression pattern of endothelin (ET) axis components in the murine models of chronic and acute inflammation in the presence or absence of oncogenic K-ras. While the expression of endothelin converting enzyme-1 (ECE-1), ET-1, ETAR and ETBR in the normal pancreas is restricted predominantly to the islet cells, progressive increase of ET receptors in ductal cells and stromal compartment is observed in the KC model (Pdx-1 Cre; K-rasG12D) of PDAC. In the murine pancreas harboring K-rasG12D mutation (KC mice), following acute inflammation induced by cerulein, increased ETAR and ETBR expression is observed in the amylase and CK19 double positive cells that represent cells undergoing pancreatic acinar to ductal metaplasia (ADM). As compared to the wild type (WT) mice, cerulein treatment in KC mice resulted in significantly higher levels of ECE-1, ET-1, ETAR and ETBR, transcripts in the pancreas. Similarly, in response to cigarette smoke-induced chronic inflammation, the expression of ET axis components is significantly upregulated in the pancreas of KC mice as compared to the WT mice. In addition to the expression in the precursor pancreatic intraepithelial neoplasm (PanIN lesions) in cigarette smoke-exposure model and metaplastic ducts in cerulein-treatment model, ETAR and ETBR expression is also observed in infiltrating F4/80 positive macrophages and α-SMA positive fibroblasts and high co-localization was seen in the presence of oncogenic K-ras. In conclusion, both chronic and acute pancreatic inflammation in the presence of oncogenic K-ras contribute to sustained upregulation of ET axis components in the ductal and stromal cells suggesting a potential role of ET axis in the initiation and progression of PDAC.
Collapse
Affiliation(s)
- Suprit Gupta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Avi Prajapati
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mansi Gulati
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Shailendra K Gautam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Vipin Dalal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Geoffrey A Talmon
- Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
45
|
Park I, Hong S, Hwang Y, Kim P. A Novel Pancreatic Imaging Window for Stabilized Longitudinal In Vivo Observation of Pancreatic Islets in Murine Model. Diabetes Metab J 2020; 44:193-198. [PMID: 31237131 PMCID: PMC7043981 DOI: 10.4093/dmj.2018.0268] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/25/2019] [Indexed: 01/25/2023] Open
Abstract
Longitudinal imaging of murine pancreas is technically challenging due to the mechanical softness of the tissue influenced by peristalsis. Here, we report a novel pancreatic imaging window for long-term stabilized cellular-level observation of the islets in the pancreas in vivo. By spatially separating the pancreas from the bowel movement and physiologic respiration with a metal plate integrated in the imaging window, we successfully tracked the pancreatic islets up to three weeks and visualized the dumbbell-shape transformation from the single islet. This window can be a useful tool for long-term cellular-level visualization of the microstructure in the pancreas.
Collapse
Affiliation(s)
- Inwon Park
- Department of Emergency Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Sujung Hong
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Yoonha Hwang
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Pilhan Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.
| |
Collapse
|
46
|
Differences between KC and KPC pancreatic ductal adenocarcinoma mice models, in terms of their modeling biology and their clinical relevance. Pancreatology 2020; 20:79-88. [PMID: 31780287 DOI: 10.1016/j.pan.2019.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/24/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the dangerous human cancers, is the 10th highly prevalent cancer, and the fourth sole cause of cancer-related mortality in the United States of America. Notwithstanding the significant commitment, the forecast for people with this burden continues to have a five-year survival rate of just 4-6%. The most critical altered genes within PDAC consist of K-ras the proto-oncogene which is usually mutationally activated above 90% cases and tumor suppressors likeTrp53 are altered at 55%. To face the burden of pancreatic ductal adenocarcinoma, a variety of genetically engineered pancreatic cancer mice models have been created over the last past years. These models have distinctive features and are not all appropriate for preclinical studies. In this review, we focus on differences between two mice models K-rasLSL.G12D/+;Pdx-1-Cre(KC) and K-rasLSL.G12D/+; Trp53R172H/+; Pdx-1-Cre(KPC) in terms of their modeling biology and their clinical relevance.
Collapse
|
47
|
Wang CF, Shi XJ. Generation and application of patient-derived xenograft models in pancreatic cancer research. Chin Med J (Engl) 2019; 132:2729-2736. [PMID: 31725451 PMCID: PMC6940092 DOI: 10.1097/cm9.0000000000000524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Pancreatic ductal adenocarcinoma cancer (PDAC) is one of the leading causes of cancer-related death worldwide. Hence, the development of effective anti-PDAC therapies is urgently required. Patient-derived xenograft (PDX) models are useful models for developing anti-cancer therapies and screening drugs for precision medicine. This review aimed to provide an updated summary of using PDX models in PDAC. DATA SOURCES The author retrieved information from the PubMed database up to June 2019 using various combinations of search terms, including PDAC, pancreatic carcinoma, pancreatic cancer, patient-derived xenografts or PDX, and patient-derived tumor xenografts or PDTX. STUDY SELECTION Original articles and review articles relevant to the review's theme were selected. RESULTS PDX models are better than cell line-derived xenograft and other models. PDX models consistently demonstrate retained tumor morphology and genetic stability, are beneficial in cancer research, could enhance drug discovery and oncologic mechanism development of PDAC, allow an improved understanding of human cancer cell biology, and help guide personalized treatment. CONCLUSIONS In this review, we outline the status and application of PDX models in both basic and pre-clinical pancreatic cancer researches. PDX model is one of the most appropriate pre-clinical tools that can improve the prognosis of patients with pancreatic cancer in the future.
Collapse
Affiliation(s)
- Cheng-Fang Wang
- Department of Hepato-Biliary Surgery, The General Hospital of People's Liberation Army (301 hospital), Beijing 100853, China
| | | |
Collapse
|
48
|
Rezaee M, Wang J, Razavi M, Ren G, Zheng F, Hussein A, Ullah M, Thakor AS. A Study Comparing the Effects of Targeted Intra-Arterial and Systemic Chemotherapy in an Orthotopic Mouse Model of Pancreatic Cancer. Sci Rep 2019; 9:15929. [PMID: 31685925 PMCID: PMC6828954 DOI: 10.1038/s41598-019-52490-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 10/18/2019] [Indexed: 02/06/2023] Open
Abstract
Systemic chemotherapy is the first line treatment for patients with unresectable pancreatic cancer, however, insufficient drug delivery to the pancreas is a major problem resulting in poor outcomes. We evaluated the therapeutic effects of targeted intra-arterial (IA) delivery of gemcitabine directly into the pancreas in an orthotopic mouse model of pancreatic cancer. Nude mice with orthotopic pancreatic tumors were randomly assigned into 3 groups receiving gemcitabine: systemic intravenous (IV) injection (low: 0.3 mg/kg and high: 100 mg/kg) and direct IA injection (0.3 mg/kg). Treatments were administered weekly for 2 weeks. IA treatment resulted in a significantly greater reduction in tumor growth compared to low IV treatment. To achieve a comparable reduction in tumor growth as seen with IA treatment, gemcitabine had to be given IV at over 300x the dose (high IV treatment) which was associated with some toxicity. After 2 weeks, tumor samples from animals treated with IA gemcitabine had significantly lower residual cancer cells, higher cellular necrosis and evidence of increased apoptosis when compared to animals treated with low IV gemcitabine. Our study shows targeted IA injection of gemcitabine directly into the pancreas, via its arterial blood supply, has a superior therapeutic effect in reducing tumor growth compared to the same concentration administered by conventional systemic injection.
Collapse
MESH Headings
- Administration, Intravenous
- Animals
- Antimetabolites, Antineoplastic/adverse effects
- Antimetabolites, Antineoplastic/therapeutic use
- Cell Line, Tumor
- Deoxycytidine/adverse effects
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/therapeutic use
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Drug Administration Schedule
- Female
- Humans
- Infusions, Intra-Arterial
- Male
- Mice
- Mice, Nude
- Neoplasm, Residual
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Transplantation, Heterologous
- Gemcitabine
Collapse
Affiliation(s)
- Melika Rezaee
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, California, 94304, USA
- Chicago Medical School, Rosalind Franklin University, North Chicago, Illinois, 60064, USA
| | - Jing Wang
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, California, 94304, USA
| | - Mehdi Razavi
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, California, 94304, USA
| | - Gang Ren
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, California, 94304, USA
| | - Fengyan Zheng
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, California, 94304, USA
| | - Ahmed Hussein
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, California, 94304, USA
| | - Mujib Ullah
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, California, 94304, USA
| | - Avnesh S Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, California, 94304, USA.
| |
Collapse
|
49
|
Zinger A, Koren L, Adir O, Poley M, Alyan M, Yaari Z, Noor N, Krinsky N, Simon A, Gibori H, Krayem M, Mumblat Y, Kasten S, Ofir S, Fridman E, Milman N, Lübtow MM, Liba L, Shklover J, Shainsky-Roitman J, Binenbaum Y, Hershkovitz D, Gil Z, Dvir T, Luxenhofer R, Satchi-Fainaro R, Schroeder A. Collagenase Nanoparticles Enhance the Penetration of Drugs into Pancreatic Tumors. ACS NANO 2019; 13:11008-11021. [PMID: 31503443 PMCID: PMC6837877 DOI: 10.1021/acsnano.9b02395] [Citation(s) in RCA: 239] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Overexpressed extracellular matrix (ECM) in pancreatic ductal adenocarcinoma (PDAC) limits drug penetration into the tumor and is associated with poor prognosis. Here, we demonstrate that a pretreatment based on a proteolytic-enzyme nanoparticle system disassembles the dense PDAC collagen stroma and increases drug penetration into the pancreatic tumor. More specifically, the collagozome, a 100 nm liposome encapsulating collagenase, was rationally designed to protect the collagenase from premature deactivation and prolonged its release rate at the target site. Collagen is the main component of the PDAC stroma, reaching 12.8 ± 2.3% vol in diseased mice pancreases, compared to 1.4 ± 0.4% in healthy mice. Upon intravenous injection of the collagozome, ∼1% of the injected dose reached the pancreas over 8 h, reducing the level of fibrotic tissue to 5.6 ± 0.8%. The collagozome pretreatment allowed increased drug penetration into the pancreas and improved PDAC treatment. PDAC tumors, pretreated with the collagozome followed by paclitaxel micelles, were 87% smaller than tumors pretreated with empty liposomes followed by paclitaxel micelles. Interestingly, degrading the ECM did not increase the number of circulating tumor cells or metastasis. This strategy holds promise for degrading the extracellular stroma in other diseases as well, such as liver fibrosis, enhancing tissue permeability before drug administration.
Collapse
Affiliation(s)
- Assaf Zinger
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Lilach Koren
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Omer Adir
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Maria Poley
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Mohammed Alyan
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Zvi Yaari
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Nadav Noor
- The School for Molecular Cell Biology and Biotechnology and the Department of Materials Science and Engineering, Tel Aviv University, Tel Aviv 6997800, Israel
| | - Nitzan Krinsky
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Assaf Simon
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Hadas Gibori
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997800, Israel
| | - Majd Krayem
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Yelena Mumblat
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Shira Kasten
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Sivan Ofir
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Eran Fridman
- Department of Otolaryngology Head and Neck Surgery, Rambam Healthcare Campus, Technion-Israel Institute of Technology, Haifa 3200000, Israel
| | - Neta Milman
- Department of Otolaryngology Head and Neck Surgery, Rambam Healthcare Campus, Technion-Israel Institute of Technology, Haifa 3200000, Israel
| | - Michael M. Lübtow
- Functional Polymer Materials, Lehrstuhl für Chemische Technologie der Materialsynthese, Julius-Maximilians-Universität Würzburg, Röntgenring 11, Würzburg 97070, Germany
| | - Lior Liba
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Jeny Shklover
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Janna Shainsky-Roitman
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Yoav Binenbaum
- Department of Otolaryngology Head and Neck Surgery, Rambam Healthcare Campus, Technion-Israel Institute of Technology, Haifa 3200000, Israel
| | - Dov Hershkovitz
- Department of Pathology, Tel-Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997800, Israel
| | - Ziv Gil
- Department of Otolaryngology Head and Neck Surgery, Rambam Healthcare Campus, Technion-Israel Institute of Technology, Haifa 3200000, Israel
| | - Tal Dvir
- The School for Molecular Cell Biology and Biotechnology and the Department of Materials Science and Engineering, Tel Aviv University, Tel Aviv 6997800, Israel
| | - Robert Luxenhofer
- Functional Polymer Materials, Lehrstuhl für Chemische Technologie der Materialsynthese, Julius-Maximilians-Universität Würzburg, Röntgenring 11, Würzburg 97070, Germany
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997800, Israel
| | - Avi Schroeder
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
- Corresponding author: (AS)
| |
Collapse
|
50
|
Kaneta Y, Sato T, Hikiba Y, Sugimori M, Sue S, Kaneko H, Irie K, Sasaki T, Kondo M, Chuma M, Shibata W, Maeda S. Loss of Pancreatic E-Cadherin Causes Pancreatitis-Like Changes and Contributes to Carcinogenesis. Cell Mol Gastroenterol Hepatol 2019; 9:105-119. [PMID: 31526907 PMCID: PMC6889596 DOI: 10.1016/j.jcmgh.2019.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND & AIMS E-cadherin (Cdh1) is a key molecule for adherence required for maintenance of structural homeostasis. Loss of E-cadherin leads to poor prognosis and the development of resistance to chemotherapy in pancreatic cancer. Here, we evaluated the physiological and pathologic roles of E-cadherin in the pancreas. METHODS We crossbred Ptf1a-Cre mice with Cdh1f/f mice to examine the physiological roles of E-cadherin in the pancreas. In addition, we crossbred these mice with LSL-KrasG12D/+ mice (PKC) to investigate the pathologic roles of E-cadherin. We also generated a tamoxifen-inducible system (Ptf1a-CreERT model). Organoids derived from these models using lentiviral transduction were analyzed for immunohistochemical features. Established cell lines from these organoids were analyzed for migratory and invasive activities as well as gene expression by complementary DNA microarray analyses. RESULTS None of the Ptf1a-Cre mice crossbred with Cdh1f/f mice survived for more than 28 days. We observed aberrant epithelial tubules that resembled the structure of acinar-to-ductal metaplasia after postnatal day 6, showing features of pancreatitis. All of the PKC mice died within 10 days. We observed tumorigenicity with increasing stroma-like aggressive tumors. Ptf1a-CreERT models showed that deletion of E-cadherin led to earlier pancreatic intraepithelial neoplasm formation. Cells established from PKC organoids had greater migratory and invasive activities, and these allograft tumors showed a poorly differentiated phenotype. Gene expression analysis indicated that Hdac1 was up-regulated in PKC cell lines and a histone deacetylase 1 inhibitor suppressed PKC cell proliferation. CONCLUSIONS Under physiological conditions, E-cadherin is important for maintaining the tissue homeostasis of the pancreas. Under pathologic conditions with mutational Kras activation, E-cadherin plays an important role in tumor formation via the acquisition of tumorigenic activity.
Collapse
Affiliation(s)
- Yoshihiro Kaneta
- Department of Gastroenterology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Takeshi Sato
- Department of Gastroenterology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Yohko Hikiba
- Department of Gastroenterology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Makoto Sugimori
- Department of Gastroenterology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Soichiro Sue
- Department of Gastroenterology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Hiroaki Kaneko
- Department of Gastroenterology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Kuniyasu Irie
- Department of Gastroenterology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Tomohiko Sasaki
- Department of Gastroenterology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Masaaki Kondo
- Department of Gastroenterology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Makoto Chuma
- Gastroenterological Centre, Yokohama City University Medical Centre, Yokohama, Japan
| | - Wataru Shibata
- Department of Gastroenterology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan,Advanced Medical Research Center, Yokohama City University, Yokohama, Japan
| | - Shin Maeda
- Department of Gastroenterology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan,Correspondence Address correspondence to: Shin Maeda, MD, PhD Department of Gastroenterology, Graduate School of Medicine Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan. fax: (81) 45-787-2327.
| |
Collapse
|