1
|
Xiong S, Xie J, Xiang F, Yu J, Li Y, Xia B, Zhang Z, Li C, Lin L. Research progress on pharmacological effects against liver and eye diseases of flavonoids present in Chrysanthum indicum L., Chrysanthemum morifolium Ramat., Buddleja officinalis Maxim. and Sophora japonica L. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119094. [PMID: 39532220 DOI: 10.1016/j.jep.2024.119094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/07/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chrysanthemum indicum L., Chrysanthemum morifolium Ramat., Buddleja officinalis Maxim., and Sophora japonica L. have the effects of "Clearing the liver" and "Improving vision". Flavonoids are their main active ingredients, but there are few reports on their simultaneous liver and eye protective effects. AIM OF THE STUDY Overview of the role of flavonoids of the four medicinal flowers (FFMF) in the prevention and treatment of liver and eye diseases. MATERIALS AND METHODS The Web of Science, PubMed, CNKI, Google Scholar, and WanFang databases were searched for FFMF. Using "hepatitis", "liver fibrosis", "liver cancer", "dry eye syndrome", "cataracts", "glaucoma", "age-related macular degeneration", and "diabetic retinopathy" as the keywords, we summarized the main pathological mechanisms of these diseases and the role of FFMF in their prevention and treatment. RESULTS We found that the four medicinal flowers contained a total of 125 flavonoids. They can maintain liver and eye homeostasis by regulating pathological mechanisms such as oxidative stress, inflammation, endoplasmic reticulum stress, mitochondrial dysfunction, glucose and lipid metabolism disorders, and programmed cell death, exerting the effect of "clearing the liver and improving vision". CONCLUSION FFMF have a series of beneficial properties such as antioxidant, anti-inflammatory, antiviral, and antifibrotic activity, and the regulation of angiogenesis, glycolipid metabolism and programmed cell death, which may explain the efficacy of the four traditional Chinese medicines for "Clearing the liver" and "Improving vision".
Collapse
Affiliation(s)
- Suhui Xiong
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China.
| | - Jingchen Xie
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China.
| | - Feng Xiang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China.
| | - Jiahui Yu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China.
| | - Yamei Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China.
| | - Bohou Xia
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China.
| | - Zhimin Zhang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China.
| | - Chun Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Limei Lin
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China.
| |
Collapse
|
2
|
Ojo OA, Ogunlakin AD, Gyebi GA, Ayokunle DI, Odugbemi AI, Babatunde DE, Akintunde EA, Ezea SC, Asogwa NT, Asaleye RM, Ojo AB. Profiling the antidiabetic potential of GC-MS compounds identified from the methanolic extract of Spilanthes filicaulis: experimental and computational insight. J Biomol Struct Dyn 2025; 43:1392-1413. [PMID: 38084747 DOI: 10.1080/07391102.2023.2291828] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/23/2023] [Indexed: 01/04/2025]
Abstract
This study examines the nutritional composition, phytochemical profiling, and antioxidant, antidiabetic, and anti-inflammatory potential of a methanolic extract of Spilanthes filicaulis leaves (MESFL) via in vitro, ex vivo, and in silico studies. In vitro antioxidant, antidiabetic, and anti-inflammatory activities were examined. In the ex vivo study, liver tissues were subjected to FeSO4-induced oxidative damage and treated with varying concentrations of MESFL. MESFL contains a reasonable amount of nitrogen-free extract, moisture, ash content, crude protein, and fat, with a lesser amount of crude fiber. According to GC-MS analysis, MESFL contains ten compounds, the most abundant of which are 13-octadecenal and Ar-tumerone. In this study, MESFL demonstrated anti-inflammatory activities via membrane stabilizing properties, proteinase inhibition, and inhibition of protein denaturation (IC50 = 72.75 ± 11.06 µg/mL). MESFL also strongly inhibited both α-amylase (IC50 = 307.02 ± 4.25 µg/mL) and α-glucosidase (IC50 = 215.51 ± 0.47 µg/mL) activities. Our findings also showed that FeSO4-induced tissue damage decreased the levels of GSH, SOD, and CAT activities while increasing the levels of MDA. In contrast, treatment with MESFL helped to restore these parameters to near-normal levels, which signifies that MESFL has great potential to address complications from oxidative stress. Furthermore, the in silico interaction of the GCMS-identified phytochemicals with the active sites of α-amylase and α-glucosidase via molecular and ensembled-based docking displayed strong binding affinities of Ar-tumerone and 4-hydroxy-3-methylacetophenone to α-amylase and α-glucosidase, respectively. Taken together, the biological activities of MESFL might be a result of the effects of these secondary metabolites.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Oluwafemi Adeleke Ojo
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo, Nigeria
| | - Akingbolabo Daniel Ogunlakin
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo, Nigeria
| | | | | | - Adeshina Isaiah Odugbemi
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo, Nigeria
| | | | | | - Samson Chukwuemeka Ezea
- Department of Pharmacognosy and Environmental Medicine, University of Nigeria, Nsukka, Nigeria
| | | | | | | |
Collapse
|
3
|
Chen X, Wei W, Yang F, Wang J, Lv Q, Liu Y, Zhang Z. Bacillus coagulans alleviates hepatic injury caused by Klebsiella pneumoniae in rabbits. PLoS One 2025; 20:e0317252. [PMID: 39792896 PMCID: PMC11723646 DOI: 10.1371/journal.pone.0317252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND As an opportunistic bacterial pathogen, Klebsiella pneumoniae (KP) is prone to causing a spectrum of diseases in rabbits when their immune system is compromised, which poses a threat to rabbit breeding industry. Bacillus coagulans (BC), recognized as an effective probiotic, confers a variety of benefits including anti-inflammatory and antioxidant properties. AIM The purpose of this study was to investigate whether dietary BC can effectively alleviate hepatic injury caused by KP. METHODS In this study, the rabbits were initially pretreated with varying doses of BC (1×106, 5×106, and 1×107 CFU/g), followed by a challenge with KP at a concentration of 1011 CFU/mL. Liver tissues were harvested and processed for histological assessment using H&E and VG stains to assess structural alterations. Biochemical assays were employed to quantify the enzymatic activities of T-SOD and GSH-Px, as well as the MDA content. Furthermore, ELISA was utilized to detect the levels of inflammatory cytokine (IL-10, IL-6, IL-1β and TNF-α) and apoptotic-related gene (Bcl-2, Bax). RESULTS Morphological observation indicated that BC can effectively mitigate KP-induced hepatic sinusoidal dilatation and congestion, as well as ameliorate the degree of hepatic fibrosis. Further analysis showed that BC significantly lowered MDA level in KP-treated rabbits, while enhanced the activities of T-SOD and GSH-Px. Additionally, ELISA result showed that BC pretreatment significantly reduced the levels of pro-inflammatory cytokines TNF-a, IL-6, IL-1β and pro-apoptotic gene Bax, while increasing the levels of anti-inflammatory cytokine IL-10 and anti-apoptotic gene Bcl-2 in KP-treated rabbits. CONCLUSION Above data indicate that BC supplementation effectively attenuated oxidative stress and inflammatory response induced by KP through augmenting the activities of antioxidant enzymes and diminishing the levels of pro-inflammatory factors. Furthermore, it reduced the Bax/Bcl-2 ratio in the liver, thereby inhibiting KP-induced apoptosis. The treatment group receiving 5x106 CFU/g BC benefitted most from the protective effect.
Collapse
Affiliation(s)
- Xiaoguang Chen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Wenjuan Wei
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Fan Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Jianing Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Qiongxia Lv
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Yumei Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Ziqiang Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
4
|
Venkataramaiah S, Venkatappa MM, Rangappa R, Udagani C, Sannaningaiah D. Green fabricated bimetallic zinc ferrite nanoparticles mitigate oxidative stress-induced pathogenesis. Anal Biochem 2025:115767. [PMID: 39788363 DOI: 10.1016/j.ab.2025.115767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/12/2025]
Abstract
Current study evaluates the beneficial role of bio-functionalized zinc ferrite nanoparticles fabricated from an aqueous extract of Decalepis hamiltonii leaves (DHLE.ZnFe2O4 NPs) on sodium nitrite (NaNO2) and Diclofenac (DFC) induced oxidative stress in RBCs and Sprague Dawley male rat models. DHLE.ZnFe2O4 NPs were characterized using PXRD, FTIR, SEM-EDAX, HR-TEM and VSM. The data suggests that, DHLE.ZnFe2O4 NPs were crystalline, ellipsoidal in shape with an average size of 10.95 nm and super paramagnetic in nature. DHLE.ZnFe2O4 NPs exhibited anti-oxidant properties by scavenging DPPH, H2O2 and reducing ferric to ferrous ions. Furthermore, DHLE.ZnFe2O4 NPs normalized key parameters of oxidative stress such as LPO, PCC, TT and anti-oxidant enzymes (SOD &CAT). Similar to the previous in-vitro results, DHLE.ZnFe2O4 NPs restored all the said stress parameters in homogenates of the liver, kidney, pancreas and heart. In addition, DHLE.ZnFe2O4 NPs repaired Diclofenac induced tissue damage in the liver, kidney, pancreas and heart by regulating all biochemical parameters. Most importantly, DHLE.ZnFe2O4 NPs exhibited anti-inflammatory, anti-diabetic, anti-thrombotic activities and were non-toxic to RBCs. In conclusion, DHLE.ZnFe2O4 NPs through its anti-oxidant potential ameliorate oxidative stress induced pathogenesis such as, inflammation, tissue damage, diabetes and thrombosis.
Collapse
Affiliation(s)
- Shivakumar Venkataramaiah
- Department of Studies and Research in Biochemistry, Tumkur University, Tumkur 572103, Karnataka, India
| | - Manjula M Venkatappa
- Department of Biochemistry, Kuvempu University, Shankaraghatta, Shimoga 577451, Karnataka, India
| | - Rajesh Rangappa
- Chromed Biosciences Private Limited, Hirehalli Industrial Area, Tumkur 572168, Karnataka, India
| | - Chikkappa Udagani
- Department of Physics, University College of Science, Tumkur University, Tumkur 572103, Karnataka, India
| | - Devaraja Sannaningaiah
- Department of Studies and Research in Biochemistry, Tumkur University, Tumkur 572103, Karnataka, India.
| |
Collapse
|
5
|
Song J, Li N, Yang Y, Chen B, Hu J, Tian Y, Lin L, Qin Z. Cell-free hemoglobin released from hemolysis induces programmed cell death through iron overload and oxidative stress in grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2025:110106. [PMID: 39755287 DOI: 10.1016/j.fsi.2024.110106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/22/2024] [Accepted: 12/29/2024] [Indexed: 01/06/2025]
Abstract
Intravascular hemolysis releases hemoglobin (Hb) from red blood cells under specific conditions, yet the effect of hemolysis in aquaculture systems remain poorly understood. In this study, a continuous hemolysis model for grass carp was established by injection of phenylhydrazine (PHZ) to investigate the mechanistic impacts of sustained hemolysis. PHZ-induced hemolysis altered liver color, and subsequent hematoxylin and eosin staining revealed substantial Hb accumulation in the head kidney, accompanied by inflammatory cell infiltration and vacuolization in liver tissue. Quantitative real-time PCR and western blotting confirmed that PHZ treatment significantly upregulated Real-time fluorescence quantitative PCR and western blot confirmed that PHZ treatment significantly up-regulated the expression of iron metabolism-related genes and proteins, including transferrin (Tf), ferritin, ferroportin 1 (FPN1), transferrin receptor 1 (TfR1), nuclear receptor coactivator 4 (NCOA4), divalent metal transporter 1 (DMT1), and six-transmembrane epithelial antigen of prostate 3 (STEAP3). Further investigation of PHZ-induced hemolysis effects on tissues showed that inflammation- and antioxidant enzyme-related genes in the liver and head kidney were significantly upregulated, indicating that hemolysis activated the antioxidant system and intensified inflammatory responses. Perls' staining revealed iron deposition in the head kidney and liver at ten and fourteen days post-PHZ injection. Moreover, β-galactosidase staining and transmission electron microscopy showed increased cellular senescence and mitochondrial damage, respectively, as a result of PHZ-induced hemolysis. In vitro assays with hemin treatment demonstrated increased Fe2+ content in CIK and L8824 cells, which induced oxidative stress, upregulated iron metabolism and inflammatory genes, and ultimately led to cell death. These findings suggest that excessive Hb release during sustained hemolysis leads to iron overload, elevates reactive oxygen species production, disrupts antioxidant balance, and ultimately causes cellular damage.
Collapse
Affiliation(s)
- Jialing Song
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province 510222, China
| | - Ningjing Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province 510222, China
| | - Yan Yang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province 510222, China
| | - Bing Chen
- Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Jiaxiang Hu
- SiChuan Water Conservancy Vocational College, Cheng Du, Si Chuan Province 610000, China
| | - Ye Tian
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province 510222, China
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province 510222, China.
| | - Zhendong Qin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province 510222, China.
| |
Collapse
|
6
|
Ha YS, Kim TK, Heo J, Oh J, Kim SK, Kim J, Lee J, Yang SR, Hwang S, Kim SJ. Rocaglamide-A mitigates LPS-induced hepatic inflammation by modulating JNK/AP-1 signaling cascade and ROS production in hepatocytes. Toxicol Res 2025; 41:47-59. [PMID: 39802115 PMCID: PMC11717754 DOI: 10.1007/s43188-024-00263-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/23/2024] [Accepted: 09/10/2024] [Indexed: 01/03/2025] Open
Abstract
Lipopolysaccharide (LPS), a gut-derived endotoxin, is a recognized risk factor for both Non-alcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD). Rocaglamide-A (Roc-A), a natural compound derived from the genus Aglaia, is known for its pharmacological and immunosuppressive effects on various cell types. Although our recent investigations have unveiled Roc-A's anti-adipogenic role in adipocytes, its mechanism in hepatic inflammation remains elusive. This study delves into Roc-A's protective effects on LPS-induced hepatic inflammation. Our results demonstrated that Roc-A treatment significantly reduced the LPS-induced production of inflammatory cytokines in hepatocytes. Intriguingly, Roc-A decreased LPS-induced production of reactive oxygen species (ROS), upregulated antioxidant gene expression, and downregulated endoplasmic reticulum (ER) stress-related gene expression. Mechanistically, Roc-A significantly attenuated LPS-induced phosphorylation of c-Jun N-terminal kinase (JNK) and activator protein-1 (AP-1). Notably, this effect was abolished by the JNK activator Anisomycin, while the JNK inhibitor SP600125 enhanced it. Furthermore, Roc-A suppressed the expression of NF-κB target genes, including inducible nitric oxide synthase (iNOS), thereby alleviating iNOS-derived nitric oxide (NO) production. These findings collectively indicate that Roc-A has the potential to alleviate LPS-induced nitrosative/oxidative stress and hepatic inflammation by inhibiting JNK phosphorylation. Thus, Roc-A emerges as a promising anti-inflammatory intervention for LPS-induced hepatic inflammation. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-024-00263-y.
Collapse
Affiliation(s)
- Yoon-su Ha
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, 24341 Chuncheon, Republic of Korea
- Global/Gangwon Innovative Biologics-Regional Leading Research Center (GIB-RLRC), Kangwon National University, 24341 Chuncheon, Republic of Korea
| | - Taek-Kyong Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, 24341 Chuncheon, Republic of Korea
- Global/Gangwon Innovative Biologics-Regional Leading Research Center (GIB-RLRC), Kangwon National University, 24341 Chuncheon, Republic of Korea
| | - Jun Heo
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, 24341 Chuncheon, Republic of Korea
- Global/Gangwon Innovative Biologics-Regional Leading Research Center (GIB-RLRC), Kangwon National University, 24341 Chuncheon, Republic of Korea
| | - Jintaek Oh
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, 24341 Chuncheon, Republic of Korea
- Global/Gangwon Innovative Biologics-Regional Leading Research Center (GIB-RLRC), Kangwon National University, 24341 Chuncheon, Republic of Korea
| | - Seung-Kyoon Kim
- Department of Convergent Bioscience and Informatics, College of Bioscience and Biotechnology, Chungnam National University, 34134 Daejeon, Republic of Korea
| | - Jeongkyu Kim
- Department of Life Science, Chung-Ang University, 06974 Seoul, Republic of Korea
| | - Jeonghyung Lee
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, 24341 Chuncheon, Republic of Korea
- Global/Gangwon Innovative Biologics-Regional Leading Research Center (GIB-RLRC), Kangwon National University, 24341 Chuncheon, Republic of Korea
| | - Se-Ran Yang
- Global/Gangwon Innovative Biologics-Regional Leading Research Center (GIB-RLRC), Kangwon National University, 24341 Chuncheon, Republic of Korea
- Department of Medicine, Kangwon National University, 24341 Chuncheon, Republic of Korea
| | - Seonghwan Hwang
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, 46241 Busan, Republic of Korea
| | - Seung-Jin Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, 24341 Chuncheon, Republic of Korea
- Global/Gangwon Innovative Biologics-Regional Leading Research Center (GIB-RLRC), Kangwon National University, 24341 Chuncheon, Republic of Korea
| |
Collapse
|
7
|
Radosavljevic T, Brankovic M, Djuretić J, Grujic-Milanovic J, Kovacic M, Jevtic J, Stankovic S, Samardzic J, Vucevic D, Jakovljevic V. Alpinetin Exhibits Antioxidant and Anti-Inflammatory Effects in C57BL/6 Mice with Alcoholic Liver Disease Induced by the Lieber-DeCarli Ethanol Liquid Diet. Int J Mol Sci 2024; 26:86. [PMID: 39795945 PMCID: PMC11720451 DOI: 10.3390/ijms26010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 01/13/2025] Open
Abstract
Alcohol-associated liver disease (ALD) is a common non-communicable chronic liver disease characterized by a spectrum of conditions ranging from steatosis and alcohol-associated steatohepatitis (AH) to fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). The pathogenesis of ALD involves a complex interplay of various molecular, biochemical, genetic, epigenetic, and environmental factors. While the mechanisms are well studied, therapeutic options remain limited. Alpinetin, a natural flavonoid with antioxidant and anti-inflammatory properties, has shown potential hepatoprotective effects, though its efficacy in ALD remains unexplored. This study investigated the hepatoprotective effects of alpinetin using a Lieber-DeCarli ethanol liquid diet model of ALD in C57BL/6 mice. Mice were divided into three groups: the control group, the ethanol group, and the ethanol group treated with alpinetin. Serum activity of ALT, AST, γ-GT, and ALP was measured to assess liver function, along with antioxidative and oxidative/nitrosative stress markers in liver tissue. Pro-inflammatory cytokines and endoplasmic reticulum (ER) stress parameters in liver tissue were also evaluated. Histological assessment of disease activity was performed using the SALVE grading and staging system. Treatment with alpinetin significantly reduced serum levels of ALT, AST, γ-GT, and oxidative/nitrosative stress markers while increasing antioxidative markers. The levels of pro-inflammatory cytokines and ER stress parameters were significantly decreased. Histological analysis demonstrated reduced steatosis, hepatocyte ballooning, and inflammation. These findings suggest that alpinetin holds promise as a potential therapeutic agent for managing ALD.
Collapse
Affiliation(s)
- Tatjana Radosavljevic
- Institute of Pathophysiology “Ljubodrag Buba Mihailović”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Milica Brankovic
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.B.); (J.S.)
| | - Jasmina Djuretić
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia;
| | - Jelica Grujic-Milanovic
- Institute for Medical Research, National Institute of the Republic of Serbia, Department of Cardiovascular Research, University of Belgrade, 11000 Belgrade, Serbia;
| | - Marijana Kovacic
- Group of Immunology, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Jovan Jevtic
- Institute of Pathology ‘Dr Đorđe Joannović’, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Sanja Stankovic
- Centre for Medical Biochemistry, University Clinical Centre of Serbia, 11000 Belgrade, Serbia;
- Department of Biochemistry, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Janko Samardzic
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.B.); (J.S.)
| | - Danijela Vucevic
- Institute of Pathophysiology “Ljubodrag Buba Mihailović”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Vladimir Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Human Pathology, First Moscow State Medical University I.M. Sechenov, Trubetskaya Street 8, Str. 2, 119991 Moscow, Russia
| |
Collapse
|
8
|
Baik S, Qianshi Y, Park S, Lee H, Heo H, Lee J, Yuan C, Sung J. Flavonoid Derivatives Isolated from Hypericum monogynum Ameliorate Insulin Resistance via Modulation of IRS-1/PI3K/Akt/FOXO1 Pathway in HepG2 Cells. J Med Food 2024. [PMID: 39711189 DOI: 10.1089/jmf.2024.k.0242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
In this study, two high-content flavonoid derivatives [3-8 biapigenin (HM 104) and quercetin-3-O-β-d-galactopyranoside (HM 111)] were obtained through the bioactivity-guided isolation of antidiabetic compounds from Hypericum monogynum flowers. HM 104 and HM 111 exhibited good glucose consumption in fatty acid-induced insulin-resistant HepG2 cells. Moreover, both active compounds enhanced glucose uptake by restoring the expression of key regulators of glucose metabolism, including insulin receptor substrate 1, phosphoinositide 3-kinase, protein kinase B, and glucose transporter type 4, and by mitigating the expression of forkhead box O1 and the factors involved in gluconeogenesis. They upregulate the phosphorylation of glycogen synthase kinase-3β, which may affect glycogen synthesis. Furthermore, the production of reactive oxygen species was decreased by the two compounds. This study provides novel mechanistic insights into the protective effects of flavonoid derivatives isolated from H. monogynum flowers in preventing and managing insulin resistance and associated metabolic disorders.
Collapse
Affiliation(s)
- Seungjoo Baik
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, Korea
| | - Yunhua Qianshi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, P.R. China
- Natural Products Research Center of Guizhou Province, Guiyang, P.R. China
| | - Samuel Park
- Department of Food Science and Biotechnology, Andong National University, Andong, Korea
| | - Hana Lee
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, Korea
| | - Huijin Heo
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, Korea
| | - Junsoo Lee
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, Korea
| | - Chunmao Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, P.R. China
| | - Jeehye Sung
- Department of Food Science and Biotechnology, Andong National University, Andong, Korea
| |
Collapse
|
9
|
Halabitska I, Petakh P, Lushchak O, Kamyshna I, Oksenych V, Kamyshnyi O. Metformin in Antiviral Therapy: Evidence and Perspectives. Viruses 2024; 16:1938. [PMID: 39772244 PMCID: PMC11680154 DOI: 10.3390/v16121938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/03/2025] Open
Abstract
Metformin, a widely used antidiabetic medication, has emerged as a promising broad-spectrum antiviral agent due to its ability to modulate cellular pathways essential for viral replication. By activating AMPK, metformin depletes cellular energy reserves that viruses rely on, effectively limiting the replication of pathogens such as influenza, HIV, SARS-CoV-2, HBV, and HCV. Its role in inhibiting the mTOR pathway, crucial for viral protein synthesis and reactivation, is particularly significant in managing infections caused by HIV, CMV, and EBV. Furthermore, metformin reduces oxidative stress and reactive oxygen species (ROS), which are critical for replicating arboviruses such as Zika and dengue. The drug also regulates immune responses, cellular differentiation, and inflammation, disrupting the life cycle of HPV and potentially other viruses. These diverse mechanisms suppress viral replication, enhance immune system functionality, and contribute to better clinical outcomes. This multifaceted approach highlights metformin's potential as an adjunctive therapy in treating a wide range of viral infections.
Collapse
|