1
|
Wen Z, Luo S, Liu J, Huang Y, Chen G, Cai H. Polyallylamine Hydrochloride-Modified Bovine Serum Albumin Nanoparticles Loaded with α-Solanine for Chemotherapy of Pancreatic Cancer. Int J Nanomedicine 2025; 20:4235-4255. [PMID: 40225222 PMCID: PMC11988199 DOI: 10.2147/ijn.s508936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/29/2025] [Indexed: 04/15/2025] Open
Abstract
Introduction α-Solanine (α-Sol) shows promise for pancreatic cancer (PC) treatment by inhibiting PC cell proliferation, migration, and invasion. However, its clinical application is hindered by poor tumor targeting, significant toxicity, and undesirable pharmacokinetics. To address these issues, this study developed a nanoparticle delivery system (PBSO NPs) using bovine serum albumin as a carrier, with polyallylamine hydrochloride surface modification to enhance α-Sol delivery. Methods PBSO NPs were characterized using transmission electron microscopy, dynamic light scattering, nanoparticle size analyzers, and Fourier-transform infrared spectroscopy. Their in vitro drug release profile and cellular uptake capabilities were evaluated. Furthermore, in vitro experiments were conducted using mouse pancreatic cancer cells (Panc02) to investigate the effects of PBSO NPs on Panc02 cell viability, migration, invasion, and apoptosis. Additionally, a pancreatic cancer xenograft tumor model was established for in vivo experiments to explore the impact of PBSO NPs on tumor growth. Results This study successfully developed PBSO NPs with favorable morphology and physiological stability, capable of enhancing cellular uptake. In vitro experiments demonstrated that PBSO NPs significantly inhibited the viability, migration, and invasion of Panc02 cells while promoting apoptosis. Moreover, PBSO NPs enhanced the inhibitory effects of α-Sol on Panc02 cells. In vivo experiments further confirmed that PBSO NPs improved the therapeutic efficacy of α-Sol against PC while partially reducing its toxicity. Additionally, PBSO NPs exhibited good biocompatibility. Discussion PBSO NPs enhance the therapeutic efficacy of α-Sol against PC by inhibiting the viability, migration, and invasion of PC cells while promoting apoptosis, thereby suppressing the progression of PC. This provides a promising therapeutic strategy for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Zhengde Wen
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
- Wenzhou Key Laboratory of Perioperative Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Shan Luo
- Wenzhou Key Laboratory of Perioperative Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
- Department of Anaesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Juntao Liu
- Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Yufan Huang
- Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Gang Chen
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Huajie Cai
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
2
|
Nair ST, Abhi C, Kamalasanan K, Pavithran K, Unni AR, Sithara MS, Sarma M, Mangalanandan TS. Pathophysiology-Driven Approaches for Overcoming Nanomedicine Resistance in Pancreatic Cancer. Mol Pharm 2024; 21:5960-5988. [PMID: 39561094 DOI: 10.1021/acs.molpharmaceut.4c00801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Tumor heterogeneity poses a significant challenge in cancer therapy. To address this, we analyze pharmacotherapeutic challenges by categorizing them into static and dynamic barriers, reframing these challenges to improve drug delivery, efficacy, and the development of controlled-release nanomedicines (CRNMs). This pathophysiology-driven approach facilitates the design of novel therapeutics tailored to overcome obstacles in pancreatic ductal adenocarcinoma (PDAC) using nanotechnology. Advanced biomaterials in nanodrug delivery systems offer innovative solutions by combining controlled release, stimuli sensitivity, and smart design strategies. CRNMs are engineered to modulate spatiotemporal signaling and control drug release in PDAC, where resistance to conventional therapies is particularly high. This review explores pharmacokinetic considerations for nanomedicine design, RNA interference (RNAi) for stromal modulation, and the development of targeted nanomedicine strategies. Additionally, we highlight the limitations of current animal models in capturing the complexities of PDAC and discuss notable clinical failures, such as PEGylated hyaluronidase (Phase III HALO 109-301 trial) and evofosfamide (TH-302) with gemcitabine (MAESTRO trial), underscoring the need for improved models and treatment strategies. By targeting pathways like Notch and Hedgehog and incorporating stimuli-sensitive and pathway-modulating agents, CRNMs offer a promising avenue to enhance drug penetration and efficacy, reshaping the paradigm of pancreatic cancer treatment.
Collapse
Affiliation(s)
- Sreejith Thrivikraman Nair
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - C Abhi
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Kaladhar Kamalasanan
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - K Pavithran
- Department of Medical Oncology and Hematology, School of Medicine, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Ashok R Unni
- Department of Veterinary Medicine, Central Animal Facility, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - M S Sithara
- Department of Veterinary Medicine, Central Animal Facility, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Manjit Sarma
- Department of Nuclear Medicine, Amrita School of Medicine, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - T S Mangalanandan
- Department of Endocrinology, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| |
Collapse
|
3
|
Mondal P, Alyateem G, Mitchell AV, Gottesman MM. A whole-genome CRISPR screen identifies the spindle accessory checkpoint as a locus of nab-paclitaxel resistance in a pancreatic cancer cell line. Sci Rep 2024; 14:15912. [PMID: 38987356 PMCID: PMC11236977 DOI: 10.1038/s41598-024-66244-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024] Open
Abstract
Pancreatic adenocarcinoma is one of the most aggressive and lethal forms of cancer. Chemotherapy is the primary treatment for pancreatic cancer, but resistance to the drugs used remains a major challenge. A genome-wide CRISPR interference and knockout screen in the PANC-1 cell line with the drug nab-paclitaxel has identified a group of spindle assembly checkpoint (SAC) genes that enhance survival in nab-paclitaxel. Knockdown of these SAC genes (BUB1B, BUB3, and TTK) attenuates paclitaxel-induced cell death. Cells treated with the small molecule inhibitors BAY 1217389 or MPI 0479605, targeting the threonine tyrosine kinase (TTK), also enhance survival in paclitaxel. Overexpression of these SAC genes does not affect sensitivity to paclitaxel. These discoveries have helped to elucidate the mechanisms behind paclitaxel cytotoxicity. The outcomes of this investigation may pave the way for a deeper comprehension of the diverse responses of pancreatic cancer to therapies including paclitaxel. Additionally, they could facilitate the formulation of novel treatment approaches for pancreatic cancer.
Collapse
Affiliation(s)
- Priya Mondal
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - George Alyateem
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Allison V Mitchell
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Michael M Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
4
|
Makanyane DM, Maikoo S, Van Heerden FR, Rhyman L, Ramasami P, Mabuza LP, Ngubane P, Khathi A, Mambanda A, Booysen IN. Bovine serum albumin uptake and polypeptide disaggregation studies of hypoglycemic ruthenium(II) uracil Schiff-base complexes. J Inorg Biochem 2024; 255:112541. [PMID: 38554578 DOI: 10.1016/j.jinorgbio.2024.112541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/13/2024] [Accepted: 03/22/2024] [Indexed: 04/01/2024]
Abstract
Our prior studies have illustrated that the uracil ruthenium(II) diimino complex, [Ru(H3ucp)Cl(PPh3)] (1) (H4ucp = 2,6-bis-((6-amino-1,3-dimethyluracilimino)methylene)pyridine) displayed high hypoglycemic effects in diet-induced diabetic rats. To rationalize the anti-diabetic effects of 1, three new derivatives have been prepared, cis-[Ru(bpy)2(urdp)]Cl2 (2) (urdp = 2,6-bis-((uracilimino)methylene)pyridine), trans-[RuCl2(PPh3)(urdp)] (3), and cis-[Ru(bpy)2(H4ucp)](PF6)2 (4). Various physicochemical techniques were utilized to characterize the structures of the novel ruthenium compounds. Prior to biomolecular interactions or in vitro studies, the stabilities of 1-4 were monitored in anhydrous DMSO, aqueous phosphate buffer containing 2% DMSO, and dichloromethane (DCM) via UV-Vis spectrophotometry. Time-dependent stability studies showed ligand exchange between DMSO nucleophiles and chloride co-ligands of 1 and 3, which was suppressed in the presence of an excess amount of chloride ions. In addition, the metal complexes 1 and 3 are stable in both DCM and an aqueous phosphate buffer containing 2% DMSO. In the case of compounds 2 and 4 with no chloride co-ligands within their coordination spheres, high stability in aqueous phosphate buffer containing 2% DMSO was observed. Fluorescence emission titrations of the individual ruthenium compounds with bovine serum albumin (BSA) showed that the metal compounds interact non-discriminately within the protein's hydrophobic cavities as moderate to strong binders. The metal complexes were capable of disintegrating mature amylin amyloid fibrils. In vivo glucose metabolism studies in liver (Chang) cell lines confirmed enhanced glucose metabolism as evidenced by the increased glucose utilization and glycogen synthesis in liver cell lines in the presence of complexes 2-4.
Collapse
Affiliation(s)
- Daniel M Makanyane
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Sanam Maikoo
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Fanie R Van Heerden
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Lydia Rhyman
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit 80837, Mauritius; Centre of Natural Product, Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa
| | - Ponnadurai Ramasami
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit 80837, Mauritius; Centre of Natural Product, Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa
| | - Lindokuhle P Mabuza
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - Phikelelani Ngubane
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Andile Khathi
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Allen Mambanda
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Irvin N Booysen
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa.
| |
Collapse
|
5
|
Bai X, Xiong J, Li L, Yu C, Sun C. Suppression of hypoxia-induced CAV1 autophagic degradation enhances nanoalbumin-paclitaxel transcytosis and improves therapeutic activity in pancreatic cancer. Eur J Pharmacol 2024; 969:176431. [PMID: 38395374 DOI: 10.1016/j.ejphar.2024.176431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
Nanoalbumin-paclitaxel (nab-paclitaxel) is a standard chemotherapy for pancreatic cancer but has shown limited efficacy. However, the mechanism through which circulating nab-paclitaxel passes through the tumour vascular endothelium has not been determined. In our study, a new nonradioactive and highly sensitive method for analysing nab-paclitaxel transcytosis was established. Based on these methods, we found that hypoxia significantly enhanced the autophagic degradation of CAV1 and therefore attenuated caveolae-mediated nab-paclitaxel transcytosis across endothelial cells (ECs). In a proof-of-concept experiment, higher levels of CAV1, accompanied by lower levels of LC3B, were observed in the vascular endothelium of pancreatic cancer tissues collected from patients who showed a good response to nab-paclitaxel compared with those from patients who showed a poor response to nab-paclitaxel. Furthermore, both in vivo and in vitro studies confirmed that suppressing the autophagic degradation of CAV1 via EC-specific ATG5 knockdown or hydroxychloroquine sulfate (HCQ) treatment significantly enhanced nab-paclitaxel translocation across the endothelial barrier into pancreatic cancer cells and amplified the inhibitory effect of nab-paclitaxel on pancreatic tumour growth. The stimulation of CAV1 expression by EC-specific overexpression of exogenous CAV1 or administration of gemcitabine hydrochloride (GE) had the same effect. These results demonstrated that suppressing CAV1 autophagic degradation is a novel translatable strategy for enhancing nab-paclitaxel chemotherapeutic activity in the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Xiangli Bai
- School of Basic Medicine, Guizhou Medical University, 5500025, Guiyang, Guizhou, China; Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, China; Department of Laboratory Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430077, Wuhan, Hubei, China
| | - Jia Xiong
- Department of Cardiovascular Surgery, Jinan University 2nd Clinical Medicine College People's Hospital of Shenzhen, 518020, Shenzhen, Guangdong, China
| | - Lin Li
- School of Basic Medicine, Guizhou Medical University, 5500025, Guiyang, Guizhou, China; Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, China
| | - Chao Yu
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, China
| | - Chengyi Sun
- School of Basic Medicine, Guizhou Medical University, 5500025, Guiyang, Guizhou, China; Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, China.
| |
Collapse
|
6
|
Mondal P, Alyateem G, Mitchell AV, Gottesman MM. A whole-genome CRISPR screen identifies the spindle accessory checkpoint as a locus of nab-paclitaxel resistance in pancreatic cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.15.580539. [PMID: 38410481 PMCID: PMC10896345 DOI: 10.1101/2024.02.15.580539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Pancreatic adenocarcinoma is one of the most aggressive and lethal forms of cancer. Chemotherapy is the primary treatment for pancreatic cancer, but resistance to the drugs used remains a major challenge. A genome-wide CRISPR interference and knockout screen in the PANC-1 cell line with the drug nab-paclitaxel has identified a group of spindle assembly checkpoint (SAC) genes that enhance survival in nab-paclitaxel. Knockdown of these SAC genes (BUB1B, BUB3, and TTK) attenuates paclitaxel-induced cell death. Cells treated with the small molecule inhibitors BAY 1217389 or MPI 0479605, targeting the threonine tyrosine kinase (TTK), also enhance survival in paclitaxel. Overexpression of these SAC genes does not affect sensitivity to paclitaxel. These discoveries have helped to elucidate the mechanisms behind paclitaxel cytotoxicity. The outcomes of this investigation may pave the way for a deeper comprehension of the diverse responses of pancreatic cancer to therapies including paclitaxel. Additionally, they could facilitate the formulation of novel treatment approaches for pancreatic cancer.
Collapse
Affiliation(s)
- Priya Mondal
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| | - George Alyateem
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Allison V. Mitchell
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Michael M. Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| |
Collapse
|
7
|
Silli EK, Li M, Shao Y, Zhang Y, Hou G, Du J, Liang J, Wang Y. Liposomal nanostructures for Gemcitabine and Paclitaxel delivery in pancreatic cancer. Eur J Pharm Biopharm 2023; 192:13-24. [PMID: 37758121 DOI: 10.1016/j.ejpb.2023.09.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/01/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
Pancreatic cancer (PC) is an incurable disease with a high death rate in the world nowadays. Gemcitabine (GEM) and Paclitaxel (PTX) are considered as references of chemotherapeutic treatments and are commonly used in clinical applications. Factors related to the tumor microenvironment such as insufficient tumor penetration, toxicity, and drug resistance can limit the effectiveness of these therapeutic anticancer drugs. The use of different liposomal nanostructures is a way that can optimize the drug's effectiveness and reduce toxicity. Given the development of PC therapy, this review focuses on advances in Nano-formulation, characterization, and delivery systems of loaded GEM and PTX liposomes using chemotherapy, nucleic acid delivery, and stroma remodeling therapy. As a result, the review covers the literature dealing with the applications of liposomes in PC therapy.
Collapse
Affiliation(s)
- Epiphane K Silli
- School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Mengfei Li
- School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Yuting Shao
- College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Yiran Zhang
- College of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Guilin Hou
- College of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Jiaqian Du
- College of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Jingdan Liang
- College of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Ying Wang
- School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
8
|
Natu J, Nagaraju GP. Gemcitabine effects on tumor microenvironment of pancreatic ductal adenocarcinoma: Special focus on resistance mechanisms and metronomic therapies. Cancer Lett 2023; 573:216382. [PMID: 37666293 DOI: 10.1016/j.canlet.2023.216382] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/26/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is considered one of the deadliest malignancies, with dismal survival rates and extremely prevalent chemoresistance. Gemcitabine is one of the primary treatments used in treating PDACs, but its benefits are limited due to chemoresistance, which could be attributed to interactions between the tumor microenvironment (TME) and intracellular processes. In preclinical models, certain schedules of administration of gemcitabine modulate the TME in a manner that does not promote resistance. Metronomic therapy constitutes a promising strategy to overcome some barriers associated with current PDAC treatments. This review will focus on gemcitabine's mechanism in treating PDAC, combination therapies, gemcitabine's interactions with the TME, and gemcitabine in metronomic therapies.
Collapse
Affiliation(s)
- Jay Natu
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL, 35233, USA
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL, 35233, USA.
| |
Collapse
|
9
|
Pandey P, Khan F, Upadhyay TK, Seungjoon M, Park MN, Kim B. New insights about the PDGF/PDGFR signaling pathway as a promising target to develop cancer therapeutic strategies. Biomed Pharmacother 2023; 161:114491. [PMID: 37002577 DOI: 10.1016/j.biopha.2023.114491] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/20/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Numerous cancers express platelet-derived growth factors (PDGFs) and PDGF receptors (PDGFRs). By directly stimulating tumour cells in an autocrine manner or by stimulating tumour stromal cells in a paracrine manner, the platelet-derived growth factor (PDGF)/platelet-derived growth factor receptor (PDGFR) pathway is crucial in the growth and spread of several cancers. To combat hypoxia in the tumour microenvironment, it encourages angiogenesis. A growing body of experimental data shows that PDGFs target malignant cells, vascular cells, and stromal cells to modulate tumour growth, metastasis, and the tumour microenvironment. To combat medication resistance and enhance patient outcomes in cancers, targeting the PDGF/PDGFR pathway is a viable therapeutic approach. There have been reports of anomalies in the PDGF pathway, including the gain of function point mutations, activating chromosomal translocations, or overexpression or amplification of PDGF receptors (PDGFRs). As a result, it has been shown that targeting the PDGF/PDGFR signaling pathway is an effective method for treating cancer. As a result, this study will concentrate on the regulation of the PDGF/PDGFR signaling system, in particular the current methods and inhibitors used in cancer treatment, as well as the associated therapeutic advantages and side effects.
Collapse
Affiliation(s)
- Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, UP, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, UP, India.
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara 391760, India
| | - Moon Seungjoon
- Chansol Hospital of Korean Medicine, 290, Buheung-ro, Bupyeong-gu, Incheon 21390, Republic of Korea; Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea; Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea; Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
10
|
Dinter J, Friedrich RP, Yang H, Pilarsky C, Mangge H, Pöttler M, Janko C, Alexiou C, Lyer S. Mitoxantrone and Mitoxantrone-Loaded Iron Oxide Nanoparticles Induce Cell Death in Human Pancreatic Ductal Adenocarcinoma Cell Spheroids. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2906. [PMID: 37049199 PMCID: PMC10096321 DOI: 10.3390/ma16072906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Pancreatic ductal adenocarcinoma is a hard-to-treat, deadly malignancy. Traditional treatments, such as surgery, radiation and chemotherapy, unfortunately are still not able to significantly improve long-term survival. Three-dimensional (3D) cell cultures might be a platform to study new drug types in a highly reproducible, resource-saving model within a relevant pathophysiological cellular microenvironment. We used a 3D culture of human pancreatic ductal adenocarcinoma cell lines to investigate a potential new treatment approach using superparamagnetic iron oxide nanoparticles (SPIONs) as a drug delivery system for mitoxantrone (MTO), a chemotherapeutic agent. We established a PaCa DD183 cell line and generated PANC-1SMAD4 (-/-) cells by using the CRISPR-Cas9 system, differing in a prognostically relevant mutation in the TGF-β pathway. Afterwards, we formed spheroids using PaCa DD183, PANC-1 and PANC-1SMAD4 (-/-) cells, and analyzed the uptake and cytotoxic effect of free MTO and MTO-loaded SPIONs by microscopy and flow cytometry. MTO and SPION-MTO-induced cell death in all tumor spheroids in a dose-dependent manner. Interestingly, spheroids with a SMAD4 mutation showed an increased uptake of MTO and SPION-MTO, while at the same time being more resistant to the cytotoxic effects of the chemotherapeutic agents. MTO-loaded SPIONs, with their ability for magnetic drug targeting, could be a future approach for treating pancreatic ductal adenocarcinomas.
Collapse
Affiliation(s)
- Jonas Dinter
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Medical Faculty, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Ralf P. Friedrich
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Hai Yang
- Department of Surgery, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Christian Pilarsky
- Department of Surgery, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Harald Mangge
- Clinical Institute of Medical and Chemical Laboratory Diagnosis, Medical University of Graz, 8036 Graz, Austria
| | - Marina Pöttler
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Christina Janko
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Professorship for AI-Controlled Nanomaterials, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Stefan Lyer
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Professorship for AI-Controlled Nanomaterials, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
11
|
Are Aspects of Integrative Concepts Helpful to Improve Pancreatic Cancer Therapy? Cancers (Basel) 2023; 15:cancers15041116. [PMID: 36831465 PMCID: PMC9953994 DOI: 10.3390/cancers15041116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/24/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Numerous clinical studies have been conducted to improve the outcomes of patients suffering from pancreatic cancer. Different approaches using targeted therapeutic strategies and precision medicine methods have been investigated, and synergies and further therapeutic advances may be achieved through combinations with integrative methods. For pancreatic tumors, a particular challenge is the presence of a microenvironment and a dense stroma, which is both a physical barrier to drug penetration and a complex entity being controlled by the immune system. Therefore, the state of immunological tolerance in the tumor microenvironment must be overcome, which is a considerable challenge. Integrative approaches, such as hyperthermia, percutaneous irreversible electroporation, intra-tumoral injections, phytotherapeutics, or vitamins, in combination with standard-oncological therapies, may potentially contribute to the control of pancreatic cancer. The combined application of standard-oncological and integrative methods is currently being studied in ongoing clinical trials. An actual overview is given here.
Collapse
|
12
|
Padinharayil H, Rai V, George A. Mitochondrial Metabolism in Pancreatic Ductal Adenocarcinoma: From Mechanism-Based Perspectives to Therapy. Cancers (Basel) 2023; 15:1070. [PMID: 36831413 PMCID: PMC9954550 DOI: 10.3390/cancers15041070] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the fourteenth most common malignancy, is a major contributor to cancer-related death with the utmost case fatality rate among all malignancies. Functional mitochondria, regardless of their complex ecosystem relative to normal cells, are essential in PDAC progression. Tumor cells' potential to produce ATP as energy, despite retaining the redox potential optimum, and allocating materials for biosynthetic activities that are crucial for cell growth, survival, and proliferation, are assisted by mitochondria. The polyclonal tumor cells with different metabolic profiles may add to carcinogenesis through inter-metabolic coupling. Cancer cells frequently possess alterations in the mitochondrial genome, although they do not hinder metabolism; alternatively, they change bioenergetics. This can further impart retrograde signaling, educate cell signaling, epigenetic modifications, chromatin structures, and transcription machinery, and ultimately satisfy cancer cellular and nuclear demands. To maximize the tumor microenvironment (TME), tumor cells remodel nearby stromal cells and extracellular matrix. These changes initiate polyclonality, which is crucial for growth, stress response, and metastasis. Here, we evaluate all the intrinsic and extrinsic pathways drawn by mitochondria in carcinogenesis, emphasizing the perspectives of mitochondrial metabolism in PDAC progression and treatment.
Collapse
Affiliation(s)
- Hafiza Padinharayil
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| |
Collapse
|
13
|
Ma T, Jiang JL, Qi WX, Chen JY, Xu HP. A Novel Delivery System of RGD-HSA Loaded GEM/CUR Nanoparticles for the Treatment of Pancreatic Cancer Therapy. Drug Des Devel Ther 2022; 16:2395-2406. [PMID: 35923931 PMCID: PMC9339944 DOI: 10.2147/dddt.s366558] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/27/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction Pancreatic cancer is one of the most common malignant tumors and is characterized by high malignancy, occult incidence and poor prognosis. Traditional chemotherapy drugs have limited efficacy and strong side effects. Therefore, there is an urgent need for a better treatment of the malignancy. Methods The prepared arginine glycine peptide (RGD)-human serum albumin (HSA)-Gemcitabine (GEM)/Curcumin (CUR) nanoparticles (NPs) were characterized for physicochemical properties, stability and in vitro release. Comparisons of HSA-GEM/CUR NPs and RGD-HSA-GEM/CUR NPs regarding tissue distributions and pharmacodynamics were also carried out using mice as the animal models. Results Transmission electron micrographs showed that RGD peptide-conjugated HSA-NPs had an irregular surface, good dispersion (PDI=0.139±0.03) and a uniform size distribution (Mean PS=115.6±5.7 nm). The ζ-potential was −17.3 mV. As regards in vitro release, non RGD modified NPs showed a faster release rate in 24 hours, yielding a release amount of 75% for GEM and 72% for CUR. RGD-HSA-GEM/CUR NPs exhibited 67% of accumulated release of GEM (63% for CUR) in 24 hours. This may be due to the HSA chain covering the surface of NPs, which hindered the drug release. The cytotoxicity of GEM/CUR co-loaded NPs was significantly higher than that of single-drug NPs (P < 0.05). In vivo study results indicated that RGD-HSA-GEM/CUR NPs had notable targeting effect on subcutaneous tumors, with a potential to actively deliver drugs to tumor tissues. Conclusion In this study, we prepared RGD-HSA-GEM/CUR NPs that had both good water solubility and tumor-targeting property. The results also showed that the RGD modified NPs had advantages in increasing GEM/CUR concentration at tumor sites and reducing its distribution in peripheral organs.
Collapse
Affiliation(s)
- Tao Ma
- Department of Oncology; Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, People’s Republic of China
| | - Jin-Ling Jiang
- Department of Oncology; Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, People’s Republic of China
| | - Wei-Xiang Qi
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, People’s Republic of China
| | - Jia-Yi Chen
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, People’s Republic of China
| | - Hao-Ping Xu
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, People’s Republic of China
- Correspondence: Hao-Ping Xu, Email
| |
Collapse
|
14
|
Betge J, Schulte N, Belle S, Zhan T, Krammer-Steiner B, Moulin JC, Kleiß M, Lammert F, Wedding U, Räth S, Maenz M, Hegele L, Larcher-Senn J, Jesenofsky R, Ebert MP, Härtel N. Neglected geriatric assessment and overtreatment of older patients with pancreatic cancer - Results from a prospective phase IV clinical trial. J Geriatr Oncol 2022; 13:662-666. [PMID: 34991998 DOI: 10.1016/j.jgo.2021.12.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Older patients with metastatic pancreatic cancer may suffer increased toxicity from intensive chemotherapy. Treatment individualization by geriatric assessment (GA) might improve functional outcome. METHODS We performed a multicenter, phase IV, open label trial in patients ≥70 years with metastatic pancreatic adenocarcinoma. Patients underwent GA and were assigned to one of three categories based on their scores: Go-Go, Slow-Go, or Frail. These categories were intended to guide physician's treatment decisions when choosing to treat patients with nab-paclitaxel/gemcitabine (arm A), gemcitabine (arm B), or best supportive care (arm C). Primary objective was a stable (loss of five points or less) Barthel's Activities of Daily Living (ADL) score during chemotherapy; secondary endpoints included GA scores during therapy, safety, quality of life, response and survival rates. RESULTS Thirty-two patients were enrolled in the trial in six centers in Germany (out of 135 planned), resulting in termination due to low recruitment. Fifteen patients were allocated to nab-paclitaxel/gemcitabine, fifteen to gemcitabine, and two to best supportive care by their physicians, although according to their GA scores 29 patients (91%) were categorized as Slow-Go and three (9%) as Go-Go. Thus, fifteen of 32 (47%) patients were misclassified and given a course of treatment inconsistent with their GA scores. Median progression-free survival (PFS) were 3.3 months and 9.1 months and median time to quality-of-life deterioration 13 days and 29 days in the nab-paclitaxel/gemcitabine and gemcitabine monotherapy arms, respectively. Serious adverse events were reported in 11 (78.6%) patients in the nab-paclitaxel/gemcitabine and 8 (53.3%) patients in the gemcitabine arm. CONCLUSIONS Clinical evaluations by investigators differed markedly from geriatric assessments, leading to potential overtreatment. In our modest sample size study, those patients undergoing more intensive therapy had a less favorable course.
Collapse
Affiliation(s)
- Johannes Betge
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Junior Clinical Cooperation Unit Translational Gastrointestinal Oncology and Preclinical Models (B440), German Cancer Research Center (DKFZ), Heidelberg, Germany; DKFZ-Hector Cancer Institute, Mannheim, Germany; Mannheim Cancer Center (MCC), University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nadine Schulte
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Mannheim Cancer Center (MCC), University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sebastian Belle
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Mannheim Cancer Center (MCC), University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Tianzuo Zhan
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Mannheim Cancer Center (MCC), University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Jean-Charles Moulin
- Medizinische Klinik, Sektion Hämatologie/Onkologie, Ortenau-Klinikum Lahr-Ettenheim, Lahr, Germany
| | - Matthias Kleiß
- Klinik für Interdisziplinäre Onkologie, DRK-Kliniken Nordhessen gGmbH, Kassel, Germany
| | - Frank Lammert
- Health Sciences, Hannover Medical School (MHH), Hannover, Germany; Department of Medicine II, Saarland University Medical Center, Homburg, Germany
| | - Ulrich Wedding
- Department of Medicine II, University Hospital Jena, Germany
| | | | | | - Lisa Hegele
- Assign Data Management and Biostatistics GmbH, Innsbruck, Austria
| | | | - Ralf Jesenofsky
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Mannheim Cancer Center (MCC), University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Matthias P Ebert
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; DKFZ-Hector Cancer Institute, Mannheim, Germany; Mannheim Cancer Center (MCC), University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Nicolai Härtel
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Mannheim Cancer Center (MCC), University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
15
|
Inhibition of a Mitochondrial Potassium Channel in Combination with Gemcitabine and Abraxane Drastically Reduces Pancreatic Ductal Adenocarcinoma in an Immunocompetent Orthotopic Murine Model. Cancers (Basel) 2022; 14:cancers14112618. [PMID: 35681598 PMCID: PMC9179813 DOI: 10.3390/cancers14112618] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Treatment of pancreas ductal adenocarcinoma (PDAC) remains challenging due to the late stage of presentation, limited efficacy of cytotoxic chemotherapies, and aggressive tumor biology. Novel therapeutic targets are desperately needed. The voltage-gated potassium channel, Kv1.3, is one such unique target. It has been extensively studied in many cancers but less is known in pancreas cancer. In this study, we evaluated the tissue expression of Kv1.3 in resected PDAC and tumor inhibition using novel Kv1.3 inhibitors developed by our group (PCARBTP and PAPTP) with cytotoxic chemotherapies. We found that Kv1.3 is expressed in early stage, non-metastatic, resectable pancreas cancer specimens. Treatment with novel mitochondrial Kv1.3 inhibitors resulted in 95% reduced tumor growth when combined with cytotoxic chemotherapies. This near complete eradication of tumors using this treatment strategy shows that Kv1.3 represents an innovative therapeutic target for pancreas cancer therapy. Abstract Pancreas ductal adenocarcinoma (PDAC) is one the most aggressive cancers and associated with very high mortality, requiring the development of novel treatments. The mitochondrial voltage-gated potassium channel, Kv1.3 is emerging as an attractive oncologic target but its function in PDAC is unknown. Here, we evaluated the tissue expression of Kv1.3 in resected PDAC from 55 patients using immunohistochemistry (IHC) and show that all tumors expressed Kv1.3 with 60% of tumor specimens having high Kv1.3 expression. In Pan02 cells, the recently developed mitochondria-targeted Kv1.3 inhibitors PCARBTP and PAPTP strongly reduced cell survival in vitro. In an orthotopic pancreas tumor model (Pan02 cells injected into C57BL/6 mice) in immune-competent mice, injection of PAPTP or PCARBTP resulted in tumor reductions of 87% and 70%, respectively. When combined with clinically used Gemcitabine plus Abraxane (albumin-bound paclitaxel), reduction reached 95% and 80% without resultant organ toxicity. Drug-mediated tumor cell death occurred through the p38-MAPK pathway, loss of mitochondrial membrane potential, and oxidative stress. Resistant Pan02 clones to PCARBTP escaped cell death through upregulation of the antioxidant system. In contrast, tumor cells did not develop resistance to PAPTP. Our data show that Kv1.3 is highly expressed in resected human PDAC and the use of novel mitochondrial Kv1.3 inhibitors combined with cytotoxic chemotherapies might be a novel, effective treatment for PDAC.
Collapse
|
16
|
Shi Y, Han Q, Yan H, Lv Y, Yuan J, Li J, Guan S, Wang Z, Huang L, Dai G. S-1 Maintenance Therapy After First-Line Treatment With Nab-Paclitaxel Plus S-1 for Advanced Pancreatic Adenocarcinoma: A Real-World Study. Front Oncol 2022; 12:865404. [PMID: 35646689 PMCID: PMC9141286 DOI: 10.3389/fonc.2022.865404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background In our previous phase II study, nab-paclitaxel plus S-1 (NPS) showed encouraging objective response rate (ORR) as first-line treatment for advanced pancreatic adenocarcinoma (APAC). This study aimed to evaluate the effectiveness and safety of S-1 maintenance after NPS in APAC and to explore factors predicting survival benefits when using S-1 maintenance. Methods Between 2014 and 2018 a total of 182 patients with APAC, who were primarily treated with NPS, were included. For patients without progression or with treatment discontinuation due to any reasons within 4 months during NPS treatment, S-1 monotherapy was administrable as maintenance therapy at the physicians’ discretion based on the patients’ preference and performance status. Efficacy and safety of S-1 maintenance were investigated. Results In 123 patients without progression within 4 months during NPS treatment, 74 received S-1 maintenance and had median progression-free survival of 9.6 months and median overall survival of 16.7 months. Multivariable analysis showed that in patients receiving S-1 maintenance after first-line NPS therapy, an Eastern Cooperative Oncology Group (ECOG) Performance Status score of 0, non-metastatic disease, and complete or partial response as best response to NPS chemotherapy were independently associated with better survival. The most common all-grade hematological and non-hematological adverse events were neutropenia (82.4%) and peripheral neurotoxicity (66.2%), respectively, and the most common ≥Grade 3 hematological and non-hematological adverse events were neutropenia (40.5%) and peripheral neurotoxicity (6.8%), respectively in patients who received S-1 maintenance. Conclusions Our real-world study showed that S-1 maintenance after tumor response or stable disease induced by first-line NPS treatment was effective and well-tolerated for some patients with APAC, which offers a promising alternative treatment strategy with encouraging survival for APAC.
Collapse
Affiliation(s)
- Yan Shi
- Department of Oncology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Yan Shi, ; Lei Huang, ; Guanghai Dai,
| | - Quanli Han
- Department of Medical Oncology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Huan Yan
- Department of Medical Oncology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Yao Lv
- Department of Medical Oncology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Jing Yuan
- Department of Pathology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Jie Li
- Department of Pathology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Shasha Guan
- Department of Medical Oncology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Zhikuan Wang
- Department of Medical Oncology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Lei Huang
- Department of Oncology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Medical Center on Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yan Shi, ; Lei Huang, ; Guanghai Dai,
| | - Guanghai Dai
- Department of Medical Oncology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
- *Correspondence: Yan Shi, ; Lei Huang, ; Guanghai Dai,
| |
Collapse
|
17
|
Hong SS, Lee S, Lee SH, Kim S, Kim D, Park H, Lee J, Lee JH, Kang CM. Anticancer effect of locally applicable aptamer-conjugated gemcitabine-loaded atelocollagen patch in pancreatic cancer patient-derived xenograft models. Cancer Sci 2022; 113:1752-1762. [PMID: 35243724 PMCID: PMC9128157 DOI: 10.1111/cas.15318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/13/2022] [Accepted: 02/25/2022] [Indexed: 11/27/2022] Open
Abstract
We investigated the anticancer effect of the aptamer-conjugated gemcitabine-loaded atelocollagen patch in a pancreatic cancer patient-derived xenograft (PDX) model to propose a future potential adjuvant surgical strategy during curative pancreatic resection for pancreatic cancer. A pancreatic cancer PDX model was established. Animals were grouped randomly into a no-treatment control group; treatment group treated with intraperitoneal gemcitabine injection (IP-GEM) or aptamer-conjugated gemcitabine (APT:GEM); and transplant with three kinds of patches: atelocollagen-aptamer-gemcitabine (patch I), atelocollagen-inactive aptamer-gemcitabine (patch II), and atelocollagen-gemcitabine (patch III). Tumor volumes and response were evaluated based on histological analysis by H&E staining and Immunohistochemistry (IHC) was performed. Anticancer therapy-related toxicity was evaluated by hematologic findings. The patch I group showed the most significant reduction of tumor growth rate, compared with the no-treatment group (p < 0.05). However, other treatment groups were not found to show significant reduction in tumor growth rate (0.05 < p < 0.1). There was no microscopic evidence suggesting potential toxicity, such as inflammation, nor necrotic changes in liver, lung, kidney, and spleen tissue. In addition, no leukopenia, anemia, or neutropenia was observed in the patch I group. This implantable aptamer-drug conjugate system is thought to be a new surgical strategy to augment the oncologic significance of margin-negative resection in treating pancreatic cancer in near future.
Collapse
Affiliation(s)
- Seung Soo Hong
- Division of Hepatobiliary and Pancreas SurgeryDepartment of SurgeryYonsei University College of MedicineSeoulKorea
- Pancreatobiliary Cancer CenterYonsei Cancer CenterSeverance HospitalSeoulKorea
| | - Sena Lee
- INTEROligo CorporationDongan‐guAnyang‐si, Gyeonggi‐doKorea
| | - Sung Hwan Lee
- Division of Hepatobiliary and PancreasDepartment of SurgeryCHA Bundang Medical CenterCHA UniversitySeongnamKorea
| | - Seonhowa Kim
- Division of Hepatobiliary and Pancreas SurgeryDepartment of SurgeryYonsei University College of MedicineSeoulKorea
- Pancreatobiliary Cancer CenterYonsei Cancer CenterSeverance HospitalSeoulKorea
| | - Doyoung Kim
- INTEROligo CorporationDongan‐guAnyang‐si, Gyeonggi‐doKorea
| | - Hanseul Park
- INTEROligo CorporationDongan‐guAnyang‐si, Gyeonggi‐doKorea
| | - Jongook Lee
- INTEROligo CorporationDongan‐guAnyang‐si, Gyeonggi‐doKorea
| | - Jung Hwan Lee
- INTEROligo CorporationDongan‐guAnyang‐si, Gyeonggi‐doKorea
| | - Chang Moo Kang
- Division of Hepatobiliary and Pancreas SurgeryDepartment of SurgeryYonsei University College of MedicineSeoulKorea
- Pancreatobiliary Cancer CenterYonsei Cancer CenterSeverance HospitalSeoulKorea
| |
Collapse
|
18
|
Microfluidics Formulated Liposomes of Hypoxia Activated Prodrug for Treatment of Pancreatic Cancer. Pharmaceutics 2022; 14:pharmaceutics14040713. [PMID: 35456547 PMCID: PMC9031349 DOI: 10.3390/pharmaceutics14040713] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 02/05/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) presents as an unmet clinical challenge for drug delivery due to its unique hypoxic biology. Vinblastine-N-Oxide (CPD100) is a hypoxia-activated prodrug (HAP) that selectively converts to its parent compound, vinblastine, a potent cytotoxic agent, under oxygen gradient. The study evaluates the efficacy of microfluidics formulated liposomal CPD100 (CPD100Li) in PDAC. CPD100Li were formulated with a size of 95 nm and a polydispersity index of 0.2. CPD100Li was stable for a period of 18 months when freeze-dried at a concentration of 3.55 mg/mL. CPD100 and CPD100Li confirmed selective activation at low oxygen levels in pancreatic cancer cell lines. Moreover, in 3D spheroids, CPD100Li displayed higher penetration and disruption compared to CPD100. In patient-derived 3D organoids, CPD100Li exhibited higher cell inhibition in the organoids that displayed higher expression of hypoxia-inducible factor 1 alpha (HIF1A) compared to CPD100. In the orthotopic model, the combination of CPD100Li with gemcitabine (GEM) (standard of care for PDAC) showed higher efficacy than CPD100Li alone for a period of 90 days. In summary, the evaluation of CPD100Li in multiple cellular models provides a strong foundation for its clinical application in PDAC.
Collapse
|
19
|
Zhang X, Zeng Z, Liu H, Xu L, Sun X, Xu J, Song G. Recent development of a magneto-optical nanoplatform for multimodality imaging of pancreatic ductal adenocarcinoma. NANOSCALE 2022; 14:3306-3323. [PMID: 35170601 DOI: 10.1039/d1nr08394e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer. Given its inconspicuous and atypical early symptoms and hidden location, most patients have already reached the terminal stage before diagnosis. At present, the diagnosis of PDAC mainly depends on serological and imaging examinations. However, serum tests cannot identify specific tumor locations and each imaging technology has its own defects, bringing great challenges to the early diagnosis of PDAC. Therefore, it is of great significance to find new strategies for the early and accurate diagnosis of PDAC. In recent years, a magneto-optical nanoplatform integrating near infrared fluorescence, photoacoustic, magnetic resonance imaging, etc. has attracted widespread attention, giving full play to the complementary advantages of each imaging modality. Herein, we summarize the recent advances of imaging modalities in the diagnosis of pancreatic cancer, and then discuss in detail the construction and modification of magneto or/and optical probes for multimodal imaging, and advances in early diagnosis using the combination of various imaging modalities, which can provide potential tools for the early diagnosis or even intraoperative navigation and post-treatment follow-up of PDAC patients.
Collapse
Affiliation(s)
- Xuan Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
- Department of Ophthalmology and Otolaryngology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.
| | - Zhiming Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
- Department of Ophthalmology and Otolaryngology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.
| | - Huiyi Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Li Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Xin Sun
- College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jing Xu
- Department of Ophthalmology and Otolaryngology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| |
Collapse
|
20
|
Song H, Jiang C. Recent advances in targeted drug delivery for the treatment of pancreatic ductal adenocarcinoma. Expert Opin Drug Deliv 2022; 19:281-301. [PMID: 35220832 DOI: 10.1080/17425247.2022.2045943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Pancreatic ductal adenocarcinoma (PDAC) has become a serious health problem with high impact worldwide. The heterogeneity of PDAC makes it difficult to apply drug delivery systems (DDS) used in other cancer models, for example, the poorly developed vascular system makes anti-angiogenic therapy ineffective. Due to its various malignant pathological changes, drug delivery against PDAC is a matter of urgent concern. Based on this situation, various drug delivery strategies specially designed for PDAC have been generated. AREAS COVERED This review will briefly describe how delivery systems can be designed through nanotechnology and formulation science. Most research focused on penetrating the stromal barrier, exploiting and alleviating the hypoxic microenvironment, targeting immune cells, or designing vaccines, and combination therapies. This review will summarize the ways to reverse the malignant pathological features of PDAC and hopefully provide ideas for subsequent studies. EXPERT OPINION Drug delivery systems designed to achieve penetrating functions or to alleviate hypoxia and activate immunity have achieved good therapeutic results in animal models in several studies. In future studies, there is a need to deliver PDAC therapeutics in a more precise manner, or the use of drug carriers for multiple functions simultaneously, are potential therapeutic strategy.
Collapse
Affiliation(s)
- Haolin Song
- Department of Pharmaceutics, Fudan University, Shanghai, Sichuan, 201203 China
| | - Chen Jiang
- Department of Pharmaceutics, Fudan University, Shanghai, Sichuan, 201203 China
| |
Collapse
|
21
|
A Review on the Efficacy and Safety of Nab-Paclitaxel with Gemcitabine in Combination with Other Therapeutic Agents as New Treatment Strategies in Pancreatic Cancer. Life (Basel) 2022; 12:life12030327. [PMID: 35330078 PMCID: PMC8953820 DOI: 10.3390/life12030327] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 01/27/2023] Open
Abstract
Pancreatic cancer has one of the highest mortality rates among cancers, and a combination of nab-paclitaxel with gemcitabine remains the cornerstone of first-line therapy. However, major advances are required to achieve improvements in patient outcomes. For this reason, several research groups have proposed supplementing treatment with other therapeutic agents. Ongoing studies are being conducted to find the optimal treatment in a first-line setting. In this work, we used a search strategy to compare studies on the efficacy and safety of nab-paclitaxel with gemcitabine in combination with other therapeutic agents based on the criteria of the Preferred Reporting Items for Systematic Reviews. We found seven studies in different clinical phases that met the inclusion criteria. The seven therapeutic agents were ibrutinib, necuparanib, tarextumab, apatorsen, cisplatin, enzalutamide, and momelotinib. Although these therapeutic agents have different mechanisms of action, and molecular biology studies are still needed, the present review was aimed to answer the following question: which formulations of the nab-paclitaxel/gemcitabine regimen in combination with other therapeutic agents are safest for patients with previously untreated metastatic pancreas ductal adenocarcinoma? The triple regimen is emerging as the first-line option for patients with pancreatic cancer, albeit with some limitations. Thus, further studies of this regimen are recommended.
Collapse
|
22
|
Hsu FT, Tsai CL, Chiang IT, Lan KH, Yueh PF, Liang WY, Lin CS, Chao Y, Lan KL. Synergistic effect of Abraxane that combines human IL15 fused with an albumin-binding domain on murine models of pancreatic ductal adenocarcinoma. J Cell Mol Med 2022; 26:1955-1968. [PMID: 35174623 PMCID: PMC8980892 DOI: 10.1111/jcmm.17220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/17/2021] [Accepted: 01/17/2022] [Indexed: 11/29/2022] Open
Abstract
Nab‐paclitaxel (Abraxane), which is a nanoparticle form of albumin‐bound paclitaxel, is one of the standard chemotherapies for pancreatic ductal adenocarcinoma (PDAC). This study determined the effect of Abraxane in combination with a fusion protein, hIL15‐ABD, on subcutaneous Panc02 and orthotopic KPC C57BL/6 murine PDAC models. Abraxane combined with hIL15‐ABD best suppressed tumour growth and produced a 40%–60% reduction in the tumour size for Panc02 and KPC, compared to the vehicle group. In the combination group, the active form of interferon‐γ (IFN‐γ)‐secreting CD8+ T cells and CD11b+CD86+ M1 macrophages in tumour infiltrating lymphocytes (TILs) were increased. In the tumour drainage lymph nodes (TDLNs) of the combination group, there was a 18% reduction in CD8+IFN‐γ+ T cells and a 0.47% reduction in CD4+CD25+FOXP3+ regulatory T cells, as opposed to 5.0% and 5.1% reductions, respectively, for the control group. Superior suppression of CD11b+GR‐1+ myeloid‐derived suppressor cells (MDSCs) and the induction of M1 macrophages in the spleen and bone marrow of mice were found in the combination group. Abraxane and hIL15‐ABD effectively suppressed NF‐κB‐mediated immune suppressive markers, including indoleamine 2,3‐dioxygenase (IDO), Foxp3 and VEGF. In conclusion, Abraxane combined with hIL15‐ABD stimulates the anticancer activity of effector cells, inhibits immunosuppressive cells within the tumour microenvironment (TME) of PDAC, and produces a greater inhibitory effect than individual monotherapies.
Collapse
Affiliation(s)
- Fei-Ting Hsu
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chang Liang Tsai
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - I-Tsang Chiang
- Medical administrative center, Show Chwan Memorial Hospital, Changhua, Taiwan.,Department of Radiation Oncology, Show Chwan Memorial Hospital, Changhua, Taiwan.,Department of Radiation Oncology, Chang Bing Show Chwan Memorial Hospital, Lukang, Taiwan.,Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Keng-Hsueh Lan
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan.,Cancer Research Center, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Fu Yueh
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan.,Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wen-Yi Liang
- Department of Pathology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chi-Shuo Lin
- Department of Radiation Oncology, National Yang Ming Chiao Tung University Hospital, Yilan, Taiwan
| | - Yee Chao
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Keng-Li Lan
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
23
|
Delahoussaye AM, Abi Jaoude J, Green M, Fujimoto TN, Molkentine J, Garcia Garcia CJ, Gay JP, Feng N, Marszalek J, Fowlkes N, Taniguchi CM. Feasibility of administering human pancreatic cancer chemotherapy in a spontaneous pancreatic cancer mouse model. BMC Cancer 2022; 22:174. [PMID: 35172762 PMCID: PMC8848646 DOI: 10.1186/s12885-022-09255-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/27/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Both modified FOLFIRINOX (mFFX) and gemcitabine/nab-paclitaxel chemotherapy regimens have been shown to improve clinical outcomes in patients with pancreatic cancer, and are often used interchangeably as the standard of care. Preclinical studies often do not use these regimens, since administering these multiagent approaches can be difficult. In this study, we assessed the feasibility of administering these two chemotherapy regimens in spontaneous pancreatic tumors using KPC mice with the ultimate goal of advancing preclinical studies. METHODS KPC mice were created by breeding KrasLSL-G12D/+ to Trp53fl/fl;Ptf1αCre/+, resulting in KrasLSL-G12D/+;p53fl/+;Ptf1αCre/+ mice. At 14 weeks of age, mice were palpated for spontaneous tumor growth that was verified using ultrasounds. Mice with tumors under 15 mm in diameter were used. The mice were assigned to one of seven treatment regimens: 1 cycle of mFFX (FFX X1), 2 cycles of mFFX (FFX X2), 1 cycle of mFFXwith 40 Gy SBRT (FFX SBRT), 1 cycle of gemcitabine/nab-paclitaxel (GEM/AB X1), 2 cycles of gemcitabine/nab-paclitaxel (GEM/AB X2), 2 cycles of gemcitabine/nab-paclitaxel with 40 Gy SBRT (GEM/AB SBRT), or saline only (control). RESULTS In total, 92 mice were included. The median OS in the FFX X2 group was slightly longer that the median OS in the FFX X1 group (15 days vs 11 days, P = 0.003). Mice in the GEM/AB X2 group had longer OS when compared to mice in the GEM/AB X1 group (33.5 vs 13 days, P = 0.001). Mice treated with chemotherapy survived longer than untreated control animals (median OS: 6.5 days, P < 0.001). Moreover, in mice treated with chemotherapy, mice that received 2 cycles of GEM/AB X2 had the longest survival, while the FFX X1 group had the poorest OS (P < 0.001). The addition of chemotherapy was associated with reduced number of myeloid and lymphoid cell types, except for CD4 + cells whose levels were largely unaltered only in tumors treated with gemcitabine/nab-paclitaxel. Lastly, chemotherapy followed by consolidative SBRT trended towards increased local control and survival. CONCLUSIONS We demonstrate the utility and feasibility of clinically relevant mFOLFIRINOX and gemcitabine/nab-paclitaxel in preclinical models of pancreatic cancer.
Collapse
Affiliation(s)
- Abagail M Delahoussaye
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Joseph Abi Jaoude
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Morgan Green
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Tara N Fujimoto
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jessica Molkentine
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Carolina J Garcia Garcia
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jason P Gay
- Translational Research To AdvanCe Therapeutics and Innovation in ONcology (TRACTION), The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ningping Feng
- Translational Research To AdvanCe Therapeutics and Innovation in ONcology (TRACTION), The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Joseph Marszalek
- Translational Research To AdvanCe Therapeutics and Innovation in ONcology (TRACTION), The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Natalie Fowlkes
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Cullen M Taniguchi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
24
|
Phillips MC, Mousa SA. Clinical application of nano-targeting for enhancing chemotherapeutic efficacy and safety in cancer management. Nanomedicine (Lond) 2022; 17:405-421. [PMID: 35118878 DOI: 10.2217/nnm-2021-0361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Despite improvements in treatment, cancer remains a leading cause of death worldwide. While chemotherapy is effective, it also damages healthy tissue, leading to severe, dose-limiting side effects that can impair efficacy and even contribute to chemoresistance. Nano-based drug-delivery systems can potentially target the delivery of chemotherapy to improve efficacy and reduce adverse effects. A number of nanocarriers have been investigated for the delivery of chemotherapy, and many of the most promising agents have advanced to clinical trials. This review examines the safety and efficacy of nanoformulated chemotherapeutic agents in clinical trials, with particular emphasis on anthracyclines, taxanes and platinum compounds. It also briefly discusses the role nano-targeting might play in the prevention and treatment of chemoresistance.
Collapse
Affiliation(s)
- Matthew C Phillips
- Pharmaceutical Research Institute, Albany College of Pharmacy & Health Sciences, Rensselaer, NY 12144, USA
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy & Health Sciences, Rensselaer, NY 12144, USA
| |
Collapse
|
25
|
Tao Y, Yan C, Li D, Dai J, Cheng Y, Li H, Zhu WH, Guo Z. Sequence-Activated Fluorescent Nanotheranostics for Real-Time Profiling Pancreatic Cancer. JACS AU 2022; 2:246-257. [PMID: 35098241 PMCID: PMC8790745 DOI: 10.1021/jacsau.1c00553] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), as one of the most malignant tumors with dense desmoplastic stroma, forms a specific matrix barrier to hinder effective diagnosis and therapy. To date, a paramount challenge is in the search for intelligent nanotheranostics for such hypopermeable tumors, especially in breaking the PDAC-specific physical barrier. The unpredictable in vivo behaviors of nanotheranostics, that is, real-time tracking where, when, and how they cross the physical barriers and are taken up by tumor cells, are the major bottleneck. Herein, we elaborately design sequence-activated nanotheranostic TCM-U11&Cy@P with dual-channel near-infrared fluorescence outputs for monitoring in vivo behaviors in a sequential fashion. This nanotheranostic with a programmable targeting capability effectively breaks through the PDAC barriers. Ultimately, the released aggregation-induced emission (AIE) particle TCM-U11 directly interacts with PDAC cells and penetrates into the deep tissue. Impressively, this fluorescent nanotheranostic intraoperatively can map human clinical PDAC specimens with high resolution. We believe that this unique sequence-activated fluorescent strategy expands the repertoire of nanotheranostics in the treatment of hypopermeable tumors.
Collapse
Affiliation(s)
- Yining Tao
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Frontiers
Science Center for Materiobiology and Dynamic Chemistry, Shanghai
Frontiers Science Center of Optogenetic Techniques for Cell Metabolism,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
- Department
of Interventional Radiology, Shanghai Jiao
Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Chenxu Yan
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Frontiers
Science Center for Materiobiology and Dynamic Chemistry, Shanghai
Frontiers Science Center of Optogenetic Techniques for Cell Metabolism,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Dan Li
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Frontiers
Science Center for Materiobiology and Dynamic Chemistry, Shanghai
Frontiers Science Center of Optogenetic Techniques for Cell Metabolism,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jianfeng Dai
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Frontiers
Science Center for Materiobiology and Dynamic Chemistry, Shanghai
Frontiers Science Center of Optogenetic Techniques for Cell Metabolism,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yingsheng Cheng
- Department
of Interventional Radiology, Shanghai Jiao
Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Hui Li
- Department
of Interventional Radiology, Shanghai Jiao
Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Wei-Hong Zhu
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Frontiers
Science Center for Materiobiology and Dynamic Chemistry, Shanghai
Frontiers Science Center of Optogenetic Techniques for Cell Metabolism,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhiqian Guo
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Frontiers
Science Center for Materiobiology and Dynamic Chemistry, Shanghai
Frontiers Science Center of Optogenetic Techniques for Cell Metabolism,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
26
|
Liu L, Kshirsagar PG, Gautam SK, Gulati M, Wafa EI, Christiansen JC, White BM, Mallapragada SK, Wannemuehler MJ, Kumar S, Solheim JC, Batra SK, Salem AK, Narasimhan B, Jain M. Nanocarriers for pancreatic cancer imaging, treatments, and immunotherapies. Theranostics 2022; 12:1030-1060. [PMID: 35154473 PMCID: PMC8771545 DOI: 10.7150/thno.64805] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 12/03/2021] [Indexed: 01/28/2023] Open
Abstract
Pancreatic tumors are highly desmoplastic and immunosuppressive. Delivery and distribution of drugs within pancreatic tumors are compromised due to intrinsic physical and biochemical stresses that lead to increased interstitial fluid pressure, vascular compression, and hypoxia. Immunotherapy-based approaches, including therapeutic vaccines, immune checkpoint inhibition, CAR-T cell therapy, and adoptive T cell therapies, are challenged by an immunosuppressive tumor microenvironment. Together, extensive fibrosis and immunosuppression present major challenges to developing treatments for pancreatic cancer. In this context, nanoparticles have been extensively studied as delivery platforms and adjuvants for cancer and other disease therapies. Recent advances in nanotechnology have led to the development of multiple nanocarrier-based formulations that not only improve drug delivery but also enhance immunotherapy-based approaches for pancreatic cancer. This review discusses and critically analyzes the novel nanoscale strategies that have been used for drug delivery and immunomodulation to improve treatment efficacy, including newly emerging immunotherapy-based approaches. This review also presents important perspectives on future research directions that will guide the rational design of novel and robust nanoscale platforms to treat pancreatic tumors, particularly with respect to targeted therapies and immunotherapies. These insights will inform the next generation of clinical treatments to help patients manage this debilitating disease and enhance survival rates.
Collapse
Affiliation(s)
- Luman Liu
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA
| | - Prakash G. Kshirsagar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE
| | - Shailendra K. Gautam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE
| | - Mansi Gulati
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE
| | - Emad I. Wafa
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA
| | - John C. Christiansen
- Department of Veterinary Microbiology & Preventive Medicine, Iowa State University, Ames, IA
| | - Brianna M. White
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA
| | - Surya K. Mallapragada
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA
- Nanovaccine Institute, Iowa State University, Ames, IA
| | - Michael J. Wannemuehler
- Department of Veterinary Microbiology & Preventive Medicine, Iowa State University, Ames, IA
- Nanovaccine Institute, Iowa State University, Ames, IA
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE
| | - Joyce C. Solheim
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE
- Nanovaccine Institute, Iowa State University, Ames, IA
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha NE
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE
- Nanovaccine Institute, Iowa State University, Ames, IA
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha NE
| | - Aliasger K. Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA
- Nanovaccine Institute, Iowa State University, Ames, IA
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA
- Nanovaccine Institute, Iowa State University, Ames, IA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE
- Nanovaccine Institute, Iowa State University, Ames, IA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha NE
| |
Collapse
|
27
|
Promoted antitumor therapy on pancreatic cancer by a novel recombinant human albumin-bound miriplatin nanoparticle. Eur J Pharm Sci 2021; 167:106000. [PMID: 34517105 DOI: 10.1016/j.ejps.2021.106000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/27/2021] [Accepted: 09/07/2021] [Indexed: 11/20/2022]
Abstract
Pancreatic cancer is an aggressive and highly lethal disease with a very poor prognosis. Our previous study found miriplatin can inhibit proliferation of various tumor cells, including pancreatic cancer cells. For the chemotherapy of pancreatic cancer, a novel recombinant human serum albumin (rHSA)-bound miriplatin nanoparticles (rHSA-miPt) were constructed by emulsion-diffusion evaporation method. The optimal formulation was composed of 150 mg of rHSA and 30 mg of miriplatin. The key parameters in rHSA-miPt production were 10 min of high-pressure homogenization in a solution with volume ratio of 10:2 of 5% glucose and chloroform. The rHSA-miPt was characterized with a particle size of 61 ± 10 nm, a zeta potential value of -18 ± 5 mV, encapsulation efficiency of 98.4%, drug loading of 16.4%, T1/2 of 13.3 h and Vd of 0.5 L in Sprague Dawley rats. The concentrations of platinum (Pt) in the tumors were 15 and 22-fold higher than those in the blood at 24 and 72 h in tumor-bearing mice, respectively. The internalization of rHSA-miPt through caveolae-dependent pathway. In vitro, the half-maximal inhibitory concentration (IC50) of rHSA-miPt was 12.7 μM vs more than 100 μM of gemcitabine (Gem). The inhibition rate of tumor growth was 76% of rHSA-miPt and 51% of Gem, respectively. Compared with Gem, rHSA-miPt was identified to be safer and less toxic based on body weight loss in mice (0% vs 20%), the survival rate of mice (100% vs 80%) and hematological and biochemical parameters of the mice including leukocytes, lymphocytes, neutrophils, monocytes, serum alanine aminotransferase and aspartate aminotransferase. The present study revealed that rHSA-miPt might be a promising candidate for pancreatic cancer therapy.
Collapse
|
28
|
Dai W, Qiu X, Lu C, Zou Z, Sha H, Kong W, Liu B, Du J. AGIG Chemo-Immunotherapy in Patients With Advanced Pancreatic Cancer: A Single-Arm, Single-Center, Phase 2 Study. Front Oncol 2021; 11:693386. [PMID: 34722242 PMCID: PMC8548663 DOI: 10.3389/fonc.2021.693386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 09/23/2021] [Indexed: 11/25/2022] Open
Abstract
Background To date, chemotherapy remains the only effective treatment of unresectable pancreatic adenocarcinoma. In the past few years, the interest in immunological anticancer therapy rises sharply. AGIG is a novel chemo-immunotherapy regimen that combines nab-paclitaxel + gemcitabine chemotherapy with sequential recombinant interleukin-2 (IL-2) and granulocyte-macrophage colony stimulating factor (GM-CSF) therapy. We conducted a single-arm prospective phase II study to determine the efficacy and safety of the first-line treatment of advanced pancreatic cancer with AGIG regimen. Methods Nab-paclitaxel (125 mg/m2) and gemcitabine (1000 mg/m2) were administered intravenously to all patients on days 1 and 8 triweekly, interleukin-2 (1000000U) and GM-CSF (100 µg) were administered subcutaneously on days 3-5 after chemotherapy. The primary end point was ORR by the Response Evaluation Criteria in Solid Tumors, version 1.1. Secondary end points included safety profile, progression-free survival (PFS), overall survival (OS). Patients’ conditions along with the efficacy and safety were assessed every two cycles. Results Between 11/2018 and 01/2020, sixty-four patients were enrolled. In the sixty-four evaluable patients, the disease control rate (DCR) and overall response rate (ORR) were 76.6% and 43.75%, respectively. The median follow-up time was 12.1 (range 7.1–22.4) months. The median PFS was 5.7 (range 1.63–15.8) months. The median OS was 14.2 (range 2.9–22.0) months. The most common adverse event was fever (75%). The incidence of III/IV grade neutropenia was 4.69%. In subgroup analyses, we found that eosinophil count in the blood elevated three times higher than baseline level predicted a longer survival. Conclusions The AGIG chemo-immunotherapy regimen has presented favorable ORR, OS, and manageable toxicities as first-line therapeutic strategy of advanced pancreatic cancer treatment. This regimen may be a novel reliable therapeutic option for patients with preserved performance status. The improvement of treatment efficiency may be related to the activation of non-specific immune response. Clinical Trial Registration https://clinicaltrials.gov/. identifier NCT03768687.
Collapse
Affiliation(s)
- Wangshu Dai
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China.,The Cadre Health Care Ward, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xin Qiu
- The Comprehensive Cancer Center of Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Changchang Lu
- The Comprehensive Cancer Center of Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhengyun Zou
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Huizi Sha
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Weiwei Kong
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Baorui Liu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Juan Du
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China.,The Comprehensive Cancer Center of Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
29
|
Ali N, Srivastava N. Recent Advancements for the Management of Pancreatic Cancer: Current Insights. CURRENT CANCER THERAPY REVIEWS 2021. [DOI: 10.2174/1573394717666210625153256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
One of the most fatal forms of cancer includes cancer of the pancreas And the most
rapid malignancy is observed in PDAC (pancreatic ductal adenocarcinoma). The high lethality rate
is generally due to very late diagnosis and resistance to traditional chemotherapeutic agents. Desmoplastic
stromal barrier results in resistance to immunotherapy. Other reasons for the high lethality
rate include the absence of effective treatment and standard screening tests. Hence, there is a
need for effective novel carrier systems. “A formulation, method, or device that allows the desired
therapeutic substance to reach its site of action in such a manner that nontarget cells experience
minimum effect is referred to as a drug delivery system”. The delivery system is responsible for introducing
the active component into the body. They are also liable for boosting the efficacy and desirable
targeted action on the tumorous tissues. Several studies, researches, and developments have
yielded various advanced drug delivery systems, which include liposomes, nanoparticles, carbon
nanotubules, renovoCath, etc. These systems control rate and location of the release. They are designed
while taking into consideration characteristic properties of the tumor and tumor stroma. These
delivery systems overcome the barriers in drug deliverance in pancreatic cancer. Alongside providing
palliative benefits, these delivery systems also aim to correct the underlying reason for the
defect. The following review article aims and focuses to bring out a brief idea about systems, methods,
and technologies for futuristic drug deliverance in pancreatic cancer therapy.
Collapse
Affiliation(s)
- Naureen Ali
- Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Lucknow Campus, Lucknow,India
| | - Nimisha Srivastava
- Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Lucknow Campus, Lucknow,India
| |
Collapse
|
30
|
Fan X, Wu H, Zhao L, Guo X. A Poly-Chitosan and Cis-Platinum Conjugated Composite Nanoparticle System for Liver Cancer Therapy. J Biomed Nanotechnol 2021; 17:1726-1734. [PMID: 34688317 DOI: 10.1166/jbn.2021.3157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The aim of this study was to test an effective nano-pole capsule loaded cis-platinum (CP) transplantation device for liver cancer (LC) therapy. A novel nano-pole capsule was designed as a new vector for storing CP. HepG2 cells and a B6/J mouse model were used to test the efficiency of polyethyleneimine-cis-platinum (PEI-CP) and poly-chitosan-cis-platinum (PC-CP). Infiltration efficiency and transplantation efficiency tests were performed to study the performance of the delivery system, and fibroblast reactions and macrophage numbers were observed, to test for immune rejection and foreign body reactions. The apoptosis rate and tumor diameter of hepatocellular carcinoma cells were used to evaluate the effect of the tumor therapy. We also studied the functional mechanism of different CP delivery systems. The infiltration and transplantation efficiencies of PC-CP were higher than that of PEI-CP; Less foreign body reaction appeared in PC system, with less fibroblast reaction and lower macrophage reaction. The clinical efficacy of PC-CP in terms of tumor apoptosis and diameter reduction was superior to that of PEI-CP. We demonstrated that PC-CP had a more significant alteration effect on mTOR, P-Ak, LC3 and P53. The PC system can better deliver and release drugs than PEI-CP, and may be a better choice for LC therapy in the future.
Collapse
Affiliation(s)
- Xiangyu Fan
- Department of Radiation Oncology, The Fourth Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, PR China
| | - Haiyun Wu
- Department of Medical Imaging, The Fourth Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, PR China
| | - Lisong Zhao
- Department of Radiation Oncology, The Fourth Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, PR China
| | - Xu Guo
- Department of Radiation Oncology, The Fourth Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, PR China
| |
Collapse
|
31
|
Edwards P, Kang BW, Chau I. Targeting the Stroma in the Management of Pancreatic Cancer. Front Oncol 2021; 11:691185. [PMID: 34336679 PMCID: PMC8316993 DOI: 10.3389/fonc.2021.691185] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer (PC) presents extremely aggressive tumours and is associated with poor survival. This is attributed to the unique features of the tumour microenvironment (TME), which is known to create a dense stromal formation and poorly immunogenic condition. In particular, the TME of PC, including the stromal cells and extracellular matrix, plays an essential role in the progression and chemoresistance of PC. Consequently, several promising agents that target key components of the stroma have already been developed and are currently in multiple stages of clinical trials. Therefore, the authors review the latest available evidence on novel stroma-targeting approaches, highlighting the potential impact of the stroma as a key component of the TME in PC.
Collapse
Affiliation(s)
- Penelope Edwards
- Department of Medicine, Royal Marsden Hospital, London, United Kingdom
| | - Byung Woog Kang
- Department of Oncology/Hematology, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Ian Chau
- Department of Medicine, Royal Marsden Hospital, London, United Kingdom
| |
Collapse
|
32
|
Martín-Sabroso C, Fraguas-Sánchez AI, Raposo-González R, Torres-Suárez AI. Perspectives in Breast and Ovarian Cancer Chemotherapy by Nanomedicine Approach: Nanoformulations in Clinical Research. Curr Med Chem 2021; 28:3271-3286. [PMID: 32814522 DOI: 10.2174/0929867327666200819115403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Breast and ovarian carcinomas represent major health problems in women worldwide. Chemotherapy constitutes the main treatment strategy, and the use of nanocarriers, a good tool to improve it. Several nanoformulations have already been approved, and others are under clinical trials for the treatment of both types of cancers. OBJECTIVE This review focuses on the analysis of the nanoformulations that are under clinical research in the treatment of these neoplasms. RESULTS Currently, there are 6 nanoformulations in clinical trials for breast and ovarian carcinomas, most of them in phase II and phase III. In the case of breast cancer treatment, these nanomedicines contain paclitaxel; and, for ovarian cancer, nanoformulations containing paclitaxel or camptothecin analogs are being evaluated. The nanoencapsulation of these antineoplastics facilitates their administration and reduces their systemic toxicity. Nevertheless, the final approval and commercialization of nanoformulations may be limited by other aspects like lack of correlation between the efficacy results evaluated at in vitro and in vivo levels, difficulty in producing large batches of nanoformulations in a reproducible manner and high production costs compared to conventional formulations of antineoplastics. However, these challenges are not insurmountable and the number of approved nanoformulations for cancer therapy is growing. CONCLUSION Reviewed nanoformulations have shown, in general, excellent results, demonstrating a good safety profile, a higher maximum tolerated dose and a similar or even slightly better antitumor efficacy compared to the administration of free drugs, reinforcing the use of nano-chemotherapy in both breast and ovarian tumors.
Collapse
Affiliation(s)
- Cristina Martín-Sabroso
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Pl Ramon y Cajal s/n., 28040 Madrid, Spain
| | - Ana Isabel Fraguas-Sánchez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Pl Ramon y Cajal s/n., 28040 Madrid, Spain
| | - Rafaela Raposo-González
- Department of Physiology, Faculty of Pharmacy, Complutense University of Madrid, Pl Ramon y Cajal s/n., 28040 Madrid, Spain
| | - Ana Isabel Torres-Suárez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Pl Ramon y Cajal s/n., 28040 Madrid, Spain
| |
Collapse
|
33
|
Luan X, Yuan H, Song Y, Hu H, Wen B, He M, Zhang H, Li Y, Li F, Shu P, Burnett JP, Truchan N, Palmisano M, Pai MP, Zhou S, Gao W, Sun D. Reappraisal of anticancer nanomedicine design criteria in three types of preclinical cancer models for better clinical translation. Biomaterials 2021; 275:120910. [PMID: 34144373 DOI: 10.1016/j.biomaterials.2021.120910] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022]
Abstract
Anticancer nanomedicines are designed to improve anticancer efficacy by increasing drug accumulation in tumors through enhanced permeability retention (EPR) effect, and to reduce toxicity by decreasing drug accumulation in normal organs through long systemic circulation. However, the inconsistent efficacy/safety of nanomedicines in cancer patients versus preclinical cancer models have provoked debate for nanomedicine design criteria. In this study, we investigate nanomedicine design criteria in three types of preclinical cancer models using five clinically used nanomedicines, which identifies the factors for better clinical translations of their observed clinical efficacy/safety compared to free drug or clinical micelle formulation. When those nanomedicines were compared with drug solution or clinical micelle formulation in breast tumors, long and short-circulating nanomedicines did not enhance tumor accumulation by EPR effect in transgenic spontaneous breast cancer model regardless of their size or composition, although they improved tumor accumulations in subcutaneous and orthotopic breast cancer models. However, when tumors were compared to normal breast tissue, nanomedicines, drug solution and clinical micelle formulation showed enhanced tumor accumulation regardless of the breast cancer models. In addition, long-circulating nanomedicines did not further increase tumor accumulation in transgenic mouse spontaneous breast cancer nor universally decrease drug accumulations in normal organs; they decreased or increased accumulation in different organs, potentially changing the clinical efficacy/safety. In contrast, short-circulating nanomedicines decreased blood concentration and altered drug distribution in normal organs, which are correlated with their clinical efficacy/safety. A reappraisal of current nanomedicine design criteria is needed to ensure consistent clinical translation for improvement of their clinical efficacy/safety in cancer patients.
Collapse
Affiliation(s)
- Xin Luan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 1600 Huron Parkway, North Campus Research Complex, Building 520, Ann Arbor, MI, 48109, USA
| | - Hebao Yuan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 1600 Huron Parkway, North Campus Research Complex, Building 520, Ann Arbor, MI, 48109, USA
| | - Yudong Song
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 1600 Huron Parkway, North Campus Research Complex, Building 520, Ann Arbor, MI, 48109, USA
| | - Hongxiang Hu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 1600 Huron Parkway, North Campus Research Complex, Building 520, Ann Arbor, MI, 48109, USA
| | - Bo Wen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 1600 Huron Parkway, North Campus Research Complex, Building 520, Ann Arbor, MI, 48109, USA
| | - Miao He
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 1600 Huron Parkway, North Campus Research Complex, Building 520, Ann Arbor, MI, 48109, USA
| | - Huixia Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 1600 Huron Parkway, North Campus Research Complex, Building 520, Ann Arbor, MI, 48109, USA
| | - Yan Li
- Translational Development and Clinical Pharmacology, Bristol Myers Squibb, 86 Morris Avenue, Summit, NJ, 07920, USA
| | - Feng Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 1600 Huron Parkway, North Campus Research Complex, Building 520, Ann Arbor, MI, 48109, USA
| | - Pan Shu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 1600 Huron Parkway, North Campus Research Complex, Building 520, Ann Arbor, MI, 48109, USA
| | - Joseph P Burnett
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 1600 Huron Parkway, North Campus Research Complex, Building 520, Ann Arbor, MI, 48109, USA
| | - Nathan Truchan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 1600 Huron Parkway, North Campus Research Complex, Building 520, Ann Arbor, MI, 48109, USA
| | - Maria Palmisano
- Translational Development and Clinical Pharmacology, Bristol Myers Squibb, 86 Morris Avenue, Summit, NJ, 07920, USA
| | - Manjunath P Pai
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, 1600 Huron Parkway, North Campus Research Complex, Building 520, Ann Arbor, MI, 48109, USA
| | - Simon Zhou
- Translational Development and Clinical Pharmacology, Bristol Myers Squibb, 86 Morris Avenue, Summit, NJ, 07920, USA.
| | - Wei Gao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 1600 Huron Parkway, North Campus Research Complex, Building 520, Ann Arbor, MI, 48109, USA.
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 1600 Huron Parkway, North Campus Research Complex, Building 520, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
34
|
Höltke C, Grewer M, Stölting M, Geyer C, Wildgruber M, Helfen A. Exploring the Influence of Different Albumin Binders on Molecular Imaging Probe Distribution. Mol Pharm 2021; 18:2574-2585. [PMID: 34048242 DOI: 10.1021/acs.molpharmaceut.1c00064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The biodistribution of molecular imaging probes or tracers mainly depends on the chemical nature of the probe and the preferred metabolization and excretion routes. Small molecules have rather short half-lives while antibodies reside inside the organism for a longer period of time. An excretion via kidneys and bladder is faster than a mainly hepatobiliary elimination. To manipulate the biodistribution behavior of probes, different strategies have been pursued, including utilizing serum albumin as an inherent transport mechanism for small molecules. Here, we modified an existing small molecular fluorescent probe targeted to the endothelin-A receptor (ETAR) with three different albumin-binding moieties to search for an optimal modification strategy. A diphenylcyclohexyl (DPCH) group, a p-iodophenyl butyric acid (IPBA), and a fatty acid (FA) group were attached via amino acid linkers. All three modifications result in transient albumin binding of the developed compounds, as concluded from gel electrophoresis investigations. Spectrophotometric measurements applying variable amounts of bovine, murine, and human serum albumin (BSA, MSA, and HSA) reveal distinct variations of absorption and emission intensities and shifts of their maximum wavelengths. Binding to MSA results in the weakest effects, while binding to HSA leads to the strongest. Cell-based in vitro investigations utilizing ETAR-positive HT-1080 fibrosarcoma and ETAR-negative BT-20 breast adenocarcinoma cells support a retained specific target-binding capacity of the modified compounds and different degrees of unspecific binding. In vivo analysis of a HT-1080 xenograft model in nude mice over the course of 1 week by fluorescence reflectance imaging illustrates noticeable differences between the four examined probes. While the IPBA-modified probe shows the highest absolute signal intensity values, the FA-modified probe exhibits the most favorable tumor-to-organ ratios. In summary, reversible binding to albumin enhances the biological half-life of the designed probes substantially and enables near infrared optical imaging of subcutaneous tumors for several days in vivo. Because the unmodified probe already exhibits reasonable results, the attachment of albumin-binding moieties does not lead to a substantially improved imaging outcome in terms of target-to-background ratios. On the other hand, because the implemented transient albumin binding results in an overall higher amount of probe inside tumor lesions, this strategy might be adaptable for theranostic or therapeutic approaches in a future clinical routine.
Collapse
Affiliation(s)
- Carsten Höltke
- Clinic for Radiology, University Hospital Münster, 48149 Münster, Germany
| | - Martin Grewer
- Clinic for Radiology, University Hospital Münster, 48149 Münster, Germany
| | - Miriam Stölting
- Clinic for Radiology, University Hospital Münster, 48149 Münster, Germany
| | - Christiane Geyer
- Clinic for Radiology, University Hospital Münster, 48149 Münster, Germany
| | - Moritz Wildgruber
- Clinic for Radiology, University Hospital Münster, 48149 Münster, Germany.,Department of Radiology, University Hospital, LMU Munich, 80539 Munich, Germany
| | - Anne Helfen
- Clinic for Radiology, University Hospital Münster, 48149 Münster, Germany
| |
Collapse
|
35
|
Pignon F, Turpin A, Hentic O, Coriat R, Salmon E, Baumgaertner I, Bertrand N, Lévy P, Rebours V, Hammel P, de Mestier L. Efficacy and tolerance of gemcitabine and nab-paclitaxel in elderly patients with advanced pancreatic ductal adenocarcinoma. Pancreatology 2021; 21:S1424-3903(21)00157-5. [PMID: 34090806 DOI: 10.1016/j.pan.2021.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/03/2021] [Accepted: 05/11/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND The efficacy and safety of gemcitabine and nab-paclitaxel (GnP) among elderly patients with advanced pancreatic ductal adenocarcinoma (PDAC) remains poorly understood. We aimed to evaluate the safety and efficacy of GnP in this setting. PATIENTS AND METHODS We retrospectively included all consecutive patients aged ≥65 years with histologically proven PDAC who received at least one cycle of GnP (January 2014 to May 2018) in four academic centers. The primary endpoints were toxicity and overall survival (OS). Secondary endpoints were progression-free survival (PFS) and objective response rate. We compared patients aged ≥ or <75 years. RESULTS The study included 127 patients; among them 42 (33.1%) were aged ≥ 75 years. Fifty-seven and seventy patients received GnP as the first-line and the second-line treatment or beyond, respectively. Sixty-seven patients had at least one grade 3/4 adverse event, the most frequent being neutropenia and peripheral neuropathy. No deaths were related to toxicity. OS (median, 8.0 months; 95% confidence interval (CI), 5.8-10.2) and PFS (median, 5.5 months; 95% CI, 4.8-6.2) were similar for patients aged <75 or ≥75 years in the whole cohort and among patients receiving GnP as the first-line treatment. Cephalic PDAC, liver metastases, hypoalbuminemia, and GnP received beyond the first-line were associated with a significantly shorter OS on the multivariate analysis. CONCLUSION GnP is well tolerated and effective in elderly patients with advanced PDAC, even patients aged ≥75 years. The data from daily clinical practice are consistent with the results reported with first-line treatment and highlight the relevance of GnP administration in elderly patients.
Collapse
Affiliation(s)
- Flore Pignon
- Université de Paris, Department of Gastroenterology and Pancreatology, Beaujon University Hospital (APHP), Clichy, France; Department of Medical Oncology, Oscar Lambret Cancer Center, F-59000 Lille, France
| | - Anthony Turpin
- Department of Oncology, Lille University Hospital; CNRS UMR9020, INSERM UMR1277, University of Lille, Institut Pasteur, Lille, France
| | - Olivia Hentic
- Université de Paris, Department of Gastroenterology and Pancreatology, Beaujon University Hospital (APHP), Clichy, France
| | - Romain Coriat
- Université de Paris, Department of Hepato-Gastroenterology and Digestive Oncology, Cochin University Hospital (APHP), Paris, France
| | - Emma Salmon
- Department of Hepato-Gastroenterology and Digestive Oncology, Bayonne, France
| | | | - Nicolas Bertrand
- Department of Oncology, Lille University Hospital, ULR 2694 METRICS, University of Lille, Lille, France
| | - Philippe Lévy
- Université de Paris, Department of Gastroenterology and Pancreatology, Beaujon University Hospital (APHP), Clichy, France
| | - Vinciane Rebours
- Université de Paris, Department of Gastroenterology and Pancreatology, Beaujon University Hospital (APHP), Clichy, France
| | - Pascal Hammel
- Université de Paris, Department of Digestive Oncology, Beaujon University Hospital (APHP), Clichy, France
| | - Louis de Mestier
- Université de Paris, Department of Gastroenterology and Pancreatology, Beaujon University Hospital (APHP), Clichy, France.
| |
Collapse
|
36
|
Albahde MAH, Abdrakhimov B, Li GQ, Zhou X, Zhou D, Xu H, Qian H, Wang W. The Role of Microtubules in Pancreatic Cancer: Therapeutic Progress. Front Oncol 2021; 11:640863. [PMID: 34094924 PMCID: PMC8176010 DOI: 10.3389/fonc.2021.640863] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/26/2021] [Indexed: 12/14/2022] Open
Abstract
Pancreatic cancer has an extremely low prognosis, which is attributable to its high aggressiveness, invasiveness, late diagnosis, and lack of effective therapies. Among all the drugs joining the fight against this type of cancer, microtubule-targeting agents are considered to be the most promising. They inhibit cancer cells although through different mechanisms such as blocking cell division, apoptosis induction, etc. Hereby, we review the functions of microtubule cytoskeletal proteins in tumor cells and comprehensively examine the effects of microtubule-targeting agents on pancreatic carcinoma.
Collapse
Affiliation(s)
- Mugahed Abdullah Hasan Albahde
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou, China
| | - Bulat Abdrakhimov
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Guo-Qi Li
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China
| | - Xiaohu Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China
| | - Dongkai Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China
| | - Hao Xu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China
| | - Huixiao Qian
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| |
Collapse
|
37
|
Taguchi K, Okamoto Y, Matsumoto K, Otagiri M, Chuang VTG. When Albumin Meets Liposomes: A Feasible Drug Carrier for Biomedical Applications. Pharmaceuticals (Basel) 2021; 14:ph14040296. [PMID: 33810483 PMCID: PMC8065628 DOI: 10.3390/ph14040296] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022] Open
Abstract
Albumin, the most abundant protein in plasma, possesses some inherent beneficial structural and physiological characteristics that make it suitable for use as a drug delivery agent, such as an extraordinary drug-binding capacity and long blood retention, with a high biocompatibility. The use of these characteristics as a nanoparticle drug delivery system (DDS) offers several advantages, including a longer circulation time, lower toxicity, and more significant drug loading. To date, many innovative liposome preparations have been developed in which albumin is involved as a DDS. These novel albumin-containing liposome preparations show superior deliverability for genes, hydrophilic/hydrophobic substances and proteins/peptides to the targeting area compared to original liposomes by virtue of their high biocompatibility, stability, effective loading content, and the capacity for targeting. This review summarizes the current status of albumin applications in liposome-based DDS, focusing on albumin-coated liposomes and albumin-encapsulated liposomes as a DDS carrier for potential medical applications.
Collapse
Affiliation(s)
- Kazuaki Taguchi
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan; (K.T.); (K.M.)
| | - Yuko Okamoto
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 862-0082, Japan; (Y.O.); (M.O.)
| | - Kazuaki Matsumoto
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan; (K.T.); (K.M.)
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 862-0082, Japan; (Y.O.); (M.O.)
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 862-0082, Japan
| | - Victor Tuan Giam Chuang
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA 6102, Australia
- Correspondence:
| |
Collapse
|
38
|
Challenges and opportunities in the delivery of cancer therapeutics: update on recent progress. Ther Deliv 2020; 12:55-76. [PMID: 33307811 DOI: 10.4155/tde-2020-0079] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Global cancer prevalence has continuously increased in the last decades despite substantial progress achieved for patient care. Cancer is no longer recognized as a singular disease but as a plurality of different ones, leading to the important choice of the drug administration route and promoting the development of novel drug-delivery systems (DDS). Due to their structural diversity, therapeutic cancer drugs present specific challenges in physicochemical properties that can adversely affect their efficacy and toxicity profile. These challenges are addressed by innovative DDS to improve bioavailability, pharmacokinetics and biodistribution profiles. Here, we define the drug delivery challenges related to oral, intravenous, subcutaneous or alternative routes of administration, and review innovative DDS, marketed or in development, that answer those challenges.
Collapse
|
39
|
Salapa J, Bushman A, Lowe K, Irudayaraj J. Nano drug delivery systems in upper gastrointestinal cancer therapy. NANO CONVERGENCE 2020; 7:38. [PMID: 33301056 PMCID: PMC7728832 DOI: 10.1186/s40580-020-00247-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/23/2020] [Indexed: 05/02/2023]
Abstract
Upper gastrointestinal (GI) carcinomas are characterized as one of the deadliest cancer types with the highest recurrence rates. Their treatment is challenging due to late diagnosis, early metastasis formation, resistance to systemic therapy and complicated surgeries performed in poorly accessible locations. Current cancer medication face deficiencies such as high toxicity and systemic side-effects due to the non-specific distribution of the drug agent. Nanomedicine has the potential to offer sophisticated therapeutic possibilities through adjusted delivery systems. This review aims to provide an overview of novel approaches and perspectives on nanoparticle (NP) drug delivery systems for gastrointestinal carcinomas. Present regimen for the treatment of upper GI carcinomas are described prior to detailing various NP drug delivery formulations and their current and potential role in GI cancer theranostics with a specific emphasis on targeted nanodelivery systems. To date, only a handful of NP systems have met the standard of care requirements for GI carcinoma patients. However, an increasing number of studies provide evidence supporting NP-based diagnostic and therapeutic tools. Future development and strategic use of NP-based drug formulations will be a hallmark in the treatment of various cancers. This article seeks to highlight the exciting potential of novel NPs for targeted cancer therapy in GI carcinomas and thus provide motivation for further research in this field.
Collapse
Affiliation(s)
- Julia Salapa
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
- Department of Physics, Technical University of Vienna, Karlsplatz 13, 1040 Vienna, Austria
| | - Allison Bushman
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Kevin Lowe
- Carle Foundation Hospital South, Urbana, IL 61801 USA
- Carle-Illinois College of Medicine, Urbana, IL 61801 USA
| | - Joseph Irudayaraj
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
- Carle-Illinois College of Medicine, Urbana, IL 61801 USA
- Cancer Center at Illinois, Urbana, IL 61801 USA
- Biomedical Research Facility, 3rd Floor Mills Breast Cancer Institute, Carle Foundation Hospital South, Urbana, IL 61801 USA
| |
Collapse
|
40
|
Zhang P, Tao H, Yu L, Zhou L, Zhu C. Developing protein arginine methyltransferase 1 (PRMT1) inhibitor TC-E-5003 as an antitumor drug using INEI drug delivery systems. Drug Deliv 2020; 27:491-501. [PMID: 32212935 PMCID: PMC7170320 DOI: 10.1080/10717544.2020.1745327] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 12/16/2022] Open
Abstract
Injectable implants with the ability to form in situ are one of the most promising carriers for the delivery of chemotherapeutic drugs to tumor sites. We have reported a novel injectable in situ-forming implant system composed of n-butyl-2-cyanoacrylate (NBCA), ethyl oleate, along with the sol-gel phase transition. The chemotherapeutic drug-loaded injectable NBCA ethyl oleate implant (INEI) exhibited excellent therapeutic efficacy for local chemotherapy. Herein, we utilize this INEI to carry N, N'-(Sulfonyldi-4,1-phenylene)bis(2-chloroacetamide) (TE-C-5003), which is a selective protein arginine methyltransferase 1 (PRMT1) inhibitor, to treat the lung cancer mice model. The in vitro experiment shows that TE-C-5003 has a good anti-tumor effect on lung cancer (IC50 = 0.7022 µM for A549; IC50 = 0.6844 µM for NCL-H1299) and breast cancer (IC50 = 0.4128 µM for MCF-7; IC50 = 0.5965 µM for MDA-MB-231). Anti-tumor experiments in animal models showed that the average growth inhibition rate of xenografted human lung cancer cells by the TE-C-5003-loaded INEI (40% NBCA) was 68.23%, which is far more than TC-E-5003 alone (31.76%). Our study further confirms that INEI is an effective technique to improve the anti-tumor effect. The druggability of small molecule compounds can be improved with the help of the mentioned technology. Also, TC-E-5003 may be developed as a broad spectrum anti-tumor drug.
Collapse
Affiliation(s)
- Pengcheng Zhang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - He Tao
- Institute of Hygiene, Zhejiang Academy of Medical Science, China
| | - Liyang Yu
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Lixiao Zhou
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Chenggang Zhu
- College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
41
|
Belbekhouche S, Cossutta M, Habert D, Hamadi S, Modjinou T, Cascone I, Courty J. N6L-functionalized nanoparticles for targeted and inhibited pancreatic cancer cells. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Chen R, Huang L, Hu K. Natural products remodel cancer-associated fibroblasts in desmoplastic tumors. Acta Pharm Sin B 2020; 10:2140-2155. [PMID: 33304782 PMCID: PMC7714988 DOI: 10.1016/j.apsb.2020.04.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/10/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022] Open
Abstract
Desmoplastic tumors have an abundance of stromal cells and the extracellular matrix which usually result in therapeutic resistance. Current treatment prescriptions for desmoplastic tumors are usually not sufficient to eliminate the malignancy. Recently, through modulating cancer-associated fibroblasts (CAFs) which are the most abundant cell type among all stromal cells, natural products have improved chemotherapies and the delivery of nanomedicines to the tumor cells, showing promising ability to improve treatment effects on desmoplastic tumors. In this review, we discussed the latest advances in inhibiting desmoplastic tumors by modeling CAFs using natural products, highlighting the potential therapeutic abilities of natural products in targeting CAFs for cancer treatment.
Collapse
Affiliation(s)
- Rujing Chen
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kaili Hu
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
43
|
Wade SJ, Sahin Z, Piper A, Talebian S, Aghmesheh M, Foroughi J, Wallace GG, Moulton SE, Vine KL. Dual Delivery of Gemcitabine and Paclitaxel by Wet-Spun Coaxial Fibers Induces Pancreatic Ductal Adenocarcinoma Cell Death, Reduces Tumor Volume, and Sensitizes Cells to Radiation. Adv Healthc Mater 2020; 9:e2001115. [PMID: 33000905 DOI: 10.1002/adhm.202001115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/09/2020] [Indexed: 12/15/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis, with surgical resection of the tumor in conjunction with systemic chemotherapy the only potential curative therapy. Up to 80% of diagnosed cases are deemed unresectable, prompting the need for alternative treatment approaches. Herein, coaxial polymeric fibers loaded with two chemotherapeutic agents, gemcitabine (Gem) and paclitaxel (Ptx), are fabricated to investigate the effect of local drug delivery on PDAC cell growth in vitro and in vivo. A wet-spinning fabrication method to form a coaxial fiber with a polycaprolactone shell and alginate core loaded with Ptx and Gem, respectively, is used. In vitro, Gem+Ptx fibers display significant cytotoxicity as well as radiosensitizing properties toward PDAC cell lines greater than the equivalent free drugs, which may be attributed to a radiosensitizing effect of the polymers. In vivo studies assessing Gem+Ptx fiber efficacy found that Gem+Ptx fibers reduce tumor volume in a xenograft mouse model of PDAC. Importantly, no difference in mouse weight, circulating cytokines, or liver function is observed in mice treated with Gem+Ptx fibers compared to the empty fiber controls confirming the safety of the implant approach. With further development, Gem+Ptx fibers can improve the treatment of unresectable PDAC in the future.
Collapse
Affiliation(s)
- Samantha J. Wade
- School of Chemistry and Molecular Bioscience Molecular Horizons University of Wollongong Wollongong NSW 2522 Australia
- Illawarra Health and Medical Research Institute University of Wollongong Wollongong NSW 2522 Australia
- CONCERT CINSW Translational Cancer Research Centre NSW Australia
| | - Zeliha Sahin
- School of Chemistry and Molecular Bioscience Molecular Horizons University of Wollongong Wollongong NSW 2522 Australia
- Illawarra Health and Medical Research Institute University of Wollongong Wollongong NSW 2522 Australia
| | - Ann‐Katrin Piper
- School of Chemistry and Molecular Bioscience Molecular Horizons University of Wollongong Wollongong NSW 2522 Australia
- Illawarra Health and Medical Research Institute University of Wollongong Wollongong NSW 2522 Australia
| | - Sepehr Talebian
- ARC Centre of Excellence for Electromaterials Science AIIM Facility University of Wollongong Wollongong NSW 2500 Australia
| | - Morteza Aghmesheh
- CONCERT CINSW Translational Cancer Research Centre NSW Australia
- Illawarra Cancer Care Centre Illawarra Shoalhaven Local Area Health District Wollongong Hospital Wollongong NSW 2500 Australia
| | - Javad Foroughi
- ARC Centre of Excellence for Electromaterials Science AIIM Facility University of Wollongong Wollongong NSW 2500 Australia
| | - Gordon G. Wallace
- ARC Centre of Excellence for Electromaterials Science AIIM Facility University of Wollongong Wollongong NSW 2500 Australia
| | - Simon E. Moulton
- ARC Centre of Excellence for Electromaterials Science AIIM Facility University of Wollongong Wollongong NSW 2500 Australia
- Biomedical Engineering Faculty of Science Engineering and Technology Swinburne University of Technology Hawthorn Vic 3122 Australia
| | - Kara L. Vine
- School of Chemistry and Molecular Bioscience Molecular Horizons University of Wollongong Wollongong NSW 2522 Australia
- Illawarra Health and Medical Research Institute University of Wollongong Wollongong NSW 2522 Australia
- CONCERT CINSW Translational Cancer Research Centre NSW Australia
| |
Collapse
|
44
|
Sun D, Zhou S, Gao W. What Went Wrong with Anticancer Nanomedicine Design and How to Make It Right. ACS NANO 2020; 14:12281-12290. [PMID: 33021091 DOI: 10.1021/acsnano.9b09713] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The three design criteria of anticancer nanomedicines to improve anticancer efficacy and to reduce toxicity have been debated for decades: (1) Nanomedicines increase drug accumulation through enhanced permeability and retention (EPR) in tumors to improve anticancer efficacy. (2) Long systemic circulation of nanomedicines with high plasma concentration reduces reticuloendothelial system (RES) clearance and decreases drug accumulation in the normal organs to reduce toxicity, and to enhance the EPR effect. (3) A universal nanodelivery platform based on EPR and long systemic circulation can be developed to deliver different anticancer drugs. Although these criteria have repeatedly been confirmed in preclinical xenograft cancers, the majority of anticancer nanomedicines have failed to improve clinical efficacy, while the clinical efficacies/safety of successful nanomedicines are inconsistent with these design criteria. First, the debate over tumor EPR may have mixed two different questions and missed more clinically relevant comparisons for nanomedicines versus free drugs. When tumors are compared with normal tissues, tumor EPR has been confirmed in both mouse xenograft tumors and human cancers. However, nanomedicines may not enhance drug accumulation in human tumors compared with free drugs, despite outstanding improvement in preclinical cancers. Heterogeneity of enhanced permeability and retention in human cancers occurs for small/large molecules and nanomedicines, which cannot fully explain the poor translation of nanomedicines' efficacy from preclinical cancer models to cancer patients. Second, long-circulation nanomedicine should not be used as a universal design criterion because it does not further improve tumor accumulation by tumor EPR in human patients nor universally reduce distribution in normal organs. In contrast, nanomedicines change the drug tissue distribution to alter anticancer efficacy/safety. Third, a universal nanodelivery platform that uses the same design criteria for different drugs is not feasible. Rather, drug-specific nanodelivery systems are required to overcome the intrinsic shortcomings of delivered drugs, which are determined by the physicochemical, pharmacokinetic, and pharmacodynamic properties of the delivered drugs and nanocarriers to improve their efficacy/safety.
Collapse
Affiliation(s)
- Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Simon Zhou
- Clinical Pharmacology, Bristol Meyer Squibb Company, 86 Morris Avenue, Summit, New Jersey 07920, United States
| | - Wei Gao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
45
|
Zheng W, Xu S. Analysis of Differential Expression Proteins of Paclitaxel-Treated Lung Adenocarcinoma Cell A549 Using Tandem Mass Tag-Based Quantitative Proteomics. Onco Targets Ther 2020; 13:10297-10313. [PMID: 33116610 PMCID: PMC7569177 DOI: 10.2147/ott.s259895] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/15/2020] [Indexed: 11/23/2022] Open
Abstract
Background Paclitaxel is widely used in the treatment of cancer and has a good effect in the treatment of non-small cell lung cancer. The combination of TMT proteomics and bioinformatics is used to systematically analyze the molecular mechanism of paclitaxel in the treatment of lung adenocarcinoma A549 cell, which is helpful to screen new therapeutic targets. Methods MTT assay was used to analyze the inhibitory effect of paclitaxel on the proliferation of A549 cells. The proteins were identified by TMT quantitative proteomics and the differential expression proteins (DEPs) database was constructed. The DEPs were enriched by Gene Ontology (GO) and KEGG pathway annotation. Based on the information in the STRING database, find the interaction between DEPs, and the protein-protein interaction (PPI) networks of DEPs were constructed and analyzed by using the Cytoscape software. According to the PPI network results, select the hub proteins from DEPs for WB verification. Results A total of 5449 proteins were identified in A549 by TMT proteomics. Compared with the control group, 281 DEPs were significantly up-regulated and 218 were significantly down-regulated after paclitaxel treatment. GO functional analysis, we found that the main functions of these DEPs are binding, catalytic activity, molecular function regulator and so on. They are mainly involved in cellular process, metabolic process, biological regulation and so on. KEGG analysis showed that the three most significant signal transduction pathways of DEPs enrichment were DNA replication, steroid biosynthesis, oxidative phosphorylation. In PPI network, there are 294 nodes among which CDK1, MCM2-5 and PCNA are located at the center of proteins interaction. WB analysis confirmed that the expression of CDK1 was significantly down-regulated, consistent with the TMT results. Conclusion Paclitaxel significantly increased the expression of tubulin, binding tubulin to promote A549 cell death. In addition, paclitaxel significantly inhibited the expression of hub proteins, DNA replication and cell cycle pathways, thus killing lung adenocarcinoma cell A549. These findings will enhance the understanding of the mechanism of paclitaxel in the treatment of lung adenocarcinoma cell A549 and provide new valuable targets.
Collapse
Affiliation(s)
- Wanchun Zheng
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China
| | - Shouming Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, People's Republic of China
| |
Collapse
|
46
|
Skoczen S, Snapp KS, Crist RM, Kozak D, Jiang X, Liu H, Stern ST. Distinguishing Pharmacokinetics of Marketed Nanomedicine Formulations Using a Stable Isotope Tracer Assay. ACS Pharmacol Transl Sci 2020; 3:547-558. [PMID: 32566919 PMCID: PMC7296544 DOI: 10.1021/acsptsci.0c00011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Indexed: 12/23/2022]
Abstract
The pharmacokinetics of nanomedicines are complicated by the unique dispositional characteristics of the drug carrier. Most simplistically, the carrier could be a solubilizing platform that allows administration of a hydrophobic drug. Alternatively, the carrier could be stable and release the drug in a controlled manner, allowing for distribution of the carrier to influence distribution of the encapsulated drug. A third potential dispositional mechanism is carriers that are not stably complexed to the drug, but rather bind the drug in a dynamic equilibrium, similar to the binding of unbound drug to protein; since the nanocarrier has distributional and binding characteristics unlike plasma proteins, the equilibrium binding of drug to a nanocarrier can affect pharmacokinetics in unexpected ways, diverging from classical protein binding paradigms. The recently developed stable isotope tracer ultrafiltration assay (SITUA) for nanomedicine fractionation is uniquely suited for distinguishing and comparing these carrier/drug interactions. Here we present the the encapsulated, unencapsulated, and unbound drug fraction pharmacokinetic profiles in rats for marketed nanomedicines, representing examples of controlled release (doxorubicin liposomes, Doxil; and doxorubicin HCl liposome generic), equilibrium binding (paclitaxel cremophor micelle solution, Taxol generic), and solubilizing (paclitaxel albumin nanoparticle, Abraxane; and paclitaxel polylactic acid micelle, Genexol-PM) nanomedicine formulations. The utility of the SITUA method in differentiating these unique pharmacokinetic profiles and its potential for use in establishing generic nanomedicine bioequivalence are discussed.
Collapse
Affiliation(s)
- Sarah
L. Skoczen
- Nanotechnology
Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National
Laboratory, Frederick, Maryland 21702, United States
| | - Kelsie S. Snapp
- Nanotechnology
Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National
Laboratory, Frederick, Maryland 21702, United States
| | - Rachael M. Crist
- Nanotechnology
Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National
Laboratory, Frederick, Maryland 21702, United States
| | - Darby Kozak
- Office
of Research and Standards, Office of Generic Drugs, Center for Drug
Evaluation and Research, U.S. Food and Drug
Administration, Silver
Spring, Maryland 20993, United States
| | - Xiaohui Jiang
- Office
of Research and Standards, Office of Generic Drugs, Center for Drug
Evaluation and Research, U.S. Food and Drug
Administration, Silver
Spring, Maryland 20993, United States
| | - Hao Liu
- Office
of Research and Standards, Office of Generic Drugs, Center for Drug
Evaluation and Research, U.S. Food and Drug
Administration, Silver
Spring, Maryland 20993, United States
| | - Stephan T. Stern
- Nanotechnology
Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National
Laboratory, Frederick, Maryland 21702, United States
| |
Collapse
|
47
|
Byrling J, Sasor A, Nilsson J, Said Hilmersson K, Andersson R, Andersson B. Expression of peritumoral SPARC during distal cholangiocarcinoma progression and correlation with outcome. Scand J Gastroenterol 2020; 55:725-731. [PMID: 32543919 DOI: 10.1080/00365521.2020.1774923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/18/2020] [Accepted: 05/23/2020] [Indexed: 02/04/2023]
Abstract
Objectives: Distal cholangiocarcinoma (dCCA) is a malignancy with a dismal prognosis. One of the hallmarks is the presence of a rich desmoplastic stroma believed to contribute to tumor progression and treatment resistance. Secreted protein acidic and rich in cysteine (SPARC) is a matricellular glycoprotein implicated in tumor-stroma interaction with prognostic correlation across several malignancies. The aim of the present study was to evaluate the expression pattern and prognostic significance of SPARC in resected dCCA and paired lymph node metastasis.Materials and methods: SPARC expression was evaluated in 59 resected dCCA samples and 25 paired lymph node metastases as well as 10 benign bile duct samples using immunohistochemistry. Stromal SPARC expression was scored semi quantitatively. Survival was estimated using the Kaplan-Meier method with associated log-rank test.Results: SPARC expression was absent in normal bile ducts. In dCCA, peritumoral stromal SPARC was detectable in 47/59 (80%) of samples with 40/59 (68%) classified as high stromal SPARC expression. There was a significantly lower proportion of SPARC positive stroma in paired lymph node metastasis 17/25 (68%) than the corresponding primary tumors 24/25 (96%) (p = .016). Stromal SPARC expression was associated with the presence of lymph node metastasis; high SPARC expression 31/40 (78%) versus low SPARC expression 9/19 (47%) (p = .013). In the present material there was no significant association between stromal SPARC expression and survival.Conclusions: Stromal SPARC expression occurs frequently in dCCA. Although significantly lower than in primary tumors stromal SPARC is frequently retained in paired lymph node metastasis suggesting a possible role in the metastatic process of dCCA.
Collapse
Affiliation(s)
- Johannes Byrling
- Department of Clinical Sciences Lund, Surgery, Lund University and Skåne University Hospital, Lund, Sweden
| | - Agata Sasor
- Department of Clinical Sciences Lund, Pathology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Johan Nilsson
- Department of Clinical Sciences Lund, Cardiothoracic Surgery, Lund University and Skåne University Hospital, Lund, Sweden
| | - Katarzyna Said Hilmersson
- Department of Clinical Sciences Lund, Surgery, Lund University and Skåne University Hospital, Lund, Sweden
| | - Roland Andersson
- Department of Clinical Sciences Lund, Surgery, Lund University and Skåne University Hospital, Lund, Sweden
| | - Bodil Andersson
- Department of Clinical Sciences Lund, Surgery, Lund University and Skåne University Hospital, Lund, Sweden
| |
Collapse
|
48
|
Braun LM, Lagies S, Guenzle J, Fichtner-Feigl S, Wittel UA, Kammerer B. Metabolic Adaptation during nab-Paclitaxel Resistance in Pancreatic Cancer Cell Lines. Cells 2020; 9:cells9051251. [PMID: 32438599 PMCID: PMC7290296 DOI: 10.3390/cells9051251] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/05/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) correlates with high mortality and is about to become one of the major reasons for cancer-related mortality in the next decades. One reason for that high mortality is the limited availability of effective chemotherapy as well as the intrinsic or acquired resistance against it. Here, we report the impact of nab-paclitaxel on the cellular metabolome of PDAC cell lines. After establishment of nab-paclitaxel resistant cell lines, comparison of parental and resistant PDAC cell lines by metabolomics and biochemical assessments revealed altered metabolism, enhanced viability and reduced apoptosis. The results unveiled that acute nab-paclitaxel treatment affected primary metabolism to a minor extent. However, acquisition of resistance led to altered metabolites in both cell lines tested. Specifically, aspartic acid and carbamoyl-aspartic acid were differentially abundant, which might indicate an increased de novo pyrimidine synthesis. This pathway has already shown a similar behavior in other cancerous entities and thus might serve in the future as vulnerable target fighting resistance acquisition occurring in common malignancies.
Collapse
Affiliation(s)
- Lukas M. Braun
- Center for Biological Systems Analysis ZBSA, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; (L.M.B.); (S.L.)
- Department of General- and Visceral Surgery, University of Freiburg Medical Center Faculty of Medicine, 79106 Freiburg, Germany; (J.G.); (S.F.-F.)
| | - Simon Lagies
- Center for Biological Systems Analysis ZBSA, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; (L.M.B.); (S.L.)
- Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
- Institute of Biology II, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Jessica Guenzle
- Department of General- and Visceral Surgery, University of Freiburg Medical Center Faculty of Medicine, 79106 Freiburg, Germany; (J.G.); (S.F.-F.)
| | - Stefan Fichtner-Feigl
- Department of General- and Visceral Surgery, University of Freiburg Medical Center Faculty of Medicine, 79106 Freiburg, Germany; (J.G.); (S.F.-F.)
| | - Uwe A. Wittel
- Department of General- and Visceral Surgery, University of Freiburg Medical Center Faculty of Medicine, 79106 Freiburg, Germany; (J.G.); (S.F.-F.)
- Correspondence: (U.A.W.); (B.K.); Tel.: +49-761-270-25090 (U.A.W.); +49-761-203-97137 (B.K.)
| | - Bernd Kammerer
- Center for Biological Systems Analysis ZBSA, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; (L.M.B.); (S.L.)
- Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
- Correspondence: (U.A.W.); (B.K.); Tel.: +49-761-270-25090 (U.A.W.); +49-761-203-97137 (B.K.)
| |
Collapse
|
49
|
Su T, Yang B, Gao T, Liu T, Li J. Polymer nanoparticle-assisted chemotherapy of pancreatic cancer. Ther Adv Med Oncol 2020; 12:1758835920915978. [PMID: 32426046 PMCID: PMC7222269 DOI: 10.1177/1758835920915978] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/20/2020] [Indexed: 12/16/2022] Open
Abstract
Pancreatic cancer is a lethal disease characterized by highly dense stroma fibrosis. Only 15-20% of patients with pancreatic cancer have resectable tumors, and only around 20% of them survive to 5 years. Traditional cancer treatments have little effect on their prognosis, and successful surgical resection combined with effective perioperative therapy is the main method for maximizing long-term survival. For this reason, chemotherapy is an adjunct treatment for resectable cancer and is the main therapy for incurable pancreatic cancer, including metastatic pancreatic adenocarcinoma. However, there are various side effects of chemotherapeutic medicine and low drug penetration because the complex tumor microenvironment limits the application of chemotherapy. As a novel strategy, polymer nanoparticles make it possible to target the tumor microenvironment, release cytotoxic agents through various responsive reactions, and thus overcome the treatment barrier. As drug carriers, polymer nanoparticles show marked advantages, such as increased drug delivery and efficiency, controlled drug release, decreased side effects, prolonged half-life, and evasion of immunogenic blockade. In this review, we discuss the factors that cause chemotherapy obstacles in pancreatic cancer, and introduce the application of polymer nanoparticles to treat pancreatic cancer.
Collapse
Affiliation(s)
- Tianqi Su
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Bo Yang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Tianren Gao
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Tongjun Liu
- Department of General Surgery, Second Hospital of Jilin University, Changchun 130041, People’s Republic of China
| | - Jiannan Li
- Department of General Surgery, Second Hospital of Jilin University, Changchun 130041, People’s Republic of China
| |
Collapse
|
50
|
Burgos-Blasco B, Hernandez-Ruiz S, Lopez-Guajardo L, Donate-Lopez J. Dexamethasone intravitreal implant in cystoid macular edema secondary to paclitaxel therapy. Am J Ophthalmol Case Rep 2020; 18:100653. [PMID: 32190783 PMCID: PMC7068047 DOI: 10.1016/j.ajoc.2020.100653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/08/2019] [Accepted: 03/04/2020] [Indexed: 02/07/2023] Open
Abstract
Purpose To report the first case of cystoid macular edema (CME) induced by nabpaclitaxel treated with intravitreal dexamethasone implant. Observations A 67 year-old man diagnosed with unresectable pancreatic cancer presented with decreased vision in both eyes while receiving nab-paclitaxel. He was diagnosed with CME and intravitreal dexamethasone implants were administered in both eyes. Central retinal thickness (CRT) of both eye decreased 1 month after the implant but CME persisted. 2 months after Ozurdex implant nabpaclitaxel was discontinued, improving central macular thickness and the CME significantly in both eyes. Conclusion and importance Cessation of nab-paclitaxel could lead to resolution of CME more than intravitreal dexamethasone implant, although intravitreal dexamethasone implant achieved some reduction in central macular thickness.
Collapse
Affiliation(s)
| | | | | | - Juan Donate-Lopez
- Ophthalmology Department, Hospital Clinico San Carlos, Madrid, Spain
| |
Collapse
|