1
|
Unalan-Altintop T, Arikan-Akdagli S. Fungal Nomenclature: One Fungus, One Name? Infect Dis Clin North Am 2025; 39:57-73. [PMID: 39701895 DOI: 10.1016/j.idc.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Fungal nomenclature has been subject to change for many years and will probably continue to evolve and change in the future. One Fungus One Name principle guided the mycologists to reach a consensus on a single name. The change is inevitable in science; however, it comes with several challenges particularly in routine mycology laboratory practice and patient care, creating further difficulties and resistance to change. To overcome these challenges, the reason for change should be clear and made available on a publicly accessible source. Here, the changes of names in medically important fungi and the rationale behind are summarized.
Collapse
Affiliation(s)
- Tugce Unalan-Altintop
- Hacettepe University Medical School, Department of Medical Microbiology, Altindag, Ankara, 06100, Turkey
| | - Sevtap Arikan-Akdagli
- Hacettepe University Medical School, Department of Medical Microbiology, Altindag, Ankara, 06100, Turkey.
| |
Collapse
|
2
|
de Hoog S, Walsh TJ, Ahmed SA, Alastruey-Izquierdo A, Arendrup MC, Borman A, Chen S, Chowdhary A, Colgrove RC, Cornely OA, Denning DW, Dufresne PJ, Filkins L, Gangneux JP, Gené J, Groll AH, Guillot J, Haase G, Halliday C, Hawksworth DL, Hay R, Hoenigl M, Hubka V, Jagielski T, Kandemir H, Kidd SE, Kus JV, Kwon-Chung J, Lockhart SR, Meis JF, Mendoza L, Meyer W, Nguyen MH, Song Y, Sorrell TC, Stielow JB, Vilela R, Vitale RG, Wengenack NL, White PL, Ostrosky-Zeichner L, Zhang SX. Nomenclature for human and animal fungal pathogens and diseases: a proposal for standardized terminology. J Clin Microbiol 2024; 62:e0093724. [PMID: 39526838 PMCID: PMC11633119 DOI: 10.1128/jcm.00937-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Medically important pathogenic fungi invade vertebrate tissue and are considered primary when part of their nature life cycle is associated with an animal host and are usually able to infect immunocompetent hosts. Opportunistic fungal pathogens complete their life cycle in environmental habitats or occur as commensals within or on the vertebrate body, but under certain conditions can thrive upon infecting humans. The extent of host damage in opportunistic infections largely depends on the portal and modality of entry as well as on the host's immune and metabolic status. Diseases caused by primary pathogens and common opportunists, causing the top approximately 80% of fungal diseases [D. W. Denning, Lancet Infect Dis, 24:e428-e438, 2024, https://doi.org/10.1016/S1473-3099(23)00692-8], tend to follow a predictive pattern, while those by occasional opportunists are more variable. For this reason, it is recommended that diseases caused by primary pathogens and the common opportunists are named after the etiologic agent, for example, histoplasmosis and aspergillosis, while this should not be done for occasional opportunists that should be named as [causative fungus] [clinical syndrome], for example, Alternaria alternata cutaneous infection. The addition of a descriptor that identifies the location or clinical type of infection is required, as the general name alone may cover widely different clinical syndromes, for example, "rhinocerebral mucormycosis." A list of major recommended human and animal disease entities (nomenclature) is provided in alignment with their causative agents. Fungal disease names may encompass several genera of etiologic agents, consequently being less susceptible to taxonomic changes of the causative species, for example, mucormycosis covers numerous mucormycetous molds.
Collapse
Affiliation(s)
- Sybren de Hoog
- Radboudumc-CWZ Centre of Expertise for Mycology, Nijmegen, the Netherlands
- Foundation Atlas of Clinical Fungi, Hilversum, the Netherlands
| | - Thomas J. Walsh
- Center for Innovative Therapeutics and Diagnostics, Richmond, Virginia, USA
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sarah A. Ahmed
- Radboudumc-CWZ Centre of Expertise for Mycology, Nijmegen, the Netherlands
- Foundation Atlas of Clinical Fungi, Hilversum, the Netherlands
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, Spanish National Centre for Microbiology, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Maiken Cavling Arendrup
- Department of Microbiology and Infection Control, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Andrew Borman
- National Mycology Reference Laboratory, Public Health England, Bristol, United Kingdom
| | - Sharon Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, Westmead, Australia
| | - Anuradha Chowdhary
- Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
- National Reference Laboratory for Antimicrobial Resistance in Fungal Pathogens, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Robert C. Colgrove
- Division of Infectious Diseases, Mount Auburn Hospital, and Harvard Medical School, Cambridge, Massachusetts, USA
| | - Oliver A. Cornely
- University of Cologne, Faculty of Medicine, Institute of Translational Research, Cologne, Germany
- Excellence Center for Medical Mycology, Department I of Internal Medicine, University of Cologne, Cologne, Germany
| | - David W. Denning
- Manchester Fungal Infection Group, Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Philippe J. Dufresne
- Laboratoire de Santé Publique du Québec, Institut National de Santé Publique du Québec, Sainte-Anne-de-Bellevue, Canada
| | - Laura Filkins
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jean-Pierre Gangneux
- Department of Mycology, Centre Hospitalier Universitaire de Rennes, Centre National de Référence Aspergilloses chroniques, ECMM Excellence Center in Mycology, Rennes, France
| | - Josepa Gené
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciènces de la Salut, Universitat Rovira i Virgili, Reus, Spain
| | - Andreas H. Groll
- Infectious Disease Research Program, Department of Pediatric Hematology and Oncology, University Children‘s Hospital Münster, Münster, Germany
| | - Jaques Guillot
- Oniris, VetAgroBio Nantes, IRF, SFR ICAT, Université d'Angers, Angers, France
| | - Gerhard Haase
- Laboratory Diagnostic Center, RWTH Aachen University Hospital, Aachen, Germany
| | - Catriona Halliday
- Centre for Infectious Diseases and Microbiology Laboratory Services, Westmead, Australia
| | - David L. Hawksworth
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Natural History Museum, London, United Kingdom
- University of Southampton, Southampton, United Kingdom
- Jilin Agricultural University, Chanchung, China
| | - Roderick Hay
- St. John’s Institute of Dermatology, King’s College London, London, United Kingdom
| | - Martin Hoenigl
- Division of Infectious Diseases, Medical University of Graz, Graz, Austria
- Translational Medical Mycology Research Unit, Medical University of Graz, Graz, Austria
| | - Vit Hubka
- Department of Botany, Charles University, Prague, Czechia
| | - Tomasz Jagielski
- Department of Medical Microbiology, University of Warsaw, Warsaw, Poland
| | - Hazal Kandemir
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - Sarah E. Kidd
- National Mycology Reference Centre, SA Pathology, Adelaide, Australia
- School of Biological Sciences, Faculty of Sciences Engineering and Technology, University of Adelaide, Adelaide, Australia
| | - Julianne V. Kus
- Public Health Ontario Toronto, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - June Kwon-Chung
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Jacques F. Meis
- Radboudumc-CWZ Centre of Expertise for Mycology, Nijmegen, the Netherlands
- University of Cologne, Faculty of Medicine, Institute of Translational Research, Cologne, Germany
- Excellence Center for Medical Mycology, Department I of Internal Medicine, University of Cologne, Cologne, Germany
| | - Leonel Mendoza
- Microbiology and Molecular Genetics, Biomedical Laboratory Diagnostics, Michigan State University, East Lansing, Michigan, USA
| | - Wieland Meyer
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - M. Hong Nguyen
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Yinggai Song
- Department of Dermatology, Peking University First Hospital, Peking University, Beijing, China
| | - Tania C. Sorrell
- Sydney Infectious Diseases Institute, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | | | - Rachel Vilela
- Microbiology and Molecular Genetics, Biomedical Laboratory Diagnostics, Michigan State University, East Lansing, Michigan, USA
| | - Roxana G. Vitale
- CONICET (Consejo Nacional de Investigaciones Científicas y Tecnológicas), Hospital JM Ramos Mejía, Buenos Aires, Argentina
| | - Nancy L. Wengenack
- Division of Clinical Microbiology, Mayo Clinic, Rochester, Minnesota, USA
| | - P. Lewis White
- Public Health Wales Microbiology, Cardiff, United Kingdom
| | - Luis Ostrosky-Zeichner
- McGovern Medical School, Division of Infectious Diseases, University of Texas Health Science Center, Houston, Texas, USA
| | - Sean X. Zhang
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - on behalf of the ISHAM/ECMM/FDLC Working Group Nomenclature of Clinical Fungi
- Radboudumc-CWZ Centre of Expertise for Mycology, Nijmegen, the Netherlands
- Foundation Atlas of Clinical Fungi, Hilversum, the Netherlands
- Center for Innovative Therapeutics and Diagnostics, Richmond, Virginia, USA
- University of Maryland School of Medicine, Baltimore, Maryland, USA
- Mycology Reference Laboratory, Spanish National Centre for Microbiology, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Department of Microbiology and Infection Control, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
- National Mycology Reference Laboratory, Public Health England, Bristol, United Kingdom
- Centre for Infectious Diseases and Microbiology Laboratory Services, Westmead, Australia
- Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
- National Reference Laboratory for Antimicrobial Resistance in Fungal Pathogens, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
- Division of Infectious Diseases, Mount Auburn Hospital, and Harvard Medical School, Cambridge, Massachusetts, USA
- University of Cologne, Faculty of Medicine, Institute of Translational Research, Cologne, Germany
- Excellence Center for Medical Mycology, Department I of Internal Medicine, University of Cologne, Cologne, Germany
- Manchester Fungal Infection Group, Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
- Laboratoire de Santé Publique du Québec, Institut National de Santé Publique du Québec, Sainte-Anne-de-Bellevue, Canada
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Mycology, Centre Hospitalier Universitaire de Rennes, Centre National de Référence Aspergilloses chroniques, ECMM Excellence Center in Mycology, Rennes, France
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciènces de la Salut, Universitat Rovira i Virgili, Reus, Spain
- Infectious Disease Research Program, Department of Pediatric Hematology and Oncology, University Children‘s Hospital Münster, Münster, Germany
- Oniris, VetAgroBio Nantes, IRF, SFR ICAT, Université d'Angers, Angers, France
- Laboratory Diagnostic Center, RWTH Aachen University Hospital, Aachen, Germany
- Centre for Infectious Diseases and Microbiology Laboratory Services, Westmead, Australia
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Natural History Museum, London, United Kingdom
- University of Southampton, Southampton, United Kingdom
- Jilin Agricultural University, Chanchung, China
- St. John’s Institute of Dermatology, King’s College London, London, United Kingdom
- Division of Infectious Diseases, Medical University of Graz, Graz, Austria
- Translational Medical Mycology Research Unit, Medical University of Graz, Graz, Austria
- Department of Botany, Charles University, Prague, Czechia
- Department of Medical Microbiology, University of Warsaw, Warsaw, Poland
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
- National Mycology Reference Centre, SA Pathology, Adelaide, Australia
- School of Biological Sciences, Faculty of Sciences Engineering and Technology, University of Adelaide, Adelaide, Australia
- Public Health Ontario Toronto, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Microbiology and Molecular Genetics, Biomedical Laboratory Diagnostics, Michigan State University, East Lansing, Michigan, USA
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Department of Dermatology, Peking University First Hospital, Peking University, Beijing, China
- Sydney Infectious Diseases Institute, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Bioinformatics, Helmholtz Institute for One Health, Greifswald, Germany
- CONICET (Consejo Nacional de Investigaciones Científicas y Tecnológicas), Hospital JM Ramos Mejía, Buenos Aires, Argentina
- Division of Clinical Microbiology, Mayo Clinic, Rochester, Minnesota, USA
- Public Health Wales Microbiology, Cardiff, United Kingdom
- McGovern Medical School, Division of Infectious Diseases, University of Texas Health Science Center, Houston, Texas, USA
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Du HZ, Lu YH, Cheewangkoon R, Liu JK. Morpho-phylogenetic evidence reveals novel species and new records of Nigrograna (Nigrogranaceae) associated with medicinal plants in Southwestern China. MycoKeys 2024; 110:1-33. [PMID: 39493641 PMCID: PMC11525206 DOI: 10.3897/mycokeys.110.132628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 09/23/2024] [Indexed: 11/05/2024] Open
Abstract
During a survey of saprobic fungal niches in Southwestern China, eighteen ascomycetous collections of Nigrograna (Nigrogranaceae, Pleosporales, Dothideomycetes) were found on dead branches of medicinal plants. These taxa were characterized and identified based on morphological and culture characteristics, and phylogenetic analyses of a combined the internal transcribed spacer region of rDNA (ITS), nuclear large subunit rDNA (28S, LSU), RNA polymerase second-largest subunit (rpb2), nuclear small subunit rDNA (18S, SSU), and translation elongation factor 1-alpha (tef1-α) sequence dataset also confirmed their placement. As a result, four novel species, namely Nigrogranacamelliae, N.guttulata, N.longiorostiolata and N.neriicola were described. Additionally, four new host records of N.acericola, N.magnoliae, N.oleae and N.thymi were introduced. Furthermore, this study addresses the taxonomic status of N.trachycarpi, proposing its synonymy under N.oleae. Detailed illustrations, descriptions and informative notes for each newly identified taxon and novel host record are provided in this study.
Collapse
Affiliation(s)
- Hong-Zhi Du
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan Province, China
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou Province, China
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yu-Hang Lu
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan Province, China
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Ratchadawan Cheewangkoon
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jian-Kui Liu
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan Province, China
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
4
|
Bhunjun C, Chen Y, Phukhamsakda C, Boekhout T, Groenewald J, McKenzie E, Francisco E, Frisvad J, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie C, Bai F, Błaszkowski J, Braun U, de Souza F, de Queiroz M, Dutta A, Gonkhom D, Goto B, Guarnaccia V, Hagen F, Houbraken J, Lachance M, Li J, Luo K, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe D, Wang D, Wei D, Zhao C, Aiphuk W, Ajayi-Oyetunde O, Arantes T, Araujo J, Begerow D, Bakhshi M, Barbosa R, Behrens F, Bensch K, Bezerra J, Bilański P, Bradley C, Bubner B, Burgess T, Buyck B, Čadež N, Cai L, Calaça F, Campbell L, Chaverri P, Chen Y, Chethana K, Coetzee B, Costa M, Chen Q, Custódio F, Dai Y, Damm U, Santiago A, De Miccolis Angelini R, Dijksterhuis J, Dissanayake A, Doilom M, Dong W, Álvarez-Duarte E, Fischer M, Gajanayake A, Gené J, Gomdola D, Gomes A, Hausner G, He M, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena R, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin C, Liu J, Liu X, Loizides M, Luangharn T, Maharachchikumbura S, Mkhwanazi GM, Manawasinghe I, Marin-Felix Y, McTaggart A, Moreau P, Morozova O, et alBhunjun C, Chen Y, Phukhamsakda C, Boekhout T, Groenewald J, McKenzie E, Francisco E, Frisvad J, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie C, Bai F, Błaszkowski J, Braun U, de Souza F, de Queiroz M, Dutta A, Gonkhom D, Goto B, Guarnaccia V, Hagen F, Houbraken J, Lachance M, Li J, Luo K, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe D, Wang D, Wei D, Zhao C, Aiphuk W, Ajayi-Oyetunde O, Arantes T, Araujo J, Begerow D, Bakhshi M, Barbosa R, Behrens F, Bensch K, Bezerra J, Bilański P, Bradley C, Bubner B, Burgess T, Buyck B, Čadež N, Cai L, Calaça F, Campbell L, Chaverri P, Chen Y, Chethana K, Coetzee B, Costa M, Chen Q, Custódio F, Dai Y, Damm U, Santiago A, De Miccolis Angelini R, Dijksterhuis J, Dissanayake A, Doilom M, Dong W, Álvarez-Duarte E, Fischer M, Gajanayake A, Gené J, Gomdola D, Gomes A, Hausner G, He M, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena R, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin C, Liu J, Liu X, Loizides M, Luangharn T, Maharachchikumbura S, Mkhwanazi GM, Manawasinghe I, Marin-Felix Y, McTaggart A, Moreau P, Morozova O, Mostert L, Osiewacz H, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips A, Phonemany M, Promputtha I, Rathnayaka A, Rodrigues A, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe S, Scholler M, Scott P, Shivas R, Silar P, Silva-Filho A, Souza-Motta C, Spies C, Stchigel A, Sterflinger K, Summerbell R, Svetasheva T, Takamatsu S, Theelen B, Theodoro R, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang X, Wartchow F, Welti S, Wijesinghe S, Wu F, Xu R, Yang Z, Yilmaz N, Yurkov A, Zhao L, Zhao R, Zhou N, Hyde K, Crous P. What are the 100 most cited fungal genera? Stud Mycol 2024; 108:1-411. [PMID: 39100921 PMCID: PMC11293126 DOI: 10.3114/sim.2024.108.01] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/17/2024] [Indexed: 08/06/2024] Open
Abstract
The global diversity of fungi has been estimated between 2 to 11 million species, of which only about 155 000 have been named. Most fungi are invisible to the unaided eye, but they represent a major component of biodiversity on our planet, and play essential ecological roles, supporting life as we know it. Although approximately 20 000 fungal genera are presently recognised, the ecology of most remains undetermined. Despite all this diversity, the mycological community actively researches some fungal genera more commonly than others. This poses an interesting question: why have some fungal genera impacted mycology and related fields more than others? To address this issue, we conducted a bibliometric analysis to identify the top 100 most cited fungal genera. A thorough database search of the Web of Science, Google Scholar, and PubMed was performed to establish which genera are most cited. The most cited 10 genera are Saccharomyces, Candida, Aspergillus, Fusarium, Penicillium, Trichoderma, Botrytis, Pichia, Cryptococcus and Alternaria. Case studies are presented for the 100 most cited genera with general background, notes on their ecology and economic significance and important research advances. This paper provides a historic overview of scientific research of these genera and the prospect for further research. Citation: Bhunjun CS, Chen YJ, Phukhamsakda C, Boekhout T, Groenewald JZ, McKenzie EHC, Francisco EC, Frisvad JC, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie CM, Bai FY, Błaszkowski J, Braun U, de Souza FA, de Queiroz MB, Dutta AK, Gonkhom D, Goto BT, Guarnaccia V, Hagen F, Houbraken J, Lachance MA, Li JJ, Luo KY, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe DN, Wang DQ, Wei DP, Zhao CL, Aiphuk W, Ajayi-Oyetunde O, Arantes TD, Araujo JC, Begerow D, Bakhshi M, Barbosa RN, Behrens FH, Bensch K, Bezerra JDP, Bilański P, Bradley CA, Bubner B, Burgess TI, Buyck B, Čadež N, Cai L, Calaça FJS, Campbell LJ, Chaverri P, Chen YY, Chethana KWT, Coetzee B, Costa MM, Chen Q, Custódio FA, Dai YC, Damm U, de Azevedo Santiago ALCM, De Miccolis Angelini RM, Dijksterhuis J, Dissanayake AJ, Doilom M, Dong W, Alvarez-Duarte E, Fischer M, Gajanayake AJ, Gené J, Gomdola D, Gomes AAM, Hausner G, He MQ, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena RS, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin CG, Liu JK, Liu XB, Loizides M, Luangharn T, Maharachchikumbura SSN, Makhathini Mkhwanazi GJ, Manawasinghe IS, Marin-Felix Y, McTaggart AR, Moreau PA, Morozova OV, Mostert L, Osiewacz HD, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips AJL, Phonemany M, Promputtha I, Rathnayaka AR, Rodrigues AM, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe SJ, Scholler M, Scott P, Shivas RG, Silar P, Souza-Motta CM, Silva-Filho AGS, Spies CFJ, Stchigel AM, Sterflinger K, Summerbell RC, Svetasheva TY, Takamatsu S, Theelen B, Theodoro RC, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang XW, Wartchow F, Welti S, Wijesinghe SN, Wu F, Xu R, Yang ZL, Yilmaz N, Yurkov A, Zhao L, Zhao RL, Zhou N, Hyde KD, Crous PW (2024). What are the 100 most cited fungal genera? Studies in Mycology 108: 1-411. doi: 10.3114/sim.2024.108.01.
Collapse
Affiliation(s)
- C.S. Bhunjun
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Y.J. Chen
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - C. Phukhamsakda
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - T. Boekhout
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- The Yeasts Foundation, Amsterdam, the Netherlands
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - E.H.C. McKenzie
- Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand
| | - E.C. Francisco
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Laboratório Especial de Micologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - J.C. Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - V. G. Hurdeal
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Luangsa-ard
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - G. Perrone
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), Via G. Amendola 122/O, 70126 Bari, Italy
| | - C.M. Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - F.Y. Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - J. Błaszkowski
- Laboratory of Plant Protection, Department of Shaping of Environment, West Pomeranian University of Technology in Szczecin, Słowackiego 17, PL-71434 Szczecin, Poland
| | - U. Braun
- Martin Luther University, Institute of Biology, Department of Geobotany and Botanical Garden, Neuwerk 21, 06099 Halle (Saale), Germany
| | - F.A. de Souza
- Núcleo de Biologia Aplicada, Embrapa Milho e Sorgo, Empresa Brasileira de Pesquisa Agropecuária, Rodovia MG 424 km 45, 35701–970, Sete Lagoas, MG, Brazil
| | - M.B. de Queiroz
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - A.K. Dutta
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - D. Gonkhom
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B.T. Goto
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - V. Guarnaccia
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy
| | - F. Hagen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - M.A. Lachance
- Department of Biology, University of Western Ontario London, Ontario, Canada N6A 5B7
| | - J.J. Li
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - K.Y. Luo
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - F. Magurno
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - S. Mongkolsamrit
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - V. Robert
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - N. Roy
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - S. Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, P.R. China
| | - D.N. Wanasinghe
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - D.Q. Wang
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - D.P. Wei
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
| | - C.L. Zhao
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - W. Aiphuk
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - O. Ajayi-Oyetunde
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
| | - T.D. Arantes
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - J.C. Araujo
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
| | - D. Begerow
- Organismic Botany and Mycology, Institute of Plant Sciences and Microbiology, Ohnhorststraße 18, 22609 Hamburg, Germany
| | - M. Bakhshi
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - R.N. Barbosa
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - F.H. Behrens
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - K. Bensch
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - J.D.P. Bezerra
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - P. Bilański
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - C.A. Bradley
- Department of Plant Pathology, University of Kentucky, Princeton, KY 42445, USA
| | - B. Bubner
- Johan Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei, Institut für Forstgenetik, Eberswalder Chaussee 3a, 15377 Waldsieversdorf, Germany
| | - T.I. Burgess
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
| | - B. Buyck
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 39, 75231, Paris cedex 05, France
| | - N. Čadež
- University of Ljubljana, Biotechnical Faculty, Food Science and Technology Department Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.J.S. Calaça
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
- Laboratório de Pesquisa em Ensino de Ciências (LabPEC), Centro de Pesquisas e Educação Científica, Universidade Estadual de Goiás, Campus Central (CEPEC/UEG), Anápolis, GO, 75132-903, Brazil
| | - L.J. Campbell
- School of Veterinary Medicine, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - P. Chaverri
- Centro de Investigaciones en Productos Naturales (CIPRONA) and Escuela de Biología, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
- Department of Natural Sciences, Bowie State University, Bowie, Maryland, U.S.A
| | - Y.Y. Chen
- Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - K.W.T. Chethana
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B. Coetzee
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
- School for Data Sciences and Computational Thinking, University of Stellenbosch, South Africa
| | - M.M. Costa
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Q. Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.A. Custódio
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa-MG, Brazil
| | - Y.C. Dai
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - U. Damm
- Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany
| | - A.L.C.M.A. Santiago
- Post-graduate course in the Biology of Fungi, Department of Mycology, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, 50740-465, Recife, PE, Brazil
| | | | - J. Dijksterhuis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - A.J. Dissanayake
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - M. Doilom
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - W. Dong
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - E. Álvarez-Duarte
- Mycology Unit, Microbiology and Mycology Program, Biomedical Sciences Institute, University of Chile, Chile
| | - M. Fischer
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - A.J. Gajanayake
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Gené
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - D. Gomdola
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.A.M. Gomes
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife-PE, Brazil
| | - G. Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 5N6
| | - M.Q. He
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - L. Hou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Space Nutrition and Food Engineering, China Astronaut Research and Training Center, Beijing, 100094, China
| | - I. Iturrieta-González
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
- Department of Preclinic Sciences, Medicine Faculty, Laboratory of Infectology and Clinical Immunology, Center of Excellence in Translational Medicine-Scientific and Technological Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile
| | - F. Jami
- Plant Health and Protection, Agricultural Research Council, Pretoria, South Africa
| | - R. Jankowiak
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - R.S. Jayawardena
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea
| | - H. Kandemir
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - L. Kiss
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
- Centre for Research and Development, Eszterházy Károly Catholic University, H-3300 Eger, Hungary
| | - N. Kobmoo
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - T. Kowalski
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - L. Landi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - C.G. Lin
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - J.K. Liu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - X.B. Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Temesvári krt. 62, Szeged H-6726, Hungary
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | | | - T. Luangharn
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - S.S.N. Maharachchikumbura
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - G.J. Makhathini Mkhwanazi
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - I.S. Manawasinghe
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - Y. Marin-Felix
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - A.R. McTaggart
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park 4102, Queensland, Australia
| | - P.A. Moreau
- Univ. Lille, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France
| | - O.V. Morozova
- Komarov Botanical Institute of the Russian Academy of Sciences, 2, Prof. Popov Str., 197376 Saint Petersburg, Russia
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - L. Mostert
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - H.D. Osiewacz
- Faculty for Biosciences, Institute for Molecular Biosciences, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - D. Pem
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - R. Phookamsak
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - S. Pollastro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - A. Pordel
- Plant Protection Research Department, Baluchestan Agricultural and Natural Resources Research and Education Center, AREEO, Iranshahr, Iran
| | - C. Poyntner
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - A.J.L. Phillips
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - M. Phonemany
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - I. Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - A.R. Rathnayaka
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.M. Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, 04023062, Brazil
| | - G. Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - L. Rothmann
- Plant Pathology, Department of Plant Sciences, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - C. Salgado-Salazar
- Mycology and Nematology Genetic Diversity and Biology Laboratory, U.S. Department of Agriculture, Agriculture Research Service (USDA-ARS), 10300 Baltimore Avenue, Beltsville MD, 20705, USA
| | - M. Sandoval-Denis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - S.J. Saupe
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS Université de Bordeaux, 1 rue Camille Saint Saëns, 33077 Bordeaux cedex, France
| | - M. Scholler
- Staatliches Museum für Naturkunde Karlsruhe, Erbprinzenstraße 13, 76133 Karlsruhe, Germany
| | - P. Scott
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
- Sustainability and Biosecurity, Department of Primary Industries and Regional Development, Perth WA 6000, Australia
| | - R.G. Shivas
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
| | - P. Silar
- Laboratoire Interdisciplinaire des Energies de Demain, Université de Paris Cité, 75205 Paris Cedex, France
| | - A.G.S. Silva-Filho
- IFungiLab, Departamento de Ciências e Matemática (DCM), Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), São Paulo, BraziI
| | - C.M. Souza-Motta
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - C.F.J. Spies
- Agricultural Research Council - Plant Health and Protection, Private Bag X5017, Stellenbosch, 7599, South Africa
| | - A.M. Stchigel
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - K. Sterflinger
- Institute of Natural Sciences and Technology in the Arts (INTK), Academy of Fine Arts Vienna, Augasse 2–6, 1090, Vienna, Austria
| | - R.C. Summerbell
- Sporometrics, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - T.Y. Svetasheva
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - S. Takamatsu
- Mie University, Graduate School, Department of Bioresources, 1577 Kurima-Machiya, Tsu 514-8507, Japan
| | - B. Theelen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.C. Theodoro
- Laboratório de Micologia Médica, Instituto de Medicina Tropical do RN, Universidade Federal do Rio Grande do Norte, 59078-900, Natal, RN, Brazil
| | - M. Thines
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325 Frankfurt Am Main, Germany
| | - N. Thongklang
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - R. Torres
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Agrobiotech de Lleida, Parc de Gardeny, 25003, Lleida, Catalonia, Spain
| | - B. Turchetti
- Department of Agricultural, Food and Environmental Sciences and DBVPG Industrial Yeasts Collection, University of Perugia, Italy
| | - T. van den Brule
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- TIFN, P.O. Box 557, 6700 AN Wageningen, the Netherlands
| | - X.W. Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F. Wartchow
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, Paraiba, João Pessoa, Brazil
| | - S. Welti
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - S.N. Wijesinghe
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - F. Wu
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - R. Xu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China
| | - Z.L. Yang
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - N. Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - A. Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - L. Zhao
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.L. Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - N. Zhou
- Department of Biological Sciences and Biotechnology, Botswana University of Science and Technology, Private Bag, 16, Palapye, Botswana
| | - K.D. Hyde
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht
| |
Collapse
|
5
|
van de Sande WWJ, Fahal AH. An updated list of eumycetoma causative agents and their differences in grain formation and treatment response. Clin Microbiol Rev 2024; 37:e0003423. [PMID: 38690871 PMCID: PMC11237709 DOI: 10.1128/cmr.00034-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024] Open
Abstract
SUMMARYIn 2023, the World Health Organization designated eumycetoma causative agents as high-priority pathogens on its list of fungal priority pathogens. Despite this recognition, a comprehensive understanding of these causative agents is lacking, and potential variations in clinical manifestations or therapeutic responses remain unclear. In this review, 12,379 eumycetoma cases were reviewed. In total, 69 different fungal species were identified as causative agents. However, some were only identified once, and there was no supporting evidence that they were indeed present in the grain. Madurella mycetomatis was by far the most commonly reported fungal causative agent. In most studies, identification of the fungus at the species level was based on culture or histology, which was prone to misidentifications. The newly used molecular identification tools identified new causative agents. Clinically, no differences were reported in the appearance of the lesion, but variations in mycetoma grain formation and antifungal susceptibility were observed. Although attempts were made to explore the differences in clinical outcomes based on antifungal susceptibility, the lack of large clinical trials and the inclusion of surgery as standard treatment posed challenges in drawing definitive conclusions. Limited case series suggested that eumycetoma cases caused by Fusarium species were less responsive to treatment than those caused by Madurella mycetomatis. However, further research is imperative for a comprehensive understanding.
Collapse
Affiliation(s)
- Wendy W. J. van de Sande
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Ahmed H. Fahal
- The Mycetoma Research Centre, University of Khartoum, Khartoum, Sudan
| |
Collapse
|
6
|
Xu RF, Karunarathna SC, Phukhamsakda C, Dai DQ, Elgorban AM, Suwannarach N, Kumla J, Wang XY, Tibpromma S. Four new species of Dothideomycetes (Ascomycota) from Pará Rubber ( Heveabrasiliensis) in Yunnan Province, China. MycoKeys 2024; 103:71-95. [PMID: 38560534 PMCID: PMC10980880 DOI: 10.3897/mycokeys.103.117580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/29/2024] [Indexed: 04/04/2024] Open
Abstract
The tropical areas in southern and south-western Yunnan are rich in fungal diversity. Additionally, the diversity of seed flora in Yunnan Province is higher than in other regions in China and the abundant endemic species of woody plants provide favourable substrates for fungi. Rubber plantations in Yunnan Province are distributed over a large area, especially in Xishuangbanna. During a survey of rubber-associated fungi in Yunnan Province, China, dead rubber branches with fungal fruiting bodies were collected. Morphological characteristics and multigene phylogenetic analyses (ITS, LSU, SSU, rpb2 and tef1-α) revealed four distinct new species, described herein as Melomastiapuerensis, Nigrogranalincangensis, Pseudochaetosphaeronemalincangensis and Pseudochaetosphaeronemaxishuangbannaensis. Detailed descriptions, illustrations and phylogenetic trees are provided to show the taxonomic placements of these new species.
Collapse
Affiliation(s)
- Rui-Fang Xu
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
| | - Samantha C. Karunarathna
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | | | - Dong-Qin Dai
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China
| | | | - Nakarin Suwannarach
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Jaturong Kumla
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Xiao-Yan Wang
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| | - Saowaluck Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China
| |
Collapse
|
7
|
Borman AM, Johnson EM. Changes in fungal taxonomy: mycological rationale and clinical implications. Clin Microbiol Rev 2023; 36:e0009922. [PMID: 37930182 PMCID: PMC10732072 DOI: 10.1128/cmr.00099-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/13/2023] [Indexed: 11/07/2023] Open
Abstract
Numerous fungal species of medical importance have been recently subjected to and will likely continue to undergo nomenclatural changes as a result of the application of molecular approaches to fungal classification together with abandonment of dual nomenclature. Here, we summarize those changes affecting key groups of fungi of medical importance, explaining the mycological (taxonomic) rationale that underpinned the changes and the clinical relevance/importance (where such exists) of the key nomenclatural revisions. Potential mechanisms to mitigate unnecessary taxonomic instability are suggested, together with approaches to raise awareness of important changes to minimize potential clinical confusion.
Collapse
Affiliation(s)
- Andrew M. Borman
- UK HSA National Mycology Reference Laboratory, Science Quarter, Southmead Hospital, Bristol, United Kingdom
- Medical Research Council Centre for Medical Mycology (MRC CMM), University of Exeter, Exeter, United Kingdom
| | - Elizabeth M. Johnson
- UK HSA National Mycology Reference Laboratory, Science Quarter, Southmead Hospital, Bristol, United Kingdom
- Medical Research Council Centre for Medical Mycology (MRC CMM), University of Exeter, Exeter, United Kingdom
| |
Collapse
|
8
|
Wang G, Zhang G, Lv X, Wang Y, Long Y, Wang X, Liu H. First complete mitogenome of Massarineae and its contribution to phylogenetic implications in Pleosporales. Sci Rep 2023; 13:22431. [PMID: 38104200 PMCID: PMC10725480 DOI: 10.1038/s41598-023-49822-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023] Open
Abstract
Endophytic fungi play an important role in the growth and development of traditional Chinese medicine plants. We isolated a strain of Acrocalymma vagum from the endophytic fungi of the traditional Chinese plants Paris. To accurately identify this endophytic fungal species of interest, we sequenced the mitochondrial genome of A. vagum, which is the first discovered mitochondrial genome in Massarineae. The A. vagum mitochondrial genome consists of a 35,079-bp closed circular DNA molecule containing 36 genes. Then, we compared the general sequence characteristics of A. vagum with those of Pleosporales, and the second structure of the 22 tRNAs was predicted. The phylogenetic relationship of A. vagum was constructed using two different data sets (protein-coding genes and amino acids). The phylogenetic tree shows that A. vagum is located at the root of Pleosporales. The analysis of introns shows that the number of introns increases with the increase in branch length. The results showed that monophyly was confirmed for all families in Pleosporales except for Pleosporaceae. A. vagum is an ancient species in the Pleosporales, and Pleosporaceae may require further revision. In Pleosporales, the number of introns is positively correlated with branch length, providing data for further study on the origin of introns.
Collapse
Affiliation(s)
- Guangying Wang
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Gongyou Zhang
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- Engineering Research Center of Health Medicine Biotechnology of Institution of Higher Education of Guizhou Province, Guiyang, China
| | - Xiaoying Lv
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Yaping Wang
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- Engineering Research Center of Health Medicine Biotechnology of Institution of Higher Education of Guizhou Province, Guiyang, China
- Key Laboratory of Biology and Medical Engineering, Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Yaohang Long
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- Engineering Research Center of Health Medicine Biotechnology of Institution of Higher Education of Guizhou Province, Guiyang, China
- Key Laboratory of Biology and Medical Engineering, Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Xianyi Wang
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, China.
- Engineering Research Center of Health Medicine Biotechnology of Institution of Higher Education of Guizhou Province, Guiyang, China.
- Key Laboratory of Biology and Medical Engineering, Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, China.
| | - Hongmei Liu
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, China.
- Engineering Research Center of Health Medicine Biotechnology of Institution of Higher Education of Guizhou Province, Guiyang, China.
- Key Laboratory of Biology and Medical Engineering, Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, China.
- School of Basic Medicine Science, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
9
|
Hu H, He M, Wu Y, Long S, Zhang X, Liu L, Shen X, Wijayawardene NN, Meng Z, Long Q, Kang J, Li Q. Taxonomic and phylogenetic characterisations of six species of Pleosporales (in Didymosphaeriaceae, Roussoellaceae and Nigrogranaceae) from China. MycoKeys 2023; 100:123-151. [PMID: 38074622 PMCID: PMC10701915 DOI: 10.3897/mycokeys.100.109423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/27/2023] [Indexed: 03/19/2024] Open
Abstract
Pleosporales comprise a diverse group of fungi with a global distribution and significant ecological importance. A survey on Pleosporales (in Didymosphaeriaceae, Roussoellaceae and Nigrogranaceae) in Guizhou Province, China, was conducted. Specimens were identified, based on morphological characteristics and phylogenetic analyses using a dataset composed of ITS, LSU, SSU, tef1 and rpb2 loci. Maximum Likelihood (ML) and Bayesian analyses were performed. As a result, three new species (Neokalmusiakarka, Nigrogranaschinifolium and N.trachycarpus) have been discovered, along with two new records for China (Roussoellaneopustulans and R.doimaesalongensis) and a known species (Roussoellapseudohysterioides). Morphologically similar species and phylogenetically close taxa are compared and discussed. This study provides detailed information and descriptions of all newly-identified taxa.
Collapse
Affiliation(s)
- Hongmin Hu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou province, China
| | - Minghui He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou province, China
| | - Youpeng Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou province, China
| | - Sihan Long
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou province, China
| | - Xu Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou province, China
| | - Lili Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou province, China
| | - Xiangchun Shen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou province, China
| | - Nalin N. Wijayawardene
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang, Guizhou province, China
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou province, China
| | - Zebin Meng
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan province, China
| | - Qingde Long
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou province, China
| | - Jichuan Kang
- Tropical Microbiology Research Foundation, 96/N/10, Meemanagoda Road, 10230 Pannipitiya, Sri Lanka
| | - Qirui Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou province, China
| |
Collapse
|
10
|
Abstract
Mycetoma is a chronic, incapacitating, destructive inflammatory disease with many serious damaging impacts. Currently, there is no control or prevention program as many of its epidemiological characteristics, such as the causative organisms' ecological niche, natural habitat, primary reservoir, transmission mode, geographical distribution, incidence, and prevalence, remain unclear. This may be due to a lack of research interest, as mycetoma is still a neglected disease and the scarcity of accurate molecular diagnostic techniques in disease-endemic regions for accurate causative microorganisms identification and mapping. With this background, this study set out to address this knowledge gap by considering the mycetoma environmental occurrence predictors. The medical literature obtained data showed a close association between mycetoma occurrence and its environment. The causative microorganisms are available in the environment in active or dormant forms. Animal dung may be a natural niche and reservoir for these organisms, and thorns may facilitate the subcutaneous inoculation. Some environmental factors, such as the soil type and consistency, temperature, water sources, aridity index, and thorny trees, may be risk factors. The population in endemic areas socioeconomic, hygiene, and health education status are contributory factors for mycetoma. The individual's genetic and immunological backgrounds may determine the disease's susceptibility and resistance. Environmental conditions and personal hygiene improvement are mandatory to reduce disease occurrence. Mycetoma spatial mapping can detect disease cluster areas and then develop public health strategies for early case detection and management to reduce the disease burden. More research interests and facilities are needed to understand disease pathogenesis and appropriate patient management better.
Collapse
|
11
|
Wang WP, Shen HW, Bao DF, Lu YZ, Yang QX, Su XJ, Luo ZL. Two novel species and three new records of Torulaceae from Yunnan Province, China. MycoKeys 2023; 99:1-24. [PMID: 37588799 PMCID: PMC10425956 DOI: 10.3897/mycokeys.99.106699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/17/2023] [Indexed: 08/18/2023] Open
Abstract
While investigating the diversity of lignicolous fungi in Yunnan Province, China, six fresh collections of Torulaceae were collected and identified based on morphological examination and phylogenetic analyses of combined LSU, ITS, SSU, tef1-α, and rpb2 sequence data. Two new species, viz. Neopodoconisyunnanensis and Torulasuae, and three new records, viz. T.canangae (new freshwater habitat record), T.masonii (new host record), and T.sundara (new freshwater habitat record) are reported. Detailed descriptions, illustrations, and a phylogenetic tree to show the placement of these species are provided.
Collapse
Affiliation(s)
- Wen-Peng Wang
- College of Agriculture and Biological Science, Dali University, Dali 671003, Yunnan, China
| | - Hong-Wei Shen
- College of Agriculture and Biological Science, Dali University, Dali 671003, Yunnan, China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Dan-Feng Bao
- College of Agriculture and Biological Science, Dali University, Dali 671003, Yunnan, China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Yong-Zhong Lu
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Qiu-Xia Yang
- College of Agriculture and Biological Science, Dali University, Dali 671003, Yunnan, China
| | - Xi-Jun Su
- College of Agriculture and Biological Science, Dali University, Dali 671003, Yunnan, China
| | - Zong-Long Luo
- College of Agriculture and Biological Science, Dali University, Dali 671003, Yunnan, China
| |
Collapse
|
12
|
Colom MF, Ferrer C, Ekai JL, Ferrández D, Ramírez L, Gómez-Sánchez N, Leting S, Hernández C. First report on mycetoma in Turkana County-North-western Kenya. PLoS Negl Trop Dis 2023; 17:e0011327. [PMID: 37578968 PMCID: PMC10449206 DOI: 10.1371/journal.pntd.0011327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/24/2023] [Accepted: 07/18/2023] [Indexed: 08/16/2023] Open
Abstract
Mycetoma is one of the six Neglected Tropical Diseases that are prevalent in Turkana County (northwest Kenya). The aim of the study was to estimate the prevalence of mycetoma in the county, as well as to describe the main causative agents involved in the disease using methods affordable locally. Based on the data collected by the team of cooperative medicine Cirugia en Turkana (Surgery in Turkana), a specific study for mycetoma was started during the 16th humanitarian medicine campaign in February 2019. Patients with suspected mycetoma were studied at the Lodwar County Referral Hospital (LCRH). After informing the patient and getting their consent, the lesions were examined and sampled (mainly by biopsy) and clinical data were recorded. Samples were washed in sterile saline solution and cut in fragments. Some of these were inoculated on Sabouraud Dextrose Agar, Malt Extract Agar, and diluted Nutrient Agar plates. One fragment of each sample was used for DNA extraction. The DNA and the rest of the fragments of samples were kept at -20°C. All cultures were incubated at room temperature at the LCRH laboratory. The DNA obtained from clinical samples was submitted to PCR amplification of the ITS-5.8S and the V4-V5 16S rRNA gene region, for the detection and identification of fungi and bacteria respectively. From February 2019 till February 2022, 60 patients were studied. Most of them were men (43, 74,1%) between 13 and 78 y.o. (mean age 37). Half of the patients were herdsmen but, among women 40% (6) were housewives and 26.7% (4) charcoal burners. Lesions were mainly located at the feet (87.9%) and most of the patients (54; 93.1%) reported discharge of grains in the exudate, being 27 (46.6%) yellow or pale colored and 19 (32.8%) of them dark grains. Culture of clinical samples yielded 35 fungal and bacterial putative causative agents. Culture and molecular methods allowed the identification of a total of 21 causative agents of mycetoma (39.6% of cases studied). Most of them (17) corresponded to fungi causing eumycetoma (80.9%) being the most prevalent the genus Madurella (7; 41.2%), with two species involved (M. mycetomatis and M. fahalii), followed by Aspergillus (2; 11.8%). Other minority genera detected were Cladosporium, Fusarium, Acremonium, Penicillium, and Trichophyton (5.9% each of them). Actinobacteria were detected in 19.1% of samples, but only Streptomyces somaliensis was identified as a known agent of mycetoma, the rest being actinobacteria not previously described as causative agents of the disease, such as Cellulosimicrobium cellulans detected in two of the patients. Although Kenya is geographically located in the mycetoma belt, to our knowledge this is the first report on mycetoma in this country from 1973, and the first one for Turkana County.
Collapse
Affiliation(s)
- María Francisca Colom
- Laboratory of Medical Mycology, Universidad Miguel Hernández, Avenida Santiago Ramón y Cajal s/n, Edificio Muhammad Al Shafra, Sant Joan d’Alacant, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- NGO Medical direction, Cirugía en Turkana (Surgery in Turkana), Madrid, Spain
| | - Consuelo Ferrer
- Laboratory of Medical Mycology, Universidad Miguel Hernández, Avenida Santiago Ramón y Cajal s/n, Edificio Muhammad Al Shafra, Sant Joan d’Alacant, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
| | - John Lochuke Ekai
- Medical Diagnosis Laboratory, Lodwar County and Referral Hospital, Turkana, Kenya
| | - David Ferrández
- Laboratory of Medical Mycology, Universidad Miguel Hernández, Avenida Santiago Ramón y Cajal s/n, Edificio Muhammad Al Shafra, Sant Joan d’Alacant, Spain
| | - Laura Ramírez
- Laboratory of Medical Mycology, Universidad Miguel Hernández, Avenida Santiago Ramón y Cajal s/n, Edificio Muhammad Al Shafra, Sant Joan d’Alacant, Spain
| | - Noelia Gómez-Sánchez
- Laboratory of Medical Mycology, Universidad Miguel Hernández, Avenida Santiago Ramón y Cajal s/n, Edificio Muhammad Al Shafra, Sant Joan d’Alacant, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
| | - Simion Leting
- Medical Diagnosis Laboratory, Lodwar County and Referral Hospital, Turkana, Kenya
| | - Carmen Hernández
- NGO Medical direction, Cirugía en Turkana (Surgery in Turkana), Madrid, Spain
- San Carlos University Hospital, Madrid, Spain
| |
Collapse
|
13
|
Kidd SE, Abdolrasouli A, Hagen F. Fungal Nomenclature: Managing Change is the Name of the Game. Open Forum Infect Dis 2023; 10:ofac559. [PMID: 36632423 PMCID: PMC9825814 DOI: 10.1093/ofid/ofac559] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/18/2022] [Indexed: 01/09/2023] Open
Abstract
Fungal species have undergone and continue to undergo significant nomenclatural change, primarily due to the abandonment of dual species nomenclature in 2013 and the widespread application of molecular technologies in taxonomy allowing correction of past classification errors. These have effected numerous name changes concerning medically important species, but by far the group causing most concern are the Candida yeasts. Among common species, Candida krusei, Candida glabrata, Candida guilliermondii, Candida lusitaniae, and Candida rugosa have been changed to Pichia kudriavzevii, Nakaseomyces glabrata, Meyerozyma guilliermondii, Clavispora lusitaniae, and Diutina rugosa, respectively. There are currently no guidelines for microbiology laboratories on implementing changes, and there is ongoing concern that clinicians will dismiss or misinterpret laboratory reports using unfamiliar species names. Here, we have outlined the rationale for name changes across the major groups of clinically important fungi and have provided practical recommendations for managing change.
Collapse
Affiliation(s)
- Sarah E Kidd
- Correspondence: Sarah E. Kidd, BMedSc(Hons), PhD , National Mycology Reference Centre, SA Pathology, Frome Road, Adelaide, South Australia 5000, Australia ()
| | - Alireza Abdolrasouli
- Department of Medical Microbiology, King's College Hospital, London, United Kingdom,Department of Infectious Diseases, Imperial College London, London, United Kingdom
| | - Ferry Hagen
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands,Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands,Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
14
|
Aljundi M, Brun S, Akhoundi M, Didier M, Jabbour R, Izri A, Caux F, Bohelay G. Recurrent Subcutaneous Phaeohyphomycosis Due to Medicopsis romeroi: A Case Report in a Dermatomyositis Patient and Review of the Literature. Microorganisms 2022; 11:microorganisms11010003. [PMID: 36677294 PMCID: PMC9867221 DOI: 10.3390/microorganisms11010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Medicopsis romeroi phaeohyphomycosis is increasingly reported in immunocompromised patients living in or originating from tropical and subtropical areas. We report a case of subcutaneous phaeohyphomycosis caused by M. romeroi in a 56-year-old Malian woman residing in France for 20 years. She developed a small nodule on her dominant hand's ring finger 15 months after starting immunosuppressive medications for paraneoplastic dermatomyositis. A first surgical debridement was followed by a local recurrence. Despite a second surgical excision combined with posaconazole treatment, the infection recurred one year after antifungal therapy discontinuation. A wide excision was performed again, and antifungal therapy was resumed and maintained for six months, resulting in the absence of relapse during the 18 months following the surgery. This case highlighted the high risk of relapse in immunocompromised patients, suggesting the need for long-term follow-up and prolonged antifungal treatment following surgical excision in cases with sustained immunosuppression. The literature review was performed according to PRISMA guidelines and included 51 scientific publications. A noteworthy predominance of the subcutaneous phaeohyphomycosis presentation was found in immunocompromised patients, whereas eumycetoma had been reported in apparently healthy individuals. A combination of complete excision with antifungal treatment seemed to confer the best outcome.
Collapse
Affiliation(s)
- Mohanad Aljundi
- Department of Dermatology, Avicenne Hospital, Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires de Paris Seine-Saint-Denis (HUPSSD), 93000 Bobigny, France
- Correspondence: ; Tel.: +33-1-48-95-51-89; Fax: +33-1-48-95-51-87
| | - Sophie Brun
- Department of Parasitology-Mycology, Avicenne Hospital, Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires de Paris Seine-Saint-Denis (HUPSSD), 93000 Bobigny, France
- Inserm UMR 1125 Li2P, UFR SMBH Léonard de Vinci, Université Sorbonne Paris Nord (USPN), 93000 Bobigny, France
| | - Mohammad Akhoundi
- Department of Parasitology-Mycology, Avicenne Hospital, Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires de Paris Seine-Saint-Denis (HUPSSD), 93000 Bobigny, France
| | - Morgane Didier
- Department of Pneumology, Avicenne Hospital, Assistance Publique des Hôpitaux de Paris (AP-HP), 93000 Bobigny, France
| | - Roula Jabbour
- Department of Pathology, Avicenne Hospital, Assistance Publique des Hôpitaux de Paris (AP-HP), 93000 Bobigny, France
| | - Arezki Izri
- Department of Parasitology-Mycology, Avicenne Hospital, Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires de Paris Seine-Saint-Denis (HUPSSD), 93000 Bobigny, France
- Inserm UMR 1125 Li2P, UFR SMBH Léonard de Vinci, Université Sorbonne Paris Nord (USPN), 93000 Bobigny, France
| | - Frédéric Caux
- Department of Dermatology, Avicenne Hospital, Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires de Paris Seine-Saint-Denis (HUPSSD), 93000 Bobigny, France
- Inserm UMR 1125 Li2P, UFR SMBH Léonard de Vinci, Université Sorbonne Paris Nord (USPN), 93000 Bobigny, France
| | - Gérôme Bohelay
- Department of Dermatology, Avicenne Hospital, Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires de Paris Seine-Saint-Denis (HUPSSD), 93000 Bobigny, France
- Inserm UMR 1125 Li2P, UFR SMBH Léonard de Vinci, Université Sorbonne Paris Nord (USPN), 93000 Bobigny, France
| |
Collapse
|
15
|
Lu L, Karunarathna SC, Dai DQ, Jayawardena RS, Suwannarach N, Tibpromma S. Three new species of Nigrograna (Dothideomycetes, Pleosporales) associated with Arabica coffee from Yunnan Province, China. MycoKeys 2022; 94:51-71. [PMID: 36760538 PMCID: PMC9836489 DOI: 10.3897/mycokeys.94.95751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/17/2022] [Indexed: 12/15/2022] Open
Abstract
Coffee is one of the most important cash crops in Yunnan Province, China. Yunnan is ranked as the biggest producer of high-quality coffee in China. During surveys of microfungi from coffee plantations in Yunnan, six fungal strains that resemble Nigrogranaceae were collected. Multi-gene analyses of a combined SSU-LSU-ITS-rpb2-tef1-α sequence data matrix were used to infer the phylogenetic position of the new species in Nigrograna while morphological characteristics were used to deduce the taxonomic position of the new species. Six fungal strains isolated from decaying branches of Coffeaarabica represent three new saprobic species in Nigrograna. The three new species, N.asexualis, N.coffeae, and N.puerensis, are described with full (macro and micro characteristics) descriptions, illustrations, and a phylogenetic tree that shows the phylogenetic position of new taxa.
Collapse
Affiliation(s)
- Li Lu
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China,Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Samantha C. Karunarathna
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China
| | - Dong-qin Dai
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China
| | | | | | - Saowaluck Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China
| |
Collapse
|
16
|
Cabeza MS, Gómez A, Sasoni N, Gamarra S, Garcia-Effron G. Black grain eumycetoma due to Diaporthe ueckerae. Taxonomical update of previous agents of infections due to Diaporthe spp. Med Mycol Case Rep 2022; 39:1-4. [PMID: 36561725 PMCID: PMC9764123 DOI: 10.1016/j.mmcr.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
A black-grain eumycetoma due to Diaporthe uekerae in a kidney transplant recipient is presented. The isolate was identified by using the newly available NCBI's curated database (rRNA_typestrains/ITS_RefSeq_Fungi) and the NCBI's GenBank + EMBL + DDBI + PDB + RefSeq database. The isolate's antifungal susceptibility was evaluated. The studied isolate showed low MIC values to the eight tested antifungals. Using this updated database, the identities of previous agents of Diaporthe spp. infections were revised.
Collapse
Affiliation(s)
- Matías S. Cabeza
- Laboratorio de Micología y Diagnóstico Molecular, Cátedra de Parasitología y Micología, Facultad de Bioquímica, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe city (Santa Fe), CP 3000, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Santa Fe city (Santa Fe), CP 3000, Argentina
| | - Abel Gómez
- Clínica de Nefrología Urología y Enfermedades Cardiovasculares, Santa Fe city (Santa Fe), CP 3000, Argentina
| | - Natalia Sasoni
- Laboratorio de Micología y Diagnóstico Molecular, Cátedra de Parasitología y Micología, Facultad de Bioquímica, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe city (Santa Fe), CP 3000, Argentina
| | - Soledad Gamarra
- Laboratorio de Micología y Diagnóstico Molecular, Cátedra de Parasitología y Micología, Facultad de Bioquímica, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe city (Santa Fe), CP 3000, Argentina
| | - Guillermo Garcia-Effron
- Laboratorio de Micología y Diagnóstico Molecular, Cátedra de Parasitología y Micología, Facultad de Bioquímica, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe city (Santa Fe), CP 3000, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Santa Fe city (Santa Fe), CP 3000, Argentina
- Corresponding author. Laboratorio de Micología y Diagnóstico Molecular (CONICET), Cátedra de Parasitología y Micología, Facultad de Bioquímica y Ciencias Biológicas (Universidad Nacional del Litoral), Ciudad Universitaria UNL, Santa Fe city (Santa Fe), CP 3000, Argentina.
| |
Collapse
|
17
|
Nyuykonge B, Siddig EE, Mhmoud NA, Nyaoke BA, Zijlstra EE, Verbon A, Bakhiet S, Fahal AH, van de Sande WWJ. Epidemiological cut-off values for itraconazole and ravuconazole for Madurella mycetomatis, the most common causative agent of mycetoma. Mycoses 2022; 65:1170-1178. [PMID: 36005544 PMCID: PMC9804462 DOI: 10.1111/myc.13509] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/16/2022] [Accepted: 07/26/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Eumycetoma is a neglected tropical disease. It is a chronic inflammatory subcutaneous infection characterised by painless swellings which produce grains. It is currently treated with a combination of itraconazole and surgery. In an ongoing clinical study, the efficacy of fosravuconazole, the prodrug of ravuconazole, is being investigated. For both itraconazole and ravuconazole, no clinical breakpoints or epidemiological cut-off values (ECV) to guide treatment are currently available. OBJECTIVE To determine tentative ECVs for itraconazole and ravuconazole in Madurella mycetomatis, the main causative agent of eumycetoma. MATERIALS AND METHODS Minimal inhibitory concentrations (MICs) for itraconazole and ravuconazole were determined in 131 genetically diverse clinical M. mycetomatis isolates with the modified CLSI M38 broth microdilution method. The MIC distributions were established and used to determine ECVs with the ECOFFinder software. CYP51A sequences were sequenced to determine whether mutations occurred in this azole target gene, and comparisons were made between the different CYP51A variants and the MIC distributions. RESULTS The MICs ranged from 0.008 to 1 mg/L for itraconazole and from 0.002 to 0.125 mg/L for ravuconazole. The M. mycetomatis ECV for itraconazole was 1 mg/L and for ravuconazole 0.064 mg/L. In the wild-type population, two CYP51A variants were found for M. mycetomatis, which differed in one amino acid at position 499 (S499G). The MIC distributions for itraconazole and ravuconazole were similar between the two variants. No mutations linked to decreased susceptibility were found. CONCLUSION The proposed M. mycetomatis ECV for itraconazole is 1 mg/L and for ravuconazole 0.064 mg/L.
Collapse
Affiliation(s)
- Bertrand Nyuykonge
- Department of Medical Microbiology and Infectious DiseasesErasmus MC, University Medical Centre RotterdamRotterdamthe Netherlands
| | | | | | | | | | - Annelies Verbon
- Department of Medical Microbiology and Infectious DiseasesErasmus MC, University Medical Centre RotterdamRotterdamthe Netherlands
| | - Sahar Bakhiet
- Mycetoma Research CentreUniversity of KhartoumKhartoumSudan
| | - Ahmed H. Fahal
- Mycetoma Research CentreUniversity of KhartoumKhartoumSudan
| | - Wendy W. J. van de Sande
- Department of Medical Microbiology and Infectious DiseasesErasmus MC, University Medical Centre RotterdamRotterdamthe Netherlands
| |
Collapse
|
18
|
Hu HM, Liu LL, Zhang X, Lin Y, Shen XC, Long SH, Kang JC, Wijayawardene NN, Li QR, Long QD. New species and records of Neomassaria, Oxydothis and Roussoella (Pezizomycotina, Ascomycota) associated with palm and bamboo from China. MycoKeys 2022; 93:165-191. [PMID: 36761913 PMCID: PMC9836516 DOI: 10.3897/mycokeys.93.89888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/25/2022] [Indexed: 11/12/2022] Open
Abstract
Several micro fungi were gathered from bamboo and palm in Guizhou Province, China. In morphology, these taxa resemble Neomassaria, Roussoella and Oxydothis. Multi-gene phylogenetic analyses based on combined ITS, LSU, SSU, rpb2 and tef1 loci confirmed that two are new geographical records for China, (viz. Roussoellasiamensis, Neomassariafabacearum), while two of them are new to science (viz. Oxydothisfortunei sp. nov. and Roussoellabambusarum sp. nov.). The stromata of Roussoellabambusarum are similar to those of R.thailandica, but its ascospores are larger. In addition, multi-gene phylogenetic analyses show that Oxydothisfortunei is closely related to O.inaequalis, but the J- ascus subapical ring as well as the ascospores of O.inaequalis are smaller. Morphological descriptions and illustrations of all species are provided.
Collapse
Affiliation(s)
- Hong Min Hu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Li Li Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Xu Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Yan Lin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Xiang Chun Shen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Si Han Long
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Ji Chuan Kang
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
| | - Nalin N. Wijayawardene
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Qi Rui Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Qing De Long
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| |
Collapse
|
19
|
Pyrenochaeta fraxinina as colonizer of ash and sycamore petioles, its morphology, ecology, and phylogenetic connections. Mycol Prog 2022. [DOI: 10.1007/s11557-022-01827-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
AbstractPyrenochaeta fraxinina was first described in 1913 from the state of New York (USA) on petioles of Fraxinus sp. Since then, the species has not been reported from North America and reports from the other regions of the world are very sparse. The results of this study on P. fraxinina are based on the material collected in various regions of Poland from 2012 to 2019. The material comprised 2700 previous year’s leaf petioles of Fraxinus excelsior and 1970 petioles or leaf residues of eight other deciduous tree species. As a result, the occurrence of pycnidial conidiomata of P. fraxinina was confirmed on F. excelsior (3.4% of petioles), F. mandshurica (1.5%), F. pennsylvanica (3.2%), and Acer pseudoplatanus (2.0%). The morphology of the microstructures was described based on the fresh material and compared with the holotype of P. fraxinina. The optimal temperature for the growth of the fungus in vitro was estimated as 20 °C. The analyses based on ITS-LSU rDNA sequences and a protein coding sequence of TUB2 and RPB2 genes showed that P. fraxinina isolates form a well-supported clade in the phylogenetic trees. The species proved to be closely related to Nematostoma parasiticum (asexual morph Pyrenochaeta parasitica), a species occurring on Abies alba in connection with needle browning disease. Interactions between P. fraxinina and the ash dieback pathogen, Hymenoscyphus fraxineus, were analyzed in vivo on ash petioles and in vitro in dual cultures. Among 93 petioles of F. excelsior, for which P. fraxinina conidiomata were detected, 26 were also colonized by H. fraxineus. Mostly, these two fungi occurred separately, colonizing different sections of a petiole. For all dual cultures, both fungi, P. fraxinina and H. fraxineus, showed growth inhibition toward the counterpartner. The role of P. fraxinina as a saprotrophic competitor toward H. fraxineus in ash petioles is discussed.
Collapse
|
20
|
Santona A, Mhmoud NA, Siddig EE, Deligios M, Fiamma M, Paglietti B, Bakhiet SM, Rubino S, Fahal AH. Metagenomic detection of eumycetoma causative agents from households of patients residing in two Sudanese endemic villages in White Nile State. PLoS Negl Trop Dis 2022; 16:e0010385. [PMID: 36040926 PMCID: PMC9467367 DOI: 10.1371/journal.pntd.0010385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 09/12/2022] [Accepted: 07/14/2022] [Indexed: 12/04/2022] Open
Abstract
Eumycetoma is a chronic debilitating fungal disease endemic to tropical and subtropical regions, with Sudan featuring the highest eumycetoma incidence. Among the 50 species of fungi most commonly associated with eumycetoma Madurella mycetomatis (M. mycetomatis) is often referenced as the most common pathogen. However, there is an enormous knowledge gap related to this neglected disease and its pathogenesis, epidemiological features, and host-specific factors that could contribute to either the host susceptibility and resistance. In this study, we were able to utilize a metagenomic approach and samples collected from clinical black grains (BG) and familiar household environments aimed to assay both the habitat of eumycetoma-associated fungi and its possible connection with eumycetoma patients living in two different eumycetoma endemic villages within the White Nile State of Sudan. DNA sequencing targeting the fungal ITS2 domain was performed on soil, animal dung, housing walls and roofs, and Acacia-species thorn samples and compared with culture-dependent methods of fungal isolation. Additionally, we compared the soil samples obtained in the endemic zone with that from non-endemic zones, including Wagga village in Kassala State and Port Sudan suburb in Port Sudan State. Overall, a total of 392 Amplicon Sequence Variants (ASVs) were detected by ITS2 metagenomics Eumycetoma causative organisms accounted for 10% of total ASVs which included 11 genera: Exserohilum (2%), Aspergillus (1.7%), Curvularia (1%), Alternaria (0.9%), Madurella (0.5%), Fusarium (0.4%), Cladosporium (0.2%) Exophiala (0.15%), and, in a lesser extent, Microascus (0.05%) Bipolaris and Acremonium (0.01%) for each. Only five genera were identified by culture method, which included Fusarium (29%), Aspergillus (28%), Alternaria (2.5%), Bipolaris (1.6%), and Chaetomium (0.8%). M. mycetomatis was detected within all the studied patients’ houses, accounting for 0.7% of total sequences. It was the first common eumycetoma-associated agent detected in soil samples and the third common in the dung and wall samples. In contrast, it was not detected in the roof or thorn samples nor in the soils from non-endemic regions. Exserohilum rostratum, Aspergillus spp and Cladosporium spp were detected in all samples. M. mycetomatis and other eumycetoma-associated fungal identified in the patients’ black grains (BG) samples by metagenomics were identified in the environmental samples. Only Acremonium alternatum and Falciformispora senegalensis, responsible for eumycetoma in two patients were not detected, suggesting the infections in these patients happened outside these endemic areas. The soil, animal dung, and houses built from the same soil and dung are the main risk factors for M. mycetomatis infection in these endemic villages. Furthermore, the poor hygienic and environmental conditions, walking barefooted, and the presence of animals within the houses increase the risk of M. mycetomatis and other fungi causing eumycetoma. In this pilot study, using a metagenomic approach, we revealed in two Sudanese eumycetoma endemic villages within the While Nile State in Sudan, the habitat of M. mycetomatis and other fungal species responsible for eumycetoma. Although never isolated in culture, M. mycetomatis represented the most abundant eumycetoma-associated species found within soil samples and the third most common species within dung and housing wall samples. All the eumycetoma-associated fungal species detected by metagenomic in black grains samples were identified in patient’s houses, except Falciformispora senegalensis and Acremonium alternatum. The findings obtained in this study provided insight into the habitat of eumycetoma-associated causative species and improved knowledge on eumycetoma origin and risk factors in endemic villages. Furthermore, despite the limited number of samples, these results suggest the main prevention measurements to contain eumycetoma in these endemic areas. These measurements include using gloves and alternative materials to endemic soil and animal dung in building the wall of the houses walls, constructing animal fences and appropriate use of footwear.
Collapse
Affiliation(s)
- Antonella Santona
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Najwa A. Mhmoud
- Mycetoma Research Centre, University of Khartoum, Khartoum, Sudan
- Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan
| | - Emmanuel Edwar Siddig
- Mycetoma Research Centre, University of Khartoum, Khartoum, Sudan
- Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan
| | - Massimo Deligios
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Maura Fiamma
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Bianca Paglietti
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Sahar Mubarak Bakhiet
- Mycetoma Research Centre, University of Khartoum, Khartoum, Sudan
- Institute for Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Salvatore Rubino
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Ahmed Hassan Fahal
- Mycetoma Research Centre, University of Khartoum, Khartoum, Sudan
- * E-mail: ,
| |
Collapse
|
21
|
Nyuykonge B, Siddig EE, Konings M, Bakhiet S, Verbon A, Klaassen CHW, Fahal AH, van de Sande WWJ. Madurella mycetomatis grains within a eumycetoma lesion are clonal. Med Mycol 2022; 60:6643561. [PMID: 35833294 PMCID: PMC9335062 DOI: 10.1093/mmy/myac051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/16/2022] [Accepted: 07/12/2022] [Indexed: 11/23/2022] Open
Abstract
Eumycetoma is a neglected tropical infection of the subcutaneous tissue, characterized by tumor-like lesions and most commonly caused by the fungus Madurella mycetomatis. In the tissue, M. mycetomatis organizes itself in grains, and within a single lesion, thousands of grains can be present. The current hypothesis is that all these grains originate from a single causative agent, however, this hypothesis was never proven. Here, we used our recently developed MmySTR assay, a highly discriminative typing method, to determine the genotypes of multiple grains within a single lesion. Multiple grains from surgical lesions obtained from 11 patients were isolated and genotyped using the MmySTR panel. Within a single lesion, all tested grains shared the same genotype. Only in one single grain from one patient, a difference of one repeat unit in one MmySTR marker was noted relative to the other grains from that patient. We conclude that within these lesions the grains originate from a single clone and that the inherent unstable nature of the microsatellite markers may lead to small genotypic differences.
Collapse
Affiliation(s)
- Bertrand Nyuykonge
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Emmanuel Edwar Siddig
- Mycetoma Research Centre, University of Khartoum, Khartoum, Sudan.,Faculty of medical laboratory sciences, University of Khartoum, Khartoum, Sudan
| | - Mickey Konings
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Sahar Bakhiet
- Mycetoma Research Centre, University of Khartoum, Khartoum, Sudan
| | - Annelies Verbon
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Corné H W Klaassen
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | | | - Wendy W J van de Sande
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
22
|
Morpho-Molecular Characterization of Microfungi Associated with Phyllostachys (Poaceae) in Sichuan, China. J Fungi (Basel) 2022; 8:jof8070702. [PMID: 35887458 PMCID: PMC9325152 DOI: 10.3390/jof8070702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/07/2022] Open
Abstract
In the present study, we surveyed the ascomycetes from bamboo of Phyllostachys across Sichuan Province, China. A biphasic approach based on morphological characteristics and multigene phylogeny confirmed seven species, including one new genus, two new species, and five new host record species. A novel genus Paralloneottiosporina is introduced to accommodate Pa. sichuanensis that was collected from leaves of Phyllostachys violascens. Moreover, the newly introduced species Bifusisporella sichuanensis was isolated from leaves of P. edulis, and five species were newly recorded on bamboos, four species belonging to Apiospora, viz. Ap. yunnana, Ap. neosubglobosa, Ap. jiangxiensis, and Ap. hydei, and the last species, Seriascoma yunnanense, isolated from dead culms of P. heterocycla. Morphologically similar and phylogenetically related taxa were compared. Comprehensive descriptions, color photo plates of micromorphology are provided.
Collapse
|
23
|
Ahmed SA, Engel T, Zoll J, Godschalk PCR, Klaasen R, Moreno L, van der Lee H, Verweij PE, de Hoog S. Meanderella rijsii, a new opportunist in the fungal order Pleosporales. Microbes Infect 2022; 24:104932. [PMID: 35032673 DOI: 10.1016/j.micinf.2022.104932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/03/2022] [Accepted: 01/03/2022] [Indexed: 10/19/2022]
Abstract
Subcutaneous phaeohyphomycosis is an implantation disease caused by melanized fungi and affect both immunocompetent as well as immunocompromised individuals. Diagnosis and treatment require proper isolation and accurate identification of the causative pathogen. We isolated a novel fungus from a case of subcutaneous phaeohyphomycosis in an immunocompetent patient. The 56-year-old patient suffered from a slowly progressive swelling on the metatarsophalangeal join of the left food. The isolated fungus lacked sporulation and sequences of the ribosomal operon did not match with any known species. In a multi-locus phylogenetic analysis involving five markers, the fungus formed a unique lineage in the order Pleosporales, family Trematosphaeriaceae. A new genus, Meanderella and a new species, M. rijsii are here proposed to accommodate the clinical isolate. Whole genome analysis of M. rijsii revealed a number of genes that can be linked to pathogenicity and virulence. Further studies are however needed to understand the role of each gene in the pathogenic process and to determine the origin of pathogenicity in the family of Trematosphaeriaceae.
Collapse
Affiliation(s)
- Sarah A Ahmed
- Department of Medical Microbiology, Radboud University Medical Center and Radboudumc - CWZ Center of Expertise for Mycology, Nijmegen, the Netherlands; Foundation Atlas of Clinical Fungi, Hilversum, the Netherlands.
| | - Tobias Engel
- Laboratory for Medical Microbiology and Public Health, Hengelo, the Netherlands
| | - Jan Zoll
- Department of Medical Microbiology, Radboud University Medical Center and Radboudumc - CWZ Center of Expertise for Mycology, Nijmegen, the Netherlands
| | - Peggy C R Godschalk
- Department of Medical Microbiology and Medical Immunology, Meander Medical Center, Amersfoort, the Netherlands
| | - Ruth Klaasen
- Department of Rheumatology, Meander Medical Center, Amersfoort, the Netherlands
| | | | - Henrich van der Lee
- Department of Medical Microbiology, Radboud University Medical Center and Radboudumc - CWZ Center of Expertise for Mycology, Nijmegen, the Netherlands
| | - Paul E Verweij
- Department of Medical Microbiology, Radboud University Medical Center and Radboudumc - CWZ Center of Expertise for Mycology, Nijmegen, the Netherlands
| | - Sybren de Hoog
- Department of Medical Microbiology, Radboud University Medical Center and Radboudumc - CWZ Center of Expertise for Mycology, Nijmegen, the Netherlands; Foundation Atlas of Clinical Fungi, Hilversum, the Netherlands; Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou & Guizhou Talent Base for Microbiology and Human Health, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| |
Collapse
|
24
|
Hernández-Hernández F, Méndez-Tovar LJ. Eumycetoma and Global Warming. Fungal Biol 2022. [DOI: 10.1007/978-3-030-89664-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
The developed molecular biological identification tools for mycetoma causative agents: An update. Acta Trop 2022; 225:106205. [PMID: 34687643 DOI: 10.1016/j.actatropica.2021.106205] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/27/2021] [Accepted: 10/15/2021] [Indexed: 11/23/2022]
Abstract
Mycetoma is a chronic granulomatous inflammatory disease that is caused either by bacteria or fungi. Bacterial mycetoma (actinomycetoma) can be caused by various causative agents of the genera Nocardia, Streptomyces and Actinomadura. On the other hand, fungal mycetoma (eumycetoma) is most commonly caused by causative agents belonging to the genera Madurella, Scedosporium and Falciformispora. Early and accurate diagnosis of the causative organisms can guide proper patient management and treatment. To allow rapid and accurate species identification, different molecular techniques were developed over the past decades. These techniques can be protein based (MALDI-TOF MS) as well as DNA based (Sequencing, PCR and isothermal amplification methods). In this review, we provide an overview of the different molecular techniques currently in use and identify knowledge gaps, which need to be addressed before we can implement molecular diagnostics for mycetoma in different clinical settings.
Collapse
|
26
|
Boonmee S, Wanasinghe DN, Calabon MS, Huanraluek N, Chandrasiri SKU, Jones GEB, Rossi W, Leonardi M, Singh SK, Rana S, Singh PN, Maurya DK, Lagashetti AC, Choudhary D, Dai YC, Zhao CL, Mu YH, Yuan HS, He SH, Phookamsak R, Jiang HB, Martín MP, Dueñas M, Telleria MT, Kałucka IL, Jagodziński AM, Liimatainen K, Pereira DS, Phillips AJL, Suwannarach N, Kumla J, Khuna S, Lumyong S, Potter TB, Shivas RG, Sparks AH, Vaghefi N, Abdel-Wahab MA, Abdel-Aziz FA, Li GJ, Lin WF, Singh U, Bhatt RP, Lee HB, Nguyen TTT, Kirk PM, Dutta AK, Acharya K, Sarma VV, Niranjan M, Rajeshkumar KC, Ashtekar N, Lad S, Wijayawardene NN, Bhat DJ, Xu RJ, Wijesinghe SN, Shen HW, Luo ZL, Zhang JY, Sysouphanthong P, Thongklang N, Bao DF, Aluthmuhandiram JVS, Abdollahzadeh J, Javadi A, Dovana F, Usman M, Khalid AN, Dissanayake AJ, Telagathoti A, Probst M, Peintner U, Garrido-Benavent I, Bóna L, Merényi Z, Boros L, Zoltán B, Stielow JB, Jiang N, Tian CM, Shams E, Dehghanizadeh F, Pordel A, Javan-Nikkhah M, Denchev TT, Denchev CM, Kemler M, Begerow D, Deng CY, Harrower E, Bozorov T, Kholmuradova T, Gafforov Y, Abdurazakov A, Xu JC, Mortimer PE, Ren GC, Jeewon R, Maharachchikumbura SSN, et alBoonmee S, Wanasinghe DN, Calabon MS, Huanraluek N, Chandrasiri SKU, Jones GEB, Rossi W, Leonardi M, Singh SK, Rana S, Singh PN, Maurya DK, Lagashetti AC, Choudhary D, Dai YC, Zhao CL, Mu YH, Yuan HS, He SH, Phookamsak R, Jiang HB, Martín MP, Dueñas M, Telleria MT, Kałucka IL, Jagodziński AM, Liimatainen K, Pereira DS, Phillips AJL, Suwannarach N, Kumla J, Khuna S, Lumyong S, Potter TB, Shivas RG, Sparks AH, Vaghefi N, Abdel-Wahab MA, Abdel-Aziz FA, Li GJ, Lin WF, Singh U, Bhatt RP, Lee HB, Nguyen TTT, Kirk PM, Dutta AK, Acharya K, Sarma VV, Niranjan M, Rajeshkumar KC, Ashtekar N, Lad S, Wijayawardene NN, Bhat DJ, Xu RJ, Wijesinghe SN, Shen HW, Luo ZL, Zhang JY, Sysouphanthong P, Thongklang N, Bao DF, Aluthmuhandiram JVS, Abdollahzadeh J, Javadi A, Dovana F, Usman M, Khalid AN, Dissanayake AJ, Telagathoti A, Probst M, Peintner U, Garrido-Benavent I, Bóna L, Merényi Z, Boros L, Zoltán B, Stielow JB, Jiang N, Tian CM, Shams E, Dehghanizadeh F, Pordel A, Javan-Nikkhah M, Denchev TT, Denchev CM, Kemler M, Begerow D, Deng CY, Harrower E, Bozorov T, Kholmuradova T, Gafforov Y, Abdurazakov A, Xu JC, Mortimer PE, Ren GC, Jeewon R, Maharachchikumbura SSN, Phukhamsakda C, Mapook A, Hyde KD. Fungal diversity notes 1387-1511: taxonomic and phylogenetic contributions on genera and species of fungal taxa. FUNGAL DIVERS 2021; 111:1-335. [PMID: 34899100 PMCID: PMC8648402 DOI: 10.1007/s13225-021-00489-3] [Show More Authors] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/10/2021] [Indexed: 01/01/2023]
Abstract
This article is the 13th contribution in the Fungal Diversity Notes series, wherein 125 taxa from four phyla, ten classes, 31 orders, 69 families, 92 genera and three genera incertae sedis are treated, demonstrating worldwide and geographic distribution. Fungal taxa described and illustrated in the present study include three new genera, 69 new species, one new combination, one reference specimen and 51 new records on new hosts and new geographical distributions. Three new genera, Cylindrotorula (Torulaceae), Scolecoleotia (Leotiales genus incertae sedis) and Xenovaginatispora (Lindomycetaceae) are introduced based on distinct phylogenetic lineages and unique morphologies. Newly described species are Aspergillus lannaensis, Cercophora dulciaquae, Cladophialophora aquatica, Coprinellus punjabensis, Cortinarius alutarius, C. mammillatus, C. quercoflocculosus, Coryneum fagi, Cruentomycena uttarakhandina, Cryptocoryneum rosae, Cyathus uniperidiolus, Cylindrotorula indica, Diaporthe chamaeropicola, Didymella azollae, Diplodia alanphillipsii, Dothiora coronicola, Efibula rodriguezarmasiae, Erysiphe salicicola, Fusarium queenslandicum, Geastrum gorgonicum, G. hansagiense, Helicosporium sexualis, Helminthosporium chiangraiensis, Hongkongmyces kokensis, Hydrophilomyces hydraenae, Hygrocybe boertmannii, Hyphoderma australosetigerum, Hyphodontia yunnanensis, Khaleijomyces umikazeana, Laboulbenia divisa, Laboulbenia triarthronis, Laccaria populina, Lactarius pallidozonarius, Lepidosphaeria strobelii, Longipedicellata megafusiformis, Lophiotrema lincangensis, Marasmius benghalensis, M. jinfoshanensis, M. subtropicus, Mariannaea camelliae, Melanographium smilaxii, Microbotryum polycnemoides, Mimeomyces digitatus, Minutisphaera thailandensis, Mortierella solitaria, Mucor harpali, Nigrograna jinghongensis, Odontia huanrenensis, O. parvispina, Paraconiothyrium ajrekarii, Parafuscosporella niloticus, Phaeocytostroma yomensis, Phaeoisaria synnematicus, Phanerochaete hainanensis, Pleopunctum thailandicum, Pleurotheciella dimorphospora, Pseudochaetosphaeronema chiangraiense, Pseudodactylaria albicolonia, Rhexoacrodictys nigrospora, Russula paravioleipes, Scolecoleotia eriocamporesi, Seriascoma honghense, Synandromyces makranczyi, Thyridaria aureobrunnea, Torula lancangjiangensis, Tubeufia longihelicospora, Wicklowia fusiformispora, Xenovaginatispora phichaiensis and Xylaria apiospora. One new combination, Pseudobactrodesmium stilboideus is proposed. A reference specimen of Comoclathris permunda is designated. New host or distribution records are provided for Acrocalymma fici, Aliquandostipite khaoyaiensis, Camarosporidiella laburni, Canalisporium caribense, Chaetoscutula juniperi, Chlorophyllum demangei, C. globosum, C. hortense, Cladophialophora abundans, Dendryphion hydei, Diaporthe foeniculina, D. pseudophoenicicola, D. pyracanthae, Dictyosporium pandanicola, Dyfrolomyces distoseptatus, Ernakulamia tanakae, Eutypa flavovirens, E. lata, Favolus septatus, Fusarium atrovinosum, F. clavum, Helicosporium luteosporum, Hermatomyces nabanheensis, Hermatomyces sphaericoides, Longipedicellata aquatica, Lophiostoma caudata, L. clematidis-vitalbae, Lophiotrema hydei, L. neoarundinaria, Marasmiellus palmivorus, Megacapitula villosa, Micropsalliota globocystis, M. gracilis, Montagnula thailandica, Neohelicosporium irregulare, N. parisporum, Paradictyoarthrinium diffractum, Phaeoisaria aquatica, Poaceascoma taiwanense, Saproamanita manicata, Spegazzinia camelliae, Submersispora variabilis, Thyronectria caudata, T. mackenziei, Tubeufia chiangmaiensis, T. roseohelicospora, Vaginatispora nypae, Wicklowia submersa, Xanthagaricus necopinatus and Xylaria haemorrhoidalis. The data presented herein are based on morphological examination of fresh specimens, coupled with analysis of phylogenetic sequence data to better integrate taxa into appropriate taxonomic ranks and infer their evolutionary relationships.
Collapse
Affiliation(s)
- Saranyaphat Boonmee
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Dhanushka N. Wanasinghe
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan People’s Republic of China
- CIFOR-ICRAF China Program, World Agroforestry (ICRAF), Kunming, 650201 Yunnan People’s Republic of China
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Honghe County, Kunming, 654400 Yunnan People’s Republic of China
| | - Mark S. Calabon
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Naruemon Huanraluek
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Sajini K. U. Chandrasiri
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Gareth E. B. Jones
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451 Saudi Arabia
| | - Walter Rossi
- Section Environmental Sciences, Department MeSVA, University of L’Aquila, 67100 Coppito, AQ Italy
| | - Marco Leonardi
- Section Environmental Sciences, Department MeSVA, University of L’Aquila, 67100 Coppito, AQ Italy
| | - Sanjay K. Singh
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Shiwali Rana
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Paras N. Singh
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Deepak K. Maurya
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Ajay C. Lagashetti
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Deepika Choudhary
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Yu-Cheng Dai
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| | - Chang-Lin Zhao
- College of Biodiversity Conservation, Southwest Forestry University, Kunming, 650224 People’s Republic of China
| | - Yan-Hong Mu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164 People’s Republic of China
- University of the Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Hai-Sheng Yuan
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164 People’s Republic of China
| | - Shuang-Hui He
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| | - Rungtiwa Phookamsak
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan People’s Republic of China
- CIFOR-ICRAF China Program, World Agroforestry (ICRAF), Kunming, 650201 Yunnan People’s Republic of China
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Honghe County, Kunming, 654400 Yunnan People’s Republic of China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Kunming, 650201 Yunnan People’s Republic of China
| | - Hong-Bo Jiang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan People’s Republic of China
| | - María P. Martín
- Department of Mycology, Real Jardín Botánico-CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| | - Margarita Dueñas
- Department of Mycology, Real Jardín Botánico-CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| | - M. Teresa Telleria
- Department of Mycology, Real Jardín Botánico-CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| | - Izabela L. Kałucka
- Department of Algology and Mycology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Łódź, Poland
| | | | - Kare Liimatainen
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, TW9 3DS Surrey UK
| | - Diana S. Pereira
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Alan J. L. Phillips
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Nakarin Suwannarach
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Jaturong Kumla
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Surapong Khuna
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Academy of Science, The Royal Society of Thailand, 10300 Bangkok, Thailand
| | - Tarynn B. Potter
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350 Australia
| | - Roger G. Shivas
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350 Australia
- Department of Agriculture and Fisheries, Dutton Park, QLD 4102 Australia
| | - Adam H. Sparks
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350 Australia
- Department of Primary Industries and Regional Development, Bentley Delivery Centre, Locked Bag 4, Bentley, WA 6983 Australia
| | - Niloofar Vaghefi
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350 Australia
| | - Mohamed A. Abdel-Wahab
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag, 82524 Egypt
| | - Faten A. Abdel-Aziz
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag, 82524 Egypt
| | - Guo-Jie Li
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable, College of Horticulture, Hebei Agricultural University, No 2596 South Lekai Rd, Lianchi District, Baoding, 071001 Hebei China
| | - Wen-Fei Lin
- Institute of Edible and Medicinal Fungi, College of Life Science, Zhejiang University, 866 Yuhangtang Rd, Xihu District, Hangzhou, 310058 Zhejiang China
| | - Upendra Singh
- Department of Botany & Microbiology, HNB Garhwal University, Uttarakhand 246174 Srinagar, Garhwal, India
| | - Rajendra P. Bhatt
- Department of Botany & Microbiology, HNB Garhwal University, Uttarakhand 246174 Srinagar, Garhwal, India
| | - Hyang Burm Lee
- Environmental Microbiology Lab, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, 61186 Korea
| | - Thuong T. T. Nguyen
- Environmental Microbiology Lab, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, 61186 Korea
| | - Paul M. Kirk
- Biodiversity Informatics and Spatial Analysis, Royal Botanic Gardens Kew, Richmond, TW9 3DS Surrey UK
| | - Arun Kumar Dutta
- Department of Botany, West Bengal State University, North-24-Parganas, Barasat, West Bengal PIN- 700126 India
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal 700019 India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal 700019 India
| | - V. Venkateswara Sarma
- Fungal Biotechnology Laboratory, Department of Biotechnology, Pondicherry University, Kalapet, Puducherry, 605014 India
| | - M. Niranjan
- Fungal Biotechnology Laboratory, Department of Biotechnology, Pondicherry University, Kalapet, Puducherry, 605014 India
- Department of Botany, Rajiv Gandhi University, Rono Hills, Doimukh, Itanagar, Arunachal Pradesh 791112 India
| | - Kunhiraman C. Rajeshkumar
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Nikhil Ashtekar
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Sneha Lad
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Nalin N. Wijayawardene
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, 655011 Yunnan People’s Republic of China
| | - Darbe J. Bhat
- Azad Housing Society, No. 128/1-J, Goa Velha, Curca, Goa India
| | - Rong-Ju Xu
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan People’s Republic of China
| | - Subodini N. Wijesinghe
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Hong-Wei Shen
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- College of Agriculture and Biological Sciences, Dali University, Dali, 671003 People’s Republic of China
| | - Zong-Long Luo
- College of Agriculture and Biological Sciences, Dali University, Dali, 671003 People’s Republic of China
| | - Jing-Yi Zhang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003 People’s Republic of China
| | - Phongeun Sysouphanthong
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Biotechnology and Ecology Institute, Ministry of Agriculture and Forestry, P.O. Box: 811, Vientiane Capital, Lao People’s Democratic Republic
| | - Naritsada Thongklang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Dan-Feng Bao
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- College of Agriculture and Biological Sciences, Dali University, Dali, 671003 People’s Republic of China
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Janith V. S. Aluthmuhandiram
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Beijing Key Laboratory of Environment Friendly Management On Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 People’s Republic of China
| | - Jafar Abdollahzadeh
- Department of Plant Protection, Agriculture Faculty, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | - Alireza Javadi
- Department of Botany, Iranian Research Institute of Plant Protection, P.O. Box 1454, 19395 Tehran, Iran
| | | | - Muhammad Usman
- Fungal Biology and Systematics Research Laboratory, Department of Botany, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590 Pakistan
| | - Abdul Nasir Khalid
- Fungal Biology and Systematics Research Laboratory, Department of Botany, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590 Pakistan
| | - Asha J. Dissanayake
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731 People’s Republic of China
| | - Anusha Telagathoti
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Maraike Probst
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Ursula Peintner
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Isaac Garrido-Benavent
- Department of Botany and Geology (Fac. CC. Biológicas) & Institut Cavanilles de Biodiversitat I Biologia Evolutiva (ICBIBE), Universitat de València, C/ Dr. Moliner 50, Burjassot, 46100 València, Spain
| | - Lilla Bóna
- Department of Plant Physiology and Molecular Plant Biology, Eötvös Loránd University, Budapest, 1117 Hungary
| | - Zsolt Merényi
- Institute of Biochemistry, Synthetic and Systems Biology Unit, Biological Research Centre, Szeged, 6726 Hungary
| | | | - Bratek Zoltán
- Department of Plant Physiology and Molecular Plant Biology, Eötvös Loránd University, Budapest, 1117 Hungary
| | - J. Benjamin Stielow
- Centre of Expertise in Mycology of Radboud University Medical Centre/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
- Thermo Fisher Diagnostics, Specialty Diagnostics Group, Landsmeer, The Netherlands
| | - Ning Jiang
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| | - Cheng-Ming Tian
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| | - Esmaeil Shams
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Farzaneh Dehghanizadeh
- Department of Agricultural Biotechnology, College of Agriculture Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Adel Pordel
- Plant Protection Research Department, Baluchestan Agricultural and Natural Resources Research and Education Center, AREEO, Iranshahr, Iran
| | - Mohammad Javan-Nikkhah
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Teodor T. Denchev
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin St., 1113 Sofia, Bulgaria
| | - Cvetomir M. Denchev
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin St., 1113 Sofia, Bulgaria
| | - Martin Kemler
- Evolution der Pflanzen und Pilze, Ruhr-Universität Bochum, ND 03, Universitätsstraße 150, 44801 Bochum, Germany
| | - Dominik Begerow
- Evolution der Pflanzen und Pilze, Ruhr-Universität Bochum, ND 03, Universitätsstraße 150, 44801 Bochum, Germany
| | - Chun-Ying Deng
- Guizhou Institute of Biology, Guizhou Academy of Sciences, Shanxi Road No. 1, Yunyan district, 550001 Guiyang, People’s Republic of China
| | | | - Tohir Bozorov
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of Republic of Uzbekistan, Yukori-Yuz, Kubray Ds, Tashkent, Uzbekistan 111226
| | - Tutigul Kholmuradova
- Laboratory of Mycology, Institute of Botany, Academy of Sciences of Republic of Uzbekistan, 32 Durmon Yuli Street, Tashkent, Uzbekistan 100125
| | - Yusufjon Gafforov
- Laboratory of Mycology, Institute of Botany, Academy of Sciences of Republic of Uzbekistan, 32 Durmon Yuli Street, Tashkent, Uzbekistan 100125
| | - Aziz Abdurazakov
- Laboratory of Mycology, Institute of Botany, Academy of Sciences of Republic of Uzbekistan, 32 Durmon Yuli Street, Tashkent, Uzbekistan 100125
- Department of Ecology and Botany, Faculty of Natural Sciences, Andijan State University, 12 University Street, Andijan, Uzbekistan 170100
| | - Jian-Chu Xu
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan People’s Republic of China
- CIFOR-ICRAF China Program, World Agroforestry (ICRAF), Kunming, 650201 Yunnan People’s Republic of China
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Honghe County, Kunming, 654400 Yunnan People’s Republic of China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Kunming, 650201 Yunnan People’s Republic of China
| | - Peter E. Mortimer
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan People’s Republic of China
- CIFOR-ICRAF China Program, World Agroforestry (ICRAF), Kunming, 650201 Yunnan People’s Republic of China
| | - Guang-Cong Ren
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Rajesh Jeewon
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Republic of Mauritius
| | - Sajeewa S. N. Maharachchikumbura
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731 People’s Republic of China
| | - Chayanard Phukhamsakda
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118 China
| | - Ausana Mapook
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan People’s Republic of China
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Innovative Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Haizhu District, Guangzhou, 510225 People’s Republic of China
| |
Collapse
|
27
|
Carvalho Reis AP, Valério Silva Moreira D, Barbaro Del Negro GM, Charlys da Costa A, Benard G, Teixeira Sousa MG, Veasey JV. A case of cutaneous phaeohyphomycosis caused by Biatriospora mackinnonii. Med Mycol Case Rep 2021; 34:32-34. [PMID: 34745853 PMCID: PMC8556491 DOI: 10.1016/j.mmcr.2021.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/27/2021] [Accepted: 10/11/2021] [Indexed: 11/07/2022] Open
Abstract
Phaeohyphomycosis is a fungal infection common in immunocompromised patients such as those with hematologic malignancies, transplant recipients or under prolonged corticosteroid use. Here we describe a rare case of phaeohyphomycosis due to Biatriospora mackinnonii in a kidney transplant patient. We confirmed B. mackinnonii identity by sequencing of the internal transcribed spaces (ITS) region of ribosomal DNA (rDNA) and achieved a satisfactory therapeutic response with itraconazole administration.
Collapse
Affiliation(s)
- Ana Paula Carvalho Reis
- Universidade de São Paulo, Instituto de Medicina Tropical, Laboratório de Micologia Médica, São Paulo, São Paulo, Brazil.,Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Divisão de Clínica Dermatológica, Laboratório de Investigação Médica LIM 53, São Paulo, São Paulo, Brazil
| | - Daniel Valério Silva Moreira
- Universidade de São Paulo, Instituto de Medicina Tropical, Laboratório de Micologia Médica, São Paulo, São Paulo, Brazil.,Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Divisão de Clínica Dermatológica, Laboratório de Investigação Médica LIM 53, São Paulo, São Paulo, Brazil
| | - Gilda Maria Barbaro Del Negro
- Universidade de São Paulo, Instituto de Medicina Tropical, Laboratório de Micologia Médica, São Paulo, São Paulo, Brazil.,Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Divisão de Clínica Dermatológica, Laboratório de Investigação Médica LIM 53, São Paulo, São Paulo, Brazil
| | - Antonio Charlys da Costa
- Universidade de São Paulo, Instituto de Medicina Tropical, Laboratório de Micologia Médica, São Paulo, São Paulo, Brazil
| | - Gil Benard
- Universidade de São Paulo, Instituto de Medicina Tropical, Laboratório de Micologia Médica, São Paulo, São Paulo, Brazil.,Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Divisão de Clínica Dermatológica, Laboratório de Investigação Médica LIM 53, São Paulo, São Paulo, Brazil
| | - Maria Gloria Teixeira Sousa
- Universidade de São Paulo, Instituto de Medicina Tropical, Laboratório de Micologia Médica, São Paulo, São Paulo, Brazil.,Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Divisão de Clínica Dermatológica, Laboratório de Investigação Médica LIM 53, São Paulo, São Paulo, Brazil
| | | |
Collapse
|
28
|
Vu S, Belaube N, Canestri A, Develoux M, Moreno A, Fourniols E, Lê MP, Lassel L, Pialoux G, Calin R. A case of tuberculosis and black-grain eumycetoma co-infection in a non-endemic country: clinical presentation and therapeutic management. Int J Infect Dis 2021; 112:186-188. [PMID: 34547485 DOI: 10.1016/j.ijid.2021.09.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022] Open
Abstract
We report a case of black-grain eumycetoma co-localized with Mycobacterium tuberculosis infection, presenting as a painless leg abscess and associated with vertebral tuberculosis. The rare association of these two pathogens raises several challenges regarding foreseeable drug interactions, side effects, the most appropriate management, and the potential link between these two diseases.
Collapse
Affiliation(s)
- Sonia Vu
- AP-HP, Infectious Diseases Department, Tenon Hospital, Sorbonne Université, Paris, France
| | - Nicolas Belaube
- AP-HP, Infectious Diseases Department, Tenon Hospital, Sorbonne Université, Paris, France
| | - Ana Canestri
- AP-HP, Infectious Diseases Department, Tenon Hospital, Sorbonne Université, Paris, France
| | - Michel Develoux
- AP-HP, Infectious Diseases Department, Tenon Hospital, Sorbonne Université, Paris, France
| | - Alicia Moreno
- AP-HP, Mycology Department, Saint-Antoine Hospital, Sorbonne Université, Paris, France
| | - Eric Fourniols
- AP-HP, Orthopaedic Surgery Department, Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France
| | - Minh Patrick Lê
- AP-HP, Pharmacology and Toxicology Laboratory, Paris, France; INSERM UMR-S 1144, Université de Paris, Paris, France
| | - Ludovic Lassel
- AP-HP, Infectious Diseases Department, Tenon Hospital, Sorbonne Université, Paris, France
| | - Gilles Pialoux
- AP-HP, Infectious Diseases Department, Tenon Hospital, Sorbonne Université, Paris, France
| | - Ruxandra Calin
- AP-HP, Infectious Diseases Department, Tenon Hospital, Sorbonne Université, Paris, France.
| |
Collapse
|
29
|
A Case of Trauma-Induced Falciformispora lignatilis Eumycetoma in a Renal Transplant Recipient. Trop Med Infect Dis 2021; 6:tropicalmed6030144. [PMID: 34449744 PMCID: PMC8396353 DOI: 10.3390/tropicalmed6030144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 11/27/2022] Open
Abstract
Mycetoma is a chronic, granulomatous, subcutaneous infection caused by several species of fungi and soil-inhabiting bacteria, and is divided into eumycetoma and actinomycetoma, respectively. Endemicity is described with worldwide distribution within the “mycetoma belt”; however, the global burden is ill-defined. Mycetoma is rare in Australia, with only a few published case reports. Over time, the breadth of eumycetoma pathogens has expanded with local epidemiology accounting for variations in regional prevalence. Direct inoculation of pathogens typically heralds the triad of subcutaneous mass, sinus formation and discharging grains. We describe a case of eumycetoma in a 48-year-old male Filipino renal transplant recipient who presented with a painless slow-growing elbow lesion. Ultrasonography revealed two ovoid masses and surgical excision ensued. Histopathology revealed necrotising granulomata with numerous chestnut-brown thick-walled cells, septate hyphae, and occasional grains. On suspicion of localised chromoblastomycosis, the isolate was sent to a reference laboratory which identified the fungus as Falciformispora lignatilis, an organism not hitherto associated with human infection. Amongst the solid organ transplant cohort, similar atypical presentations have been described. Clinicians need to consider eumycetoma where an epidemiological link with the tropics exists, especially in atypical presentations in transplant recipients, including absent preceding trauma.
Collapse
|
30
|
Niclosamide Is Active In Vitro against Mycetoma Pathogens. Molecules 2021; 26:molecules26134005. [PMID: 34209118 PMCID: PMC8271592 DOI: 10.3390/molecules26134005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 11/16/2022] Open
Abstract
Redox-active drugs are the mainstay of parasite chemotherapy. To assess their repurposing potential for eumycetoma, we have tested a set of nitroheterocycles and peroxides in vitro against two isolates of Madurella mycetomatis, the main causative agent of eumycetoma in Sudan. All the tested compounds were inactive except for niclosamide, which had minimal inhibitory concentrations of around 1 µg/mL. Further tests with niclosamide and niclosamide ethanolamine demonstrated in vitro activity not only against M. mycetomatis but also against Actinomadura spp., causative agents of actinomycetoma, with minimal inhibitory concentrations below 1 µg/mL. The experimental compound MMV665807, a related salicylanilide without a nitro group, was as active as niclosamide, indicating that the antimycetomal action of niclosamide is independent of its redox chemistry (which is in agreement with the complete lack of activity in all other nitroheterocyclic drugs tested). Based on these results, we propose to further evaluate the salicylanilides, niclosamidein particular, as drug repurposing candidates for mycetoma.
Collapse
|
31
|
Lim W, Parel F, de Hoog S, Verbon A, van de Sande WWJ. Melanin production in coelomycetous agents of black grain eumycetoma. Trans R Soc Trop Med Hyg 2021; 115:324-327. [PMID: 33463687 PMCID: PMC8046406 DOI: 10.1093/trstmh/traa168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/30/2020] [Accepted: 01/14/2021] [Indexed: 11/18/2022] Open
Abstract
Background Eumycetoma is a fungal infection characterised by the formation of black grains by causative agents. The melanin biosynthetic pathways used by the most common causative agents of black-grain mycetoma are unknown and unravelling them could identify potential new therapeutic targets. Method Melanin biosynthetic pathways in the causative fungi were identified by the use of specific melanin inhibitors. Results In Trematosphaeria grisea and Falciformispora tompkinsii, 1,8-dihydroxynaphthalene (DHN)-melanin synthesis was inhibited, while DHN-, 3,4-dihydroxyphenylalanine (DOPA)- and pyo-melanin were inhibited in Medicopsis romeroi and Falciformispora senegalensis. Conclusion Our data suggest that Me. romeroi and F. senegalensis synthesise DHN-, DOPA- and pyo-melanin, while T. grisea and F. tompkinsii only synthesise DHN-melanin.
Collapse
Affiliation(s)
- Wilson Lim
- Erasmus MC , University Medical Center Rotterdam, Department of Microbiology and Infectious Diseases, Rotterdam, the Netherlands
| | - Florianne Parel
- Erasmus MC , University Medical Center Rotterdam, Department of Microbiology and Infectious Diseases, Rotterdam, the Netherlands
| | - Sybren de Hoog
- Center of Expertise in Mycology of Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, the Netherlands
| | - Annelies Verbon
- Erasmus MC , University Medical Center Rotterdam, Department of Microbiology and Infectious Diseases, Rotterdam, the Netherlands
| | - Wendy W J van de Sande
- Erasmus MC , University Medical Center Rotterdam, Department of Microbiology and Infectious Diseases, Rotterdam, the Netherlands
| |
Collapse
|
32
|
Vitale RG, Giudicessi SL, Romero SM, Al-Hatmi AMS, Li Q, de Hoog GS. Recent developments in less known and multi-resistant fungal opportunists. Crit Rev Microbiol 2021; 47:762-780. [PMID: 34096817 DOI: 10.1080/1040841x.2021.1927978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Fungal infections have increased in recent years due to host factors, such as oncohaematological and transplant-related disorders, immunosuppressive therapy, and AIDS. Additionally, molecular and proteomic facilities have become available to identify previously unrecognizable opportunists. For these reasons, reports on less-known and recalcitrant mycoses, such as those caused by black fungi, hyaline filamentous fungi, coelomycetes, Mucorales, and non-Candida yeasts have emerged. In this review, novel taxonomy in these groups, which often are multi-resistant to one or several classes of antifungals, is discussed. Clinical presentations, diagnosis and current treatment of some major groups are summarised.
Collapse
Affiliation(s)
- Roxana G Vitale
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina.,Unidad de Parasitología, Sector Micología, Hospital J. M. Ramos Mejía, Buenos Aires, Argentina
| | - Silvana L Giudicessi
- Facultad de Farmacia y Bioquímica, Cátedra de Biotecnología, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Nanobiotecnología (NANOBIOTEC), UBA-CONICET, Buenos Aires, Argentina
| | - Stella M Romero
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina.,Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET, FCEFyN, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Abdullah M S Al-Hatmi
- Center of Expertise in Mycology of Radboud, University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands.,Natural & Medical Science Research Center, University of Nizwa, Nizwa, Omán
| | - Qirui Li
- Department of Pharmacy, Guiyang Medical University, Guiyang, PR China
| | - G Sybren de Hoog
- Center of Expertise in Mycology of Radboud, University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands.,Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, PR China.,Department of Medical Microbiology, People's Hospital of Suzhou, National New & Hi-Tech Industrial Development Zone, Suzhou, PR China
| |
Collapse
|
33
|
Pintye A, Knapp DG. Two pleosporalean root-colonizing fungi, Fuscosphaeria hungarica gen. et sp. nov. and Delitschia chaetomioides, from a semiarid grassland in Hungary. Mycol Prog 2021. [DOI: 10.1007/s11557-020-01655-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractIn this study, we investigated two unidentified lineages of root-colonizing fungi belonging to the order Pleosporales (Dothideomycetes), which were isolated from Festuca vaginata (Poaceae), a dominant grass species in the semiarid sandy grasslands of Hungary. For molecular phylogenetic studies, seven loci (internal transcribed spacer, partial large subunit and small subunit region of nrRNA, partial transcription elongation factor 1-α, RNA polymerase II largest subunit, RNA polymerase II second largest subunit, and ß-tubulin genes) were amplified and sequenced. Based on morphology and multilocus phylogenetic analyses, we found that one lineage belonged to Delitschia chaetomioides P. Karst. (Delitschiaceae), and the isolates of the other lineage represented a novel monotypic genus in the family Trematosphaeriaceae (suborder Massarineae). For this lineage, we proposed a new genus, Fuscosphaeria, represented by a single species, F. hungarica. In both lineages, only immature and degenerated sporocarps could be induced. These were sterile, black, globose, or depressed globose structures with numerous mycelioid appendages submerged in culture media or on the surface of autoclaved plant materials. Both species are first reported here as root-colonizing fungi.
Collapse
|
34
|
Yu YH, Sun PL, Lee CH, Su CJ, Tseng HC. Deep cutaneous fungal infection by Pleosporales: An exceptional pathogen in tropical Taiwan. J Dermatol 2020; 48:413-417. [PMID: 33314276 DOI: 10.1111/1346-8138.15698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 10/23/2020] [Indexed: 11/30/2022]
Abstract
Deep cutaneous fungal infections (DCFI) are cutaneous and subcutaneous infectious diseases caused by fungi. Multiple genera of pathogenic fungi have been reported to cause DCFI. Herein, we report three rare cases of Pleosporales deep cutaneous infection in a southern Taiwan medical center. We evaluated the clinical manifestations, histopathological findings, pathogens, treatments and outcomes. The patients were a 77-year-old woman, a 78-year-old woman and an 81-year-old man, who lived in rural tropical areas. The lesions were erythematous noduloplaques with dark spots located on the upper extremities. Sequence-based identification showed three different fungi of the order Pleosporales, namely Nigrograna mackinnonii, Medicopsis romeroi and Parathyridaria percutanea. All three cases received 200 mg of oral itraconazole daily for 10, 2 and 8 months, respectively. Two of them are free of diseases to date, and one improved partially but did not complete the treatment. Molecular tools are helpful for the identification of DCFI to exact species, which is key to successful treatment.
Collapse
Affiliation(s)
- Yi-Hsiang Yu
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pei-Lun Sun
- Department of Dermatology and Research Laboratory of Medical Mycology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University Taoyuan, Taoyuan, Taiwan
| | - Chih-Hung Lee
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chia-Jui Su
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Han-Chi Tseng
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
35
|
Botryotrichum iranicum sp. nov. and Trematosphaeria magenta sp. nov. as two new species from Iran. Mycol Prog 2020. [DOI: 10.1007/s11557-020-01648-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
36
|
Do mangrove habitats serve as a reservoir for Medicopsis romeroi, a clinically important fungus. Mycol Prog 2020. [DOI: 10.1007/s11557-020-01623-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
37
|
Zhang JF, Liu JK(J, Thambugala KM, Yang J, Meng ZH, Liu ZY. Two new species and a new record of Nigrograna (Nigrogranaceae, Pleosporales) from China and Thailand. Mycol Prog 2020. [DOI: 10.1007/s11557-020-01633-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Tülek A, Karataş E, Çakar MM, Aydın D, Yılmazcan Ö, Binay B. Optimisation of the Production and Bleaching Process for a New Laccase from Madurella mycetomatis, Expressed in Pichia pastoris: from Secretion to Yielding Prominent. Mol Biotechnol 2020; 63:24-39. [PMID: 33058020 DOI: 10.1007/s12033-020-00281-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2020] [Indexed: 01/06/2023]
Abstract
Laccases are polyphenol oxidoreductases used in a number of industrial applications. Due to the increasing demand for these "green catalysis" enzymes, the identification and biochemical characterisation of their novel properties is essential. In our study, cloned Madurella mycetomatis laccase (mmlac) genes were heterologously expressed in the methylotrophic yeast host Pichia pastoris. The high yield of the active recombinant protein in P. pastoris demonstrates the efficiency of a reliably constructed plasmid to express the laccase gene. The optimal biochemical conditions for the successfully expressed MmLac enzyme were identified. Detailed structural properties of the recombinant laccase were determined, and its utility in decolourisation and textile bleaching applications was examined. MmLac demonstrates good activity in an acidic pH range (4.0-6.0); is stable in the presence of cationic metals, organic solvents and under high temperatures (50-60 °C); and is stable for long-term storage at - 20 °C and - 80 °C for up to eight weeks. The structural analysis revealed that the catalytic residues are partially similar to other laccases. MmLac resulted in an increase in whiteness, whilst demonstrating high efficiency and stability and requiring the input of fewer chemicals. The performance of this enzyme makes it worthy of investigation for use in textile biotechnology applications, as well as within environmental and food technologies.
Collapse
Affiliation(s)
- Ahmet Tülek
- Department of Molecular Biology and Genetics, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| | - Ersin Karataş
- Department of Molecular Biology and Genetics, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| | - Mehmet Mervan Çakar
- Department of Molecular Biology and Genetics, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| | - Derya Aydın
- Ak-Kim Kimya San. Ve Tic. A.S., 77600, Çiftlikköy, Yalova, Turkey
| | - Özlem Yılmazcan
- Ak-Kim Kimya San. Ve Tic. A.S., 77600, Çiftlikköy, Yalova, Turkey
| | - Barış Binay
- Department of Bioengineering, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey.
| |
Collapse
|
39
|
Nyuykonge B, Klaassen C, Zandijk W, de Hoog G, Ahmed S, Desnos‐Ollivier M, Verbon A, Bonifaz A, van de Sande W. Diagnostic implications of mycetoma derived from Madurella pseudomycetomatis isolates from Mexico. J Eur Acad Dermatol Venereol 2020; 34:1828-1834. [PMID: 32233084 PMCID: PMC7497165 DOI: 10.1111/jdv.16402] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/10/2020] [Indexed: 01/21/2023]
Abstract
BACKGROUND At the dermatology service of the General Hospital of Mexico City, Mexico, two patients, father and son, with black-grain mycetoma were seen. The grains were isolated, and the cultured fungi were identified as Madurella mycetomatis based on morphology. Using the M. mycetomatis specific PCR, amplicons of a different size than that of the M. mycetomatis type strain were obtained. OBJECTIVE To determine the causative agent of the two black-grain mycetoma cases and develop non-culture-based diagnostic tools to identify them to the species level. METHODS The M. mycetomatis specific, the internal transcribed spacer (ITS) region, β-tubulin (BT) and ribosomal binding protein 2 (RBP2) PCRs were used to confirm the identity of the isolates. Genetic variation was established by amplification fragment length polymorphisms. To determine the antifungal susceptibility profile, the Sensititre™ YeastOne™ assay was used. To develop a species-specific PCR primers were designed on the sequenced PCR amplicon from the M. mycetomatis specific PCR. RESULTS By analyzing the ITS, BT and RBP2 regions the isolates were identified as Madurella pseudomycetomatis. The isolates from father and son were similar but not identical to M. pseudomycetomatis from Venezuela and one from an unknown origin. Madurella pseudomycetomatis isolates were inhibited by itraconazole, posaconazole and voriconazole but showed increased MIC values for amphotericin B and fluconazole. They were not inhibited by the echinocandins and five flucytosine. The two patients were treated with itraconazole resulting in cure for the father while the son was lost to follow-up. The species-specific PCR developed for M. pseudomyceotmatis was discriminative and specific. CONCLUSION Madurella pseudomycetomatis is genetically diverse with same susceptibility profile as M. mycetomatis and causes eumycetoma in Latin America. The M. pseudomycetomatis specific PCR can be used to identify this causative agent to the species level; however, this needs to be validated in an endemic setting.
Collapse
Affiliation(s)
- B. Nyuykonge
- Department of Medical Microbiology and Infectious DiseasesErasmus MC University Medical Center RotterdamRotterdamThe Netherlands
| | - C.H.W. Klaassen
- Department of Medical Microbiology and Infectious DiseasesErasmus MC University Medical Center RotterdamRotterdamThe Netherlands
| | - W.H.A. Zandijk
- Department of Medical Microbiology and Infectious DiseasesErasmus MC University Medical Center RotterdamRotterdamThe Netherlands
| | - G.S. de Hoog
- Westerdijk Fungal Biodiversity InstituteUtrechtThe Netherlands
| | - S.A. Ahmed
- Westerdijk Fungal Biodiversity InstituteUtrechtThe Netherlands
- Faculty of Medical Laboratory SciencesUniversity of KhartoumKhartoumSudan
| | - M. Desnos‐Ollivier
- Molecular Mycology UnitCNRS UMR 2000National Reference Center for Invasive Mycoses & AntifungalsInstitut PasteurParisFrance
| | - A. Verbon
- Department of Medical Microbiology and Infectious DiseasesErasmus MC University Medical Center RotterdamRotterdamThe Netherlands
| | - A. Bonifaz
- Hospital General de México Dr Eduardo LiceagaMexico CityMexico
| | - W.W.J. van de Sande
- Department of Medical Microbiology and Infectious DiseasesErasmus MC University Medical Center RotterdamRotterdamThe Netherlands
| |
Collapse
|
40
|
Ahmed EA, Nour BYM, Abakar AD, Hamid S, Mohamadani AA, Daffalla M, Mahmoud M, Altayb HN, Desnos-Ollivier M, de Hoog S, Ahmed SA. The genus Madurella: Molecular identification and epidemiology in Sudan. PLoS Negl Trop Dis 2020; 14:e0008420. [PMID: 32730340 PMCID: PMC7419006 DOI: 10.1371/journal.pntd.0008420] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 08/11/2020] [Accepted: 05/23/2020] [Indexed: 11/21/2022] Open
Abstract
Eumycetoma (mycotic mycetoma) is the fungal form of mycetoma, a subcutaneous infection occurring in individuals living in endemic areas of the disease. The Sudan is hyperendemic for mycetoma, with the highest incidence being reported from Gezira State, Central Sudan. The present study was conducted at the Gezira Mycetoma Center and aimed to determine the cause of black-grain eumycetoma in the state and describe its epidemiology. Black-grain specimens were collected during the surgical operation and direct detection of the causative agent was performed using M. mycetomatis species-specific PCR and ITS PCR followed by sequencing. Black-grain was reported from 93.3% of all confirmed mycetoma cases (n = 111/119), with a prevalence in young males. Of the 91 samples subjected to direct PCR, 90.1% (n = 82) gave positive results. The predominant species (88.2%) was Madurella mycetomatis. One sample was identified as M. fahalii, one as M. tropicana, and one matched the phytopathogenic species Sphaerulina rhododendricola. The highest endemic zones were Southern Gezira (76.6%) and Northern Sinnar (23.4%). The study confirmed that direct molecular detection on grains provides rapid and specific diagnosis of agents of eumycetoma. Eumycetoma is a neglected fungal disease endemic in Africa, India, and Latin America. Black-grain eumycetoma is the most common type in Africa and is mainly caused by Madurella spp. The Sudan, and in particular Gezira State, central Sudan is hyperendemic for black-grain eumycetoma. Patients with this type of mycetoma are treated with surgery in combination with antifungal therapy. In this study, we collected surgical biopsies from patients attending Gezira Mycetoma Center to directly identify the etiology of black-grain eumycetoma in this state. We also studied the epidemiology of the disease based on the demography of the patients’ population. Our result showed that the highest endemic regions were Southern Gezira (76.6%) and Northern Sinnar (23.4%). By applying direct PCR and sequencing we confirmed that the most common etiology of the disease is Madurella mycetomatis (88.2%). In addition, we found one case of M. fahalii and the first Sudanese case of M. tropicana and Sphaerulina rhododendricola.
Collapse
Affiliation(s)
- Elhadi A. Ahmed
- Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, University of Gezira, Sudan
- * E-mail:
| | - Bakri Y. M. Nour
- Blue Nile National Institute for Communicable Diseases (BNNICD), University of Gezira, Sudan
| | - Adam D. Abakar
- Department of Medical Parasitology, Faculty of Medical Laboratory Sciences, University of Gezira, Sudan
| | - Samirah Hamid
- Blue Nile National Institute for Communicable Diseases (BNNICD), University of Gezira, Sudan
| | | | - Mohamed Daffalla
- Department of Surgery, Faculty of Medicine, University of Gezira, Sudan
| | - Mogahid Mahmoud
- Department of Surgery, Faculty of Medicine, University of Gezira, Sudan
| | - Hisham N. Altayb
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Saudi Arabia
| | - Marie Desnos-Ollivier
- Institut Pasteur, Molecular Mycology Unit, National Reference Center for Invasive Mycoses and Antifungals, Paris, France
| | - Sybren de Hoog
- Foundation Atlas of Clinical Fungi, Hilversum, The Netherlands
- Center of Expertise in Mycology of Radboud University Medical Center / Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Sarah A. Ahmed
- Foundation Atlas of Clinical Fungi, Hilversum, The Netherlands
- Center of Expertise in Mycology of Radboud University Medical Center / Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
- Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan
| |
Collapse
|
41
|
Lücking R, Aime MC, Robbertse B, Miller AN, Ariyawansa HA, Aoki T, Cardinali G, Crous PW, Druzhinina IS, Geiser DM, Hawksworth DL, Hyde KD, Irinyi L, Jeewon R, Johnston PR, Kirk PM, Malosso E, May TW, Meyer W, Öpik M, Robert V, Stadler M, Thines M, Vu D, Yurkov AM, Zhang N, Schoch CL. Unambiguous identification of fungi: where do we stand and how accurate and precise is fungal DNA barcoding? IMA Fungus 2020; 11:14. [PMID: 32714773 PMCID: PMC7353689 DOI: 10.1186/s43008-020-00033-z] [Citation(s) in RCA: 226] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
True fungi (Fungi) and fungus-like organisms (e.g. Mycetozoa, Oomycota) constitute the second largest group of organisms based on global richness estimates, with around 3 million predicted species. Compared to plants and animals, fungi have simple body plans with often morphologically and ecologically obscure structures. This poses challenges for accurate and precise identifications. Here we provide a conceptual framework for the identification of fungi, encouraging the approach of integrative (polyphasic) taxonomy for species delimitation, i.e. the combination of genealogy (phylogeny), phenotype (including autecology), and reproductive biology (when feasible). This allows objective evaluation of diagnostic characters, either phenotypic or molecular or both. Verification of identifications is crucial but often neglected. Because of clade-specific evolutionary histories, there is currently no single tool for the identification of fungi, although DNA barcoding using the internal transcribed spacer (ITS) remains a first diagnosis, particularly in metabarcoding studies. Secondary DNA barcodes are increasingly implemented for groups where ITS does not provide sufficient precision. Issues of pairwise sequence similarity-based identifications and OTU clustering are discussed, and multiple sequence alignment-based phylogenetic approaches with subsequent verification are recommended as more accurate alternatives. In metabarcoding approaches, the trade-off between speed and accuracy and precision of molecular identifications must be carefully considered. Intragenomic variation of the ITS and other barcoding markers should be properly documented, as phylotype diversity is not necessarily a proxy of species richness. Important strategies to improve molecular identification of fungi are: (1) broadly document intraspecific and intragenomic variation of barcoding markers; (2) substantially expand sequence repositories, focusing on undersampled clades and missing taxa; (3) improve curation of sequence labels in primary repositories and substantially increase the number of sequences based on verified material; (4) link sequence data to digital information of voucher specimens including imagery. In parallel, technological improvements to genome sequencing offer promising alternatives to DNA barcoding in the future. Despite the prevalence of DNA-based fungal taxonomy, phenotype-based approaches remain an important strategy to catalog the global diversity of fungi and establish initial species hypotheses.
Collapse
Affiliation(s)
- Robert Lücking
- Botanischer Garten und Botanisches Museum, Freie Universität Berlin, Königin-Luise-Straße 6–8, 14195 Berlin, Germany
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
| | - M. Catherine Aime
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907 USA
| | - Barbara Robbertse
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20892 USA
| | - Andrew N. Miller
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Illinois Natural History Survey, University of Illinois, 1816 South Oak Street, Champaign, IL 61820-6970 USA
| | - Hiran A. Ariyawansa
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Department of Plant Pathology and Microbiology, College of Bio-Resources and Agriculture, National Taiwan University, Taipe City, Taiwan
| | - Takayuki Aoki
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- National Agriculture and Food Research Organization, Genetic Resources Center, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602 Japan
| | - Gianluigi Cardinali
- Department Pharmaceutical Sciences, University of Perugia, Via Borgo 20 Giugno, 74, Perugia, Italy
| | - Pedro W. Crous
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Irina S. Druzhinina
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Microbiology and Applied Genomics Group, Research Area Biochemical Technology, Institute of Chemical, Environmental & Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - David M. Geiser
- Department of Plant Pathology & Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802 USA
| | - David L. Hawksworth
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD UK
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Surrey, TW9 3DS UK
- Geography and Environment, University of Southampton, Southampton, SO17 1BJ UK
- Jilin Agricultural University, Changchun, 130118 Jilin Province China
| | - Kevin D. Hyde
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- World Agroforestry Centre, East and Central Asia, Kunming, 650201 Yunnan China
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Rai, 50150 Thailand
| | - Laszlo Irinyi
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Hospital (Research and Education Network), Westmead Institute for Medical Research, Sydney, NSW Australia
| | - Rajesh Jeewon
- Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius
| | - Peter R. Johnston
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Manaaki Whenua – Landcare Research, Private Bag 92170, Auckland, 1142 New Zealand
| | | | - Elaine Malosso
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Universidade Federal de Pernambuco, Centro de Biociências, Departamento de Micologia, Laboratório de Hifomicetos de Folhedo, Avenida da Engenharia, s/n Cidade Universitária, Recife, PE 50.740-600 Brazil
| | - Tom W. May
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Royal Botanic Gardens Victoria, Birdwood Avenue, Melbourne, Victoria 3004 Australia
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Hospital (Research and Education Network), Westmead Institute for Medical Research, Sydney, NSW Australia
| | - Maarja Öpik
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- University of Tartu, 40 Lai Street, 51 005 Tartu, Estonia
| | - Vincent Robert
- Department Pharmaceutical Sciences, University of Perugia, Via Borgo 20 Giugno, 74, Perugia, Italy
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Marc Stadler
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Department Microbial Drugs, Helmholtz Centre for Infection Research, and German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Marco Thines
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Institute of Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Straße 9, 60439 Frankfurt (Main); Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt (Main), Germany
| | - Duong Vu
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Andrey M. Yurkov
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Ning Zhang
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901 USA
| | - Conrad L. Schoch
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20892 USA
| |
Collapse
|
42
|
Mercier V, Bastides F, Bailly É, Garcia-Hermoso D, Miquelestorena-Standley E, El Baz Z, Marteau E, Vermes E, De Muret A, Bernard L, Desoubeaux G. Successful Terbinafine Treatment for Cutaneous Phaeohyphomycosis Caused by Trematosphaeria grisea in a Heart Transplanted Man: Case Report and Literature Review. Mycopathologia 2020; 185:709-716. [PMID: 32562177 DOI: 10.1007/s11046-020-00467-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/06/2020] [Indexed: 01/19/2023]
Abstract
Phaeohyphomycosis is a chronic infectious disease caused by dematiaceous fungi. It is characterized by the presence of pigmented septate mycelia within tissues. In the case of superficial infection, the lesion(s) chronically evolve(s) toward painless pseudo-tumor(s) of the soft parts. We report herein the original case of a heart transplanted man who exhibited phaeohyphomycosis of the left hand, with no mention of travels in endemic areas. Trematosphaeria grisea was identified as the causative agent, which is quite innovative since this species has been rather described in mycetoma. The antifungal treatment initially based on isavuconazole alone was not sufficient to cure the patient. In contrast, its association with local terbinafine ointment allowed total clinical improvement. This finding is unusual as diagnosis of phaeohyphomycosis caused by T. grisea is uncommon in nontropical countries, and as the outcome appeared successful by the means of add-on therapeutic strategy with terbinafine.
Collapse
Affiliation(s)
- Victor Mercier
- Parasitologie - Mycologie et Médecine Tropicale, Hôpital Bretonneau, CHU de Tours, 2 Boulevard Tonnellé, 37044, Tours, France.
| | - Frédéric Bastides
- Médecine Interne Et Maladies Infectieuses, CHU de Tours, Tours, France
| | - Éric Bailly
- Parasitologie - Mycologie et Médecine Tropicale, Hôpital Bretonneau, CHU de Tours, 2 Boulevard Tonnellé, 37044, Tours, France
| | - Dea Garcia-Hermoso
- CNRS, National Reference Center for Invasive Mycoses and Antifungals (NRCMA), Molecular Mycology Unit, UMR2000, Institut Pasteur, Paris, France
| | | | - Zaki El Baz
- Radiologie, CHU de Tours, Chambray-les-Tours, France
| | - Emilie Marteau
- Chirurgie orthopédique Et Traumatologie, CHU de Tours, Chambray-les-Tours, France
| | | | - Anne De Muret
- Anatomie Et Cytologie Pathologiques, CHU de Tours, Chambray-les-Tours, France
| | - Louis Bernard
- Médecine Interne Et Maladies Infectieuses, CHU de Tours, Tours, France
| | - Guillaume Desoubeaux
- Parasitologie - Mycologie et Médecine Tropicale, Hôpital Bretonneau, CHU de Tours, 2 Boulevard Tonnellé, 37044, Tours, France
| |
Collapse
|
43
|
Valenzuela-Lopez N, Cano-Lira JF, Stchigel AM, Rivero-Menendez O, Alastruey-Izquierdo A, Guarro J. Neocucurbitaria keratinophila: An emerging opportunistic fungus causing superficial mycosis in Spain. Med Mycol 2020; 57:733-738. [PMID: 30496507 DOI: 10.1093/mmy/myy132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/30/2018] [Accepted: 11/07/2018] [Indexed: 12/12/2022] Open
Abstract
Although there have been few reports of opportunistic infections (superficial and systemic) caused by coelomycetous fungi, they are becoming more frequent. Neocucurbitaria keratinophila (formerly Pyrenochaeta keratinophila), characterized by producing pycnidial conidiomata and small hyaline conidia, seems to be an emergent opportunistic pathogen in Spain. Since this fungus was first reported from human keratitis, eight strains have been isolates from clinical cases in Spain. This is a retrospective study of these fungal strains, including phenotypic and molecular characterizations, and in vitro antifungal susceptibility assays. These clinical strains were identified by sequencing four phylogenetic markers such as the internal transcribed spacer region (ITS1-5.8S-ITS2) and fragments of the 28S nrRNA (LSU), beta-tubulin (tub2), and RNA polymerase II subunit 2 (rpb2) genes, and by morphological characterization. All the strains tested were susceptible to the majority of antifungals, being isavuconazole the only drug that showed a poor antifungal activity.
Collapse
Affiliation(s)
- Nicomedes Valenzuela-Lopez
- Mycology Unit, Medical School and IISPV, University Rovira i Virgili, C/ Sant Llorenç 21, 43201 Reus, Spain.,Unidad de Microbiología, Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Chile
| | - José F Cano-Lira
- Mycology Unit, Medical School and IISPV, University Rovira i Virgili, C/ Sant Llorenç 21, 43201 Reus, Spain
| | - Alberto M Stchigel
- Mycology Unit, Medical School and IISPV, University Rovira i Virgili, C/ Sant Llorenç 21, 43201 Reus, Spain
| | - Olga Rivero-Menendez
- Mycology Reference Laboratory, Spanish National Center for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, Spanish National Center for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Josep Guarro
- Mycology Unit, Medical School and IISPV, University Rovira i Virgili, C/ Sant Llorenç 21, 43201 Reus, Spain
| |
Collapse
|
44
|
Mapook A, Hyde KD, McKenzie EHC, Jones EBG, Bhat DJ, Jeewon R, Stadler M, Samarakoon MC, Malaithong M, Tanunchai B, Buscot F, Wubet T, Purahong W. Taxonomic and phylogenetic contributions to fungi associated with the invasive weed Chromolaena odorata (Siam weed). FUNGAL DIVERS 2020. [DOI: 10.1007/s13225-020-00444-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
Sow D, Ndiaye M, Sarr L, Kanté MD, Ly F, Dioussé P, Faye BT, Gaye AM, Sokhna C, Ranque S, Faye B. Mycetoma epidemiology, diagnosis management, and outcome in three hospital centres in Senegal from 2008 to 2018. PLoS One 2020; 15:e0231871. [PMID: 32330155 PMCID: PMC7182189 DOI: 10.1371/journal.pone.0231871] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 03/29/2020] [Indexed: 02/04/2023] Open
Abstract
Mycetoma is a neglected tropical disease caused by various actinomycetes or fungi. The disease is characterized by the formation of tumor like-swellings and grains. Senegal is an endemic country where mycetoma cases are under-or misdiagnosed due to the lack of capacities and knowledge among health workers and the community; and where the management of eumycetoma, burdened by a high amputation rate, is currently inadequate. This study aimed to update data on the epidemiology of mycetoma cases diagnosed in three hospital centres in Senegal over a 10 years-period. A total of 193 patients, diagnosed from 2008 to 2018, were included in the study. The most frequent presentation was eumycetoma (47.2%); followed by actinomycetoma (36.8%); it remained undetermined in 16.1% of the patients. The mean age was 38.3 years (68.4% of the patients were between 15 and 45 years-old); the male: female ratio was a 2.94; and most were farmers. One hundred fifty-six (80.8%) patients had used phytotherapy before attending the hospital. Mycetoma was mainly located to the lower limbs (91.2%). Grains were observed in 85% of the patients; including white (25.6%) and yellow (4.3%) grains. The etiological diagnosis was complex, resulting in negative direct microscopy, culture and/or histopathology findings, which explains that 16.1% remained uncharacterized. In most of cases, actinomycetoma were treated with a combination of cotrimoxazole, amoxicillin/clavulanic acid, and streptomycin; whereas eumycetoma cases were treated with terbinafine. The surgery was done in 100 (51.8%) of the patients including 9 in actinomycetoma, 78 in eumycetoma and 13 in undetermined form. The high number of uncharacterized mycetoma in this study, the delay in attending a qualified health-care facility, and the lack of available adequate antifungal drug, point out the need to strengthen mycetoma management capacities in Senegal.
Collapse
Affiliation(s)
- Doudou Sow
- Service de Parasitologie-Mycologie, UFR Sciences de la Santé, Université Gasbon Berger de Saint Louis, Saint Louis, Sénégal
- Service de Parasitologie-Mycologie, Faculté de médecine, Université Cheikh Anta Diop de Dakar, Dakar, Sénégal
- UMR VITROME, Campus International IRD-UCAD de l’IRD, Dakar, Sénégal
- * E-mail:
| | - Maodo Ndiaye
- Service de Dermatologie, Hôpital Aristide Le Dantec, Dakar, Sénégal
| | - Lamine Sarr
- Service d’Orthopédie, Hôpital Aristide Le Dantec, Dakar, Sénégal
| | - Mamadou D. Kanté
- Service de Dermatologie, Hôpital Aristide Le Dantec, Dakar, Sénégal
| | - Fatoumata Ly
- Service de Dermatologie, Institut d’Hygiène Sociale, Dakar, Sénégal
| | - Pauline Dioussé
- Service de Dermatologie, Centre Hospitalier Régional de Thiès, Thiès, Sénégal
| | - Babacar T. Faye
- Service de Parasitologie-Mycologie, Faculté de médecine, Université Cheikh Anta Diop de Dakar, Dakar, Sénégal
| | - Abdou Magip Gaye
- Service d’anatomie pathologie, Hôpital Aristide Le Dantec, Dakar, Sénégal
| | - Cheikh Sokhna
- UMR VITROME, Campus International IRD-UCAD de l’IRD, Dakar, Sénégal
| | - Stéphane Ranque
- Aix Marseille Univ, IRD, APHM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France
| | - Babacar Faye
- Service de Parasitologie-Mycologie, Faculté de médecine, Université Cheikh Anta Diop de Dakar, Dakar, Sénégal
| |
Collapse
|
46
|
Hyde KD, Dong Y, Phookamsak R, Jeewon R, Bhat DJ, Jones EBG, Liu NG, Abeywickrama PD, Mapook A, Wei D, Perera RH, Manawasinghe IS, Pem D, Bundhun D, Karunarathna A, Ekanayaka AH, Bao DF, Li J, Samarakoon MC, Chaiwan N, Lin CG, Phutthacharoen K, Zhang SN, Senanayake IC, Goonasekara ID, Thambugala KM, Phukhamsakda C, Tennakoon DS, Jiang HB, Yang J, Zeng M, Huanraluek N, Liu JK(J, Wijesinghe SN, Tian Q, Tibpromma S, Brahmanage RS, Boonmee S, Huang SK, Thiyagaraja V, Lu YZ, Jayawardena RS, Dong W, Yang EF, Singh SK, Singh SM, Rana S, Lad SS, Anand G, Devadatha B, Niranjan M, Sarma VV, Liimatainen K, Aguirre-Hudson B, Niskanen T, Overall A, Alvarenga RLM, Gibertoni TB, Pfliegler WP, Horváth E, Imre A, Alves AL, da Silva Santos AC, Tiago PV, Bulgakov TS, Wanasinghe DN, Bahkali AH, Doilom M, Elgorban AM, Maharachchikumbura SSN, Rajeshkumar KC, Haelewaters D, Mortimer PE, Zhao Q, Lumyong S, Xu J, Sheng J. Fungal diversity notes 1151–1276: taxonomic and phylogenetic contributions on genera and species of fungal taxa. FUNGAL DIVERS 2020. [DOI: 10.1007/s13225-020-00439-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abstract
Fungal diversity notes is one of the important journal series of fungal taxonomy that provide detailed descriptions and illustrations of new fungal taxa, as well as providing new information of fungal taxa worldwide. This article is the 11th contribution to the fungal diversity notes series, in which 126 taxa distributed in two phyla, six classes, 24 orders and 55 families are described and illustrated. Taxa in this study were mainly collected from Italy by Erio Camporesi and also collected from China, India and Thailand, as well as in some other European, North American and South American countries. Taxa described in the present study include two new families, 12 new genera, 82 new species, five new combinations and 25 new records on new hosts and new geographical distributions as well as sexual-asexual reports. The two new families are Eriomycetaceae (Dothideomycetes, family incertae sedis) and Fasciatisporaceae (Xylariales, Sordariomycetes). The twelve new genera comprise Bhagirathimyces (Phaeosphaeriaceae), Camporesiomyces (Tubeufiaceae), Eriocamporesia (Cryphonectriaceae), Eriomyces (Eriomycetaceae), Neomonodictys (Pleurotheciaceae), Paraloratospora (Phaeosphaeriaceae), Paramonodictys (Parabambusicolaceae), Pseudoconlarium (Diaporthomycetidae, genus incertae sedis), Pseudomurilentithecium (Lentitheciaceae), Setoapiospora (Muyocopronaceae), Srinivasanomyces (Vibrisseaceae) and Xenoanthostomella (Xylariales, genera incertae sedis). The 82 new species comprise Acremonium chiangraiense, Adustochaete nivea, Angustimassarina camporesii, Bhagirathimyces himalayensis, Brunneoclavispora camporesii, Camarosporidiella camporesii, Camporesiomyces mali, Camposporium appendiculatum, Camposporium multiseptatum, Camposporium septatum, Canalisporium aquaticium, Clonostachys eriocamporesiana, Clonostachys eriocamporesii, Colletotrichum hederiicola, Coniochaeta vineae, Conioscypha verrucosa, Cortinarius ainsworthii, Cortinarius aurae, Cortinarius britannicus, Cortinarius heatherae, Cortinarius scoticus, Cortinarius subsaniosus, Cytospora fusispora, Cytospora rosigena, Diaporthe camporesii, Diaporthe nigra, Diatrypella yunnanensis, Dictyosporium muriformis, Didymella camporesii, Diutina bernali, Diutina sipiczkii, Eriocamporesia aurantia, Eriomyces heveae, Ernakulamia tanakae, Falciformispora uttaraditensis, Fasciatispora cocoes, Foliophoma camporesii, Fuscostagonospora camporesii, Helvella subtinta, Kalmusia erioi, Keissleriella camporesiana, Keissleriella camporesii, Lanspora cylindrospora, Loratospora arezzoensis, Mariannaea atlantica, Melanographium phoenicis, Montagnula camporesii, Neodidymelliopsis camporesii, Neokalmusia kunmingensis, Neoleptosporella camporesiana, Neomonodictys muriformis, Neomyrmecridium guizhouense, Neosetophoma camporesii, Paraloratospora camporesii, Paramonodictys solitarius, Periconia palmicola, Plenodomus triseptatus, Pseudocamarosporium camporesii, Pseudocercospora maetaengensis, Pseudochaetosphaeronema kunmingense, Pseudoconlarium punctiforme, Pseudodactylaria camporesiana, Pseudomurilentithecium camporesii, Pseudotetraploa rajmachiensis, Pseudotruncatella camporesii, Rhexocercosporidium senecionis, Rhytidhysteron camporesii, Rhytidhysteron erioi, Septoriella camporesii, Setoapiospora thailandica, Srinivasanomyces kangrensis, Tetraploa dwibahubeeja, Tetraploa pseudoaristata, Tetraploa thrayabahubeeja, Torula camporesii, Tremateia camporesii, Tremateia lamiacearum, Uzbekistanica pruni, Verruconis mangrovei, Wilcoxina verruculosa, Xenoanthostomella chromolaenae and Xenodidymella camporesii. The five new combinations are Camporesiomyces patagoniensis, Camporesiomyces vaccinia, Camposporium lycopodiellae, Paraloratospora gahniae and Rhexocercosporidium microsporum. The 22 new records on host and geographical distribution comprise Arthrinium marii, Ascochyta medicaginicola, Ascochyta pisi, Astrocystis bambusicola, Camposporium pellucidum, Dendryphiella phitsanulokensis, Diaporthe foeniculina, Didymella macrostoma, Diplodia mutila, Diplodia seriata, Heterosphaeria patella, Hysterobrevium constrictum, Neodidymelliopsis ranunculi, Neovaginatispora fuckelii, Nothophoma quercina, Occultibambusa bambusae, Phaeosphaeria chinensis, Pseudopestalotiopsis theae, Pyxine berteriana, Tetraploa sasicola, Torula gaodangensis and Wojnowiciella dactylidis. In addition, the sexual morphs of Dissoconium eucalypti and Phaeosphaeriopsis pseudoagavacearum are reported from Laurus nobilis and Yucca gloriosa in Italy, respectively. The holomorph of Diaporthe cynaroidis is also reported for the first time.
Collapse
|
47
|
Li J, Jeewon R, Mortimer PE, Doilom M, Phookamsak R, Promputtha I. Multigene phylogeny and taxonomy of Dendryphion hydei and Torula hydei spp. nov. from herbaceous litter in northern Thailand. PLoS One 2020; 15:e0228067. [PMID: 32023268 PMCID: PMC7001993 DOI: 10.1371/journal.pone.0228067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/06/2020] [Indexed: 11/19/2022] Open
Abstract
During our studies on asexual fungi colonizing herbaceous litter in northern Thailand, we discovered two new fungal species, viz. Dendryphion hydei and Torula hydei spp. nov. The latter are examined, and their morphological characters are described as well as their DNA sequences from ribosomal and protein coding genes are analysed to infer their phylogenetic relationships with extant fungi. Torula hydei is different from other similar Torula species in having tiny and catenate conidia. Dendryphion hydei can be distinguished from other similar Dendryphion species in having large conidiophores and subhyaline to pale olivaceous brown, 2-4(-5)-septate conidia. Multigene phylogenetic analyses of a combined LSU, SSU, TEF1-α, RPB2 and ITS DNA sequence dataset generated from maximum likelihood and Bayesian inference analyses indicate that T. hydei forms a distinct lineage and basal to T. fici. Dendryphion hydei forms a distinct lineage and basal to D. europaeum, D. comosum, D. aquaticum and D. fluminicola within Torulaceae (Pleosporales, Dothideomycetes).
Collapse
Affiliation(s)
- Junfu Li
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Key Laboratory of Biodiversity and Biogeography, Chinese Academy of Sciences, Kunming Institute of Botany, Kunming, P.R. China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
| | - Rajesh Jeewon
- Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius
| | - Peter E. Mortimer
- Key Laboratory of Biodiversity and Biogeography, Chinese Academy of Sciences, Kunming Institute of Botany, Kunming, P.R. China
| | - Mingkwan Doilom
- Key Laboratory of Biodiversity and Biogeography, Chinese Academy of Sciences, Kunming Institute of Botany, Kunming, P.R. China
- World Agroforestry Centre, East and Central Asia, Kunming, P.R. China
| | - Rungtiwa Phookamsak
- Key Laboratory of Biodiversity and Biogeography, Chinese Academy of Sciences, Kunming Institute of Botany, Kunming, P.R. China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
- World Agroforestry Centre, East and Central Asia, Kunming, P.R. China
| | - Itthayakorn Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
48
|
Pyomelanin Secretion in Madurella mycetomatis Interferes with Spectrophotometric Endpoint Reading Using the Sensititre YeastOne alamarBlue Assay but Not with Visual Endpoint Reading. Antimicrob Agents Chemother 2019; 64:AAC.01532-19. [PMID: 31611353 DOI: 10.1128/aac.01532-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/04/2019] [Indexed: 02/01/2023] Open
Abstract
The use of the Sensititre YeastOne YO10 alamarBlue assay for the in vitro susceptibility testing of Madurella mycetomatis was evaluated in M. mycetomatis isolates with and without pyomelanin secretion. Pyomelanin secretion did not influence visual endpoint reading; however, it caused a shift in peak absorbance from 570 nm to 620 nm when read spectrophotometrically. Therefore, when choosing the method for endpoint reading, the presence of pyomelanin should be considered.
Collapse
|
49
|
Valenzuela-Lopez N, Magaña-Dueñas V, Cano-Lira JF, Wiederhold N, Guarro J, Stchigel AM. Two new species of Gloniopsis (Hysteriales, Ascomycota) from clinical specimens: Morphological and molecular characterisation. Mycoses 2019; 62:1164-1173. [PMID: 31529527 DOI: 10.1111/myc.13006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 01/19/2023]
Abstract
BACKGROUND The coelomycetes comprise a wide range of fungal species distributed in at least three different classes of the phylum Ascomycota. These are morphologically characterised by producing their conidia inside of fruiting bodies called pycnidia or acervuli, and only a reduced number of species are able to cause human infections. However, their identification in the clinical laboratory is often difficult, due to their few morphological features or because they remain sterile. MATERIALS AND METHODS In the present study, three isolates of coelomycetes of clinical origin were phenotypically and molecularly studied, by sequencing the D1-D2 fragment of the 28S nuclear ribosomal RNA (nrRNA) (LSU), the internal transcribed spacer region (ITS1-5.8S-ITS2) and a fragment of the translation elongation factor 1-alpha (tef1) genes. RESULTS AND CONCLUSIONS As result of the molecular analysis, the isolates were identified as belonging to the genus Gloniopsis (order Hysteriales, Dothideomycetes) but without the characteristics of any of the species described so far. Therefore, we propose the new species Gloniopsis percutanea and Gloniopsis pneumoniae. Furthermore, this study revealed that some isolates from clinical specimens identified previously as Rhytidhysteron spp. were misidentified, and considering the few studies in the order Hysteriales and the scarce number of sequences of phylogenetic markers, future revisions of this order should be performed to clarify their taxonomy and obtain a better identification from isolates involved in human mycoses.
Collapse
Affiliation(s)
- Nicomedes Valenzuela-Lopez
- Mycology Unit, Medical School and IISPV, University Rovira i Virgili, Reus, Spain.,Microbiology Unit, Medical Technology Department, Faculty of Health Science, University of Antofagasta, Antofagasta, Chile
| | | | - José F Cano-Lira
- Mycology Unit, Medical School and IISPV, University Rovira i Virgili, Reus, Spain
| | - Nathan Wiederhold
- Fungus Testing Laboratory, University of Texas Health Science Center, San Antonio, TX, USA
| | - Josep Guarro
- Mycology Unit, Medical School and IISPV, University Rovira i Virgili, Reus, Spain
| | - Alberto M Stchigel
- Mycology Unit, Medical School and IISPV, University Rovira i Virgili, Reus, Spain
| |
Collapse
|
50
|
Lieberman JA, Fiorito J, Ichikawa D, Fang FC, Rakita RM, Bourassa L. Long-Term Carriage of Medicopsis romeroi, an Agent of Black-Grain Mycetoma, Presenting as Phaeohyphomycosis in a Renal Transplant Patient. Mycopathologia 2019; 184:671-676. [PMID: 31502092 DOI: 10.1007/s11046-019-00379-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 08/26/2019] [Indexed: 10/26/2022]
Abstract
Medicopsis species are rare fungal pathogens that frequently resist common antifungal therapies and are difficult to identify morphologically as conidia are produced in pycnidia, a key feature of coelomycetes. Immunocompromised patients are at risk of these infections, even after remote exposure, and typically present with phaeohyphomycoses without dissemination. We present the case of a renal transplant recipient 6.5 years post-transplant who developed a slowly progressive soft tissue infection mimicking a synovial cyst. A cultured isolate was identified as Medicopsis romeroi by sequencing of multiple ribosomal loci. The patient responded well to debridement and posaconazole therapy. Solid-organ transplant patients are at risk of opportunistic fungal infection long after transplant, and molecular methods are often required for definitive identification.
Collapse
Affiliation(s)
- Joshua A Lieberman
- Division of Clinical Microbiology, Department of Laboratory Medicine, University of Washington Medical Center, 1959 NE Pacific Street, Seattle, WA, 98195, USA.,Department of Pathology, University of Washington Medical Center, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Joseph Fiorito
- Department of Podiatry, University of Washington Medical Center, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Doug Ichikawa
- Department of Podiatry, University of Washington Medical Center, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Ferric C Fang
- Division of Clinical Microbiology, Department of Laboratory Medicine, University of Washington Medical Center, 1959 NE Pacific Street, Seattle, WA, 98195, USA.,Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington Medical Center, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Robert M Rakita
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington Medical Center, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Lori Bourassa
- Division of Clinical Microbiology, Department of Laboratory Medicine, University of Washington Medical Center, 1959 NE Pacific Street, Seattle, WA, 98195, USA.
| |
Collapse
|