1
|
Gelio MB, Nakazone-Guimarães PA, da Fonseca TS, Silva ECA, Sasso-Cerri E, Cerri PS. Histopathological evaluation of periapical lesions in developing molars of young male rats. Arch Oral Biol 2025; 173:106222. [PMID: 40080952 DOI: 10.1016/j.archoralbio.2025.106222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/01/2025] [Accepted: 03/03/2025] [Indexed: 03/15/2025]
Abstract
OBJECTIVES To evaluate the histopathological features of induced periapical lesions (PL) exposed to the oral environment at different time points in developing molars of rats. METHODS Twenty-four 30-day-old Holtzman rats had the pulp chamber of the mandibular left first molar opened and root canals were exposed to the oral environment. According to the exposure time, the animals were distributed into three groups (n = 8 rats/group): PL induced for 3 days (PLG-3d), PL induced for 1week (PLG-1w) and PL induced for 9 weeks (PLG-9w). The healthy right first molars were used as control group (CG). In paraffin-embedded jaw sections, the number of inflammatory cells (ICs), IL-6-immunolabelled cells, osteoclasts and PLs area were measured. Data were subjected to two-way ANOVA analysis of variance and Tukey's post-test (p < 0.05). RESULTS The highest values of ICs and IL-6-immunolabelled cells were found in PLG-1w while no significant difference was observed between PLG-3d and PLG-9w specimens. PLG-1w showed a significantly greater number of osteoclasts than PLG-9w, but no significant difference was found in the PL area between these groups. CONCLUSIONS Although the peak of the inflammatory infiltrate, bone resorption and PL size were reached after 1-week, periapical lesions were established after 3 days in developing molars of rats.
Collapse
Affiliation(s)
- Mariana Bena Gelio
- São Paulo State University (UNESP), School of Dentistry, Araraquara - Laboratory of Histology and Embryology - Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Araraquara, SP, Brazil
| | - Paula Aparecida Nakazone-Guimarães
- São Paulo State University (UNESP), School of Dentistry, Araraquara - Laboratory of Histology and Embryology - Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Araraquara, SP, Brazil
| | | | - Evelin Carine Alves Silva
- São Paulo State University (UNESP), School of Dentistry, Araraquara - Laboratory of Histology and Embryology - Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Araraquara, SP, Brazil
| | - Estela Sasso-Cerri
- São Paulo State University (UNESP), School of Dentistry, Araraquara - Laboratory of Histology and Embryology - Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Araraquara, SP, Brazil
| | - Paulo Sérgio Cerri
- São Paulo State University (UNESP), School of Dentistry, Araraquara - Laboratory of Histology and Embryology - Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Araraquara, SP, Brazil.
| |
Collapse
|
2
|
Zhu C, Wang H, Liu J. Highly sensitive electrochemical immunosensor based on methylene blue-reduced graphene oxide nanocomposites as signal probes for IL-6 detection in gingival crevicular fluid samples. Front Chem 2025; 13:1549927. [PMID: 40242657 PMCID: PMC12000011 DOI: 10.3389/fchem.2025.1549927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 03/03/2025] [Indexed: 04/18/2025] Open
Abstract
As an important inflammatory cytokine, interleukin-6 (IL-6) can mediate the entire pathological process of periodontitis and is closely associated with the degree of inflammation. Therefore, it is critical to develop convenient quantitative methods for monitoring IL-6 quantity in gingival crevicular fluid. In this study, methylene blue (MB)-decorated reduced graphene oxide (rGO) is employed as signal probe to further support the antibody-enabling specific recognition of IL-6. Due to π-π stacking and electrostatic interactions, rGO-MB nanocomposites can be stably obtained. rGO with good conductivity and large surface area characteristics promotes the redox signals of MB on the glassy carbon electrode (GCE). In addition, through the simple in situ self-polymerization of dopamine, the polydopamine (PDA) obtained can be not only directly used as a biological crosslinking agent for covalent immobilization of anti-IL-6 antibody but can also be regarded as a protective layer to enhance the stability of rGO-MB on the GCE surface. Such a designed PDA/rGO-MB/GCE-based immunosensor enables specific binding with IL-6 and produces a decreased electrochemical signal for MB, realizing the selective and sensitive quantitative measurement of IL-6. Consequently, our fabricated PDA/rGO-MB/GCE-based electrochemical immunosensor has an excellent linear relationship with IL-6 ranging from 1 pg/mL to 100 ng/mL, with a limit of detection as low as 0.48 pg/mL. Moreover, our as-prepared sensing strategy shows accurate monitoring of the IL-6 quantity in gingival crevicular fluid samples.
Collapse
Affiliation(s)
- Changfeng Zhu
- Department of Stomatology, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing, China
| | - Hongxin Wang
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jiyang Liu
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
3
|
Pardiñas López S, García-Caro ME, Vallejo JA, Aja-Macaya P, Conde-Pérez K, Nión-Cabeza P, Khouly I, Bou G, Cendal AIR, Díaz-Prado S, Poza M. Anti-inflammatory and antimicrobial efficacy of coconut oil for periodontal pathogens: a triple-blind randomized clinical trial. Clin Oral Investig 2025; 29:182. [PMID: 40085302 PMCID: PMC11909057 DOI: 10.1007/s00784-025-06267-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
OBJECTIVES To evaluate the effect of coconut oil on the oral bacteriome and inflammatory response in patients with periodontitis by integrating next-generation sequencing analyses of pathogenic bacterial shifts and quantification of inflammatory markers, thereby assessing its potential as a natural adjunct to standard nonsurgical periodontal therapy. MATERIALS AND METHODS A triple-blind clinical trial was conducted with 30 participants diagnosed with periodontitis, randomized into 3 groups: (1) coconut oil, (2) chlorhexidine and (3) placebo. Saliva and gingival crevicular fluid (GCF) samples were collected before treatment, one month after treatment, and one month post-non-surgical periodontal therapy. Bacterial DNA was extracted, and the V3-V4 region of the 16 S rRNA gene was PCR-amplified and sequenced using Illumina MiSeq technologies. Inflammatory biomarkers, including Interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), were quantified from GCF samples. RESULTS Coconut oil treatment significantly reduced pathogenic bacterial families such as Spirochaetaceae and Tannerellaceae while promoting beneficial bacteria such as Streptococcaceae. At the genus and species levels, coconut oil reduced pathogens such as Tannerella forsythia and Treponema denticola along with increase in beneficial bacteria such as Streptococcus. The subgingival microbial dysbiosis index improved significantly in both coconut oil and chlorhexidine groups. Furthermore, the coconut oil demonstrated a reduction in IL-6 and TNF-α levels, indicating decreased local inflammation. CONCLUSIONS Coconut oil treatment significantly modulated the oral microbiome and reduced inflammatory markers in patients with periodontitis, suggesting its potential as a natural and effective adjunct in periodontal therapy. CLINICAL RELEVANCE This study highlights coconut oil's potential as a natural adjunct in periodontal therapy, effectively reducing pathogenic bacteria and inflammatory markers (IL-6, TNF-α). It offers a safe alternative to chlorhexidine, promoting microbiome balance and improved periodontal health.
Collapse
Affiliation(s)
- Simón Pardiñas López
- Periodontology and Oral Surgery, Clínica Médico Dental Pardiñas, Real 66, 3, A Coruña, 15003, Spain.
- Grupo de Terapia Celular y Medicina Regenerativa, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Complexo Hospitalario Universitario de A Coruña (CHUAC), A Coruña, 15003, Spain.
- Grupo de Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud-Centro Interdisciplinar de Química y Biología (CICA), Universidade da Coruña, A Coruña, 15701, Spain.
- Department of Oral and Maxillofacial Surgery, College of Dentistry, New York University, New York, NY, 10010, USA.
| | - Mónica E García-Caro
- Grupo de Investigación en Microbiología, Servicio de Microbiología, Instituto de Investigación Biomédica de A Coruña (INIBIC)- Hospital Universitario de A Coruña (CHUAC)-Universidade da Coruña (UDC)-CIBER de Enfermedades Infecciosas (CIBERINFEC, ISCIII), Hospital Universitario, Coruña, 15006 A, Spain
| | - Juan A Vallejo
- Grupo de Investigación en Microbiología, Servicio de Microbiología, Instituto de Investigación Biomédica de A Coruña (INIBIC)- Hospital Universitario de A Coruña (CHUAC)-Universidade da Coruña (UDC)-CIBER de Enfermedades Infecciosas (CIBERINFEC, ISCIII), Hospital Universitario, Coruña, 15006 A, Spain.
| | - Pablo Aja-Macaya
- Grupo de Investigación en Microbiología, Servicio de Microbiología, Instituto de Investigación Biomédica de A Coruña (INIBIC)- Hospital Universitario de A Coruña (CHUAC)-Universidade da Coruña (UDC)-CIBER de Enfermedades Infecciosas (CIBERINFEC, ISCIII), Hospital Universitario, Coruña, 15006 A, Spain
| | - Kelly Conde-Pérez
- Grupo de Investigación en Microbiología, Servicio de Microbiología, Instituto de Investigación Biomédica de A Coruña (INIBIC)- Hospital Universitario de A Coruña (CHUAC)-Universidade da Coruña (UDC)-CIBER de Enfermedades Infecciosas (CIBERINFEC, ISCIII), Hospital Universitario, Coruña, 15006 A, Spain
| | - Paula Nión-Cabeza
- Grupo de Investigación en Microbiología, Servicio de Microbiología, Instituto de Investigación Biomédica de A Coruña (INIBIC)- Hospital Universitario de A Coruña (CHUAC)-Universidade da Coruña (UDC)-CIBER de Enfermedades Infecciosas (CIBERINFEC, ISCIII), Hospital Universitario, Coruña, 15006 A, Spain
| | - Ismael Khouly
- Department of Oral and Maxillofacial Surgery, College of Dentistry, New York University, New York, NY, 10010, USA
- Multidisciplinary Implant and Aesthetic Miami Institute (M.I.A.M.I.), Miami, FL, 33137, USA
| | - Germán Bou
- Grupo de Investigación en Microbiología, Servicio de Microbiología, Instituto de Investigación Biomédica de A Coruña (INIBIC)- Hospital Universitario de A Coruña (CHUAC)-Universidade da Coruña (UDC)-CIBER de Enfermedades Infecciosas (CIBERINFEC, ISCIII), Hospital Universitario, Coruña, 15006 A, Spain
| | - Ana Isabel Rodríguez Cendal
- Grupo de Terapia Celular y Medicina Regenerativa, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Complexo Hospitalario Universitario de A Coruña (CHUAC), A Coruña, 15003, Spain
- Grupo de Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud-Centro Interdisciplinar de Química y Biología (CICA), Universidade da Coruña, A Coruña, 15701, Spain
| | - Silvia Díaz-Prado
- Grupo de Terapia Celular y Medicina Regenerativa, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Complexo Hospitalario Universitario de A Coruña (CHUAC), A Coruña, 15003, Spain
- Grupo de Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud-Centro Interdisciplinar de Química y Biología (CICA), Universidade da Coruña, A Coruña, 15701, Spain
| | - Margarita Poza
- Grupo de Investigación en Microbiología, Servicio de Microbiología, Instituto de Investigación Biomédica de A Coruña (INIBIC)- Hospital Universitario de A Coruña (CHUAC)-Universidade da Coruña (UDC)-CIBER de Enfermedades Infecciosas (CIBERINFEC, ISCIII), Hospital Universitario, Coruña, 15006 A, Spain
- Grupo Microbioma y Salud, Facultad de Ciencias- Centro Interdisciplinar de Química y Biología (CICA), Universidade da Coruña, A Coruña, 15071, Spain
| |
Collapse
|
4
|
Eggers B, Seher L, Marciniak J, Pauck T, Deschner J, Eick S, Stope MB, Kramer FJ, Küchler EC, Kirschneck C, Nokhbehsaim M, Beisel-Memmert S. Beneficial effects of non-invasive physical plasma on human periodontal ligament cells in vitro. Front Med (Lausanne) 2024; 11:1443368. [PMID: 39629237 PMCID: PMC11611554 DOI: 10.3389/fmed.2024.1443368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction Periodontitis is a chronic inflammatory disease of the periodontium that can lead to the loss of affected teeth if left untreated. It is induced by a multifactorial process centered on microbial pathogens such as Fusobacterium nucleatum (F.n.). Non-invasive physical plasma (NIPP), a highly reactive gas, has become a focus of research, not only for its hemostatic, proliferation-enhancing and apoptotic properties, but also for its antimicrobial potential. The objective of this study was to examine the impact of NIPP on human periodontal ligament (PDL) cells that had been induced into a state of periodontal infection in vitro. Methods Initially, the solitary effect of NIPP was evaluated by measuring temperature and pH and analyzing reactive oxygen species (ROS). Additionally, DAPI and phalloidin staining were employed to investigate possible cytotoxic effects. The cells were pre-incubated with F.n. and treated with NIPP after 24 hours. Interleukin (IL)-6 and IL-8 were analyzed at mRNA and protein levels, respectively, by real-time PCR and ELISA. Results NIPP alone had no significant effect on PDL cells. However, the F.n.-induced upregulation of IL-6 and IL-8 was counteracted by NIPP. Discussion Thus, the utilization of NIPP may be regarded as a promising therapeutic strategy for the treatment of periodontal diseases.
Collapse
Affiliation(s)
- Benedikt Eggers
- Department of Oral, Maxillofacial and Plastic Surgery, University Hospital Bonn, Bonn, Germany
| | - Lennard Seher
- Department of Oral, Maxillofacial and Plastic Surgery, University Hospital Bonn, Bonn, Germany
- Department of Orthodontics, University Hospital Bonn, Bonn, Germany
| | - Jana Marciniak
- Department of Orthodontics, University Hospital Bonn, Bonn, Germany
| | - Tristan Pauck
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, Bonn, Germany
| | - James Deschner
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Sigrun Eick
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Matthias Bernhard Stope
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, Bonn, Germany
| | - Franz-Josef Kramer
- Department of Oral, Maxillofacial and Plastic Surgery, University Hospital Bonn, Bonn, Germany
| | | | | | - Marjan Nokhbehsaim
- Section of Experimental Dento-Maxillo-Facial Medicine, University Hospital Bonn, Bonn, Germany
| | | |
Collapse
|
5
|
Xiao L, Mochizuki M, Shimamura N, Sunada K, Nakahara T. Interplay of co-cultured chimeric adipose and gingival tissues exacerbates inflammatory dysfunction relevant to periodontal and metabolic conditions. Life Sci 2024; 355:123009. [PMID: 39197574 DOI: 10.1016/j.lfs.2024.123009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024]
Abstract
Adipose tissue dysfunction is a key feature of metabolic syndrome, which increases the risk of periodontitis, an inflammatory disease induced by bacteria that affects the gingiva and other components of periodontal tissue. Recent studies indicate that molecules from inflamed periodontal tissue contribute to adipose tissue dysfunction. However, the cellular mechanisms and interactions between adipose tissue and gingiva driving the progression of metabolic and periodontal conditions remain unclear. To address this, we developed a chimeric (mouse/human) co-culture tissue model (which identifies the origins of species-specific cytokines) to investigate these interactions. Using tissue-specific functional cells and immunocytes, we constructed equivalents of adipose tissue (ATE) and gingiva (GTE), co-cultivating them under inflammatory conditions induced by bacterial endotoxin, lipopolysaccharide (LPS). Our findings showed that exposure to LPS resulted in a notable reduction in lipid accumulation, GLUT4 expression, and adiponectin secretion in ATE, along with increased macrophage colonies forming around lipid droplets, as well as elevated levels of triglyceride, leptin, and IL-6. In GTE, LPS triggered significant inflammatory responses, characterized by increased macrophage accumulation, elevated COX-2 expression, and heightened secretion of inflammatory cytokines. LPS also reduced epithelial thickness and the expression of keratin 19 and collagen IV, indicating impaired barrier function and gingival integrity. Co-culturing ATE with GTE exacerbated these LPS-induced harmful effects in both tissues. In conclusion, our findings suggest that interplay between gingiva and adipose tissue can intensify the inflammatory and dysfunctional changes caused by LPS. This co-culture tissue model offers a valuable tool for future studies on periodontitis and metabolic syndrome.
Collapse
Affiliation(s)
- Li Xiao
- Department of Physiology, School of Life Dentistry at Tokyo, The Nippon Dental University, 1-9-20 Fujimi, Chiyoda-ku, Tokyo 102-8159, Japan.
| | - Mai Mochizuki
- Department of Developmental and Regenerative Dentistry, School of Life Dentistry at Tokyo, The Nippon Dental University, Japan; Department of Life Science Dentistry, The Nippon Dental University, Japan.
| | - Naohiro Shimamura
- Department of Dental Anesthesiology, School of Life Dentistry at Tokyo, The Nippon Dental University, Japan.
| | - Katsuhisa Sunada
- Department of Dental Anesthesiology, School of Life Dentistry at Tokyo, The Nippon Dental University, Japan.
| | - Taka Nakahara
- Department of Developmental and Regenerative Dentistry, School of Life Dentistry at Tokyo, The Nippon Dental University, Japan.
| |
Collapse
|
6
|
Jansson L, Lundmark A, Modin C, Gustafsson A, Yucel-Lindberg T. Levels of matrix metalloproteinase-1 (MMP-1), MMP-2, MMP-3, osteopontin, pentraxin-3, and thymic stromal lymphopoietin in crevicular fluid samples from peri-implantitis, periodontitis, and healthy sites. J Periodontal Res 2024. [PMID: 39327373 DOI: 10.1111/jre.13338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/28/2024]
Abstract
AIM Periodontitis and peri-implantitis are chronic inflammatory diseases characterized by the destruction of supporting tissues. Despite some similarities, it is essential to understand the differences in how these diseases elicit unique host responses within the oral tissues, including the production of selected matrix metalloproteinases (MMPs) and inflammatory mediators involved in tissue remodelling. The aim of this study was to evaluate the levels of proteolytic enzymes MMP-1, MMP-2, MMP-3, as well as the inflammatory mediators osteopontin (OPN), pentraxin-3 (PTX3), and thymic stromal lymphopoietin (TSLP) in crevicular fluid samples collected from healthy, periodontitis-affected, and peri-implantitis sites. METHODS Gingival crevicular fluid (GCF) and peri-implant crevicular fluid (PICF) samples were collected from healthy and diseased teeth and implant sites of 163 patients. The MMP-1, MMP-2, MMP-3, OPN, PTX3, and TSLP levels were determined using commercially available immunoassays. A linear mixed model procedure was adopted for multilevel analyses, using biomarker levels as the outcome variable to compare two types of sites. The diagnostic accuracy of the biomarkers was evaluated by Youden's index to estimate the sensitivity, specificity and the area under curve (AUC). RESULTS The levels of MMP-1, MMP-2, MMP-3, OPN, and TSLP were higher at sites with periodontitis and peri-implantitis compared to the levels at sites with healthy teeth and healthy implants. No significant differences were observed in the levels of the measured markers between the sites diagnosed with periodontitis and those diagnosed with peri-implantitis. The highest diagnostic potential at implant sites was found for MMP-2 (AUC = 0.74) and TSLP (AUC = 0.72). The highest AUC (0.82) at tooth sites was found for OPN. CONCLUSIONS The findings indicate that the proteolytic enzyme MMP-2 and the cytokine TSLP might be potential biomarkers for both periodontitis and peri-implantitis, whereas the proinflammatory cytokine OPN may serve as a biomarker for periodontitis. Further studies are required to confirm the utility of these biomarkers and explore their potential clinical applications.
Collapse
Affiliation(s)
- Leif Jansson
- Folktandvården Stockholms län AB, Folktandvården Eastmaninstitutet, Department of Periodontology, Stockholm, Sweden
- Department of Dental Medicine, Division of Periodontology, Karolinska Institutet, Huddinge, Sweden
| | - Anna Lundmark
- Department of Dental Medicine, Division of Pediatric Dentistry, Karolinska Institutet, Huddinge, Sweden
| | - Carolina Modin
- Folktandvården Stockholms län AB, Folktandvården Eastmaninstitutet, Department of Periodontology, Stockholm, Sweden
- Department of Dental Medicine, Division of Periodontology, Karolinska Institutet, Huddinge, Sweden
| | - Anders Gustafsson
- Department of Dental Medicine, Division of Periodontology, Karolinska Institutet, Huddinge, Sweden
| | - Tülay Yucel-Lindberg
- Department of Dental Medicine, Division of Pediatric Dentistry, Karolinska Institutet, Huddinge, Sweden
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
7
|
Bi X, Zhao P, Liu T, Zhu T, Li Y, Xiong S, Liu S, Hu X, Huang X. Impact of sleeve gastrectomy on the periodontal status of patients with and without type 2 diabetes: a 1-year prospective real-world study. Front Endocrinol (Lausanne) 2024; 15:1431728. [PMID: 39211450 PMCID: PMC11357972 DOI: 10.3389/fendo.2024.1431728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Background Periodontitis is a chronic inflammatory disease potentially associated with obesity and type 2 diabetes (T2D). Sleeve gastrectomy (SG) has shown substantial effect on weight loss and treatment of T2D. However, there is no direct evidence comparing the impact of SG on the periodontal status of patients with and without T2D. Objectives To determine the impact of SG on the periodontal status of patients with and without T2D in a real-world setting. Methods In a prospective and two-armed cohort design, participants who were scheduled for SG at an affiliated hospital between April 2022 and December 2022 were approached for eligibility. After a clinical evaluation and oral examination, those with periodontitis were included and further divided into the DM group (diabetic) and the Control group (non-diabetic) with a 1-year follow-up after surgery. The primary outcome was the periodontal status of patients at 12 months after SG. The secondary outcomes included weight loss, diabetes remission, and alterations in inflammatory markers for up to 1 year after SG. Results Fifty-seven and 49 patients were included in the DM and the Control group, respectively. Before surgery, patients in the DM group had further worsened periodontal condition compared with those in the Control group. Accompanied by weight loss and glucose reduction, patients in both groups demonstrated significant decreases in plaque index (PLI) and bleeding index (BI) with no alterations in probing depth or clinical attachment loss for up to 1 year after SG. Even patients in the DM group achieved less TWL% (32.79 ± 6.20% vs. 37.95 ± 8.34, P<0.01), their periodontal condition had more substantial improvement with no significant difference in PLI and BI between groups at 1 year after SG. We also observed a significant reduction in the levels of high sensitive C-reactive protein and interleukin-6 in both groups at 1 year after SG. Conclusion Both patients with and without T2D demonstrated improved periodontal status for up to 1 year after SG. Patients with T2D achieved less weight loss but a more substantial improvement in periodontal condition. The significant reduction in inflammatory biomarkers contributed to the improvement of periodontal status after SG.
Collapse
Affiliation(s)
- Xiaocheng Bi
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration and Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Peikai Zhao
- Division of Bariatric and Metabolic Surgery, Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
- The First Clinical College, Shandong University, Jinan, Shandong, China
| | - Teng Liu
- Division of Bariatric and Metabolic Surgery, Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
- State Key University Laboratory of Diabetes and Obesity Surgery, Shandong University, Jinan, Shandong, China
| | - Tao Zhu
- Division of Bariatric and Metabolic Surgery, Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
- The First Clinical College, Shandong University, Jinan, Shandong, China
| | - Yuxuan Li
- Division of Bariatric and Metabolic Surgery, Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
- The First Clinical College, Shandong University, Jinan, Shandong, China
| | - Sisi Xiong
- Division of Bariatric and Metabolic Surgery, Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
- The First Clinical College, Shandong University, Jinan, Shandong, China
| | - Shaozhuang Liu
- Division of Bariatric and Metabolic Surgery, Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
- State Key University Laboratory of Diabetes and Obesity Surgery, Shandong University, Jinan, Shandong, China
| | - Xiaole Hu
- Department of Operating Room, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xin Huang
- Division of Bariatric and Metabolic Surgery, Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
- State Key University Laboratory of Diabetes and Obesity Surgery, Shandong University, Jinan, Shandong, China
| |
Collapse
|
8
|
Reytor-González C, Parise-Vasco JM, González N, Simancas-Racines A, Zambrano-Villacres R, Zambrano AK, Simancas-Racines D. Obesity and periodontitis: a comprehensive review of their interconnected pathophysiology and clinical implications. Front Nutr 2024; 11:1440216. [PMID: 39171112 PMCID: PMC11335523 DOI: 10.3389/fnut.2024.1440216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
Obesity and periodontitis are significant health problems with a complex bidirectional relationship. Excess body fat is linked to systemic diseases and can lead to persistent inflammation, potentially harming periodontal health. Periodontitis, a chronic inflammatory condition affecting the supporting structures of teeth, poses substantial health risks. Both conditions share pathological processes such as inflammation and oxidative stress, which aggravate health status and make treatment more challenging. Understanding this interaction is crucial for developing effective management strategies for both diseases. This study explores the multifaceted aspects of obesity and periodontitis and their reciprocal relationship.
Collapse
Affiliation(s)
- Claudia Reytor-González
- Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC), Universidad UTE, Quito, Ecuador
| | - Juan Marcos Parise-Vasco
- Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC), Universidad UTE, Quito, Ecuador
| | - Natali González
- Facultad de Odontología, Universidad UTE, Santo Domingo, Ecuador
| | - Alison Simancas-Racines
- Carrera de Medicina Veterinaria, Facultad de Ciencias Agropecuarias y Recursos Naturales, Universidad Técnica de Cotopaxi, Latacunga, Ecuador
| | | | - Ana Karina Zambrano
- Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Genética y Genómica, Universidad UTE, Quito, Ecuador
| | - Daniel Simancas-Racines
- Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC), Universidad UTE, Quito, Ecuador
| |
Collapse
|
9
|
Hamed MN, Abdulbaqi HR. Expression of miRNAs (146a and 155) in human peri-implant tissue affected by peri-implantitis: a case control study. BMC Oral Health 2024; 24:856. [PMID: 39068455 PMCID: PMC11283691 DOI: 10.1186/s12903-024-04579-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND In literature, the levels of miRNA-146a and miRNA-155 are increased in periodontitis. Limited data are available regarding the expression of miRNA-146a and miR-NA-155 in diseased human peri-implant tissue. Therefore, the objective of this study was to explore the expression of miRNA-146a and miRNA-155 in human gingival peri-implant tissue affected by peri-implantitis. METHODS After recording the clinical parameters, human peri-implant pocket tissues were harvested from sites diagnosed with peri-implantitis (n = 15 cases) in addition to healthy peri-implant sulcus tissues (n = 15 controls). The levels of miRNA-146a and miRNA-155 were assessed using real-time qPCR. RESULTS Cases exhibited a significantly higher mean expression of miRNA-155 (5.2-fold increase) and miRNA-146a (2.8-fold increase) than controls. MiRNA-155 and miRNA-146a demonstrated an appropriate sensitivity (87.5% and 87.5%, respectively) and specificity (73.3% and 66.7%, respectively) in discriminating cases from controls. A moderate correlation (r = 0.544, p = 0.029) was found between miRNA-155 and miRNA-146a levels in the case group. CONCLUSIONS The expressions of miRNA-146a and miR-NA-155 are different between healthy and peri-implantitis affected tissues. Both miRNAs might potentially able to discriminate healthy from peri-implantitis affected tissues.
Collapse
Affiliation(s)
- Munir Nasr Hamed
- Department of Periodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq
- Department of Dentistry, Dijlah University College, Baghdad, Iraq
| | - Hayder Raad Abdulbaqi
- Department of Periodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq.
| |
Collapse
|
10
|
Kaya F, Eliacik BK, Koc H, Eliacik M. Effect of Periodontitis on Dry Eye Disease Signs and Symptoms: A Cross-sectional Study. ORAL HEALTH & PREVENTIVE DENTISTRY 2024; 22:309-316. [PMID: 39028001 PMCID: PMC11619903 DOI: 10.3290/j.ohpd.b5573977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024]
Abstract
PURPOSE Gingivitis and periodontitis are oral disorders characterised by chronic inflammation, impacting the supportive structures around teeth due to bacterial accumulation. While the role of inflammation in both periodontitis and dry eye disease (DED) has been established individually, their potential association remains unclear. This study aimed to investigate the association between periodontitis and the manifestation of signs and symptoms related to DED in patients aged 18-40. MATERIALS AND METHODS A cross-sectional study was conducted involving healthy controls, DED patients with or without periodontitis, and patients with periodontitis without DED. Ophthalmic and oral examinations were performed, and demographic, ocular, and systemic disease data were collected. Statistical analysis was conducted using ANOVA and chi-squared tests. RESULTS A total of 684 participants were included in the study. Significant elevations in tear osmolarity levels, increased Ocular Surface Disease Index scores (OSDI), and decreased tear break-up time (TBUT) and Schirmer (ST-I) values were observed in DED patients with periodontitis compared to individuals with DED but without periodontitis, as well as control and periodontitis groups. Furthermore, higher neutrophil-to-lymphocyte ratios (NLR) were found in DED patients with periodontitis. CONCLUSION The findings suggest an association between periodontitis and the severity of signs and symptoms related to DED. The study highlights the importance of interdisciplinary approaches in understanding the systemic implications of periodontal disease and its potential impact on ocular health.
Collapse
Affiliation(s)
- Faruk Kaya
- Associate Professor, Istanbul Medipol University, Department of Ophthalmology, Bagcılar, Istanbul, Turkey. Wrote the manuscript
| | - Basak Kiziltan Eliacik
- Associate Professor, Department of Pedodontics, Hamidiye Faculty of Dentistry, Istanbul Health Sciences University, Istanbul, Turkey. Proofread the manuscript
| | - Haci Koc
- Ophthalmologist, Private Dünya Eye Hospital, Eye Clinic, Sakarya, Turkey. Contributed substantially to discussion
| | - Mustafa Eliacik
- Professor, Istanbul Medipol University, Department of Ophthalmology, Bagcılar, Istanbul, Turkey. Performed statistical evaluation
| |
Collapse
|
11
|
El Tabaa MM, Aboud MM, Anis A, Rashad E, Sokar SS. Targeting SRD5A1 and MMP-2/NLRP3/TGF-β1 axis alleviates the amlodipine-induced gingival hyperplasia in rats: Emerging role of saw palmetto and folic acid. Food Chem Toxicol 2024; 189:114731. [PMID: 38740241 DOI: 10.1016/j.fct.2024.114731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/04/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Saw palmetto (SAW), the herbal drug used to treat prostatic hyperplasia, exerts its antiproliferative effects by blocking steroid 5 alpha-reductase (SRD5A1) activity, that has also been involved in gingival hyperplasia (GH) pathogenesis. Concurrently, folic acid (FA) could reduce GH prevalence via its antioxidant and anti-inflammatory effects. Thus, this study tended to assess the potential therapeutic efficacy of SAW, alone and along with FA, against amlodipine-induced gingival inflammation and overgrowth in rats. Rats were grouped into (CONT, AIGH, SAW, SAW-treated, FA-treated, and SAW + FA-treated). SAW and FA were administered once daily for 4 weeks. Gingival SRD5A1, CTGF, GSK-3β, and NLRP3 expressions, as well as T, DHT, MDA, TAC, ET-1, and MMP2 levels were determined. In addition, histopathological and immunohistochemical analyses of TNF-α, IL-6, TGF-β1, and α-SMA were documented. Results declared that SAW and FA administration markedly ameliorated amlodipine-associated GH and may be presenting a novel therapeutic avenue in the future.
Collapse
Affiliation(s)
- Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City, 32897, Menoufia, Egypt.
| | - Mahmoud Moustafa Aboud
- Dental Science, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City, 32897, Menoufia, Egypt.
| | - Anis Anis
- Pathology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, 32897, Menoufia, Egypt.
| | - Eman Rashad
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Egypt.
| | - Samia Salem Sokar
- Pharmacology & Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| |
Collapse
|
12
|
Jirasek P, Jusku A, Frankova J, Urbankova M, Diabelko D, Ruzicka F, Papouskova B, Chytilova K, Vrba J, Havlasek J, Langova K, Storch J, Voborna I, Simanek V, Vacek J. Phytocannabinoids and gingival inflammation: Preclinical findings and a placebo-controlled double-blind randomized clinical trial with cannabidiol. J Periodontal Res 2024; 59:468-479. [PMID: 38311974 DOI: 10.1111/jre.13234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 02/06/2024]
Abstract
OBJECTIVE The aim of this study was to: (1) evaluate the anti-inflammatory effects of cannabidiol (CBD) on primary cultures of human gingival fibroblasts (HGFs) and (2) to clinically monitor the effect of CBD in subjects with periodontitis. BACKGROUND The use of phytocannabinoids is a new approach in the treatment of widely prevalent periodontal disease. MATERIALS AND METHODS Cannabinoid receptors were analyzed by western blot and interleukin production detected using enzyme immunoassay. Activation of the Nrf2 pathway was studied via monitoring the mRNA level of heme oxygenase-1. Antimicrobial effects were determined by standard microdilution and 16S rRNA screening. In the clinical part, a placebo-control double-blind randomized study was conducted (56 days) in three groups (n = 90) using dental gel without CBD (group A) and with 1% (w/w) CBD (group B) and corresponding toothpaste (group A - no CBD, group B - with CBD) for home use to maintain oral health. Group C used dental gel containing 1% chlorhexidine digluconate (active comparator) and toothpaste without CBD. RESULTS Human gingival fibroblasts were confirmed to express the cannabinoid receptor CB2. Lipopolysaccharide-induced cells exhibited increased production of pro-inflammatory IL-6 and IL-8, with deceasing levels upon exposure to CBD. CBD also exhibited antimicrobial activities against Porphyromonas gingivalis, with an MIC of 1.5 μg/mL. Activation of the Nrf2 pathway was also demonstrated. In the clinical part, statistically significant improvement was found for the gingival, gingival bleeding, and modified gingival indices between placebo group A and CBD group B after 56 days. CONCLUSIONS Cannabidiol reduced inflammation and the growth of selected periodontal pathogenic bacteria. The clinical trial demonstrated a statistically significant improvement after CBD application. No adverse effects of CBD were reported by patients or observed upon clinical examination during the study. The results are a promising basis for a more comprehensive investigation of the application of non-psychotropic cannabinoids in dentistry.
Collapse
Affiliation(s)
- Petr Jirasek
- Institute of Dentistry and Oral Sciences, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
- Institute of Dentistry and Oral Sciences, University Hospital Olomouc, Olomouc, Czech Republic
| | - Alexandr Jusku
- Institute of Dentistry and Oral Sciences, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
- Institute of Dentistry and Oral Sciences, University Hospital Olomouc, Olomouc, Czech Republic
| | - Jana Frankova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Marketa Urbankova
- Department of Clinical and Molecular Pathology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Daniel Diabelko
- Department of Microbiology, Faculty of Medicine of Masaryk University and St. Anne's University Hospital, Brno, Czech Republic
| | - Filip Ruzicka
- Department of Microbiology, Faculty of Medicine of Masaryk University and St. Anne's University Hospital, Brno, Czech Republic
| | - Barbora Papouskova
- Department of Analytical Chemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Karin Chytilova
- Department of Oral and Maxillofacial Surgery, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Jiri Vrba
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Jakub Havlasek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Katerina Langova
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Olomouc, Czech Republic
| | - Jan Storch
- Department of Advanced Materials and Organic Synthesis, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Prague, Czech Republic
| | - Iva Voborna
- Institute of Dentistry and Oral Sciences, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
- Institute of Dentistry and Oral Sciences, University Hospital Olomouc, Olomouc, Czech Republic
| | - Vilim Simanek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
13
|
Hu B, Qiao W, Cao Y, Fu X, Song J. A sono-responsive antibacterial nanosystem co-loaded with metformin and bone morphogenetic protein-2 for mitigation of inflammation and bone loss in experimental peri-implantitis. Front Bioeng Biotechnol 2024; 12:1410230. [PMID: 38854857 PMCID: PMC11157067 DOI: 10.3389/fbioe.2024.1410230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/06/2024] [Indexed: 06/11/2024] Open
Abstract
Background Dental implants have become an increasingly popular option for replacing missing teeth, and the prevalence of peri-implantitis has also increased, which is expected to become a public health problem worldwide and cause high economic and health burdens. This scenario highlights the need for new therapeutic options to treat peri-implantitis. Methods In this study, we proposed a novel sono-responsive antibacterial nanosystem co-loaded with metformin (Met) and bone morphogenetic protein-2 (BMP-2) to promote efficacy in treating peri-implantitis. We introduced the zeolitic imidazolate framework-8 (ZIF-8) as a carrier for hematoporphyrin monomethyl ether (HMME) to enhance the antibacterial effect of sonodynamic antibacterial therapy and tested its reactive oxygen species (ROS) production efficiency and bactericidal effect in vitro. Afterward, HMME-loaded ZIF-8, BMP-2-loaded polylactic acid-glycolic acid (PLGA), and Met were incorporated into gelatin methacryloyl (GelMA) hydrogels to form HMME@ZIF-8/Met/BMP-2@PLGA/GelMA composite hydrogels, and the biocompatibility of which was determined in vitro and in vivo. A bacterial-induced peri-implantitis model in the maxilla of rats was established to detect the effects of the composite hydrogels with adjunctive use of ultrasound on regulating inflammation and promoting bone tissue repair in vivo. Results The results indicated that HMME@ZIF-8 with ultrasound stimulation demonstrated more better ROS production efficiency and antimicrobial efficacy. The composite hydrogels had good biocompatibility. Ultrasound-assisted application of the composite hydrogels reduced the release of the inflammatory factors IL-6 and TNF-α and reduced bone loss around the implant in rats with bacterial-induced peri-implantitis. Conclusion Our observations suggest that HMME@ZIF-8 may be a new good sonosensitizer material for sonodynamic antibacterial therapy. The use of HMME@ZIF-8/Met/BMP-2@PLGA/GelMA composite hydrogels in combination with ultrasound can provide a novel option for treating peri-implantitis in the future.
Collapse
Affiliation(s)
- Bo Hu
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Wang Qiao
- Department of Stomatology, Shapingba Hospital Affiliated to Chongqing University, Chongqing, China
| | - Yang Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoming Fu
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
14
|
Madi M, Abdelsalam M, Elakel A, Zakaria O, AlGhamdi M, Alqahtani M, AlMuhaish L, Farooqi F, Alamri TA, Alhafid IA, Alzahrani IM, Alam AH, Alhashmi MT, Alasseri IA, AlQuorain AA, AlQuorain AA. Salivary interleukin-17A and interleukin-18 levels in patients with celiac disease and periodontitis. PeerJ 2024; 12:e17374. [PMID: 38756445 PMCID: PMC11097963 DOI: 10.7717/peerj.17374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/19/2024] [Indexed: 05/18/2024] Open
Abstract
Background An increased level of interleukin-17A and interleukin-18 in the serum and intestinal mucosa of celiac disease patients reflecting the severity of villous atrophy and inflammation was documented. Thus, the objective of this study was to evaluate the concentrations of salivary-17A, interleukin-1 beta, and interleukin-18 in patients with celiac disease who are on a gluten-free diet, both with and without periodontitis, and to compare these levels with those in healthy individuals. Methods The study involved 23 participants with serologically confirmed celiac disease (CD) and 23 control subjects. The CD patients had been following a gluten-free diet (GFD) for a minimum of 1 year and had no other autoimmune disorders. The research involved collecting demographic data, conducting periodontal examinations, gathering unstimulated whole saliva, and performing enzyme-linked immunosorbent assays to measure salivary interleukin-17A, interleukin-1 beta, and interleukin-18 levels. Spearman's correlation analysis was utilized to explore the relationships between CD markers in patients on a GFD and their periodontal clinical findings. Results The periodontal findings indicated significantly lower values in celiac disease patients adhering to a gluten-free diet compared to control subjects (p = 0.001). No significant differences were found in salivary IL-17A, IL-18, and IL-1B levels between celiac disease patients and control subjects. Nevertheless, the levels of all interleukins were elevated in periodontitis patients in both the celiac and control groups. The IL-1 Beta level was significantly higher in periodontitis patients compared to non-periodontitis patients in the control group (p = 0.035). Significant negative correlations were observed between serum IgA levels and plaque index (r = -0.460, p = 0.010), as well as gingival index (r = -0.396, p = 0.030) in CD patients on a gluten-free diet. Conclusion Celiac disease patients on gluten-free diet exhibited better periodontal health compared to control subjects. However, increased levels of salivary IL-17A, IL-18 and IL-1B levels were associated with periodontitis. Additionally, serum IgA level was significantly inversely associated with periodontitis clinical manifestations and with salivary inflammatory mediators in CD patients on GFD.
Collapse
Affiliation(s)
- Marwa Madi
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Eastern Province, Saudi Arabia
| | - Maha Abdelsalam
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Eastern Province, Saudi Arabia
| | - Ahmed Elakel
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Eastern Province, Saudi Arabia
| | - Osama Zakaria
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Eastern Province, Saudi Arabia
| | - Maher AlGhamdi
- College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Eastern Province, Saudi Arabia
| | - Mohammed Alqahtani
- College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Eastern Province, Saudi Arabia
| | - Luba AlMuhaish
- College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Eastern Province, Saudi Arabia
| | - Faraz Farooqi
- Department of Dental Education, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Eastern Province, Saudi Arabia
| | - Turki A. Alamri
- Department of Internal Medicine, Gastroenterology Division, King Fahad University Hospital, Imam Abdulrahman Bin Faisal University, Dammam, Eastern Province, Saudi Arabia
| | - Ibrahim A. Alhafid
- Department of Internal Medicine, Gastroenterology Division, King Fahad University Hospital, Imam Abdulrahman Bin Faisal University, Dammam, Eastern Province, Saudi Arabia
| | - Ibrahim M. Alzahrani
- Department of Internal Medicine, Gastroenterology Division, King Fahad University Hospital, Imam Abdulrahman Bin Faisal University, Dammam, Eastern Province, Saudi Arabia
| | - Adel H. Alam
- Department of Internal Medicine, Gastroenterology Division, King Fahad University Hospital, Imam Abdulrahman Bin Faisal University, Dammam, Eastern Province, Saudi Arabia
| | - Majed T. Alhashmi
- Department of Internal Medicine, Gastroenterology Division, King Fahad University Hospital, Imam Abdulrahman Bin Faisal University, Dammam, Eastern Province, Saudi Arabia
| | - Ibrahim A. Alasseri
- Department of Internal Medicine, Gastroenterology Division, King Fahad University Hospital, Imam Abdulrahman Bin Faisal University, Dammam, Eastern Province, Saudi Arabia
| | - Ahmad A. AlQuorain
- College of medicine, Imam Abdulrahman Bin Faisal University, Dammam, Eastern Province, Saudi Arabia
| | - Abdulaziz A. AlQuorain
- Department of Internal Medicine, Gastroenterology Division, King Fahad University Hospital, Imam Abdulrahman Bin Faisal University, Dammam, Eastern Province, Saudi Arabia
| |
Collapse
|
15
|
Chen X, Lei H, Cheng Y, Fang S, Sun W, Zhang X, Jin Z. CXCL8, MMP12, and MMP13 are common biomarkers of periodontitis and oral squamous cell carcinoma. Oral Dis 2024; 30:390-407. [PMID: 36321868 DOI: 10.1111/odi.14419] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/24/2022] [Accepted: 10/26/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To analysis the relationship between periodontitis (PD) and oral squamous cell carcinoma (OSCC) by bioinformatic analysis. MATERIALS AND METHODS We analyzed the gene expression profiles of PD (GSE16134) from the Gene Expression Omnibus (GEO) database and OSCC samples from TCGA-HNSC (head and neck squamous cell carcinoma) and identified common differentially expressed genes (DEGs) in PD and OSCC. Then, functional annotation and signaling pathway enrichment, protein interaction network construction, and hub gene identification were performed. Subsequently, the function and signaling pathway enrichment of hub genes, miRNA interaction, and transcription factor interaction analyses were carried out. We analyzed GSE10334 and GSE30784 as validation datasets, and performed qRT-PCR experiments simultaneously for validation, and obtained 4 hub genes. Finally, immune infiltration analysis and clinical correlation analysis of 4 hub genes and related miRNAs were performed. RESULTS We identified 31 DEGs (16 up-regulated and 15 down-regulated). Four hub genes were obtained by qRT-PCR and validation dataset analysis, including IL-1β, CXCL8, MMP12, and MMP13. The expression levels of them were all significantly upregulated in both diseases. The functions of these genes focus on three areas: neutrophil chemotaxis, migration, and CXCR chemokine receptor binding. Key pathways include IL-17 signaling pathway, chemokine signaling pathway, and cytokine-cytokine receptor interactions pathway. Immune infiltration analysis showed that the expressions of 4 hub genes were closely related to a variety of immune cells. ROC curve analysis indicated that AUCs of 4 hub genes are all greater than 0.7, among which MMP12 and MMP13 were greater than 0.9. Kaplan-Meier survival analysis indicated that worse OS was strongly correlated with CXCL8 and MMP13 high-expression groups. MMP12 low-expression group was strongly associated with worse OS. The results of multivariate Cox regression analysis showed that age, N stage, CXCL8, MMP12, and MMP13 were independent prognostic factors for OS. We also identified 3 miRNAs, including hsa-miR-19b-3p, hsa-miR-181b-2-3p, and hsa-miR-495-3p, that were closely related to 4 hub genes. Hsa-miR-495-3p is closely related to the diagnosis and prognosis of OSCC. CONCLUSIONS We identified 4 hub genes between PD and OSCC, including IL-1β, CXCL8, MMP12, and MMP13. These genes may mediate the co-morbid process of PD and OSCC through inflammation-related pathways such as the IL-17 signaling pathway. It is worth noting that CXCL8, MMP12, and MMP13 have great significance in the diagnosis and prognosis of OSCC.
Collapse
Affiliation(s)
- Xin Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an, China
| | - Hao Lei
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, School of Medicine, Xi'an, China
| | - Yuxun Cheng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an, China
| | - Shishu Fang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an, China
| | - Weifu Sun
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an, China
| | - Xiaochen Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an, China
| | - Zuolin Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an, China
| |
Collapse
|
16
|
Cao X, Cheng XW, Liu YY, Dai HW, Gan RY. Inhibition of pathogenic microbes in oral infectious diseases by natural products: Sources, mechanisms, and challenges. Microbiol Res 2024; 279:127548. [PMID: 38016378 DOI: 10.1016/j.micres.2023.127548] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/31/2023] [Accepted: 11/10/2023] [Indexed: 11/30/2023]
Abstract
The maintenance of oral health is of utmost importance for an individual's holistic well-being and standard of living. Within the oral cavity, symbiotic microorganisms actively safeguard themselves against potential foreign diseases by upholding a multifaceted equilibrium. Nevertheless, the occurrence of an imbalance can give rise to a range of oral infectious ailments, such as dental caries, periodontitis, and oral candidiasis. Presently, clinical interventions encompass the physical elimination of pathogens and the administration of antibiotics to regulate bacterial and fungal infections. Given the limitations of various antimicrobial drugs frequently employed in dental practice, the rising incidence of oral inflammation, and the escalating bacterial resistance to antibiotics, it is imperative to explore alternative remedies that are dependable, efficacious, and affordable for the prevention and management of oral infectious ailments. There is an increasing interest in the creation of novel antimicrobial agents derived from natural sources, which possess attributes such as safety, cost-effectiveness, and minimal adverse effects. This review provides a comprehensive overview of the impact of natural products on the development and progression of oral infectious diseases. Specifically, these products exert their influences by mitigating dental biofilm formation, impeding the proliferation of oral pathogens, and hindering bacterial adhesion to tooth surfaces. The review also encompasses an examination of the various classes of natural products, their antimicrobial mechanisms, and their potential therapeutic applications and limitations in the context of oral infections. The insights garnered from this review can support the promising application of natural products as viable therapeutic options for managing oral infectious diseases.
Collapse
Affiliation(s)
- Xin Cao
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Xing-Wang Cheng
- Center for Joint Surgery, Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yin-Ying Liu
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A⁎STAR), 31 Biopolis Way, Singapore 138669, Singapore; Department of Food Science and Technology, Faculty of Science, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore
| | - Hong-Wei Dai
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A⁎STAR), 31 Biopolis Way, Singapore 138669, Singapore; Department of Food Science and Technology, Faculty of Science, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore.
| |
Collapse
|
17
|
Suryavanshi VG, Tale RK, Aasole AG, Barge AK, Sanikop S, Gopashetti P. Assessment of IL-8 Levels in Saliva of Healthy and Chronic Periodontitis Individuals. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2024; 16:S825-S827. [PMID: 38595572 PMCID: PMC11001102 DOI: 10.4103/jpbs.jpbs_1041_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/20/2023] [Accepted: 10/28/2023] [Indexed: 04/11/2024] Open
Abstract
Inflammation of the gums and other tissues supporting the teeth, as well as gradual loss of attachment and bone, are the results of chronic periodontitis, an infectious illness. During inflammation, a group of low molecular weight proteins called cytokines facilitate a complex interaction between inflammatory cells (such neutrophils) and other cellular components in connective tissue. The cytokine interleukin-8 (IL-8) is a potent neutrophil chemoattractant. Therefore, it is possible that IL-8 is crucial to the development of periodontitis's pathology. Objectives 1) To estimate concentration of IL-8 levels in healthy individuals and chronic periodontitis individuals. 2) To compare IL-8 levels in healthy and chronic periodontitis individuals. Materials and Methods Participants in this research will be recruited from among those who visit the outpatient department (OPD) at the NGH Institute of Dental Sciences and Research Centre, Belagavi, run by the Maratha Mandal. Control Group Subjects with no clinical attachment loss (CAL) and a probing depth of 3.0 mm are considered to be periodontally healthy. Those in Group 2 (chronic periodontitis) have a chronic form of the disease, as shown by a probing pocket depth (PPD) of less than 5 mm and CAL of less than 2 mm. Unstimulated saliva sample will be collected in a 5 mL wide-mouthed sterile container by spitting method. Samples collected will be centrifuged. The supernatant is collected and stored at -80°C and then assayed for IL-8 concentration by using the standardized IL-8 ELISA kit.
Collapse
Affiliation(s)
| | - Ravi K. Tale
- Department of Dentistry, Government Medical College, Sindhudurg, Maharashtra, India
| | - Ankush G. Aasole
- Department of General Surgery, Government Medical College, Sindhudurg, Maharashtra, India
| | - Arti K. Barge
- Department of Pathology, Government Medical College, Sindhudurg, Maharashtra, India
| | - Sheetal Sanikop
- Department of Periodontolgy, MMDC, Belgavi, Karnataka, India
| | - Pallavi Gopashetti
- Department of Conservative Dentistry and Endodontics, MMDC, Belgavi, Karnataka, India
| |
Collapse
|
18
|
Hu X, Su X. Study of Herbs Cortex Moutan, Poria cocos, and Alisma orientale and Periodontitis. Int Dent J 2024; 74:88-94. [PMID: 37758581 PMCID: PMC10829340 DOI: 10.1016/j.identj.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 09/29/2023] Open
Abstract
INTRODUCTION The Chinese traditional herbs Cortex Moutan, Poria cocos, and Alisma orientale are considered to have potential to ameliorate periodontitis, although the possible underlying mechanisms remain mostly unknown. Due to the complex formulation of Chinese herbs, it is important to understand the mechanisms of pharmacologic effects of traditional herbs for better application in modern medical treatment. METHODS Network pharmacology was applied to explore the mechanism of Cortex Moutan, Poria cocos, and Alisma orientale. First we analysed their chemical ingredients using the Traditional Chinese Medicine Systems Pharmacology database and identified 20 active ingredients. Then we analysed the target genes of these 20 active ingredients as well as genes associated with periodontitis and found 74 co-target genes. We further analysed the protein-protein interaction network of these 74 co-target genes using the STRING database and enriched the pathways using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. RESULTS The top 10 core targets elicited were vascular endothelial growth factor A (VEGFA), interlukin-6 (IL-6), tumour necrosis factor (TNF), matrix metalloproteinase-2 (MMP2), matrix metalloproteinase-9 (MMP9), AKT serine/threonine kinase 1 (AKT1), prostaglandin-endoperoxide synthase 2 (PTGS2), kinase insert domain receptor (KDR), fibroblast growth factor 2 (FGF2), and serpin family E member 1 (SERPINE1). Using these a network of "herbs-ingredients-targetgenes-KEGG pathways." was constructed. CONCLUSIONS The target and bioprocess network suggested that the pharmacologic effects of Cortex Moutan, Poria cocos, and Alisma orientale may be mainly dependent on their anti-inflammatory potential. Further work is required to eucidate their detailed mechanisms of activity.
Collapse
Affiliation(s)
- Xinyuan Hu
- Department of Stomatology, Harbin Medical University Cancer Hospital, Nangang District, Harbin, China
| | - Xin Su
- Department of Stomatology, The Sixth Affiliated Hospital of Harbin Medical University, Songbei District, Harbin, China.
| |
Collapse
|
19
|
Zeng WJ, Liu JR, Ouyang XY, Zhao QQ, Liu WY, Lv PY, Zhang SN, Zhong JS. The expression levels of chemotaxis-related molecules CXC chemokine receptor 1, interleukin-8, and pro-platelet basic protein in gingival tissues. J Dent Sci 2024; 19:58-63. [PMID: 38303873 PMCID: PMC10829633 DOI: 10.1016/j.jds.2023.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 05/25/2023] [Indexed: 02/03/2024] Open
Abstract
Background/purpose Excessive host immune response is thought to be an important cause of periodontal tissue damage during periodontitis. The potent chemotaxis produced by locally released chemokines is the key signal to trigger this response. Here, we aimed to investigate the expression of CXC chemokine receptor 1 (CXCR1), and chemokines interleukin-8 (IL-8) and pro-platelet basic protein (PPBP) in human inflammatory gingival tissues compared with healthy tissues. Materials and methods A total of 54 human gingival tissues, 27 healthy and 27 inflammatory samples, were collected. Fifteen specimens of each group were employed for quantitative reverse transcription polymerase chain reaction to determine the mRNA levels of CXCR1, IL-8, and PPBP. Six samples of each group were used for Western blotting to investigate the protein expression of CXCR1 and for enzyme-linked immunosorbent assay to evaluate the protein levels of IL-8 and PPBP, respectively. Results The mRNA levels of chemokine receptor CXCR1, chemokine IL-8, and PPBP in inflammatory gingival tissues were significantly higher than those in healthy controls (P < 0.05). The protein levels of CXCR1, IL-8, and PPBP in inflammatory gingival tissues were also significantly higher than those in healthy gingival tissues (P < 0.05). Conclusion When compared to healthy gingival tissues, the expression of CXCR1, IL-8, and PPBP in inflammatory gingival tissues is higher.
Collapse
Affiliation(s)
| | | | - Xiang-Ying Ouyang
- Department of Periodontology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentisitry Minisrty of Health, Beijing, China
| | - Quan-Quan Zhao
- Department of Periodontology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentisitry Minisrty of Health, Beijing, China
| | - Wen-Yi Liu
- Department of Periodontology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentisitry Minisrty of Health, Beijing, China
| | - Pei-Ying Lv
- Department of Periodontology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentisitry Minisrty of Health, Beijing, China
| | - Sheng-Nan Zhang
- Department of Periodontology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentisitry Minisrty of Health, Beijing, China
| | - Jin-Sheng Zhong
- Department of Periodontology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentisitry Minisrty of Health, Beijing, China
| |
Collapse
|
20
|
Huang J, Wang Y, Zhou Y. METTL3 and METTL14 regulate IL-6 expression via RNA m6A modification of zinc transporter SLC39A9 and DNA methylation of IL-6 in periodontal ligament cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119605. [PMID: 37821055 DOI: 10.1016/j.bbamcr.2023.119605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
The inflammatory response is a key process in periodontitis. The N6-methyladenosine (m6A) modification has been proven to be involved in various physiological and pathological processes. This study aims to investigate the role and downstream mechanism of N6-adenosine-enzyme subunits methyltransferase (METTL) 3 and 14 in the inflammatory response of periodontal ligament cells (PDLCs). The total m6A content and the expression of METTL3 and METTL14 were upregulated in lipopolysaccharide (LPS)-stimulated PDLCs. Knockdown of METTL3 or METTL14 suppressed the LPS-induced interleukin (IL)-6 expression, as shown by quantitative polymerase chain reaction (qPCR) and enzyme linked immunosorbent assay (ELISA). Mechanistically, conjoint analysis of m6A sequencing of METTL3-knockdown and METTL14-knockdown PDLCs revealed that the expression of solute carrier family 39 member 9 (SLC39A9) was mediated in a m6A-dependent manner. The suppression of LPS-induced IL-6 by METTL3 or METTL14 knockdown was partially counteracted by SLC39A9 knockdown, which induced downregulation of intracellular zinc via immunofluorescence staining. Amplicon bisulfite sequencing (AmpBS) demonstrated that METTL3/14 knockdown increased the methylation at one position of the IL-6 promoter, while SLC39A9 knockdown decreased it, which was basically consistent with the intracellular zinc concentration and negatively associated with IL-6 expression. Moreover, METTL3 or METTL14 knockdown attenuated the LPS-induced phosphorylation of p38 and JNK mitogen-activated protein kinase (MAPK), which was partially counteracted by SLC39A9 knockdown. These results revealed the "LPS-METTL3/14-SLC39A9-zinc-IL-6" axis and involvement of p38 and JNK MAPK signaling pathway in the inflammatory responses of PDLCs.
Collapse
Affiliation(s)
- Jing Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Center for Prosthodontics and Implant Dentistry, Optics Valley Branch, School and Hospital of Stomatology, Wuhan University, Wuhan 430074, China
| | - Yining Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Prosthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yi Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Center for Prosthodontics and Implant Dentistry, Optics Valley Branch, School and Hospital of Stomatology, Wuhan University, Wuhan 430074, China; Department of Prosthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
21
|
Torumtay Cin G, Lektemur Alpan A, Çevik Ö. Efficacy of injectable platelet-rich fibrin on clinical and biochemical parameters in non-surgical periodontal treatment: a split-mouth randomized controlled trial. Clin Oral Investig 2023; 28:46. [PMID: 38153510 DOI: 10.1007/s00784-023-05447-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/17/2023] [Indexed: 12/29/2023]
Abstract
OBJECTIVES The purpose of this clinical trial was to evaluate the potential clinical and biochemical effects of injectable platelet-rich fibrin (i-PRF) application adjunct to scaling and root planning (ScRp) in deep periodontal pockets. MATERIALS AND METHODS In this split-mouth-designed study, 17 patients with 34 deep periodontal pockets were randomly treated with ScRp + i-PRF (test group) and ScRp + saline (control group). Clinical periodontal measurements were recorded at baseline, 1st, 3rd, and 6th months after the treatments. The levels of vascular endothelial growth factor (VEGF), tumor necrosis factor-α (TNF-α), and interleukin (IL)-10 in gingival crevicular fluid (GCF) samples were analyzed using the ELISA method at baseline, 7th, and 14th days. RESULTS Clinical periodontal parameters showed significant improvements with both treatment modalities. Mean pocket reduction (PD) and clinical attachment (CAL) gain were significantly higher in the test group than in controls at follow-up visits (p < 0.05). In the test group, gingival recession (GR) values were significantly lower compared to the control group. VEGF and IL-10 levels in the test group were significantly higher than in controls at the 14th day, and TNF-α levels were found significantly lower in the test group at the 7th and 14th days. CONCLUSIONS Especially in the test group, the significant increase in VEGF and IL-10 expressions and the decrease in TNF-α levels may have accelerated the periodontal healing observed in the clinical parameters. CLINICAL RELEVANCE The result of the present study demonstrated the beneficial effects of adjunctive i-PRF administration during non-surgical periodontal treatment of deep periodontal pockets. CLINICAL TRIAL REGISTRATION NUMBER NCT05753631.
Collapse
Affiliation(s)
- Gizem Torumtay Cin
- Department of Periodontology, Faculty of Dentistry, Pamukkale University, Denizli, Turkey.
| | - Aysan Lektemur Alpan
- Department of Periodontology, Faculty of Dentistry, Pamukkale University, Denizli, Turkey
| | - Özge Çevik
- Department of Medical Biochemistry, Faculty of Medicine, Adnan Menderes University, Aydın, Turkey
| |
Collapse
|
22
|
Lim Y, Kim HY, Han D, Choi B. Proteome and immune responses of extracellular vesicles derived from macrophages infected with the periodontal pathogen Tannerella forsythia. J Extracell Vesicles 2023; 12:e12381. [PMID: 38014595 PMCID: PMC10682907 DOI: 10.1002/jev2.12381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023] Open
Abstract
Periodontitis is a chronic inflammatory disease caused by periodontal pathogens in subgingival plaque and is associated with systemic inflammatory diseases. Extracellular vesicles (EVs) released from host cells and pathogens carry a variety of biological molecules and are of interest for their role in disease progression and as diagnostic markers. In the present study, we analysed the proteome and inflammatory response of EVs derived from macrophages infected with Tannerella forsythia, a periodontal pathogen. The EVs isolated from the cell conditioned medium of T. forsythia-infected macrophages were divided into two distinct vesicles, macrophage-derived EVs and T. forsythia-derived OMVs, by size exclusion chromatography combined with density gradient ultracentrifugation. Proteome analysis showed that in T. forsythia infection, macrophage-derived EVs were enriched with pro-inflammatory cytokines and inflammatory mediators associated with periodontitis progression. T. forsythia-derived OMVs harboured several known virulence factors, including BspA, sialidase, GroEL and various bacterial lipoproteins. T. forsythia-derived OMVs induced pro-inflammatory responses via TLR2 activation. In addition, we demonstrated that T. forsythia actively released OMVs when T. forsythia encountered macrophage-derived soluble molecules. Taken together, our results provide insight into the characterisation of EVs derived from cells infected with a periodontal pathogen.
Collapse
Affiliation(s)
- Younggap Lim
- Department of Oral Microbiology and Immunology, School of DentistrySeoul National UniversitySeoulRepublic of Korea
| | - Hyun Young Kim
- Department of Oral Microbiology and Immunology, School of DentistrySeoul National UniversitySeoulRepublic of Korea
- Dental Research Institute, School of DentistrySeoul National UniversitySeoulRepublic of Korea
| | - Dohyun Han
- Transdisciplinary Department of Medicine & Advanced TechnologySeoul National University HospitalSeoulRepublic of Korea
- Proteomics Core Facility, Biomedical Research InstituteSeoul National University HospitalSeoulRepublic of Korea
- Department of MedicineSeoul National University College of MedicineSeoulRepublic of Korea
| | - Bong‐Kyu Choi
- Department of Oral Microbiology and Immunology, School of DentistrySeoul National UniversitySeoulRepublic of Korea
| |
Collapse
|
23
|
Vafaeipour Z, Ghasemzadeh Rahbardar M, Hosseinzadeh H. Effect of saffron, black seed, and their main constituents on inflammatory cytokine response (mainly TNF-α) and oxidative stress status: an aspect on pharmacological insights. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2241-2259. [PMID: 37103518 DOI: 10.1007/s00210-023-02501-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/15/2023] [Indexed: 04/28/2023]
Abstract
Tumor necrosis factor-α (TNF-α), an inflammatory cytokine, is produced by monocytes and macrophages. It is known as a 'double-edged sword' because it is responsible for advantageous and disadvantageous events in the body system. The unfavorable incident includes inflammation, which induces some diseases such as rheumatoid arthritis, obesity, cancer, and diabetes. Many medicinal plants have been found to prevent inflammation, such as saffron (Crocus sativus L.) and black seed (Nigella sativa). Therefore, the purpose of this review was to assess the pharmacological effects of saffron and black seed on TNF-α and diseases related to its imbalance. Different databases without time limitations were investigated up to 2022, including PubMed, Scopus, Medline, and Web of Science. All the original articles (in vitro, in vivo, and clinical studies) were collected on the effects of black seed and saffron on TNF-α. Black seed and saffron have therapeutic effects against many disorders, such as hepatotoxicity, cancer, ischemia, and non-alcoholic fatty liver, by decreasing TNF-α levels based on their anti-inflammatory, anticancer, and antioxidant properties. Saffron and black seed can treat a variety of diseases by suppressing TNF-α and exhibiting a variety of activities such as neuroprotective, gastroprotective, immunomodulatory, antimicrobial, analgesic, antitussive, bronchodilator, antidiabetic activity, anticancer, and antioxidant effects. To uncover the beneficial underlying mechanisms of black seed and saffron, more clinical trials and phytochemical research are required. Also, these two plants affect other inflammatory cytokines, hormones, and enzymes, implying that they could be used to treat a variety of diseases.
Collapse
Affiliation(s)
- Zeinab Vafaeipour
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
24
|
Adelfio M, Bonzanni M, Callen GE, Paster BJ, Hasturk H, Ghezzi CE. A physiologically relevant culture platform for long-term studies of in vitro gingival tissue. Acta Biomater 2023; 167:321-334. [PMID: 37331612 PMCID: PMC10528240 DOI: 10.1016/j.actbio.2023.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/20/2023]
Abstract
There is a clinical need to understand the etiologies of periodontitis, considering the growing socio-economic impact of the disease. Despite recent advances in oral tissue engineering, experimental approaches have failed to develop a physiologically relevant gingival model that combines tissue organization with salivary flow dynamics and stimulation of the shedding and non-shedding oral surfaces. Herein, we develop a dynamic gingival tissue model composed of a silk scaffold, replicating the cyto-architecture and oxygen profile of the human gingiva, along with a saliva-mimicking medium that reflected the ionic composition, viscosity, and non-Newtonian behavior of human saliva. The construct was cultured in a custom designed bioreactor, in which force profiles on the gingival epithelium were modulated through analysis of inlet position, velocity and vorticity to replicate the physiological shear stress of salivary flow. The gingival bioreactor supported the long-term in vivo features of the gingiva and improved the integrity of the epithelial barrier, critical against the invasion of pathogenic bacteria. Furthermore, the challenge of the gingival tissue with P. gingivalis lipopolysaccharide, as an in vitro surrogate for microbial interactions, indicated a greater stability of the dynamic model in maintaining tissue homeostasis and, thus, its applicability in long-term studies. The model will be integrated into future studies with the human subgingival microbiome to investigate host-pathogen and host-commensal interactions. STATEMENT OF SIGNIFICANCE: The major societal impact of human microbiome had reverberated up to the establishment of the Common Fund's Human Microbiome Project, that has the intent of studying the role of microbial communities in human health and diseases, including periodontitis, atopic dermatitis, or asthma and inflammatory bowel disease. In addition, these chronic diseases are emergent drivers of global socioeconomic status. Not only common oral diseases have been shown to be directly correlated with several systemic conditions, but they are differentially impacting some racial/ethnic and socioeconomic groups. To address this growing social disparity, the development of in vitro gingival model would provide a time and cost-effective experimental platform, able to mimic the spectrum of periodontal disease presentation, for the identification of predictive biomarkers for early-stage diagnosis.
Collapse
Affiliation(s)
- M Adelfio
- Department of Biomedical Engineering, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA
| | - M Bonzanni
- Department of Neuroscience, School of Medicine, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA
| | - G E Callen
- Department of Biomedical Engineering, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA
| | - B J Paster
- The Forsyth Institute, 245 First St, Cambridge, MA 02142, USA
| | - H Hasturk
- The Forsyth Institute, 245 First St, Cambridge, MA 02142, USA
| | - C E Ghezzi
- Department of Biomedical Engineering, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA.
| |
Collapse
|
25
|
Prucsi Z, Zimny A, Płonczyńska A, Zubrzycka N, Potempa J, Sochalska M. Porphyromonas gingivalis Peptidyl Arginine Deiminase (PPAD) in the Context of the Feed-Forward Loop of Inflammation in Periodontitis. Int J Mol Sci 2023; 24:12922. [PMID: 37629104 PMCID: PMC10454286 DOI: 10.3390/ijms241612922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Periodontitis is a widespread chronic inflammatory disease caused by a changed dysbiotic oral microbiome. Although multiple species and risk factors are associated with periodontitis, Porphyromonas gingivalis has been identified as a keystone pathogen. The immune-modulatory function of P. gingivalis is well characterized, but the mechanism by which this bacterium secretes peptidyl arginine deiminase (PPAD), a protein/peptide citrullinating enzyme, thus contributing to the infinite feed-forward loop of inflammation, is not fully understood. To determine the functional role of citrullination in periodontitis, neutrophils were stimulated by P. gingivalis bearing wild-type PPAD and by a PPAD mutant strain lacking an active enzyme. Flow cytometry showed that PPAD contributed to prolonged neutrophil survival upon bacterial stimulation, accompanied by the secretion of aberrant IL-6 and TNF-α. To further assess the complex mechanism by which citrullination sustains a chronic inflammatory state, the ROS production and phagocytic activity of neutrophils were evaluated. Flow cytometry and colony formation assays showed that PPAD obstructs the resolution of inflammation by promoting neutrophil survival and the release of pro-inflammatory cytokines, while enhancing the resilience of the bacteria to phagocytosis.
Collapse
Affiliation(s)
- Zsombor Prucsi
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Agnieszka Zimny
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Alicja Płonczyńska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-387 Krakow, Poland
| | - Natalia Zubrzycka
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-387 Krakow, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
- Department of Oral Immunity and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Maja Sochalska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| |
Collapse
|
26
|
Sumbayak IA, Masulili SLC, Tadjoedin FM, Sulijaya B, Mutiara A, Khoirowati D, Soeroso Y, Bachtiar BM. Changes in Interleukin-1β, Tumor Necrosis Factor-α, and Interleukin-10 Cytokines in Older People with Periodontitis. Geriatrics (Basel) 2023; 8:79. [PMID: 37623272 PMCID: PMC10454687 DOI: 10.3390/geriatrics8040079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/26/2023] Open
Abstract
Aging can change the ability to respond to various stimuli and physical conditions. A decreased immune response is a form of deterioration of function in older people, who then become more vulnerable when exposed to pathogens. Periodontitis is an inflammatory disease of the periodontal tissues that often occurs in older people. This study aimed to clinically analyze the periodontal status and cytokine levels of IL-1β, TNF-α, and IL-10 in older people and adults with periodontitis. This clinical study examined 20 persons in a group of older people and 20 persons in a group of adults. The clinical measurements of periodontal status included the Simplified Oral Hygiene Index (OHI-S), Plaque Index (PlI), and Papilla Bleeding Index (PBI). The cytokine levels in gingival crevicular fluid (GCF) were quantified by using ELISA kits. The OHI-S, PlI, and PBI were found to be higher in the older group. The mean values of cytokines were higher in the older group than in adults, although no statistically significant differences were found. A strong correlation was found between the clinical measurements and the cytokine levels in the GCF. There was an increasing tendency of pro-inflammatory and anti-inflammatory cytokines in the older group compared to the adult group.
Collapse
Affiliation(s)
- Ines Augustina Sumbayak
- Department of Periodontics, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (I.A.S.); (F.M.T.); (B.S.); (A.M.); (D.K.); (Y.S.)
| | - Sri Lelyati C. Masulili
- Department of Periodontics, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (I.A.S.); (F.M.T.); (B.S.); (A.M.); (D.K.); (Y.S.)
| | - Fatimah Maria Tadjoedin
- Department of Periodontics, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (I.A.S.); (F.M.T.); (B.S.); (A.M.); (D.K.); (Y.S.)
| | - Benso Sulijaya
- Department of Periodontics, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (I.A.S.); (F.M.T.); (B.S.); (A.M.); (D.K.); (Y.S.)
| | - Arrum Mutiara
- Department of Periodontics, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (I.A.S.); (F.M.T.); (B.S.); (A.M.); (D.K.); (Y.S.)
| | - Diana Khoirowati
- Department of Periodontics, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (I.A.S.); (F.M.T.); (B.S.); (A.M.); (D.K.); (Y.S.)
| | - Yuniarti Soeroso
- Department of Periodontics, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (I.A.S.); (F.M.T.); (B.S.); (A.M.); (D.K.); (Y.S.)
| | - Boy M. Bachtiar
- Department of Oral Biology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia;
| |
Collapse
|
27
|
Mootha A. Is There a Similarity in Serum Cytokine Profile between Patients with Periodontitis or 2019-Novel Coronavirus Infection?-A Scoping Review. BIOLOGY 2023; 12:550. [PMID: 37106750 PMCID: PMC10135784 DOI: 10.3390/biology12040550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 04/09/2023]
Abstract
On 11 March 2020, the WHO declared a global emergency as a result of the 'novel coronavirus infection', which emerged from Wuhan, China, and rapidly spread across international borders. There is vast evidence that supports a direct link between oral cavities and this systemic circulation, but it is still unclear if oral conditions like periodontitis influenced the COVID-19 disease outcome. This scoping review highlights the fact that both periodontitis and COVID-19 independently increase serum pro-inflammatory cytokine levels, however there is a lack of documentation on if this biochemical profile synergizes with COVID-19 and/or periodontal severity in the same individuals. The purpose of this scoping review is to accumulate existing data on the serums IL-1β, IL-6, and TNF-α in COVID-19 and periodontitis patients and check if periodontitis negatively impacts the COVID-19 outcome, educating the population about the implications of COVID-19-related complications on their oral health, and vice versa, and motivating patients towards oral hygiene maintenance.
Collapse
Affiliation(s)
- Archana Mootha
- Department of Biomaterials, Graduate School of Biomedical and Health Sciences, School of Dentistry, Hiroshima University, Hiroshima 739-0046, Japan;
- Department of Periodontics, Saveetha Dental College, Velappanchavadi, Chennai 600077, India
| |
Collapse
|
28
|
Wahab D, Ayuningtyas D, Soeroso Y, Sulijaya B, Hutomo DI, Sukotjo C. Analysis of clinical parameter and tumor necrosis factor-alpha levels on keratinized tissue around implant and tooth. J Indian Soc Periodontol 2023; 27:160-166. [PMID: 37152463 PMCID: PMC10159088 DOI: 10.4103/jisp.jisp_592_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 05/21/2022] [Accepted: 05/22/2022] [Indexed: 05/09/2023] Open
Abstract
Background Studies have shown the importance of keratinized tissue around implants to prevent peri-implant diseases. This study aims to analyze the correlation of keratinized tissue around implants and teeth with clinical parameter scores and tumor necrosis factor-alpha (TNF-α) levels. Materials and Methods A cross-sectional study of 20 adults with 20 dental implants and 20 contralateral teeth that have functioned suprastructurally for more than 3 months without any systemic diseases. Keratinized tissue around implant and tooth was measured. The clinical examinations included the plaque index (PI), papilla bleeding index (PBI), and pocket depth (PD). Peri-implant sulcus fluid (PISF) and gingival crevicular fluid were collected to measure TNF-α levels. Spearman's test was used to analyze the correlation. Results Significant differences were found between keratinized tissue around the implant in PI, PBI, and PD (P < 0.05). Differences were found between wide and narrow keratinized tissue around contralateral teeth in PI and PBI (P < 0.05) but not in PD. TNF-α levels were not correlate to keratinized tissue width around implant and contralateral tooth (P > 0.05). Strong correlations were found between each clinical parameter score and the keratinized tissue width of peri-implant tissue in PI, PBI, and PD. Conclusion The clinical parameter score between wide and narrow keratinized tissue around implant showed strong correlation, particularly in PBI. This shows the importance of adequate keratinized tissue around implant to maintain implant stability.
Collapse
Affiliation(s)
- Deniarti Wahab
- Department of Periodontics, Faculty of Dentistry, Universitas Indonesia, Jakarta Indonesia
| | - Dewi Ayuningtyas
- Department of Periodontics, Faculty of Dentistry, Universitas Indonesia, Jakarta Indonesia
| | - Yuniarti Soeroso
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta Indonesia
| | - Benso Sulijaya
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta Indonesia
| | - Dimas Ilham Hutomo
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta Indonesia
| | - Cortino Sukotjo
- Department of Prosthodontics, College of Dentistry, University of Illinois Chicago, Chicago, Illinois, USA
| |
Collapse
|
29
|
Chen WA, Dou Y, Fletcher HM, Boskovic DS. Local and Systemic Effects of Porphyromonas gingivalis Infection. Microorganisms 2023; 11:470. [PMID: 36838435 PMCID: PMC9963840 DOI: 10.3390/microorganisms11020470] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/16/2023] Open
Abstract
Porphyromonas gingivalis, a gram-negative anaerobe, is a leading etiological agent in periodontitis. This infectious pathogen can induce a dysbiotic, proinflammatory state within the oral cavity by disrupting commensal interactions between the host and oral microbiota. It is advantageous for P. gingivalis to avoid complete host immunosuppression, as inflammation-induced tissue damage provides essential nutrients necessary for robust bacterial proliferation. In this context, P. gingivalis can gain access to the systemic circulation, where it can promote a prothrombotic state. P. gingivalis expresses a number of virulence factors, which aid this pathogen toward infection of a variety of host cells, evasion of detection by the host immune system, subversion of the host immune responses, and activation of several humoral and cellular hemostatic factors.
Collapse
Affiliation(s)
- William A. Chen
- Division of Biochemistry, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Yuetan Dou
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Hansel M. Fletcher
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Danilo S. Boskovic
- Division of Biochemistry, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| |
Collapse
|
30
|
Misra P, Kalsi R, Anand Arora S, Singh KS, Athar S, Saini A. Effect of Low-Level Laser Therapy on Early Wound Healing and Levels of Inflammatory Mediators in Gingival Crevicular Fluid Following Open Flap Debridement. Cureus 2023; 15:e34755. [PMID: 36909061 PMCID: PMC9999105 DOI: 10.7759/cureus.34755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction Low-level laser therapy (LLLT) has a beneficial effect on pain relief and wound healing. This study aims at a clinical evaluation of early wound healing and a biochemical evaluation of inflammatory mediators in gingival crevicular fluid (GCF) following LLLT with an open flap debridement (OFD) in periodontal therapy. Material and methods This randomized controlled trial included 40 chronic periodontitis patients with bilateral attachment loss, pocket depths of 5 mm affecting at least two quadrants, and radiographic evidence of horizontal bone loss. 120 control sites were randomly selected to receive OFD, and contralateral 120 test sites received bio-stimulation with a diode laser (890 nm) after OFD. The wound healing index was recorded at the 1st and 2nd weeks, and clinical parameters such as the plaque index, gingival index, pocket probing depth, clinical attachment level, and GCF inflammatory mediators were evaluated at baseline, 3, and 6 months. Results From the start of the study to 6 months later, there was a statistically significant drop in plaque index, gingival index, probing pocket depth, and gain clinical attachment levels in both groups. However, when the two groups were compared, there were no significant differences at any time intervals. GCF inflammatory mediators tumor necrosis factor (TNF) alpha and matrix metalloproteinases (MMP-8) decrease, and osteoprotegerin (OPG) levels increase in both the test group and control group from baseline to 3 months and 6 months. In intergroup comparisons, there was a statistically significant reduction in the test group as compared to the control group at 6 months. There was a decline in gingival crevicular fluid - interleukin-6 (GCF IL-6) levels from baseline to 3 months and 6 months in both the groups but when analysed statistically, the results were not significant on intergroup and intragroup comparison at any time interval. The Landry Wound Healing Index values in the 1st and 2nd weeks were showing statistically significant improved healing in the test group as compared to the control group. There was significantly better wound healing at sites where a diode laser was used. Conclusion LLLT increases early wound healing after periodontal surgical procedures.
Collapse
Affiliation(s)
- Priyanka Misra
- Department of Periodontics, ITS Dental College, Greater Noida, IND
| | - Rupali Kalsi
- Department of Periodontology, Government Institute of Medical Sciences, Noida, IND
| | | | | | - Simoona Athar
- Department of Periodontics, ITS Dental College, Greater Noida, IND
| | - Anchal Saini
- Department of Periodontics, ITS Dental College, Greater Noida, IND
| |
Collapse
|
31
|
Tseng CY, Yu PR, Hsu CC, Lin HH, Chen JH. The effect of isovitexin on lipopolysaccharide-induced renal injury and inflammation by induction of protective autophagy. Food Chem Toxicol 2023; 172:113581. [PMID: 36572206 DOI: 10.1016/j.fct.2022.113581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/11/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Chronic kidney disease (CKD) is a systemic inflammatory syndrome that includes tubulointerstitial inflammation. Lipopolysaccharide (LPS), the outer membrane of Gram-negative bacteria, can increase reactive oxygen species production (ROS) that triggers cell inflammation. Isovitexin (IV) is a flavone that has the potential for anticancer, antioxidant, and anti-inflammatory. This study aimed to hypothesize that IV inhibited LPS-induced renal injury in vitro and in vivo. In vitro study, IV prevented LPS-induced ROS production and increased cell viability on SV40-MES-13 cells. Additionally, IV ameliorated mitochondrial membrane potential, downregulated inflammation and pyroptosis factors on LPS treatment. We found that LPS treatment reduced the expression of autophagy, however, this effect was reversed by IV. In vivo study, the renal injury model in C57BL/6 mice cotreatment with IV was examined. In addition, IV decreased LPS-induced glomerular atrophy and reduced inflammation-related cytokines releases. Further showed that IV could significantly reduce LPS-induced inflammation and pyroptosis factors in mice. Under the immunostaining, increased fluorescence of LC3 autophagy-related protein was recovered by IV. In summary, IV ameliorated renal injury, inflammation and increased protected autophagy by anti-ROS production, anti-inflammation, and anti-pyroptosis. In the future, the safety of isovitexin as a novel perspective for CKD patients should be evaluated in further clinical studies.
Collapse
Affiliation(s)
- Chiao-Yun Tseng
- Department of Nutrition, Chung Shan Medical University, Taichung City, Taiwan
| | - Pei-Rong Yu
- Department of Nutrition, Chung Shan Medical University, Taichung City, Taiwan
| | - Cheng-Chin Hsu
- Department of Nutrition, Chung Shan Medical University, Taichung City, Taiwan
| | - Hui-Hsuan Lin
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung City, Taiwan
| | - Jing-Hsien Chen
- Department of Nutrition, Chung Shan Medical University, Taichung City, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung City, 40201, Taiwan.
| |
Collapse
|
32
|
Dosseva-Panova V, Pashova-Tasseva Z, Mlachkova A. Relationship between smoking and periodontal clinical findings and gene expression of IL-6 and TNF-α in severe periodontitis (clinical and laboratory data). BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2118074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Affiliation(s)
- Velitchka Dosseva-Panova
- Department of Periodontology, Faculty of Dental Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Zdravka Pashova-Tasseva
- Department of Periodontology, Faculty of Dental Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Antoaneta Mlachkova
- Department of Periodontology, Faculty of Dental Medicine, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
33
|
Ersahan S, Ozcelik F, Sirin DA, Hepsenoglu YE, Ozcelik IK, Topbas C. Is adrenomedullin upregulation due to apical periodontitis independent of periodontal disease? Odontology 2022:10.1007/s10266-022-00767-9. [DOI: 10.1007/s10266-022-00767-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/12/2022] [Indexed: 11/23/2022]
|
34
|
Fernandes GL, Vieira APM, Danelon M, Emerenciano NG, Berretta AA, Buszinski AFM, Hori JI, de Lima MHF, dos Reis TF, de Lima JA, Delbem ACB, da Silva SCM, Barbosa DB. Pomegranate Extract Potentiates the Anti-Demineralizing, Anti-Biofilm, and Anti-Inflammatory Actions of Non-Alcoholic Mouthwash When Associated with Sodium-Fluoride Trimetaphosphate. Antibiotics (Basel) 2022; 11:1477. [PMID: 36358132 PMCID: PMC9686636 DOI: 10.3390/antibiotics11111477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/27/2022] [Accepted: 10/19/2022] [Indexed: 12/01/2023] Open
Abstract
This study investigated the anti-caries and anti-inflammatory effects of mouthwash formulations containing Punica granatum (pomegranate) peel extract (PPE), sodium-trimetaphosphate, and low concentrations of fluoride. PPE was characterized using high-performance liquid chromatography (ellagic acid and punicalagin). Total phenolics were quantified among formulations, and their stability was analyzed for 28 days. The formulation effects were evaluated as follows: (1) inorganic component concentration and reduced demineralization on bovine enamel blocks subjected to pH cycling; (2) anti-biofilm effect on dual-biofilms of Streptococcus mutans ATCC 25175 and Candida albicans ATCC 10231 treated for 1 and 10 min, respectively; and (3) cytotoxicity and production of inflammatory mediators (interleukin-6 and tumor necrosis factor-alpha). The formulation containing 3% PPE, 0.3% sodium-trimetaphosphate, and 225 ppm of fluoride resulted in a 34.5% surface hardness loss; a 13% (treated for 1 min) and 36% (treated for 10 min) biofilm reduction in S. mutans; a 26% (1 min) and 36% (10 min) biofilm reduction in C. albicans; absence of cytotoxicity; and anti-inflammatory activity confirmed by decreased interleukin-6 production in mouse macrophages. Thus, our results provide a promising prospect for the development of an alcohol-free commercial dental product with the health benefits of P. granatum that have been recognized for a millennium.
Collapse
Affiliation(s)
- Gabriela Lopes Fernandes
- Graduate Program of Dental Science, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Araçatuba 16015-050, São Paulo, Brazil
| | - Ana Paula Miranda Vieira
- Graduate Program of Dental Science, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Araçatuba 16015-050, São Paulo, Brazil
| | - Marcelle Danelon
- School of Dentistry, University of Ribeirão Preto—UNAERP, Ribeirão Preto 14096-039, São Paulo, Brazil
- Department of Restorative Dentistry, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Araçatuba 16015-050, São Paulo, Brazil
| | - Nayara Gonçalves Emerenciano
- Graduate Program of Dental Science, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Araçatuba 16015-050, São Paulo, Brazil
| | | | | | - Juliana Issa Hori
- Apis Flora Industrial and Comercial Ltd. Ribeirão Preto 14020-670, São Paulo, Brazil
| | - Mikhael Haruo Fernandes de Lima
- Department of Biochemistry and Immunology, University of São Paulo Ribeirão Preto, Ribeirão Preto 14049-900, São Paulo, Brazil
| | - Thaila Fernanda dos Reis
- Department of Dental Materials and Prosthodontics, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Araçatuba 16015-050, São Paulo, Brazil
| | | | - Alberto Carlos Botazzo Delbem
- Department of Restorative Dentistry, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Araçatuba 16015-050, São Paulo, Brazil
| | | | - Debora Barros Barbosa
- Department of Dental Materials and Prosthodontics, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Araçatuba 16015-050, São Paulo, Brazil
| |
Collapse
|
35
|
Kim JM, Noh EM, You YO, Kim MS, Lee YR. Downregulation of Matriptase Inhibits Porphyromonas gingivalis Lipopolysaccharide-Induced Matrix Metalloproteinase-1 and Proinflammatory Cytokines by Suppressing the TLR4/NF- κB Signaling Pathways in Human Gingival Fibroblasts. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3865844. [PMID: 36246974 PMCID: PMC9553488 DOI: 10.1155/2022/3865844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/30/2022]
Abstract
Matriptases are cell surface proteolytic enzymes belonging to the type II transmembrane serine protease family that mediate inflammatory skin disorders and cancer progression. Matriptases may affect the development of periodontitis via protease-activated receptor-2 activity. However, the cellular mechanism by which matriptases are involved in periodontitis is unknown. In this study, we examined the antiperiodontitis effects of matriptase on Porphyromonas gingivalis-derived lipopolysaccharide (PG-LPS)-stimulated human gingival fibroblasts (HGFs). Matriptase small interfering RNA-transfected HGFs were treated with PG-LPS. The mRNA and protein levels of proinflammatory cytokines and matrix metalloproteinase 1 (MMP-1) were evaluated using the quantitative real-time polymerase chain reaction (qRT-PCR) and an enzyme-linked immunosorbent assay (ELISA), respectively. Western blot analyses were performed to measure the levels of Toll-like receptor 4 (TLR4)/interleukin-1 (IL-1) receptor-associated kinase (IRAK)/transforming growth factor β-activated kinase 1 (TAK1), p65, and p50 in PG-LPS-stimulated HGFs. Matriptase downregulation inhibited LPS-induced proinflammatory cytokine expression, including the expression of IL-6, IL-8, tumor necrosis factor-α (TNF-α), and IL-Iβ. Moreover, matriptase downregulation inhibited PG-LPS-stimulated MMP-1 expression. Additionally, we confirmed that the mechanism underlying the effects of matriptase downregulation involves the suppression of PG-LPS-induced IRAK1/TAK1 and NF-κB. These results suggest that downregulation of matriptase PG-LPS-induced MMP-1 and proinflammatory cytokine expression via TLR4-mediated IRAK1/TAK1 and NF-κB signaling pathways in HGFs.
Collapse
Affiliation(s)
- Jeong-Mi Kim
- Department of Biochemistry, Jeonbuk National University Medical School, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Eun-Mi Noh
- Department of Oral Biochemistry, And Institute of Biomaterials-Implant, College of Dentistry, Wonkwang University, Iksan City, Jeonbuk 54538, Republic of Korea
| | - Yong-Ouk You
- Department of Oral Biochemistry, And Institute of Biomaterials-Implant, College of Dentistry, Wonkwang University, Iksan City, Jeonbuk 54538, Republic of Korea
| | - Min Seuk Kim
- Department of Oral Physiology, And Institute of Biomaterial-Implant, College of Dentistry, Wonkwang University, Iksan City, Jeonbuk 54538, Republic of Korea
| | - Young-Rae Lee
- Department of Oral Biochemistry, And Institute of Biomaterials-Implant, College of Dentistry, Wonkwang University, Iksan City, Jeonbuk 54538, Republic of Korea
| |
Collapse
|
36
|
Bai Y, Wang C, Jiang H, Wang L, Li N, Zhang W, Liu H. Effects of hydrogen rich water and pure water on periodontal inflammatory factor level, oxidative stress level and oral flora: a systematic review and meta-analysis. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1120. [PMID: 36388830 PMCID: PMC9652511 DOI: 10.21037/atm-22-4422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/14/2022] [Indexed: 04/08/2025]
Abstract
BACKGROUND Hydrogen rich water (HRW) was used as an auxiliary treatment for periodontitis and peri-implantitis due to its good antioxidant properties. However, the stability of artificially added active hydrogen was far less than that of pure natural active hydrogen, which greatly reduced active hydrogen molecules number in HRW. Meanwhile, the effect of HRW was relatively slow. Finally, long-term drinking of HRW may cause abnormal liver function. Hence, this study sought to summarize and analyze the effects of HRW on oral inflammation and oral flora in various studies to determine whether HRW can be used to inhibit dental plaque formation and aliviate oral inflammation. METHODS Randomized controlled trials (RCTs) of HRW and pure water (PW) in the treatment of periodontal diseases published before March 2022 in the PubMed, Web of science, EMBASE, Cochrane, China Knowledge Resource Integrated, Wanfang, and Weipu databases were searched. Changes in the inflammatory factor levels, oxidative stress response, and oral flora were summarized and used as outcome indicators. The quality of included studies was assessed by Cochrane risk of bias assessment tool, and the standardized mean differences (SMD) and the 95% confidence intervals (CIs) were calculated using Review Manager 5.3. RESULTS In total, 17 studies, comprising 304 subjects, were included in this meta-analysis. Among them, 5 studies had a high risk of bias, and the rest had a certain risk of bias, thus, the total risk of bias was medium to low. The levels of interleukin (IL)-1β (SMD =-0.73; 95% CI: -1.29 to -0.18; P=0.009), tumor necrosis factor alpha (SMD =-2.51; 95% CI: -3.56 to -1.46; P<0.00001), IL-6 (SMD =-1.31; 95% CI: -1.96 to -0.67; P<0.0001), 8-hydroxyguanosine (SMD =-1.61; 95% CI: -2.35 to -0.87; P<0.0001), and reactive oxygen metabolites (SMD =-0.49; 95% CI: -0.91 to -0.06; P=0.02) in the HRW group decreased significantly, while the glutathione peroxidase level increased (SMD =2.5; 95% CI: 1.85 to 3.15; P<0.00001). Additionally, HRW was shown to effectively inhibit oral pathogenic bacteria activity (SMD =-0.91; 95% CI: -1.16 to -0.66; P<0.00001). CONCLUSIONS HRW effectively inhibits the inflammatory reaction, oxidative stress level, and bacterial proliferation activity in patients with periodontal disease.
Collapse
Affiliation(s)
- Yang Bai
- Department of Stomatology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Chenglong Wang
- Department of Stomatology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hua Jiang
- Department of Stomatology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Lin Wang
- Department of Stomatology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Nan Li
- Department of Stomatology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Wei Zhang
- Department of Stomatology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hongchen Liu
- Department of Stomatology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
37
|
Van Holm W, Verspecht T, Carvalho R, Bernaerts K, Boon N, Zayed N, Teughels W. Glycerol strengthens probiotic effect of Limosilactobacillus reuteri in oral biofilms: a synergistic synbiotic approach. Mol Oral Microbiol 2022; 37:266-275. [PMID: 36075698 DOI: 10.1111/omi.12386] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/13/2022] [Accepted: 08/16/2022] [Indexed: 11/28/2022]
Abstract
Both in vitro and in vivo studies have shown that the probiotic Limosilactobacillus reuteri can improve oral health. L. reuteri species are known to produce the antimicrobial 'reuterin' from glycerol. In order to further increase its antimicrobial activity, this study evaluated the effect of the combined use of glycerol and Limosilactobacillus reuteri (ATCC PTA 5289) in view of using a synergistic synbiotic over a probiotic. An antagonistic agar growth and a multispecies biofilm model showed that the antimicrobial potential of the probiotic was significantly enhanced against periodontal pathobionts and anaerobic commensals when supplemented with glycerol. Synbiotic biofilms also showed a significant reduction in inflammatory expression of human oral keratinocytes (HOK-18A), but only when the keratinocytes were preincubated with the probiotic. Probiotic preincubation of keratinocytes or probiotic- and synbiotic treatment of biofilms alone were insufficient to significantly reduce inflammatory expression. Overall, this study shows that combining glycerol with the probiotic L. reuteri into a synergistic synbiotic can greatly improve the effectiveness of the latter. One sentence summary: The use of a synbiotic formulation of Limosilactobacillus reuteri with glycerol over the probiotic improves antimicrobial effects and reduced inflammatory response to oral biofilms. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wannes Van Holm
- Department of Oral Health Sciences, University of Leuven (KU Leuven), Kapucijnenvoer 33, Leuven, 3000, Belgium.,Center for Microbial Ecology and Technology (CMET), Ghent University (UGent), Coupure links 653, Gent, 9000, Belgium
| | - Tim Verspecht
- Department of Oral Health Sciences, University of Leuven (KU Leuven), Kapucijnenvoer 33, Leuven, 3000, Belgium.,Center for Microbial Ecology and Technology (CMET), Ghent University (UGent), Coupure links 653, Gent, 9000, Belgium
| | - Rita Carvalho
- Department of Oral Health Sciences, University of Leuven (KU Leuven), Kapucijnenvoer 33, Leuven, 3000, Belgium
| | - Kristel Bernaerts
- Bio- and Chemical Systems Technology, Reactor Engineering and Safety, Department of Chemical Engineering, University of Leuven (KU Leuven), Leuven Chem&Tech, Celestijnenlaan 200F (bus 2424), Leuven, 3001, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Ghent University (UGent), Coupure links 653, Gent, 9000, Belgium
| | - Naiera Zayed
- Department of Oral Health Sciences, University of Leuven (KU Leuven), Kapucijnenvoer 33, Leuven, 3000, Belgium.,Center for Microbial Ecology and Technology (CMET), Ghent University (UGent), Coupure links 653, Gent, 9000, Belgium.,Faculty of Pharmacy, Menoufia University, Egypt
| | - Wim Teughels
- Department of Oral Health Sciences, University of Leuven (KU Leuven), Kapucijnenvoer 33, Leuven, 3000, Belgium
| |
Collapse
|
38
|
Thomas S, Lappin DF, Spears J, Bennett D, Nile C, Riggio M. Expression of toll-like receptor and cytokine mRNAs in feline odontoclastic resorptive lesion (FORL) and feline oral health. Res Vet Sci 2022; 152:395-402. [DOI: 10.1016/j.rvsc.2022.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 08/05/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022]
|
39
|
Jayusman PA, Nasruddin NS, Mahamad Apandi NI, Ibrahim N, Budin SB. Therapeutic Potential of Polyphenol and Nanoparticles Mediated Delivery in Periodontal Inflammation: A Review of Current Trends and Future Perspectives. Front Pharmacol 2022; 13:847702. [PMID: 35903322 PMCID: PMC9315271 DOI: 10.3389/fphar.2022.847702] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 06/21/2022] [Indexed: 01/04/2023] Open
Abstract
Periodontitis is an oral inflammatory process involving the periodontium, which is mainly caused by the invasion of periodontopathogenic microorganisms that results in gingival connective tissue and alveolar bone destruction. Metabolic products of the oral pathogens and the associated host immune and inflammatory responses triggered are responsible for the local tissue destruction. Numerous studies in the past decades have demonstrated that natural polyphenols are capable of modulating the host inflammatory responses by targeting multiple inflammatory components. The proposed mechanism by which polyphenolic compounds exert their great potential is by regulating the immune cell, proinflammatory cytokines synthesis and gene expression. However, due to its low absorption and bioavailability, the beneficial effects of these substances are very limited and it hampers their use as a therapeutic agent. To address these limitations, targeted delivery systems by nanoencapsulation techniques have been explored in recent years. Nanoencapsulation of polyphenolic compounds with different carriers is an efficient and promising approach to boost their bioavailability, increase the efficiency and reduce the degradability of natural polyphenols. In this review, we focus on the effects of different polyphenolic substances in periodontal inflammation and to explore the pharmaceutical significance of polyphenol-loaded nanoparticles in controlling periodontitis, which may be useful for further enhancement of their efficacy as therapeutic agents for periodontal disease.
Collapse
Affiliation(s)
- Putri Ayu Jayusman
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nurrul Shaqinah Nasruddin
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nurul Inaas Mahamad Apandi
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Norliwati Ibrahim
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Siti Balkis Budin
- Centre for Diagnostic, Therapeutic and Investigative Studies, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
40
|
Munadziroh E, Putri GA, Ristiana V, Agustantina TH, Nirwana I, Razak FA, Surboyo MDC. The Role of Recombinant Secretory Leukocyte Protease Inhibitor to CD163, FGF-2, IL-1 and IL-6 Expression in Skin Wound Healing. Clin Cosmet Investig Dermatol 2022; 15:903-910. [PMID: 35611048 PMCID: PMC9124476 DOI: 10.2147/ccid.s358897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/01/2022] [Indexed: 11/23/2022]
Abstract
Background The wound healing process can be optimized through the addition of a biomaterial such as recombinant secretory leukocyte protease inhibitor (rSLPI). The SLPI is a non-glycosylated proteomic material that inhibits protease enzymes and has anti-inflammatory properties, thus accelerating wound healing. This study analyzed the administration of rSLPI doses 0.04 cc and 0.06 cc in skin wound healing on the CD163 expression of macrophages and cytokines such as interleukin 1 (IL-1), interleukin 6 (IL-6) and fibroblast growth factor 2 (FGF-2). Materials and Methods rSLPI produced from Escherichia coli TOP10 as the cloning host, BL21 (DE3) strains as the expression host and pET30a plasmids were used for the expression system construction. The wound was created on Wistar rat dorsal skin, then rSLPI 0.04 cc and 0.06 cc was administered. In the next four days, the back skin was biopsied and stained by immunohistochemistry to analyze the CD163, FGF-2, IL-1 and IL-6 expression. Results The administration of rSLPI increased CD163 and FGF-2 expression dependent on dose (p<0.05). On the other hand, administration of rSLPI decreased IL-1 and IL-6 expression depending on dose (p <0.05). Conclusion The administration of rSLPI is able to accelerate the wound healing process by increasing the CD163 and FGF-2 expression. The cytokines such as IL-1 and IL-6 decreased depending on rSLPI doses.
Collapse
Affiliation(s)
- Elly Munadziroh
- Department of Dental Materials, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia
| | - Giovani Anggasta Putri
- Bachelor of Dental Sciences, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia
| | - Vera Ristiana
- Bachelor of Dental Sciences, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia
| | - Titien Hary Agustantina
- Department of Dental Materials, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia
| | - Intan Nirwana
- Department of Dental Materials, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia
| | - Fathilah Abdul Razak
- Department of Dental Materials, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia.,Department of Oral and Craniofacial Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | | |
Collapse
|
41
|
Zhu C, Zhao Y, Pei D, Liu Z, Liu J, Li Y, Yu S, Ma L, Sun J, Li A. PINK1 mediated mitophagy attenuates early apoptosis of gingival epithelial cells induced by high glucose. BMC Oral Health 2022; 22:144. [PMID: 35473620 PMCID: PMC9044577 DOI: 10.1186/s12903-022-02167-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 04/11/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Oxidative stress mediated by hyperglycemia damages cell-reparative processes such as mitophagy. Down-regulation of mitophagy is considered to be a susceptible factor for diabetes mellitus (DM) and its complications. However, the role of mitophagy in DM-associated periodontitis has not been fully elucidated. Apoptosis of human gingival epithelial cells (hGECs) is one of the representative events of DM-associated periodontitis. Thus, this study aimed to investigate PTEN-induced putative kinase 1 (PINK1)-mediated mitophagy activated in the process of high glucose (HG)-induced hGECs apoptosis. METHODS For dose-response studies, hGECs were incubated in different concentrations of glucose (5.5, 15, 25, and 50 mmol/L) for 48 h. Then, hGECs were challenged with 25 mmol/L glucose for 12 h and 48 h, respectively. Apoptosis was detected by TdT-mediated dUTP nick end labeling (TUNEL), caspase 9 and mitochondrial membrane potential (MMP). Subsequently, autophagy was evaluated by estimating P62, LC3 II mRNA levels, LC3 fluorescent puncta and LC3-II/I ratio. Meanwhile, the involvement of PINK1-mediated mitophagy was assessed by qRT-PCR, western blotting and immunofluorescence. Finally, hGECs were transfected with shPINK1 and analyzed by MMP, caspase 9 and annexin V-FITC apoptosis. RESULTS The number of TUNEL-positive cells and caspase 9 protein were significantly increased in cells challenged with HG (25 mmol/L) for 48 h (HG 48 h). MMP was impaired both at HG 12 h and HG 48 h, but the degree of depolarization was more serious at HG 48 h. The autophagy improved as the amount of LC3 II increased and p62 decreased in HG 12 h. During this process, HG 12 h treatment induced PINK1-mediated mitophagy. PINK1 silencing with HG 12 h resulted in MMP depolarization and cell apoptosis. CONCLUSIONS These results suggested that loss of the PINK1 gene may cause mitochondrial dysfunction and increase sensitivity to HG-induced apoptosis of hGECs at the early stage. PINK1 mediated mitophagy attenuates early apoptosis of gingival epithelial cells induced by high glucose.
Collapse
Affiliation(s)
- Chunhui Zhu
- grid.43169.390000 0001 0599 1243Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, No. 98, Xiwu Road, Xincheng District, Xi’an, 710004 China ,grid.43169.390000 0001 0599 1243Department of Periodontology, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Ying Zhao
- grid.43169.390000 0001 0599 1243Department of Periodontology, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Dandan Pei
- grid.43169.390000 0001 0599 1243Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, No. 98, Xiwu Road, Xincheng District, Xi’an, 710004 China
| | - Zhongbo Liu
- grid.43169.390000 0001 0599 1243Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, No. 98, Xiwu Road, Xincheng District, Xi’an, 710004 China
| | - Jin Liu
- grid.43169.390000 0001 0599 1243Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, No. 98, Xiwu Road, Xincheng District, Xi’an, 710004 China ,grid.43169.390000 0001 0599 1243Department of Periodontology, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Ye Li
- grid.43169.390000 0001 0599 1243Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, No. 98, Xiwu Road, Xincheng District, Xi’an, 710004 China
| | - Shuchen Yu
- grid.43169.390000 0001 0599 1243Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, No. 98, Xiwu Road, Xincheng District, Xi’an, 710004 China
| | - Lingyan Ma
- grid.43169.390000 0001 0599 1243Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, No. 98, Xiwu Road, Xincheng District, Xi’an, 710004 China
| | - Junyi Sun
- grid.43169.390000 0001 0599 1243Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, No. 98, Xiwu Road, Xincheng District, Xi’an, 710004 China ,grid.43169.390000 0001 0599 1243Department of Special Clinic, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Ang Li
- grid.43169.390000 0001 0599 1243Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, No. 98, Xiwu Road, Xincheng District, Xi’an, 710004 China ,grid.43169.390000 0001 0599 1243Department of Periodontology, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
42
|
Sun H, Li Z, Fan C, Liu S, Yan K, Huang G, Li S. Slit guidance ligand 2 promotes the inflammatory response of periodontitis through activation of the NF‐κB signaling pathway. J Periodontal Res 2022; 57:578-586. [PMID: 35426130 DOI: 10.1111/jre.12987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/07/2021] [Accepted: 01/26/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Hui Sun
- Department of Periodontology School and Hospital of Stomatology Cheeloo College of Medicine Shandong University Jinan Shandong China
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration Jinan Shandong China
- Department of Periodontology The Affiliated Hospital of Qingdao University Qingdao Shandong China
| | - Zhiyuan Li
- Medical Research Center The Affiliated Hospital of Qingdao University Qingdao Shandong China
| | - Chun Fan
- Department of Periodontology The Affiliated Hospital of Qingdao University Qingdao Shandong China
| | - Shuang Liu
- Department of Periodontology School and Hospital of Stomatology Cheeloo College of Medicine Shandong University Jinan Shandong China
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration Jinan Shandong China
| | - Kaixian Yan
- Department of Periodontology School and Hospital of Stomatology Cheeloo College of Medicine Shandong University Jinan Shandong China
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration Jinan Shandong China
| | - Guoqian Huang
- Department of Oral and Maxillofacial Surgery Jinan Stomatology Hospital Jinan Shandong China
| | - Shu Li
- Department of Periodontology School and Hospital of Stomatology Cheeloo College of Medicine Shandong University Jinan Shandong China
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration Jinan Shandong China
| |
Collapse
|
43
|
Mezawa M, Tsuruya Y, Yamaguchi A, Yamazaki-Takai M, Kono T, Okada H, McCulloch CA, Ogata Y. TNF-α regulates the composition of the basal lamina and cell-matrix adhesions in gingival epithelial cells. Cell Adh Migr 2022; 16:13-24. [PMID: 35137648 PMCID: PMC8837257 DOI: 10.1080/19336918.2022.2029237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Laminin 5, type 4 collagen, and α6β4 integrin contribute to the formation of hemidesmosomes in the epithelia of periodontal tissues, which is critical for the development and maintenance of the dentogingival junction. As it is not known whether TNF-α alters the composition of the epithelial pericellular matrix, human gingival epithelial cells were cultured in the presence or absence of TNF-α. Treatment with TNF-α accelerated epithelial cell migration and closure of in vitro wounds. These data indicate unexpectedly, that TNF-α promotes the formation of the pericellular matrix around epithelial cells and enhances adhesion of epithelial cells to the underlying matrix, properties which are important for cell migration and the integrity of the dentogingival junction.
Collapse
Affiliation(s)
- Masaru Mezawa
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Matsudo, Japan.,Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Japan
| | - Yuto Tsuruya
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
| | - Arisa Yamaguchi
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
| | - Mizuho Yamazaki-Takai
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
| | - Tetsuro Kono
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Japan.,Department of Histology, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
| | - Hiroyuki Okada
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Japan.,Department of Histology, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
| | | | - Yorimasa Ogata
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Matsudo, Japan.,Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Japan
| |
Collapse
|
44
|
Song HK, Noh EM, Kim JM, You YO, Kwon KB, Lee YR. Evodiae fructus Extract Inhibits Interleukin-1 β-Induced MMP-1, MMP-3, and Inflammatory Cytokine Expression by Suppressing the Activation of MAPK and STAT-3 in Human Gingival Fibroblasts In Vitro. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5858393. [PMID: 34504537 PMCID: PMC8423542 DOI: 10.1155/2021/5858393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/13/2021] [Indexed: 11/18/2022]
Abstract
Periodontitis is a Gram-negative bacterial infectious disease. Numerous inflammatory cytokines, including interleukin-1β (IL-1β), regulate periodontitis pathophysiology and cause periodontal tissue destruction. In human gingival fibroblasts (HGFs), IL-1β stimulates the production of matrix metalloproteinases (MMPs) and proinflammatory cytokines via various mechanisms. Several transcription factors, such as signal transducer and activator of transcription 3 (STAT-3), activator protein 1 (AP-1), and nuclear factor-κB (NF-κB), regulate gene expression. Mitogen-activated protein kinases (MAPKs) regulate these transcription factors. However, the MAPK/STAT-3 activation signal in HGFs is unknown. We investigated the potential inhibitory effects of the extract of Evodiae fructus (EFE), the dried, ripe fruit of Evodia rutaecarpa, on MMP and proinflammatory cytokine expression in IL-1β-stimulated HGFs. EFE inhibited the expression of MMP-1, MMP-3, and proinflammatory cytokines (TNF-α, IL-6, and IL-8) in IL-1β-stimulated HGFs through the inhibition of IL-1β-induced MAPK/STAT-3 activation. Also, these results suggest that the EFE may be a useful for the bioactive material for oral care.
Collapse
Affiliation(s)
- Hyun-Kyung Song
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Eun-Mi Noh
- Department of Oral Biochemistry and Institute of Biomaterials, Implant School of Dentistry, Wonkwang University, Iksan City, Jeonbuk, Jeollabuk-do 570-749, Republic of Korea
| | - Jeong-Mi Kim
- Department of Biochemistry, Institute of Medical Science, Chonbuk National University Medical School, Jeonju, Jeollabuk-do 560-182, Republic of Korea
| | - Yong-Ouk You
- Department of Oral Biochemistry and Institute of Biomaterials, Implant School of Dentistry, Wonkwang University, Iksan City, Jeonbuk, Jeollabuk-do 570-749, Republic of Korea
| | - Kang-Beom Kwon
- Department of Korean Physiology, Wonkwang University School of Korean Medicine, Iksan City, Jeonbuk, Jeollabuk-do 570-749, Republic of Korea
| | - Young-Rae Lee
- Department of Oral Biochemistry and Institute of Biomaterials, Implant School of Dentistry, Wonkwang University, Iksan City, Jeonbuk, Jeollabuk-do 570-749, Republic of Korea
| |
Collapse
|
45
|
Buchbender M, Fehlhofer J, Proff P, Möst T, Ries J, Hannig M, Neurath MF, Gund M, Atreya R, Kesting M. Expression of inflammatory mediators in biofilm samples and clinical association in inflammatory bowel disease patients-a preliminary study. Clin Oral Investig 2021; 26:1217-1228. [PMID: 34383142 PMCID: PMC8816497 DOI: 10.1007/s00784-021-04093-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/19/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Inflammatory bowel disease (IBD) has multiple impacts on soft and hard tissues in the oral cavity. The aim of this study was to analyze the expression of cytokines in biofilm samples from patients suffering from IBD and compare them to healthy patients. It was hypothesized that different cytokine expression levels and clinical associations might be drawn. MATERIAL AND METHODS A total of 56 biofilm samples from three different patient cohorts (group 0 = healthy, HC n = 30; group 1 = Crohn's disease, CD, n = 19; group 2 = ulcerative colitis, UC, n = 7) were examined for the expression levels of the cytokine interleukins IL-2, -6, and -10; matrix metalloproteinases 7 and 9; and surface antigens CD90/CD11a by quantitative real-time PCR and according to clinical parameters (plaque index, BOP, PD, DMFT, CAL). Relative gene expression was determined using the ∆∆CT method. RESULTS The mean BOP values (p = 0.001) and PD (p = 0.000) were significantly higher in the CD group compared to controls. Expression of IL-10 was significantly higher in the CD (p = 0.004) and UC groups (p = 0.022). Expression of MMP-7 was significantly higher in the CD group (p = 0.032). IBD patients treated with TNF inhibitors (p = 0.007) or other immunosuppressants (p = 0.014) showed significant overexpression of IL-10 compared to controls. CONCLUSION Different expression levels of IL-10 and MMP-7 were detected in plaque samples from IBD patients. As only BOP was significantly increased, we conclude that no clinical impairment of periodontal tissue occurred in IBD patients. CLINICAL RELEVANCE With the worldwide increasing incidence of IBD, it is important to obtain insights into the effects of the disease on the oral cavity. The study was registered (01.09.2020) at the German clinical trial registry (DRKS00022956). CLINICAL TRIAL REGISTRATION The study is registered at the German clinical trial registry (DRKS00022956).
Collapse
Affiliation(s)
- Mayte Buchbender
- Department of Oral and Maxillofacial Surgery, University of Erlangen- Nuremberg, Glückstrasse 11, 91054, Erlangen, Germany.
| | - Jakob Fehlhofer
- Department of Oral and Maxillofacial Surgery, University of Erlangen- Nuremberg, Glückstrasse 11, 91054, Erlangen, Germany
| | - Peter Proff
- Head of the Department of Orthodontics, University of Regensburg, Regensburg, Germany
| | - Tobias Möst
- Department of Oral and Maxillofacial Surgery, University of Erlangen- Nuremberg, Glückstrasse 11, 91054, Erlangen, Germany
| | - Jutta Ries
- Department of Oral and Maxillofacial Surgery, University of Erlangen- Nuremberg, Glückstrasse 11, 91054, Erlangen, Germany
| | - Matthias Hannig
- Head of Department of Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany
| | - Markus F Neurath
- Department of Medicine, University of Erlangen-Nuremberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie DZI, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Madline Gund
- Department of Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany
| | - Raja Atreya
- Department of Medicine, University of Erlangen-Nuremberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie DZI, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Marco Kesting
- Department of Oral and Maxillofacial Surgery, University of Erlangen- Nuremberg, Glückstrasse 11, 91054, Erlangen, Germany
| |
Collapse
|
46
|
Li L, Li J, Wang Y, Liu X, Li S, Wu Y, Tang W, Qiu Y. Resveratrol prevents inflammation and oxidative stress response in LPS-induced human gingival fibroblasts by targeting the PI3K/AKT and Wnt/β-catenin signaling pathways. Genet Mol Biol 2021; 44:e20200349. [PMID: 34227646 PMCID: PMC8258621 DOI: 10.1590/1678-4685-gmb-2020-0349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 04/22/2021] [Indexed: 11/22/2022] Open
Abstract
This study aimed to elucidate the anti-inflammatory and antioxidant properties of resveratrol (RSV) in human gingival fibroblasts (HGFs) following stimulation by P. gingivalis lipopolysaccharide (LPS). The levels of the inflammatory cytokines IL-1β, IL-6, IL-8 and TNFα, the activity of the antioxidant enzymes SOD and GSH-Px, and the levels of MDA, were evaluated by ELISA. It was observed that the expression of IL-1β, IL-6, IL-8 and TNFα in LPS-induced HGFs was significantly downregulated by RSV in a dose-dependent manner. RSV also partly increased oxidative stress (OS)-related factors, including SOD and GSH-Px, which was accompanied by a decrease in MDA production, although the results were not statistically significant. Additionally, RSV-induced deactivation of the PI3K/AKT and Wnt/β-catenin pathways in LPS-induced HGFs was observed by western blot analysis. Subsequently, it was demonstrated treatment with PI3K/AKT pathway inhibitor (LY294002) or Wnt/β-catenin pathway inhibitor (Dickkopf-1, DKK-1) could further enhance the anti-inflammatory and antioxidant effects of RSV by downregulating the expression of IL-1β, IL-6, IL-8 and TNFα, and the production of MDA, and increasing the activity of SOD and GSH-Px in LPS-induced HGFs. These results suggested RSV attenuated the inflammation and OS injury of P. gingivalis LPS-treated HGFs by deactivating the PI3K/AKT and Wnt/β-catenin signaling pathways.
Collapse
Affiliation(s)
- Lihua Li
- North Sichuan Medical College, Department of Dentistry, Nanchong, Sichuan, P.R. China
| | - Junxiong Li
- North Sichuan Medical College, Department of Dentistry, Nanchong, Sichuan, P.R. China
| | - Yujiao Wang
- North Sichuan Medical College, Department of Dentistry, Nanchong, Sichuan, P.R. China
| | - Xin Liu
- University of Chinese Academy of Sciences, Chongqing Savaid Stomatology Hospital, Department of General Dentistry, Chongqing, P.R. China
| | - Siyu Li
- North Sichuan Medical College, Department of Dentistry, Nanchong, Sichuan, P.R. China
| | - Yan Wu
- North Sichuan Medical College, Department of Dentistry, Nanchong, Sichuan, P.R. China
| | - Wanrong Tang
- North Sichuan Medical College, Department of Dentistry, Nanchong, Sichuan, P.R. China
| | - Ya Qiu
- Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, P.R. China
| |
Collapse
|
47
|
Banavar SR, Rawal SY, Pulikkotil SJ, Daood U, Paterson IC, Davamani FA, Kajiya M, Kurihara H, Khoo SP, Tan EL. 3D Clumps/Extracellular Matrix Complexes of Periodontal Ligament Stem Cells Ameliorate the Attenuating Effects of LPS on Proliferation and Osteogenic Potential. J Pers Med 2021; 11:528. [PMID: 34207600 PMCID: PMC8227185 DOI: 10.3390/jpm11060528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The effects of lipopolysaccharide (LPS) on cell proliferation and osteogenic potential (OP) of MSCs have been frequently studied. OBJECTIVE to compare the effects of LPS on periodontal-ligament-derived mesenchymal stem cells (PDLSCs) in monolayer and 3D culture. METHODS The PDLSCs were colorimetrically assessed for proliferation and osteogenic potential (OP) after LPS treatment. The 3D cells were manually prepared by scratching and allowing them to clump up. The clumps (C-MSCs) were treated with LPS and assessed for Adenosine triphosphate (ATP) and OP. Raman spectroscopy was used to analyze calcium salts, DNA, and proline/hydroxyproline. Multiplexed ELISA was performed to assess LPS induced local inflammation. RESULTS The proliferation of PDLSCs decreased with LPS. On Day 28, LPS-treated cells showed a reduction in their OP. C-MSCs with LPS did not show a decrease in ATP production. Principal bands identified in Raman analysis were the P-O bond at 960 cm-1 of the mineral component, 785 cm-1, and 855 cm-1 showing qualitative changes in OP, proliferation, and proline/hydroxyproline content, respectively. ELISA confirmed increased levels of IL-6 and IL-8 but with the absence of TNF-α and IL-1β secretion. CONCLUSIONS These observations demonstrate that C-MSCs are more resistant to the effects of LPS than cells in monolayer cell culture. Though LPS stimulation of C-MSCs creates an early pro-inflammatory milieu by secreting IL-6 and IL-8, PDLSCs possess inactivated TNF promoter and an ineffective caspase-1 activating process.
Collapse
Affiliation(s)
- Spoorthi Ravi Banavar
- Oral Diagnostic and Surgical Sciences, School of Dentistry, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
| | - Swati Yeshwant Rawal
- Department of Surgical Sciences, Marquette University, 1250 W. Wisconsin Ave, Milwaukee, WI 53233, USA;
| | - Shaju Jacob Pulikkotil
- Clinical Dentistry, School of Dentistry, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (S.J.P.); (U.D.)
| | - Umer Daood
- Clinical Dentistry, School of Dentistry, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (S.J.P.); (U.D.)
| | - Ian C. Paterson
- Department of Oral Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia;
- Oral Cancer Research & Coordinating Centre, Faculty of Dentistry, University of Malaya, Jalan Profesor Diraja Ungku Aziz, Kuala Lumpur 50603, Malaysia
| | | | - Mikihito Kajiya
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan;
| | - Hidemi Kurihara
- Dental Academy, 1-6-2 Higashiyanagi, Kudamatsu City 744-0017, Japan;
| | - Suan Phaik Khoo
- Oral Diagnostic and Surgical Sciences, School of Dentistry, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
| | - Eng Lai Tan
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia;
| |
Collapse
|
48
|
Almabadi ES, Seymour GJ, Akhter R, Bauman A, Cullinan MP, Eberhard J. Reduction of hsCRP levels following an Oral Health Education Program combined with routine dental treatment. J Dent 2021; 110:103686. [PMID: 33957190 DOI: 10.1016/j.jdent.2021.103686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/20/2021] [Accepted: 05/01/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES The present study aimed to determine the effect of a personalised oral health education program, in combination with routine dental treatment, on serum biomarkers of systemic disease compared to dental treatment alone in a population from a low-socioeconomic community with poor oral health. METHODS This secondary analysis of a randomised clinical trial involved 295 participants (mean age, 45.4 ± 11 years) assigned to two groups. One group received dental treatment combined with the Oral Health Education Program (OHEPDT), while the second group (DT) received dental care without the Education Program. Serum levels of high-sensitivity C-reactive protein (hsCRP), lipid profile (total cholesterol, triglycerides, and high- and low-density lipoprotein cholesterol), and HbA1c levels were analysed at baseline and after 12 months. Changes in diet, smoking and alcohol consumption were also determined. RESULTS No intergroup differences were observed for the lipid profile and HbA1c levels. A reduction in the hsCRP levels at the 12-month follow-up was observed in the OHEPDT group, which was significantly different from the DT group (p = 0.01). Multivariate modelling indicated that baseline hsCRP levels (p = 0.000), baseline body mass index (p = 0.000), and higher consumption of vegetables (p = 0.021) predicted a reduction in hsCRP levels. CONCLUSIONS This study demonstrated that personalised oral health education combined with routine dental treatment was associated with a significant reduction in hsCRP levels subsequent to dietary behavioural changes. These findings suggest that personalised oral health education in combined with routine dental treatment may have beneficial effects on general health. CLINICAL SIGNIFICANCE The strategy for developing an oral health program that involves education of the modifiable common risk factors for general health has beneficial effects and should be one of the priority components of these programs to improve oral and general health, particularly for at-risk communities.
Collapse
Affiliation(s)
- Eman S Almabadi
- The University of Sydney, The Charles Perkins Centre and the School of Dentistry, Faculty of Medicine and Health, Camperdown, Sydney, New South Wales, Australia; Pediatric Dentistry and Orthodontics Department, College Dentistry, Taibah University, Medina, Saudi Arabia.
| | - Gregory J Seymour
- The University of Queensland, School of Dentistry, Herston, Queensland, Australia
| | - Rahena Akhter
- The University of Sydney School of Dentistry, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Adrian Bauman
- The University of Sydney, School of Public Health, Sydney, New South Wales, Australia
| | - Mary P Cullinan
- The University of Queensland, School of Dentistry, Herston, Queensland, Australia
| | - Joerg Eberhard
- The University of Sydney, The Charles Perkins Centre and the School of Dentistry, Faculty of Medicine and Health, Camperdown, Sydney, New South Wales, Australia.
| |
Collapse
|
49
|
Arboleda S, Pianeta R, Vargas M, Lafaurie GI, Aldana-Parra F, Chaux CF. Impact of bariatric surgery on periodontal status in an obese cohort at one year of follow-up. MEDICINE INTERNATIONAL 2021; 1:4. [PMID: 36699146 PMCID: PMC9855275 DOI: 10.3892/mi.2021.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/10/2021] [Indexed: 01/28/2023]
Abstract
The effect of weight loss on the periodontal condition remains unclear. The present prospective study thus aimed to evaluate the effect of weight loss on the periodontal status of 57 obese patients (BMI ≥30 kg/m2) with ages ranging from 18 to 60 years, at 12 months following bariatric surgery. Demographic, biological and behavioral variables were analyzed. All participants underwent a periodontal examination, including plaque index (PI), bleeding on probing (BOP), pocket depth (PD) and clinical attachment level (CAL). Anthropometric measurements, such as weight, height and body mass index (BMI) were calculated. Fisher's exact test, ANOVA, Bonferroni, Spearman's rank correlation and Wilcoxon signed-rank tests were used for the statistical analysis (P<0.05). Prior to surgery, 49% of patients were classified as having obesity class I, 33% as obesity class II and 18% as obesity class III. Variables, such as BMI and PD exhibited statistically significant differences among the obesity class I, II and III groups (P<0.05). As regards periodontal diagnosis, 37% of patients were classified as having gingivitis, 46% as having periodontitis stages I-II, and 17% as having periodontitis stages III-IV. BMI, PI, BOP and PD exhibited statistically significant differences following bariatric surgery (P<0.0001). No statistically significant differences were observed in the CAL (P>0.05). Thus, the findings of the present study suggest that weight loss was associated with decreased periodontal inflammation and an improved plaque control following bariatric surgery. CAL remained unaltered during the study period.
Collapse
Affiliation(s)
- Silie Arboleda
- School of Dentistry, Unit of Clinical Oral Epidemiology Investigations-UNIECLO, El Bosque University, Bogotá 110121, Colombia
| | - Roquelina Pianeta
- School of Dentistry, Rafael Núñez University Corporation, Cartagena 130001, Colombia
| | - Miguel Vargas
- School of Dentistry, Unit of Clinical Oral Epidemiology Investigations-UNIECLO, El Bosque University, Bogotá 110121, Colombia
| | - Gloria Inés Lafaurie
- School of Dentistry, Unit of Basic Oral Investigation-UIBO, El Bosque University, Bogotá 110121, Colombia
| | | | | |
Collapse
|
50
|
Li H, Xu J, Li X, Hu Y, Liao Y, Zhou W, Song Z. Anti-inflammatory activity of psoralen in human periodontal ligament cells via estrogen receptor signaling pathway. Sci Rep 2021; 11:8754. [PMID: 33888745 PMCID: PMC8062431 DOI: 10.1038/s41598-021-85145-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
Psoralen is one of the most effective ingredients extracted from the Chinese herb, Psoralea corylifolia L. Studies have found that psoralen has anti-inflammatory and estrogen-like effects; however, little research has been conducted to elucidate the mechanisms underlying these effects. Through the molecule docking assay, psoralen was found to have a better combination with ERα than ERβ. In human periodontal ligament cells, psoralen was found to upregulate the estrogen target genes (e.g., CTSD, PGR, TFF1) and down-regulate the expression of inflammatory cytokines (TNF-α, IL-1β, IL-6 and IL-8) stimulated by P. gingivalis LPS, as well as TLR4-IRAK4-NF-κb signaling pathway proteins. These effects were reversed by the ER antagonist ICI 182780. These results indicated that psoralen may exert anti-inflammatory effects as an agonist to ER, which could provide a theoretical basis for the use of psoralen for adjuvant therapy and prevention of periodontitis.
Collapse
Affiliation(s)
- Huxiao Li
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Jianrong Xu
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaotian Li
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Yi Hu
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Yue Liao
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Wei Zhou
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Research Institute of Stomatology,Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China. .,College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China.
| | - Zhongchen Song
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China. .,College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China.
| |
Collapse
|