1
|
Moriki Y, Mitsugi R, Kayou T, Horikoshi J, Yamaguchi Y, Shibuya S, Shimizu T. Pharmacokinetics of Geraniol and Its Metabolites in Mice After Oral Administration. Food Sci Nutr 2025; 13:e4653. [PMID: 39803254 PMCID: PMC11716996 DOI: 10.1002/fsn3.4653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 11/19/2024] [Accepted: 11/23/2024] [Indexed: 01/16/2025] Open
Abstract
Geraniol is an acyclic monoterpene alcohol that is extracted from the essential oils of aromatic plants. Geraniol has several biological activities such as anti-cancer, anti-inflammatory, antioxidant, and neuroprotective effects. However, the pharmacokinetics of geraniol and its metabolites after oral administration remain unknown in mice. To investigate the pharmacokinetics, the blood concentrations were measured in C57BL/6J mice by LC-MS/MS after oral administration of geraniol at a dose of 200 mg/kg. The C max for blood levels of geraniol was only 0.05 ± 0.01 μg/mL at 1 h after administration. In contrast, geranic acid, one of the geraniol metabolites, rapidly reached a peak level that was markedly higher than that of geraniol. Furthermore, the glucuronide conjugate of geraniol was detected at a higher level than geraniol. These results indicate that geraniol is rapidly converted to geranic acid or glucuronide conjugate after oral administration. Moreover, geraniol was detected in the liver and the brain, whereas 8-hydroxygeraniol was not detected in any tissues. In contrast, geranic acid was detected in several tissues in the order of kidney > liver = lung > brain. Therefore, the metabolites of geraniol are present in the blood and tissues of mice treated with geraniol, and various pharmacological effects of geraniol may be caused by its metabolites.
Collapse
Affiliation(s)
| | - Ryo Mitsugi
- R&D Center, Zenyaku Kogyo Co. Ltd.Hachioji‐shiTokyoJapan
| | | | - Jumpei Horikoshi
- Zenyaku Kogyo Co. Ltd.Bunkyo‐kuTokyoJapan
- PlasMEDi Inc.Ariake Koto‐kuTokyoJapan
| | | | - Shuichi Shibuya
- Aging Stress Response Research Project Team, National Center for Geriatrics and GerontologyObu‐cityAichiJapan
- Department of Regenerative MedicineFaculty of Pharmacy, Sanyo‐Onoda City UniversityYamaguchiJapan
| | - Takahiko Shimizu
- Aging Stress Response Research Project Team, National Center for Geriatrics and GerontologyObu‐cityAichiJapan
- Department of Food and Reproductive Function Advanced ResearchJuntendo University Graduate School of MedicineBunkyo‐kuTokyoJapan
| |
Collapse
|
2
|
Lin FX, Gu HY, He W. MAPK signaling pathway in spinal cord injury: Mechanisms and therapeutic potential. Exp Neurol 2025; 383:115043. [PMID: 39522804 DOI: 10.1016/j.expneurol.2024.115043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Spinal cord injury (SCI) is a severe disabling injury of the central nervous system that can lead to motor, sensory, and autonomic dysfunction below the level of the injury. According to its pathophysiological process, SCI can be divided into primary injury and secondary injury. Currently, multiple therapeutic strategies have been proposed to alleviate secondary injury and overcome the occurrence of neurodegenerative events. Although current treatment modalities have achieved varying degrees of success, they cannot effectively intervene or treat its pathological processes, which may be due to the complex treatment and protection mechanisms involved. Research has confirmed that signaling pathways play a crucial role in the pathological processes of SCI and the mechanisms of neuronal recovery. Mitogen-activated protein kinase (MAPK) signaling pathway plays a crucial role in neuronal differentiation, growth, survival and axon regeneration after central nervous system injury. Meanwhile, the MAPK signaling pathway is an important pathway closely related to the pathological processes of SCI. The MAPK signaling pathway is abnormally activated after SCI, and inhibiting the activity of MAPK pathway can effectively inhibit inflammation, oxidative stress, pain and apoptosis to promote the recovery of nerve function after SCI. Based on the role of the MAPK pathway in SCI, it may be a potential therapeutic target. This article summarizes the role and mechanism of MAPK pathway in SCI, and discusses the shortcomings and shortcomings of MAPK pathway in SCI field, as well as the potential challenges of targeting MAPK pathway in SCI treatment strategies. This article aims to elucidate the mechanism of the MAPK pathway in SCI to emphasize the role of targeting the MAPK pathway in the treatment of SCI, providing a theoretical basis for the MAPK pathway as a potential therapeutic target for SCI treatment.
Collapse
Affiliation(s)
- Fei-Xiang Lin
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou 341000, Jiangxi Province, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou 341000, Jiangxi Province, PR China
| | - Hou-Yun Gu
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou 341000, Jiangxi Province, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou 341000, Jiangxi Province, PR China
| | - Wei He
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou 341000, Jiangxi Province, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou 341000, Jiangxi Province, PR China.
| |
Collapse
|
3
|
Azzam SM, Elsanhory HMA, Abd El-Slam AH, Diab MSM, Ibrahim HM, Yousef AM, Sabry FM, Khojah EY, Bokhari SA, Salem GEM, Zaghloul MS. Protective effects of Pelargonium graveolens (geranium) oil against cefotaxime-induced hepato-renal toxicity in rats. FRONTIERS IN TOXICOLOGY 2024; 6:1489310. [PMID: 39698236 PMCID: PMC11652510 DOI: 10.3389/ftox.2024.1489310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024] Open
Abstract
Cefotaxime is a broad-spectrum antibiotic targeting Gram-negative bacteria used for diverse infections, but it can be toxic to the stomach, liver, and kidneys. This study explored the protective effects of geranium oil against cefotaxime-induced hepatotoxicity and nephrotoxicity in rats, employing biochemical, histopathological, and immunohistochemical evaluations. Thirty rats were divided into five groups of six animals each one. Group 1 received orally normal saline for 14 days, Group 2 was given orally 2.5% DMSO for 14 days, Group 3 received cefotaxime (200 mg/kg/day IM) for 14 days, Group 4 received with cefotaxime (200 mg/kg/day IM) and geranium oil (67 mg/kg b. w./day orally in DMSO) for 14 days, and Group 5 received geranium oil alone (67 mg/kg b. w./day orally in DMSO) for 14 days. Geranium oil significantly reduced cefotaxime-induced damage, evidenced by lower serum levels of liver enzymes (AST, ALT), renal markers (urea, creatinine), and other indicators (alkaline phosphatase, TNF-alpha, IL-1Beta, MAPK, nitric oxide, MDA). It also increased levels of protective tissue biomarkers such as NrF2, albumin, catalase, Beclin 1, and reduced glutathione (GSH). Histopathological and immunohistochemical analyses revealed significant protective effects in liver and renal tissues in rats treated with Geranium oil. These results suggest that Geranium oil is effective in mitigating cefotaxime-induced hepatotoxicity and renal toxicity.
Collapse
Affiliation(s)
- Shaimaa M. Azzam
- Department of Biochemistry, Egyptian Drug Authority (EDA), Formerly National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Heba M. A. Elsanhory
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Sinai University, El Ismailia, Egypt
| | - Ahmed H. Abd El-Slam
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Marwa S. M. Diab
- Cell Biology and Histology, Molecular Drug Evaluation Department, Egyptian Drug Authority (EDA) Formerly National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Halima Mohamed Ibrahim
- Department of Physiology, Egyptian Drug Authority (EDA), Formerly National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Abdalrahman Mohammed Yousef
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Fatma Mahmoud Sabry
- Pharmacology Department, Egyptian Drug Authority (EDA), Formerly National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Ebtihal Y. Khojah
- Department of Food Sciences and Nutrition, College of Science, Taif University, Taif, Saudi Arabia
| | - Somaiah A. Bokhari
- Pharmaceutical Care Department, Maternity and Children Hospital, Mecca, Saudi Arabia
| | - Gad Elsayed Mohamed Salem
- Department of Microbiology, Egyptian Drug Authority(EDA), Formerly National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Marwa Saad Zaghloul
- Department of Biochemistry, Egyptian Drug Authority (EDA), Formerly National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| |
Collapse
|
4
|
Bagheri S, Rashno M, Salehi I, Karimi SA, Raoufi S, Komaki A. Protective effects of geraniol in a male rat model of Alzheimer's disease: A behavioral, biochemical, and histological study. J Alzheimers Dis 2024; 102:646-658. [PMID: 39587789 DOI: 10.1177/13872877241290695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) as a neurodegenerative disease can cause behavioral impairments due to oxidative stress. Aging and oxidative conditions are some AD risk factors. OBJECTIVE We assessed the influence of geraniol (GR), an acyclic monoterpene alcohol, on behavioral functions, hippocampal oxidative status, and histological alterations in AD rats induced by amyloid-β (Aβ). METHODS Male Wistar rats (n = 70) were randomly allocated to the control, sham, AD, control-GR (100 mg/kg; per oral: P.O.), AD-GR (100 mg/kg; P.O.; treatment), GR-AD (100 mg/kg; P.O.; pretreatment), and GR-AD-GR (100 mg/kg; P.O.; pretreatment + treatment) groups. GR administration was done for four continuous weeks. After treatments, novel object recognition (NOR) and Morris water maze (MWM) tests assessed the animals' behavior. Then, hippocampal specimens were collected for biochemical assessment. Finally, the number of intact neurons was identified in the hippocampus using hematoxylin and eosin staining. RESULTS Aβ microinjection increased learning and memory deficits in both NOR and MWM tests, oxidative stress status, and neuronal loss. Oral GR administration improved behavioral deficits and reduced oxidative stress status and neuronal loss in the Aβ-infused animals. CONCLUSIONS GR ameliorates behavioral impairments through a decrease in neuronal degeneration and oxidative stress.
Collapse
Affiliation(s)
- Shokufeh Bagheri
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Iraj Salehi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Asaad Karimi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Safoura Raoufi
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
5
|
Ramírez N, Cassola F, Gambero A, Sartoratto A, Gómez Castellanos LM, Ribeiro G, Ferreira Rodrigues RA, Duarte MCT. Control of pathogenic bacterial biofilm associated with acne and the anti-inflammatory potential of an essential oil blend. Microb Pathog 2024; 194:106834. [PMID: 39094711 DOI: 10.1016/j.micpath.2024.106834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Acne is one of the most common skin conditions worldwide, with multifactorial origins it affects areas of the skin with hair follicles and sebaceous glands that become clogged. Bacterial incidence aggravates treatment due to resistance to antimicrobial agents and production of virulence factors such as biofilm formation. Based on these information, this study aims to conduct in vitro evaluations of the antibacterial activity of essential oils (EOs), alone and in combination, against Propionibacterium acnes, Staphylococcus aureus, and Staphylococcus epidermidis in planktonic and biofilm forms. This study also assessed the anti-inflammatory potential (TNF-α) and the effects of EOs on the viability of human keratinocytes (HaCaT), murine fibroblasts (3T3-L1), and bone marrow-derived macrophages (BMDMs). Of all EOs tested, 13 had active action against P. acnes, 9 against S. aureus, and 9 against S. epidermidis at concentrations of 0.125-2.0 mg/mL. Among the most active plant species, a blend of essential oil (BEOs) was selected, with Cymbopogon martini (Roxb.) Will. Watson, Eugenia uniflora L., and Varronia curassavica Jacq., the latter due to its anti-inflammatory action. This BEOs showed higher inhibition rates when compared to chloramphenicol against S. aureus and S. epidermidis, and higher eradication rates when compared to chloramphenicol for the three target species. The BEOs did not affect the cell viability of cell lines evaluated, and the levels of TNF-α decreased. According to these results, the BEOs evaluated showed potential for the development of an alternative natural formulation for the treatment of acne.
Collapse
Affiliation(s)
- Nedy Ramírez
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, Brazil; Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Paulínia, Brazil.
| | - Fábio Cassola
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, Brazil; Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Paulínia, Brazil
| | - Alessandra Gambero
- Centro de Ciências da Vida, Pontifícia Universidade Católica de Campinas, Campinas, Brazil
| | - Adilson Sartoratto
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Paulínia, Brazil
| | | | - Guilherme Ribeiro
- Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | | | | |
Collapse
|
6
|
Nelson VK, Nuli MV, Ausali S, Gupta S, Sanga V, Mishra R, Jaini PK, Madhuri Kallam SD, Sudhan HH, Mayasa V, Abomughaid MM, Almutary AG, Pullaiah CP, Mitta R, Jha NK. Dietary anti-inflammatory and anti-bacterial medicinal plants and its compounds in bovine mastitis associated impact on human life. Microb Pathog 2024; 192:106687. [PMID: 38750773 DOI: 10.1016/j.micpath.2024.106687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/25/2024] [Accepted: 05/12/2024] [Indexed: 05/31/2024]
Abstract
Bovine mastitis (BM) is the most common bacterial mediated inflammatory disease in the dairy cattle that causes huge economic loss to the dairy industry due to decreased milk quality and quantity. Milk is the essential food in the human diet, and rich in crucial nutrients that helps in lowering the risk of diseases like hypertension, cardiovascular diseases and type 2 diabetes. The main causative agents of the disease include various gram negative, and positive bacteria, along with other risk factors such as udder shape, age, genetic, and environmental factors also contributes much for the disease. Currently, antibiotics, immunotherapy, probiotics, dry cow, and lactation therapy are commonly recommended for BM. However, these treatments can only decrease the rise of new cases but can't eliminate the causative agents, and they also exhibit several limitations. Hence, there is an urgent need of a potential source that can generate a typical and ideal treatment to overcome the limitations and eliminate the pathogens. Among the various sources, medicinal plants and its derived products always play a significant role in drug discovery against several diseases. In addition, they are also known for its low toxicity and minimum resistance features. Therefore, plants and its compounds that possess anti-inflammatory and anti-bacterial properties can serve better in bovine mastitis. In addition, the plants that are serving as a food source and possessing pharmacological properties can act even better in bovine mastitis. Hence, in this evidence-based study, we particularly review the dietary medicinal plants and derived products that are proven for anti-inflammatory and anti-bacterial effects. Moreover, the role of each dietary plant and its compounds along with possible role in the management of bovine mastitis are delineated. In this way, this article serves as a standalone source for the researchers working in this area to help in the management of BM.
Collapse
Affiliation(s)
- Vinod Kumar Nelson
- Center for global health research, saveetha medical college, saveetha institute of medical and technical sciences, India.
| | - Mohana Vamsi Nuli
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Saijyothi Ausali
- College of Pharmacy, MNR higher education and research academy campus, MNR Nagar, Sangareddy, 502294, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Vaishnavi Sanga
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Richa Mishra
- Department of Computer Engineering, Faculty of Engineering and Technology, Parul University, Vadodara, 391760, Gujrat, India
| | - Pavan Kumar Jaini
- Department of Pharmaceutics, Raffles University, Neemrana, Rajasthan, India
| | - Sudha Divya Madhuri Kallam
- Department of Pharmaceutical Sciences, Vignan's Foundation for Science, Technology & Research (Deemed to be University), Guntur, Vadlamudi, Andhra Pradesh, 522213, India
| | - Hari Hara Sudhan
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Vinyas Mayasa
- GITAM School of Pharmacy, GITAM University Hyderabad Campus, Rudraram, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, P.O. Box, 59911, United Arab Emirates
| | - Chitikela P Pullaiah
- Department of Chemistry, Siddha Central Research Institute, Chennai, Tamil Nadu, 60016, India
| | - Raghavendra Mitta
- Department of Pharmaceutical Sciences, Vignan's Foundation for Science, Technology & Research (Deemed to be University), Vadlamudi, Guntur, 522213, Andhra Pradesh, India
| | - Niraj Kumar Jha
- Department of Biotechnology, Sharda School of Engineering & Technology (SSET), Sharda University, Greater Noida, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India.
| |
Collapse
|
7
|
Ding Y, Chen Q. Recent advances on signaling pathways and their inhibitors in spinal cord injury. Biomed Pharmacother 2024; 176:116938. [PMID: 38878684 DOI: 10.1016/j.biopha.2024.116938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/27/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
Spinal cord injury (SCI) is a serious and disabling central nervous system injury. Its complex pathological mechanism can lead to sensory and motor dysfunction. It has been reported that signaling pathway plays a key role in the pathological process and neuronal recovery mechanism of SCI. Such as PI3K/Akt, MAPK, NF-κB, and Wnt/β-catenin signaling pathways. According to reports, various stimuli and cytokines activate these signaling pathways related to SCI pathology, thereby participating in the regulation of pathological processes such as inflammation response, cell apoptosis, oxidative stress, and glial scar formation after injury. Activation or inhibition of relevant pathways can delay inflammatory response, reduce neuronal apoptosis, prevent glial scar formation, improve the microenvironment after SCI, and promote neural function recovery. Based on the role of signaling pathways in SCI, they may be potential targets for the treatment of SCI. Therefore, understanding the signaling pathway and its inhibitors may be beneficial to the development of SCI therapeutic targets and new drugs. This paper mainly summarizes the pathophysiological process of SCI, the signaling pathways involved in SCI pathogenesis, and the potential role of specific inhibitors/activators in its treatment. In addition, this review also discusses the deficiencies and defects of signaling pathways in SCI research. It is hoped that this study can provide reference for future research on signaling pathways in the pathogenesis of SCI and provide theoretical basis for SCI biotherapy.
Collapse
Affiliation(s)
- Yi Ding
- Department of Spine Surgery, Ganzhou People's Hospital,16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University),16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China
| | - Qin Chen
- Department of Spine Surgery, Ganzhou People's Hospital,16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University),16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China.
| |
Collapse
|
8
|
Stojanović NM, Ranđelović PJ, Simonović M, Radić M, Todorović S, Corrigan M, Harkin A, Boylan F. Essential Oil Constituents as Anti-Inflammatory and Neuroprotective Agents: An Insight through Microglia Modulation. Int J Mol Sci 2024; 25:5168. [PMID: 38791205 PMCID: PMC11121245 DOI: 10.3390/ijms25105168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Microglia are key players in the brain's innate immune response, contributing to homeostatic and reparative functions but also to inflammatory and underlying mechanisms of neurodegeneration. Targeting microglia and modulating their function may have therapeutic potential for mitigating neuroinflammation and neurodegeneration. The anti-inflammatory properties of essential oils suggest that some of their components may be useful in regulating microglial function and microglial-associated neuroinflammation. This study, starting from the ethnopharmacological premises of the therapeutic benefits of aromatic plants, assessed the evidence for the essential oil modulation of microglia, investigating their potential pharmacological mechanisms. Current knowledge of the phytoconstituents, safety of essential oil components, and anti-inflammatory and potential neuroprotective effects were reviewed. This review encompasses essential oils of Thymus spp., Artemisia spp., Ziziphora clinopodioides, Valeriana jatamansi, Acorus spp., and others as well as some of their components including 1,8-cineole, β-caryophyllene, β-patchoulene, carvacrol, β-ionone, eugenol, geraniol, menthol, linalool, thymol, α-asarone, and α-thujone. Essential oils that target PPAR/PI3K-Akt/MAPK signalling pathways could supplement other approaches to modulate microglial-associated inflammation to treat neurodegenerative diseases, particularly in cases where reactive microglia play a part in the pathophysiological mechanisms underlying neurodegeneration.
Collapse
Affiliation(s)
- Nikola M. Stojanović
- Department of Physiology, Faculty of Medicine, University of Niš, 18000 Niš, Serbia; (N.M.S.); (P.J.R.)
| | - Pavle J. Ranđelović
- Department of Physiology, Faculty of Medicine, University of Niš, 18000 Niš, Serbia; (N.M.S.); (P.J.R.)
| | - Maja Simonović
- Department of Psychiatry, Faculty of Medicine, University of Niš, 18000 Niš, Serbia;
- University Clinical Centre Niš, 18000 Niš, Serbia; (M.R.); (S.T.)
| | - Milica Radić
- University Clinical Centre Niš, 18000 Niš, Serbia; (M.R.); (S.T.)
- Department of Oncology, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
| | - Stefan Todorović
- University Clinical Centre Niš, 18000 Niš, Serbia; (M.R.); (S.T.)
| | - Myles Corrigan
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland; (M.C.); (A.H.)
| | - Andrew Harkin
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland; (M.C.); (A.H.)
| | - Fabio Boylan
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland; (M.C.); (A.H.)
- Trinity Biomedical Sciences Institute (TBSI) and The Trinity Centre for Natural Product Research (NatPro), D02 R590 Dublin, Ireland
| |
Collapse
|
9
|
Rajendran P, Al-Saeedi FJ, Ammar RB, Abdallah BM, Ali EM, Al Abdulsalam NK, Tejavat S, Althumairy D, Veeraraghavan VP, Alamer SA, Bekhet GM, Ahmed EA. Geraniol attenuates oxidative stress and neuroinflammation-mediated cognitive impairment in D galactose-induced mouse aging model. Aging (Albany NY) 2024; 16:5000-5026. [PMID: 38517361 PMCID: PMC11006477 DOI: 10.18632/aging.205677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/13/2024] [Indexed: 03/23/2024]
Abstract
D-galactose (D-gal) administration was proven to induce cognitive impairment and aging in rodents' models. Geraniol (GNL) belongs to the acyclic isoprenoid monoterpenes. GNL reduces inflammation by changing important signaling pathways and cytokines, and thus it is plausible to be used as a medicine for treating disorders linked to inflammation. Herein, we examined the therapeutic effects of GNL on D-gal-induced oxidative stress and neuroinflammation-mediated memory loss in mice. The study was conducted using six groups of mice (6 mice per group). The first group received normal saline, then D-gal (150 mg/wt) dissolved in normal saline solution (0.9%, w/v) was given orally for 9 weeks to the second group. In the III group, from the second week until the 10th week, mice were treated orally (without anesthesia) with D-gal (150 mg/kg body wt) and GNL weekly twice (40 mg/kg body wt) four hours later. Mice in Group IV were treated with GNL from the second week up until the end of the experiment. For comparison of young versus elderly mice, 4 month old (Group V) and 16-month-old (Group VI) control mice were used. We evaluated the changes in antioxidant levels, PI3K/Akt levels, and Nrf2 levels. We also examined how D-gal and GNL treated pathological aging changes. Administration of GNL induced a significant increase in spatial learning and memory with spontaneously altered behavior. Enhancing anti-oxidant and anti-inflammatory effects and activating PI3K/Akt were the mechanisms that mediated this effect. Further, GNL treatment upregulated Nrf2 and HO-1 to reduce oxidative stress and apoptosis. This was confirmed using 99mTc-HMPAO brain flow gamma bioassays. Thus, our data suggested GNL as a promising agent for treating neuroinflammation-induced cognitive impairment.
Collapse
Affiliation(s)
- Peramaiyan Rajendran
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, Tamil Nadu, India
| | - Fatma J. Al-Saeedi
- Department of Nuclear Medicine, College of Medicine, Kuwait University, Safat 13110, Kuwait
| | - Rebai Ben Ammar
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cedria, Technopole of Borj-Cedria PBOX 901, Hammam-Lif 2050, Tunisia
| | - Basem M. Abdallah
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Enas M. Ali
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Najla Khaled Al Abdulsalam
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Sujatha Tejavat
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Duaa Althumairy
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, Tamil Nadu, India
| | - Sarah Abdulaziz Alamer
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Gamal M. Bekhet
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Zoology, Faculty of Science, Alexandria University Egypt, Alexandria 21544, Egypt
| | - Emad A. Ahmed
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Laboratory of Molecular Physiology, Zoology Department, Faculty of Science, Assiut University, Assiut 71515, Egypt
| |
Collapse
|
10
|
Shortt G, Shortt N, Bird G, Kerse K, Lieffering N, Martin A, Eathorne A, Black B, Kim B, Rademaker M, Reiche L, Paa ST, Harding S, Armour M, Semprini A. Mānuka oil based ECMT-154 versus vehicle control for the topical treatment of eczema: study protocol for a randomised controlled trial in community pharmacies in Aotearoa New Zealand. BMC Complement Med Ther 2024; 24:61. [PMID: 38287323 PMCID: PMC10823637 DOI: 10.1186/s12906-024-04358-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 01/14/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Eczema is a chronic, relapsing skin condition commonly managed by emollients and topical corticosteroids. Prevalence of use and demand for effective botanical therapies for eczema is high worldwide, however, clinical evidence of benefit is limited for many currently available botanical treatment options. Robustly-designed and adequately powered randomised controlled trials (RCTs) are essential to determine evidence of clinical benefit. This protocol describes an RCT that aims to investigate whether a mānuka oil based emollient cream, containing 2% ECMT-154, is a safe and effective topical treatment for moderate to severe eczema. METHODS This multicentre, single-blind, parallel-group, randomised controlled trial aims to recruit 118 participants from community pharmacies in Aotearoa New Zealand. Participants will be randomised 1:1 to receive topical cream with 2% ECMT-154 or vehicle control, and will apply assigned treatment twice daily to affected areas for six weeks. The primary outcome is improvement in subjective symptoms, assessed by change in POEM score. Secondary outcomes include change in objective symptoms assessed by SCORAD (part B), PO-SCORAD, DLQI, and treatment acceptability assessed by TSQM II and NRS. DISCUSSION Recruitment through community pharmacies commenced in January 2022 and follow up will be completed by mid-2023. This study aims to collect acceptability and efficacy data of mānuka oil based ECMT-154 for the treatment of eczema. If efficacy is demonstrated, this topical may provide an option for a novel emollient treatment. The community-based design of the trial is anticipated to provide a generalisable result. ETHICS AND DISSEMINATION Ethics approval was obtained from Central Health and Disability Ethics Committee (reference: 2021 EXP 11490). Findings of the study will be disseminated to study participants, published in peer-reviewed journal and presented at scientific conferences. TRIAL REGISTRATION Australian New Zealand Clinical Trials Registry (ANZCTR) ACTRN12621001096842. Registered on August 18, 2021 ( https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=382412&isReview=true ). PROTOCOL VERSION 2.1 (Dated 18/05/2022).
Collapse
Affiliation(s)
- Gabrielle Shortt
- Medical Research Institute of New Zealand, Wellington, Aotearoa, New Zealand.
- Victoria University of Wellington, Wellington, Aotearoa, New Zealand.
| | - Nicholas Shortt
- Medical Research Institute of New Zealand, Wellington, Aotearoa, New Zealand
- Victoria University of Wellington, Wellington, Aotearoa, New Zealand
- NICM Health Research Institute, Western Sydney University, Penrith, Australia
| | - Georgina Bird
- Medical Research Institute of New Zealand, Wellington, Aotearoa, New Zealand
| | - Kyley Kerse
- Medical Research Institute of New Zealand, Wellington, Aotearoa, New Zealand
| | - Nico Lieffering
- Medical Research Institute of New Zealand, Wellington, Aotearoa, New Zealand
| | - Alexander Martin
- Medical Research Institute of New Zealand, Wellington, Aotearoa, New Zealand
- Victoria University of Wellington, Wellington, Aotearoa, New Zealand
| | - Allie Eathorne
- Medical Research Institute of New Zealand, Wellington, Aotearoa, New Zealand
- NICM Health Research Institute, Western Sydney University, Penrith, Australia
| | - Bianca Black
- Medical Research Institute of New Zealand, Wellington, Aotearoa, New Zealand
| | - Bob Kim
- Anderson's Exchange Pharmacy, Dunedin, Aotearoa, New Zealand
| | - Marius Rademaker
- Waikato Clinical Campus, University of Auckland, Hamilton, Aotearoa, New Zealand
- New Zealand Dermatology Research Trust, Palmerston North, Aotearoa, New Zealand
| | - Louise Reiche
- New Zealand Dermatological Society Inc, Palmerston North, Aotearoa, New Zealand
- New Zealand Dermatology Research Trust, Palmerston North, Aotearoa, New Zealand
| | - Selwyn Te Paa
- Medical Research Institute of New Zealand, Wellington, Aotearoa, New Zealand
- University of Otago, Wellington, Aotearoa, New Zealand
| | - Suki Harding
- Manuka Bioscience Ltd, Auckland, Aotearoa, New Zealand
| | - Mike Armour
- Medical Research Institute of New Zealand, Wellington, Aotearoa, New Zealand
- NICM Health Research Institute, Western Sydney University, Penrith, Australia
| | - Alex Semprini
- Medical Research Institute of New Zealand, Wellington, Aotearoa, New Zealand
- Victoria University of Wellington, Wellington, Aotearoa, New Zealand
- NICM Health Research Institute, Western Sydney University, Penrith, Australia
| |
Collapse
|
11
|
Malik MNH, Tahir MN, Alsahli TG, Tusher MMH, Alzarea SI, Alsuwayt B, Jahan S, Gomaa HAM, Shaker ME, Ali M, Anjum I, Khan MT, Roman M, Shabbir R. Geraniol Suppresses Oxidative Stress, Inflammation, and Interstitial Collagenase to Protect against Inflammatory Arthritis. ACS OMEGA 2023; 8:37128-37139. [PMID: 37841186 PMCID: PMC10568708 DOI: 10.1021/acsomega.3c04684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023]
Abstract
Geraniol (GER) is a plant-derived acyclic isoprenoid monoterpene that has displayed anti-inflammatory effects in numerous in vivo and in vitro models. This study was therefore designed to evaluate the antiarthritic potential of GER in complete Freund's adjuvant (CFA)-induced inflammatory arthritis (IA) model in rats. IA was induced by intraplantar injection of CFA (0.1 mL), and a week after CFA administration, rats were treated with various doses of methotrexate (MTX; 1 mg/kg) or GER (25, 50, and 100 mg/kg). Treatments were given on every alternate day, and animals were sacrificed on the 35th day. Paw volume, histopathological, hematological, radiographic, and qPCR analyses were performed to analyze the severity of the disease. GER significantly reduced paw edema after 35 days of treatment, and these results were comparable to the MTX-treated group. GER-treated animals displayed a perfect joint structure with minimal inflammation and no signs of cartilage or bone damage. Moreover, GER restored red blood cell and hemoglobin levels, normalized erythrocyte sedimentation rate, platelet, and c-reactive protein values, and also attenuated the levels of rheumatoid factor. RT-qPCR analysis demonstrated that GER decreased mRNA expression of pro-inflammatory cytokines like tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta. GER also down-regulated the transcript levels of cyclooxygenase-2 (COX-2), microsomal prostaglandin E synthase-1, prostaglandin D2 synthase, and interstitial collagenase (MMP-1). Molecular docking of GER with COX-2, TNF-α, and MMP-1 also revealed that the antiarthritic effects of GER could be due to its direct interactions with these mediators. Based on our findings, it is conceivable that the antiarthritic effects of GER could be attributed to downregulation of pro-inflammatory mediators and protease like MMP-1.
Collapse
Affiliation(s)
- Muhammad Nasir Hayat Malik
- Faculty
of Pharmacy, Capital University of Science
and Technology (CUST), Islamabad 44000, Pakistan
- Faculty
of Pharmacy, The University of Lahore, Lahore 54000, Pakistan
| | | | - Tariq G. Alsahli
- Department
of Pharmacology, College of Pharmacy, Jouf
University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Md. Mahedi Hassan Tusher
- Department
of Pharmacology, Faculty of Basic Sciences, Bangladesh University of Health Sciences, Dhaka 1216, Bangladesh
| | - Sami I. Alzarea
- Department
of Pharmacology, College of Pharmacy, Jouf
University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Bader Alsuwayt
- Department
of Pharmacy Practice, College of Pharmacy, University of Hafr Al-Batin, Hafr Al-Batin 31991, Saudi Arabia
| | - Shah Jahan
- Department
of Immunology, University of Health Sciences, Lahore 54000, Pakistan
| | - Hesham A. M. Gomaa
- Department
of Pharmacology, College of Pharmacy, Jouf
University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Mohamed E. Shaker
- Department
of Pharmacology, College of Pharmacy, Jouf
University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Muhammad Ali
- Faculty
of Pharmacy, The University of Lahore, Lahore 54000, Pakistan
| | - Irfan Anjum
- Faculty
of Pharmacy, The University of Lahore, Lahore 54000, Pakistan
- Shifa
College of Pharmaceutical Sciences,Shifa
Tameer-e-Millat University, Islamabad 44000, Pakistan
| | - Muhammad Tariq Khan
- Faculty
of Pharmacy, Capital University of Science
and Technology (CUST), Islamabad 44000, Pakistan
| | - Muhammad Roman
- Department
of Microbiology, University of Health Sciences, Lahore 54000, Pakistan
| | - Ramla Shabbir
- Faculty
of Pharmacy, The University of Lahore, Lahore 54000, Pakistan
| |
Collapse
|
12
|
Frota GA, Santos VOD, Rodrigues JFV, Oliveira BR, Albuquerque LB, Vasconcelos FRCD, Silva AC, Teixeira M, Brito ESD, Santos JMLD, Vieira LDS, Monteiro JP. Biological activity of cinnamaldehyde, citronellal, geraniol and anacardic acid on Haemonchus contortus isolates susceptible and resistant to synthetic anthelmintics. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA = BRAZILIAN JOURNAL OF VETERINARY PARASITOLOGY : ORGAO OFICIAL DO COLEGIO BRASILEIRO DE PARASITOLOGIA VETERINARIA 2023; 32:e006023. [PMID: 37341288 DOI: 10.1590/s1984-29612023027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/24/2023] [Indexed: 06/22/2023]
Abstract
Parasitism by gastrointestinal nematodes is a challenge for small ruminant farming worldwide. It causes productive and economic losses, especially due to parasite resistance to conventional anthelmintics. Natural compounds with antiparasitic activity are a potential alternative for controlling these parasites especially when considering the widespread occurrence of anthelmintic resistance. Our objective was to evaluate the activity of anacardic acid, geraniol, cinnamaldehyde and citronellal on Haemonchus contortus isolates with different levels of anthelmintic resistance profiles. These compounds were tested using egg hatch assays (EHAs), larval development tests (LDTs) as well as LDTs on mini-fecal cultures, on the Haemonchus contortus isolates Kokstad (KOK-resistant to all anthelmintics), Inbred-Strain-Edinburgh (ISE-susceptible to all anthelmintics) and Echevarria (ECH-susceptible to all anthelmintics). Effective concentrations to inhibit 50% (EC50) and 95% (EC95) of egg hatching and larval development were calculated. Results for EHA and LDT for all tested compounds, considering EC50 and EC95 values, showed low variation among the studied isolates with most RF values below 2x. All studied compounds showed efficacy against egg hatching and larval development of H. contortus isolates regardless of anthelmintic resistance profiles. The compounds with the smallest EC50 and EC95 values were cinnamaldehyde and anacardic acid making them promising candidates for future in vivo studies.
Collapse
Affiliation(s)
- Gracielle Araújo Frota
- Programa de Pós-graduação em Zootecnia, Universidade Estadual Vale do Acaraú - UVA, Sobral, CE, Brasil
| | | | | | | | | | | | | | - Marcel Teixeira
- Programa de Pós-graduação em Zootecnia, Universidade Estadual Vale do Acaraú - UVA, Sobral, CE, Brasil
- Programa de Pós-graduação em Microbiologia, Parasitologia e Patologia, Universidade Federal do Paraná - UFPR, Curitiba, PR, Brasil
- Embrapa Caprinos e Ovinos, Sobral, CE, Brasil
| | | | | | | | - Jomar Patricio Monteiro
- Programa de Pós-graduação em Zootecnia, Universidade Estadual Vale do Acaraú - UVA, Sobral, CE, Brasil
- Centro Universitário Inta - UNINTA, Sobral, CE, Brasil
- Embrapa Caprinos e Ovinos, Sobral, CE, Brasil
| |
Collapse
|
13
|
Alzahrani B, Elderdery AY, Alzerwi NAN, Alsrhani A, Alsultan A, Rayzah M, Idrees B, Rayzah F, Baksh Y, Alzahrani AM, Subbiah SK, Mok PL. Pluronic-F-127-Passivated SnO 2 Nanoparticles Derived by Using Polygonum cuspidatum Root Extract: Synthesis, Characterization, and Anticancer Properties. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091760. [PMID: 37176818 PMCID: PMC10181209 DOI: 10.3390/plants12091760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/01/2023] [Accepted: 04/07/2023] [Indexed: 05/15/2023]
Abstract
Nanotechnology has emerged as the most popular research topic with revolutionary applications across all scientific disciplines. Tin oxide (SnO2) has been gaining considerable attention lately owing to its intriguing features, which can be enhanced by its synthesis in the nanoscale range. The establishment of a cost-efficient and ecologically friendly procedure for its production is the result of growing concerns about human well-being. The novelty and significance of this study lie in the fact that the synthesized SnO2 nanoparticles have been tailored to have specific properties, such as size and morphology. These properties are crucial for their applications. Moreover, this study provides insights into the synthesis process of SnO2 nanoparticles, which can be useful for developing efficient and cost-effective methods for large-scale production. In the current study, green Pluronic-coated SnO2 nanoparticles (NPs) utilizing the root extracts of Polygonum cuspidatum have been formulated and characterized by several methods such as UV-visible, Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDAX), transmission electron microscope (TEM), field emission-scanning electron microscope (FE-SEM), X-ray diffraction (XRD), photoluminescence (PL), and dynamic light scattering (DLS) studies. The crystallite size of SnO2 NPs was estimated to be 45 nm, and a tetragonal rutile-type crystalline structure was observed. FESEM analysis validated the NPs' spherical structure. The cytotoxic potential of the NPs against HepG2 cells was assessed using the in vitro MTT assay. The apoptotic efficiency of the NPs was evaluated using a dual-staining approach. The NPs revealed substantial cytotoxic effects against HepG2 cells but failed to exhibit cytotoxicity in different liver cell lines. Furthermore, dual staining and flow cytometry studies revealed higher apoptosis in NP-treated HepG2 cells. Nanoparticle treatment also inhibited the cell cycle at G0/G1 stage. It increased oxidative stress and promoted apoptosis by encouraging pro-apoptotic protein expression in HepG2 cells. NP treatment effectively blocked the PI3K/Akt/mTOR axis in HepG2 cells. Thus, green Pluronic-F-127-coated SnO2 NPs exhibits enormous efficiency to be utilized as an talented anticancer agent.
Collapse
Affiliation(s)
- Badr Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Abozer Y Elderdery
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Nasser A N Alzerwi
- Department of Surgery, College of Medicine, Majmaah University, P.O. Box 66, Al-Majmaah 11952, Saudi Arabia
| | - Abdullah Alsrhani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Afnan Alsultan
- Department of Surgery, King Saud Medical City, Riyadh 12746, Saudi Arabia
| | - Musaed Rayzah
- Department of Surgery, College of Medicine, Majmaah University, P.O. Box 66, Al-Majmaah 11952, Saudi Arabia
| | - Bandar Idrees
- Department of Surgery, Prince Sultan Military Medical City, P.O. Box 7897, Riyadh 11159, Saudi Arabia
| | - Fares Rayzah
- Aseer Central Hospital, Abha 62523, Saudi Arabia
| | - Yaser Baksh
- Iman General Hospital, Riyadh 12684, Saudi Arabia
| | - Ahmed M Alzahrani
- Department of Surgery, College of Medicine, Majmaah University, P.O. Box 66, Al-Majmaah 11952, Saudi Arabia
| | - Suresh K Subbiah
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai 600073, India
| | - Pooi Ling Mok
- Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
14
|
Bagheri S, Rashno M, Salehi I, Karimi SA, Raoufi S, Komaki A. Geraniol improves passive avoidance memory and hippocampal synaptic plasticity deficits in a rat model of Alzheimer's disease. Eur J Pharmacol 2023; 951:175714. [PMID: 37054939 DOI: 10.1016/j.ejphar.2023.175714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/15/2023]
Abstract
Alzheimer's disease (AD) is the most progressive and irreversible neurodegenerative disease that leads to synaptic loss and cognitive decline. The present study was designed to evaluate the effects of geraniol (GR), a valuable acyclic monoterpene alcohol, with protective and therapeutic effects, on passive avoidance memory, hippocampal synaptic plasticity, and amyloid-beta (Aβ) plaques formation in an AD rat model induced by intracerebroventricular (ICV) microinjection of Aβ1-40. Seventy male Wistar rats were randomly into sham, control, control-GR (100 mg/kg; P.O. (orally), AD, GR-AD (100 mg/kg; P.O.; pretreatment), AD-GR (100 mg/kg; P.O.; treatment), and GR-AD-GR (100 mg/kg; P.O.; pretreatment & treatment). Administration of GR was continued for four consecutive weeks. Training for the passive avoidance test was carried out on the 36th day and a memory retention test was performed 24 h later. On day 38, hippocampal synaptic plasticity (long-term potentiation; LTP) was recorded in perforant path-dentate gyrus (PP-DG) synapses to assess field excitatory postsynaptic potentials (fEPSPs) slope and population spike (PS) amplitude. Subsequently, Aβ plaques were identified in the hippocampus by Congo red staining. The results showed that Aβ microinjection increased passive avoidance memory impairment, suppressed of hippocampal LTP induction, and enhanced of Aβ plaque formation in the hippocampus. Interestingly, oral administration of GR improved passive avoidance memory deficit, ameliorated hippocampal LTP impairment, and reduced Aβ plaque accumulation in the Aβ-infused rats. The results suggest that GR mitigates Aβ-induced passive avoidance memory impairment, possibly through alleviation of hippocampal synaptic dysfunction and inhibition of Aβ plaque formation.
Collapse
Affiliation(s)
- Shokufeh Bagheri
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masome Rashno
- Asadabad School of Medical Sciences, Asadabad, Iran; Student Research Committee, Asadabad School of Medical Sciences, Asadabad, Iran
| | - Iraj Salehi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Asaad Karimi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Safoura Raoufi
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran. http://umsha.ac.ir
| |
Collapse
|
15
|
Ma J, Xu Y, Zhang M, Li Y. Geraniol ameliorates acute liver failure induced by lipopolysaccharide/D-galactosamine via regulating macrophage polarization and NLRP3 inflammasome activation by PPAR-γ methylation Geraniol alleviates acute liver failure. Biochem Pharmacol 2023; 210:115467. [PMID: 36849063 DOI: 10.1016/j.bcp.2023.115467] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/01/2023]
Abstract
Geraniol (Ger), a natural acyclic monoterpene alcohol, has been reported to exert protective effects through anti-inflammation in Acute liver failure (ALF). However, its specific roles and precise mechanisms underlying anti-inflammatory effects in ALF have not yet fully explored. We aimed to investigated the hepatoprotective effects and mechanisms of Ger against ALF induced by lipopolysaccharide (LPS)/D-galactosamine (GaIN). In this study, the liver tissue and serum of LPS/D-GaIN-induced mice were collected. The degree of liver tissue injury was evaluated by HE and TUNEL staining. Serum levels of liver injury markers (ALT and AST) and inflammatory factors were measured by ELISA assays. PCR and western blotting were conducted to determine the expression of inflammatory cytokines, NLRP3 inflammasome-related proteins, PPAR-γ pathway-related proteins, DNA Methyltransferases and M1/M2 polarization cytokines. Immunofluorescence staining was used to assess the localization and expression of macrophage markers (F4/80 and CD86), NLRP3 and PPAR-γ. In vitro experiments were performed in macrophages stimulated with LPS with or without IFN-γ. Purification of macrophages and cell apoptosis was analyzed using flow cytometry. We found that Ger effectively alleviated ALF in mice, specified by the attenuation of liver tissue pathological damage, inhibition of ALT, AST and inflammatory factor levels, and inactivation of NLRP3 inflammasome. Meanwhile, downregulation M1 macrophage polarization may involve in the protective effects of Ger. In vitro, Ger reduced the activation of NLRP3 inflammasome and apoptosis through regulating PPAR-γ methylation by inhibiting M1 macrophage polarization. In conclusion, Ger protects against ALF through suppressing NLRP3 inflammasome-mediated inflammation and LPS-induced macrophage M1 polarization via modulating PPAR-γ methylation.
Collapse
Affiliation(s)
- Jing Ma
- Infectious Disease Department, The Second XIANGYA Hospital of Central South University, Changsha, Hunan, China
| | - Yun Xu
- Infectious Disease Department, The Second XIANGYA Hospital of Central South University, Changsha, Hunan, China
| | - Min Zhang
- Infectious Disease Department, The Second XIANGYA Hospital of Central South University, Changsha, Hunan, China
| | - Yi Li
- Infectious Disease Department, The Second XIANGYA Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
16
|
Gururani MA, Atteya AK, Elhakem A, El-Sheshtawy ANA, El-Serafy RS. Essential oils prolonged the cut carnation longevity by limiting the xylem blockage and enhancing the physiological and biochemical levels. PLoS One 2023; 18:e0281717. [PMID: 36881583 PMCID: PMC9990951 DOI: 10.1371/journal.pone.0281717] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/31/2023] [Indexed: 03/08/2023] Open
Abstract
Postharvest characteristics, such as vase life and antimicrobial preservation of commercial cut flowers are some of the major determinants of their market value worldwide. Extending vase life while restricting microbial proliferation in cut flowers is an important challenge faced by floricultural researchers. This study evaluates the preservative efficiency of different essential oils used as additive solutions in prolonging the longevity of carnation cv. Madam Collette cut flowers and restricting microbial growth in them. Cut carnations were treated with four essential oils: geranium, thyme, marjoram, and anise at concentrations of 0, 25, 50, and 75 mg/L. While treatment with all the essential oils prolonged the longevity of the cut flowers, thyme and marjoram oils were most effective at concentrations of 50 mg/L each. The vase life of thyme-treated and marjoram-treated carnations almost doubled to 18.5 days and 18.25 days, respectively, as compared to untreated flowers. Treatment with essential oils also led to an increase in water uptake by the cut flowers enhancing their relative water content (RWC). It also restricted the sharp decline of chlorophyll and total carbohydrates content of the flowers during their vase life period. Morphological features of the stem bases of treated and untreated carnations were analyzed using scanning electron microscopy (SEM). The stem ends of geranium and anise-treated carnations showed less bacterial growth than untreated flowers and no apparent xylem blockage was observed even after nine days of treatment. Furthermore, the presence of essential oils also reduced lipid peroxidation and free radical generation as observed by malondialdehyde (MDA) and H2O2 quantification, respectively. It also led to increased production of total phenols leading to enhanced membrane stability. The use of thyme and marjoram essential oils as antimicrobial preservatives and green antioxidants appears to have promising applications in both the industrial and scientific sectors.
Collapse
Affiliation(s)
- Mayank A. Gururani
- Biology Department, College of Science, United Arab Emirates University, Al Ain, UAE
| | - Amira K. Atteya
- Faculty of Agriculture, Horticulture Department, Damanhour University, Damanhour, Egypt
| | - Abeer Elhakem
- Department of Biology, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | | | - Rasha S. El-Serafy
- Horticulture Department, Faculty of Agriculture, Tanta University, Tanta, Egypt
- * E-mail:
| |
Collapse
|
17
|
Salama SA, Elshafey MM. Cross-talk between PPARγ, NF-κB, and p38 MAPK signaling mediates the ameliorating effects of bergenin against the iron overload-induced hepatotoxicity. Chem Biol Interact 2022; 368:110207. [DOI: 10.1016/j.cbi.2022.110207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/27/2022] [Accepted: 10/02/2022] [Indexed: 11/03/2022]
|
18
|
Li Y, Zou Z, An J, Wu Q, Tong L, Mei X, Tian H, Wu C. Chitosan-modified hollow manganese dioxide nanoparticles loaded with resveratrol for the treatment of spinal cord injury. Drug Deliv 2022; 29:2498-2512. [PMID: 35903814 PMCID: PMC9477490 DOI: 10.1080/10717544.2022.2104957] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Spinal cord injury (SCI) is a serious central nervous system disease, and secondary injury, including oxidative stress, the inflammatory response and accompanying neuronal apoptosis, will aggravate the condition. Due to the existence of the blood–spinal cord barrier (BSCB), the existing drugs for SCI treatment are difficulty to reach the injury site and thus their efficacy is limited. In this study, we designed chitosan-modified hollow manganese dioxide nanoparticles (CM) for the delivery of resveratrol to help it pass through the BSCB. Resveratrol (Res), a poorly soluble drug, was adsorbed into CM with a particle size of approximately 130 nm via the adsorption method, and the drug loading reached 21.39 ± 2.53%. In vitro dissolution experiment, the Res release of the loaded sample (CMR) showed slowly release behavior and reached about 87% at 36 h. In vitro at the cellular level and in vivo at the animal level experiments demonstrated that CMR could alleviate significantly oxidative stress by reducing level of reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), and increasing glutathione peroxidase (GSH) level. Additionally, immunofluorescence (iNOS, IL-1β, and Cl caspase-3) and western blot (iNOS, cox-2, IL-1β, IL-10, Cl caspase-3, bax, and bcl-2) were used to detect the expression of related factors, which verified that CMR could also reduce inflammation and neuronal apoptosis. These results indicated that CM, as a potential central nervous system drug delivery material, was suitable for SCI treatment.
Collapse
Affiliation(s)
- Yingqiao Li
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Zhiru Zou
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Jinyu An
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Qian Wu
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Le Tong
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xifan Mei
- Department of Orthopedics, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China.,Key Laboratory of Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - He Tian
- Department of Histology and Embryology, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Chao Wu
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
19
|
Renal Ischemia/Reperfusion Mitigation via Geraniol: The Role of Nrf-2/HO-1/NQO-1 and TLR2,4/MYD88/NFκB Pathway. Antioxidants (Basel) 2022; 11:antiox11081568. [PMID: 36009287 PMCID: PMC9405463 DOI: 10.3390/antiox11081568] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/30/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Renal ischemia/reperfusion injury is a clinically recurrent event during kidney transplantation. Geraniol is a natural monoterpene essential oil component. This study aimed to inspect geraniol's reno-protective actions against renal I/R injury with further analysis of embedded mechanisms of action through scrutinizing the Nrf-2/HO-1/NQO-1 and TLR2,4/MYD88/NFκB signaling pathways. METHODS Wistar male rats were randomized into five groups: Sham, Sham + geraniol, Renal I/R, and two Renal I/R + geraniol groups representing two doses of geraniol (100 and 200 mg/kg) for 14 days before the renal I/R. Renal I/R was surgically induced by occluding both left and right renal pedicles for 45 min, followed by reperfusion for 24 h. A docking study was performed to anticipate the expected affinity of geraniol towards three protein targets: hTLR4/MD2, hTLR2, and hNrf2/Keap1. RESULTS Renal I/R rats experienced severely compromised renal functions, histological alteration, oxidative stress status, escalated Nrf-2/HO-1/NQO-1, and amplified TLR2,4/MYD88/NFκB. Geraniol administration ameliorated renal function, alleviated histological changes, and enhanced Nrf-2/HO-1/NQO-1 with a subsequent intensification of antioxidant enzyme activities. Geraniol declined TLR2,4/MYD88/NFκB with subsequent TNF-α, IFN-γ, MCP-1 drop, Bax, caspase-3, and caspase-9 reduction IL-10 and Bcl-2 augmentation. Geraniol exhibited good fitting in the binding sites of the three in silico examined targets. CONCLUSIONS Geraniol might protect against renal I/R via the inhibition of the TLR2,4/MYD88/NFκB pathway, mediating anti-inflammation and activation of the Nrf2 pathway, intervening in antioxidative activities.
Collapse
|
20
|
Neuroprotective effect of geraniol on neurological disorders: a review article. Mol Biol Rep 2022; 49:10865-10874. [PMID: 35900613 DOI: 10.1007/s11033-022-07755-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/29/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Neurological disorders are structural, biochemical, and electrical abnormalities that affect the peripheral and central nervous systems. Paralysis, muscle weakness, tremors, spasms, and partial or complete loss of sensation are some symptoms of these disorders. Neurorehabilitation is the main treatment for neurological disorders. Treatments can improve the quality of life of patients. Neuroprotective substances of natural origin are used for the treatments of these disorders. METHODS AND RESULTS Online databases, such as Google Scholar, PubMed, ScienceDirect, and Scopus were searched to evaluate articles from 1981-2021 using the Mesh words of geraniol (GER), neurological disorders, epilepsy, spinal cord injury (SCI), Parkinson's diseases (PD), and depression. A total of 87 studies were included in this review. GER with antioxidant, anti-inflammatory, and neuroprotective effects can improve the symptoms and reduce the progression of neurological diseases. GER exhibits neuroprotective effects by binding to GABA and glycine receptors as well as by inhibiting the activation of nuclear factor kappa B (NF-κB) pathway and regulating the expression of nucleotide-binding oligomerization of NLRP3 inflammasome. In this study, the effect of GER was investigated on neurological disorders, such as epilepsy, SCI, PD, and depression. CONCLUSION Although the medicinal uses of GER have been reported, more clinical and experimental studies are needed to investigate the effect of using traditional medicine on improving lifethreatening diseases and the quality of life of patients.
Collapse
|
21
|
Zou G, Wan J, Balupillai A, David E, Ranganathan B, Saravanan K. Geraniol enhances peroxiredoxin-1, and prevents isoproterenol-induced oxidative stress and inflammation associated with myocardial infarction in experimental animal models. J Biochem Mol Toxicol 2022; 36:e23098. [PMID: 35608392 DOI: 10.1002/jbt.23098] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/08/2022] [Accepted: 05/09/2022] [Indexed: 01/08/2023]
Abstract
This study has explored the fact that geraniol prevents isoproterenol (ISO)-induced oxidative stress and inflammation-mediated myocardial infarction (MI) through enhanced expression of peroxiredoxin-1 (Prdx-1) in experimental animal models. The experimental strategies of MI were stimulated through the subcutaneous direction of ISO (85 mg/kg body weight) for 14 days. ISO-directed models showed elevated heart rate levels and cardiac markers (serum creatine kinase [CK], serum CK-myocardial band, serum C-reactive proteins, and plasma homocysteine); increased cardiac-troponins-T, and troponin-I levels in both serum and myocardium. Moreover, we perceived that a higher level of lipid peroxidation molecules (thiobarbituric acid reactive substances and lipid hydroperoxides) reduced the antioxidant enzyme levels in plasma and heart tissue of ISO-directed rats. However, geraniol treatment prevents ISO-directed enhancement of the heart rate, cardiac and lipid peroxidative genes; reverted the blood pressure, and antioxidant status in ISO-directed rats. Furthermore, gene expression results revealed that geraniol treatment inhibited the mitogen-activated protein kinase (MAPK) proteins, inflammatory responder (tumor necrosis factor-α, interleukin 6, nuclear factor-κB), and cardiac fibrotic proteins (matrix metalloproteinase-2[MMP-2], MMP-9) in ISO directed rats. Prdx-1 is an antioxidant response element, and it can regulate all the antioxidant proteins and it scavenges harmful radicals. Therefore, enhanced Prdx-1 expression is considered to have a pivotal role in preventing cardiac infarction. In this study, an elevated expression of Prdx1 was noticed in geraniol treated with ISO-directed rats. Hence, we concluded that geraniol is considered a potential phytodrug, and it prevents ISO-directed MAPKs, inflammation, and cardiac markers by enhancing the expression of Prdx1.
Collapse
Affiliation(s)
- Gangqiang Zou
- Department of Macrovascular Surgery, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, China
| | - Jia Wan
- Department of Vascular Surgery, The Second People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Agilan Balupillai
- Department of Biotechnology, Thiruvalluvar University, Vellore, Tamil Nadu, India
| | - Ernest David
- Department of Biotechnology, Thiruvalluvar University, Vellore, Tamil Nadu, India
| | | | - Kalaimani Saravanan
- Department of Biotechnology, Thiruvalluvar University, Vellore, Tamil Nadu, India
| |
Collapse
|
22
|
Atef MM, Emam MN, Abo El Gheit RE, Elbeltagi EM, Alshenawy HA, Radwan DA, Younis RL, Abd-Ellatif RN. Mechanistic Insights into Ameliorating Effect of Geraniol on D-Galactose Induced Memory Impairment in Rats. Neurochem Res 2022; 47:1664-1678. [PMID: 35235140 PMCID: PMC9124169 DOI: 10.1007/s11064-022-03559-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 12/11/2022]
Abstract
Geraniol (GE), an important ingredient in several essential oils, displayed pleiotropic biological activities through targeting multiple signaling cascades. In the current study, we aimed to examine the protective effect of GE on D-galactose (D-gal) induced cognitive impairment and explore the underlying mechanisms. Forty male Wistar rats (8 weeks old) were randomly categorized into 4 groups; Group I (saline + vehicle [edible oil]), group II (saline + geraniol) (100 mg/kg/day orally), group III (D-galactose) (100 mg/kg/day subcutaneously injected), and group IV (D-galactose + geraniol). Behavioral impairments were evaluated. Brain levels of malondialdehyde (MDA) and reduced glutathione (GSH) as well as superoxide dismutase (SOD) and acetylcholinesterase (AchE) activities were estimated. The levels of inflammatory markers [tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, IL-6, and nuclear factor kappa beta (NF-kβ)], endoplasmic reticulum stress sensors [inositol requiring protein 1(IRE1) and protein kinase RNA-like endoplasmic reticulum kinase (PERK)], brain-derived neurotrophic factor (BDNF), and mitogen-activated protein kinases (MAPK) pathway were measured by ELISA. Also, hippocampal histopathological assessment and immunohistochemical analysis of glial fibrillary acidic protein (GFAP) and caspase-3 were performed. Glucose regulated protein 78 (GRP78) and C/EBP homologous protein (CHOP) mRNA expression and protein levels were assessed. GE effectively ameliorated aging-related memory impairment through increasing GSH, BDNF, Ach levels, and SOD activity. Additionally, GE treatment caused a decrease in the levels of MDA, inflammatory mediators, and ER stress sensors as well as the AchE activity together with concomitant down-regulation of GRP78 and CHOP mRNA expression. Moreover, GE improved neuronal architecture and rat's spatial memory; this is evidenced by the shortened escape latency and increased platform crossing number. Therefore, GE offers a unique pharmacological approach for aging-associated neurodegenerative disorders.
Collapse
Affiliation(s)
- Marwa Mohamed Atef
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, El Geesh Street, Tanta, 31511, Egypt.
| | - Marwa Nagy Emam
- Physiology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | | | - H A Alshenawy
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Doaa A Radwan
- Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Reham L Younis
- Physiology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Rania Nagi Abd-Ellatif
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, El Geesh Street, Tanta, 31511, Egypt
| |
Collapse
|
23
|
Determination of the chemical composition and antioxidant, anticancer, and antibacterial properties of essential oil of Pulicaria crispa from Saudi Arabia. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100341] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
24
|
Yu Q, Jiang X, Liu X, Shen W, Mei X, Tian H, Wu C. Glutathione-modified macrophage-derived cell membranes encapsulated metformin nanogels for the treatment of spinal cord injury. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 133:112668. [DOI: 10.1016/j.msec.2022.112668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/20/2021] [Accepted: 01/14/2022] [Indexed: 12/15/2022]
|
25
|
Alarfaj NA, Amina M, Al Musayeib NM, El-Tohamy MF, Al-Hamoud GA. Immunomodulatory and Antiprotozoal Potential of Fabricated Sesamum radiatum Oil/Polyvinylpyrrolidone/Au Polymeric Bionanocomposite Film. Polymers (Basel) 2021; 13:4321. [PMID: 34960872 PMCID: PMC8709204 DOI: 10.3390/polym13244321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/03/2022] Open
Abstract
A unique morphological Sesamum radiatum oil/polyvinylpyrrolidone/gold polymeric bionanocomposite film was synthesized using the S. radiatum oil dispersed in a polymeric polyvinylpyrrolidone (PVP) matrix and decorated with gold nanoparticles (AuNPs). The chemical and physical characteristics as well as the thermal stability of the synthesized bionanocomposite film were investigated using various spectroscopic and microscopic techniques. The microscopic analysis confirmed well dispersed AuNPs in the PVP- S. radiatum oil matrix with particle size of 100 nm. Immunomodulatory and antiprotozoal potentials of the suggested bionanocomposite film were evaluated for lipopolysaccharide-induced BV-2 microglia and against L. amazonensis, L. mexicana promastigotes and T. cruzi epimastigotes, respectively. The results exerted outstanding reduction of inflammatory cytokines' (IL-6 and TNFα) secretions after pretreatment of bionanocomposite. The bionanocomposite exhibited large inhibitory effects on certain cell signaling components that are related to the activation of expression of proinflammatory cytokines. Additionally, AuNPs and bionanocomposite exhibited excellent growth inhibition of L. mexicana and L. amazonensis promastigotes with IC50 (1.71 ± 1.49, 1.68 ± 0.75) and (1.12 ± 1.10, 1.42 ± 0.69), respectively. However, the nanomaterials showed moderate activity towards T. cruzi. All outcomes indicated promising immunomodulatory, antiprotozoal, and photocatalytic potentials for the synthesized S. radiatum oil/PVP/Au polymeric bionanocomposite.
Collapse
Affiliation(s)
- Nawal A. Alarfaj
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.A.); (M.F.E.-T.)
| | - Musarat Amina
- Department of Pharmacognosy, Pharmacy College, King Saud University, Riyadh 11451, Saudi Arabia; (N.M.A.M.); (G.A.A.-H.)
| | - Nawal M. Al Musayeib
- Department of Pharmacognosy, Pharmacy College, King Saud University, Riyadh 11451, Saudi Arabia; (N.M.A.M.); (G.A.A.-H.)
| | - Maha F. El-Tohamy
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.A.); (M.F.E.-T.)
| | - Gadah A. Al-Hamoud
- Department of Pharmacognosy, Pharmacy College, King Saud University, Riyadh 11451, Saudi Arabia; (N.M.A.M.); (G.A.A.-H.)
| |
Collapse
|
26
|
Geraniol Averts Methotrexate-Induced Acute Kidney Injury via Keap1/Nrf2/HO-1 and MAPK/NF-κB Pathways. Curr Issues Mol Biol 2021; 43:1741-1755. [PMID: 34889889 PMCID: PMC8929074 DOI: 10.3390/cimb43030123] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 01/05/2023] Open
Abstract
Objectives: Geraniol, a natural monoterpene, is an essential oil component of many plants. Methotrexate is an anti-metabolite drug, used for cancer and autoimmune conditions; however, clinical uses of methotrexate are limited by its concomitant renal injury. This study investigated the efficacy of geraniol to prevent methotrexate-induced acute kidney injury and via scrutinizing the Keap1/Nrf2/HO-1, P38MAPK/NF-κB and Bax/Bcl2/caspase-3 and -9 pathways. Methods: Male Wister rats were allocated into five groups: control, geraniol (orally), methotrexate (IP), methotrexate and geraniol (100 and 200 mg/kg). Results: Geraniol effectively reduced the serum levels of creatinine, urea and Kim-1 with an increase in the serum level of albumin when compared to the methotrexate-treated group. Geraniol reduced Keap1, escalated Nrf2 and HO-1, enhanced the antioxidant parameters GSH, SOD, CAT and GSHPx and reduced MDA and NO. Geraniol decreased renal P38 MAPK and NF-κB and ameliorated the inflammatory mediators TNF-α, IL-1β, IL-6 and IL-10. Geraniol negatively regulated the apoptotic mediators Bax and caspase-3 and -9 and increased Bcl2. All the biochemical findings were supported by the alleviation of histopathological changes in kidney tissues. Conclusion: The current findings support that co-administration of geraniol with methotrexate may attenuate methotrexate-induced acute kidney injury.
Collapse
|
27
|
Lin L, Long N, Qiu M, Liu Y, Sun F, Dai M. The Inhibitory Efficiencies of Geraniol as an Anti-Inflammatory, Antioxidant, and Antibacterial, Natural Agent Against Methicillin-Resistant Staphylococcus aureus Infection in vivo. Infect Drug Resist 2021; 14:2991-3000. [PMID: 34385822 PMCID: PMC8352600 DOI: 10.2147/idr.s318989] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/26/2021] [Indexed: 12/13/2022] Open
Abstract
Introduction Antibiotics wee widely used as feed additives in animal husbandry. With the increase of drug resistance of bacteria, there is an urgent need to find alternatives to antibiotics. Clinically, methicillin-resistant Staphylococcus aureus (MRSA) infections account for about 25% to 50% of Staphylococcus aureus infections worldwide. Similarly, it is also one of the pathogens that cause serious animal infections. Methods We established a mouse model of systemic infection of MRSA to study the preventive effect of geraniol on MRSA and the immunomodulatory effect of geraniol. The mice in the experiment were injected with geraniol by intramuscular injection and were fed intraperitoneally with minimum lethal dose of MRSA. Then, the survival rate, inflammatory cytokines, oxidative stress factors in serum were measured. These values were used to estimate the bacterial load in different organs and to assess histopathological changes in the lungs, liver and kidneys. Results The above-mentioned two ways of using geraniol could prevent MRSA infection in vivo in mice and showed a significant dose–response relationship. In other words, geraniol significantly decreased the concentrations of inflammatory cytokines and oxidative stress factors in MRSA-infected mice. At the same time, the level of glutathione peroxidase also increased in a dose–proportional relationship. In the group of mice treated with geraniol, their superoxide dismutase levels were significantly higher than those in the vancomycin. After treatment with geraniol, the burden of MRSA decreased. No obvious histopathological abnormalities were found in the liver and kidney of MRSA-infected mice. In addition, geraniol improved the inflammatory changes in the lungs. Conclusion The results indicated that geraniol was a natural substance that could be used as an anti-inflammatory, antioxidant and antibacterial substance to protect mice from MRSA systemic infection. Generally, the research shows that as a natural medicine, geraniol has broad potential in the development and application of antibiotic substitutes.
Collapse
Affiliation(s)
- Lin Lin
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, People's Republic of China.,Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, 610500, Sichuan, People's Republic of China
| | - Nana Long
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, People's Republic of China.,Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, 610500, Sichuan, People's Republic of China
| | - Min Qiu
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, People's Republic of China.,Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, 610500, Sichuan, People's Republic of China
| | - Yao Liu
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, People's Republic of China
| | - Fenghui Sun
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, People's Republic of China.,Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, 610500, Sichuan, People's Republic of China
| | - Min Dai
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, People's Republic of China.,Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, 610500, Sichuan, People's Republic of China
| |
Collapse
|
28
|
Geraniol improved memory impairment and neurotoxicity induced by zinc oxide nanoparticles in male wistar rats through its antioxidant effect. Life Sci 2021; 282:119823. [PMID: 34273375 DOI: 10.1016/j.lfs.2021.119823] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/27/2021] [Accepted: 07/06/2021] [Indexed: 11/23/2022]
Abstract
AIMS Zinc oxide nanoparticles (ZnO-NPs) are currently applied in food and pharmaceutical industries whose neurotoxic effect on the central nervous system (CNS) is a major concern. Considering the pharmacological properties (antioxidant, anti-inflammatory) of the geraniol (GE), we aimed to investigate the efficacy of geraniol on ZnO-NPs neurotoxicity. MATERIALS AND METHODS We used 32 male Wistar rats, randomly assigned to four groups (n = 8): Control, GE (daily received 100 mg/kg of GE by gavage), ZnO-NPs (received intraperitoneal injection of 75 mg/kg of ZnO-NPs twice a week), and ZnO-NPs + GE (received both GE and ZnO-NPs at same doses above during 4 weeks). Morris water maze (MWM) and Y-maze tasks were done to evaluate learning and memory function. Biochemical assays were done to measure total antioxidant capacity (TAC), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPX) and ZnO-NPs bioaccumulation. Nissl and H&E staining were performed for histological evaluations. KEY FINDINGS The results of behavioral study revealed that GE improved learning and memory impairment induced by ZnO-NPs. Moreover, neuroprotective effect of GE significantly decreased pathological parameters such as necrosis and gliosis, and consequently increased the number of nerve cells in the cortex and different hippocampal areas. Furthermore, biochemical studies demonstrated that GE significantly increased antioxidant indices (namely, TAC, SOD, and GPX) and reduced oxidative stress marker (MDA) and Zn bioaccumulation in ZnO-NPs treated animals. SIGNIFICANCE Our results provide experimental evidence to further investigate the precise mechanisms underlying the geraniol as a promising therapeutic approach for improvement of cognitive function and neurotoxicity induce by ZnO-NPs.
Collapse
|
29
|
Sampaio LA, Pina LTS, Serafini MR, Tavares DDS, Guimarães AG. Antitumor Effects of Carvacrol and Thymol: A Systematic Review. Front Pharmacol 2021; 12:702487. [PMID: 34305611 PMCID: PMC8293693 DOI: 10.3389/fphar.2021.702487] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Background: It is estimated that one in five people worldwide faces a diagnosis of a malignant neoplasm during their lifetime. Carvacrol and its isomer, thymol, are natural compounds that act against several diseases, including cancer. Thus, this systematic review aimed to examine and synthesize the knowledge on the antitumor effects of carvacrol and thymol. Methods: A systematic literature search was carried out in the PubMed, Web of Science, Scopus and Lilacs databases in April 2020 (updated in March 2021) based on the PRISMA 2020 guidelines. The following combination of health descriptors, MeSH terms and their synonyms were used: carvacrol, thymol, antitumor, antineoplastic, anticancer, cytotoxicity, apoptosis, cell proliferation, in vitro and in vivo. To assess the risk of bias in in vivo studies, the SYRCLE Risk of Bias tool was used, and for in vitro studies, a modified version was used. Results: A total of 1,170 records were identified, with 77 meeting the established criteria. The studies were published between 2003 and 2021, with 69 being in vitro and 10 in vivo. Forty-three used carvacrol, 19 thymol, and 15 studies tested both monoterpenes. It was attested that carvacrol and thymol induced apoptosis, cytotoxicity, cell cycle arrest, antimetastatic activity, and also displayed different antiproliferative effects and inhibition of signaling pathways (MAPKs and PI3K/AKT/mTOR). Conclusions: Carvacrol and thymol exhibited antitumor and antiproliferative activity through several signaling pathways. In vitro, carvacrol appears to be more potent than thymol. However, further in vivo studies with robust methodology are required to define a standard and safe dose, determine their toxic or side effects, and clarify its exact mechanisms of action. This systematic review was registered in the PROSPERO database (CRD42020176736) and the protocol is available at https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=176736.
Collapse
Affiliation(s)
- Laeza Alves Sampaio
- Graduate Program of Applied Sciences to Health, Federal University of Sergipe, Lagarto, Brazil
| | | | | | | | | |
Collapse
|
30
|
Bouyahya A, Guaouguaou FE, El Omari N, El Menyiy N, Balahbib A, El-Shazly M, Bakri Y. Anti-inflammatory and analgesic properties of Moroccan medicinal plants: Phytochemistry, in vitro and in vivo investigations, mechanism insights, clinical evidences and perspectives. J Pharm Anal 2021; 12:35-57. [PMID: 35573886 PMCID: PMC9073245 DOI: 10.1016/j.jpha.2021.07.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/14/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
Moroccan medicinal plants exhibit several pharmacological properties such as antimicrobial, anticancer, antidiabetic, analgesic, and anti-inflammatory effects, which are related to the presence of numerous bioactive compounds, including phenolic acids, flavonoids, and terpenoids. In the present review, we systematically evaluate previously published reports on the anti-inflammatory and analgesic effects of Moroccan medicinal plants. The in vitro investigations revealed that Moroccan medicinal plants inhibit several enzymes related to inflammatory processes, whereas in vivo studies noted significant anti-inflammatory and analgesic effects as demonstrated using different experimental models. Various bioactive compounds exhibiting in vitro and in vivo anti-inflammatory and analgesic effects, with diverse mechanisms of action, have been identified. Some plants and their bioactive compounds reveal specific secondary metabolites that possess important anti-inflammatory effects in clinical investigations. Our review proposes the potential applications of Moroccan medicinal plants as sources of anti-inflammatory and analgesic agents. Anti-inflammatory and analgesic effects of Moroccan medicinal plants were highlighted. Chemical nature of Moroccan medicinal plants with anti-inflammatory and analgesic effects was reported. Insights into anti-inflammatory mechanisms of bioactive compounds were highlighted. Toxicological investigations of Moroccan medicinal plants were reviewed.
Collapse
|
31
|
Horváth G, Horváth A, Reichert G, Böszörményi A, Sipos K, Pandur E. Three chemotypes of thyme (Thymus vulgaris L.) essential oil and their main compounds affect differently the IL-6 and TNFα cytokine secretions of BV-2 microglia by modulating the NF-κB and C/EBPβ signalling pathways. BMC Complement Med Ther 2021; 21:148. [PMID: 34022882 PMCID: PMC8140451 DOI: 10.1186/s12906-021-03319-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/10/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The essential oils possess both antimicrobial and anti-inflammatory effects, therefore they can provide an effective treatment against infections. Essential oils are widely used as supportive ingredients in many diseases, especially in the acute and chronic diseases of the respiratory tract. Neuroinflammation is responsible for several diseases of the central nervous system. Some plant-derived bioactive molecules have been shown to have role in attenuating neuroinflammation by regulating microglia, the immune cells of the CNS. METHODS In this study, the anti-inflammatory effect of three chemotypes of thyme essential oil and their main compounds (geraniol, thujanol and linalool) were examined on lipopolysaccharide-induced BV-2 microglia. Three different experimental setups were used, LPS pretreatment, essential oil pretreatment and co-treatments of LPS and essential oils in order to determine whether essential oils are able to prevent inflammation and can decrease it. The concentrations of the secreted tumour necrosis factor α (TNFα) and interleukin-6 (IL-6) proinflammatory cytokines were measured and we analysed by Western blot the activity of the cell signalling pathways, NF-κB and CCAAT-enhancer binding protein β (C/EBPβ) regulating TNFα and IL-6 proinflammatory cytokine expressions in BV-2 cells. RESULTS Our results showed definite alterations in the effects of essential oil chemotypes and their main compounds at the different experimental setups. Considering the changes of IL-6 and TNFα secretions the best reduction of inflammatory cytokines could be reached by the pretreatment with the essential oils. In addition, the main compounds exerted better effects than essential oil chemotypes in case of LPS pretreatment. At the essential oil pretreatment experiment, the effect of linalool and geraniol was outstanding but there was no major difference between the actions of chemotypes and standards. Main compounds could be seen to have large inhibitory effects on certain cell signalling components related to the activation of the expression of proinflammatory cytokines. CONCLUSION Thyme essential oils are good candidates to use in prevention of neuroinflammation and related neurodegeneration, but the exact ratio of the components has to be selected carefully.
Collapse
Affiliation(s)
- Györgyi Horváth
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, H-7624, Rókus u. 2., Pécs, Hungary
| | - Adrienn Horváth
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, H-7624, Rókus u. 2., Pécs, Hungary
| | - Gréta Reichert
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, H-7624, Rókus u. 2., Pécs, Hungary
| | - Andrea Böszörményi
- Institute of Pharmacognosy, Faculty of Pharmacy, Semmelweis University, H-1085 Üllői út 26, Budapest, Hungary
| | - Katalin Sipos
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, H-7624, Rókus u. 2, Pécs, Hungary
| | - Edina Pandur
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, H-7624, Rókus u. 2, Pécs, Hungary
| |
Collapse
|
32
|
Wang X, Chen J, Zhang J, Zhou Y, Zhang Y, Wang F, Li X. Engineering Escherichia coli for production of geraniol by systematic synthetic biology approaches and laboratory-evolved fusion tags. Metab Eng 2021; 66:60-67. [PMID: 33865982 DOI: 10.1016/j.ymben.2021.04.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/23/2021] [Accepted: 04/11/2021] [Indexed: 12/16/2022]
Abstract
Geraniol is a valuable monoterpene extensively used in the fragrance, food, and cosmetic industries. Increasing environmental concerns and supply gaps have motivated efforts to advance the microbial production of geraniol from renewable feedstocks. In this study, we first constructed a platform geraniol Escherichia coli strain by bioprospecting the key enzymes geranyl diphosphate synthase (GPPS) and geraniol synthase (GES) and selection of a host cell background. This strategy led to a 46.4-fold increase in geraniol titer to 964.3 mg/L. We propose that the expression level of eukaryotic GES can be further optimized through fusion tag evolution engineering. To this end, we manipulated GES to maximize flux towards the targeted product geraniol from precursor geranyl diphosphate (GPP) via the utilization of fusion tags. Additionally, we developed a high-throughput screening system to monitor fusion tag variants. This common plug-and-play toolbox proved to be a robust approach for systematic modulation of protein expression and can be used to tune biosynthetic metabolic pathways. Finally, by combining a modified E1* fusion tag, we achieved 2124.1 mg/L of geraniol in shake flask cultures, which reached 27.2% of the maximum theoretical yield and was the highest titer ever reported. We propose that this strategy has set a good reference for enhancing a broader range of terpenoid production in microbial cell factories, which might open new possibilities for the bio-production of other valuable chemicals.
Collapse
Affiliation(s)
- Xun Wang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Nanjing Forestry University, Nanjing, 210037, China; Jiangsu Key Laboratory of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing, 210037, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jiaming Chen
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Nanjing Forestry University, Nanjing, 210037, China; Jiangsu Key Laboratory of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing, 210037, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jia Zhang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Nanjing Forestry University, Nanjing, 210037, China; Jiangsu Key Laboratory of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing, 210037, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yujunjie Zhou
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Nanjing Forestry University, Nanjing, 210037, China; Jiangsu Key Laboratory of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing, 210037, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yu Zhang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Nanjing Forestry University, Nanjing, 210037, China; Jiangsu Key Laboratory of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing, 210037, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Fei Wang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Nanjing Forestry University, Nanjing, 210037, China; Jiangsu Key Laboratory of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing, 210037, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Xun Li
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Nanjing Forestry University, Nanjing, 210037, China; Jiangsu Key Laboratory of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing, 210037, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
33
|
Guan B, Jiang C. Design and development of 1,3,5-triazine derivatives as protective agent against spinal cord injury in rat via inhibition of NF-ĸB. Bioorg Med Chem Lett 2021; 41:127964. [PMID: 33744436 DOI: 10.1016/j.bmcl.2021.127964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/26/2021] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
Abstract
Spinal cord injury (SCI) is a chronic disease causing motor and sensory loss in the affected individuals. The SCI has a huge impact on the lives of patients that makes them susceptible to life-long disability. However, the current clinical modalities are ineffective to cope the aftermath of SCI. Thus, in the present study, we aimed to develop a series of 1,3,5-triazine derivatives as a protective agent against SCI. The molecules were developed by facile synthetic route and obtained in excellent yield. The compounds were tested for their efficacy to inhibit the transcription of NF-κB in RAW 264.7 cells, where they displayed mild to potent activity. Compound 8a was identified as most potent NF-κB inhibitor among the tested analogues. The effect of compound 8a was further scrutinized against the SCI injury in rats induced by contusion injury. It has been found that compound 8a improves motor function of rats together with reduction in inflammation and edema in spinal cord of rats. It also showed to inhibit oxidative stress and inflammation in the SCI rats. In a western blot analysis, after SCI induction, compound 8a inhibited NF-κB and its upstream regulator TLR4 in a dose-dependent manner. Collectively, our study provides a novel class of agent that provide protective action against SCI.
Collapse
Affiliation(s)
- Binggang Guan
- Department of Spine Surgery, Tian Jin Hospital, Tianjin 300211, China
| | - Chang Jiang
- Department of Bone Surgery, The First Affiliated Hospital of Dalian Medical University , Dalian, Liaoning 116011, China.
| |
Collapse
|
34
|
Pina LTS, Guimarães AG, Santos WBDR, Oliveira MA, Rabelo TK, Serafini MR. Monoterpenes as a perspective for the treatment of seizures: A Systematic Review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 81:153422. [PMID: 33310306 DOI: 10.1016/j.phymed.2020.153422] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 10/15/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Epilepsy affects more than 65 million people worldwide. Treatment for epileptic seizures is ineffective and has many adverse effects. For this reason, the search for new therapeutic options capable of filling these limitations is necessary. HYPOTHESIS/PURPOSE In this sense, natural products, such as monoterpenes, have been indicated as a new option to control neurological disorders such as epilepsy. STUDY DESIGN Therefore, the objective of this study was to review the monoterpenes that have anticonvulsive activity in animal models. METHODS The searches were performed in the PubMed, Web of Science and Scopus databases in September, 2020 and compiled studies using monoterpenes as an alternative to seizure. Two independent reviewers performed the study selection, data extraction and methodological quality assessment using the Syrcle tool. RESULTS 51 articles that described the anticonvulsant activity of 35 monoterpenes were selected with action on the main pharmacological target, including GABAA receptors, glutamate, calcium channels, sodium and potassium. In addition, these compounds are capable of reducing neuronal inflammation and oxidative stress caused by seizure. CONCLUSION These compounds stand out as a promising alternative for acting through different pharmacological mechanisms, which may not only reduce seizure, but also promote neuroprotective effect by reducing toxicity in brain regions. However, further studies are needed to determine the mechanism of action and safety assessment of these compounds.
Collapse
Affiliation(s)
- Lícia T S Pina
- Graduate Program in Health Sciences, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil.
| | - Adriana G Guimarães
- Graduate Program in Pharmaceutical Sciences, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil
| | - Wagner B da R Santos
- Graduate Program in Pharmaceutical Sciences, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil
| | - Marlange A Oliveira
- Graduate Program in Health Sciences, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil
| | - Thallita K Rabelo
- Graduate Program in Health Sciences, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil
| | - Mairim R Serafini
- Graduate Program in Health Sciences, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil; Graduate Program in Pharmaceutical Sciences, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil
| |
Collapse
|
35
|
Araruna ME, Serafim C, Alves Júnior E, Hiruma-Lima C, Diniz M, Batista L. Intestinal Anti-Inflammatory Activity of Terpenes in Experimental Models (2010-2020): A Review. Molecules 2020; 25:molecules25225430. [PMID: 33233487 PMCID: PMC7699610 DOI: 10.3390/molecules25225430] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel diseases (IBDs) refer to a group of disorders characterized by inflammation in the mucosa of the gastrointestinal tract, which mainly comprises Crohn’s disease (CD) and ulcerative colitis (UC). IBDs are characterized by inflammation of the intestinal mucosa, are highly debilitating, and are without a definitive cure. Their pathogenesis has not yet been fully elucidated; however, it is assumed that genetic, immunological, and environmental factors are involved. People affected by IBDs have relapses, and therapeutic regimens are not always able to keep symptoms in remission over the long term. Natural products emerge as an alternative for the development of new drugs; bioactive compounds are promising in the treatment of several disorders, among them those that affect the gastrointestinal tract, due to their wide structural diversity and biological activities. This review compiles 12 terpenes with intestinal anti-inflammatory activity evaluated in animal models and in vitro studies. The therapeutic approach to IBDs using terpenes acts basically to prevent oxidative stress, combat dysbiosis, restore intestinal permeability, and improve the inflammation process in different signaling pathways.
Collapse
Affiliation(s)
- Maria Elaine Araruna
- Postgraduate Program in Natural Products and Bioactive Synthetic, Health Sciences Center, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil; (M.E.A.); (C.S.); (E.A.J.); (M.D.)
| | - Catarina Serafim
- Postgraduate Program in Natural Products and Bioactive Synthetic, Health Sciences Center, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil; (M.E.A.); (C.S.); (E.A.J.); (M.D.)
| | - Edvaldo Alves Júnior
- Postgraduate Program in Natural Products and Bioactive Synthetic, Health Sciences Center, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil; (M.E.A.); (C.S.); (E.A.J.); (M.D.)
| | - Clelia Hiruma-Lima
- Department of Structural and Functional Biology (Physiology), Institute of Biosciences, São Paulo State University, Botucatu 18618-970, SP, Brazil;
| | - Margareth Diniz
- Postgraduate Program in Natural Products and Bioactive Synthetic, Health Sciences Center, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil; (M.E.A.); (C.S.); (E.A.J.); (M.D.)
- Department of Pharmacy, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil
| | - Leônia Batista
- Postgraduate Program in Natural Products and Bioactive Synthetic, Health Sciences Center, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil; (M.E.A.); (C.S.); (E.A.J.); (M.D.)
- Department of Pharmacy, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil
- Correspondence: ; Tel.: +55-83-32167003; Fax: +55-83-32167502
| |
Collapse
|
36
|
Salama SA, Kabel AM. Taxifolin ameliorates iron overload-induced hepatocellular injury: Modulating PI3K/AKT and p38 MAPK signaling, inflammatory response, and hepatocellular regeneration. Chem Biol Interact 2020; 330:109230. [PMID: 32828744 DOI: 10.1016/j.cbi.2020.109230] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/30/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023]
Abstract
Although physiological levels of iron are essential for numerous biological processes, excess iron causes critical tissue injury. Under iron overload conditions, non-chelated iron generates reactive oxygen species that mediate iron-induced tissue injury with subsequent induction of apoptosis, necrosis, and inflammatory responses. Because liver is a central player in iron metabolism and storage, it is vulnerable to iron-induced tissue injury. Taxifolin is naturally occurring compound that has shown potent antioxidant and potential iron chelation competency. The aim of the current study was to investigate the potential protective effects of taxifolin against iron-induced hepatocellular injury and to elucidate the underlining mechanisms using rats as a mammalian model. The results of the current work indicated that taxifolin inhibited iron-induced apoptosis and enhanced hepatocellular survival as demonstrated by decreased activity of caspase-3 and activation of the pro-survival signaling PI3K/AKT, respectively. Western blotting analysis revealed that taxifolin enhanced liver regeneration as indicated by increased PCNA protein abundance. Taxifolin mitigated the iron-induced histopathological aberration and reduced serum activity of liver enzymes (ALT and AST), highlighting enhanced liver cell integrity. Mechanistically, taxifolin modulated the redox-sensitive MAPK signaling (p38/c-Fos) and improved redox status of the liver tissues as indicated by decreased lipid peroxidation and protein oxidation along with enhanced total antioxidant capacity. Interestingly, it decreased liver iron content and down-regulated the pro-inflammatory cytokines TNF-α, IL-6, and IL-1β. Collectively, these data highlight, for the first time, the ameliorating effects of taxifolin against iron overload-induced hepatocellular injury that is potentially mediated through anti-inflammatory, antioxidant, and potential iron chelation activities.
Collapse
Affiliation(s)
- Samir A Salama
- Division of Biochemistry, Department of Pharmacology and GTMR Unit, College of Pharmacy, Taif University, Taif, 21974, Saudi Arabia; Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, 11751, Egypt.
| | - Ahmed M Kabel
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia; Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
37
|
Geraniol-mediated osteoarthritis improvement by down-regulating PI3K/Akt/NF-κB and MAPK signals: In vivo and in vitro studies. Int Immunopharmacol 2020; 86:106713. [PMID: 32590318 DOI: 10.1016/j.intimp.2020.106713] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/25/2020] [Accepted: 06/14/2020] [Indexed: 11/23/2022]
Abstract
Osteoarthritis (OA) is a degenerative disease that has received increasing attention among the elderly. Its clinical manifestation is primarily long-term joint pain. Evidence for the pharmacological effects of geraniol in various diseases is accumulating. However, whether geraniol has a therapeutic effect against OA remains to be determined. In this study, we discussed the anti-inflammatory effects of geraniol in IL-1β-induced chondrocytes and the anti-cartilage degradation effects in a mouse model of destabilization of the medial meniscus (DMM). In cell experiments, we found that the treatment of geraniol inhibited the expression of IL-1β-induced PGE2, NO, COX-2, iNOS, TNF-α and IL-6 by western blot, qRT-PCR and immunofluorescence staining. Besides, geraniol inhibited the expression of MMP-9 and ADAMTS-5, and reversed the degradation of aggrecan and type II collagen. Mechanistically, we revealed that geraniol suppressed IL-1β-stimulated PI3K/Akt/NF-κB and MAPK activation. Importantly, we have found in animal experiments that oral treatment of geraniol was beneficial in protecting articular cartilage from degradation. Overall, these data indicated that geraniol may have the potential to be developed as an effective treatment for OA.
Collapse
|
38
|
Anti-Inflammatory Effects of Essential Oils of Amomum aromaticum Fruits in Lipopolysaccharide-Stimulated RAW264.7 Cells. J FOOD QUALITY 2020. [DOI: 10.1155/2020/8831187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inflammation is a vital physiologic response of cellular injury, infection, or autoimmune activation. Overproduction of proinflammatory mediators may result in the chronic inflammation that leads to many diseases such as rheumatoid arthritis, asthma, multiple sclerosis, and atherosclerosis. In this study, we assessed for the first time the anti-inflammatory effects of the essential oils of Amomum aromaticum fruits (AAE) in RAW264.7 murine macrophage model. As a result, AAE potently inhibited the production of nitric oxide in LPS-induced RAW264.7 cells with the IC50 value of 0.45 ± 0.11 μg/ml. AAE also dose-dependently reduced the expression of two proinflammatory proteins iNOS and COX-2 in the stimulated cells. Phytochemical analysis revealed that major compositions of the volatile oils including 1,8 cineole (48.22%), geranial (9.24%), neral (6.72%), α-pinene (2.43%), and α-terpineol (2.28%) may contribute greatly to the inhibition effects due to their anti-inflammatory properties. The results suggest for the potential uses of AAE in chronic inflammation prevention.
Collapse
|
39
|
Lira MHPD, Andrade Júnior FPD, Moraes GFQ, Macena GDS, Pereira FDO, Lima IO. Antimicrobial activity of geraniol: an integrative review. JOURNAL OF ESSENTIAL OIL RESEARCH 2020. [DOI: 10.1080/10412905.2020.1745697] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Maria Helena Pereira de Lira
- Natural Sciences and Biotechnology, Education and Health Center (Ces), Federal University of Campina Grande (UFCG), Cuité, Brazil
| | | | | | | | | | - Igara Oliveira Lima
- Health Academic Unit and of Post-Graduation in Natural Sciences and Biotechnology, CES/UFCG, Cuité, Brazil
| |
Collapse
|
40
|
Crespo R, Rodenak-Kladniew BE, Castro MA, Soberón MV, Lavarías SM. Induction of oxidative stress as a possible mechanism by which geraniol affects the proliferation of human A549 and HepG2 tumor cells. Chem Biol Interact 2020; 320:109029. [DOI: 10.1016/j.cbi.2020.109029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 12/19/2022]
|
41
|
Wang JL, Ren CH, Feng J, Ou CH, Liu L. Oleanolic acid inhibits mouse spinal cord injury through suppressing inflammation and apoptosis via the blockage of p38 and JNK MAPKs. Biomed Pharmacother 2020; 123:109752. [PMID: 31924596 DOI: 10.1016/j.biopha.2019.109752] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/07/2019] [Accepted: 11/29/2019] [Indexed: 12/22/2022] Open
Abstract
Spinal cord injury (SCI) is reported as a devastating disease, leading to tissue loss and neurologic dysfunction. However, there is no effective therapeutic strategy for SCI treatment. Oleanolic acid (OA), as a triterpenoid, has anti-oxidant, anti-inflammatory, and anti-apoptotic activities. However, its regulatory effects on SCI have little to be elucidated, as well as the underlying molecular mechanisms. In this study, we attempted to explore the role of OA in SCI progression. Behavior tests suggested that OA treatments markedly alleviated motor function in SCI mice. Evans blue contents up-regulated in spinal cords of SCI mice were significantly reduced by OA in a dose-dependent manner, demonstrating the improved blood-spinal cord barrier. Moreover, we found that OA treatments significantly reduced the apoptotic cell death in spinal cord samples of SCI mice through decreasing the expression of cleaved Caspase-3. In addition, pro-inflammatory response in SCI mice was significantly attenuated by OA treatments. Furthermore, SCI mice exhibited higher activation of mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB) signaling pathways, but these effects were clearly blocked in SCI mice with OA treatments, as evidenced by the down-regulated phosphorylation of p38, c-Jun-NH 2 terminal kinase (JNK), IκB kinase α (IKKα), inhibitor of nuclear factor κB-α (IκBα) and NF-κB. The protective effects of OA against SCI were confirmed in lipopolysaccharide (LPS)-stimulated mouse neurons mainly through the suppression of apoptosis and inflammatory response, which were tightly associated with the blockage of p38 and JNK activation. Together, our data demonstrated that OA treatments could dose-dependently ameliorate spinal cord damage through impeding p38- and JNK-regulated apoptosis and inflammation, and therefore OA might be served as an effective therapeutic agent for SCI treatment.
Collapse
Affiliation(s)
- Jiang-Lin Wang
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province, 646000, China
| | - Chang-He Ren
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province, 646000, China
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province, 646000, China
| | - Ce-Hua Ou
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province, 646000, China.
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province, 646000, China.
| |
Collapse
|
42
|
Liu J, Peng L, Li J. The Lipoxin A4 Receptor Agonist BML-111 Alleviates Inflammatory Injury and Oxidative Stress in Spinal Cord Injury. Med Sci Monit 2020; 26:e919883. [PMID: 31971927 PMCID: PMC6996263 DOI: 10.12659/msm.919883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Spinal cord injury (SCI) has a high incidence and causes serious harm. Lipoxin A4 (LXA4) receptor agonist BML-111 was reported to regulate inflammation and oxidative stress. The goal of this study was to assess whether BML-111 could protect against SCI by suppressing inflammation and oxidative stress. Material/Methods We developed a rat SCI model, then BML-111 was intraperitoneally injected into SCI rats to observe the BML-111 function. The pathological changes of SCI were observed with hematoxylin and eosin (HE) staining. Motor function of rats were assessed by the modified Tarlov’s scale. ELISA was used to assess the changes in levels of TNF-α, IL-1β, and IL-6. Western blot analysis was performed to assess the expressions of TNF-α, IL-1β, IL-6, Bcl2, Bax, and cleaved caspase3 in spinal cord tissue. TOS and TAS in rat serum were detected by xylenol orange method and ABTS method, respectively. The apoptotic cells in spinal cord tissue were observed with TUNEL assay. Results The results indicated that BML-111 effectively improved the SCI and motor function of rats. BML-111 treatment decreased the levels of TNF-α, IL-1β, and IL-6 in serum and spinal cord tissue, as well as decreasing the levels of TOS and TAS and cell apoptosis. Conclusions BML-111 alleviated inflammation and oxidative stress in SCI rats.
Collapse
Affiliation(s)
- Jian Liu
- Department of Orthopedics, Chongqing Emergency Medical Center, Chongqing, China (mainland)
| | - Lei Peng
- Department of Orthopedics, Chongqing Emergency Medical Center, Chongqing, China (mainland)
| | - Jie Li
- Department of Orthopedics, Chongqing Emergency Medical Center, Chongqing, China (mainland)
| |
Collapse
|
43
|
Zhai Y, Zhu Y, Liu J, Xie K, Yu J, Yu L, Deng H. Dexmedetomidine Post-Conditioning Alleviates Cerebral Ischemia-Reperfusion Injury in Rats by Inhibiting High Mobility Group Protein B1 Group (HMGB1)/Toll-Like Receptor 4 (TLR4)/Nuclear Factor kappa B (NF-κB) Signaling Pathway. Med Sci Monit 2020; 26:e918617. [PMID: 31912804 PMCID: PMC6977611 DOI: 10.12659/msm.918617] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Cerebral ischemia-reperfusion injury is a pivotal cause of deaths due to cerebrovascular accident. Increased research efforts are needed to reveal the mechanism underlying its aggravation or alleviation. In this study, the effects of dexmedetomidine post-conditioning on the HMGB1/TLR4/NF-kappaB signaling pathway in cerebral ischemia-reperfusion rats was explored. MATERIAL AND METHODS Ninety rats were randomly divided into 5 groups - a sham group (Sham), a model group (I/R), a dexmedetomidine post-conditioning group (Dex), a recombinant high mobility group protein B1 group (rHMGB1), and a recombinant HMGB1+dexmedetomidine post-conditioning group (rHMGB1+Dex) - with 18 rats in each group. Longa grading, wet-dry weighing, TTC staining, HE staining, and immunohistochemical staining were used to assess brain damage. ELISA, RT-PCR, and Western blot analyses were performed to assess expression of IL-1ß, TNF-alpha, IL-6, IL-8, HMGB1, TLR4, and NF-kappaB. RESULTS Compared with the I/R group, the neurological function score, brain water content, infarction area, and the number of COX-2- and IBA-1-positive cells in the Dex group were significantly lower, accompanied by downregulated expression of the HMGB1/TLR4/NF-kappaB pathway, alleviated inflammation, and oxidative stress injury in brain tissue. These trends were mostly reversed in the rHMGB1 group and rHMGB1+Dex group, but not in the Dex group. Furthermore, when compared to the Dex group, there were significant increases of H₂O₂, MDA, NO, IL-1ß, TNF-alpha, IL-6, IL-8, HMGB1, TLR4, and p-P65 in the rHMGB1 group and rHMGB1+Dex group, in which a significant decrease of T-AOC, SOD, and p-IkappaBalpha was also detected. CONCLUSIONS Dexmedetomidine post-conditioning can alleviate cerebral ischemia-reperfusion injury in rats by inhibiting the HMGB1/TLR4/NF-kappaB signaling pathway.
Collapse
Affiliation(s)
- Yongyi Zhai
- Department of Rehabilitation, Linzi District People's Hospital, Zibo, Shandong, China (mainland)
| | - Yulin Zhu
- Department of Anesthesiology, Yantaishan Hospital, Yantai, Shandong, China (mainland)
| | - Jingying Liu
- Department of Obstetrics, Yantaishan Hospital, Yantai, Shandong, China (mainland)
| | - Kun Xie
- Department of Anesthesiology, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Jingui Yu
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Lingzhi Yu
- Department of Pain, Jinan Central Hospital affiliated to Shandong University, Jinan, Shandong, China (mainland)
| | - Hongyan Deng
- Department of Anesthesiology, Haiyang People's Hospital, Haiyang, Shandong, China (mainland)
| |
Collapse
|
44
|
Ginkgetin attenuates cerebral ischemia-reperfusion induced autophagy and cell death via modulation of the NF-κB/p53 signaling pathway. Biosci Rep 2019; 39:BSR20191452. [PMID: 31420372 PMCID: PMC6732367 DOI: 10.1042/bsr20191452] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/27/2019] [Accepted: 08/01/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Cerebral ischemia–reperfusion (I/R) injury is the key to fatality in cerebrovascular accident, hence further endeavor is warranted to delineate the mechanism underlying its lethal aggravation procedure. In the present study, we aimed to elucidate the anti-autophagy and anti-apoptosis effects of ginkgetin via nuclear factor κB (NF-κB)/p53 pathway in cerebral I/R rats. Methods: Rats were administrated 2-h occlusion of right middle cerebral artery before the 24-h reperfusion followed. There were three doses of ginkgetin (25, 50, 100 mg/kg) given intraperitoneally (i.p.) after the 2-h ischemia, and Pifithrin-α (PFT-α, p53 inhibitor), SN50 (NF-κB inhibitor) and 3-methyladenine (3-MA, autophagy inhibitor) was administered 20 min before the ischemia, respectively. Results: The neurological deficits decreased significantly with the administration of ginkgetin. The concentrations of microtubule-associated protein 1 light chain 3-II and p53 were significantly decreased by PFT-α, 3-MA and ginkgetin. The concentrations of Beclin 1, damage-regulated autophagy modulator, cathepsin B and cathepsin D were significantly decreased due to the administration of PFT-α, ginkgetin and SN50. Furthermore, the concentrations of Bax and p53-upregulated modulator of apoptosis were significantly decreased with that of Bcl-2 being significantly increased by administration of SN50, PFT-α and ginkgetin. Conclusion: Ginkgetin can alleviate cerebral ischemia/reperfusion induced autophagy and apoptosis by inhibiting the NF-κB/p53 signaling pathway.
Collapse
|
45
|
Long non-coding RNA Mirt2 relieves lipopolysaccharide-induced injury in PC12 cells by suppressing miR-429. J Physiol Biochem 2019; 75:403-413. [PMID: 31309444 DOI: 10.1007/s13105-019-00691-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 06/26/2019] [Indexed: 12/20/2022]
Abstract
Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) play important roles in the pathogenesis of spinal cord injury (SCI). This study investigated the effects of lncRNA Mirt2 and miR-429 on lipopolysaccharide (LPS)-induced injuries in PC12 cells. Serum samples were collected from 36 patients with SCI and the healthy controls. The expression of lncRNA Mirt2 in serum samples was measured by qRT-PCR. The in vitro model of SCI was established by treating PC12 cells with LPS. The effects of lncRNA Mirt2 and miR-429 on the cell model were evaluated by CCK-8 assay, flow cytometry, western blot, qRT-PCR, and ELISA. Further, the activation of NF-κB and p38MAPK pathways was tested by western blot. LPS induced obvious cell injuries in PC12 cells, as cell viability was reduced, apoptosis rate was increased, caspase-3 and -9 were cleaved, and the release of TNF-α and IL-6 was induced. lncRNA Mirt2 was up-regulated in LPS-stimulated PC12 cells and serum samples derived from SCI patients. Overexpression of lncRNA Mirt2 protected PC12 cells against LPS-induced injuries. Further studies found that lncRNA Mirt2 acted as the molecular sponge of miR-429 and miR-34a-5p. lncRNA Mirt2 did not protect PC12 cells when miR-429 was overexpressed. Moreover, the inhibitory effects of lncRNA Mirt2 on NF-κB and p38MAPK pathways were abolished when miR-429 was overexpressed. lncRNA Mirt2 exerts protective effects in an in vitro model of SCI by down-regulating miR-429. This study shed light on the treatment of SCI by using the lncRNA-miRNA regulation network.
Collapse
|
46
|
Antidepressant and Anxiolytic Effects of Geraniol in Mice: The Possible Role of Oxidative Stress and Apoptosis. IRANIAN RED CRESCENT MEDICAL JOURNAL 2019. [DOI: 10.5812/ircmj.91593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
Inhibition of MSK1 Promotes Inflammation and Apoptosis and Inhibits Functional Recovery After Spinal Cord Injury. J Mol Neurosci 2019; 68:191-203. [PMID: 30919247 PMCID: PMC6511344 DOI: 10.1007/s12031-019-01298-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 03/12/2019] [Indexed: 12/21/2022]
Abstract
Mitogen- and stress-activated kinase (MSK) 1 is a nuclear serine/threonine kinase. In the central nervous system, it plays an important role in regulating cell proliferation and neuronal survival; it is also involved in astrocyte inflammation and the inhibition of inflammatory cytokine production. However, its specific role in spinal cord injury is not clear. Here, we aimed to elucidate this role using an in vivo animal model. In this study, we found that MSK1 is gradually decreased, starting 1 day after spinal cord injury and to its lowest level 3 days post-injury, after which it gradually increased. To further investigate the possible function of MSK1 in spinal cord injury, we interfered with its expression by utilizing a small interfering RNA (siRNA)-encoding lentivirus, which was injected into the injured spinal cord to inhibit local expression. After MSK1 inhibition, we found that the expression of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β were increased. Moreover, the expression of IL-10 was decreased. In addition, neuronal apoptotic cells were increased significantly and expression of the apoptosis-related protein caspase-3 was also increased. Ultrastructural analysis of nerve cells also revealed typical neuronal apoptosis and severe neuronal damage. Finally, we found that hindlimb motor function decreased significantly with MSK1 knockdown. Therefore, our findings suggest that the inhibition of this protein promotes inflammatory responses and apoptosis and suppresses functional recovery after spinal cord injury. MSK1 might thus play an important role in repair after spinal cord injury by regulating inflammation and apoptosis.
Collapse
|
48
|
Dexmedetomidine Preconditioning Ameliorates Inflammation and Blood-Spinal Cord Barrier Damage After Spinal Cord Ischemia-Reperfusion Injury by Down-Regulation High Mobility Group Box 1-Toll-Like Receptor 4-Nuclear Factor κB Signaling Pathway. Spine (Phila Pa 1976) 2019; 44:E74-E81. [PMID: 29975331 DOI: 10.1097/brs.0000000000002772] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN To evaluate the effect of Dexmedetomidine (Dex) on the inflammatory response and the integrity of blood-spinal cord barrier (BSCB) after spinal cord ischemia-reperfusion injury (SCIRI). OBJECTIVE To investigate the role of Dex in spinal cord I/R, particularly in the high mobility group box 1-toll-like receptor 4-nuclear factor κB (HMGB1-TLR4-NF-κB) pathway and the integrity of BSCB. SUMMARY OF BACKGROUND DATA High mobility group box 1 (HMGB1) has been identified as a key mediator for the inflammatory response after spinal cord injury. Toll-like receptor 4-nuclear factor κB (TLR4-NF-κB) signaling pathway is the downstream of HMGB1. Dex preconditioning could protect the spinal cord from I/R injury by inhibiting HMGB1 and stabilizing the integrity of BSCB. But its underlying mechanism is not fully understood. METHODS Forty-eight male Japanese white rabbits were randomly assigned to three groups (16 rabbits/group): sham, I/R, and Dex + I/R. The hind-limb motor function was assessed at 12 hours intervals for 48 hours after reperfusion using the modified Tarlov scale score. The expression of HMGB1, TLR4, NF-κB, and tumor necrosis factor α (TNF-α) was evaluated by real-time polymerase chain reaction (RT-PCR) and Western blot. The permeability of BSCB was examined via Evans blue (EB) extravasation. RESULTS Compared with sham group, spinal cord I/R increased the expression of HMGB1, TLR4, NF-κB, and TNF-α as well as the permeability of BSCB (P < 0.05). Spinal cord I/R induced the decline of the score of hind-limb motor function (P < 0.01). Preconditioning with Dex attenuated the up-regulation of the express of HMGB1, TLR4, NF-κB, TNF-α, and stabilized the permeability of BSCB (P < 0.05). Dex preconditioning also improved the hiatopathological outcome and the motor function (P < 0.01). CONCLUSION Dex preconditioning may inhibit the inflammatory response and stabilize the integrity of BSCB at least partially by inhibiting the HMGB1-TLR4-NF-κB signaling pathway to protect spinal cord from ischemia/reperfusion injury. LEVEL OF EVIDENCE 2.
Collapse
|
49
|
Xu J, Cheng S, Jiao Z, Zhao Z, Cai Z, Su N, Liu B, Zhou Z, Li Y. Fire Needle Acupuncture Regulates Wnt/ERK Multiple Pathways to Promote Neural Stem Cells to Differentiate into Neurons in Rats with Spinal Cord Injury. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2019; 18:245-255. [PMID: 30714534 PMCID: PMC6806613 DOI: 10.2174/1871527318666190204111701] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/03/2018] [Accepted: 01/15/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND & OBJECTIVE NSCs therapy is considered one of the most potential methods for spinal cord injury (SCI). METHODS We build the SCI model rats to investigate the therapeutic effect of fire needle acupuncture in improving the locomotor function of SCI rats and its possible mechanism. BBB scale was used for the motor ability of rats. The expression of Nestin, NSE, Gal-C, and GFAP was detected by immunohistochemistry. Wnt, GSK3β, β-catenin, ERK1/2, CyclinD1, and ngn1 were detected by western blot and PCR. The BBB score of both model group (1.20±0.94, 3.12±0.67, 5.34±1.57, 7.12±1.49) and fire needle group (1.70±0.58, 4.50±1.63, 7.53±2.41, 9.24±0.63) gradually increased after SCI. Furthermore, at d10 and d14, the fire needle group showed a significantly high score compared with that in model group at the same time (P<0.05). Fire needle increased Nestin, NSE, and Gal-C expression inhibited GFAP expression after SCI. Also, fire needle could up-regulate Wnt3a, GSK3β, β-catenin, and ngn1, and down-regulate ERK1/2, cyclinD1 gene and protein expression. CONCLUSION In conclusion, fire needle could improve lower limb locomotor function of SCI rats. Also, fire needles could promote endogenous NSCs proliferation differentiating into neurons, and the mechanism might be mediated by promoting the activation of Wnt/β-catenin and inhibiting the overexpression of ERK.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhen Zhou
- Address correspondence to these authors at the Tianjin Gongan Hospital, No. 78 Nanjing Road, Heping District, Tianjin, China; Phone/Fax: +86-022-23142735; ; The Second Hospital Affiliated to Tianjin University of Traditional Chinese Medicine, NO. 69 Zengchan Road, Hebei District, Tianjin, China; E-mail:
| | - Yan Li
- Address correspondence to these authors at the Tianjin Gongan Hospital, No. 78 Nanjing Road, Heping District, Tianjin, China; Phone/Fax: +86-022-23142735; ; The Second Hospital Affiliated to Tianjin University of Traditional Chinese Medicine, NO. 69 Zengchan Road, Hebei District, Tianjin, China; E-mail:
| |
Collapse
|
50
|
Li Y, Wang N, Jiang Y. Geraniol protects against lipopolysaccharide and D-galactosamine-induced fulminant hepatic failure by activating PPARγ. Microb Pathog 2018; 128:7-12. [PMID: 30550845 DOI: 10.1016/j.micpath.2018.11.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/16/2018] [Accepted: 11/30/2018] [Indexed: 12/18/2022]
Abstract
Geraniol (GOH), a natural component of plant essential oils, exhibits potent antioxidant and anti-inflammatory properties. The aim of this study was to assess the protective effects and mechanisms of GOH on lipopolysaccharide (LPS)/d-galactosamine (D-GalN)-induced fulminant hepatic failure (FHF). Mice were treated with GOH (12.5, 25, and 50 μg/kg) 1 h before challenging LPS (60 mg/kg) and D-GalN (800 mg/kg). 8 h later LPS/D-GlaN treatment, mice were sacrificed and the serum and the liver tissues were collected for testing. The liver pathological changes were assessed by H & E staining. MPO activity, MDA level in liver tissues, and AST, ALT levels in serum were detected by specific detection kits. The levels of TNF-α and IL-1β were detected by ELISA. The expression of NF-κB and PPARγ were detected by western blot analysis and qRT-PCR. The results showed that GOH had a protective effect on LPS/D-GalN-induced FHF, as evidence by the attenuation of liver pathological injury, MPO activity, MDA level, and serum AST and ALT levels. GOH reduced liver TNF-α and IL-1β levels through inhibiting NF-κB signaling pathway activation. Furthermore, GOH increased PPARγ expression in FHF induced by LPS/D-GalN. In conclusion, the present study proved that GOH protects against LPS/D-GalN-induced FHF through inhibiting inflammatory response and increasing PPARγ expression.
Collapse
Affiliation(s)
- Yi Li
- Department of Infectious Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
| | - Nian Wang
- Department of Pathophysiology, School of Basic Medical Science Central South University, Changsha, Hunan, 410083, China
| | - Yongfang Jiang
- Department of Infectious Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|