1
|
Galindo-Vega A, Maldonado-Lagunas V, Mitre-Aguilar IB, Melendez-Zajgla J. Tumor Microenvironment Role in Pancreatic Cancer Stem Cells. Cells 2023; 12:1560. [PMID: 37371030 DOI: 10.3390/cells12121560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with a majority of patients presenting with unresectable or metastatic disease, resulting in a poor 5-year survival rate. This, in turn, is due to a highly complex tumor microenvironment and the presence of cancer stem cells, both of which induce therapy resistance and tumor relapse. Therefore, understanding and targeting the tumor microenvironment and cancer stem cells may be key strategies for designing effective PDAC therapies. In the present review, we summarized recent advances in the role of tumor microenvironment in pancreatic neoplastic progression.
Collapse
Affiliation(s)
- Aaron Galindo-Vega
- Functional Genomics Laboratory, Instituto Nacional de Medicina Genómica, Mexico City 04710, Mexico
| | | | - Irma B Mitre-Aguilar
- Biochemistry Unit, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City 14080, Mexico
| | - Jorge Melendez-Zajgla
- Functional Genomics Laboratory, Instituto Nacional de Medicina Genómica, Mexico City 04710, Mexico
| |
Collapse
|
2
|
Nagaraju GP, Farran B, Luong T, El-Rayes BF. Understanding the molecular mechanisms that regulate pancreatic cancer stem cell formation, stemness and chemoresistance: A brief overview. Semin Cancer Biol 2023; 88:67-80. [PMID: 36535506 DOI: 10.1016/j.semcancer.2022.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Pancreatic cancer is one of the most aggressive cancers worldwide due to the resistances to conventional therapies and early metastasis. Recent research has shown that cancer stem cell populations modulate invasiveness, recurrence, and drug resistance in various cancers, including pancreatic cancer. Pancreatic cancer stem cells (PaCSCs) are characterized by their high plasticity and self-renewal capacities that endow them with unique metabolic, metastatic, and chemoresistant properties. Understanding the exact molecular and signaling mechanisms that underlay malignant processes in PaCSCs is instrumental for developing novel therapeutic modalities that overcome the limitations of current therapeutic regimens. In this paper, we provide an updated review of the latest research in the field and summarize the current knowledge of PaCSCs characteristics, cellular metabolism, stemness, and drug resistance. We explore how the crosstalk between the TME and PaCSCs influences stemness. We also highlight some of the key signalling pathways involved in PaCSCs stemness and drug evasion. The aim of this review is to explore how PaCSCs develop, maintain their properties, and drive tumor relapse in PC. The last section explores some of the latest therapeutic strategies aimed at targeting PaCSCs.
Collapse
Affiliation(s)
- Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35201, USA.
| | - Batoul Farran
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Tha Luong
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35201, USA
| | - Bassel F El-Rayes
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35201, USA.
| |
Collapse
|
3
|
Panagiotou E, Syrigos NK, Charpidou A, Kotteas E, Vathiotis IA. CD24: A Novel Target for Cancer Immunotherapy. J Pers Med 2022; 12:jpm12081235. [PMID: 36013184 PMCID: PMC9409925 DOI: 10.3390/jpm12081235] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/31/2022] Open
Abstract
Cluster of differentiation 24 (CD24) is a small, highly glycosylated cell adhesion protein that is normally expressed by immune as well as epithelial, neural, and muscle cells. Tumor CD24 expression has been linked with alterations in several oncogenic signaling pathways. In addition, the CD24/Siglec-10 interaction has been implicated in tumor immune evasion, inhibiting macrophage-mediated phagocytosis as well as natural killer (NK) cell cytotoxicity. CD24 blockade has shown promising results in preclinical studies. Although there are limited data on efficacy, monoclonal antibodies against CD24 have demonstrated clinical safety and tolerability in two clinical trials. Other treatment modalities evaluated in the preclinical setting include antibody–drug conjugates and chimeric antigen receptor (CAR) T cell therapy. In this review, we summarize current evidence and future perspectives on CD24 as a potential target for cancer immunotherapy.
Collapse
|
4
|
Sadeghi Najafabadi SA, Bolhassani A, Aghasadeghi MR. Tumor cell-based vaccine: an effective strategy for eradication of cancer cells. Immunotherapy 2022; 14:639-654. [PMID: 35481358 DOI: 10.2217/imt-2022-0036] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Whole tumor cell-based vaccines include all potential antigen-rich cell lysates to target a specific type of tumor without the need to find the best antigen candidate in protein- or peptide-based vaccines. Preparation of whole tumor cell lysates inducing cell death and inactivating immunosuppressive cytokine secretion from the tumor cells is highly enviable. Generally, modified whole tumor cells, tumor cell-derived exosomes, autologous tumor cell-derived ribonucleic acid, and personalized mutanome-derived tumor antigen are promising immunotherapeutic approaches. Autologous dendritic cells loaded with tumor-associated antigens also induce the generation of immunological memory and antitumor response as an effective method for the treatment of cancer. The present review briefly describes tumor cell-based vaccines as a promising strategy for eradication of cancer cells.
Collapse
Affiliation(s)
| | - Azam Bolhassani
- Department of Hepatitis & AIDS, Pasteur Institute of Iran, 1316943551, Tehran, Iran
| | | |
Collapse
|
5
|
Shao J, Liu Q, Shen J, Qian X, Yan J, Zhu Y, Qiu X, Lu C, Cen L, Tian M, Du J, Liu B. Advanced Pancreatic Cancer Patient Benefit From Personalized Neoantigen Nanovaccine Based Immunotherapy: A Case Report. Front Immunol 2022; 13:799026. [PMID: 35273594 PMCID: PMC8901600 DOI: 10.3389/fimmu.2022.799026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/02/2022] [Indexed: 11/13/2022] Open
Abstract
Personal neoantigen vaccines are considered to be effective methods for inducing, amplifying and diversifying antitumor T cell responses. We recently conducted a clinical study that combined neoantigen nanovaccine with anti-PD-1 antibody. Here, we reported a case with a clear beneficial outcome from this treatment. We established a process that includes comprehensive identification of individual mutations, computational prediction of new epitopes, and design and manufacture of unique nanovaccines for this patient. Nanovaccine started after a relapse in third-line treatment. We assessed the patient's clinical outcome and circulating immune response. In this advanced pancreatic cancer patient, the OS associated with the vaccine treatment was 10.5 months. A peptide-specific T-cell response against 9 of the 12 vaccine peptides could be detected sequentially. Robust neoantigen-specific T cell responses were also detected by IFN-γ ELISPOT and intracellular cytokine staining. In conclusion, sustained functional neoantigen-specific T cell therapy combined with immune checkpoint targeting may be well suited to help control progressive metastatic pancreatic cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Juan Du
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Baorui Liu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| |
Collapse
|
6
|
Alhakamy NA, Badr-Eldin SM, Alharbi WS, Alfaleh MA, Al-hejaili OD, Aldawsari HM, Eid BG, Bakhaidar R, Drago F, Caraci F, Caruso G. Development of an Icariin-Loaded Bilosome-Melittin Formulation with Improved Anticancer Activity against Cancerous Pancreatic Cells. Pharmaceuticals (Basel) 2021; 14:1309. [PMID: 34959710 PMCID: PMC8703505 DOI: 10.3390/ph14121309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 12/22/2022] Open
Abstract
Pancreatic cancer currently represents a severe issue for the entire world. Therefore, much effort has been made to develop an effective treatment against it. Emerging evidence has shown that icariin, a flavonoid glycoside, is an effective anti-pancreatic cancer drug. Melittin, as a natural active biomolecule, has also shown to possess anticancer activities. In the present study, with the aim to increase its effectiveness against cancerous cells, icariin-loaded bilosome-melittin (ICA-BM) was developed. For the selection of an optimized ICA-BM, an experimental design was implemented, which provided an optimized formulation with a particle size equal to 158.4 nm. After estimation of the release pattern, the anti-pancreatic cancer efficacy of this new formulation was evaluated. The MTT assay was employed for the determination of half maximal inhibitory concentration (IC50), providing smaller IC50 for ICA-BM (2.79 ± 0.2 µM) compared to blank-BM and ICA-Raw (free drug) against PNAC1, a human pancreatic cancer cell line isolated from a pancreatic carcinoma of ductal cell origin. Additionally, cell cycle analysis for ICA-BM demonstrated cell arrest at the S-phase and pre-G1 phase, which indicated a pro-apoptotic behavior of the new developed formulation. The pro-apoptotic and anti-proliferative activity of the optimized ICA-BM against PNAC1 cells was also demonstrated through annexin V staining as well as estimation of caspase-3 and p53 protein levels. It can be concluded that the optimized ICA-BM formulation significantly improved the efficacy of icariin against cancerous pancreatic cells.
Collapse
Affiliation(s)
- Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (S.M.B.-E.); (W.S.A.); (M.A.A.); (O.D.A.-h.); (H.M.A.); (R.B.)
- Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shaimaa M. Badr-Eldin
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (S.M.B.-E.); (W.S.A.); (M.A.A.); (O.D.A.-h.); (H.M.A.); (R.B.)
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Waleed S. Alharbi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (S.M.B.-E.); (W.S.A.); (M.A.A.); (O.D.A.-h.); (H.M.A.); (R.B.)
| | - Mohamed A. Alfaleh
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (S.M.B.-E.); (W.S.A.); (M.A.A.); (O.D.A.-h.); (H.M.A.); (R.B.)
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Omar D. Al-hejaili
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (S.M.B.-E.); (W.S.A.); (M.A.A.); (O.D.A.-h.); (H.M.A.); (R.B.)
| | - Hibah M. Aldawsari
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (S.M.B.-E.); (W.S.A.); (M.A.A.); (O.D.A.-h.); (H.M.A.); (R.B.)
| | - Basma G. Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Rana Bakhaidar
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (S.M.B.-E.); (W.S.A.); (M.A.A.); (O.D.A.-h.); (H.M.A.); (R.B.)
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- Oasi Research Institute—IRCCS, 94018 Troina, Italy
| | - Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| |
Collapse
|
7
|
Fan JQ, Wang MF, Chen HL, Shang D, Das JK, Song J. Current advances and outlooks in immunotherapy for pancreatic ductal adenocarcinoma. Mol Cancer 2020; 19:32. [PMID: 32061257 PMCID: PMC7023714 DOI: 10.1186/s12943-020-01151-3] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/06/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an incurable cancer resistant to traditional treatments, although a limited number of early-stage patients can undergo radical resection. Immunotherapies for the treatment of haematological malignancies as well as solid tumours have been substantially improved over the past decades, and impressive results have been obtained in recent preclinical and clinical trials. However, PDAC is likely the exception because of its unique tumour microenvironment (TME). In this review, we summarize the characteristics of the PDAC TME and focus on the network of various tumour-infiltrating immune cells, outlining the current advances in PDAC immunotherapy and addressing the effect of the PDAC TME on immunotherapy. This review further explores the combinations of different therapies used to enhance antitumour efficacy or reverse immunodeficiencies and describes optimizable immunotherapeutic strategies for PDAC. The concordant combination of various treatments, such as targeting cancer cells and the stroma, reversing suppressive immune reactions and enhancing antitumour reactivity, may be the most promising approach for the treatment of PDAC. Traditional treatments, especially chemotherapy, may also be optimized for individual patients to remodel the immunosuppressive microenvironment for enhanced therapy.
Collapse
Affiliation(s)
- Jia-qiao Fan
- Third General Surgery Department, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Meng-Fei Wang
- Third General Surgery Department, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hai-Long Chen
- Third General Surgery Department, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dong Shang
- Third General Surgery Department, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jugal K. Das
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, TX USA
| | - Jianxun Song
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, TX USA
| |
Collapse
|
8
|
Mo F, Xue D, Duan S, Liu A, Yang X, Hou X, Lu X. Novel fusion cells derived from tumor cells expressing the heterologous α-galactose epitope and dendritic cells effectively target cancer. Vaccine 2019; 37:926-936. [PMID: 30661833 DOI: 10.1016/j.vaccine.2019.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 11/17/2018] [Accepted: 01/04/2019] [Indexed: 11/18/2022]
Abstract
Tumor cells/dendritic cells (DCs) fusion cells (tumor/DC) represent a promising immunotherapeutic strategy but are still under performed in clinical trials for cancer treatment. To further boost their anticancer efficacy, here we developed a novel design for fusing dendritic cells with MDA-MB-231 cells expressing the heterologous α-galactose (α-gal) epitope and assessed its anticancer activities both in vitro and in vivo. The high expression of α-gal in MDA-MB-231 (Gal+)/DC correlated with enhanced DC activation. When applied to T cells, MDA-MB-231 (Gal+)/DC significantly stimulated T-cell proliferation and activation, promoted productions of cytokines IL-2 and IFN-γ, and enhanced T-cell-mediated cytotoxicity against MDA-MB-231 cells. MDA-MB-231 (Gal+)/DC inhibited proliferation and promoted apoptosis of tumor cells in vivo, prolonged mouse survival, and significantly boosted anticancer immunity by increasing CD4+ and CD8+ T cells systemically and elevating serum levels of cytokines and IgG. These results suggested that fusing dendritic cells with tumor cells expressing the heterologous α-gal epitope provides a novel therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Fengzhen Mo
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China; Intenational Nanobody Research Center of Guangxi, Guangxi Medical University, Nanning, Guangxi 530021, China; Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Dabing Xue
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China; Intenational Nanobody Research Center of Guangxi, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Siliang Duan
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China; Intenational Nanobody Research Center of Guangxi, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Aiqun Liu
- Intenational Nanobody Research Center of Guangxi, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xiaomei Yang
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China; Intenational Nanobody Research Center of Guangxi, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xiaoqiong Hou
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China; Intenational Nanobody Research Center of Guangxi, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xiaoling Lu
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China; Intenational Nanobody Research Center of Guangxi, Guangxi Medical University, Nanning, Guangxi 530021, China; National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, China.
| |
Collapse
|
9
|
Furukawa K, Tanemura M, Miyoshi E, Eguchi H, Nagano H, Matsunami K, Nagaoka S, Yamada D, Asaoka T, Noda T, Wada H, Kawamoto K, Goto K, Taniyama K, Mori M, Doki Y. A practical approach to pancreatic cancer immunotherapy using resected tumor lysate vaccines processed to express α-gal epitopes. PLoS One 2017; 12:e0184901. [PMID: 29077749 PMCID: PMC5659602 DOI: 10.1371/journal.pone.0184901] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 09/03/2017] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES Single-agent immunotherapy is ineffective against poorly immunogenic cancers, including pancreatic ductal adenocarcinoma (PDAC). The aims of this study were to demonstrate the feasibility of production of novel autologous tumor lysate vaccines from resected PDAC tumors, and verify vaccine safety and efficacy. METHODS Fresh surgically resected tumors obtained from human patients were processed to enzymatically synthesize α-gal epitopes on the carbohydrate chains of membrane glycoproteins. Processed membranes were analyzed for the expression of α-gal epitopes and the binding of anti-Gal, and vaccine efficacy was assessed in vitro and in vivo. RESULTS Effective synthesis of α-gal epitopes was demonstrated after processing of PDAC tumor lysates from 10 different patients, and tumor lysates readily bound an anti-Gal monoclonal antibody. α-gal(+) PDAC tumor lysate vaccines elicited strong antibody production against multiple tumor-associated antigens and activated multiple tumor-specific T cells. The lysate vaccines stimulated a robust immune response in animal models, resulting in tumor suppression and a significant improvement in survival without any adverse events. CONCLUSIONS Our data suggest that α-gal(+) PDAC tumor lysate vaccination may be a practical and effective new immunotherapeutic approach for treating pancreatic cancer.
Collapse
Affiliation(s)
- Kenta Furukawa
- Department of Gastroenterological Surgery, Osaka Police Hospital, Osaka, Japan
| | - Masahiro Tanemura
- Department of Gastroenterological Surgery, Osaka Police Hospital, Osaka, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Katsuyoshi Matsunami
- Department of Phamacognosy, Hiroshima University Graduate School of Biomedical and Health sciences, Hiroshima, Japan
| | - Satoshi Nagaoka
- Department of Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Daisaku Yamada
- Department of Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tadafumi Asaoka
- Department of Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takehiro Noda
- Department of Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroshi Wada
- Department of Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Koichi Kawamoto
- Department of Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kunihito Goto
- Department of Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kiyomi Taniyama
- Institute for Clinical Research, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | - Masaki Mori
- Department of Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuichiro Doki
- Department of Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
10
|
Canter RJ, Grossenbacher SK, Ames E, Murphy WJ. Immune targeting of cancer stem cells in gastrointestinal oncology. J Gastrointest Oncol 2016; 7:S1-S10. [PMID: 27034806 DOI: 10.3978/j.issn.2078-6891.2015.066] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The cancer stem cell (CSC) hypothesis postulates that a sub-population of quiescent cells exist within tumors which are resistant to conventional cytotoxic/anti-proliferative therapies. It is these CSCs which then seed tumor relapse, even in cases of apparent complete response to systemic therapy. Therefore, therapies, such as immunotherapy, which add a specific anti-CSC strategy to standard cytoreductive treatments may provide a promising new direction for future cancer therapies. CSCs are an attractive target for immune therapies since, unlike chemotherapy or radiotherapy, immune effector cells do not specifically require target cells to be proliferating in order to effectively kill them. Although recent advances have been made in the development of novel systemic and targeted therapies for advanced gastro-intestinal (GI) malignancies, there remains an unmet need for durable new therapies for these refractory malignancies. Novel immunotherapeutic strategies targeting CSCs are in pre-clinical and clinical development across the spectrum of the immune system, including strategies utilizing adaptive immune cell-based effectors, innate immune effectors, as well as vaccine approaches. Lastly, since important CSC functions are affected by the tumor microenvironment, targeting of both cellular (myeloid derived suppressor cells and tumor-associated macrophages) and sub-cellular (cytokines, chemokines, and PD1/PDL1) components of the tumor microenvironment is under investigation in the immune targeting of CSCs. These efforts are adding to the significant optimism about the potential utility of immunotherapy to overcome cancer resistance mechanisms and cure greater numbers of patients with advanced malignancy.
Collapse
Affiliation(s)
- Robert J Canter
- 1 Division of Surgical Oncology, Department of Surgery, 2 Laboratory of Cancer Immunology, Department of Dermatology, 3 Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Steven K Grossenbacher
- 1 Division of Surgical Oncology, Department of Surgery, 2 Laboratory of Cancer Immunology, Department of Dermatology, 3 Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Erik Ames
- 1 Division of Surgical Oncology, Department of Surgery, 2 Laboratory of Cancer Immunology, Department of Dermatology, 3 Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - William J Murphy
- 1 Division of Surgical Oncology, Department of Surgery, 2 Laboratory of Cancer Immunology, Department of Dermatology, 3 Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| |
Collapse
|
11
|
Huai G, Qi P, Yang H, Wang Y. Characteristics of α-Gal epitope, anti-Gal antibody, α1,3 galactosyltransferase and its clinical exploitation (Review). Int J Mol Med 2015; 37:11-20. [PMID: 26531137 PMCID: PMC4687435 DOI: 10.3892/ijmm.2015.2397] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 10/08/2015] [Indexed: 12/15/2022] Open
Abstract
The α-Gal epitope (Galα1,3Galα1,4GlcNAc-R) is ubiquitously presented in non-primate mammals, marsupials and New World Monkeys, but it is absent in humans, apes and Old World monkeys. However, the anti-Gal antibody (~1% of immunoglobulins) is naturally generated in human, and is found as the immunoglobulin G (IgG), IgM and IgA isotypes. Owing to the specific binding of the anti-Gal antibody with the α-Gal epitope, humans have a distinct anti-α-gal reactivity, which is responsible for hyperacute rejection of organs transplanted from α-gal donors. In addition, the α1,3 galactosyltransferases (α1,3GT) can catalyze the synthesis of the α-Gal epitope. Therefore, the α1,3GT gene, which encodes the α1,3GT, is developed profoundly. The distributions of the α-Gal epitope and anti-Gal antibody, and the activation of α1,3GT, reveal that the enzyme of α1,3GT in ancestral primates is ineffective. Comparison of the nucleotide sequence of the human α1,3-GT pseudogene to the corresponding different species sequence, and according to the evolutionary tree of different species, the results of evolutionary inactivation of the α1,3GT gene in ancestral primates attribute to the mutations under a stronger selective pressure. However, on the basis of the structure, the mechanism and the specificity of the α-Gal epitope and anti-Gal antibody, they can be applied to clinical exploitation. Knocking out the α1,3GT gene will eliminate the xenoantigen, Gal(α1,3)Gal, so that the transplantation of α1,3GT gene knockout pig organ into human becomes a potential clinically acceptable treatment for solving the problem of organ shortage. By contrast, the α-Gal epitope expressed through the application of chemical, biochemical and genetic engineering can be exploited for the clinical use. Targeting anti-Gal-mediated autologous tumor vaccines, which express α-Gal epitope to antigen-presenting cells, would increase their immunogenicity and elicit an immune response, which will be potent enough to eradicate the residual tumor cells. For tumor vaccines, the way of increasing immunogenicity of certain viral vaccines, including flu vaccines and human immunodeficiency virus vaccines, can also be used in the elderly. Recently, α-Gal epitope nanoparticles have been applied to accelerate wound healing and further directions on regeneration of internally injured tissues.
Collapse
Affiliation(s)
- Guoli Huai
- Department of Biomedical Engineering, Medical School of University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, P.R. China
| | - Ping Qi
- Department of Pediatrics, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Hongji Yang
- Department of Biomedical Engineering, Medical School of University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, P.R. China
| | - Yi Wang
- Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|
12
|
Tanemura M, Miyoshi E, Nagano H, Eguchi H, Matsunami K, Taniyama K, Hatanaka N, Akamatsu H, Mori M, Doki Y. Cancer immunotherapy for pancreatic cancer utilizing α-gal epitope/natural anti-Gal antibody reaction. World J Gastroenterol 2015; 21:11396-11410. [PMID: 26523105 PMCID: PMC4616216 DOI: 10.3748/wjg.v21.i40.11396] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/02/2015] [Accepted: 08/30/2015] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has the poorest prognosis of all malignancies and is largely resistant to standard therapy. Novel treatments against PDAC are desperately needed. Anti-Gal is the most abundant natural antibody in humans, comprising about 1% of immunoglobulins and is also naturally produced in apes and Old World monkeys. The anti-Gal ligand is a carbohydrate antigen called "α-gal epitopes" with the structure Galα1-3Galβ1-4GlcNAc-R. These epitopes are expressed as major carbohydrate antigens in non-primate mammals, prosimians, and New World monkeys. Anti-Gal is exploited in cancer vaccines to increase the immunogenicity of antigen-presenting cells (APCs). Cancer cells or PDAC tumor lysates are processed to express α-gal epitopes. Vaccination with these components results in in vivo opsonization by anti-Gal IgG in PDAC patients. The Fc portion of the vaccine-bound anti-Gal interacts with Fcγ receptors of APCs, inducing uptake of the vaccine components, transport of the vaccine tumor membranes to draining lymph nodes, and processing and presentation of tumor-associated antigens (TAAs). Cancer vaccines expressing α-gal epitopes elicit strong antibody production against multiple TAAs contained in PDAC cells and induce activation of multiple tumor-specific T cells. Here, we review new areas of clinical importance related to the α-gal epitope/anti-Gal antibody reaction and the advantages in immunotherapy against PDAC.
Collapse
|