1
|
Tipbunjong C, Khimmaktong W, Hengpratom T, Thitiphatphuvanon T, Pholpramool C, Surinlert P. Glabridin Alleviates Oxidative Stress-Induced Osteoporosis by Targeting the Akt/NF-ĸB and Akt/GSK-3β Pathways. Int J Mol Sci 2025; 26:2949. [PMID: 40243576 PMCID: PMC11988926 DOI: 10.3390/ijms26072949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/18/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Diabetes-related osteoporosis has been known to be a consequence of oxidative stress caused by excessive reactive oxygen species (ROS) production in the tissues. Despite the increase in the number of individuals with diabetes-related osteoporosis year on year, there is still no effective drug that does not induce adverse side effects. Glabridin, which exerts hypoglycemic effects and possesses antioxidant properties, may have beneficial effects in the treatment of diabetes-related osteoporosis. In this study, we aimed to investigate the preventive effects of glabridin in counteracting oxidative stress-induced bone loss and its underlying mechanisms. A diabetic rat model was established by a single intraperitoneal injection of streptozotocin into male Wistar rats. The diabetic rats were orally gavaged daily with glabridin or glyburide for 8 weeks. The presence of diabetes significantly decreased the rats' tibia length, bone thickness, epiphyseal plate length, and collagen deposition compared to the control rats; in comparison, treatment with glabridin for 8 weeks significantly reversed these effects. In our in vitro study, the treatment of MC3T3-E1 preosteoblasts with glabridin up to 7.5 µM for 48 h showed no cytotoxic effect. However, pretreatment with glabridin significantly prevented oxidative stress-induced inhibition of cell proliferation. In addition, glabridin significantly diminished ROS production, restored antioxidant enzyme activity, and mitigated cellular apoptosis. These effects occurred by stimulating the phosphorylation of Akt, GSK-3β, and P65 NF-ĸB proteins. The above results show that glabridin alleviated oxidative stress-induced bone loss and osteoblast cell apoptosis by modulating the expression of the Akt/NF-ĸB and Akt/GSK-3β pathways.
Collapse
Affiliation(s)
- Chittipong Tipbunjong
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand; (C.T.); (W.K.); (T.H.)
| | - Wipapan Khimmaktong
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand; (C.T.); (W.K.); (T.H.)
| | - Tanaporn Hengpratom
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand; (C.T.); (W.K.); (T.H.)
| | | | - Chumpol Pholpramool
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| | - Piyaporn Surinlert
- Thammasat University Research Unit in Synthesis and Applications of Graphene, Thammasat University, Pathum-Thani 12120, Thailand
- Chulabhorn International College of Medicine, Thammasat University, Pathum-Thani 12120, Thailand
| |
Collapse
|
2
|
Xu JW, Ma L, Xiang Y, Dai MQ, Li QH, Jin XY, Ruan Y, Li Y, Wang JY, Shen X. Glabridin as a selective Kv2.1 inhibitor ameliorates DPN pathology by disrupting the Aβ/Kv2.1/JNK/NF-κB/NLRP3/p-Tau pathway. Acta Pharmacol Sin 2025:10.1038/s41401-025-01526-6. [PMID: 40113986 DOI: 10.1038/s41401-025-01526-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/25/2025] [Indexed: 03/22/2025]
Abstract
Diabetic peripheral neuropathy (DPN) is a common diabetic complication. DPN has a complicated pathogenesis, and the currently clinical drugs against this disease show only limited efficacy and undesirable side effects. Thus, it is of great challenges to discover effective targets and drugs against DPN. Glabridin (GLA) is a natural prenylated isoflavone from the roots of Glycyrrhiza glabra. It exhibits a wide range of pharmacological activities including anti-inflammatory, antioxidant, cardiovascular protective, neuroprotective, hepatoprotective, anti-obesity and anti-diabetic effects, etc. In this study we investigated the beneficial effects of GLA on late-stage DPN and the underlying mechanisms. Using electrophysiological recording from CHO-Kv2.1 cells, we identified GLA as a new Kv2.1-selective inhibitor with an IC50 value of 2.07 μM. We showed that oral administration of GLA (30, 60 mg·kg-1·d-1) for 4 weeks significantly improved all neurological dysfunctions and peripheral vascular dysfunctions in DPN mice. Furthermore, we demonstrated that GLA administration improved intraepidermal nerve fiber (IENF) density damage and myelin sheath injury, promoted neurite outgrowth of DRG neurons and alleviated the apoptosis of DRG neurons in DPN mice. All these beneficial effects of GLA were deprived in Kv2.1-knockdown DPN mice specifically in the DRG and sciatic nerve tissues by injection of adeno associated virus AAV8-Kv2.1-RNAi (AAV8-Kv2.1). We showed that the levels of Aβ and hyperphosphorylated tau proteins (p-Tau) were pathologically increased in serum of DPN patients. We demonstrated that Kv2.1 channels bridged Aβ to activate NLRP3 inflammasome in Schwann cells and promote p-Tau production in DRG neurons through Schwann cells/DRG neurons crosstalk. GLA interrupted Aβ/Kv2.1/NLRP3/p-Tau axis to ameliorate the DPN-like pathology in mice. Our results support that Kv2.1 inhibition is a therapeutic strategy for DPN and highlight the potential of GLA in treating this disease.
Collapse
Affiliation(s)
- Jia-Wen Xu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, Medical School of Nantong University, Nantong, 226000, China
| | - Lin Ma
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yu Xiang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Meng-Qing Dai
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qiu-Hui Li
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiao-Yan Jin
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuan Ruan
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yang Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Jia-Ying Wang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xu Shen
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
3
|
Matsathit U, Komolkriengkrai M, Khimmaktong W. Glabridin and gymnemic acid alleviates choroid structural change and choriocapillaris impairment in diabetic rat's eyes. World J Diabetes 2025; 16:97336. [PMID: 40093291 PMCID: PMC11885962 DOI: 10.4239/wjd.v16.i3.97336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/11/2024] [Accepted: 12/25/2024] [Indexed: 01/21/2025] Open
Abstract
BACKGROUND Small blood vessels in the eyes are more susceptible to injury, which can lead to complications. However, since diabetic retinopathy is often a serious clinical condition, most of this study focuses on the vascular system of the choroid. As part of this study, we looked at how gymnemic acid (from Gymnema sylvestre) and glabridin (from Glycyrrhiza glabra, or licorice) might help diabetic rats' choroid structural change and blood vessels. AIM To explore the effects of glabridin and gymnemic acid on the structural changes of the choroidal layer and choriocapillaris as well as the expression of vascular endothelial growth factor (VEGF) and cluster of differentiation (CD) 31 in diabetic rat's eye. METHODS The male Wistar rats were separated into five groups: The control group (control), the diabetic group (DM), the diabetic rats treated with glabridin 40 mg/kg body weight (DM + GB), the diabetic rats treated with gymnemic acid 400 mg/kg body weight (DM + GM), and the diabetic rats treated with glyburide 4 mg/kg body weight (DM + GR). RESULTS There was an increase in the thickness of both the choroid layer and the wall of the arteries in the DM. A decrease in vascularity and choroidal impairment was found in DM rats. After eight weeks of experimentation, the choroidal thickness increased, and the walls of choroid arteries. The choroidal thickness in the DM + GB was 15.69 ± 1.54 μm, DM + GM was 14.84 ± 1.31, and DM + GR groups was 16.45 ± 1.15 when compared with DM group (27.22 ± 2.05), the walls thickness of choroid arteries in the DM + GB was 10.23 ± 1.11, DM + GM was 10.41 ± 1.44, and DM + GR was 9.80 ± 1.78 when compared with DM group (16.35 ± 5.01), The expression of VEGF and CD31 was lower compared to the DM group. CONCLUSION In diabetic choroidopathy, hyperglycemia and inflammation cause damage to the neurovascular unit and blood-retinal barrier. Anti-VEGF treatments can slow or reverse the progression of the disease. According to current research findings, glabridin and gymnemic acid can reduce damage to the choroid, which is a factor that can sometimes result in vision loss.
Collapse
Affiliation(s)
- Udomlak Matsathit
- Department of Food Science and Nutrition, Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand
| | - Manaras Komolkriengkrai
- Department of Anatomy, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Wipapan Khimmaktong
- Department of Anatomy, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| |
Collapse
|
4
|
Adam SA, Barthelomai IS, S SB, Kayali A, Gopal RK. The in vitro and in silico investigations on the α-amylase inhibitor derived from Leptadenia lanceolata (Poir.) Goyder leaf extract. Nat Prod Res 2024:1-11. [PMID: 39397381 DOI: 10.1080/14786419.2024.2413036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 09/10/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
An attempt has been made to assess the α-amylase inhibitory activity of a phytochemical compound extracted and purified from the leaf extract of Leptadenia lanceolata. The total yield of the crude leaf extract was 11.42% and among the different solvents involved in this study, hexane and ethyl acetate at 7:3 was effective in the separation of phytochemical compounds. Hexane and ethyl acetate at 25:75% ratios (elution S4) were found greater in inhibiting α-amylase enzyme (83%). The most abundant compound found was Phytol (3,7,11,15-tetramethyl-2-hexadecen-1-ol) and its derivatives. It resulted that the binding energy for acarbose and phytol were -8.1 kcal/mol and -5.9 kcal/mol respectively. However, the binding affinity was greater in the case of acarbose than phytol and the binding sites are different for both the ligands. Therefore, this study adds scientific evidence of the α-amylase inhibitory activity of phytol derived from the leaf extract of L. lanceolata.
Collapse
Affiliation(s)
- Salman Abubakar Adam
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chennai, India
| | - Infant Santhose Barthelomai
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chennai, India
| | - Subhash Bharathi S
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chennai, India
| | - Alaa Kayali
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chennai, India
| | - Rajesh Kanna Gopal
- Department of Microbiology, Centre for Infectious Diseases, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University (Deemed to be University), Chennai, India
| |
Collapse
|
5
|
Shin GC, Lee HM, Kim N, Hur J, Yoo SK, Park YS, Park HS, Ryu D, Park MH, Park JH, Seo SU, Choi LS, Madsen MR, Feigh M, Kim KP, Kim KH. Paraoxonase-2 agonist vutiglabridin promotes autophagy activation and mitochondrial function to alleviate non-alcoholic steatohepatitis. Br J Pharmacol 2024; 181:3717-3742. [PMID: 38852992 DOI: 10.1111/bph.16438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND AND PURPOSE Only limited therapeutic agents have been developed for non-alcoholic steatohepatitis (NASH). Glabridin, a promising anti-obesity candidate, has only limited druggability due to its low in vivo chemical stability and bioavailability. Therefore, we developed vutiglabridin (VUTI), which is based on a glabridin backbone, and investigated its mechanism of action in treating NASH in animal models. EXPERIMENTAL APPROACH Anti-NASH effects of VUTI were determined in in vitro fatty liver models, spheroids of primary human hepatocytes and L02 normal liver cell lines. To identify VUTI possible cellular target/s, biotin-labelled VUTI was synthesized and underwent chemical proteomic analysis. Further, the evaluation of VUTI therapeutic efficacy was carried out using an amylin-NASH and high-fat (HF) diet-induced obese (DIO) mouse models. This was carried out using transcriptomic, lipidomic and proteomic analyses of the livers from the amylin-NASH mouse model. KEY RESULTS VUTI treatment markedly reduces hepatic steatosis, fibrosis and inflammation by promoting lipid catabolism, activating autophagy and improving mitochondrial dysfunction, all of which are hallmarks of effective NASH treatment. The cellular target of VUTI was identified as paraoxonase 2 (PON2), a newly proposed protein target for the treatment of NASH, VUTI enhanced PON2 activity. The results using PON2 knockdown cells demonstrated that PON2 is important for VUTI- activation of autophagy, promoting mitochondrial function, decreasing oxidative stress and alleviating lipid accumulation under lipotoxic condition. CONCLUSION AND IMPLICATIONS Our data demonstrated that VUTI is a promising therapeutic for NASH. Targeting PON2 may be important for improving liver function in various immune-metabolic diseases including NASH.
Collapse
Affiliation(s)
- Gu-Choul Shin
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyeong Min Lee
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Republic of Korea
- Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, Republic of Korea
- Glaceum Inc., Suwon, Republic of Korea
| | - Nayeon Kim
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jihyeon Hur
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Republic of Korea
| | | | | | | | - Dongryeol Ryu
- Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon, Republic of Korea
| | - Min-Ho Park
- Division of Biotechnology, College of Environmental & Bioresource Sciences, Jeonbuk National University, Iksan, Republic of Korea
| | - Jung Hee Park
- Division of Biotechnology, College of Environmental & Bioresource Sciences, Jeonbuk National University, Iksan, Republic of Korea
- Advanced Institute of Environment and Bioscience, College of Environmental & Bioresource Sciences, Jeonbuk National University, Iksan, Republic of Korea
| | - Sang-Uk Seo
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | | | | | | | - Kwang Pyo Kim
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Republic of Korea
- Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Kyun-Hwan Kim
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
6
|
Liu X, Zheng H, Wang F, Atia T, Fan B, Wang Q. Developments in the study of Chinese herbal medicine's assessment index and action mechanism for diabetes mellitus. Animal Model Exp Med 2024; 7:433-443. [PMID: 38973219 PMCID: PMC11369031 DOI: 10.1002/ame2.12455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/26/2024] [Indexed: 07/09/2024] Open
Abstract
In traditional Chinese medicine (TCM), based on various pathogenic symptoms and the 'golden chamber' medical text, Huangdi Neijing, diabetes mellitus falls under the category 'collateral disease'. TCM, with its wealth of experience, has been treating diabetes for over two millennia. Different antidiabetic Chinese herbal medicines reduce blood sugar, with their effective ingredients exerting unique advantages. As well as a glucose lowering effect, TCM also regulates bodily functions to prevent diabetes associated complications, with reduced side effects compared to western synthetic drugs. Chinese herbal medicine is usually composed of polysaccharides, saponins, alkaloids, flavonoids, and terpenoids. These active ingredients reduce blood sugar via various mechanism of actions that include boosting endogenous insulin secretion, enhancing insulin sensitivity and adjusting key enzyme activity and scavenging free radicals. These actions regulate glycolipid metabolism in the body, eventually achieving the goal of normalizing blood glucose. Using different animal models, a number of molecular markers are available for the detection of diabetes induction and the molecular pathology of the disease is becoming clearer. Nonetheless, there is a dearth of scientific data about the pharmacology, dose-effect relationship, and structure-activity relationship of TCM and its constituents. Further research into the efficacy, toxicity and mode of action of TCM, using different metabolic and molecular markers, is key to developing novel TCM antidiabetic formulations.
Collapse
Affiliation(s)
- Xin‐Yue Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural SciencesBeijingChina
| | - Han‐Wen Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural SciencesBeijingChina
- Sino‐Portugal TCM International Cooperation Centerthe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouChina
| | - Feng‐Zhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural SciencesBeijingChina
| | - Tul‐Wahab Atia
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological SciencesUniversity of KarachiKarachiPakistan
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural SciencesBeijingChina
| | - Qiong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural SciencesBeijingChina
- Sino‐Portugal TCM International Cooperation Centerthe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouChina
| |
Collapse
|
7
|
Hooshmandi H, Ghadiri-Anari A, Ranjbar AM, Fallahzadeh H, Hosseinzadeh M, Nadjarzadeh A. Effects of licorice extract in combination with a low-calorie diet on obesity indices, glycemic indices, and lipid profiles in overweight/obese women with polycystic ovary syndrome (PCOS): a randomized, double-blind, placebo-controlled trial. J Ovarian Res 2024; 17:157. [PMID: 39080737 PMCID: PMC11287987 DOI: 10.1186/s13048-024-01446-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/29/2024] [Indexed: 08/03/2024] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is the most common ovarian dysfunction. Recent studies showed the effectiveness of licorice on metabolic profiles with inconsistent findings. So, we investigated the effect of licorice on obesity indices, glycemic indices, and lipid profiles in women with PCOS. METHODS This randomized, double-blind, placebo-controlled trial was performed on 66 overweight/obese women with PCOS. The participants were randomly assigned to receive either 1.5 gr/day licorice extract plus a low-calorie diet (n = 33) or placebo plus a low-calorie diet (n = 33) for 8 weeks. Participants' anthropometric indices and body composition were assessed using standard protocols. Fasting blood sugar (FBS), insulin levels, low-density lipoprotein-cholesterol (LDL-C), total cholesterol (TC), triglyceride (TG), and high-density lipoprotein-cholesterol (HDL-C) were measured using enzymatic kits. The homeostasis model assessment-insulin resistance (HOMA-IR) and HOMA of β-cell function (HOMA-B) were calculated using valid formulas. RESULTS Between-group comparisons demonstrated significant differences between the groups in terms of obesity indices (body weight, BMI, and body fat), lipid profiles (TG, TC, LDL-C, and HDL-C), FBS and insulin levels, HOMA-IR, and HOMA-B at the end of the study (P < 0.05). Supplementation with licorice plus a low-calorie diet was also more effective in improving all parameters than a low-calorie diet alone after adjusting for confounders (baseline values, age, weight changes, and physical activity changes) (P < 0.05). CONCLUSION The findings showed that licorice consumption leads to improvements in obesity indices, glucose homeostasis, and lipid profiles compared to placebo. Due to possible limitations of the study, further research is needed to confirm these findings.
Collapse
Affiliation(s)
- Hadis Hooshmandi
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Akram Ghadiri-Anari
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Diabetes Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Mohammad Ranjbar
- Department of Pharmacognosy, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Herbal Medicine Center, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Fallahzadeh
- Department of Biostatistics and Epidemiology, Research Center of Prevention and Epidemiology of Non-Communicable Disease, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahdieh Hosseinzadeh
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Azadeh Nadjarzadeh
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
8
|
Li D, Fan J, Du L, Ren G. Prenylated flavonoid fractions from Glycyrrhiza glabra alleviate insulin resistance in HepG2 cells by regulating the ERK/IRS-1 and PI3K/Akt signaling pathways. Arch Pharm Res 2024; 47:127-145. [PMID: 38267702 DOI: 10.1007/s12272-024-01485-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/11/2024] [Indexed: 01/26/2024]
Abstract
Insulin resistance (IR) is a key factor in the pathogenesis of disrupted glucose metabolism. Although the extract of Glycyrrhiza glabra has shown significant hypoglycemic activity, its bioactive components remain to be identified, and their mechanisms of action, especially on hepatocyte glucose metabolism, are yet to be explored. In the present study, the primary compounds from Glycyrrhiza glabra [named prenylated flavonoid fractions (PFFs)] have been identified and their chemical structures have been elucidated. The therapeutic effects of PFFs extracted from G. glabra on glucose metabolism disorders and IR in high insulin-induced insulin-resistant HepG2 (IR-HepG2) cells have been determined. Glabridin (GLD) was used as a control. The results indicated that, similar to GLD, PFFs increased glucose consumption, glucose uptake, and translocation of glucose transporter 4 to the plasma membrane in IR-HepG2 cells. In addition, they enhanced the activities of glycogen synthase, glucokinase, and pyruvate kinase, while reducing the activities of phosphoenolpyruvate carboxykinase and glucose-6-phosphatase. Furthermore, they activated the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathway and suppressed the extracellular signal-regulated kinase/insulin receptor substrate-1 (ERK/IRS-1) pathway. These findings suggest that, similar to GLD, PFFs can alleviate impaired glucose metabolism and alleviate IR in IR-HepG2 cells.Please check and confirm that the authors and their respective affiliations have been correctly identified and amend if necessary.The authors and their affiliations have been confirmed as correct.
Collapse
Affiliation(s)
- Defeng Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Jinling Fan
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Lin Du
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Guoyan Ren
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, China
| |
Collapse
|
9
|
Dash JR, Kar B, Pattnaik G. In-silico, in-vitro and in-vivo Biological Activities of Flavonoids for the Management of Type 2 Diabetes. Curr Drug Discov Technol 2024; 21:e120124225551. [PMID: 38243931 DOI: 10.2174/0115701638290819231228081120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 01/22/2024]
Abstract
In spite of the fact that many medicinal plants have been truly utilized for the management of diabetes all through the world, very few of them have been reported scientifically. Recently, a diverse variety of animal models have been established to better understand the pathophysiology of diabetes mellitus, and new medications to treat the condition have been introduced in the market. Flavonoids are naturally occurring substances that can be found in plants and various foods and may have health benefits in the treatment of neuropathic pain. Flavonoids have also been shown to have an anti-inflammatory impact that is significant to neuropathic pain, as indicated by a decrease in several pro-inflammatory mediators such TNF-, NF-B IL-6, and IL-1. Flavonoids appear to be a viable novel therapy option for macrovasular complications in preclinical models; however, human clinical data is still inadequate. Recently, several in silico, in-vitro and in-vivo aproaches were made to evaluate mechanisms associated with the pathogenesis of diabetes in a better way. Screening of natural antidiabetic agents from plant sources can be analysed by utilizing advanced in-vitro techniques and animal models. Natural compounds, mostly derived from plants, have been studied in diabetes models generated by chemical agents in the majority of research. The aim of this work was to review the available in silico, in-vitro and animal models of diabetes for screening of natural antidiabetic agents. This review contributes to the scientist's design of new methodologies for the development of novel therapeutic agents having potential antihyperglycemic activity.
Collapse
Affiliation(s)
- Jyoshna Rani Dash
- Department of Pharmacy, Centurion University of Technology and Management, Bhubaneswar, Odisha, 751050, India
| | - Biswakanth Kar
- School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, Odisha, 751003, India
| | - Gurudutta Pattnaik
- Department of Pharmacy, Centurion University of Technology and Management, Bhubaneswar, Odisha, 751050, India
| |
Collapse
|
10
|
Liu C, Wang W, Gu J. Targeting ferroptosis: New perspectives of Chinese herbal medicine in the treatment of diabetes and its complications. Heliyon 2023; 9:e22250. [PMID: 38076182 PMCID: PMC10709212 DOI: 10.1016/j.heliyon.2023.e22250] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 12/28/2024] Open
Abstract
Ferroptosis is a non-apoptotic mode of cell death. A large number of studies have confirmed that ferroptosis plays a vital role in the occurrence and development of diabetes and diabetic complications. Previous studies have found that Chinese herbal medicines have very promising results in the prevention and treatment of diabetes and diabetic complications, and some of these herbs or herbal natural compounds may act via the inhibition of ferroptosis. In this review, we summarized the relationship between ferroptosis and diabetes and diabetic complications, and discussed its molecular mechanisms. We also reviewed the published studies of herbal medicines or herbal natural compounds that improved diabetes or diabetic complications via the ferroptosis pathway. In addition, we are trying to provide new insights for better treatment of diabetes and diabetic complications with Chinese herbal medicine and its herbal compounds.
Collapse
Affiliation(s)
- Cuiping Liu
- Department of Endocrinology, The Second People's Hospital of Yibin City-West China Yibin Hospital, Sichuan University, Yibin, Sichuan, PR China
- Clinical Research and Translation Center, Second People's Hospital of Yibin City-West China Yibin Hospital, Sichuan University, Yibin, Sichuan, PR China
| | - Wuxi Wang
- Community Health Service Center of Tongyuanju, Chongqing, PR China
| | - Junling Gu
- Department of Endocrinology, The Second People's Hospital of Yibin City-West China Yibin Hospital, Sichuan University, Yibin, Sichuan, PR China
- Clinical Research and Translation Center, Second People's Hospital of Yibin City-West China Yibin Hospital, Sichuan University, Yibin, Sichuan, PR China
| |
Collapse
|
11
|
Wei M, Liu X, Tan Z, Tian X, Li M, Wei J. Ferroptosis: a new strategy for Chinese herbal medicine treatment of diabetic nephropathy. Front Endocrinol (Lausanne) 2023; 14:1188003. [PMID: 37361521 PMCID: PMC10289168 DOI: 10.3389/fendo.2023.1188003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Diabetic nephropathy (DN) is a serious microvascular complication of diabetes. It has become a leading cause of death in patients with diabetes and end-stage renal disease. Ferroptosis is a newly discovered pattern of programmed cell death. Its main manifestation is the excessive accumulation of intracellular iron ion-dependent lipid peroxides. Recent studies have shown that ferroptosis is an important driving factor in the onset and development of DN. Ferroptosis is closely associated with renal intrinsic cell (including renal tubular epithelial cells, podocytes, and mesangial cells) damage in diabetes. Chinese herbal medicine is widely used in the treatment of DN, with a long history and definite curative effect. Accumulating evidence suggests that Chinese herbal medicine can modulate ferroptosis in renal intrinsic cells and show great potential for improving DN. In this review, we outline the key regulators and pathways of ferroptosis in DN and summarize the herbs, mainly monomers and extracts, that target the inhibition of ferroptosis.
Collapse
Affiliation(s)
- Maoying Wei
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xingxing Liu
- Department of Emergency, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhijuan Tan
- Department of Traditional Chinese Medicine, The Seventh Hospital of Xingtai, Xingtai, Heibei, China
| | - Xiaochan Tian
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mingdi Li
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junping Wei
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
12
|
Ha EJ, Seo JI, Rehman SU, Park HS, Yoo SK, Yoo HH. Preclinical Bioavailability Assessment of a Poorly Water-Soluble Drug, HGR4113, Using a Stable Isotope Tracer. Pharmaceutics 2023; 15:1684. [PMID: 37376132 DOI: 10.3390/pharmaceutics15061684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/23/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Drug solubility limits intravenous dosing for poorly water-soluble medicines, which misrepresents their bioavailability estimation. The current study explored a method using a stable isotope tracer to assess the bioavailability of drugs that are poorly water-soluble. HGR4113 and its deuterated analog, HGR4113-d7, were tested as model drugs. To determine the level of HGR4113 and HGR4113-d7 in rat plasma, a bioanalytical method using LC-MS/MS was developed. The HGR4113-d7 was intravenously administered to rats that were orally pre-administered HGR4113 at different doses; subsequently, the plasma samples were collected. HGR4113 and HGR4113-d7 were simultaneously determined in the plasma samples, and bioavailability was calculated using plasma drug concentration values. The bioavailability of HGR4113 was 53.3% ± 19.5%, 56.9% ± 14.0%, and 67.8% ± 16.7% after oral dosages of 40, 80, and 160 mg/kg, respectively. By eliminating the differences in clearance between intravenous and oral dosages at different levels, acquired data showed that the current method reduced measurement errors in bioavailability when compared to the conventional approach. The present study suggests a prominent method for evaluating the bioavailability of drugs with poor aqueous solubility in preclinical studies.
Collapse
Affiliation(s)
- Eun Ji Ha
- Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, Ansan 15588, Gyeonggi-do, Republic of Korea
| | - Jeong In Seo
- Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, Ansan 15588, Gyeonggi-do, Republic of Korea
| | | | - Hyung Soon Park
- Glaceum Inc., Yeongtong-gu, Suwon 16675, Gyeonggi-do, Republic of Korea
| | - Sang-Ku Yoo
- Glaceum Inc., Yeongtong-gu, Suwon 16675, Gyeonggi-do, Republic of Korea
| | - Hye Hyun Yoo
- Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, Ansan 15588, Gyeonggi-do, Republic of Korea
| |
Collapse
|
13
|
Zhang J, Wu X, Zhong B, Liao Q, Wang X, Xie Y, He X. Review on the Diverse Biological Effects of Glabridin. Drug Des Devel Ther 2023; 17:15-37. [PMID: 36647530 PMCID: PMC9840373 DOI: 10.2147/dddt.s385981] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Glabridin is a prenylated isoflavan from the roots of Glycyrrhiza glabra Linne and has posed great impact on the areas of drug development and medicine, due to various biological properties such as anti-inflammation, anti-oxidation, anti-tumor, anti-microorganism, bone protection, cardiovascular protection, neuroprotection, hepatoprotection, anti-obesity, and anti-diabetes. Many signaling pathways, including NF-κB, MAPK, Wnt/β-catenin, ERα/SRC-1, PI3K/AKT, and AMPK, have been implicated in the regulatory activities of glabridin. Interestingly, glabridin has been considered as an inhibitor of tyrosinase, P-glycoprotein (P-gp), and CYP2E1 and an activator of peroxisome proliferator-activated receptor γ (PPARγ), although their molecular regulating mechanisms still need further investigation. However, poor water solubility and low bioavailability have greatly limited the clinical applications of glabridin. Hopefully, several effective strategies, such as nanoemulsions, microneedles, and smartPearls formulation, have been developed for improvement.
Collapse
Affiliation(s)
- Jianhong Zhang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China,Ganzhou Key Laboratory of Hepatocellular Carcinoma, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Xinhui Wu
- Department of General Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Baiyin Zhong
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Qicheng Liao
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Xin Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Yuankang Xie
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Xiao He
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China,Correspondence: Xiao He, Email
| |
Collapse
|
14
|
Metabolic Profiling of Glabridin in Rat Plasma, Urine, Bile, and Feces After Intragastric and Intravenous Administration. Eur J Drug Metab Pharmacokinet 2022; 47:879-887. [DOI: 10.1007/s13318-022-00797-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 11/25/2022]
|
15
|
Farzana M, Hossain MJ, El-Shehawi AM, Sikder MAA, Rahman MS, Al-Mansur MA, Albogami S, Elseehy MM, Roy A, Uddin MA, Rashid MA. Phenolic Constituents from Wendlandia tinctoria var. grandis (Roxb.) DC. Stem Deciphering Pharmacological Potentials against Oxidation, Hyperglycemia, and Diarrhea: Phyto-Pharmacological and Computational Approaches. Molecules 2022; 27:5957. [PMID: 36144691 PMCID: PMC9505740 DOI: 10.3390/molecules27185957] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Wendlandia tinctoria var. grandis (Roxb.) DC. (Family: Rubiaceae) is a semi-evergreen shrub distributed over tropical and subtropical Asia. The present research intended to explore the pharmacological potential of the stem extract of W. tinctoria, focusing on the antioxidant, hypoglycemic, and antidiarrheal properties, and to isolate various secondary metabolites as mediators of such activities. A total of eight phenolic compounds were isolated from the dichloromethane soluble fraction of the stem extract of this plant, which were characterized by electrospray ionization (ESI) mass spectrometric and 1H NMR spectroscopic data as liquiritigenin (1), naringenin (2), apigenin (3), kaempferol (4), glabridin (5), ferulic acid (6), 4-hydroxybenzoic acid (7), and 4-hydroxybenzaldehyde (8). The dichloromethane soluble fraction exhibited the highest phenolic content (289.87 ± 0.47 mg of GAE/g of dried extract) and the highest scavenging activity (IC50 = 18.83 ± 0.07 µg/mL) against the DPPH free radical. All of the isolated compounds, except 4-hydroxybenzaldehyde, exerted a higher antioxidant effect (IC50 = 6.20 ± 0.10 to 16.11 ± 0.02 μg/mL) than the standard butylated hydroxytoluene (BHT) (IC50 = 17.09 ± 0.01 μg/mL). Significant hypoglycemic and antidiarrheal activities of the methanolic crude extract at both doses (200 mg/kg bw and 400 mg/kg bw) were observed in a time-dependent manner. Furthermore, the computational modeling study supported the current in vitro and in vivo findings, and the isolated constituents had a higher or comparable binding affinity for glutathione reductase and urase oxidase enzymes, glucose transporter 3 (GLUT 3), and kappa-opioid receptor, inferring potential antioxidant, hypoglycemic, and antidiarrheal properties, respectively. This is the first report of all of these phenolic compounds being isolated from this plant species and even the first demonstration of the plant stem extract's antioxidant, hypoglycemic, and antidiarrheal potentials. According to the current findings, the W. tinctoria stem could be a potential natural remedy for treating oxidative stress, hyperglycemia, and diarrhea. Nevertheless, further extensive investigation is crucial for thorough phytochemical screening and determining the precise mechanisms of action of the plant-derived bioactive metabolites against broad-spectrum molecular targets.
Collapse
Affiliation(s)
- Mamtaz Farzana
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Md. Jamal Hossain
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka 1205, Bangladesh
| | - Ahmed M. El-Shehawi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Md. Al Amin Sikder
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Mohammad Sharifur Rahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Muhammad Abdullah Al-Mansur
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr. Qudrat-I-Khuda Road, Dhanmondi, Dhaka 1205, Bangladesh
| | - Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mona M. Elseehy
- Department of Genetics, Faculty of Agriculture, University of Alexandria, Alexandria 21545, Egypt
| | - Arpita Roy
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida 201310, India
| | - M. Aftab Uddin
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Dhaka, Dhaka 1000, Bangladesh
| | - Mohammad A. Rashid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| |
Collapse
|
16
|
Ahmed SS, Al-Mamun A, Hossain SI, Akter F, Ahammad I, Chowdhury ZM, Salimullah M. Virtual screening reveals liquiritigenin as a broad-spectrum inhibitor of SARS-CoV-2 variants of concern: an in silico study. J Biomol Struct Dyn 2022:1-19. [PMID: 35971968 DOI: 10.1080/07391102.2022.2111361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
The SARS-CoV-2 has severely impacted the lives of people worldwide. Global concern is on the rise due to a large number of unexpected mutations in the viral genome, resulting in new variants. Nature-based bioactive phytochemicals hold great promise as inhibitors against pathogenic viruses. The current study was aimed at evaluating some bioactive antiviral phytochemicals against SARS-CoV-2 variants of concern. A total of 46 phytochemicals were screened against the pathogenic spike protein of Alpha, Beta, Delta, Gamma, and Omicron variants. In addition to molecular docking, screening for favorable pharmacokinetic and pharmacodynamic properties such as absorption, distribution, metabolism, excretion, and toxicity was undertaken. For each of the aforementioned five SARS-CoV-2 variants of concern, a 100 ns molecular dynamics simulation was run to assess the stability of the complexes between their respective spike protein receptor-binding domain and the best-selected compound. From our current investigation, the natural compound liquiritigenin turned out to be the most promising potential lead compound against almost all the variants. These findings could pave the way for the development of effective medications against SARS-CoV-2 variants. However, in vivo trials in future studies are necessary for further validation of our results.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Abdullah Al-Mamun
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Shah Imran Hossain
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Farzana Akter
- Department of Botany, University of Dhaka, Dhaka, Bangladesh
| | - Ishtiaque Ahammad
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka, Bangladesh
| | - Zeshan Mahmud Chowdhury
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka, Bangladesh
| | - Md Salimullah
- Molecular Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka, Bangladesh
| |
Collapse
|
17
|
Self-Assembled pH-Responsive Metal-Organic Frameworks for Enhancing the Encapsulation and Anti-Oxidation and Melanogenesis Inhibition Activities of Glabridin. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123908. [PMID: 35745031 PMCID: PMC9227565 DOI: 10.3390/molecules27123908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022]
Abstract
Metal organic frameworks (MOFs) are formed by self-assembly of metal ions and organic ligands. A special type of MOF called ZIF-8, which is formed by self-assembly of zinc ions and 2-methylimidazole, shows excellent stability in aqueous solutions and disintegrates under acidic conditions. These properties make ZIF-8 a suitable carrier material for pH-stimulated drug delivery systems. Glabridin is an isoflavane compound that is widely present in the roots of licorice. Because of its outstanding skin whitening properties, glabridin is widely used as a whitener in the cosmetics industry. In this study, ZIF-8 was employed to encapsulate glabridin. Glabridin-loaded ZIF-8 was successfully prepared with a drug encapsulation efficiency of 98.67%. The prepared sample showed a fusiform or cruciate flower-like structure, and its size was about 3 μm. ZIF-8 enabled pH-controlled release of glabridin. Moreover, ZIF-8 encapsulation significantly enhanced the intracellular anti-oxidant activity and melanogenesis inhibitory activity of glabridin. This study provides a new approach that shows great potential to improve the biological application of glabridin.
Collapse
|
18
|
Licorice Extract Supplementation Affects Antioxidant Activity, Growth-Related Genes, Lipid Metabolism, and Immune Markers in Broiler Chickens. LIFE (BASEL, SWITZERLAND) 2022; 12:life12060914. [PMID: 35743945 PMCID: PMC9225592 DOI: 10.3390/life12060914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022]
Abstract
The objective of this study was to evaluate the Glycyrrhiza glabra effect on growth performance, blood parameters, antioxidant and lysosomal activity, histology and immunohistochemistry of liver and intestine, and the gene expression profile of broiler chickens. A total of 180 Cobb500 broiler chicks (one-week-old) were used in this study. Chicks were distributed randomly into three treatment groups; the first group received drinking water without any supplementation (control group). In contrast, birds in groups 2 and 3 received licorice supplementation in drinking water with 0.4 and 0.8 g licorice/liter, respectively. Results revealed that licorice at a 0.4 g/L of water level improved body weight, weight gain, feed intake, and FCR. Licorice also exhibits a broad range of biological activities such as hypolipidemic, hypoglycemic, hepatoprotective, immunostimulant, and antioxidant effects. The morphometric analysis of different parameters of the intestine revealed a significant increase in the intestinal villi length, width, and villi length/crypt depth in the group supplemented with licorice 0.4 gm/L compared to other groups. The number of CD3 positive in both duodenum and ileum was increased in the licorice 0.4 gm/L group compared to other groups. The expression of growth-related genes was significantly increased with licorice supplementation and modulation of the lipid metabolism genes in the liver and upregulated to the mRNA expression of both superoxide dismutase (SOD1) and Catalase (CAT). Our results revealed that licorice supplementation increased the growth performance of broiler chickens and impacted the birds' antioxidant activity through modulation of the growth-related genes, lipid metabolic markers, and antioxidant-related pathways.
Collapse
|
19
|
Tan H, Chen J, Li Y, Li Y, Zhong Y, Li G, Liu L, Li Y. Glabridin, a bioactive component of licorice, ameliorates diabetic nephropathy by regulating ferroptosis and the VEGF/Akt/ERK pathways. Mol Med 2022; 28:58. [PMID: 35596156 PMCID: PMC9123664 DOI: 10.1186/s10020-022-00481-w] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 04/19/2022] [Indexed: 12/20/2022] Open
Abstract
Background Glabridin (Glab) is a bioactive component of licorice that can ameliorate diabetes, but its role in diabetic nephropathy (DN) has seldom been reported. Herein, we explored the effect and underlying mechanism of Glab on DN. Methods The bioactive component-target network of licorice against DN was by a network pharmacology approach. The protective effect of Glab on the kidney was investigated by a high-fat diet with streptozotocin induced-diabetic rat model. High glucose-induced NRK-52E cells were used for in vitro studies. The effects of Glab on ferroptosis and VEGF/Akt/ERK pathways in DN were investigated in vivo and in vitro using qRT-PCR, WB, and IHC experiments. Results Bioinformatics analysis constructed a network comprising of 10 bioactive components of licorice and 40 targets for DN. 13 matching targets of Glab were mainly involved in the VEGF signaling pathway. Glab treatment ameliorated general states and reduced FBG, HOMA-β, and HOMA-insulin index of diabetic rats. The renal pathological changes and the impaired renal function (the increased levels of Scr, BUN, UREA, KIM-1, NGAL, and TIMP-1) were also improved by Glab. Moreover, Glab repressed ferroptosis by increasing SOD and GSH activity, and GPX4, SLC7A11, and SLC3A2 expression, and decreasing MDA and iron concentrations, and TFR1 expression, in vivo and in vitro. Mechanically, Glab significantly suppressed VEGF, p-AKT, p-ERK1/2 expression in both diabetic rats and HG-induced NRK-52E cells. Conclusions This study revealed protective effects of Glab on the kidney of diabetic rats, which might exert by suppressing ferroptosis and the VEGF/Akt/ERK pathway.
Collapse
Affiliation(s)
- Hongtao Tan
- Department of Traditional Chinese Medicine, Huizhou Municipal Central Hospital, Huicheng District, No. 41 Eling North Road, Huizhou, 516000, Guangdong, China
| | - Junxian Chen
- The First College of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yicong Li
- Department of Traditional Chinese Medicine, Huizhou Municipal Central Hospital, Huicheng District, No. 41 Eling North Road, Huizhou, 516000, Guangdong, China
| | - Yingshan Li
- Department of Traditional Chinese Medicine, Huizhou Municipal Central Hospital, Huicheng District, No. 41 Eling North Road, Huizhou, 516000, Guangdong, China
| | - Yunchang Zhong
- Department of Traditional Chinese Medicine, Huizhou Municipal Central Hospital, Huicheng District, No. 41 Eling North Road, Huizhou, 516000, Guangdong, China
| | - Guangzhao Li
- Department of Traditional Chinese Medicine, Huizhou Municipal Central Hospital, Huicheng District, No. 41 Eling North Road, Huizhou, 516000, Guangdong, China
| | - Lingling Liu
- Department of Traditional Chinese Medicine, Huizhou Municipal Central Hospital, Huicheng District, No. 41 Eling North Road, Huizhou, 516000, Guangdong, China.
| | - Yiqun Li
- Department of Traditional Chinese Medicine, Huizhou Municipal Central Hospital, Huicheng District, No. 41 Eling North Road, Huizhou, 516000, Guangdong, China.
| |
Collapse
|
20
|
Zhang Y, Xu Y, Zhang L, Chen Y, Wu T, Liu R, Sui W, Zhu Q, Zhang M. Licorice extract ameliorates hyperglycemia through reshaping gut microbiota structure and inhibiting TLR4/NF-κB signaling pathway in type 2 diabetic mice. Food Res Int 2022; 153:110945. [DOI: 10.1016/j.foodres.2022.110945] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 02/08/2023]
|
21
|
Singh S, Bansal A, Singh V, Chopra T, Poddar J. Flavonoids, alkaloids and terpenoids: a new hope for the treatment of diabetes mellitus. J Diabetes Metab Disord 2022; 21:941-950. [PMID: 35673446 PMCID: PMC9167359 DOI: 10.1007/s40200-021-00943-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/24/2021] [Indexed: 01/11/2023]
Abstract
Diabetes mellitus is a metabolic syndrome characterized by a hyperglycemic state and multi-organ failure. Millions of people worldwide are suffering from this deadly disease taking a hit on their pocket and mental health in the name of its treatment. Modern medical practices with new technological advancements and discoveries have made revolutionary changes in the treatment. But, unfortunately, Glucose-lowering drugs used have many accompanying effects such as chronic vascular disease, renal malfunction, liver disease and, many skin problems. These complications have made us think about alternative treatments for diabetes with minimum or no side effects. Nowadays, in addition to modern medicine, herbal treatment has been suggested to treat diabetes mellitus. These herbal medicines contain biological macromolecules such as flavonoids, Terpenoids, glycosides, and alkaloids, which show versatile anti-diabetic effects. These phytochemicals are generally considered safe, and naturally occurring compounds have a potential role in preventing or controlling diabetes mellitus. The underlying mechanism of their anti-diabetic effects includes improvement in insulin secretion, decrease in insulin resistance, enhanced liver glycogen synthesis, antioxidant and anti-inflammatory activities. In this review, we have focused on the mechanism of various phytochemicals targeting hyperglycemia and its underlying pathogenesis.
Collapse
Affiliation(s)
- Sukhpal Singh
- Department of Biochemistry and Central Research Cell, M.M. Institute of Medical Sciences and Research, University Research Fellow, Maharishi Markandeswar (Deemed to be University, Mullana, Ambala, 133207 India
| | - Abhishek Bansal
- Department of Biochemistry, Government Medical College, RAJOURI, Rajouri, Jammu and Kashmir 185135 India
| | - Vikramjeet Singh
- Kalpana Chawla Government Medical College, Karnal, Haryana India
| | - Tanya Chopra
- Department Of Biochemistry and Central Research Cell, M.M. Institute of Medical Sciences and Research, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207 India
| | - Jit Poddar
- Department of Microbiology, RG Kar Medical College & Hospital, Kolkata, West Bengal 700003 India
| |
Collapse
|
22
|
Wahab S, Annadurai S, Abullais SS, Das G, Ahmad W, Ahmad MF, Kandasamy G, Vasudevan R, Ali MS, Amir M. Glycyrrhiza glabra (Licorice): A Comprehensive Review on Its Phytochemistry, Biological Activities, Clinical Evidence and Toxicology. PLANTS (BASEL, SWITZERLAND) 2021; 10:2751. [PMID: 34961221 PMCID: PMC8703329 DOI: 10.3390/plants10122751] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 05/03/2023]
Abstract
There are more than 30 species of Glycyrrhiza genus extensively spread worldwide. It was the most prescribed herb in Ancient Egyptian, Roman, Greek, East China, and the West from the Former Han era. There are various beneficial effects of licorice root extracts, such as treating throat infections, tuberculosis, respiratory, liver diseases, antibacterial, anti-inflammatory, and immunodeficiency. On the other hand, traditional medicines are getting the attraction to treat many diseases. Therefore, it is vital to screen the medicinal plants to find the potential of new compounds to treat chronic diseases such as respiratory, cardiovascular, anticancer, hepatoprotective, etc. This work comprehensively reviews ethnopharmacological uses, phytochemistry, biological activities, clinical evidence, and the toxicology of licorice, which will serve as a resource for future clinical and fundamental studies. An attempt has been made to establish the pharmacological effect of licorice in different diseases. In addition, the focus of this review article is on the molecular mechanism of licorice extracts and their four flavonoids (isoliquiritigenin, liquiritigenin, lichalocone, and glabridin) pharmacologic activities. Licorice could be a natural alternative for current therapy to exterminate new emerging disorders with mild side effects. This review will provide systematic insights into this ancient drug for further development and clinical use.
Collapse
Affiliation(s)
- Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - Sivakumar Annadurai
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - Shahabe Saquib Abullais
- Department of Periodontics and Community Dental Sciences, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia;
| | - Gotam Das
- Department of Prosthodontics, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia;
| | - Wasim Ahmad
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Safaa, Dammam 34222, Saudi Arabia;
| | - Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia;
| | - Geetha Kandasamy
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - Rajalakshimi Vasudevan
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - Md Sajid Ali
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Mohd Amir
- Department of Natural Products and Alternative Medicines, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| |
Collapse
|
23
|
Zhang QH, Huang HZ, Qiu M, Wu ZF, Xin ZC, Cai XF, Shang Q, Lin JZ, Zhang DK, Han L. Traditional Uses, Pharmacological Effects, and Molecular Mechanisms of Licorice in Potential Therapy of COVID-19. Front Pharmacol 2021; 12:719758. [PMID: 34899289 PMCID: PMC8661450 DOI: 10.3389/fphar.2021.719758] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/29/2021] [Indexed: 12/19/2022] Open
Abstract
The current Coronavirus disease 2019 (COVID-19) pandemic has become a global challenge, and although vaccines have been developed, it is expected that mild to moderate patients will control their symptoms, especially in developing countries. Licorice, not only a food additive, but also a common traditional Chinese herbal medicine, which has several pharmacological effects, such as anti-inflammation, detoxification, antibacterial, antitussive, and immunomodulatory effects, especially in respiratory diseases. Since the outbreak of COVID-19, glycyrrhizin, glycyrrhizin diamine and glycyrrhizin extract have been widely studied and used in COVID-19 clinical trials. Therefore, it is a very interesting topic to explore the material basis, pharmacological characteristics and molecular mechanism of licorice in adjuvant treatment of COVID-19. In this paper, the material basis of licorice for the prevention and treatment of COVID-19 is deeply analyzed, and there are significant differences among different components in different pharmacological mechanisms. Glycyrrhizin and glycyrrhetinic acid inhibit the synthesis of inflammatory factors and inflammatory mediators by blocking the binding of ACE 2 to virus spike protein, and exert antiviral and antibacterial effects. Immune cells are stimulated by multiple targets and pathways to interfere with the pathogenesis of COVID-19. Liquiritin can prevent and cure COVID-19 by simulating type I interferon. It is suggested that licorice can exert its therapeutic advantage through multi-components and multi-targets. To sum up, licorice has the potential to adjuvant prevent and treat COVID-19. It not only plays a significant role in anti-inflammation and anti-ACE-2, but also significantly improves the clinical symptoms of fever, dry cough and shortness of breath, suggesting that licorice is expected to be a candidate drug for adjuvant treatment of patients with early / mild COVID-19.
Collapse
Affiliation(s)
- Qian-Hui Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hao-Zhou Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Min Qiu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhen-Feng Wu
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Zhan-Chang Xin
- Gansu Qilian Mountain Pharmaceutical Limited Liability Company, Jiuquan, China
| | - Xin-Fu Cai
- Sichuan Guangda Pharmaceutical Co. Ltd, Pengzhou, China.,National Engineering Research Center for Modernization of Traditional Chinese Medicine, Pengzhou, China
| | - Qiang Shang
- Sichuan Guangda Pharmaceutical Co. Ltd, Pengzhou, China.,National Engineering Research Center for Modernization of Traditional Chinese Medicine, Pengzhou, China
| | - Jun-Zhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ding-Kun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
24
|
Comparatively analyzing the liver-specific transcriptomic profiles in Kunming mice afflicted with streptozotocin- and natural food-induced type 2 diabetes mellitus. Mol Biol Rep 2021; 49:1369-1377. [PMID: 34846649 DOI: 10.1007/s11033-021-06970-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/17/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Streptozotocin is a classic drug used to induce diabetes in animal models. OBJECTIVE The aim of this study is to investigate the liver transcriptome of Kunming mice with diabetes induced by either streptozotocin (STZ) or Non-STZ. METHODS Forty male mice were randomly assigned into four groups: Control (Ctr, standard diet), mHH (high fat and high carbohydrate diet), mHS (high fat and high carbohydrate diet for 4 weeks followed by 60 mg/kg STZ for 3 consecutive days) and mSH (60 mg/kg STZ for 3 consecutive days followed by a high fat and high carbohydrate diet for 12 weeks). All mice injected with STZ were identified as diabetic despite the sequential feeding of high fat and high carbohydrate diets. RESULTS Only 7 of 13 mice in the mHH group met the diagnostic criteria for diabetes. The asting blood glucose (FBG) of the mHH, mHS, mSH and Ctrl groups was 13.27 ± 1.14, 15.01 ± 2.59, 15.95 ± 4.38 and 6.28 ± 0.33 mmol/L at the 12th week, respectively. Compared with the mHH group, transcription was elevated in 85 genes in the livers of mHS mice, while 21 genes were downregulated and 97 genes were upregulated in the mSH group while 35 genes were decreased. A total of 43 co-expressed genes were identified in the mHS vs mHH and mSH vs mHH groups. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) analyses showed that two corporate GO terms and two KEGG pathways were significantly annotated in the STZ-treated groups. Both the GO term and pathway were related to the metabolism mediated by p53. CONCLUSION A high fat and high carbohydrate diet combined with a low dose of STZ can effectively induce diabetes in Kunming mice despite the abnormal expressions of genes in the liver. The differentially expressed genes were related to metabolism mediated by p53.
Collapse
|
25
|
Sandech N, Jangchart R, Komolkriengkrai M, Boonyoung P, Khimmaktong W. Efficiency of Gymnema sylvestre-derived gymnemic acid on the restoration and improvement of brain vascular characteristics in diabetic rats. Exp Ther Med 2021; 22:1420. [PMID: 34707702 PMCID: PMC8543180 DOI: 10.3892/etm.2021.10855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 09/07/2021] [Indexed: 12/03/2022] Open
Abstract
The brain is a vital organ that requires a constant blood supply. Stroke occurs when the blood supply to specific parts of the brain is reduced; diabetes is an autonomous risk factor for stroke. The present study aimed to investigate the potential vascular protective effect of gymnemic acid (GM) by assessing the morphological changes of microvasculature, along with VEGFA and angiopoietin-1 (Ang-1) protein expression in the brains of diabetic rats. Rats were divided into five groups, including control, gymnemic control rats (CGM), rats that were rendered diabetic by single injection of 60 mg/kg streptozotocin (STZ), diabetic rats treated with 400 mg/kg GM (STZ + GM) and diabetic rats treated with 4 mg/kg glibenclamide (GL; STZ + GL). After 8 weeks, brain tissues were collected to examine the three-dimensional morphology of the anterior cerebral arteries by vascular corrosion casting. Western blotting was performed to determine VEGFA and Ang-1 expression. Cerebral arteries, arterioles and capillaries were depicted the diameter, thickness and collagen accumulation of the wall, and the results demonstrated narrow diameters, thickened walls and collagen accumulation in the STZ group. After receiving GM, the histopathological changes were similar to that of the control group. Through vascular corrosion casting and microscopy, signs of vessel restoration and improvement were exhibited by increased diameters, and healthy and nourished arterioles and capillaries following treatment with GM. Furthermore, VEGF expression and Ang-1 secretion decreased in the STZ + GM group compared with STZ rats. The results of the present study revealed that GM treatment decreased blood vessel damage in the brain, suggesting that it may be used as a therapeutic target for the treatment of diabetes.
Collapse
Affiliation(s)
- Nichawadee Sandech
- Department of Anatomy, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Rawipa Jangchart
- Department of Anatomy, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Manaras Komolkriengkrai
- Department of Anatomy, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Piyakorn Boonyoung
- Department of Anatomy, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Wipapan Khimmaktong
- Department of Anatomy, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| |
Collapse
|
26
|
Pharmacological properties of glabridin (a flavonoid extracted from licorice): A comprehensive review. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104638] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
27
|
Husain I, Bala K, Khan IA, Khan SI. A review on phytochemicals, pharmacological activities, drug interactions, and associated toxicities of licorice (
Glycyrrhiza
sp.). FOOD FRONTIERS 2021. [DOI: 10.1002/fft2.110] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Islam Husain
- National Center for Natural Products Research, School of Pharmacy University of Mississippi, University, MS 38677 USA
| | - Kiran Bala
- Department of P.G. Studies and Research in Biological Science Rani Durgavati University Jabalpur India
| | - Ikhlas A. Khan
- National Center for Natural Products Research, School of Pharmacy University of Mississippi, University, MS 38677 USA
- Department of BioMolecular Sciences, School of Pharmacy University of Mississippi, University, MS 38677 USA
| | - Shabana I. Khan
- National Center for Natural Products Research, School of Pharmacy University of Mississippi, University, MS 38677 USA
- Department of BioMolecular Sciences, School of Pharmacy University of Mississippi, University, MS 38677 USA
| |
Collapse
|
28
|
Rehman MU, Farooq A, Ali R, Bashir S, Bashir N, Majeed S, Taifa S, Ahmad SB, Arafah A, Sameer AS, Khan R, Qamar W, Rasool S, Ahmad A. Preclinical Evidence for the Pharmacological Actions of Glycyrrhizic Acid: A Comprehensive Review. Curr Drug Metab 2021; 21:436-465. [PMID: 32562521 DOI: 10.2174/1389200221666200620204914] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 02/06/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023]
Abstract
Glycyrrhiza glabra L. (Family: Fabaceae) is one of the important traditional medicinal plant used extensively in folk medicine. It is known for its ethnopharmacological value in curing a wide variety of ailments. Glycyrrhizin, an active compound of G. glabra, possesses anti-inflammatory activity due to which it is mostly used in traditional herbal medicine for the treatment and management of chronic diseases. The present review is focused extensively on the pharmacology, pharmacokinetics, toxicology, and potential effects of Glycyrrhizic Acid (GA). A thorough literature survey was conducted to identify various studies that reported on the GA on PubMed, Science Direct and Google Scholar.
Collapse
Affiliation(s)
- Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Adil Farooq
- RAKCOPS, RAK Medical and Health Sciences University, Ras AL Khaimah, United Arab Emirates
| | - Rayeesa Ali
- Division of Veterinary Pathology, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Shuhama, JandK, India
| | - Sana Bashir
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Shuhama, JandK, India
| | - Nazirah Bashir
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Shuhama, JandK, India
| | - Samia Majeed
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Shuhama, JandK, India
| | - Syed Taifa
- Division of Animal Nutrition, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Shuhama, JandK, India
| | - Sheikh Bilal Ahmad
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Shuhama, JandK, India
| | - Azher Arafah
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Aga Syed Sameer
- Department of Basic Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdullah International Medical Research Centre (KAIMRC), Jeddah, Saudi Arabia
| | - Rehan Khan
- Department of Nano-therapeutics, Institute of Nanoscience and Technology (DST-INST), Mohali, Punjab, India
| | - Wajhul Qamar
- Department of Pharmacology and Toxicology and Central Laboratory, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saiema Rasool
- Forest Biotech Lab, Department of Forest Mana pgement, Faculty of Forestry, University Putra Malaysia, Serdang, Selangor, Malaysia
| | - Anas Ahmad
- Department of Nano-therapeutics, Institute of Nanoscience and Technology (DST-INST), Mohali, Punjab, India
| |
Collapse
|
29
|
Singh V, Reddy R, Sinha A, Marturi V, Panditharadyula SS, Bala A. A Review on Phytopharmaceuticals having Concomitant Experimental Anti-diabetic and Anti-cancer Effects as Potential Sources for Targeted Therapies Against Insulin-mediated Breast Cancer Cell Invasion and Migration. CURRENT CANCER THERAPY REVIEWS 2021. [DOI: 10.2174/1573394716999200831113335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Diabetes and breast cancer are pathophysiologically similar and clinically established
diseases that co-exist with a wider complex similar molecular signalling and having a similar set of
risk factors. Insulin plays a pivotal role in the invasion and migration of breast cancer cells. Several
ethnopharmacological evidences shed light on the concomitant anti-diabetic and anti-cancer activity
of medicinal plant and phytochemicals against breast tumors of patients with diabetes. This present
article reviewed the findings on medicinal plants and phytochemicals with concomitant antidiabetic
and anti-cancer effects reported in scientific literature to facilitate the development of dual-
acting therapies against diabetes and breast cancer. The schematic tabular form of published literature
on medicinal plants (63 plants belongs to 45 families) concluded the dynamics of phytochemicals
against diabetes and breast tumors that could be explored further for the discovery of therapies
for controlling of breast cancer cell invasion and migration in patients with diabetes.
Collapse
Affiliation(s)
- Vibhavana Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, (NIPER) Hajipur, Export Promotion Industrial Park (EPIP) Hajipur, Bihar 844102, India
| | - Rakesh Reddy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, (NIPER) Hajipur, Export Promotion Industrial Park (EPIP) Hajipur, Bihar 844102, India
| | - Antarip Sinha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, (NIPER) Hajipur, Export Promotion Industrial Park (EPIP) Hajipur, Bihar 844102, India
| | - Venkatesh Marturi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, (NIPER) Hajipur, Export Promotion Industrial Park (EPIP) Hajipur, Bihar 844102, India
| | - Shravani S. Panditharadyula
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, (NIPER) Hajipur, Export Promotion Industrial Park (EPIP) Hajipur, Bihar 844102, India
| | - Asis Bala
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, (NIPER) Hajipur, Export Promotion Industrial Park (EPIP) Hajipur, Bihar 844102, India
| |
Collapse
|
30
|
Yang L, Jiang Y, Zhang Z, Hou J, Tian S, Liu Y. The anti-diabetic activity of licorice, a widely used Chinese herb. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:113216. [PMID: 32763420 DOI: 10.1016/j.jep.2020.113216] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/22/2020] [Accepted: 07/25/2020] [Indexed: 05/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE A great deal of valuable experience has been accumulated in the traditional Chinese medicine (TCM) system for the treatment of "Xiaoke" disease which is known as diabetes mellitus now. As the most-commonly used Chinese herb, licorice has been used in TCM for more than two thousand years. It is often used in combination with other herbs to treat metabolic disorders, especially diabetes mellitus. AIM OF THE STUDY To summarize the characteristics, mechanisms, and clinical use of licorice and its active components for treating diabetes mellitus. METHODS PubMed, Web of Science, Research Gate, Science Direct, Google Scholar, and Academic Journals were used as information sources by the inclusion of the search terms 'diabetes', 'licorice', 'licorice extracts', 'flavonoids', 'triterpenoids', and their combinations, mainly from 2005 to 2019. RESULTS Licorice extracts, five flavonoids and three triterpenoids isolated from licorice possess great antidiabetic activities in vivo and in vitro. This was done by several mechanisms such as increasing the appetency and sensitivity of insulin receptor site to insulin, enhancing the use of glucose in different tissues and organs, clearing away the free radicals and resist peroxidation, correcting the metabolic disorder of lipid and protein, and improving microcirculation in the body. Multiple signaling pathways, including the PI3K/Akt, AMPK, AGE-RAGE, MAPK, NF-кB, and NLRP3 signaling pathways, are targets of the licorice compounds. CONCLUSION Licorice and its metabolites have a great therapeutic potential for the treatment of diabetes mellitus. However, a better understanding of their pharmacological mechanisms is needed for evaluating its efficacy and safety.
Collapse
Affiliation(s)
- Lin Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, PA, 15261, USA
| | - Zhixin Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jiaming Hou
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Shaokai Tian
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Ying Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
31
|
Wang C, Chen L, Xu C, Shi J, Chen S, Tan M, Chen J, Zou L, Chen C, Liu Z, Liu X. A Comprehensive Review for Phytochemical, Pharmacological, and Biosynthesis Studies on Glycyrrhiza spp. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:17-45. [PMID: 31931596 DOI: 10.1142/s0192415x20500020] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Licorice is extensively applied in food as well as herbal medicine across the world, possessing a substantial share in the global market. It has made great progress in chemical and pharmacological research in recent years. Currently, Glycyrrhiza uralensis Fisch., Glycyrrhiza inflata Bat., and Glycyrrhiza glabra L. were officially used as Gan-Cao according to the Chinese Pharmacopoeia. Accumulating evidence demonstrated three varieties of licorice have their own special compounds except for two quality markers set by Pharmacopoeia, providing great possibility for better understanding their characteristics, evaluating quality of each species and studying biosynthesis mechanisms of species-specific compounds. As a special "guide drug" in clinic, licorice plays an important role in Chinese herbal formulas. The interaction between licorice with other ingredients and their metabolism in vivo should also be taken into consideration. In addition, draft genome annotation, and success of the final step of glycyrrhizin biosynthesis have paved the way for biosynthesis of other active constituents in licorice, a promising beginning of solving source shortage. Accordingly, we comprehensively explored the nearly 400 chemical compounds found in the three varieties of licorice so far, systematically excavated various pharmacological activities, including metabolism via CYP450 system in vivo, and introduced the complete biosynthesis pathway of glycyrrhizin in licorice. The review will facilitate the further research toward this herbal medicine.
Collapse
Affiliation(s)
- Chengcheng Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Lihong Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Chaoqie Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Jingjing Shi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Shuyu Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Mengxia Tan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Jiali Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Lisi Zou
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Cuihua Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Zixiu Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Xunhong Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China.,Collaborative Innovation Center of Chinese, Medicinal Resources Industrialization, Nanjing 210023, P. R. China.,National and Local Collaborative Engineering, Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing 210023, P. R. China
| |
Collapse
|
32
|
Hsu YC, Chang PJ, Tung CW, Shih YH, Ni WC, Li YC, Uto T, Shoyama Y, Ho C, Lin CL. De-Glycyrrhizinated Licorice Extract Attenuates High Glucose-Stimulated Renal Tubular Epithelial-Mesenchymal Transition via Suppressing the Notch2 Signaling Pathway. Cells 2020; 9:cells9010125. [PMID: 31948095 PMCID: PMC7016866 DOI: 10.3390/cells9010125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/26/2019] [Accepted: 01/02/2020] [Indexed: 02/07/2023] Open
Abstract
Tubulointerstitial fibrosis is a major pathological hallmark of diabetic nephropathy. Increasing evidence has shown that epithelial-to-mesenchymal transition (EMT) of renal proximal tubular cells plays a crucial role in tubulointerstitial fibrosis. Herein, we aimed to elucidate the detailed mechanism of EMT in renal tubular cells under high glucose (HG) conditions, and to investigate the potential of licorice, a medicinal herb, to inhibit HG-induced EMT. Our results showed that renal tubular epithelial cells (normal rat kidney cell clone 52E; NRK-52E) exposed to HG resulted in EMT induction characterized by increased fibronectin and α-SMA (alpha-smooth muscle actin) but decreased E-cadherin. Elevated levels of cleaved Notch2, MAML-1 (mastermind-like transcriptional coactivator 1), nicastrin, Jagged-1 and Delta-like 1 were also concomitantly detected in HG-cultured cells. Importantly, pharmacological inhibition, small interfering RNA (siRNA)-mediated depletion or overexpression of the key components of Notch2 signaling in NRK-52E cells supported that the activated Notch2 pathway is essential for tubular EMT. Moreover, we found that licorice extract (LE) with or without glycyrrhizin, one of bioactive components in licorice, effectively blocked HG-triggered EMT in NRK-52E cells, mainly through suppressing the Notch2 pathway. Our findings therefore suggest that Notch2-mediated renal tubular EMT could be a therapeutic target in diabetic nephropathy, and both LE and de-glycyrrhizinated LE could have therapeutic potential to attenuate renal tubular EMT and fibrosis.
Collapse
Affiliation(s)
- Yung-Chien Hsu
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan; (Y.-C.H.); (P.-J.C.); (C.-W.T.); (Y.-H.S.); (W.-C.N.); (Y.-C.L.)
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Pey-Jium Chang
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan; (Y.-C.H.); (P.-J.C.); (C.-W.T.); (Y.-H.S.); (W.-C.N.); (Y.-C.L.)
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chun-Wu Tung
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan; (Y.-C.H.); (P.-J.C.); (C.-W.T.); (Y.-H.S.); (W.-C.N.); (Y.-C.L.)
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Ya-Hsueh Shih
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan; (Y.-C.H.); (P.-J.C.); (C.-W.T.); (Y.-H.S.); (W.-C.N.); (Y.-C.L.)
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Wen-Chiu Ni
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan; (Y.-C.H.); (P.-J.C.); (C.-W.T.); (Y.-H.S.); (W.-C.N.); (Y.-C.L.)
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Yi-Chen Li
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan; (Y.-C.H.); (P.-J.C.); (C.-W.T.); (Y.-H.S.); (W.-C.N.); (Y.-C.L.)
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Takuhiro Uto
- Faculty of Pharmaceutical Science, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan; (T.U.); (Y.S.)
| | - Yukihiro Shoyama
- Faculty of Pharmaceutical Science, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan; (T.U.); (Y.S.)
| | - Cheng Ho
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Division of Endocrinology and Metabolism, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Correspondence: (C.H.); (C.-L.L.)
| | - Chun-Liang Lin
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan; (Y.-C.H.); (P.-J.C.); (C.-W.T.); (Y.-H.S.); (W.-C.N.); (Y.-C.L.)
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Kidney Research Center, Chang Gung Memorial Hospital, Taipei 105, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Correspondence: (C.H.); (C.-L.L.)
| |
Collapse
|
33
|
Bioactive Candy: Effects of Licorice on the Cardiovascular System. Foods 2019; 8:foods8100495. [PMID: 31615045 PMCID: PMC6836258 DOI: 10.3390/foods8100495] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 12/15/2022] Open
Abstract
Licorice, today chiefly utilized as a flavoring additive in tea, tobacco and candy, is one of the oldest used herbs for medicinal purposes and consists of up to 300 active compounds. The main active constituent of licorice is the prodrug glycyrrhizin, which is successively converted to 3β-monoglucuronyl-18β-glycyrrhetinic acid (3MGA) and 18β-glycyrrhetinic acid (GA) in the intestines. Despite many reported health benefits, 3MGA and GA inhibit the 11-β-hydrogenase type II enzyme (11β-HSD2) oxidizing cortisol to cortisone. Through activation of mineralocorticoid receptors, high cortisol levels induce a mild form of apparent mineralocorticoid excess in the kidney and increase systemic vascular resistance. Continuous inhibition of 11β-HSD2 related to excess licorice consumption will create a state of hypernatremia, hypokalemia and increased fluid volume, which can cause serious life-threatening complications especially in patients already suffering from cardiovascular diseases. Two recent meta-analyses of 18 and 26 studies investigating the correlation between licorice intake and blood pressure revealed statistically significant increases both in systolic (5.45 mmHg) and in diastolic blood pressure (3.19/1.74 mmHg). This review summarizes and evaluates current literature about the acute and chronic effects of licorice ingestion on the cardiovascular system with special focus on blood pressure. Starting from the molecular actions of licorice (metabolites) inside the cells, it describes how licorice intake is affecting the human body and shows the boundaries between the health benefits of licorice and possible harmful effects.
Collapse
|
34
|
Komolkriengkrai M, Nopparat J, Vongvatcharanon U, Anupunpisit V, Khimmaktong W. Effect of glabridin on collagen deposition in liver and amelioration of hepatocyte destruction in diabetes rats. Exp Ther Med 2019; 18:1164-1174. [PMID: 31316610 PMCID: PMC6601403 DOI: 10.3892/etm.2019.7664] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 10/12/2018] [Indexed: 12/11/2022] Open
Abstract
Abnormalities in insulin hormone levels leads to a hyperglycemic condition of diabetic mellitus. Hyperglycemia seriously induces organ and system destructions. The excessive accumulation of collagen fiber deposits occurs in inflammatory and reorganization processes of chronic liver diseases in type I insulin-dependent diabetes. Regarding the research objective, glabridin (GLB), an active compound of licorice, was used as a daily supplement (40 mg/kg) in order to decrease hepatocyte destruction and collagen deposition in liver tissue of diabetic animals induced by streptozotocin. A total of 40 were randomly allocated to five groups (each, n=10), control, control treated with GLB (GLB), diabetic rats (DM) injected with single dose of streptozotocin (60 mg/kg) to induce a diabetic condition, diabetic rats receiving GLB (DM+GLB; 40 mg/kg) and diabetic rats treated with glibenclamide (DM+GL; 4 mg/kg). Characteristic histopathological changes in liver cells and tissues of rats were determined by Masson's trichrome staining and transmission electron microscopy (TEM). Western blotting was used to detect the expression of the key markers, collagen type I and fibronectin proteins. The histological investigation of liver tissue of the DM group revealed that the collagen fiber deposition was increased in the periportal, pericentral and perisinusoidal spaces compared with controls. Hepatocytes appeared as small and fragmented cells in TEM examination. Collagenization of the perisinusoidal space was recently demonstrated to represent a new aspect of the microvascular abnormalities and liver fibrosis. Healthy hepatocytes with round nucleus were observed following supplementation of glabridin. In addition, collagen fiber deposition was reduced in the area adjacent to the perisinusoidal space. The expression of collagen type I and fibronectin decreased strongly following glabridin supplementation in DM+GLB rats compared with DM rats, indicating that the hepatic tissue reorganization regained its normal morphology. These findings suggest that it may be beneficial to examine the role of glabridin as a therapeutic agent in diabetes treatment in future research.
Collapse
Affiliation(s)
- Manaras Komolkriengkrai
- Department of Anatomy, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla 90110, Thailand
| | - Jongdee Nopparat
- Department of Anatomy, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla 90110, Thailand
| | - Uraporn Vongvatcharanon
- Department of Anatomy, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla 90110, Thailand
| | - Vipavee Anupunpisit
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Wipapan Khimmaktong
- Department of Anatomy, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla 90110, Thailand
| |
Collapse
|
35
|
Bacanli M, Dilsiz SA, Başaran N, Başaran AA. Effects of phytochemicals against diabetes. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 89:209-238. [PMID: 31351526 DOI: 10.1016/bs.afnr.2019.02.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Diabetes mellitus, a chronic metabolic disease, characterized by elevated levels of blood glucose and insufficiency in production and action of insulin is the seventh leading cause of death worldwide. Numerous studies have shown that diabetes mellitus is associated with increased formation of free radicals and decrease in antioxidant potential. In the patients with diabetes mellitus, the levels of antioxidant parameters are found to decrease, hence in many studies phytochemicals which can exert antioxidant and free radical scavenging activities, are suggested to improve the insulin sensitivity. Several phytoactive compounds such as flavonoids, lignans, prophenylphenols, are also found to combat the complications of diabetes. This chapter mainly focuses on the relationship between diabetes mellitus and preventive roles of various phytochemicals on diabetes via their antioxidant properties.
Collapse
Affiliation(s)
- Merve Bacanli
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Hacettepe University, Ankara, Turkey.
| | - Sevtap Aydin Dilsiz
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Hacettepe University, Ankara, Turkey
| | - Nurşen Başaran
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Hacettepe University, Ankara, Turkey
| | - A Ahmet Başaran
- Faculty of Pharmacy, Department of Pharmacognosy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
36
|
Pastorino G, Cornara L, Soares S, Rodrigues F, Oliveira MBP. Liquorice (Glycyrrhiza glabra): A phytochemical and pharmacological review. Phytother Res 2018; 32:2323-2339. [PMID: 30117204 PMCID: PMC7167772 DOI: 10.1002/ptr.6178] [Citation(s) in RCA: 363] [Impact Index Per Article: 51.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/01/2018] [Accepted: 07/20/2018] [Indexed: 01/08/2023]
Abstract
In the last years, consumers are paying much more attention to natural medicines and principles, mainly due to the general sense that natural compounds are safe. On the other hand, there is a growing demand by industry for plants used in traditional medicine that could be incorporated in foods, nutraceuticals, cosmetics, or even pharmaceuticals. Glycyrrhiza glabra Linn. belongs to the Fabaceae family and has been recognized since ancient times for its ethnopharmacological values. This plant contains different phytocompounds, such as glycyrrhizin, 18β-glycyrrhetinic acid, glabrin A and B, and isoflavones, that have demonstrated various pharmacological activities. Pharmacological experiments have demonstrated that different extracts and pure compounds from this species exhibit a broad range of biological properties, including antibacterial, anti-inflammatory, antiviral, antioxidant, and antidiabetic activities. A few toxicological studies have reported some concerns. This review addresses all those issues and focuses on the pharmacological activities reported for G. glabra. Therefore, an updated, critical, and extensive overview on the current knowledge of G. glabra composition and biological activities is provided here in order to explore its therapeutic potential and future challenges to be utilized for the formulation of new products that will contribute to human well-being.
Collapse
Affiliation(s)
| | - Laura Cornara
- DISTAVUniversity of GenoaGenoaItaly
- Istituto di BiofisicaConsiglio Nazionale delle RicercheGenoaItaly
| | - Sónia Soares
- LAQV/REQUIMTE, Faculty of PharmacyUniversity of PortoPortoPortugal
| | | | | |
Collapse
|
37
|
Alizadeh M, Namazi N, Mirtaheri E, Sargheini N, Kheirouri S. Changes of Insulin Resistance and Adipokines Following Supplementation with Glycyrrhiza Glabra L. Extract in Combination with a Low-Calorie Diet in Overweight and Obese Subjects: a Randomized Double Blind Clinical Trial. Adv Pharm Bull 2018; 8:123-130. [PMID: 29670847 PMCID: PMC5896387 DOI: 10.15171/apb.2018.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/18/2018] [Accepted: 02/20/2018] [Indexed: 11/25/2022] Open
Abstract
Purpose: Adipose tissue is a highly active endocrine organ which plays a key role in energy homeostasis. The aim of this study was to determine the effects of dried licorice extract along with a calorie restricted diet on body composition, insulin resistance and adipokines in overweight and obese subjects. Methods: Sixty-four overweight and obese volunteers (27 men, 37 women) were recruited into this double-blind, placebo-controlled, randomized, clinical trial. Participants were randomly allocated to the Licorice (n=32) or the placebo group (n=32), and each group received a low-calorie diet with either 1.5 g/day of Licorice extract or placebo for 8 weeks. Biochemical parameters, anthropometric indices, body composition and dietary intake were measured at baseline and at the end of the study. Results: A total of 58 subjects completed the trial. No side effects were observed following licorice supplementation. At the end of the study, waist circumference, fat mass, serum levels of vaspin, zinc-α2 glycoprotein, insulin and HOMA-IR were significantly decreased in the intervention group, but only the reduction in serum vaspin levels in the licorice group was significant when compared to the placebo group (p<0.01). Conclusion: Supplementation with dried licorice extract plus a low-calorie diet can increase vaspin levels in obese subjects. However, the anti-obesity effects of the intervention were not stronger than a low-calorie diet alone in the management of obesity.
Collapse
Affiliation(s)
- Mohammad Alizadeh
- Nutrition Research Center, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazli Namazi
- Nutrition Research Center, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran.,Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Mirtaheri
- Nutrition Research Center, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sorayya Kheirouri
- Department of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
38
|
Namazi N, Alizadeh M, Mirtaheri E, Farajnia S. The Effect of Dried Glycyrrhiza Glabra L. Extract on Obesity Management with Regard to PPAR-γ2 (Pro12Ala) Gene Polymorphism in Obese Subjects Following an Energy Restricted Diet. Adv Pharm Bull 2017; 7:221-228. [PMID: 28761824 PMCID: PMC5527236 DOI: 10.15171/apb.2017.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 05/07/2017] [Accepted: 05/10/2017] [Indexed: 11/09/2022] Open
Abstract
Purpose: Obesity is a multi-factorial health problem which results from the interaction of environmental and genetic factors. The aim of the present study was to determine the effects of dried licorice extract with a calorie restricted diet on anthropometric indices and insulin resistance with nutrigenetic approach. Methods: For this pilot, double-blind, placebo-controlled randomized clinical trial, 72 eligible subjects were randomly allocated to Licorice or placebo group. They received a low-calorie diet either with a 1.5 g/day of Licorice extract or placebo for 8 weeks. Results: There were no significant differences in anthropometric indices and dietary intake in genotype subgroups at the baseline. Findings indicated that supplementation with Licorice extract did not change anthropometric indices and biochemical parameters significantly compared to a hypocaloric diet alone. However, from the nutrigenetic point of view, significant changes in anthropometric indices and QUICKI were observed in the Pro12Pro genotypes compared to the Pro12Ala at the end of the study (p<0.05 in all variables). Moreover, no interactive effect of the Licorice supplement and Pro12Ala genotype was found. Conclusion: In obese subjects, the Pro/Pro polymorphism of the PPAR-γ2 gene seems to induce favourable effects on obesity management. Further studies are needed to clarify whether PPAR-γ2 gene polymorphisms or other obesity genes can affect responses to obesity treatment.
Collapse
Affiliation(s)
- Nazli Namazi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Nutrition Research Center, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Alizadeh
- Nutrition Research Center, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Mirtaheri
- Nutrition Research Center, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safar Farajnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
39
|
Ferreira ICFR, Martins N, Barros L. Phenolic Compounds and Its Bioavailability: In Vitro Bioactive Compounds or Health Promoters? ADVANCES IN FOOD AND NUTRITION RESEARCH 2017; 82:1-44. [PMID: 28427530 DOI: 10.1016/bs.afnr.2016.12.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Botanical preparations present a widespread and secular history of use. In fact, natural matrices possess a rich pool of phytochemicals, with promising biological effects. Among them, phenolic compounds have revealed to confer very important attributes to improve the well-being and longevity of worldwide population. Numerous in vitro studies have been carried out evaluating the wide spectrum of bioactivities of phenolic compounds, including its health effects, but through in vivo experiments some of these previous results cannot be properly confirmed, and considerable variations are observed. Pharmacokinetic parameters, including the assessment of bioavailability and bioefficacy of phenolic compounds, still continue to be largely investigated and considered a great hot topic among the food science and technology researchers. Thus, based on these crucial aspects, this chapter aims to provide an extensive approach about the question of the bioavailability of phenolic compounds, describing its biosynthetic routes and related mechanisms of action; to focus on the current facts and existing controversies, highlighting the importance of in vivo studies and the impact of phenolic compounds on the quality of life and longevity.
Collapse
Affiliation(s)
- Isabel C F R Ferreira
- Mountain Research Centre (CIMO), ESA, Polytechnic Institute of Bragança, Bragança, Portugal.
| | - Natália Martins
- Mountain Research Centre (CIMO), ESA, Polytechnic Institute of Bragança, Bragança, Portugal
| | - Lillian Barros
- Mountain Research Centre (CIMO), ESA, Polytechnic Institute of Bragança, Bragança, Portugal
| |
Collapse
|
40
|
Mehta V, Malairaman U. Flavonoids. PHARMACEUTICAL SCIENCES 2017. [DOI: 10.4018/978-1-5225-1762-7.ch022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Diabetes Mellitus is one of the major healthcare problems faced by the society today and has become alarmingly epidemic in many parts of the world. Despite enormous knowledge and technology advancement, available diabetes therapeutics only provide symptomatic relief by reducing blood glucose level, thereby, just slows down development and progression of diabetes and its associated complications. Thus, the need of the day is to develop alternate strategies that can not only prevent the progression but also reverse already “set-in” diabetic complications. Many flavonoids are reported, traditionally as well as experimentally, to be beneficial in averting diabetes and lowering risk of its accompanying complications. In the present chapter we have convened different flavonoids beneficial in diabetes and comorbid complications and discussed their mechanisms of action. Further, we conclude that coupling current therapeutics with flavonoids might provide exceptional advantage in the management of diabetes and its complications.
Collapse
Affiliation(s)
- Vineet Mehta
- Jaypee University of Information Technology, India
| | | |
Collapse
|
41
|
Öztürk M, Altay V, Hakeem KR, Akçiçek E. Economic Importance. LIQUORICE 2017. [PMCID: PMC7120331 DOI: 10.1007/978-3-319-74240-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The beneficial effects of liquorice in treating chills, colds, and coughs have been fully discussed in Ayurveda, as well as in the texts of ancient Egyptians, Greeks, and Romans. The plant has been prescribed for dropsy during the period of famous Hippocrates. The reason being that it was quite helpful as thirst-quenching drugs (Biondi et al. in J Nat Prod 68:1099–1102, 2005; Mamedov and Egamberdieva in Herbals and human health-phytochemistry. Springer Nature Publishers, 41 pp, 2017). No doubt, the clinical use of liquorice in modern medicine started around 1930; Pedanios Dioscorides of Anazarba (Adana), first century AD-Father of Pharmacists, mentions that it is highly effective in the treatment of stomach and intestinal ulcers. In Ayurveda, people in ancient Hindu culture have used it for improving sexual vigor.
Collapse
Affiliation(s)
- Münir Öztürk
- Department of Botany and Center for Environmental Studies, Ege University, Izmir, Turkey
| | - Volkan Altay
- Department of Biology, Faculty of Science and Arts, Mustafa Kemal University, Hatay, Turkey
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Eren Akçiçek
- Department of Gastroenterology, Faculty of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
42
|
Karkanis A, Martins N, Petropoulos S, Ferreira I. Phytochemical composition, health effects, and crop management of liquorice (Glycyrrhiza glabraL.): Α medicinal plant. FOOD REVIEWS INTERNATIONAL 2016. [DOI: 10.1080/87559129.2016.1261300] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- A. Karkanis
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Nea Ionia, Magnesia, Greece
| | - N. Martins
- Mountain Research Centre (CIMO), ESA, Polytechnic Institute of Bragança, Bragança, Portugal
| | - S.A. Petropoulos
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Nea Ionia, Magnesia, Greece
| | - I.C.F.R. Ferreira
- Mountain Research Centre (CIMO), ESA, Polytechnic Institute of Bragança, Bragança, Portugal
| |
Collapse
|
43
|
Hsieh MJ, Chen MK, Chen CJ, Hsieh MC, Lo YS, Chuang YC, Chiou HL, Yang SF. Glabridin induces apoptosis and autophagy through JNK1/2 pathway in human hepatoma cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:359-366. [PMID: 27002406 DOI: 10.1016/j.phymed.2016.01.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/18/2016] [Accepted: 01/26/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Extensive research results support the use of herbal medicine or natural food to augment therapy for various cancers. Studies have associated glabridin with numerous biological activities, such as regulating energy metabolism and estrogenic, neuroprotective, antiosteoporotic, and skin-whitening activities. HYPOTHESIS/PURPOSE However, how glabridin affects tumor cell autophagy has not been clearly determined. METHODS Autophagy is a lysosomal degradation pathway essential for cell survival and tissue homeostasis. In this study, the roles of autophagy and related signaling pathways during glabridin-induced autophagy in human liver cancer cells were investigated. Additionally, the molecular mechanism of the anticancer effects of glabridin in human hepatoma cells was investigated. RESULTS The results revealed that glabridin significantly inhibited cell proliferation in human hepatoma cells. Glabridin induced apoptosis dose-dependently in Huh7 cells through caspase-3, -8, and -9 activation and PARP cleavage. Furthermore, autophagy was detected as early as 12h after exposure to a low dose of glabridin, as indicated by the up-regulated expression of LC3-II and beclin-1 proteins. The inhibition of JNK1/2 and p38 MAPK by specific inhibitors significantly reduced glabridin-induced activation of caspases-3, -8, and -9. Blocking autophagy sensitize the Huh7 cells to apoptosis. CONCLUSION This study demonstrated for the first time that autophagy occurs earlier than apoptosis does during glabridin-induced apoptosis in human liver cancer cell lines. Glabridin induces Huh7 cell death through apoptosis through the p38 MAPK and JNK1/2 pathways and is a potential chemopreventive agent against human hepatoma.
Collapse
Affiliation(s)
- Ming-Ju Hsieh
- Cancer Research Center, Changhua Christian Hospital, Changhua 50006, Taiwan; School of Optometry, Chung Shan Medical University, Taichung 40201, Taiwan; Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Mu-Kuan Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Chih-Jung Chen
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua 500, Taiwan; Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan; School of Medicine, Chung Shan Medical University, Taichuang 40201, Taiwan
| | - Ming-Chang Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan; Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Yu-Sheng Lo
- Cancer Research Center, Changhua Christian Hospital, Changhua 50006, Taiwan
| | - Yi-Ching Chuang
- Cancer Research Center, Changhua Christian Hospital, Changhua 50006, Taiwan
| | - Hui-Ling Chiou
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan; Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
| |
Collapse
|
44
|
Wang L, Yang R, Yuan B, Liu Y, Liu C. The antiviral and antimicrobial activities of licorice, a widely-used Chinese herb. Acta Pharm Sin B 2015; 5:310-5. [PMID: 26579460 PMCID: PMC4629407 DOI: 10.1016/j.apsb.2015.05.005] [Citation(s) in RCA: 333] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/02/2015] [Accepted: 02/05/2015] [Indexed: 12/17/2022] Open
Abstract
Licorice is a common herb which has been used in traditional Chinese medicine for centuries. More than 20 triterpenoids and nearly 300 flavonoids have been isolated from licorice. Recent studies have shown that these metabolites possess many pharmacological activities, such as antiviral, antimicrobial, anti-inflammatory, antitumor and other activities. This paper provides a summary of the antiviral and antimicrobial activities of licorice. The active components and the possible mechanisms for these activities are summarized in detail. This review will be helpful for the further studies of licorice for its potential therapeutic effects as an antiviral or an antimicrobial agent.
Collapse
Key Words
- Antimicrobial
- Antiviral
- CCEC, cerebral capillary vessel endothelial
- CCL5, chemokine (C-C motif) ligand 5
- CVA16, coxsackievirus A16
- CVB3, coxsackievirus B3
- CXCL10, chemokine, (C-X-C motif) ligand 10
- Chalcone
- DGC, dehydroglyasperin C
- DHV, duck hepatitis virus
- EV71, enterovirus 71
- GA, 18β-glycyrrhetinic acid
- GATS, glycyrrhizic acid trisodium salt
- GL, glycyrrhizin
- GLD, glabridin
- Glycyrrhetinic acid
- Glycyrrhizin
- HBV, hepatitis B virus
- HCV, hepatitis C virus
- HIV, human immunodeficiency virus
- HMGB1, high-mobility-group box1
- HRSV, human respiratory syncytial virus
- HSV, herpes simplex virus
- HSV1, herpes simplex virus type 1
- IFN, interferon
- IL-6, interleukin-6
- ISL, isoliquiritigenin
- LCA, licochalcone A
- LCE, licochalcone E
- LTG, liquiritigenin
- Licorice
- MRSA, methicillin-resistant Staphylococcus aureus
- MSSA, methicillin-sensitive Staphylococcus aureus
- MgIG, magnesium isoglycyrrhizinate
- PMN, polymorph nuclear
- PrV, pseudorabies virus
- TCM, traditional Chinese medicine
Collapse
|
45
|
Natural Flavonoids as Potential Herbal Medication for the Treatment of Diabetes Mellitus and its Complications. Nat Prod Commun 2015. [DOI: 10.1177/1934578x1501000140] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Diabetes mellitus, together with its various complications, is becoming a serious threat to human health. Natural products are secondary metabolites widely distributed in plants, having a broad range of biological activities. The development of antidiabetic medication from natural products, especially those originating from plants with a traceable folk-usage history in treating diabetes, is receiving more attention. Many studies highlighted not only the benefits of natural flavonoids with hypoglycemic effects, but also their importance in the management of diabetic complications. This review describes selected natural flavonoids that have been validated for their hypoglycemic properties, together with their mechanisms of action. Also discussed are their activities in the treatment of diabetic complications demonstrated via laboratory diabetic animal models, in vitro and clinical trials using human subjects. Published papers from 2000 to date on flavonoids and diabetes were covered through accessing Web of Science and multiple databases for biomedical sciences. The major potential benefits of natural flavonoids discussed in this review clearly suggest that these substances are lead compounds with sufficient structural diversity of great importance in the antidiabetic drug developing process.
Collapse
|
46
|
Huang HL, Hsieh MJ, Chien MH, Chen HY, Yang SF, Hsiao PC. Glabridin mediate caspases activation and induces apoptosis through JNK1/2 and p38 MAPK pathway in human promyelocytic leukemia cells. PLoS One 2014; 9:e98943. [PMID: 24901249 PMCID: PMC4047044 DOI: 10.1371/journal.pone.0098943] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/08/2014] [Indexed: 02/06/2023] Open
Abstract
Background Glabridin, a prenylated isoflavonoid of G. glabra L. roots, has been associated with a wide range of biological properties such as regulation of energy metabolism, estrogenic, neuroprotective, anti-osteoporotic, and skin-whitening in previous studies. However, the effect of glabridin on tumor cells metastasis has not been clearly clarified. Here, the molecular mechanism by which glabridin anticancer effects in human promyelocytic leukemia cells was investigated. Methodology and Principal Findings The results showed that glabridin significantly inhibited cell proliferation of four AML cell lines (HL-60, MV4-11, U937, and THP-1). Furthermore, glabridin induced apoptosis of HL-60 cells through caspases-3, -8, and -9 activations and PARP cleavage in dose- and time-dependent manner. Moreover, western blot analysis also showed that glabridin increase phosphorylation of ERK1/2, p38 MAPK and JNK1/2 in dose- and time-dependent manner. Inhibition of p38 MAPK and JNK1/2 by specific inhibitors significantly abolished the glabridin-induced activation of the caspase-3, -8 and -9. Conclusion Taken together, our results suggest that glabridin induced HL-60 cell apoptosis through p38 MAPK and JNK1/2 pathways and could serve as a potential additional chemotherapeutic agent for treating AML.
Collapse
Affiliation(s)
- Hsin-Lien Huang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Ju Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
- School of Optometry, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Hui-Yu Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Pei-Ching Hsiao
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
47
|
Ji Y, Zhao Z, Cai T, Yang P, Cheng M. Liraglutide alleviates diabetic cardiomyopathy by blocking CHOP-triggered apoptosis via the inhibition of the IRE-α pathway. Mol Med Rep 2014; 9:1254-8. [PMID: 24535553 DOI: 10.3892/mmr.2014.1956] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 02/06/2014] [Indexed: 11/06/2022] Open
Abstract
Clinically, diabetes mellitus is closely associated with and induces certain cardiovascular diseases. The aim of this study was to investigate endoplasmic reticulum (ER) stress-associated apoptosis of diabetic cardiomyopathy (DCM), and explore the protective mechanism of liraglutide. The DCM model was established with a high-fat diet and streptozotocin (STZ). Cardiac function was detected by echocardiogram examination and hematoxylin-eosin staining. ER stress unfolded protein response (UPR) hallmarks [inositol-requiring enzyme-α (IRE-α), p-Perk and ATF6] and transcription factors were detected with western blotting. Apoptosis inducers CHOP, c-Jun amino terminal kinase (JNK) and casapse-12 were also examined with western blotting. The results indicated that liraglutide is capable of improving cardiac function in DCM rats (P<0.05). IRE-α expression was significantly increased in the DCM group compared with the control group (P<0.05), and liraglutide is capable of decreasing IRE-α expression. X-box transcription factor-1 (XBP-1) was significantly spliced in the model group, and downregulated in the liraglutide-treated group. CHOP protein was upregulated in the DCM group, but inactivated by liraglutide treatment. In conclusion, liraglutide is capable of protecting DCM and blocking CHOP-mediated ER stress by inhibiting the IRE-α UPR pathway.
Collapse
Affiliation(s)
- Yuqiang Ji
- Department of Cardiovascular Medicine, First Hospital of Xi'an, Xi'an, Shaanxi 710002, P.R. China
| | - Zhao Zhao
- Department of Cardiovascular Medicine, First Hospital of Xi'an, Xi'an, Shaanxi 710002, P.R. China
| | - Tianzhi Cai
- Department of Cardiovascular Medicine, The Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, P.R. China
| | - Pengkang Yang
- Department of Cardiovascular Medicine, First Hospital of Xi'an, Xi'an, Shaanxi 710002, P.R. China
| | - Manli Cheng
- Department of Cardiovascular Medicine, First Hospital of Xi'an, Xi'an, Shaanxi 710002, P.R. China
| |
Collapse
|
48
|
Simmler C, Pauli GF, Chen SN. Phytochemistry and biological properties of glabridin. Fitoterapia 2013; 90:160-84. [PMID: 23850540 PMCID: PMC3795865 DOI: 10.1016/j.fitote.2013.07.003] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/27/2013] [Accepted: 07/01/2013] [Indexed: 02/07/2023]
Abstract
Glabridin, a prenylated isoflavonoid of G. glabra L. roots (European licorice, Fabaceae), has been associated with a wide range of biological properties such as antioxidant, anti-inflammatory, anti-atherogenic, regulation of energy metabolism, estrogenic, neuroprotective, anti-osteoporotic, and skin-whitening. While glabridin is one of the most studied licorice flavonoids, a comprehensive literature survey linked to its numerous bioactivities is unavailable. The present review provides a comprehensive description of glabridin as a key chemical and biological marker of G. glabra, by covering both its phytochemical characterization and reported biological activities. Both glabridin and standardized licorice extracts have significant impact on food, dietary supplements (DSs) and cosmetic markets, as evidenced by the amount of available patents and scientific articles since 1976, when glabridin was first described. Nevertheless, a thorough literature survey also reveals that information about the isolation and chemical characterization of this important marker is scattered and less detailed than expected. Accordingly, the first part of this review gathers and provides all analytical and spectroscopic data required for the comprehensive phytochemical characterization of glabridin. The four most frequently described and most relevant bioactivities of glabridin are its anti-inflammatory, anti-atherogenic, estrogenic-like effects, and its capacity to regulate energy metabolism. While all bioactivities reported for glabridin belong to a wide array of targets, its principal biological properties are likely interconnected. To this end, the current state of the literature suggests that the biological activity of glabridin mainly results from its capacity to down-regulate intracellular reactive oxygen species, bind to antioxidant effectors, and act on estrogen receptors, potentially as a plant-based Selective Estrogen Receptor Modulator (phytoSERM).
Collapse
Affiliation(s)
- Charlotte Simmler
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, USA.
| | | | | |
Collapse
|