1
|
Abdullah N, Hussain F, Ullah N, Fatima H, Tahir MA, Rashid U, Hassan A. Synthesis, Pharmacological Evaluation, and Molecular Modeling of Phthalimide Derivatives as Monoamine Oxidase and Cholinesterase Dual Inhibitors. ACS OMEGA 2025; 10:10385-10400. [PMID: 40124046 PMCID: PMC11923636 DOI: 10.1021/acsomega.4c10510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/22/2025] [Accepted: 02/26/2025] [Indexed: 03/25/2025]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by dementia and cognitive decline, associated with synaptic loss and degeneration of cholinergic neurons. New multitarget inhibitors for monoamine oxidase (MAO) and cholinesterase (ChE) enzymes are emerging as a potential treatment strategy for AD. Herein, we synthesized a series of N-benzyl-substituted biaryl phthalimide derivatives (3a-3m) encompassing potentially therapeutically active arenes/heteroarenes to serve as multitarget compounds for treating AD. To improve their binding affinity as well as inhibitory activity against ChE and MAO target proteins, comparable molecular structures were synthesized bearing electron-donating, electron-withdrawing, heterocyclic, and fluorinated moieties for a comprehensive SAR. In vitro evaluation of synthesized compounds against cholinesterases (AChE/BChE) and monoamine oxidases (MAO-A/MAO-B) revealed that compound 3e had good potency against AChE (IC50 = 0.24 μM) and BChE (IC50 = 6.29 μM), while compound 3f had the highest inhibition of MAO-B (IC50 = 0.09 μM). Selected compounds (3e,f) showed no cytotoxicity against the neuroblastoma cell line (SH-SY5Y) and normal human embryonic HEK-293 cells. Moreover, they showed high blood-brain barrier penetration (PAMPA assay) and reversible MAO-B inhibitory activity (ex vivo). In molecular docking studies, compounds 3e and 3f displayed the highest binding affinity with ChEs and MAO-B, respectively. In silico ADMET studies and MD simulation studies were also carried out for the most potent derivatives (3e and 3f), suggesting their strong potential as anti-Alzheimer agents.
Collapse
Affiliation(s)
- Nabiha Abdullah
- Department
of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
- Department
of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Fahad Hussain
- Department
of Chemistry, COMSATS University Islamabad,
Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Naseem Ullah
- Department
of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Humaira Fatima
- Department
of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Afaq Tahir
- Institute
of Pharmaceutical Sciences, University of
Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Umer Rashid
- Department
of Chemistry, COMSATS University Islamabad,
Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Abbas Hassan
- Department
of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
- Department
of Chemistry, College of Science, United
Arab Emirates University, Al Ain, Abu Dhabi 15551, United Arab Emirates
| |
Collapse
|
2
|
Zhuang X, Lin J, Song Y, Ban R, Zhao X, Xia Z, Wang Z, Zhang G. The Interplay Between Accumulation of Amyloid-Beta and Tau Proteins, PANoptosis, and Inflammation in Alzheimer's Disease. Neuromolecular Med 2024; 27:2. [PMID: 39751702 DOI: 10.1007/s12017-024-08815-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/01/2024] [Indexed: 01/04/2025]
Abstract
Alzheimer's disease (AD) is a common progressive neurodegenerative disorder, and the vast majority of cases occur in elderly patients. Recently, the accumulation of Aβ and tau proteins has drawn considerable attention in AD research. This review explores the multifaceted interactions between these proteins and their contribution to the pathological landscape of AD, encompassing synaptic dysfunction, neuroinflammation, and PANoptosis. PANoptosis is a collective term for programmed cell death (PCD) modalities that encompass elements of apoptosis, pyroptosis, and necroptosis. The accumulation of Aβ peptides and tau proteins, along with the immune response in brain cells, may trigger PANoptosis, thus advancing the progression of the disease. Recent advancements in molecular imaging and genetics have provided deeper insights into the interactions between Aβ peptides, tau proteins, and the immune response. The review also discusses the role of mitochondrial dysregulation in AD. The exploration of the interplay between neurodegeneration, immune responses, and cell death offers promising avenues for the development of innovative treatments.
Collapse
Affiliation(s)
- Xianbo Zhuang
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, 252000, China
| | - Jie Lin
- School of Basic Medicine Sciences, Shandong University, Jinan, China
- Department of Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, China
| | - Yamin Song
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, 252000, China
| | - Ru Ban
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, 252000, China
| | - Xin Zhao
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, 252000, China
| | - Zhangyong Xia
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, 252000, China.
- Department of Neurology, Liaocheng People's Hospital, Shandong University, Jinan, 250012, China.
- Department of Neurology, the Second People's Hospital of Liaocheng, Liaocheng, China.
| | - Zheng Wang
- Department of Neurosurgery, Liaocheng Traditional Chinese Medicine Hospital, Liaocheng, 252000, China.
| | - Guifeng Zhang
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, 252000, China.
| |
Collapse
|
3
|
Yang H, Tan H, Wen H, Xin P, Liu Y, Deng Z, Xu Y, Gao F, Zhang L, Ye Z, Zhang Z, Chen Y, Wang Y, Sun J, Lam JWY, Zhao Z, Kwok RTK, Qiu Z, Tang BZ. Recent Progress in Nanomedicine for the Diagnosis and Treatment of Alzheimer's Diseases. ACS NANO 2024; 18:33792-33826. [PMID: 39625718 DOI: 10.1021/acsnano.4c11966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that causes memory loss and progressive and permanent deterioration of cognitive function. The most challenging issue in combating AD is its complicated pathogenesis, which includes the deposition of amyloid β (Aβ) plaques, intracellular hyperphosphorylated tau protein, neurofibrillary tangles (NFT), etc. Despite rapid advancements in mechanistic research and drug development for AD, the currently developed drugs only improve cognitive ability and temporarily relieve symptoms but cannot prevent the development of AD. Moreover, the blood-brain barrier (BBB) creates a huge barrier to drug delivery in the brain. Therefore, effective diagnostic tools and treatments are urgently needed. In recent years, nanomedicine has provided opportunities to overcome the challenges and limitations associated with traditional diagnostics or treatments. Various types of nanoparticles (NPs) play an essential role in nanomedicine for the diagnosis and treatment of AD, acting as drug carriers to improve targeting and bioavailability across/bypass the BBB or acting as drugs directly on AD lesions. This review categorizes different types of NPs and summarizes their applications in nanomedicine for the diagnosis and treatment of AD. It also discusses the challenges associated with clinical applications and explores the latest developments and prospects of nanomedicine for AD.
Collapse
Affiliation(s)
- Han Yang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong China
| | - Haozhe Tan
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Haifei Wen
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Peikun Xin
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Yanling Liu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Ziwei Deng
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Yanning Xu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Feng Gao
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Liping Zhang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Ziyue Ye
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Zicong Zhang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Yunhao Chen
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Yueze Wang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Jianwei Sun
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong China
| | - Jacky W Y Lam
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong China
| | - Zheng Zhao
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Ryan T K Kwok
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong China
| | - Zijie Qiu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong China
| |
Collapse
|
4
|
Alugoju P, Vishnu Bhandare V, S. Patil V, V. K. D KS, Borugadda PK, Tencomnao T. In silico molecular docking and molecular dynamic simulation of agarwood compounds with molecular targets of Alzheimer's disease . F1000Res 2024; 12:230. [PMID: 39931160 PMCID: PMC11809694 DOI: 10.12688/f1000research.130618.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/26/2024] [Indexed: 02/13/2025] Open
Abstract
Background Alzheimer's disease (AD) is a neurological condition that primarily affects older people. Currently available AD drugs are associated with side effects and there is a need to develop natural drugs from plants. Aquilaria is as an endangered medicinal plant genus (commonly called agarwood plants) and various products of Aquilaria plant spp. including resinous heartwood, leaves, bark, and stem have been widely used in various traditional medicine systems. Research on agarwood plants is sparse and only a few previous studies demonstrated their neuroprotective properties in vitro. Owing to the presence of a plethora of secondary metabolites in agarwood plants, it is imperative not only to protect these plants but also evaluate the bioactivity of agarwood phytochemicals. Methods This study used Molsoft tools to predict the physicochemical properties of agarwood ligands, including the number of H-bond donors and acceptors, polar surface area, lipophilicity, solubility, and the molecular polar surface area and volume of agarwood ligands. Additionally, ADMET (absorption, digestion, metabolism, excretion, and toxicity) properties were predicted using ADMETlab 2.0. Computational methods such as AutoDock Vina and molecular dynamic (MD) simulations were employed for the docking of 41 selected agarwood compounds with AD-related molecular targets. Results and Conclusion According to docking data, three compounds aquilarisin (ASN), aquilarisinin (ANN), aquilarixanthone (AXN) showed highest binding affinity to selected AD targets compared to their known inhibitors. MD simulation studies revealed that, selected agarwood compounds' protein-ligand complexes showed remarkable structural stability throughout 100ns simulation. The agarwood chemicals aquilarisin, aquilarisinin, aquilarixanthone, pillion (PLN), and agarotetrol (AGT) are consequently suggested as some of the found hits against AD targets, however, additional experimental validation is required to establish their effectiveness.
Collapse
Affiliation(s)
- Phaniendra Alugoju
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | - Vishal S. Patil
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- Department of Pharmacology and Toxicology, KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research (KAHER), Belagavi, Karnataka, 590010, India
| | - Krishna Swamy V. K. D
- Phytomedicine and Ageing laboratory, Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, Puducherry, 605014, India
| | - Prem Kumar Borugadda
- Department of Computer Science, School of Engineering and Technology, Pondicherry University (A Central University), Karaikal Campus, Karaikal, Puducherry, 609605, India
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
5
|
Zhao X, Hu Q, Wang X, Li C, Chen X, Zhao D, Qiu Y, Xu H, Wang J, Ren L, Zhang N, Li S, Gong P, Hou Y. Dual-target inhibitors based on acetylcholinesterase: Novel agents for Alzheimer's disease. Eur J Med Chem 2024; 279:116810. [PMID: 39243456 DOI: 10.1016/j.ejmech.2024.116810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia among the elderly, accounting for 60 %-70 % of cases. At present, the pathogenesis of this condition remains unclear, but the hydrolysis of acetylcholine (ACh) is thought to play a role. Acetylcholinesterase (AChE) can break down ACh transmission from the presynaptic membrane and stop neurotransmitters' excitatory effect on the postsynaptic membrane, which plays a key role in nerve conduction. Acetylcholinesterase inhibitors (AChEIs) can delay the hydrolysis of acetylcholine (ACh), which represents a key strategy for treating AD. Due to its complex etiology, AD has proven challenging to treat. Various inhibitors and antagonists targeting key enzymes and proteins implicated in the disease's pathogenesis have been explored as potential therapeutic agents. These include Glycogen Synthase Kinase 3β (GSK-3β) inhibitors, β-site APP Cleaving Enzyme (BACE-1) inhibitors, Monoamine Oxidase (MAO) inhibitors, Phosphodiesterase inhibitors (PDEs), N-methyl--aspartic Acid (NMDA) antagonists, Histamine 3 receptor antagonists (H3R), Serotonin receptor subtype 4 (5-HT4R) antagonists, Sigma1 receptor antagonists (S1R) and soluble Epoxide Hydrolase (sEH) inhibitors. The drug development strategy of multi-target-directed ligands (MTDLs) offers unique advantages in the treatment of complex diseases. On the one hand, it can synergistically enhance the therapeutic efficacy of single-target drugs. On the other hand, it can also reduce the side effects. In this review, we discuss the design strategy of dual inhibitors based on acetylcholinesterase and the structure-activity relationship of these drugs.
Collapse
Affiliation(s)
- Xingyi Zhao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Qiaoguan Hu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Xiaoqian Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Chunting Li
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Xiao Chen
- Yangtze River Pharmaceutical Group Jiangsu Haici Biological Pharmaceutical Co., Ltd. 8 Taizhen Road, Medical New & Hi-tech Industrial Development Zone, Taizhou City, Jiangsu Province, 225321, China
| | - Dong Zhao
- Yangtze River Pharmaceutical Group Jiangsu Haici Biological Pharmaceutical Co., Ltd. 8 Taizhen Road, Medical New & Hi-tech Industrial Development Zone, Taizhou City, Jiangsu Province, 225321, China
| | - Yue Qiu
- Yangtze River Pharmaceutical Group Jiangsu Haici Biological Pharmaceutical Co., Ltd. 8 Taizhen Road, Medical New & Hi-tech Industrial Development Zone, Taizhou City, Jiangsu Province, 225321, China
| | - Haoyu Xu
- Yangtze River Pharmaceutical (Group) CO., Ltd. NO.1 South Yangtze River Road, Taizhou City, Jiangsu Province, 225321, China
| | - Jiaqi Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Le Ren
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Na Zhang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Shuang Li
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Ping Gong
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China.
| | - Yunlei Hou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China.
| |
Collapse
|
6
|
Canoyra A, Martín-Cordero C, Muñoz-Mingarro D, León-González AJ, Parsons RB, Acero N. Corema album Berry Juice as a Protective Agent Against Neurodegeneration. Pharmaceuticals (Basel) 2024; 17:1535. [PMID: 39598444 PMCID: PMC11597836 DOI: 10.3390/ph17111535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Corema album berries are edible fruits from the Iberian Atlantic coast, characterized by a rich polyphenolic composition, which endows their juice with potential protective effects against neurodegeneration. This study aimed to evaluate the potential of the relatively lesser-known C. album berries as a novel neuroprotective agent against neurodegenerative diseases. Methods: The phenolic compounds of the juice were characterized using UHPLC-HRMS (Orbitrap). The SH-SY5Y neuroblastoma line was used to determine the preventive effect of the juice against H2O2-induced oxidative stress. Furthermore, neuronal cells were differentiated into dopaminergic and cholinergic lines and exposed to 6-hydroxydopamine and okadaic acid, respectively, to simulate in vitro models of Parkinson's disease and Alzheimer's disease. The ability of the juice to enhance neuronal viability under toxic conditions was examined. Additionally, its inhibitory effects on neuroprotective-related enzymes, including MAO-A and MAO-B, were assessed in vitro. Results: Phytochemical characterization reveals that 5-O-caffeoylquinic acid constitutes 80% of the total phenolic compounds. Higher concentrations of the juice effectively protected both differentiated and undifferentiated SH-SY5Y cells from H2O2-induced oxidative damage, reducing oxidative stress by approximately 20% and suggesting a dose-dependent mechanism. Moreover, the presence of the juice significantly enhanced the viability of dopaminergic and cholinergic cells exposed to neurotoxic agents. In vitro, the juice inhibited the activity of MAO-A (IC50 = 87.21 µg/mL) and MAO-B (IC50 = 56.50 µg/mL). Conclusions: While these findings highlight C. album berries as a promising neuroprotective agent, further research is required to elucidate its neuroprotective mechanisms in cell and animal models and, ultimately, in human trials.
Collapse
Affiliation(s)
- Antonio Canoyra
- Pharmaceutical and Health Science Department, Pharmacy Faculty, San Pablo-CEU University, CEU Universities, Urbanización Montepríncipe Boadilla del Monte, 28660 Madrid, Spain;
| | - Carmen Martín-Cordero
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, C/P. García González, 2, 41012 Seville, Spain; (C.M.-C.); (A.J.L.-G.)
| | - Dolores Muñoz-Mingarro
- Chemistry and Biochemistry Department, Pharmacy Faculty, San Pablo-CEU University, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain;
| | - Antonio J. León-González
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, C/P. García González, 2, 41012 Seville, Spain; (C.M.-C.); (A.J.L.-G.)
| | - Richard B. Parsons
- King’s College London, Institute of Pharmaceutical Sciences, 150 Stamford Street, London SE1 9NH, UK;
| | - Nuria Acero
- Pharmaceutical and Health Science Department, Pharmacy Faculty, San Pablo-CEU University, CEU Universities, Urbanización Montepríncipe Boadilla del Monte, 28660 Madrid, Spain;
| |
Collapse
|
7
|
Vashisth MK, Hu J, Liu M, Basha SH, Yu C, Huang W. In-Silico discovery of 17alpha-hydroxywithanolide-D as potential neuroprotective allosteric modulator of NMDA receptor targeting Alzheimer's disease. Sci Rep 2024; 14:27908. [PMID: 39537738 PMCID: PMC11560966 DOI: 10.1038/s41598-024-78975-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder marked by cognitive decline, memory impairment, and behavioral alterations. The N-methyl-D-aspartate (NMDA) receptor has emerged as a promising target for AD pharmacotherapy due to its role in the disease's pathogenesis. This study leverages advanced computational methods to screen 80 active constituents of Withania somnifera (Ashwagandha), a traditional herb known for its neuroprotective effects, against the NMDA receptor, using FDA-approved Ifenprodil as a reference. Our blind virtual screening results demonstrated that all tested compounds could bind to various domains of the NMDA receptor, with binding energies ranging from - 4.1 to -11.9 kcal/mol, compared to Ifenprodil's -7.8 kcal/mol. Binding preference analysis revealed 7 compounds bound to the A-chain, 37 to the B-chain, 7 to the C-chain, and 29 to the D-chain of the receptor. Notable binding was observed predominantly at the Amino Terminal Domain (ATD) core site, some at the ATD-Ligand Binding Domain (LBD) interface, and a few at the Transmembrane Domain (TMD). Particularly, 17alpha-hydroxywithanolide D, with a binding energy of -11.9 kcal/mol, emerged as a prime candidate for further investigation. Molecular dynamics simulations of this compound revealed key interactions, including direct hydrogen bonding with residues ASP165, ARG431, THR433, LYS466, and TYR476 on the D-chain, as well as additional hydrophobic and water-bridging interactions. These simulations highlighted the compound's influence on dynamic conformational states of the GluN1b-GluN2B receptor complex, modulating interactions between GluN1b Lys178 and GluN2B Asn184. Furthermore, the compound affected the distance between LBD heterodimers and the tension within the LBD-M30 linker, demonstrating its potential to modulate NMDA receptor activity. This comprehensive study not only underscores the therapeutic promise of Withania somnifera derivatives for AD but also provides a detailed molecular basis for their efficacy, offering valuable insights for targeted drug development and innovative therapeutic strategies against Alzheimer's disease.
Collapse
Affiliation(s)
- Manoj Kumar Vashisth
- Department of Human Anatomy, School of Basic Medicine Sciences, Southern Medical University, 510515, Guangzhou, P. R. China
| | - Junkai Hu
- Department of Orthopaedics, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, P. R. China
| | - Mingrui Liu
- Department of Human Anatomy, School of Basic Medicine Sciences, Dali University, 671000, Yunnan, China
| | | | - Chen Yu
- Central Laboratory, Affiliated Hospital of Putian University, Putian University, 351100, Putian, China.
| | - Wenhua Huang
- Department of Human Anatomy, School of Basic Medicine Sciences, Southern Medical University, 510515, Guangzhou, P. R. China.
| |
Collapse
|
8
|
Bhoi S, Sarangi P, Pradhan LK, Sahoo PK, Sahoo BS, Aparna S, Raut S, Das SK. Bisphenol F-induced precocious genesis of aggressive neurobehavioral response is associated with heightened monoamine oxidase activity and neurodegeneration in zebrafish brain. Neurotoxicol Teratol 2024; 106:107402. [PMID: 39454971 DOI: 10.1016/j.ntt.2024.107402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/19/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024]
Abstract
The production and use of plastics and plastics products has increased dramatically in recent decades. Moreover, their unprotected disposal into ambient life sustaining environment poses a significant health risk. Bisphenol F (BPF) an alternative to bisphenol A (BPA) has been extensively employed for making of plastics. Recent reports have documented the neurotoxic potential of BPF through induction of altered neurochemical profile, microglia-astrocyte-mediated neuroinflammation, oxidative stress, transformed neurobehavioral response, cognitive dysfunction, etc. In the present study, our approach was to understand the underlying mechanism of BPF-persuaded genesis of aggressive neurobehavioral response in zebrafish. The basic findings advocated a temporal transformation in native explorative behaviour and progressive induction of aggressive behavioural response in zebrafish following exposure to BPF. Our neurobehavioral findings supported the argument of oxidative stress-mediated neuromorphological transformation in the periventricular grey zone (PGZ) of the zebrafish brain. In line with earlier reports, our findings also showed that heightened monoamine oxidase (MAO) activity and downregulation in tyrosine hydroxylase expression in the zebrafish brain is associated with the precocious genesis of aggressive neurobehavioral response in zebrafish brain. Our findings also shed light on BPF-instigated apoptotic neuronal death as revealed by augmented chromatin condensation and cleaved caspase-3 expression. Further observation showed that the downregulation of NeuN (a marker of post-mitotic mature neuron) expression provided substantial neurotoxicity, leading to neurodegeneration in the PGZ region of the zebrafish brain. These basic findings grossly advocate that BPF acts as a potent neurotoxicant in transmuting native neurobehavioral response through the induction of oxidative stress, heightened MAO activity and neuromorphological transformation in the zebrafish brain.
Collapse
Affiliation(s)
- Suvam Bhoi
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003, India
| | - Prerana Sarangi
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003, India
| | - Lilesh Kumar Pradhan
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003, India; Centre of Excellence, Natural Products and Therapeutics Laboratory, Department of Biotechnology and Bioinformatics, Sambalpur University, Odisha 768019, India
| | - Pradyumna Kumar Sahoo
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003, India
| | - Bhabani Sankar Sahoo
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003, India; Institute of Life Sciences, NALCO Nagar, Chandrasekharpur, Bhubaneswar, Odisha 751023, India
| | - Sai Aparna
- Department of Zoology, Ravenshaw University, College Square, Cuttack, Odisha 751003, India
| | - Sangeeta Raut
- Environmental Biotechnology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003, India
| | - Saroj Kumar Das
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003, India; Department of Zoology, Kuntala Kumari Sabat Women's College, Balasore, Odisha 756003, India.
| |
Collapse
|
9
|
Naskar R, Ghosh A, Bhattacharya R, Chakraborty S. A critical appraisal of geroprotective activities of flavonoids in terms of their bio-accessibility and polypharmacology. Neurochem Int 2024; 180:105859. [PMID: 39265701 DOI: 10.1016/j.neuint.2024.105859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Flavonoids, a commonly consumed natural product, elicit health-benefits such as antioxidant, anti-inflammatory, antiviral, anti-allergic, hepatoprotective, anti-carcinogenic and neuroprotective activities. Several studies have reported the beneficial role of flavonoids in improving memory, learning, and cognition in clinical settings. Their mechanism of action is mediated through the modulation of multiple signalling cascades. This polypharmacology makes them an attractive natural scaffold for designing and developing new effective therapeutics for complex neurological disorders like Alzheimer's disease and Parkinson's disease. Flavonoids are shown to inhibit crucial targets related to neurodegenerative disorders (NDDs), including acetylcholinesterase, butyrylcholinesterase, β-secretase, γ-secretase, α-synuclein, Aβ protein aggregation and neurofibrillary tangles formation. Conserved neuro-signalling pathways related to neurotransmitter biogenesis and inactivation, ease of genetic manipulation and tractability, cost-effectiveness, and their short lifespan make Caenorhabditis elegans one of the most frequently used models in neuroscience research and high-throughput drug screening for neurodegenerative disorders. Here, we critically appraise the neuroprotective activities of different flavonoids based on clinical trials and epidemiological data. This review provides critical insights into the absorption, metabolism, and tissue distribution of various classes of flavonoids, as well as detailed mechanisms of the observed neuroprotective activities at the molecular level, to rationalize the clinical data. We further extend the review to critically evaluate the scope of flavonoids in the disease management of neurodegenerative disorders and review the suitability of C. elegans as a model organism to study the neuroprotective efficacy of flavonoids and natural products.
Collapse
Affiliation(s)
- Roumi Naskar
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, 500046, India
| | - Anirrban Ghosh
- Amity Institute of Biotechnology, Amity University, Kolkata, 700135, India
| | - Raja Bhattacharya
- Amity Institute of Biotechnology, Amity University, Kolkata, 700135, India.
| | - Sandipan Chakraborty
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, 500046, India.
| |
Collapse
|
10
|
Gehlot P, Pathak R, Kumar S, Choudhary NK, Vyas VK. A review on synthetic inhibitors of dual-specific tyrosine phosphorylation-regulated kinase 1A (DYRK1A) for the treatment of Alzheimer's disease (AD). Bioorg Med Chem 2024; 113:117925. [PMID: 39357433 DOI: 10.1016/j.bmc.2024.117925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024]
Abstract
Alzheimer's disease (AD) is a complex disorder that is influenced by a number of variables, such as age, gender, environmental factors, disease, lifestyle, infections, and many more. The main characteristic of AD is the formation of amyloid plaque and neurofibrillary tangles (NFT), which are caused by various reasons such as inflammation, impairment of neurotransmitters, hyperphosphorylation of tau protein, generation of toxic amyloid beta (Aβ) 40/42, oxidative stress, etc. Protein kinases located in chromosome 21, namely dual-specific tyrosine phosphorylation-regulated kinase 1A (DYRK1A), play an essential role in the pathogenesis of AD. DYRK1A stimulates the Aβ peptide aggregation and phosphorylation of tau protein to generate the NFT formation that causes neurodegeneration. Thus, DYRK1A is associated with AD, and inhibition of DYRK1A has the potential to treat AD. In this review, we discussed the pathophysiology of AD, various factors responsible for AD, and the role of DYRK1A in AD. We have also discussed the latest therapeutic potential of DYRK1A inhibitors for neurogenerative disease, along with their structure-activity relationship (SAR) studies. This article provides valuable information for guiding the future discovery of novel and target-specific DYRK1A inhibitors over other kinases and their structural optimization to treat AD.
Collapse
Affiliation(s)
- Pinky Gehlot
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Rekha Pathak
- B R Nahata College of Pharmacy, Mandsaur University, Mandsaur 458001, Madhya Pradesh, India; Gyan Ganga Institute of Technology and Sciences, Jabalpur 482003, Madhya Pradesh, India
| | - Sunil Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Naveen Kumar Choudhary
- B R Nahata College of Pharmacy, Mandsaur University, Mandsaur 458001, Madhya Pradesh, India
| | - Vivek Kumar Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India.
| |
Collapse
|
11
|
Prabha S, Sajad M, Hasan GM, Islam A, Imtaiyaz Hassan M, Thakur SC. Recent advancement in understanding of Alzheimer's disease: Risk factors, subtypes, and drug targets and potential therapeutics. Ageing Res Rev 2024; 101:102476. [PMID: 39222668 DOI: 10.1016/j.arr.2024.102476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Alzheimer's disease (AD) is a significant neocortical degenerative disorder characterized by the progressive loss of neurons and secondary alterations in white matter tracts. Understanding the risk factors and mechanisms underlying AD is crucial for developing effective treatments. The risk factors associated with AD encompass a wide range of variables, including gender differences, family history, and genetic predispositions. Additionally, environmental factors such as air pollution and lifestyle-related conditions like cardiovascular disease, gut pathogens, and liver pathology contribute substantially to the development and progression of AD and its subtypes. This review provides current update and deeper insights into the role of diverse risk factors, categorizing AD into its distinct subtypes and elucidating their specific pathophysiological mechanisms. Unlike previous studies that often focus on isolated aspects of AD, our review integrates these factors to offer a comprehensive understanding of the disease. Furthermore, the review explores a variety of drug targets linked to the neuropathology of different AD subtypes, highlighting the potential for targeted therapeutic interventions. We further discussed the novel therapeutic options and categorized them according to their targets. The roles of different drug targets were comprehensively studied, and the mechanism of action of their inhibitors was discussed in detail. By comprehensively covering the interplay of risk factors, subtype differentiation, and drug targets, this review provides a deeper understanding of AD and suggests directions for future research and therapeutic strategies.
Collapse
Affiliation(s)
- Sneh Prabha
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohd Sajad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Basic Medical Science, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Sonu Chand Thakur
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
12
|
Hussain MK, Khatoon S, Khan MF, Akhtar MS, Ahamad S, Saquib M. Coumarins as versatile therapeutic phytomolecules: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155972. [PMID: 39265442 DOI: 10.1016/j.phymed.2024.155972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/23/2024] [Accepted: 07/11/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Coumarins, abundantly distributed in a plethora of biologically active compounds, serve as a fundamental motif in numerous natural products, drugs, and therapeutic leads. Despite their small size, they exhibit a diverse range of biological activities, intriguing researchers with their immense pharmacological potential. PURPOSE This study consolidates the evidence regarding the essential role of coumarins in modern drug discovery, exploring their broad-spectrum pharmaceutical effects, structural versatility, and mechanisms of action across various domains. METHODS For literature search, we utilized PubMed, Google scholar, and SciFinder databases. Keyword and keyword combinations such as "coumarins", "natural coumarins", "specific natural coumarins for particular diseases", and "therapeutic effects" were employed to retrieve relevant studies. The search encompassed articles published between 2005 and 2023. Selection criteria included studies reporting on the pharmacological activities of natural coumarins against various diseases. RESULTS The results highlight the therapeutic potential of natural coumarins against various diseases, demonstrating anti-cancer, anti-oxidant, and anti-inflammatory activities. They also act as monoamine oxidase inhibitors and phosphodiesterase inhibitors, and as anti-thrombotic, anti-diabetic, and hepatoprotective agents. They also show efficacy against diabetic nephropathy, neurodegenerative diseases, microbial infections and many other diseases. CONCLUSION This review underscores the significant role of natural coumarins in medicinal chemistry and drug discovery. Their diverse biological activities and structural versatility make them promising therapeutic agents. This study serves as a catalyst for further research in the field, aiming to address emerging challenges and opportunities in drug development.
Collapse
Affiliation(s)
- Mohd Kamil Hussain
- Department of Chemistry, Govt. Raza P.G. College, Rampur 244901, M.J.P Rohil Khand University, Bareilly, India.
| | | | - Mohammad Faheem Khan
- Department of Biotechnology, Era's Lucknow Medical College, Era University, Lucknow 226003, India
| | - Mohd Sayeed Akhtar
- Department of Botany, Gandhi Faiz-e-Aam College, Shahjahanpur 242001, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Mohammad Saquib
- Department of Chemistry, University of Allahabad, Prayagraj (Allahabad) 211002, India; Department of Chemistry, G. R. P. B. Degree College, P. R. S. University, Prayagraj (Allahabad) 211010, India.
| |
Collapse
|
13
|
Wang Y, Wang Z. Effects and Safety of Monoamine Oxidase-B Inhibitors for Early Parkinson's Disease: A Network Meta-Analysis. Eur Neurol 2024; 87:273-290. [PMID: 39278214 DOI: 10.1159/000541315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 09/02/2024] [Indexed: 09/18/2024]
Abstract
INTRODUCTION The objective of this study was to evaluate the effects and safety of monoamine oxidase-B inhibitors (MAO-B inhibitors) for early Parkinson's disease (PD). METHODS All studies that assessed the efficacy of MAO-B inhibitors in patients with early PD were searched. Publications were screened, and data were extracted according to predefined criteria. Rev Man 5.4 and Stata 14.0 software were used for statistical analysis. Outcomes assessed included change of Unified Parkinson's Disease Rating Scale (UPDRS) total score, UPDRS part II score, UPDRS part III score, and the incidence of adverse events. RESULTS Thirty trials were identified and included in this meta-analysis. Compared with placebo, rasagiline, selegiline, safinamide, and zonisamide were significantly more effective, with a standardized mean difference (SMD) of -0.41 (95% confidence interval (CI) = -0.64 to -0.18), SMD = -0.38 (95% CI = -0.51 to -0.24), SMD = -0.37 (95% CI = -0.54 to -0.21), and SMD = -0.31 (95% CI = -0.57 to -0.05) on the UPDRS III score change, respectively. The surface under the cumulative ranking results showed that rasagiline ranked first in improving UPDRS II and UPDRS III, respectively. For safety outcomes, safinamide combination with dopaminergic treatment had lower risk of incurring any adverse events (risk ratio = 0.1, 95% CI = 0.01-0.2), and no statistical difference in incidence of adverse events was observed among other MAO-B inhibitor regimes and placebo. CONCLUSION Rasagiline, selegiline, safinamide, and zonisamide were effective compared to placebo in the treatment of early PD, but rasagiline was the most effective drug. As for safety, safinamide combination with dopaminergic treatment had lower risk of incurring any adverse events.
Collapse
Affiliation(s)
- Yaping Wang
- Department of Neurology, Tianjin First Central Hospital, Tianjin, China
| | - Zhiyun Wang
- Department of Neurology, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
14
|
Sun T, Zhen T, Harakandi CH, Wang L, Guo H, Chen Y, Sun H. New insights into butyrylcholinesterase: Pharmaceutical applications, selective inhibitors and multitarget-directed ligands. Eur J Med Chem 2024; 275:116569. [PMID: 38852337 DOI: 10.1016/j.ejmech.2024.116569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
Butyrylcholinesterase (BChE), also known as pseudocholinesterase and serum cholinesterase, is an isoenzyme of acetylcholinesterase (AChE). It mediates the degradation of acetylcholine, especially under pathological conditions. Proverbial pharmacological applications of BChE, its mutants and modulators consist of combating Alzheimer's disease (AD), influencing multiple sclerosis (MS), addressing cocaine addiction, detoxifying organophosphorus poisoning and reflecting the progression or prognosis of some diseases. Of interest, recent reports have shed light on the relationship between BChE and lipid metabolism. It has also been proved that BChE is going to increase abnormally as a compensator for AChE in the middle and late stages of AD, and BChE inhibitors can alleviate cognitive disorders and positively influence some pathological features in AD model animals, foreboding favorable prospects and potential applications. Herein, the selective BChE inhibitors and BChE-related multitarget-directed ligands published in the last three years were briefly summarized, along with the currently known pharmacological applications of BChE, aiming to grasp the latest research directions. Thereinto, some emerging strategies for designing BChE inhibitors are intriguing, and the modulators based on target combination of histone deacetylase and BChE against AD is unprecedented. Furthermore, the involvement of BChE in the hydrolysis of ghrelin, the inhibition of low-density lipoprotein (LDL) uptake, and the down-regulation of LDL receptor (LDLR) expression suggests its potential to influence lipid metabolism disorders. This compelling prospect likely stimulates further exploration in this promising research direction.
Collapse
Affiliation(s)
- Tianyu Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Tengfei Zhen
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | | | - Lei Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Huanchao Guo
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China.
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
15
|
Ayaz M, Ali Shah SW, Shoaib M, Shah FA, Ahmed F. Synthesis, characterization and biological evaluation of aurones as potential neuroprotective agents. Future Med Chem 2024; 16:1649-1663. [PMID: 38940451 PMCID: PMC11370930 DOI: 10.1080/17568919.2024.2363713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/28/2024] [Indexed: 06/29/2024] Open
Abstract
Aim: To synthesize aurone (Ar) derivatives and to demonstrate their effects against diabetes mellitus (DM) and neurodegeneration.Materials & methods: Five Ar (A-E) derivatives were synthesized, characterized by proton NMR and screened for antioxidant, anti-diabetic and anti-cholinesterase activities. They were further evaluated for neuroprotective effects in streptozotocin (STZ)-induced neurodegenerative model.Results: Among the aurone derivatives ArE demonstrated significant reversal of cognitive impairment, oxidative stress and neuroinflammation. Biochemical analysis revealed anti-diabetic and neuroprotective effects, possibly through downregulation of inflammatory markers and upregulation of antioxidant enzymes.Conclusion: Synthesized Ar (A-E) exhibits promising therapeutic potential against STZ-induced neurodegeneration and DM by modulating inflammatory and oxidative pathways, suggesting a novel avenue for disease management.
Collapse
Affiliation(s)
- Muhammad Ayaz
- Department of Pharmacy University of Malakand, Dir (L) Pakistan
| | | | - Mohammad Shoaib
- Department of Pharmacy University of Malakand, Dir (L) Pakistan
| | - Fawad Ali Shah
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj11942, Saudi Arabia
| | - Fawad Ahmed
- Swat College of Pharmaceutical Sciences, Swat Pakistan
| |
Collapse
|
16
|
Orioli R, Belluti F, Gobbi S, Rampa A, Bisi A. Naturally Inspired Coumarin Derivatives in Alzheimer's Disease Drug Discovery: Latest Advances and Current Challenges. Molecules 2024; 29:3514. [PMID: 39124919 PMCID: PMC11313984 DOI: 10.3390/molecules29153514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The main feature of neurodegenerative diseases, including Alzheimer's disease, is the network of complex and not fully recognized neuronal pathways and targets involved in their onset and progression. The therapeutic treatment, at present mainly symptomatic, could benefit from a polypharmacological approach based on the development of a single molecular entity designed to simultaneously modulate different validated biological targets. This strategy is principally based on molecular hybridization, obtained by linking or merging different chemical moieties acting with synergistic and/or complementary mechanisms. The coumarin core, widely found in nature, endowed with a recognized broad spectrum of pharmacological activities, large synthetic accessibility and favourable pharmacokinetic properties, appears as a valuable, privileged scaffold to be properly modified in order to obtain compounds able to engage different selected targets. The scientific literature has long been interested in the multifaceted profiles of coumarin derivatives, and in this review, a survey of the most important results of the last four years, on both natural and synthetic coumarin-based compounds, regarding the development of anti-Alzheimer's compounds is reported.
Collapse
Affiliation(s)
| | | | | | - Angela Rampa
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy; (R.O.); (F.B.); (S.G.)
| | - Alessandra Bisi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy; (R.O.); (F.B.); (S.G.)
| |
Collapse
|
17
|
Fakih N, Fakhoury M. Alzheimer Disease-Link With Major Depressive Disorder and Efficacy of Antidepressants in Modifying its Trajectory. J Psychiatr Pract 2024; 30:181-191. [PMID: 38819242 DOI: 10.1097/pra.0000000000000779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Alzheimer disease (AD) is a devastating neurodegenerative disorder that affects millions of individuals worldwide, with no effective cure. The main symptoms include learning and memory loss, and the inability to carry out the simplest tasks, significantly affecting patients' quality of life. Over the past few years, tremendous progress has been made in research demonstrating a link between AD and major depressive disorder (MDD). Evidence suggests that MDD is commonly associated with AD and that it can serve as a precipitating factor for this disease. Antidepressants such as selective serotonin reuptake inhibitors, which are the first line of treatment for MDD, have shown great promise in the treatment of depression in AD, although their effectiveness remains controversial. The goal of this review is to summarize current knowledge regarding the association between AD, MDD, and antidepressant treatment. It first provides an overview of the interaction between AD and MDD at the level of genes, brain regions, neurotransmitter systems, and neuroinflammatory markers. The review then presents current evidence regarding the effectiveness of various antidepressants for AD-related pathophysiology and then finally discusses current limitations, challenges, and future directions.
Collapse
Affiliation(s)
- Nour Fakih
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | | |
Collapse
|
18
|
Akıncıoğlu A. Design, synthesis, in silico, and in vitro evaluation of novel benzyloxybenzene substituted (S)-α-amino amide derivatives as cholinesterases and monoaminoxidases inhibitor. Drug Dev Res 2024; 85:e22161. [PMID: 38445811 DOI: 10.1002/ddr.22161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/04/2024] [Accepted: 02/03/2024] [Indexed: 03/07/2024]
Abstract
In this study, a series of novel benzyloxybenzene substituted (S)-α-amino acid methyl esters and their amide derivatives were synthesized and evaluated for their inhibitory actions against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), monoamine oxidase A (MAO-A), and monoamine oxidase B (MAO-B). The synthetic strategy was based on starting from benzyl bromide (5) and 4-hydroxybenzaldehyde (6). The reaction of 5 and 6 in the presence of K2 CO3 gave benzyloxybenzaldehyde 7. Benzyloxybenzene substituted (S)-α-amino acid methyl esters 11, 12, 13, (±)-19, and (±)-20 were obtained from the reaction of L-amino acid methyl esters with benzyloxybenzaldehyde (7) followed by in situ reduction with NaBH4 . The reaction of (S)-11, (S)-12, 13, (±)-19, and (±)-20 with excess ammonia gave amides (S)-14, (S)-15, 16, (±)-21, and (±)-22. The in vitro inhibitory activities of compounds against MAO-A, MAO-B, AChE, and BChE were investigated. Within the α-amino acid methyl ester series, 13 (21.32 ± 0.338 µM) showed selectivity by inhibiting the MAO-B better than MAO-A. 13 emerged as the most active member of this series, exhibiting a 12-fold selectivity for MAO-B. 14 (4.501 ± 0.295 µM) demonstrated a pronounced selectivity for MAO-A over MAO-B, with a selectivity ratio of 110-fold. In addition, it was determined that compound 15 (95.65 ± 3.09 µM) had high selectivity for BChE inhibition. 21 was demonstrated the most potent inhibition (18.36 ± 1.36 µM) against AChE.
Collapse
Affiliation(s)
- Akın Akıncıoğlu
- Central Researching Laboratory, Agri Ibrahim Cecen University, Agri, Turkey
- Vocational School, Agri Ibrahim Cecen University, Agri, Turkey
| |
Collapse
|
19
|
Giovannuzzi S, Chavarria D, Provensi G, Leri M, Bucciantini M, Carradori S, Bonardi A, Gratteri P, Borges F, Nocentini A, Supuran CT. Dual Inhibitors of Brain Carbonic Anhydrases and Monoamine Oxidase-B Efficiently Protect against Amyloid-β-Induced Neuronal Toxicity, Oxidative Stress, and Mitochondrial Dysfunction. J Med Chem 2024; 67:4170-4193. [PMID: 38436571 DOI: 10.1021/acs.jmedchem.4c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
We report here the first dual inhibitors of brain carbonic anhydrases (CAs) and monoamine oxidase-B (MAO-B) for the management of Alzheimer's disease. Classical CA inhibitors (CAIs) such as methazolamide prevent amyloid-β-peptide (Aβ)-induced overproduction of reactive oxygen species (ROS) and mitochondrial dysfunction. MAO-B is also implicated in ROS production, cholinergic system disruption, and amyloid plaque formation. In this work, we combined a reversible MAO-B inhibitor of the coumarin and chromone type with benzenesulfonamide fragments as highly effective CAIs. A hit-to-lead optimization led to a significant set of derivatives showing potent low nanomolar inhibition of the target brain CAs (KIs in the range of 0.1-90.0 nM) and MAO-B (IC50 in the range of 6.7-32.6 nM). Computational studies were conducted to elucidate the structure-activity relationship and predict ADMET properties. The most effective multitarget compounds totally prevented Aβ-related toxicity, reverted ROS formation, and restored the mitochondrial functionality in an SH-SY5Y cell model surpassing the efficacy of single-target drugs.
Collapse
Affiliation(s)
- Simone Giovannuzzi
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Daniel Chavarria
- CIQUP-IMS, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Gustavo Provensi
- NEUROFARBA Department, Section of Pharmacology and Toxicology, University of Florence, via G. Pieraccini 6, 50139 Florence, Italy
| | - Manuela Leri
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Monica Bucciantini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Simone Carradori
- Department of Pharmacy, "G. D'Annunzio" University of Chieti and Pescara, via dei Vestini 31, 66100 Chieti, Italy
| | - Alessandro Bonardi
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Paola Gratteri
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Fernanda Borges
- CIQUP-IMS, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Alessio Nocentini
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| |
Collapse
|
20
|
Oyovwi MO, Ben-Azu B, Falajiki FY, Onome OB, Rotu RA, Rotu RA, Oyeleke AA, Okwute GP, Moke EG. D-ribose-L-cysteine exhibits restorative neurobehavioral functions through modulation of neurochemical activities and inhibition oxido-inflammatory perturbations in rats exposed to polychlorinated biphenyl. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:931-945. [PMID: 37542532 DOI: 10.1007/s00210-023-02637-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/18/2023] [Indexed: 08/07/2023]
Abstract
Polychlorinated biphenyl (PCB) is potentially harmful environmental toxicant causing cognitive decline with depressive features. PCB-induced behavioral deficits are associated with neurochemical dysfunctions, immune changes, and oxidative stress. This study investigated the neuroprotective effects of D-ribose-L-cysteine (DRLC), a neuroprotective precursor element of glutathione on PCB-induced neurobehavioral impairments. Following the initial 15 days of PCB (2 mg/kg) exposure to rats, DRLC (50 mg/kg) was given orally for an additional 15 days, from days 16 to 30. Animals were assessed for behavioral effect such as changes in locomotion, cognition, and depression. Oxidative/nitrergic stress markers; antioxidant regulatory proteins paraoxonase-1 (PON-1), heme oxygenase-1 (HO-1), nuclear factor erythroid 2-related factor 2 (Nfr2), NADPH oxidase-1 (NOX-1), NAD(P)H quinone oxidoreductase 1 (NQO1), and neuroinflammation (NF-kβ, and TNF-α); and neurochemical metabolizing enzymes (acetylcholinesterase (AChE), monoamine oxidase-A and -B (MAO-A, MAO-B)) were carried out. The PCB-induced decline in locomotion, cognitive performance, and depressive-like features were reversed by DRLC. More specifically, PCB-induced oxidative and nitrergic stress, typified by reduced levels GSH, CAT, and SOD, accompanied by elevated MDA and nitrite were attenuated by DRLC. Additionally, DRLC restored the neuroinflammatory milieu indicated by decreased NF-kβ and TNF-α levels toward normal. Hyperactivities of AChE, MAO-A, MAO-B, PON-1, and NOX-1 levels as well as Nfr2, NQO1, and PON-1 due to PCB exposure were mitigated by DLRC. Our results suggest DRLC as a prospective neurotherapeutic agent against PCB-induced neurobehavioral impairments such as cognitive deficit and depressive-like feature through antioxidative and anti-nitrergic stress, anti-neuroinflammation, inhibition of brain metabolizing enzymes, and normalization of neurochemical homeostasis.
Collapse
Affiliation(s)
- Mega O Oyovwi
- Department of Human Physiology, Adeleke University, Ede, Osun State, Nigeria
| | - Benneth Ben-Azu
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria.
| | - Faith Y Falajiki
- Department of Human Physiology, Adeleke University, Ede, Osun State, Nigeria
| | - Oghenetega B Onome
- Department of Physiology, School of Basic Medical Science, Babcock University, Ilishan-Remo, Ogun State, Nigeria
| | - Rume A Rotu
- Department of Physiology, Faculty of Basic Medical Science, College of Health Sciences, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Rotu A Rotu
- Department of Industrial Safety and Environmental Management, School of Maritime Technology, Burutu, Delta State, Nigeria
| | - Abioye A Oyeleke
- Department of Physiology, Federal University Oye-Ekiti, Oye-Are Road, Oye-Ekiti, Ekiti State, Nigeria
| | - Godwin P Okwute
- Department of Physiology, School of Basic Medical Science, Babcock University, Ilishan-Remo, Ogun State, Nigeria
| | - Emuesiri G Moke
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| |
Collapse
|
21
|
Asghar S, Mushtaq N, Ahmed A, Anwar L, Munawar R, Akhtar S. Potential of Tryptamine Derivatives as Multi-Target Directed Ligands for Alzheimer's Disease: AChE, MAO-B, and COX-2 as Molecular Targets. Molecules 2024; 29:490. [PMID: 38276568 PMCID: PMC10820890 DOI: 10.3390/molecules29020490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/27/2024] Open
Abstract
Extensive research has been dedicated to develop compounds that can target multiple aspects of Alzheimer's disease (AD) treatment due to a growing understanding of AD's complex multifaceted nature and various interconnected pathological pathways. In the present study, a series of biological assays were performed to evaluate the potential of the tryptamine analogues synthesized earlier in our lab as multi-target-directed ligands (MTDLs) for AD. To assess the inhibitory effects of the compounds, various in vitro assays were employed. Three compounds, SR42, SR25, and SR10, displayed significant AChE inhibitory activity, with IC50 values of 0.70 µM, 0.17 µM, and 1.00 µM, respectively. These values superseded the standard drug donepezil (1.96 µM). In the MAO-B inhibition assay, SR42 (IC50 = 43.21 µM) demonstrated superior inhibitory effects as compared to tryptamine and other derivatives. Moreover, SR22 (84.08%), SR24 (79.30%), and SR42 (75.16%) exhibited notable percent inhibition against the COX-2 enzyme at a tested concentration of 100 µM. To gain insights into their binding mode and to validate the biological results, molecular docking studies were conducted. Overall, the results suggest that SR42, a 4,5 nitro-benzoyl derivative of tryptamine, exhibited significant potential as a MTDL and warrants further investigation for the development of anti-Alzheimer agents.
Collapse
Affiliation(s)
- Saira Asghar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hamdard University, Karachi 74600, Pakistan;
| | - Nousheen Mushtaq
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan;
| | - Ahsaan Ahmed
- Institute of Pharmaceutical Sciences, Jinnah Sindh Medical University, Karachi 75510, Pakistan;
| | - Laila Anwar
- Department of Pharmacology, Faculty of Pharmacy, Hamdard University, Karachi 74600, Pakistan;
| | - Rabya Munawar
- Department of Pharmaceutical Chemistry, Dow College of Pharmacy, Dow University of Health Sciences, Karachi 74200, Pakistan;
| | - Shamim Akhtar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hamdard University, Karachi 74600, Pakistan;
| |
Collapse
|
22
|
Agrawal N, Bhardwaj A, Singh S, Goyal A, Gaurav A. Natural Products as Monoamine Oxidase Inhibitors: Potential Agents for Neurological Disorders. Comb Chem High Throughput Screen 2024; 27:701-714. [PMID: 37165491 DOI: 10.2174/1386207326666230510141008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 05/12/2023]
Abstract
The role of medicinal plants has been advantageous due to their manifestation through various cellular and molecular mechanisms. Inhibition of the monoamine oxidase enzyme is suspected to be a highly effective treatment for various neurological illnesses like Alzheimer's disease, Parkinson's disease, depression, social phobia, and panic disorders. The study of phytochemicals and plant extracts used as a traditional source of medication revealed that they possess the vast potential for monoamine oxidase inhibition. Thus, the article focuses on the potential use of plant extracts and phytochemicals as sources of novel MAO inhibitors for treating neurological disorders. Exhaustive literature search revealed that a variety of phytochemicals from the categories such as flavonoids, alkaloids, glycosides, alkyl phenyl ketones, coumarin derivatives and essential oils have displayed potential MAO inhibition. This review highlights the progress made in the discovery and development of plant-based MAO inhibitors and aims to provide medicinal chemists with an overview of this information to aid in the development of clinically viable drugs.
Collapse
Affiliation(s)
- Neetu Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | | | - Sonia Singh
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Anand Gaurav
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
23
|
Skibska A, Perlikowska R. Natural Plant Materials as a Source of Neuroprotective Peptides. Curr Med Chem 2024; 31:5027-5045. [PMID: 37403392 DOI: 10.2174/0929867331666230703145043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 07/06/2023]
Abstract
In many circumstances, some crucial elements of the neuronal defense system fail, slowly leading to neurodegenerative diseases. Activating this natural process by administering exogenous agents to counteract unfavourable changes seems promising. Therefore, looking for neuroprotective therapeutics, we have to focus on compounds that inhibit the primary mechanisms leading to neuronal injuries, e.g., apoptosis, excitotoxicity, oxidative stress, and inflammation. Among many compounds considered neuroprotective agents, protein hydrolysates and peptides derived from natural materials or their synthetic analogues are good candidates. They have several advantages, such as high selectivity and biological activity, a broad range of targets, and high safety profile. This review aims to provide biological activities, the mechanism of action and the functional properties of plant-derived protein hydrolysates and peptides. We focused on their significant role in human health by affecting the nervous system and having neuroprotective and brain-boosting properties, leading to memory and cognitive improving activities. We hope our observation may guide the evaluation of novel peptides with potential neuroprotective effects. Research into neuroprotective peptides may find application in different sectors as ingredients in functional foods or pharmaceuticals to improve human health and prevent diseases.
Collapse
Affiliation(s)
- Agnieszka Skibska
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University, Lodz, Poland
| | - Renata Perlikowska
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University, Lodz, Poland
| |
Collapse
|
24
|
Mathew B, Oh JM, Parambi DGT, Sudevan ST, Kumar S, Kim H. Enzyme Inhibition Assays for Monoamine Oxidase. Methods Mol Biol 2024; 2761:329-336. [PMID: 38427248 DOI: 10.1007/978-1-0716-3662-6_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Monoamine oxidase (MAO) catalyzes the oxidative deamination of monoamines with two isoforms, namely, MAO-A and MAO-B, in mitochondrial outer membranes. These two types of MAO-A and MAO-B participate in changes in levels of neurotransmitter such as serotonin (5-hydroxytryptamine) and dopamine. Selective MAO-A inhibitors have been targeted for anti-depression treatment, while selective MAO-B inhibitors are targets of therapeutic agents for Alzheimer's disease and Parkinson's disease. For this reason, study on the development of MAO inhibitors has recently become important. Here, we describe methods of MAO activity assay, especially continuous spectrophotometric methods, which give relatively high accuracy. MAO-A and MAO-B can be assayed using kynuramine and benzylamine as substrates, respectively, at 316 nm and 250 nm, respectively, to measure their respective products, 4-hydroxyquinoline and benzaldehyde. Inhibition degree and pattern can be analyzed by using the Lineweaver-Burk and secondary plots in the presence of inhibitor, and reversibility of inhibitor can be determined by using the dialysis method.
Collapse
Affiliation(s)
- Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India.
| | - Jong Min Oh
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | | | - Sachithra Thazhathuveedu Sudevan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Sunil Kumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea.
| |
Collapse
|
25
|
Hafez DE, Dubiel M, La Spada G, Catto M, Reiner-Link D, Syu YT, Abdel-Halim M, Hwang TL, Stark H, Abadi AH. Novel benzothiazole derivatives as multitargeted-directed ligands for the treatment of Alzheimer's disease. J Enzyme Inhib Med Chem 2023; 38:2175821. [PMID: 36789662 PMCID: PMC9937012 DOI: 10.1080/14756366.2023.2175821] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD) are multifactorial with several different pathologic mechanisms. Therefore, it is assumed that multitargeted-directed ligands (MTDLs) which interact with different biological targets relevant to the diseases, might offer an improved therapeutic alternative than using the traditional "one-target, one-molecule" approach. Herein, we describe new benzothiazole-based derivatives as a privileged scaffold for histamine H3 receptor ligands (H3R). The most affine compound, the 3-(azepan-1-yl)propyloxy-linked benzothiazole derivative 4b, displayed a Ki value of 0.012 μM. The multitargeting potential of these H3R ligands towards AChE, BuChE and MAO-B enzymes was evaluated to yield compound 3s (pyrrolidin-1-yl-(6-((5-(pyrrolidin-1-yl)pentyl)oxy)benzo[d]thiazol-2-yl)methanone) as the most promising MTDL with a Ki value of 0.036 μM at H3R and IC50 values of 6.7 µM, 2.35 µM, and 1.6 µM towards AChE, BuChE, and MAO-B, respectively. These findings suggest that compound 3s can be a lead structure for developing new multi-targeting anti-AD agents.
Collapse
Affiliation(s)
- Donia E. Hafez
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Mariam Dubiel
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Duesseldorf, Germany
| | - Gabriella La Spada
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Marco Catto
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - David Reiner-Link
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Duesseldorf, Germany
| | - Yu-Ting Syu
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt,CONTACT Mohammad Abdel-Halim Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan,Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan,Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan,Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan,Tsong-Long Hwang Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Duesseldorf, Germany
| | - Ashraf H. Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt,Ashraf H. Abadi Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| |
Collapse
|
26
|
Iqbal D, Alsaweed M, Jamal QMS, Asad MR, Rizvi SMD, Rizvi MR, Albadrani HM, Hamed M, Jahan S, Alyenbaawi H. Pharmacophore-Based Screening, Molecular Docking, and Dynamic Simulation of Fungal Metabolites as Inhibitors of Multi-Targets in Neurodegenerative Disorders. Biomolecules 2023; 13:1613. [PMID: 38002295 PMCID: PMC10669353 DOI: 10.3390/biom13111613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Neurodegenerative disorders, such as Alzheimer's disease (AD), negatively affect the economic and psychological system. For AD, there is still a lack of disease-altering treatments and promising cures due to its complex pathophysiology. In this study, we computationally screened the natural database of fungal metabolites against three known therapeutic target proteins of AD. Initially, a pharmacophore-based, drug-likeness category was employed for screening, and it filtered the 14 (A-N) best hits out of 17,544 fungal metabolites. The 14 best hits were docked individually against GSK-3β, the NMDA receptor, and BACE-1 to investigate the potential of finding a multitarget inhibitor. We found that compounds B, F, and L were immuno-toxic, whereas E, H, I, and J had a higher LD50 dose (5000 mg/kg). Among the examined metabolites, the Bisacremine-C (compound I) was found to be the most active molecule against GSK-3β (ΔG: -8.7 ± 0.2 Kcal/mol, Ki: 2.4 × 106 M-1), NMDA (ΔG: -9.5 ± 0.1 Kcal/mol, Ki: 9.2 × 106 M-1), and BACE-1 (ΔG: -9.1 ± 0.2 Kcal/mol, Ki: 4.7 × 106 M-1). It showed a 25-fold higher affinity with GSK-3β, 6.3-fold higher affinity with NMDA, and 9.04-fold higher affinity with BACE-1 than their native ligands, respectively. Molecular dynamic simulation parameters, such as RMSD, RMSF, Rg, and SASA, all confirmed that the overall structures of the targeted enzymes did not change significantly after binding with Bisacremine-C, and the ligand remained inside the binding cavity in a stable conformation for most of the simulation time. The most significant hydrophobic contacts for the GSK-3β-Bisacremine-C complex are with ILE62, VAL70, ALA83, and LEU188, whereas GLN185 is significant for H-bonds. In terms of hydrophobic contacts, TYR184 and PHE246 are the most important, while SER180 is vital for H-bonds in NMDA-Bisacremine-C. THR232 is the most crucial for H-bonds in BACE-1-Bisacremine-C and ILE110-produced hydrophobic contacts. This study laid a foundation for further experimental validation and clinical trials regarding the biopotency of Bisacremine-C.
Collapse
Affiliation(s)
- Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Mohammed Alsaweed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (M.A.); (S.J.)
| | - Qazi Mohammad Sajid Jamal
- Department of Health Informatics, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia;
| | - Mohammad Rehan Asad
- Department of Basic Medical Science, College of Medicine, Majmaah University, Al Majmaah 11952, Saudi Arabia;
| | - Syed Mohd Danish Rizvi
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia;
| | - Moattar Raza Rizvi
- School of Allied Health Sciences, Manav Rachna International Institute of Research & Studies (MRIIRS), Faridabad 121001, India;
| | - Hind Muteb Albadrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia;
| | - Munerah Hamed
- Department of Pathology, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Sadaf Jahan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (M.A.); (S.J.)
| | - Hadeel Alyenbaawi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (M.A.); (S.J.)
| |
Collapse
|
27
|
Singh A, Singh K, Kaur J, Kaur R, Sharma A, Kaur J, Kaur U, Chadha R, Bedi PMS. Pathogenesis of Alzheimer's Disease and Diversity of 1,2,3-Triazole Scaffold in Drug Development: Design Strategies, Structural Insights, and Therapeutic Potential. ACS Chem Neurosci 2023; 14:3291-3317. [PMID: 37683129 DOI: 10.1021/acschemneuro.3c00393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023] Open
Abstract
Alzheimer's disease is a most prevalent form of dementia all around the globe and currently poses a significant challenge to the healthcare system. Currently available drugs only slow the progression of this disease rather than provide proper containment. Identification of multiple targets responsible for this disease in the last three decades established it as a multifactorial neurodegenerative disorder that needs novel multifunctional agents for its management and the possible reason for the failure of currently available single target clinical drugs. 1,2,3-Triazole is a miraculous nucleus in medicinal chemistry and the first choice for development of multifunctional hybrid molecules. Apart from that, it is an integral component of various drugs in clinical trials as well as in clinical practice. This review is focused on the pathogenesis of Alzheimer's disease and 1,2,3-triazole containing derivatives developed in recent decades as potential anti-Alzheimer's agents. The review will provide (A) precise insight of various established targets of Alzheimer's disease including cholinergic, amyloid, tau, monoamine oxidases, glutamate, calcium, and reactive oxygen species hypothesis and (B) design hypothesis, structure-activity relationships, and pharmacological outcomes of 1,2,3-triazole containing multifunctional anti-Alzheimer's agents. This review will provide a baseline for various research groups working on Alzheimer's drug development in designing potent, safer, and effective multifunctional anti-Alzheimer's candidates of the future.
Collapse
Affiliation(s)
- Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Karanvir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Jashandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Ramanpreet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Aman Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Jasleen Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Uttam Kaur
- University School of Business, Chandigarh University, Mohali, Punjab 140413, India
| | - Renu Chadha
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Preet Mohinder Singh Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
- Drug and Pollution Testing Laboratory, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| |
Collapse
|
28
|
Paolino M, de Candia M, Purgatorio R, Catto M, Saletti M, Tondo AR, Nicolotti O, Cappelli A, Brizzi A, Mugnaini C, Corelli F, Altomare CD. Investigation on Novel E/Z 2-Benzylideneindan-1-One-Based Photoswitches with AChE and MAO-B Dual Inhibitory Activity. Molecules 2023; 28:5857. [PMID: 37570828 PMCID: PMC10421270 DOI: 10.3390/molecules28155857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The multitarget therapeutic strategy, as opposed to the more traditional 'one disease-one target-one drug', may hold promise in treating multifactorial neurodegenerative syndromes, such as Alzheimer's disease (AD) and related dementias. Recently, combining a photopharmacology approach with the multitarget-directed ligand (MTDL) design strategy, we disclosed a novel donepezil-like compound, namely 2-(4-((diethylamino)methyl)benzylidene)-5-methoxy-2,3-dihydro-1H-inden-1-one (1a), which in the E isomeric form (and about tenfold less in the UV-B photo-induced isomer Z) showed the best activity as dual inhibitor of the AD-related targets acetylcholinesterase (AChE) and monoamine oxidase B (MAO-B). Herein, we investigated further photoisomerizable 2-benzylideneindan-1-one analogs 1b-h with the unconjugated tertiary amino moiety bearing alkyls of different bulkiness and lipophilicity. For each compound, the thermal stable E geometric isomer, along with the E/Z mixture as produced by UV-B light irradiation in the photostationary state (PSS, 75% Z), was investigated for the inhibition of human ChEs and MAOs. The pure E-isomer of the N-benzyl(ethyl)amino analog 1h achieved low nanomolar AChE and high nanomolar MAO-B inhibition potencies (IC50s 39 and 355 nM, respectively), whereas photoisomerization to the Z isomer (75% Z in the PSS mixture) resulted in a decrease (about 30%) of AChE inhibitory potency, and not in the MAO-B one. Molecular docking studies were performed to rationalize the different E/Z selectivity of 1h toward the two target enzymes.
Collapse
Affiliation(s)
- Marco Paolino
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, I-53100 Siena, Italy; (M.P.); (M.S.); (A.C.); (A.B.); (C.M.); (F.C.)
| | - Modesto de Candia
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, I-70125 Bari, Italy; (M.d.C.); (R.P.); (M.C.); (A.R.T.); (O.N.)
| | - Rosa Purgatorio
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, I-70125 Bari, Italy; (M.d.C.); (R.P.); (M.C.); (A.R.T.); (O.N.)
| | - Marco Catto
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, I-70125 Bari, Italy; (M.d.C.); (R.P.); (M.C.); (A.R.T.); (O.N.)
| | - Mario Saletti
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, I-53100 Siena, Italy; (M.P.); (M.S.); (A.C.); (A.B.); (C.M.); (F.C.)
| | - Anna Rita Tondo
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, I-70125 Bari, Italy; (M.d.C.); (R.P.); (M.C.); (A.R.T.); (O.N.)
| | - Orazio Nicolotti
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, I-70125 Bari, Italy; (M.d.C.); (R.P.); (M.C.); (A.R.T.); (O.N.)
| | - Andrea Cappelli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, I-53100 Siena, Italy; (M.P.); (M.S.); (A.C.); (A.B.); (C.M.); (F.C.)
| | - Antonella Brizzi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, I-53100 Siena, Italy; (M.P.); (M.S.); (A.C.); (A.B.); (C.M.); (F.C.)
| | - Claudia Mugnaini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, I-53100 Siena, Italy; (M.P.); (M.S.); (A.C.); (A.B.); (C.M.); (F.C.)
| | - Federico Corelli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, I-53100 Siena, Italy; (M.P.); (M.S.); (A.C.); (A.B.); (C.M.); (F.C.)
| | - Cosimo D. Altomare
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, I-70125 Bari, Italy; (M.d.C.); (R.P.); (M.C.); (A.R.T.); (O.N.)
| |
Collapse
|
29
|
Guzmán-López EG, Reina M, Hernández-Ayala LF, Galano A. Rational Design of Multifunctional Ferulic Acid Derivatives Aimed for Alzheimer's and Parkinson's Diseases. Antioxidants (Basel) 2023; 12:1256. [PMID: 37371986 DOI: 10.3390/antiox12061256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Ferulic acid has numerous beneficial effects on human health, which are frequently attributed to its antioxidant behavior. In this report, many of them are reviewed, and 185 new ferulic acid derivatives are computationally designed using the CADMA-Chem protocol. Consequently, their chemical space was sampled and evaluated. To that purpose, selection and elimination scores were used, which are built from a set of descriptors accounting for ADME properties, toxicity, and synthetic accessibility. After the first screening, 12 derivatives were selected and further investigated. Their potential role as antioxidants was predicted from reactivity indexes directly related to the formal hydrogen atom transfer and the single electron transfer mechanisms. The best performing molecules were identified by comparisons with the parent molecule and two references: Trolox and α-tocopherol. Their potential as polygenic neuroprotectors was investigated through the interactions with enzymes directly related to the etiologies of Parkinson's and Alzheimer's diseases. These enzymes are acetylcholinesterase, catechol-O-methyltransferase, and monoamine oxidase B. Based on the obtained results, the most promising candidates (FA-26, FA-118, and FA-138) are proposed as multifunctional antioxidants with potential neuroprotective effects. The findings derived from this investigation are encouraging and might promote further investigations on these molecules.
Collapse
Affiliation(s)
- Eduardo Gabriel Guzmán-López
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Alcaldía Iztapalapa, Mexico City 09310, Mexico
| | - Miguel Reina
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Luis Felipe Hernández-Ayala
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Alcaldía Iztapalapa, Mexico City 09310, Mexico
| | - Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Alcaldía Iztapalapa, Mexico City 09310, Mexico
| |
Collapse
|
30
|
Hassan AHE, Kim HJ, Park K, Choi Y, Moon S, Lee CH, Kim YJ, Cho SB, Gee MS, Lee D, Park JH, Lee JK, Ryu JH, Park KD, Lee YS. Synthesis and Biological Evaluation of O6-Aminoalkyl-Hispidol Analogs as Multifunctional Monoamine Oxidase-B Inhibitors towards Management of Neurodegenerative Diseases. Antioxidants (Basel) 2023; 12:antiox12051033. [PMID: 37237899 DOI: 10.3390/antiox12051033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Oxidative catabolism of monoamine neurotransmitters by monoamine oxidases (MAOs) produces reactive oxygen species (ROS), which contributes to neuronal cells' death and also lowers monoamine neurotransmitter levels. In addition, acetylcholinesterase activity and neuroinflammation are involved in neurodegenerative diseases. Herein, we aim to achieve a multifunctional agent that inhibits the oxidative catabolism of monoamine neurotransmitters and, hence, the detrimental production of ROS while enhancing neurotransmitter levels. Such a multifunctional agent might also inhibit acetylcholinesterase and neuroinflammation. To meet this end goal, a series of aminoalkyl derivatives of analogs of the natural product hispidol were designed, synthesized, and evaluated against both monoamine oxidase-A (MAO-A) and monoamine oxidase-B (MAO-B). Promising MAO inhibitors were further checked for the inhibition of acetylcholinesterase and neuroinflammation. Among them, compounds 3aa and 3bc were identified as potential multifunctional molecules eliciting submicromolar selective MAO-B inhibition, low-micromolar AChE inhibition, and the inhibition of microglial PGE2 production. An evaluation of their effects on memory and cognitive impairments using a passive avoidance test confirmed the in vivo activity of compound 3bc, which showed comparable activity to donepezil. In silico molecular docking provided insights into the MAO and acetylcholinesterase inhibitory activities of compounds 3aa and 3bc. These findings suggest compound 3bc as a potential lead for the further development of agents against neurodegenerative diseases.
Collapse
Affiliation(s)
- Ahmed H E Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyeon Jeong Kim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Keontae Park
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Yeonwoo Choi
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Suyeon Moon
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Chae Hyeon Lee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Yeon Ju Kim
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Soo Bin Cho
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Min Sung Gee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Danbi Lee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Jong-Hyun Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Jong Kil Lee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Jong Hoon Ryu
- Department of Oriental Pharmaceutical Science College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ki Duk Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Yong Sup Lee
- Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| |
Collapse
|
31
|
Nguyen TH, Wang SL, Nguyen VB. Microorganism-Derived Molecules as Enzyme Inhibitors to Target Alzheimer's Diseases Pathways. Pharmaceuticals (Basel) 2023; 16:ph16040580. [PMID: 37111337 PMCID: PMC10146315 DOI: 10.3390/ph16040580] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia. It increases the risk of other serious diseases and causes a huge impact on individuals, families, and socioeconomics. AD is a complex multifactorial disease, and current pharmacological therapies are largely based on the inhibition of enzymes involved in the pathogenesis of AD. Natural enzyme inhibitors are the potential sources for targeting AD treatment and are mainly collected from plants, marine organisms, or microorganisms. In particular, microbial sources have many advantages compared to other sources. While several reviews on AD have been reported, most of these previous reviews focused on presenting and discussing the general theory of AD or overviewing enzyme inhibitors from various sources, such as chemical synthesis, plants, and marine organisms, while only a few reviews regarding microbial sources of enzyme inhibitors against AD are available. Currently, multi-targeted drug investigation is a new trend for the potential treatment of AD. However, there is no review that has comprehensively discussed the various kinds of enzyme inhibitors from the microbial source. This review extensively addresses the above-mentioned aspect and simultaneously updates and provides a more comprehensive view of the enzyme targets involved in the pathogenesis of AD. The emerging trend of using in silico studies to discover drugs concerning AD inhibitors from microorganisms and perspectives for further experimental studies are also covered here.
Collapse
Affiliation(s)
- Thi Hanh Nguyen
- Doctoral Program in Applied Sciences, Tamkang University, New Taipei City 25137, Taiwan
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan
| | - San-Lang Wang
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan
| | - Van Bon Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam
| |
Collapse
|
32
|
Sharma P, Singh M. An ongoing journey of chalcone analogues as single and multi-target ligands in the field of Alzheimer's disease: A review with structural aspects. Life Sci 2023; 320:121568. [PMID: 36925061 DOI: 10.1016/j.lfs.2023.121568] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023]
Abstract
Alzheimer's disease (AD) is a chronic and irreversible neurodegenerative disorder with progressive dementia and cognitive impairment. AD poses severe health challenge in elderly people and become one of the leading causes of death worldwide. It possesses complex pathophysiology with several hypotheses (cholinergic hypothesis, amyloid hypothesis, tau hypothesis, oxidative stress, mitochondrial dysfunction etc.). Several attempts have been made for the management of multifactorial AD. Acetylcholinesterase is the only target has been widely explored in the management of AD to the date. The current review set forth the chalcone based natural, semi-synthetic and synthetic compounds in the search of potential anti-Alzheimer's agents. The main highlights of current review emphasizes on chalcone target different enzymes and pathways like Acetylcholinesterase, β-secretase (BACE1), tau proteins, MAO, free radicals, Advanced glycation end Products (AGEs) etc. and their structure activity relationships contributing in the inhibition of above mentioned various targets of AD.
Collapse
Affiliation(s)
- Pratibha Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| |
Collapse
|
33
|
Ailioaie LM, Ailioaie C, Litscher G. Photobiomodulation in Alzheimer's Disease-A Complementary Method to State-of-the-Art Pharmaceutical Formulations and Nanomedicine? Pharmaceutics 2023; 15:916. [PMID: 36986776 PMCID: PMC10054386 DOI: 10.3390/pharmaceutics15030916] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Alzheimer's disease (AD), as a neurodegenerative disorder, usually develops slowly but gradually worsens. It accounts for approximately 70% of dementia cases worldwide, and is recognized by WHO as a public health priority. Being a multifactorial disease, the origins of AD are not satisfactorily understood. Despite huge medical expenditures and attempts to discover new pharmaceuticals or nanomedicines in recent years, there is no cure for AD and not many successful treatments are available. The current review supports introspection on the latest scientific results from the specialized literature regarding the molecular and cellular mechanisms of brain photobiomodulation, as a complementary method with implications in AD. State-of-the-art pharmaceutical formulations, development of new nanoscale materials, bionanoformulations in current applications and perspectives in AD are highlighted. Another goal of this review was to discover and to speed transition to completely new paradigms for the multi-target management of AD, to facilitate brain remodeling through new therapeutic models and high-tech medical applications with light or lasers in the integrative nanomedicine of the future. In conclusion, new insights from this interdisciplinary approach, including the latest results from photobiomodulation (PBM) applied in human clinical trials, combined with the latest nanoscale drug delivery systems to easily overcome protective brain barriers, could open new avenues to rejuvenate our central nervous system, the most fascinating and complex organ. Picosecond transcranial laser stimulation could be successfully used to cross the blood-brain barrier together with the latest nanotechnologies, nanomedicines and drug delivery systems in AD therapy. Original, smart and targeted multifunctional solutions and new nanodrugs may soon be developed to treat AD.
Collapse
Affiliation(s)
- Laura Marinela Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania
| | - Constantin Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania
| | - Gerhard Litscher
- President of ISLA (International Society for Medical Laser Applications), Research Unit of Biomedical Engineering in Anesthesia and Intensive Care Medicine, Research Unit for Complementary and Integrative Laser Medicine, Traditional Chinese Medicine (TCM) Research Center Graz, Department of Anesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 39, 8036 Graz, Austria
| |
Collapse
|
34
|
Neha, Parvez S. Emerging therapeutics agents and recent advances in drug repurposing for Alzheimer's disease. Ageing Res Rev 2023; 85:101815. [PMID: 36529440 DOI: 10.1016/j.arr.2022.101815] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD) is a multivariate and diversified disease and affects the most sensitive areas of the brain, the cerebral cortex, and the hippocampus. AD is a progressive age-related neurodegenerative disease most often associated with memory deficits and cognition that get more worsen over time. The central theory on the pathophysiological hallmark features of AD is characterized by the accumulation of amyloid β (Aβ) peptides, also associated with tau proteins (τ) dysfunctioning which leads to distorted microtubular structure, affects the cholinergic system, and mitochondrial biogenesis. This review emphasizes how simple it is to find novel treatments for AD and focuses on several recently developed medications through repurposing that can speed up traditional drug development.
Collapse
Affiliation(s)
- Neha
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
35
|
( S)- N-Benzyl-1-phenyl-3,4-dihydroisoqunoline-2(1 H)-carboxamide Derivatives, Multi-Target Inhibitors of Monoamine Oxidase and Cholinesterase: Design, Synthesis, and Biological Activity. Molecules 2023; 28:molecules28041654. [PMID: 36838642 PMCID: PMC9967051 DOI: 10.3390/molecules28041654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
A series of (S)-1-phenyl-3,4-dihydroisoquinoline-2(1H)-carboxamide derivatives was synthesized and evaluated for inhibitory activity against monoamine oxidase (MAO)-A and-B, acetylcholine esterase (AChE), and butyrylcholine esterase (BChE). Four compounds (2i, 2p, 2t, and 2v) showed good inhibitory activity against both MAO-A and MAO-B, and two compounds (2d and 2j) showed selective inhibitory activity against MAO-A, with IC50 values of 1.38 and 2.48 µM, respectively. None of the compounds showed inhibitory activity against AChE; however, 12 compounds showed inhibitory activity against BChE. None of the active compounds showed cytotoxicity against L929cells. Molecular docking revealed several important interactions between the active analogs and amino acid residues of the protein receptors. This research paves the way for further study aimed at designing MAO and ChE inhibitors for the treatment of depression and neurodegenerative disorders.
Collapse
|
36
|
Evsiukova VS, Arefieva AB, Sorokin IE, Kulikov AV. Age-Related Alterations in the Level and Metabolism of Serotonin in the Brain of Males and Females of Annual Turquoise Killifish ( Nothobranchius furzeri). Int J Mol Sci 2023; 24:ijms24043185. [PMID: 36834593 PMCID: PMC9959878 DOI: 10.3390/ijms24043185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
The annual turquoise killifish (Nothobranchius furzeri) is a laboratory model organism for neuroscience of aging. In the present study, we investigated for the first time the levels of serotonin and its main metabolite, 5-hydroxyindoleacetic acid, as well as the activities of the key enzymes of its synthesis, tryptophan hydroxylases, and degradation, monoamine oxidase, in the brains of 2-, 4- and 7-month-old male and female N. furzeri. The marked effect of age on the body mass and the level of serotonin, as well as the activities of tryptophan hydroxylases and monoamine oxidase in the brain of killifish were revealed. The level of serotonin decreased in the brain of 7-month-old males and females compared with 2-month-old ones. A significant decrease in the tryptophan hydroxylase activity and an increase in the monoamine oxidase activity in the brain of 7-month-old females compared to 2-month-old females was shown. These findings agree with the age-related alterations in expression of the genes encoding tryptophan hydroxylases and monoamine oxidase. N. furzeri is a suitable model with which to study the fundamental problems of age-related changes of the serotonin system in the brain.
Collapse
Affiliation(s)
- Valentina S. Evsiukova
- Department of Psychoneuropharmacology, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Alla B. Arefieva
- Department of Genetic Collections of Neural Disorders, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Ivan E. Sorokin
- Department of Monogenic Forms of Human Common Disorders, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Alexander V. Kulikov
- Department of Genetic Collections of Neural Disorders, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Correspondence: ; Tel.: +7-3833636187
| |
Collapse
|
37
|
Bubley A, Erofeev A, Gorelkin P, Beloglazkina E, Majouga A, Krasnovskaya O. Tacrine-Based Hybrids: Past, Present, and Future. Int J Mol Sci 2023; 24:ijms24021717. [PMID: 36675233 PMCID: PMC9863713 DOI: 10.3390/ijms24021717] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder which is characterized by β-amyloid (Aβ) aggregation, τ-hyperphosphorylation, and loss of cholinergic neurons. The other important hallmarks of AD are oxidative stress, metal dyshomeostasis, inflammation, and cell cycle dysregulation. Multiple therapeutic targets may be proposed for the development of anti-AD drugs, and the "one drug-multiple targets" strategy is of current interest. Tacrine (THA) was the first clinically approved cholinesterase (ChE) inhibitor, which was withdrawn due to high hepatotoxicity. However, its high potency in ChE inhibition, low molecular weight, and simple structure make THA a promising scaffold for developing multi-target agents. In this review, we summarized THA-based hybrids published from 2006 to 2022, thus providing an overview of strategies that have been used in drug design and approaches that have resulted in significant cognitive improvements and reduced hepatotoxicity.
Collapse
Affiliation(s)
- Anna Bubley
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Alexaner Erofeev
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
| | - Peter Gorelkin
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
| | - Elena Beloglazkina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Alexander Majouga
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
| | - Olga Krasnovskaya
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
- Correspondence:
| |
Collapse
|
38
|
Mathew A, Balaji E V, Pai SRK, Kishore A, Pai V, Pemmireddy R, K S C. Current Drug Targets in Alzheimer's Associated Memory Impairment: A Comprehensive Review. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:255-275. [PMID: 35366787 DOI: 10.2174/1871527321666220401124719] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/17/2021] [Accepted: 01/19/2022] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia among geriatrics. It is a progressive, degenerative neurologic disorder that causes memory and cognition loss. The accumulation of amyloid fibrils and neurofibrillary tangles in the brain of AD patients is a distinguishing feature of the disease. Therefore, most of the current therapeutic goals are targeting inhibition of beta-amyloid synthesis and aggregation as well as tau phosphorylation and aggregation. There is also a loss of the cholinergic neurons in the basal forebrain, and first-generation therapeutic agents were primarily focused on compensating for this loss of neurons. However, cholinesterase inhibitors can only alleviate cognitive symptoms of AD and cannot reduce the progression of the disease. Understanding the molecular and cellular changes associated with AD pathology has advanced significantly in recent decades. The etiology of AD is complex, with a substantial portion of sporadic AD emerging from unknown reasons and a lesser proportion of early-onset familial AD (FAD) caused by a mutation in several genes, such as the amyloid precursor protein (APP), presenilin 1 (PS1), and presenilin 2 (PS2) genes. Hence, efforts are being made to discover novel strategies for these targets for AD therapy. A new generation of AChE and BChE inhibitors is currently being explored and evaluated in human clinical trials for AD symptomatic treatment. Other approaches for slowing the progression of AD include serotonergic modulation, H3 receptor antagonism, phosphodiesterase, COX-2, and MAO-B inhibition. The present review provides an insight into the possible therapeutic strategies and their molecular mechanisms, enlightening the perception of classical and future treatment approaches.
Collapse
Affiliation(s)
- Anna Mathew
- Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Vignesh Balaji E
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Sreedhara Ranganath K Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Anoop Kishore
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Vasudev Pai
- Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Ramadevi Pemmireddy
- Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Chandrashekar K S
- Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| |
Collapse
|
39
|
Shah AJ, Mohi-Ud-Din R, Sabreen S, Wani TU, Jan R, Javed MN, Mir PA, Mir RH, Masoodi MH. Clinical Biomarkers and Novel Drug Targets to Cut Gordian Knots of Alzheimer's Disease. Curr Mol Pharmacol 2023; 16:254-279. [PMID: 36056834 DOI: 10.2174/1874467215666220903095837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/03/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Alzheimer's disease (AD), the primary cause of dementia, escalating worldwide, has no proper diagnosis or effective treatment. Neuronal cell death and impairment of cognitive abilities, possibly triggered by several brain mechanisms, are the most significant characteristic of this disorder. METHODS A multitude of pharmacological targets have been identified for potential drug design against AD. Although many advances in treatment strategies have been made to correct various abnormalities, these often exhibit limited clinical significance because this disease aggressively progresses into different regions of the brain, causing severe deterioration. RESULTS These biomarkers can be game-changers for early detection and timely monitoring of such disorders. CONCLUSION This review covers clinically significant biomarkers of AD for precise and early monitoring of risk factors and stages of this disease, the potential site of action and novel targets for drugs, and pharmacological approaches to clinical management.
Collapse
Affiliation(s)
- Abdul Jalil Shah
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, University of Kashmir, Hazratbal, Srinagar- 190006, Kashmir, India
| | - Roohi Mohi-Ud-Din
- Department of General Medicine, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar- 190011, Jammu and Kashmir, India
| | - Saba Sabreen
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, University of Kashmir, Hazratbal, Srinagar- 190006, Kashmir, India
| | - Taha Umair Wani
- Department of Pharmaceutical Sciences, Pharmaceutics Lab, School of Applied Sciences and Technology, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir India
| | - Rafia Jan
- Defence Research and Development Organization (DRDO), Hospital, Khonmoh, Srinagar 190001, Jammu & Kashmir, India
| | - Md Noushad Javed
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmaceutics, KR Mangalam University, Gurugram, India
| | - Prince Ahad Mir
- Khalsa College of Pharmacy, G.T. Road, Amritsar-143002, Punjab, India
| | - Reyaz Hassan Mir
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, University of Kashmir, Hazratbal, Srinagar- 190006, Kashmir, India
- Pharmaceutical Chemistry Division, Chandigarh College of Pharmacy, Mohali, Punjab 140307, India
| | - Mubashir Hussain Masoodi
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, University of Kashmir, Hazratbal, Srinagar- 190006, Kashmir, India
| |
Collapse
|
40
|
Current Pharmacotherapy and Multi-Target Approaches for Alzheimer's Disease. Pharmaceuticals (Basel) 2022; 15:ph15121560. [PMID: 36559010 PMCID: PMC9781592 DOI: 10.3390/ph15121560] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/26/2022] [Accepted: 11/27/2022] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by decreased synaptic transmission and cerebral atrophy with appearance of amyloid plaques and neurofibrillary tangles. Cognitive, functional, and behavioral alterations are commonly associated with the disease. Different pathophysiological pathways of AD have been proposed, some of which interact and influence one another. Current treatment for AD mainly involves the use of therapeutic agents to alleviate the symptoms in AD patients. The conventional single-target treatment approaches do not often cause the desired effect in the disease due to its multifactorial origin. Thus, multi-target strategies have since been undertaken, which aim to simultaneously target multiple targets involved in the development of AD. In this review, we provide an overview of the pathogenesis of AD and the current drug therapies for the disease. Additionally, rationales of the multi-target approaches and examples of multi-target drugs with pharmacological actions against AD are also discussed.
Collapse
|
41
|
Wu T, Lin D, Cheng Y, Jiang S, Riaz MW, Fu N, Mou C, Ye M, Zheng Y. Amyloid Cascade Hypothesis for the Treatment of Alzheimer's Disease: Progress and Challenges. Aging Dis 2022; 13:1745-1758. [PMID: 36465173 PMCID: PMC9662281 DOI: 10.14336/ad.2022.0412] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/12/2022] [Indexed: 07/29/2023] Open
Abstract
The amyloid cascade hypothesis has always been a research focus in the therapeutic field of Alzheimer's disease (AD) since it was put forward. Numerous researchers attempted to find drugs for AD treatment based on this hypothesis. To promote the research of anti-AD drugs development, the current hypothesis and pathogenesis were reviewed with expounding of β-amyloid generation from its precursor protein and related transformations. Meanwhile, the present drug development strategies aimed at each stage in this hypothesis were also summarized. Several strategies especially immunotherapy showed the optimistic results in clinical trials, but only a small percentage of them eventually succeeded. In this review, we also tried to point out some common problems of drug development in preclinical and clinical studies which might be settled through multidisciplinary cooperation as well as the understanding that reinforces the amyloid cascade hypothesis.
Collapse
Affiliation(s)
- Tong Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Ding Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Yaqian Cheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Senze Jiang
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Muhammad Waheed Riaz
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Nina Fu
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Chenhao Mou
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Menglu Ye
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Ying Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
42
|
Tung BT, Hang TTT, Kim NB, Nhung NH, Linh VK, Thu DK. Molecular docking and molecular dynamics approach to identify potential compounds in Huperzia squarrosa for treating Alzheimer's disease. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2022; 19:955-965. [PMID: 35621378 DOI: 10.1515/jcim-2021-0462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES Alzheimer's disease (AD) is a lingering progressive neurodegenerative disorder that causes patients to lose cognitive function. The enzyme Acetylcholinesterase (AChE), Butyrylcholinesterase (BuChE), Monoamine oxidase A (MAO A), Beta-secretase cleavage enzyme (BACE 1) and N-methyl-D-aspartate (NMDA) receptors play an important role in the pathogenesis of Alzheimer's disease. Therefore, inhibiting enzymes is an effective method to treat Alzheimer disease. In this study, we evaluated in silico inhibitory effects of AChE, BuChE, MAO A, BACE 1 and NMDA enzyme of Huperzia squarrosa's compounds. METHODS The three-dimensional (3D) of N-methyl-D-aspartate receptor (PDB ID: 1PBQ), enzyme β-secretase 1 (PDB ID: 4X7I), enzyme monoamine oxidase A (PDB ID: 2Z5X), enzyme butyrylcholinesterase (PDB ID: 4BDS) and enzyme acetylcholinesterase (PDB ID: 1EVE) were retrieved from the Protein Data Bank RCSB. Molecular docking was done by Autodock vina software and molecular dynamics (MD) simulation of the ligand-protein complex with the least binding energy pose was perfomed by MOE. Lipinski Rule of Five is used to compare compounds with drug-like and non-drug-like properties. Pharmacokinetic parameters of potential compounds were evaluated using the pkCSM tool. RESULTS Based on previous publication of Huperzia squarrosa, we have collected 15 compounds. In these compounds, huperzine B, huperzinine, lycoposerramine U N-oxide, 12-epilycodine N-oxide showed strongly inhibit the five AChE, BuChE, MAO A, BACE 1 and NMDA targets for Alzheimer's treatment. Lipinski rule of five and ADMET predict have shown that four above compounds have drug-likeness properties, good absorption ability and cross the blood-brain barrier, which have the most potential to become drugs for the treatment of Alzheimer's in the future. Furthermore, MD study showed that huperzine B and huperzinine have stability of the docking pose with NMDA target. CONCLUSIONS In this study, we found two natural compounds in Huperzia squarrosa including Huperzine B and Huperzinine have drug-likeness properties, good absorption ability and cross the blood-brain barrier, which have potential to become drugs for the treatment of Alzheimer's in the future.
Collapse
Affiliation(s)
- Bui Thanh Tung
- Department of Pharmacology, University of Medicine and Pharmacy, Vietnam National University Hanoi, Ha Noi, Vietnam
| | - Ta Thi Thu Hang
- Department of Pharmacology, University of Medicine and Pharmacy, Vietnam National University Hanoi, Ha Noi, Vietnam
| | - Nguyen Bao Kim
- Department of Pharmacology, University of Medicine and Pharmacy, Vietnam National University Hanoi, Ha Noi, Vietnam
| | - Nguyen Hong Nhung
- Department of Pharmacology, University of Medicine and Pharmacy, Vietnam National University Hanoi, Ha Noi, Vietnam
| | - Vu Khanh Linh
- Department of Pharmacology, University of Medicine and Pharmacy, Vietnam National University Hanoi, Ha Noi, Vietnam
| | - Dang Kim Thu
- Department of Pharmacology, University of Medicine and Pharmacy, Vietnam National University Hanoi, Ha Noi, Vietnam
| |
Collapse
|
43
|
Keuler T, Lemke C, Elsinghorst PW, Iriepa I, Chioua M, Martínez-Grau MA, Beadle CD, Vetman T, López-Muñoz F, Wille T, Bartz U, Deuther-Conrad W, Marco-Contelles J, Gütschow M. The Chemotype of Chromanones as a Privileged Scaffold for Multineurotarget Anti-Alzheimer Agents. ACS Pharmacol Transl Sci 2022; 5:1097-1108. [PMID: 36407962 PMCID: PMC9667544 DOI: 10.1021/acsptsci.2c00097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Indexed: 11/28/2022]
Abstract
The multifactorial nature of Alzheimer's disease necessitates the development of agents able to interfere with different relevant targets. A series of 22 tailored chromanones was conceptualized, synthesized, and subjected to biological evaluation. We identified one representative bearing a linker-connected azepane moiety (compound 19) with balanced pharmacological properties. Compound 19 exhibited inhibitory activities against human acetyl-, butyrylcholinesterase and monoamine oxidase-B, as well as high affinity to both the σ1 and σ2 receptors. Our study provides a framework for the development of further chromanone-based multineurotarget agents.
Collapse
Affiliation(s)
- Tim Keuler
- Pharmaceutical
Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Carina Lemke
- Pharmaceutical
Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Paul W. Elsinghorst
- Pharmaceutical
Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
- Central
Institute of the Bundeswehr Medical Service Munich, Ingolstädter Landstraße 102, 85748 Garching Germany
| | - Isabel Iriepa
- Universidad
de Alcalá, Departamento de Química
Orgánica y Química Inorgánica, Ctra. Madrid-Barcelona, 28871 Alcalá de Henares, Madrid España
| | - Mourad Chioua
- Laboratory
of Medicinal Chemistry, IQOG, CSIC, C/Juan de la Cierva 3, 28006 Madrid, Spain
| | | | - Christopher D. Beadle
- Lilly Research
Centre, Eli Lilly & Company, Erl Wood Manor, Windlesham, Surrey GU20
6PH, United Kingdom
| | - Tatiana Vetman
- Lilly
Research Laboratories, Eli Lilly & Company, Indianapolis, Indiana 46285, United States
| | - Francisco López-Muñoz
- Faculty
of Health, Camilo José Cela University of Madrid (UCJC), Neuropsychopharmacology Unit, “Hospital 12 de Octubre” Research
Institute, 28692 Madrid, Spain
| | - Timo Wille
- Bundeswehr
Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937 München, Germany
| | - Ulrike Bartz
- Department
of Natural Sciences, University of Applied
Sciences Bonn-Rhein-Sieg, von-Liebig-Straße 20, 53359 Rheinbach, Germany
| | - Winnie Deuther-Conrad
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, 04318 Leipzig, Germany
| | - José Marco-Contelles
- Laboratory
of Medicinal Chemistry, IQOG, CSIC, C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Michael Gütschow
- Pharmaceutical
Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| |
Collapse
|
44
|
Srichomphu P, Wattanathorn J, Thukham-mee W, Muchimapura S. Anxiety, Insomnia, and Memory Impairment in Metabolic Syndrome Rats Are Alleviated by the Novel Functional Ingredients from Anacardium occidentale. Antioxidants (Basel) 2022; 11:2203. [PMID: 36358575 PMCID: PMC9686671 DOI: 10.3390/antiox11112203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 08/27/2023] Open
Abstract
Despite an increase in the coexistence of metabolic syndrome (MetS) and psychological disorders, together with their great impact on socio-economic burdens, no protective strategies that focus on these situations are available. Due to the role of oxidative stress in the pathophysiology of metabolic syndrome (MetS) and psychological disorders, we hypothesized that substances possessing antioxidant activity such as the novel functional ingredients from Anacardium occidentale (AO) could mitigate common psychological disorders in MetS rats. Male Wistar rats, weighing 200-250 g, were induced with MetS through a 12-week high-fat and high-cholesterol diet (HFHC). Then, they were given AO orally via a gastric gavage needle at doses of 1, 10 and 100 mg/kg BW for 14 days. Spatial memory, anxiety, depression, and sleep behaviors, together with changes in oxidative stress status and neurotransmitters, were assessed. All doses of AO significantly improved memory, anxiety, and sleep, together with the suppression of oxidative stress, AChE, and GABA-T in the cerebral cortex and hippocampus. These results suggest the protective effect of AO against anxiety, insomnia, and memory impairment that coexist with the MetS condition via an improvement in oxidative stress and the functions of the cholinergic and GABAergic systems. However, this benefit requires clinical confirmation.
Collapse
Affiliation(s)
- Pratthana Srichomphu
- Department of Physiology and Graduate School (Neuroscience Program), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Jintanaporn Wattanathorn
- Research Institute for High Human Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wipawee Thukham-mee
- Research Institute for High Human Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Supaporn Muchimapura
- Research Institute for High Human Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
45
|
The regulatory role of AP-2β in monoaminergic neurotransmitter systems: insights on its signalling pathway, linked disorders and theragnostic potential. Cell Biosci 2022; 12:151. [PMID: 36076256 PMCID: PMC9461128 DOI: 10.1186/s13578-022-00891-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/28/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractMonoaminergic neurotransmitter systems play a central role in neuronal function and behaviour. Dysregulation of these systems gives rise to neuropsychiatric and neurodegenerative disorders with high prevalence and societal burden, collectively termed monoamine neurotransmitter disorders (MNDs). Despite extensive research, the transcriptional regulation of monoaminergic neurotransmitter systems is not fully explored. Interestingly, certain drugs that act on these systems have been shown to modulate central levels of the transcription factor AP-2 beta (AP-2β, gene: TFAP2Β). AP-2β regulates multiple key genes within these systems and thereby its levels correlate with monoamine neurotransmitters measures; yet, its signalling pathways are not well understood. Moreover, although dysregulation of TFAP2Β has been associated with MNDs, the underlying mechanisms for these associations remain elusive. In this context, this review addresses AP-2β, considering its basic structural aspects, regulation and signalling pathways in the controlling of monoaminergic neurotransmitter systems, and possible mechanisms underpinning associated MNDS. It also underscores the significance of AP-2β as a potential diagnostic biomarker and its potential and limitations as a therapeutic target for specific MNDs as well as possible pharmaceutical interventions for targeting it. In essence, this review emphasizes the role of AP-2β as a key regulator of the monoaminergic neurotransmitter systems and its importance for understanding the pathogenesis and improving the management of MNDs.
Collapse
|
46
|
Mustafa G, Zia-ur-Rehman M, Sumrra SH, Ashfaq M, Zafar W, Ashfaq M. A critical review on recent trends on pharmacological applications of pyrazolone endowed derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
47
|
Fadaka AO, Taiwo OA, Dosumu OA, Owolabi OP, Ojo AB, Sibuyi NRS, Ullah S, Klein A, Madiehe AM, Meyer M, Ojo OA. Computational prediction of potential drug-like compounds from Cannabis sativa leaf extracts targeted towards Alzheimer therapy. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
48
|
Paolino M, Rullo M, Maramai S, de Candia M, Pisani L, Catto M, Mugnaini C, Brizzi A, Cappelli A, Olivucci M, Corelli F, Altomare CD. Design, synthesis and biological evaluation of light-driven on-off multitarget AChE and MAO-B inhibitors. RSC Med Chem 2022; 13:873-883. [PMID: 35923722 PMCID: PMC9298480 DOI: 10.1039/d2md00042c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/19/2022] [Indexed: 08/13/2023] Open
Abstract
Neurodegenerative diseases are multifactorial disorders characterized by protein misfolding, oxidative stress, and neuroinflammation, finally resulting in neuronal loss and cognitive dysfunctions. Nowadays, an attractive strategy to improve the classical treatments is the development of multitarget-directed molecules able to synergistically interact with different enzymes and/or receptors. In addition, an interesting tool to refine personalized therapies may arise from the use of bioactive species able to modify their activity as a result of light irradiation. To this aim, we designed and synthesized a small library of cinnamic acid-inspired isomeric compounds with light modulated activity able to inhibit acetylcholinesterase (AChE) and monoamine oxidase B (MAO-B), with remarkable selectivity over butyrylcholinesterase (BChE) and MAO-A, which have been investigated as the enzyme targets related to Alzheimer's disease (AD). The inhibitory activities were evaluated for the pure E-diastereomers and the E/Z-diastereomer mixtures, obtained upon UV irradiation. Molecular docking studies were carried out to rationalize the differences in the inhibition potency of the E and Z diastereomers of the best performing analogue 1c. Our preliminary findings may open-up the way for developing innovative multitarget photo-switch drugs against neurodegenerative diseases.
Collapse
Affiliation(s)
- Marco Paolino
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena Via A. Moro 2 53100 Siena Italy
| | - Mariagrazia Rullo
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro Via E. Orabona 4 70125 Bari Italy
| | - Samuele Maramai
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena Via A. Moro 2 53100 Siena Italy
| | - Modesto de Candia
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro Via E. Orabona 4 70125 Bari Italy
| | - Leonardo Pisani
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro Via E. Orabona 4 70125 Bari Italy
| | - Marco Catto
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro Via E. Orabona 4 70125 Bari Italy
| | - Claudia Mugnaini
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena Via A. Moro 2 53100 Siena Italy
| | - Antonella Brizzi
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena Via A. Moro 2 53100 Siena Italy
| | - Andrea Cappelli
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena Via A. Moro 2 53100 Siena Italy
| | - Massimo Olivucci
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena Via A. Moro 2 53100 Siena Italy
- Chemistry Department, Bowling Green State University USA
| | - Federico Corelli
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena Via A. Moro 2 53100 Siena Italy
| | - Cosimo D Altomare
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro Via E. Orabona 4 70125 Bari Italy
| |
Collapse
|
49
|
Khan A, Sati J, Kamal R, Dhawan DK, Chadha VD. Amelioration of cognitive and biochemical impairment in Aβ-based rodent model of Alzheimer's disease following fractionated X-irradiation. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2022; 61:205-219. [PMID: 35325276 DOI: 10.1007/s00411-022-00967-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Alzheimer's disease is characterized by deposition of amyloid-beta plaques in the brain. Available pharmaceuticals provide temporary symptomatic relief without affecting disease progression. Use of radiation was found effective in treating extra-cranial amyloidosis, therefore, the present study was designed to investigate the neuroprotective role of fractionated X-irradiation in Aβ1-42-based rodent model of Alzheimer's disease. S.D. female rats were randomly divided into four groups: sham control (Group 1), Aβ1-42 injected (Group 2), cranial X-irradiated (Group 3) and Aβ1-42 injected followed by cranial X-irradiation (Group 4). A single dose of 5 µL Aβ1-42 peptide was administered through intracerebroventricular (icv) injection in Group 2 and 4 animals, while Group 1 animals were administered 5 µL of bi-distilled water (icv). The group 4 animals were further subjected to 10 Gy X-irradiation (fractionated dose, 2 Gy × 5 days) after 4 weeks of Aβ1-42 infusion of peptide. The animals in Group 3 were subjected to same dose of cranial fractionated X-irradiation (2 Gy × 5 days) only. Significant decrease in amyloid deposits were observed in the Aβ1-42 + radiation-treated animals confirmed by histopathological analysis. These finding were in concordance with neurobehavioral tests that showed a significant improvement in Aβ1-42-induced memory impairment in the animals subjected to fractionated cranial X-irradiation. Restoration of alterations in neurochemical and antioxidant defense indices further supported our results. The present study highlights the underexplored role of fractionated X-irradiation in curtailing the Aβ1-42-induced neurotoxicity, suggesting a novel treatment option for Alzheimer's disease-associated pathologies.
Collapse
Affiliation(s)
- Anna Khan
- Centre for Nuclear Medicine, University Institute for Emerging Areas in Science and Technology, Panjab University, Block IV, South Campus, Chandigarh, 160014, India
| | - Jasmine Sati
- Centre for Nuclear Medicine, University Institute for Emerging Areas in Science and Technology, Panjab University, Block IV, South Campus, Chandigarh, 160014, India
| | - Rozy Kamal
- Department of Nuclear Medicine, Manipal College of Health Professions, Karnataka, 576104, India
| | - Devinder K Dhawan
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Vijayta D Chadha
- Centre for Nuclear Medicine, University Institute for Emerging Areas in Science and Technology, Panjab University, Block IV, South Campus, Chandigarh, 160014, India.
| |
Collapse
|
50
|
Olasehinde TA, AKomolafe SF, Oladapo IF, Oyeleye SI. Effect of diet supplemented with African Star Apple Fruit Pulp on purinergic, cholinergic and monoaminergic enzymes, TNF-α expression and redox imbalance in the brain of hypertensive rats. Nutr Neurosci 2022; 26:496-510. [PMID: 35470775 DOI: 10.1080/1028415x.2022.2062925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE This study examined whether diet supplemented with African star apple fruit pulp (FP) can mitigate the effect of high blood pressure on brain neurochemicals, histopathology and expression of genes linked with neuroinflammation. METHODS Rats were administered with cyclosporine (25 mg/kg.bw) to induce hypertension and were fed with or without FP supplemented diet. Purinergic (Nucleoside triphosphate diphosphohydrolases [NTPdase] and adenosine deaminase [ADA]) cholinergic (acetylcholinesterase [AChE]) and monoaminergic (monoamine oxidase-B) enzymes were assessed in treated and untreated hypertensive rats' brains. Oxidative stress biomarkers (catalase, glutathione-S-transferase, thiols, reactive oxygen species [ROS] and malondialdehyde [MDA]), as well as AChE, tumour necrosis factor and receptor (TNF-α and TNF-α-R) expression, were also determined. RESULTS FP supplemented diet significantly reduced NTPdase and ADA activities and increased Na+/K+-ATPase activities in hypertensive rats' brains compared to the untreated group. Furthermore, FP reduced acetylcholinesterase and monoamine oxidase-B activities compared to the hypertensive group. Redox imbalance was observed in hypertensive rats with inhibition of antioxidant enzymes and high levels of ROS and MDA. However, FP supplemented diet improved antioxidant enzymes, reduced ROS and MDA production in the brain of hypertensive rats. High blood pressure also triggered upregulation of AChE, TNF-α and TNF-α-R while feeding with FP supplemented diet downregulated the genes. CONCLUSION This study demonstrates the neuroprotective role of FP supplemented diet against alterations in neurochemicals associated with Alzheimer's disease, oxidative stress-induced neuronal damage and expression of genes linked with neuroinflammation. Moreover, studies on animal behaviour and human subjects are required to confirm these beneficial effects.
Collapse
Affiliation(s)
- Tosin A Olasehinde
- Nutrition and Toxicology Division, Food Technology Department, Federal Institute of Industrial Research, Lagos, Nigeria.,Department of Biochemistry and Microbiology, University of Fort Hare Alice South Africa, Alice, South Africa
| | - Seun F AKomolafe
- Department of Biochemistry, Ekiti State University, Ado-Ekiti, Nigeria
| | - Iyabo F Oladapo
- Department of Basic Medical Science, College of Health Science and Technology, Ijero Ekiti, Nigeria
| | - Sunday I Oyeleye
- Department of Biomedical Technology, Federal University of Technology, Akure, Ondo State.,Functional Food and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology, Akure, Ondo State
| |
Collapse
|