1
|
Lee H, Ko DS, Heo HJ, Baek SE, Kim EK, Kwon EJ, Kang J, Yu Y, Baryawno N, Kim K, Lee D, Kim YH. Uncovering NK cell sabotage in gut diseases via single cell transcriptomics. PLoS One 2025; 20:e0315981. [PMID: 39752457 PMCID: PMC11698320 DOI: 10.1371/journal.pone.0315981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 12/03/2024] [Indexed: 01/06/2025] Open
Abstract
The identification of immune environments and cellular interactions in the colon microenvironment is essential for understanding the mechanisms of chronic inflammatory disease. Despite occurring in the same organ, there is a significant gap in understanding the pathophysiology of ulcerative colitis (UC) and colorectal cancer (CRC). Our study aims to address the distinct immunopathological response of UC and CRC. Using single-cell RNA sequencing datasets, we analyzed the profiles of immune cells in colorectal tissues obtained from healthy donors, UC patients, and CRC patients. The colon tissues from patients and healthy participants were visualized by immunostaining followed by laser confocal microscopy for select targets. Natural killer (NK) cells from UC patients on medication showed reduced cytotoxicity compared to those from healthy individuals. Nonetheless, a UC-specific pathway called the BAG6-NCR3 axis led to higher levels of inflammatory cytokines and increased the cytotoxicity of NCR3+ NK cells, thereby contributing to the persistence of colitis. In the context of colorectal cancer (CRC), both NK cells and CD8+ T cells exhibited significant changes in cytotoxicity and exhaustion. The GALECTIN-9 (LGALS9)-HAVCR2 axis was identified as one of the CRC-specific pathways. Within this pathway, NK cells solely communicated with myeloid cells under CRC conditions. HAVCR2+ NK cells from CRC patients suppressed NK cell-mediated cytotoxicity, indicating a reduction in immune surveillance. Overall, we elucidated the comprehensive UC and CRC immune microenvironments and NK cell-mediated immune responses. Our findings can aid in selecting therapeutic targets that increase the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Hansong Lee
- Medical Research Institute, Pusan National University, Yangsan, Republic of Korea
| | - Dai Sik Ko
- Division of Vascular Surgery, Department of General Surgery, Gachon University College of Medicine, Gil Medical Center, Incheon, Republic of Korea
| | - Hye Jin Heo
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Seung Eun Baek
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Eun Kyoung Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Eun Jung Kwon
- Medical Research Institute, Pusan National University, Yangsan, Republic of Korea
| | - Junho Kang
- Department of Research, Keimyung University Dongsan Medical Center, Daegu, Republic of Korea
| | - Yeuni Yu
- Medical Research Institute, Pusan National University, Yangsan, Republic of Korea
| | - Ninib Baryawno
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Kihun Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Dongjun Lee
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan, Republic of Korea
- Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Yun Hak Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
2
|
Karami R, Fathi M, Jalali P, Hassannia H, Zarei A, Hojjat-Farsangi M, Jadidi F. The emerging role of TIM-3 in colorectal cancer: a promising target for immunotherapy. Expert Opin Ther Targets 2024; 28:1093-1115. [PMID: 39670788 DOI: 10.1080/14728222.2024.2442437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/30/2024] [Accepted: 12/10/2024] [Indexed: 12/14/2024]
Abstract
INTRODUCTION Colorectal cancer (CRC) imposes a substantial worldwide health burden, necessitating innovative strategies to enhance therapeutic outcomes. T cell immunoglobulin-3 (Tim-3), an immune checkpoint, enhances immunological tolerance. Tim-3's role in CRC surpasses its conventional function as an indicator of dysfunction in T lymphocytes. AREAS COVERED This review provides an all-inclusive summary of the structural and functional attributes of Tim-3's involvement in the case of CRC. It explores the implications of Tim-3 expression in CRC with regard to tumor progression, clinical characteristics, and therapeutic approaches. Furthermore, it delves into the intricate signaling pathways and molecular mechanisms through which Tim-3 exerts its dual function in both immunity against tumors and immune evasion. EXPERT OPINION Understanding Tim-3's complicated network of interactions in CRC has significant consequences for the development of novel immunotherapeutic strategies targeted toward restoring anti-tumor immune responses and improving patient survival. Tim-3 is an important and valuable target for CRC patient risk classification and treatment because it regulates a complex network of strategies for suppressing immune responses, including causing T cell exhaustion, increasing Treg (regulatory T-cell) proliferation, and altering antigen-presenting cell activity.
Collapse
Affiliation(s)
- Reza Karami
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrdad Fathi
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pooya Jalali
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Hassannia
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| | - Asieh Zarei
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Farhad Jadidi
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Cao K, Wang X, Wang H, Xu C, Ma A, Zhang Y, Zheng M, Xu Y, Tang L. Phenotypic and functional exhaustion of circulating CD3 + CD56 + NKT-like cells in colorectal cancer patients. FASEB J 2024; 38:e23525. [PMID: 38430373 DOI: 10.1096/fj.202301743r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/11/2023] [Accepted: 02/16/2024] [Indexed: 03/03/2024]
Abstract
CD3+ CD56+ NKT-like cells are crucial to antitumor immune surveillance and defense. However, research on circulating NKT-like cells in colorectal cancer (CRC) patients is limited. This investigation selected 113 patients diagnosed with primary CRC for preoperative peripheral blood collection. The blood from 106 healthy donors at the physical examination center was acquired as a healthy control (HC). The distribution of lymphocyte subsets, immunophenotype, and functional characteristics of NKT-like cells was comprehensively evaluated. Compared to HC, primary CRC patients had considerably fewer peripheral NKT-like cells in frequency and absolute quantity, and the fraction of NKT-like cells was further reduced in patients with vascular invasion compared to those without. The NKT-like cells in CRC patients had a reduced fraction of the activating receptor CD16, up-regulated expression of inhibitory receptors LAG-3 and NKG2A, impaired production of TNF-α and IFN-γ, as well as degranulation capacity. Moreover, the increased frequency of NKG2A+ NKT-like cells and the decreased expression of activation-related molecules were significantly correlated with tumor progression. In detail, NKG2A+ NKT-like cells indicated increased PD-1 and Tim-3 and reduced TNF-α than NKG2A- subgroup. Blocking NKG2A in vitro restored cytokine secretion capacity in NKT-like cells from CRC patients. Altogether, this research revealed that circulating NKT-like cells in CRC patients exhibited suppressive phenotype and functional impairment, which was more pronounced in NKG2A+ NKT-like cells. These findings suggest that NKG2A blockade may restore anti-tumor effector function in NKT-like cells, which provides a potential target for immunotherapy in CRC patients.
Collapse
Affiliation(s)
- Kangli Cao
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiaowei Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hui Wang
- Centre of Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Cairui Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Along Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yuntao Zhang
- The First Clinical Medical School of Anhui Medical University, Hefei, Anhui, China
| | - Meijuan Zheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yuanhong Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ling Tang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
4
|
Schoenberg MB, Han Y, Li X, Li X, Bucher JN, Börner N, Koch D, Guba MO, Werner J, Bazhin AV. Dynamics of Peripheral Blood Immune Cells during the Perioperative Period after Digestive System Resections: A Systematic Analysis of the Literature. J Clin Med 2023; 12:jcm12020718. [PMID: 36675647 PMCID: PMC9866033 DOI: 10.3390/jcm12020718] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/22/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
An operation in itself is a kind of trauma and may lead to immunosuppression followed by a bounce back. Not many studies exist that describe dynamics of the distribution of peripheral blood (PB) immune cells during the perioperative period. Considering this scarcity, we aggregated the data on the dynamics of immune cells in patients with digestive system resections during the perioperative period and the relationship with short- and long-term prognoses. By the systematic retrieval of documents, we collected perioperative period data on white blood cells (WBC), lymphocytes, neutrophil-lymphocyte ratio (NLR), CD4+ T cells, CD8+ T cells, helper T cells (Th), B cells, natural killer cells (NK), dendritic cells (DCs), regulatory T cells (Tregs), regulatory B cells (Bregs), and Myeloid derived suppressor cells (MDSC). The frequency and distribution of these immune cells and the relationship with the patient's prognosis were summarized. A total of 1916 patients' data were included. Compared with before surgery, WBC, lymphocytes, CD4+ cells, CD8+ T cells, MDSC, and NK cells decreased after surgery, and then returned to preoperative levels. After operation DCs increased, then gradually recovered to the preoperative level. No significant changes were found in B cell levels during the perioperative period. Compared with the preoperative time-point, Tregs and Bregs both increased postoperatively. Only high levels of the preoperative and/or postoperative NLR were found to be related to the patient's prognosis. In summary, the surgery itself can cause changes in peripheral blood immune cells, which might change the immunogenicity. Therefore, the immunosuppression caused by the surgical trauma should be minimized. In oncological patients this might even influence long-term results.
Collapse
Affiliation(s)
- Markus Bo Schoenberg
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, 81377 Munich, Germany
- Medical Center Gollierplatz, 80339 Munich, Germany
| | - Yongsheng Han
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Xiaokang Li
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Xinyu Li
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Julian Nikolaus Bucher
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Nikolaus Börner
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Dominik Koch
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Markus Otto Guba
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
- Transplantation Center Munich, Hospital of the LMU, Campus Grosshadern, 81377 Munich, Germany
| | - Jens Werner
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, 81377 Munich, Germany
| | - Alexandr V. Bazhin
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, 81377 Munich, Germany
- Correspondence: ; Tel.: +49-89-4400-0
| |
Collapse
|
5
|
Talaat IM, Elemam NM, Zaher S, Saber-Ayad M. Checkpoint molecules on infiltrating immune cells in colorectal tumor microenvironment. Front Med (Lausanne) 2022; 9:955599. [PMID: 36072957 PMCID: PMC9441912 DOI: 10.3389/fmed.2022.955599] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/29/2022] [Indexed: 11/19/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent cancer types worldwide, with a high mortality rate due to metastasis. The tumor microenvironment (TME) contains multiple interactions between the tumor and the host, thus determining CRC initiation and progression. Various immune cells exist within the TME, such as tumor-infiltrating lymphocytes (TILs), tumor-associated macrophages (TAMs), and tumor-associated neutrophils (TANs). The immunotherapy approach provides novel opportunities to treat solid tumors, especially toward immune checkpoints. Despite the advances in the immunotherapy of CRC, there are still obstacles to successful treatment. In this review, we highlighted the role of these immune cells in CRC, with a particular emphasis on immune checkpoint molecules involved in CRC pathogenesis.
Collapse
Affiliation(s)
- Iman M. Talaat
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Noha M. Elemam
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Shroque Zaher
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Maha Saber-Ayad
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Department of Pharmacology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
6
|
Liu C, Zhang X, Hu C, Liang X, Cao X, Wang D. Systematic Construction and Validation of a Novel Macrophage Differentiation–Associated Prognostic Model for Clear Cell Renal Cell Carcinoma. Front Genet 2022; 13:877656. [PMID: 35774505 PMCID: PMC9237391 DOI: 10.3389/fgene.2022.877656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/09/2022] [Indexed: 11/28/2022] Open
Abstract
Background: Clear cell renal cell carcinoma (ccRCC) is a malignant tumor of the human urinary system. Macrophage differentiation is associated with tumorigenesis. Therefore, exploring the prognostic value of macrophage differentiation–associated genes (MDGs) may contribute to better clinical management of ccRCC patients.Methods: The RNA sequence data of ccRCC were obtained from The Cancer Genome Atlas (TCGA) database. Differentially expressed MDGs were unveiled in ccRCC and normal samples. The prognostic model was established according to the univariate and multivariate Cox regression analyses. By combining clinico-pathological features and prognostic genes, a nomogram was established to predict individual survival probability. The Tumor Immune Estimation Resource (TIMER) database was utilized to analyze the correlation between prognostic genes and immune infiltrating cells. Eventually, the mRNA and protein expression levels of prognostic genes were verified.Results: A total of 52 differentially expressed prognosis-related MDGs were identified in ccRCC. Afterward, a six-gene prognostic model (ABCG1, KDF1, KITLG, TGFA, HAVCR2, and CD14) was constructed through the Cox analysis. The overall survival in the high-risk group was relatively poor. Moreover, the risk score was identified as an independent prognostic factor. We constructed a prognostic nomogram with a well-fitted calibration curve based on risk score and clinical data. Furthermore, the prognostic genes were significantly related to the level of immune cell infiltration including B cells, CD8+T cells, CD4+T cells, macrophages, neutrophils, and dendritic cells. Finally, the mRNA expression of prognostic genes in clinical ccRCC tissues showed that the ABCG1, HAVCR2, CD14, and TGFA mRNA in tumor samples were increased compared with the adjacent control tissue samples, while KDF1 and KITLG were decreased, which was consistent with the verification results in the GSE53757.Conclusion: In conclusion, this study identified and validated a macrophage differentiation–associated prognostic model for ccRCC that could be used to predict the outcomes of the ccRCC patients.
Collapse
Affiliation(s)
- Chen Liu
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xuhui Zhang
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Caoyang Hu
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xuezhi Liang
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaoming Cao
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Dongwen Wang
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
- Department of Urology, Cancer Hospital Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
- *Correspondence: Dongwen Wang,
| |
Collapse
|
7
|
Mortezaee K, Majidpoor J. (Im)maturity in Tumor Ecosystem. Front Oncol 2022; 11:813897. [PMID: 35145911 PMCID: PMC8821092 DOI: 10.3389/fonc.2021.813897] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/27/2021] [Indexed: 01/10/2023] Open
Abstract
Tumors have special features that make them distinct from their normal counterparts. Immature cells in a tumor mass and their critical contributions to the tumorigenesis will open new windows toward cancer therapy. Incomplete cellular development brings versatile and unique functionality in the cellular tumor ecosystem, such as what is seen for highly potential embryonic cells. There is evidence that maturation of certain types of cells in this ecosystem can recover the sensitivity of the tumor. Therefore, understanding more about the mechanisms that contributed to this immaturity will render new therapeutic approaches in cancer therapy. Targeting such mechanisms can be exploited as a supplementary to the current immunotherapeutic treatment schedules, such as immune checkpoint inhibitor (ICI) therapy. The key focus of this review is to discuss the impact of (im)maturity in cellular tumor ecosystems on cancer progression, focusing mainly on immaturity in the immune cell compartment of the tumor, as well as on the stemness of tumor cells.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
8
|
Jacquelot N, Ghaedi M, Warner K, Chung DC, Crome SQ, Ohashi PS. Immune Checkpoints and Innate Lymphoid Cells-New Avenues for Cancer Immunotherapy. Cancers (Basel) 2021; 13:5967. [PMID: 34885076 PMCID: PMC8657134 DOI: 10.3390/cancers13235967] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/21/2022] Open
Abstract
Immune checkpoints (IC) are broadly characterized as inhibitory pathways that tightly regulate the activation of the immune system. These molecular "brakes" are centrally involved in the maintenance of immune self-tolerance and represent a key mechanism in avoiding autoimmunity and tissue destruction. Antibody-based therapies target these inhibitory molecules on T cells to improve their cytotoxic function, with unprecedented clinical efficacies for a number of malignancies. Many of these ICs are also expressed on innate lymphoid cells (ILC), drawing interest from the field to understand their function, impact for anti-tumor immunity and potential for immunotherapy. In this review, we highlight ILC specificities at different tissue sites and their migration potential upon inflammatory challenge. We further summarize the current understanding of IC molecules on ILC and discuss potential strategies for ILC modulation as part of a greater anti-cancer armamentarium.
Collapse
Affiliation(s)
- Nicolas Jacquelot
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; (M.G.); (K.W.); (D.C.C.)
| | - Maryam Ghaedi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; (M.G.); (K.W.); (D.C.C.)
| | - Kathrin Warner
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; (M.G.); (K.W.); (D.C.C.)
| | - Douglas C. Chung
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; (M.G.); (K.W.); (D.C.C.)
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Sarah Q. Crome
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Ajmera Transplant Centre, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Pamela S. Ohashi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; (M.G.); (K.W.); (D.C.C.)
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| |
Collapse
|
9
|
Reid FSW, Egoroff N, Pockney PG, Smith SR. A systematic scoping review on natural killer cell function in colorectal cancer. Cancer Immunol Immunother 2021; 70:597-606. [PMID: 32918127 PMCID: PMC10992123 DOI: 10.1007/s00262-020-02721-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/04/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Natural Killer (NK) cells are a vital part of immune surveillance and have been implicated in colorectal cancer development and prognosis. This systematic review aims to distil the literature on NK cells as it relates to colorectal cancer. METHODS All published studies over 10 years relating to NK cells and colorectal cancer were reviewed. All studies publishing in English, searchable via pubmed or through reference review and reporting directly on the nature or function of NK cells in colorectal cancer patients were included. Outcomes were determined as alterations or new information regarding NK cells in colorectal cancer patients. RESULTS Natural killer cells may be implicated in the development of colorectal cancer and may play a role in prognostication of the disease. NK cells are altered by the treatment (both surgical and medical) of colorectal cancer and it seems likely that they will also be a target for manipulation to improve colorectal cancer survival. CONCLUSIONS NK cell morphology and function are significantly affected by the development of colorectal cancer. Observation of NK cell changes may lead to earlier detection and better prognostication in colorectal cancer. Further study is needed into immunological manipulation of NK cells which may lead to improved colorectal cancer survival.
Collapse
Affiliation(s)
- Fiona S W Reid
- Surgical Services, HRMC, John Hunter Hospital, Locked Bag 1, New Lambton, Newcastle, NSW, 2310, Australia.
- Western Hospital, Gordon Street, Melbourne, 3000, Australia.
| | - Natasha Egoroff
- Surgical Services, HRMC, John Hunter Hospital, Locked Bag 1, New Lambton, Newcastle, NSW, 2310, Australia
- Hunter Medical Research Institute, Kookaburra Cct, Newcastle, NSW, 2305, Australia
| | - Peter G Pockney
- Surgical Services, HRMC, John Hunter Hospital, Locked Bag 1, New Lambton, Newcastle, NSW, 2310, Australia
- University of Newcastle, University Dv., Newcastle, NSW, 2308, Australia
| | - Stephen R Smith
- Surgical Services, HRMC, John Hunter Hospital, Locked Bag 1, New Lambton, Newcastle, NSW, 2310, Australia
- University of Newcastle, University Dv., Newcastle, NSW, 2308, Australia
| |
Collapse
|
10
|
Al-Badran SS, Grant L, Campo MV, Inthagard J, Pennel K, Quinn J, Konanahalli P, Hayman L, Horgan PG, McMillan DC, Roxburgh CS, Roseweir A, Park JH, Edwards J. Relationship between immune checkpoint proteins, tumour microenvironment characteristics, and prognosis in primary operable colorectal cancer. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2020; 7:121-134. [PMID: 33338327 PMCID: PMC7869939 DOI: 10.1002/cjp2.193] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 12/24/2022]
Abstract
The tumour microenvironment is an important factor for colorectal cancer prognosis, affecting the patient's immune response. Immune checkpoints, which regulate the immune functions of lymphocytes, may provide prognostic power. This study aimed to investigate the prognostic value of the immune checkpoints TIM‐3, LAG‐3 and PD‐1 in patients with stage I–III colorectal cancer. Immunohistochemistry was employed to detect TIM‐3, LAG‐3, PD‐1 and PD‐L1 in 773 patients with stage I–III colorectal cancer. Immune checkpoint protein expression was assessed in tumour cells using the weighted histoscore, and in immune cells within the stroma using point counting. Scores were analysed for associations with survival and clinical factors. High tumoural LAG‐3 (hazard ratio [HR] 1.45 95% confidence interval [CI] 1.00–2.09, p = 0.049) and PD‐1 (HR 1.34 95% CI 1.00–1.78, p = 0.047) associated with poor survival, whereas high TIM‐3 (HR 0.60 95% CI 0.42–0.84, p = 0.003), LAG‐3 (HR 0.58 95% CI 0.40–0.87, p = 0.006) and PD‐1 (HR 0.65 95% CI 0.49–0.86, p = 0.002) on immune cells within the stroma associated with improved survival, while PD‐L1 in the tumour (p = 0.487) or the immune cells within the stroma (p = 0.298) was not associated with survival. Furthermore, immune cell LAG‐3 was independently associated with survival (p = 0.017). Checkpoint expression scores on stromal immune cells were combined into a Combined Immune Checkpoint Stromal Score (CICSS), where CICSS 3 denoted all high, CICSS 2 denoted any two high, and CICSS 1 denoted other combinations. CICSS 3 was associated with improved patient survival (HR 0.57 95% CI 0.42–0.78, p = 0.001). The results suggest that individual and combined high expression of TIM‐3, LAG‐3, and PD‐1 on stromal immune cells are associated with better colorectal cancer prognosis, suggesting there is added value to investigating multiple immune checkpoints simultaneously.
Collapse
Affiliation(s)
- Sara Sf Al-Badran
- Unit of Experimental Therapeutics, Institute of Cancer Sciences, Wolfson-Wohl Cancer Research Centre, Glasgow, UK
| | - Lauren Grant
- Unit of Experimental Therapeutics, Institute of Cancer Sciences, Wolfson-Wohl Cancer Research Centre, Glasgow, UK
| | - Maejoy V Campo
- Unit of Experimental Therapeutics, Institute of Cancer Sciences, Wolfson-Wohl Cancer Research Centre, Glasgow, UK
| | - Jitwadee Inthagard
- Unit of Experimental Therapeutics, Institute of Cancer Sciences, Wolfson-Wohl Cancer Research Centre, Glasgow, UK
| | - Kathryn Pennel
- Unit of Experimental Therapeutics, Institute of Cancer Sciences, Wolfson-Wohl Cancer Research Centre, Glasgow, UK
| | - Jean Quinn
- Unit of Experimental Therapeutics, Institute of Cancer Sciences, Wolfson-Wohl Cancer Research Centre, Glasgow, UK
| | | | - Liam Hayman
- Unit of Experimental Therapeutics, Institute of Cancer Sciences, Wolfson-Wohl Cancer Research Centre, Glasgow, UK
| | - Paul G Horgan
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Glasgow Royal Infirmary, Glasgow, UK
| | - Donald C McMillan
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Glasgow Royal Infirmary, Glasgow, UK
| | - Campbell Sd Roxburgh
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Glasgow Royal Infirmary, Glasgow, UK
| | - Antonia Roseweir
- Unit of Experimental Therapeutics, Institute of Cancer Sciences, Wolfson-Wohl Cancer Research Centre, Glasgow, UK
| | - James H Park
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Glasgow Royal Infirmary, Glasgow, UK
| | - Joanne Edwards
- Unit of Experimental Therapeutics, Institute of Cancer Sciences, Wolfson-Wohl Cancer Research Centre, Glasgow, UK
| |
Collapse
|
11
|
Cao Y, Wang X, Jin T, Tian Y, Dai C, Widarma C, Song R, Xu F. Immune checkpoint molecules in natural killer cells as potential targets for cancer immunotherapy. Signal Transduct Target Ther 2020; 5:250. [PMID: 33122640 PMCID: PMC7596531 DOI: 10.1038/s41392-020-00348-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/13/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
Recent studies have demonstrated the potential of natural killer (NK) cells in immunotherapy to treat multiple types of cancer. NK cells are innate lymphoid cells that play essential roles in tumor surveillance and control that efficiently kill the tumor and do not require the major histocompatibility complex. The discovery of the NK's potential as a promising therapeutic target for cancer is a relief to oncologists as they face the challenge of increased chemo-resistant cancers. NK cells show great potential against solid and hematologic tumors and have progressively shown promise as a therapeutic target for cancer immunotherapy. The effector role of these cells is reliant on the balance of inhibitory and activating signals. Understanding the role of various immune checkpoint molecules in the exhaustion and impairment of NK cells when their inhibitory receptors are excessively expressed is particularly important in cancer immunotherapy studies and clinical implementation. Emerging immune checkpoint receptors and molecules have been found to mediate NK cell dysfunction in the tumor microenvironment; this has brought up the need to explore further additional NK cell-related immune checkpoints that may be exploited to enhance the immune response to refractory cancers. Accordingly, this review will focus on the recent findings concerning the roles of immune checkpoint molecules and receptors in the regulation of NK cell function, as well as their potential application in tumor immunotherapy.
Collapse
Affiliation(s)
- Yuqing Cao
- Department of General Surgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China
| | - Xiaoyu Wang
- College of Life and Health Science, Northeastern University, 110819, Shenyang, China
| | - Tianqiang Jin
- Department of General Surgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China
| | - Chaoliu Dai
- Department of General Surgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China
| | - Crystal Widarma
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Rui Song
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.
| | - Feng Xu
- Department of General Surgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China.
| |
Collapse
|
12
|
Varied functions of immune checkpoints during cancer metastasis. Cancer Immunol Immunother 2020; 70:569-588. [PMID: 32902664 PMCID: PMC7907026 DOI: 10.1007/s00262-020-02717-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022]
Abstract
Immune checkpoints comprise diverse receptors and ligands including costimulatory and inhibitory molecules, which play monumental roles in regulating the immune system. Immune checkpoints retain key potentials in maintaining the immune system homeostasis and hindering the malignancy development and autoimmunity. The expression of inhibitory immune checkpoints delineates an increase in a plethora of metastatic tumors and the inhibition of these immune checkpoints can be followed by promising results. On the other hand, the stimulation of costimulatory immune checkpoints can restrain the metastasis originating from diverse tumors. From the review above, key findings emerged regarding potential functions of inhibitory and costimulatory immune checkpoints targeting the metastatic cascade and point towards novel potential Achilles’ heels of cancer that might be exploited therapeutically in the future.
Collapse
|
13
|
Cristiani CM, Garofalo C, Passacatini LC, Carbone E. New avenues for melanoma immunotherapy: Natural Killer cells? Scand J Immunol 2020; 91:e12861. [PMID: 31879979 DOI: 10.1111/sji.12861] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/17/2023]
Abstract
Human solid malignant tumours may be particularly resistant to conventional therapies. Among solid tumours, immunological features of cutaneous melanoma have been well characterized in the past and today melanoma patients are routinely treated with the anti-immune checkpoints immunotherapy that has completely changed metastatic melanoma treatment and prognosis. Two cytotoxic cell populations may lead to the physical elimination of tumour cell targets: cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells. Tumour recognition by CTLs depends on major histocompatibility complex (MHC) class I molecules, while NK cells recognize tumours expressing low or null levels of MHC class I molecules. Despite this well-established complementarity, NK cells are still left behind in the optimization of innovative immunotherapy approaches. NK cells are members of innate lymphoid cells (ILCs) that play a critical role in early host defence against invading pathogens and transformed cells. Recent findings suggest that NK cell frequencies directly correlate with the overall survival of ipilimumab-treated melanoma patients. Furthermore, in vitro and in vivo evidences indicate that NK cells can selectively kill cancer stem cells, reducing tumour size and delaying metastatic progression. The aim of this review is to provide a survey of the evidences indicating NK cells as an excellent candidate to complement the newest solid tumour immunotherapy approaches.
Collapse
Affiliation(s)
- Costanza Maria Cristiani
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Cinzia Garofalo
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Lucia Carmela Passacatini
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Ennio Carbone
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
- Department of Microbiology Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, Stockholm, Sweden
| |
Collapse
|
14
|
Dayoub AS, Brekken RA. TIMs, TAMs, and PS- antibody targeting: implications for cancer immunotherapy. Cell Commun Signal 2020; 18:29. [PMID: 32087708 PMCID: PMC7036251 DOI: 10.1186/s12964-020-0521-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
Immunotherapy for cancer is making impressive strides at improving survival of a subset of cancer patients. To increase the breadth of patients that benefit from immunotherapy, new strategies that combat the immunosuppressive microenvironment of tumors are needed. Phosphatidylserine (PS) signaling is exploited by tumors to enhance tumor immune evasion and thus strategies to inhibit PS-mediated immune suppression have potential to increase the efficacy of immunotherapy. PS is a membrane lipid that flips to the outer surface of the cell membrane during apoptosis and/or cell stress. Externalized PS can drive efferocytosis or engage PS receptors (PSRs) to promote local immune suppression. In the tumor microenvironment (TME) PS-mediated immune suppression is often termed apoptotic mimicry. Monoclonal antibodies (mAbs) targeting PS or PSRs have been developed and are in preclinical and clinical testing. The TIM (T-cell/transmembrane, immunoglobulin, and mucin) and TAM (Tyro3, AXL, and MerTK) family of receptors are PSRs that have been shown to drive PS-mediated immune suppression in tumors. This review will highlight the development of mAbs targeting PS, TIM-3 and the TAM receptors. Video Abstract
Collapse
Affiliation(s)
- Adam S Dayoub
- Division of Surgical Oncology, Department of Surgery, Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390-8593, USA
| | - Rolf A Brekken
- Division of Surgical Oncology, Department of Surgery, Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390-8593, USA. .,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
15
|
Ben-Shmuel A, Biber G, Barda-Saad M. Unleashing Natural Killer Cells in the Tumor Microenvironment-The Next Generation of Immunotherapy? Front Immunol 2020; 11:275. [PMID: 32153582 PMCID: PMC7046808 DOI: 10.3389/fimmu.2020.00275] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
The emergence of immunotherapy for cancer treatment bears considerable clinical promise. Nevertheless, many patients remain unresponsive, acquire resistance, or suffer dose-limiting toxicities. Immune-editing of tumors assists their escape from the immune system, and the tumor microenvironment (TME) induces immune suppression through multiple mechanisms. Immunotherapy aims to bolster the activity of immune cells against cancer by targeting these suppressive immunomodulatory processes. Natural Killer (NK) cells are a heterogeneous subset of immune cells, which express a diverse array of activating and inhibitory germline-encoded receptors, and are thus capable of directly targeting and killing cancer cells without the need for MHC specificity. Furthermore, they play a critical role in triggering the adaptive immune response. Enhancing the function of NK cells in the context of cancer is therefore a promising avenue for immunotherapy. Different NK-based therapies have been evaluated in clinical trials, and some have demonstrated clinical benefits, especially in the context of hematological malignancies. Solid tumors remain much more difficult to treat, and the time point and means of intervention of current NK-based treatments still require optimization to achieve long term effects. Here, we review recently described mechanisms of cancer evasion from NK cell immune surveillance, and the therapeutic approaches that aim to potentiate NK function. Specific focus is placed on the use of specialized monoclonal antibodies against moieties on the cancer cell, or on both the tumor and the NK cell. In addition, we highlight newly identified mechanisms that inhibit NK cell activity in the TME, and describe how biochemical modifications of the TME can synergize with current treatments and increase susceptibility to NK cell activity.
Collapse
Affiliation(s)
- Aviad Ben-Shmuel
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Guy Biber
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Mira Barda-Saad
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
16
|
Sheng QS, He KX, Li JJ, Zhong ZF, Wang FX, Pan LL, Lin JJ. Comparison of Gut Microbiome in Human Colorectal Cancer in Paired Tumor and Adjacent Normal Tissues. Onco Targets Ther 2020; 13:635-646. [PMID: 32021305 PMCID: PMC6982458 DOI: 10.2147/ott.s218004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 12/12/2019] [Indexed: 01/24/2023] Open
Abstract
Background To understand the biological effect of gut microbiome on the progression of colorectal cancer (CRC), we sequenced the V3-V4 region of the 16S rRNA gene to illustrate the overall structure of microbiota in the CRC patients. Methods In this study, a total of 66 CRC patients were dichotomized into different groups based on the following characteristics: paired tumor and adjacent normal tissues, distal and proximal CRC segments, MMR (-) and MMR (+), different TNM staging and clinic tumor staging. Results By sequencing and comparing the microbial assemblages, our results indicated that 7 microbe genus (Fusobacterium, Faecalibacterium, Akkermansia, Ruminococcus2, Parabacteroides, Streptococcus, and f_Ruminococcaceae) were significantly different between tumor and adjacent normal tissues; and 5 microbe genus (Bacteroides, Fusobacterium, Faecalibacterium, Parabacteroides, and Ruminococcus2) were significantly different between distal and proximal CRC segments; only 2 microbe genus (f_Enterobacteriaceae and Granulicatella) were significantly different between MMR (-) and MMR (+); but there was no significant microbial difference were detected neither in the TNM staging nor in the clinic tumor staging. Conclusion All these findings implied a better understanding of the alteration in the gut microbiome, which may offer new insight into diagnosing and therapying for CRC patients.
Collapse
Affiliation(s)
- Qin-Song Sheng
- Department of Colorectal and Anal Surgery, the First Affiliated Hospital of College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Kang-Xin He
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Jian-Jiong Li
- Department of Colorectal and Anal Surgery, the First Affiliated Hospital of College of Medicine, Zhejiang University, Ningbo, People's Republic of China
| | - Zi-Feng Zhong
- Department of Colorectal and Anal Surgery, the First Affiliated Hospital of College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Fei-Xia Wang
- Department of Colorectal and Anal Surgery, the First Affiliated Hospital of College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Le-Lin Pan
- Department of Colorectal and Anal Surgery, the First Affiliated Hospital of College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Jian-Jiang Lin
- Department of Colorectal and Anal Surgery, the First Affiliated Hospital of College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
17
|
Guo S, Yu X, Wang L, Jing J, Sun Y, Li N, Kuang J, Zhao D, Yu X, Yang J, Yan W. The frequency of Tim-3 on circulating Tfh cells was increased in type 2 diabetes mellitus patients. EUR J INFLAMM 2020. [DOI: 10.1177/2058739220982803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic, low-grade inflammation disease. T follicular helper (Tfh) cells and T cell immunoglobulin and mucin domain 3 (Tim-3) are implicated in many immune diseases. This study aims to explore whether Tim-3 expression on Tfh cells is associated with T2DM progression. White blood cells (WBCs) were harvested from 30 patients with T2DM and 20 healthy donors. The abundance of circulating Tfh cells (cTfh) and the frequency of Tim-3 were analyzed by flow cytometry. Levels of fasting plasma glucose (FPG), insulin, hemoglobin A1C (HbA1C), and fasting plasma C-peptide were measured. Body mass index (BMI) and diabetes duration were also recorded. Patients with T2DM had higher numbers of cTfh cells. In addition, cTfh cells showed a negative correlation with HbA1C and diabetes duration, a positive correlation with fasting plasma C-peptide. The frequency of Tim-3 on cTfh cells was higher among T2DM patients compared with healthy donors. The in vitro experiment showed that high glucose levels increased the abundance cTfh cells but had no effect on Tim-3 expression. Our results suggest that cTfh cells and associated Tim-3 frequency may contribute to the progression of T2DM, and high glucose levels may influence cTfh cells directly.
Collapse
Affiliation(s)
- Shuai Guo
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Xujie Yu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Limei Wang
- Translational Medicine Core Facility of Advanced Medical Research Institute, Shandong University, Jinan, Shandong, China
| | - Jing Jing
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuanyuan Sun
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Na Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiangying Kuang
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, China
| | - Di Zhao
- Department of Clinical Laboratory, Qilu Hospital of Shandong University; Key Laboratory of Tumor Marker Translational Medicine, Shandong Provincial Medicine and Health, Jinan, Shandong, China
| | - Xingyu Yu
- Class 2019, MSc Banking and Finance, University of St Andrews, Fife, UK
| | - Jingjing Yang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenjiang Yan
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
18
|
The Role of Circulating CD16+CD56+ Natural Killer Cells in the Screening, Diagnosis, and Staging of Colorectal Cancer before Initial Treatment. DISEASE MARKERS 2019; 2019:7152183. [PMID: 31636738 PMCID: PMC6766087 DOI: 10.1155/2019/7152183] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022]
Abstract
Background and Objective A reliable noninvasive prediction tool for the screening, diagnosis, and/or staging of colorectal cancer (CRC) before surgery is critical for the choice of treatment and prognosis. Methods Patients admitted for initial treatment of CRC between January 1, 2015, and December 31, 2018, were retrieved and reviewed. Records of CD16+CD56+ natural killer (NK) cells were analyzed according to the stages of CRC. Results The number of qualified participants in the healthy, stage I, stage II, stage III, and stage IV CRC patients were 60, 66, 60, 70, and 68, respectively. There was a significant difference in circulating CD16+CD56+ NK cells between the healthy group and the CRC group (p < 0.01), as well as between the healthy group and stage III or IV CRC group (p < 0.01 and 0.001, respectively). The percentage of circulating CD16+CD56+ NK cells in lymphocytes was negatively correlated with the occurrence of CRC. When comparing the pool of stage I and II CRC cases with the pool of stage III and IV CRC cases using circulating CD16+CD56+ NK cells, the area under the Receiver Operating Characteristic curve was 0.878. Using an optimal cutoff value of 15.6%, the OR was 0.06 (0.03, 0.11), p < 0.001, sensitivity was 86.5%, specificity was 72.5%, positive predictive value was 74.2%, and negative predictive value was 85.5%. Conclusions Circulating CD16+CD56+ NK cells can be used as a screening and diagnostic/staging tool for CRC.
Collapse
|
19
|
Cui F, Qu D, Sun R, Nan K. Circulating CD16+CD56+ nature killer cells indicate the prognosis of colorectal cancer after initial chemotherapy. Med Oncol 2019; 36:84. [PMID: 31493232 DOI: 10.1007/s12032-019-1307-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 08/26/2019] [Indexed: 02/07/2023]
Abstract
As the prognosis of colorectal cancer (CRC) does not always coincide with the pathology and/or surgical findings, a reliable noninvasive prediction tool for the prognosis of CRC is needed. Patients admitted for initial treatment of CRC between January 1, 2015 and December 31, 2015 were retrieved and reviewed. Records of circulating CD16+ CD56+ natural killer (NK) cells were analyzed before and after the initial chemotherapy of FOLFOX plan. Patients were followed up until June 30, 2019. One hundred and twenty-four cases after the FOLFOX chemotherapy were enrolled into this study. There were no significant differences in gender, age, or number of metastasis cases between the survival group and the nonsurvival group (p > 0.05), but significant differences in pre-chemotherapy, post-chemotherapy, and the differences between pre- and post-chemotherapy circulating CD16+ CD56+ NK cells between the survival group and the nonsurvival group (p < 0.01, p < 0.01, and p < 0.05, respectively) were observed. For the prediction of survival and nonsurvival CRC cases, the Areas Under the Curve were 0.626 and 0.759 in the Receiver-Operating Characteristic curves for the pre- and post-chemotherapy circulating CD16+ CD56+NK cells, respectively. Using an optimal cutoff value of 11.8% in post-chemotherapy circulating CD16+CD56+NK cells to differentiate survival and nonsurvival cases, the odds ratio was 0.12 (0.05, 0.27), p < 0.001. The percentages of both pre-chemotherapy and post-chemotherapy circulating CD16+CD56+NK cells were negatively correlated with the prognosis of CRC. The percentage of post-chemotherapy circulating CD16+CD56+NK cells was able to effectively predict the prognosis of CRC cases.
Collapse
Affiliation(s)
- Feng Cui
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiao Tong University, No. 277, Yanta West Road, Xi'an, 710061, Shanxi, China
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Di Qu
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ruya Sun
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kejun Nan
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiao Tong University, No. 277, Yanta West Road, Xi'an, 710061, Shanxi, China.
| |
Collapse
|
20
|
Audenet F, Farkas AM, Anastos H, Galsky MD, Bhardwaj N, Sfakianos JP. Immune phenotype of peripheral blood mononuclear cells in patients with high-risk non-muscle invasive bladder cancer. World J Urol 2018; 36:1741-1748. [PMID: 29860605 PMCID: PMC6207464 DOI: 10.1007/s00345-018-2359-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/26/2018] [Indexed: 01/24/2023] Open
Abstract
PURPOSE To explore the immune phenotype of peripheral blood mononuclear cells (PBMC) in patients with high-risk non-muscle invasive bladder cancer (NMIBC). METHODS We prospectively collected blood samples from patients with high-risk NMIBC treated at our institution. PBMC were analyzed by flow cytometry to determine the frequency of T cells and NK cells and the expression of immunoregulatory molecules (Tim-3, TIGIT and PD-1). PBMC from healthy donors (HD) were included for comparison, and associations with response to BCG were investigated. RESULTS A total of 38 patients were included, 19 BCG responders and 19 BCG refractory. Compared to 16 PBMC from HD, the frequency of total NK cells was significantly higher in patients with NMIBC [15.2% (IQR: 11.4, 22.2) vs. 5.72% (IQR: 4.84, 9.79); p = 0.05], whereas the frequency of T cells was not statistically different. Both Tim-3 and TIGIT expressions were significantly higher in NMIBC compared to HD, particularly in NK cells [13.8% (11.0; 22.4) vs. 5.56% (4.20; 10.2) and 34.9% (18.9; 53.5) vs. 1.82% (0.63; 5.16), respectively; p < 0.001]. Overall, the expression of PD-1 in all cell types was low in both NMIBC patients and HD. The immune phenotype was not significantly different before and after initiation of BCG. However, the proportion of CD8+ T cells before BCG was significantly higher in responders. CONCLUSION The immune phenotype of PBMC from patients with high-risk NMIBC was significantly different from HD, regardless of the presence of disease or the initiation of BCG. Peripheral CD8+ T cells could play a role in response to BCG.
Collapse
Affiliation(s)
- François Audenet
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adam M Farkas
- Division of Hematology and Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Harry Anastos
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew D Galsky
- Division of Hematology and Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nina Bhardwaj
- Division of Hematology and Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John P Sfakianos
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
21
|
Picard E, Godet Y, Laheurte C, Dosset M, Galaine J, Beziaud L, Loyon R, Boullerot L, Lauret Marie Joseph E, Spehner L, Jacquin M, Eberst G, Gaugler B, Le Pimpec-Barthes F, Fabre E, Westeel V, Caignard A, Borg C, Adotévi O. Circulating NKp46 + Natural Killer cells have a potential regulatory property and predict distinct survival in Non-Small Cell Lung Cancer. Oncoimmunology 2018; 8:e1527498. [PMID: 30713781 DOI: 10.1080/2162402x.2018.1527498] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/13/2018] [Accepted: 09/13/2018] [Indexed: 10/28/2022] Open
Abstract
Natural killer (NK) cells are innate effector lymphocytes widely involved in cancer immunosurveillance. In this study, we described three circulating NK cell subsets in patients with non-small cell lung cancer (NSCLC). Compared to healthy donors (HD), lower rate of the cytotoxic CD56dim CD16+ NK cells was found in NSCLC patients (76.1% vs 82.4%, P = 0.0041). In contrast, the rate of CD56bright NK cells was similar between patients and HD. We showed in NSCLC patients a higher rate of a NK cell subset with CD56dim CD16- phenotype (16.7% vs 9.9% P = 0.0001). The degranulation property and cytokines production were mainly drive by CD56dim CD16- NK cell subset in patients. Analysis of natural cytotoxicity receptors (NCRs) expression identified four distinct clusters of patients with distinct NK cell subset profiles as compared to one major cluster in HD. Notably the cluster characterized by a low circulating level of NKp46+ NK cell subsets was absent in HD. We showed that the rate of circulating NKp46+ CD56dim CD16+ NK cells influenced the patients' survival. Indeed, the median overall survival in patients exhibiting high versus low level of this NK cell subset was 16 and 27 months respectively (P = 0.02). Finally, we demonstrated that blocking NKp46 receptor in vitro was able to restore spontaneous tumor specific T cell responses in NSCLC patients. In conclusion, this study showed a distinct distribution and phenotype of circulating NK cell subsets in NSCLC. It also supports the regulatory role of NKp46+ NK cell subset in NSCLC patients.
Collapse
Affiliation(s)
- Emilie Picard
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, LabEx LipSTIC, Besançon, France
| | - Yann Godet
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, LabEx LipSTIC, Besançon, France
| | - Caroline Laheurte
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, LabEx LipSTIC, Besançon, France.,University Hospital of Besançon, INSERM CIC-1431 Clinical Investigation Center in Biotherapies, Besançon, France
| | - Magalie Dosset
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, LabEx LipSTIC, Besançon, France
| | - Jeanne Galaine
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, LabEx LipSTIC, Besançon, France
| | - Laurent Beziaud
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, LabEx LipSTIC, Besançon, France
| | - Romain Loyon
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, LabEx LipSTIC, Besançon, France
| | - Laura Boullerot
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, LabEx LipSTIC, Besançon, France
| | | | - Laurie Spehner
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, LabEx LipSTIC, Besançon, France
| | - Marion Jacquin
- University Hospital of Besançon, INSERM CIC-1431 Clinical Investigation Center in Biotherapies, Besançon, France
| | - Guillaume Eberst
- University Hospital of Besançon, Department of Pneumology, Besançon, France
| | - Béatrice Gaugler
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, LabEx LipSTIC, Besançon, France
| | | | - Elizabeth Fabre
- Service d'Oncologie Médicale, AP-HP, Hôpital Européen Georges Pompidou, Paris, France
| | - Virginie Westeel
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, LabEx LipSTIC, Besançon, France.,University Hospital of Besançon, Department of Pneumology, Besançon, France
| | - Anne Caignard
- INSERM, UMR1160, Institut Universitaire d'hématologie, Paris, France
| | - Christophe Borg
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, LabEx LipSTIC, Besançon, France.,University Hospital of Besançon, Department of Medical Oncology, Besançon, France
| | - Olivier Adotévi
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, LabEx LipSTIC, Besançon, France.,University Hospital of Besançon, Department of Medical Oncology, Besançon, France
| |
Collapse
|
22
|
Wang CY, Ding HZ, Tang X, Li ZG. Comparative analysis of immune function, hemorheological alterations and prognosis in colorectal cancer patients with different traditional Chinese medicine syndromes. Cancer Biomark 2018; 21:701-710. [PMID: 29171989 DOI: 10.3233/cbm-170805] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE The present study investigates the differences in immune function, hemorheological alterations and prognostic evaluation in colorectal cancer (CRC) patients with different traditional Chinese medicine (TCM) syndromes. METHODS A total of 128 patients, diagnosed as stage II and III of CRC, were recruited. They were assigned into three TCM syndromes: deficiency syndrome, excess syndrome, and syndrome of intermingled deficiency and excess, and another 53 healthy individuals were selected as the control. Flow cytometry was used to determine the peripheral blood lymphocyte subsets (the levels of CD+3, CD+4, CD+8, NK cells, and the ratios of CD+4/CD+8, Th1/Th2 and Tc1/Tc2). Whole blood viscosity (WBV), plasma viscosity (PV), hematocrit (Hct), erythrocyte sedimentation rate (ESR), plasma fibrinogen concentration (PFC) were measured using a fully-automatic blood rheological instrument. The univariate analysis and Cox regression analysis were conducted to evaluate the prognosis of CRC patients with different TCM syndromes. RESULTS Compared with healthy individuals, CRC patients with three different syndromes had lower levels of CD+3, CD+4, NK cells, and ratios of CD+4/CD+8, Th1/Th2 and Tc1/Tc2, but higher level of CD+8, WBV, PV, Hct, ESR and PFC. Besides, patients with excess syndrome showed the highest levels of CD3+, CD4+ and NK cells, and ratios of CD+4/CD+8, Th1/Th2 and Tc1/Tc2, but the lowest level of CD+8 among three syndromes, and those with deficiency syndrome showed an opposite trend. Compared with patients with excess syndrome, those with deficiency syndrome showed decreased WBV, PV, Hct, ESR and PFC. The pathological type, surgical approach, tumor node metastasis (TNM) stage, liver metastasis, TCM treatment time and different TCM syndromes were independent factors of prognostic survival in CRC patients except perioperative blood transfusion volume. CONCLUSIONS Taken together, we conclude that patients with TCM deficiency syndrome has lower immune function and poorer prognosis while patients with TCM excess syndrome has higher immune function and better prognosis of CRC.
Collapse
Affiliation(s)
- Cheng-Yang Wang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Huan-Zhang Ding
- Graduate School of Anhui University of Chinese Medicine, Hefei 230038, Anhui, China
| | - Xiao Tang
- Graduate School of Anhui University of Chinese Medicine, Hefei 230038, Anhui, China
| | - Ze-Geng Li
- Anhui Academy of Chinese Medicine, Hefei 230012, Anhui, China
| |
Collapse
|
23
|
Stereotactic Ablative Radiation Therapy Induces Systemic Differences in Peripheral Blood Immunophenotype Dependent on Irradiated Site. Int J Radiat Oncol Biol Phys 2018; 101:1259-1270. [PMID: 29891204 DOI: 10.1016/j.ijrobp.2018.04.038] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/07/2018] [Accepted: 04/16/2018] [Indexed: 01/13/2023]
Abstract
PURPOSE Despite the strong interest in combining stereotactic ablative radiation therapy (SAR) with immunotherapy, limited data characterizing the systemic immune response after SAR are available. We hypothesized that the systemic immune response to SAR would differ by irradiated site owing to inherent differences in the microenvironment of various organs. METHODS AND MATERIALS Patients receiving SAR to any organ underwent prospective blood banking before and 1 to 2 weeks after SAR. Peripheral blood mononuclear cells (PBMCs) and serum were isolated. PBMCs were stained with fluorophore-conjugated antibodies against T and natural killer (NK) cell markers. Cells were interrogated by flow cytometry, and the results were analyzed using FlowJo software. Serum cytokine and chemokine levels were measured using Luminex. We analyzed the changes from before to after therapy using paired t tests or 1-way analysis of variance (ANOVA) with Bonferroni's post-test. RESULTS A total of 31 patients had evaluable PBMCs for flow cytometry and 37 had evaluable serum samples for Luminex analysis. The total number of NK cells and cytotoxic (CD56dimCD16+) NK cells decreased (P = .02) and T-cell immunoglobulin- and mucin domain-containing molecule-3-positive (TIM3+) NK cells increased (P = .04) after SAR to parenchymal sites (lung and liver) but not to bone or brain. The total memory CD4+ T cells, activated inducible co-stimulator-positive and CD25+CD4+ memory T cells, and activated CD25+CD8+ memory T cells increased after SAR to parenchymal sites but not bone or brain. The circulating levels of tumor necrosis factor-α (P = .04) and multiple chemokines, including RANTES (P = .04), decreased after SAR to parenchymal sites but not bone or brain. CONCLUSIONS Our data suggest SAR to parenchymal sites induces systemic immune changes, including a decrease in total and cytotoxic NK cells, an increase in TIM3+ NK cells, and an increase in activated memory CD4+ and CD8+ T cells. SAR to nonparenchymal sites did not induce these changes. By comparing the immune response after radiation to different organs, our data suggest SAR induces systemic immunologic changes that are dependent on the irradiated site.
Collapse
|
24
|
Functional variants of TIM-3/HAVCR2 3'UTR in lymphoblastoid cell lines. Future Sci OA 2018; 4:FSO298. [PMID: 29796301 PMCID: PMC5961449 DOI: 10.4155/fsoa-2017-0121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/29/2018] [Indexed: 01/10/2023] Open
Abstract
Aim Variants of TIM-3/HAVCR2 3'UTR miRNA binding sites are significantly associated with cancer; however, roles in post-transcriptional regulation have not been elucidated. Methods The regulatory and coding region single nucleotide polymorphisms (SNPs) of TIM-3/HAVCR2 were identified using an online database. Single nucleotide polymorphism Function Prediction was used to predict potential functional relevance of miRNA binding sites. Results The analysis indicated rs9313439, rs4704846, rs3087616 and rs1036199 affect possible miRNA binding sites in TIM-3/HAVCR2 3'UTR. We used additional data on genotypes and limited minor allele frequency >5% in the HapMap populations. Only rs3087616 and rs4704846 were significantly associated with TIM-3/HAVCR2. Conclusion Both rs3087616 and rs4704846 could be putative variants mediating post-transcriptional regulation of the TIM-3/HAVCR2. Deeper understanding of how 3'UTR variants influence the activity by TIM-3/HAVCR2 for therapy against cancer.
Collapse
|