1
|
Firouzjaei AA, Mahmoudi A, Almahmeed W, Teng Y, Kesharwani P, Sahebkar A. Identification and analysis of the molecular targets of statins in colorectal cancer. Pathol Res Pract 2024; 256:155258. [PMID: 38522123 DOI: 10.1016/j.prp.2024.155258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/05/2024] [Accepted: 03/08/2024] [Indexed: 03/26/2024]
Abstract
Colorectal cancer (CRC) is the third most common cancer in the world. According to several types of research, statins may impact the development and treatment of CRC. This work aimed to use bioinformatics to discover the relationship between statin targets and differentially expressed genes (DEGs) in CRC patients and determine the possible molecular effect of statins on CRC suppression. We used CRC datasets from the GEO database to select CRC-related DEGs. DGIdb and STITCH databases were used to identify gene targets of subtypes of statin. Further, we identified the statin target of CRC DEGs hub genes by using a Venn diagram of CRC DEGs and statin targets. Funrich and enrichr databases were carried out for the KEGG pathway and gene ontology (GO) enrichment analysis, respectively. GSE74604 and GSE10950 were used to identify CRC DEGs. After analyzing datasets,1370 genes were identified as CRC DEGs, and 345 targets were found for statins. We found that 35 genes are CRC DEGs statin targets. We found that statin targets in CRC were enriched in the receptor and metallopeptidase activity for molecular function, cytoplasm and plasma membrane for cellular component, signal transduction, and cell communication for biological process genes were substantially enriched based on FunRich enrichment. Analysis of the KEGG pathways revealed that the overexpressed DEGs were enriched in the IL-17, PPAR, and Toll-like receptor signaling pathways. Finally, CCNB1, DNMT1, AURKB, RAC1, PPARGC1A, CDKN1A, CAV1, IL1B, and HSPD1 were identified as hub CRC DEGs statin targets. The genetic and molecular aspects of our findings reveal that statins might have a therapeutic effect on CRC.
Collapse
Affiliation(s)
- Ali Ahmadizad Firouzjaei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Mahmoudi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Wael Almahmeed
- Heart and Vascular Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Amirhossein Sahebkar
- Center for Global health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Chen Y, Deng Q, Chen H, Yang J, Chen Z, Li J, Fu Z. Cancer-associated fibroblast-related prognostic signature predicts prognosis and immunotherapy response in pancreatic adenocarcinoma based on single-cell and bulk RNA-sequencing. Sci Rep 2023; 13:16408. [PMID: 37775715 PMCID: PMC10541448 DOI: 10.1038/s41598-023-43495-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) influence many aspects of pancreatic adenocarcinoma (PAAD) carcinogenesis, including tumor cell proliferation, angiogenesis, invasion, and metastasis. A six-gene prognostic signature was constructed for PAAD based on the 189 CAF marker genes identified in single-cell RNA-sequencing data. Multivariate analyses showed that the risk score was independently prognostic for survival in the TCGA (P < 0.001) and ICGC (P = 0.004) cohorts. Tumor infiltration of CD8 T (P = 0.005) cells and naïve B cells (P = 0.001) was greater in the low-risk than in the high-risk group, with infiltration of these cells negatively correlated with risk score. Moreover, the TMB score was lower in the low-risk than in the high-risk group (P = 0.0051). Importantly, patients in low-risk group had better immunotherapy responses than in the high-risk group in an independent immunotherapy cohort (IMvigor210) (P = 0.039). The CAV1 and SOD3 were highly expressed in CAFs of PAAD tissues, which revealed by immunohistochemical staining. In summary, this comprehensive analysis resulted in the development of a novel prognostic signature, which was associated with immune cell infiltration, drug sensitivity, and TMB, and could predict the prognosis and immunotherapy response of patients with PAAD.
Collapse
Affiliation(s)
- Yajun Chen
- Department of General Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qican Deng
- Department of General Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hui Chen
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing, China
| | - Jianguo Yang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhenzhou Chen
- Department of General Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juncai Li
- Department of Surgery, The People's Hospital of Yubei District of Chongqing, Chongqing, China.
| | - Zhongxue Fu
- Department of General Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
3
|
Oh S, Rhee DY, Batsukh S, Son KH, Byun K. High-Intensity Focused Ultrasound Increases Collagen and Elastin Fiber Synthesis by Modulating Caveolin-1 in Aging Skin. Cells 2023; 12:2275. [PMID: 37759497 PMCID: PMC10527789 DOI: 10.3390/cells12182275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Caveolin-1 (Cav-1) induces cellular senescence by reducing extracellular signal-regulated kinase (ERK)1/2 phosphorylation and activating p53 via inhibition of mouse double minute 2 homolog (MDM2) and sirtuin 1 (Sirt1), promoting cell cycle arrest and decreasing fibroblast proliferation and collagen synthesis. High-intensity focused ultrasound (HIFU) treatment increases collagen synthesis, rejuvenating skin. Using H2O2-induced senescent fibroblasts and the skin of 12-month-old mice, we tested the hypothesis that HIFU increases collagen production through Cav-1 modulation. HIFU was administered at 0.3, 0.5, or 0.7 J in the LINEAR and DOT modes. In both models, HIFU administration decreased Cav-1 levels, increased ERK1/2 phosphorylation, and decreased the binding of Cav-1 with both MDM2 and Sirt1. HIFU administration decreased p53 activation (acetylated p53) and p21 levels and increased cyclin D1, cyclin-dependent kinase 2, and proliferating cell nuclear antigen levels in both models. HIFU treatment increased collagen and elastin expression, collagen fiber accumulation, and elastin fiber density in aging skin, with 0.5 J in LINEAR mode resulting in the most prominent effects. HIFU treatment increased collagen synthesis to levels similar to those in Cav-1-silenced senescent fibroblasts. Our results suggest that HIFU administration increases dermal collagen and elastin fibers in aging skin via Cav-1 modulation and reduced p53 activity.
Collapse
Affiliation(s)
- Seyeon Oh
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine, Incheon 21999, Republic of Korea
| | | | - Sosorburam Batsukh
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine, Incheon 21999, Republic of Korea
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
| | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea
| | - Kyunghee Byun
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine, Incheon 21999, Republic of Korea
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health & Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
4
|
Jiménez MC, Prieto K, Lasso P, Gutiérrez M, Rodriguez-Pardo V, Fiorentino S, Barreto A. Plant extract from Caesalpinia spinosa inhibits cancer-associated fibroblast-like cells generation and function in a tumor microenvironment model. Heliyon 2023; 9:e14148. [PMID: 36923867 PMCID: PMC10009686 DOI: 10.1016/j.heliyon.2023.e14148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
Interactions in the tumor microenvironment (TME) between tumor cells and stromal cells such as cancer-associated fibroblasts (CAF) favor increased survival, progression, and transformation of cancer cells by activating mechanisms of invasion and metastasis. The design of new therapies to modulate or eliminate the CAF phenotype or functionality has been the subject of recent research including natural product-based therapies. We have previously described the generation of a standardized extract rich in polyphenols obtained from the Caesalpinia spinosa plant (P2Et), which present antitumor activities in breast cancer and melanoma models through activities that modulate the metabolism of tumor cells or induce the development of the immune response. In this work, a model of CAF generation was initially developed from the exposure of 3T3 fibroblasts to the cytokine TGFβ1. CAF-like cells generated in this way exhibited changes in the expression of Caveolin-1 and α-SMA, and alterations in glucose metabolism and redox status, typical of CAFs isolated from tumor tissues. Then, P2Et was shown to counteract in vitro-induced CAF-like cell generation, preventing caveolin-1 loss and attenuating changes in glucose uptake and redox profile. This protective effect of P2Et translates into a decrease in the functional ability of CAFs to support colony formation and migration of 4T1 murine breast cancer tumor cells. In addition to the functional interference, the P2Et extract also decreased the expression of genes associated with the epithelial-mesenchymal transition (EMT) and functional activities related to the modulation of the cancer stem cells (CSC) population. This work is an in vitro approach to evaluate natural extracts' effect on the interaction between CAF and tumor cells in the tumor microenvironment; thus, these results open the chance to design a more profound and mechanistic analysis to explore the molecular mechanisms of P2Et multimolecular activity and extent this analysis to an in vivo perspective. In summary, we present here a standardized polymolecular natural extract that has the potential to act in the TME by interfering with CAF generation and functionality.
Collapse
Affiliation(s)
- Maria Camila Jiménez
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Colombia
| | - Karol Prieto
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Colombia
| | - Paola Lasso
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Colombia
| | - Melisa Gutiérrez
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Colombia
| | - Viviana Rodriguez-Pardo
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Colombia
| | - Susana Fiorentino
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Colombia
| | - Alfonso Barreto
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Colombia
| |
Collapse
|
5
|
Mostafavi S, Zalpoor H, Hassan ZM. The promising therapeutic effects of metformin on metabolic reprogramming of cancer-associated fibroblasts in solid tumors. Cell Mol Biol Lett 2022; 27:58. [PMID: 35869449 PMCID: PMC9308248 DOI: 10.1186/s11658-022-00356-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/22/2022] [Indexed: 12/12/2022] Open
Abstract
Tumor-infiltrated lymphocytes are exposed to many toxic metabolites and molecules in the tumor microenvironment (TME) that suppress their anti-tumor activity. Toxic metabolites, such as lactate and ketone bodies, are produced mainly by catabolic cancer-associated fibroblasts (CAFs) to feed anabolic cancer cells. These catabolic and anabolic cells make a metabolic compartment through which high-energy metabolites like lactate can be transferred via the monocarboxylate transporter channel 4. Moreover, a decrease in molecules, including caveolin-1, has been reported to cause deep metabolic changes in normal fibroblasts toward myofibroblast differentiation. In this context, metformin is a promising drug in cancer therapy due to its effect on oncogenic signal transduction pathways, leading to the inhibition of tumor proliferation and downregulation of key oncometabolites like lactate and succinate. The cross-feeding and metabolic coupling of CAFs and tumor cells are also affected by metformin. Therefore, the importance of metabolic reprogramming of stromal cells and also the pivotal effects of metformin on TME and oncometabolites signaling pathways have been reviewed in this study.
Collapse
|
6
|
Huang Q, Wu L, Wang Y, Kong X, Xiao X, Huang Q, Li M, Zhai Y, Shi F, Zhao R, Zhong J, Xiong L. Caveolin-1-deficient fibroblasts promote migration, invasion, and stemness via activating the TGF-β/Smad signaling pathway in breast cancer cells. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1587-1598. [PMID: 36604141 PMCID: PMC9827800 DOI: 10.3724/abbs.2022150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) represent one of the main components in the tumor stroma and play a key role in breast cancer progression. Transforming growth factor-β (TGF-β) has been established to mediate breast cancer metastasis by regulating the epithelial-mesenchymal transition (EMT) and stemness of cancer cells. Caveolin-1 (CAV-1) is a scaffold protein of caveolae that is related to the proliferation and metabolism of cancer cells. It is now well demonstrated that CAV-1 deficiency in the tumor stroma is positively correlated with distant metastasis, but the mechanism remains unclear. Here, we explore whether CAV-1-deficient fibroblasts play an essential role in the EMT and stemness of breast cancer cells (BCCs) through TGF-β signaling. We establish a specific small interfering RNA (siRNA) to inhibit CAV-1 expression in fibroblasts and coculture them with BCCs to investigate the effect of CAV‑1-deficient fibroblasts and the tumor microenvironment on breast cancer progression. This study refreshingly points out that CAV-1 deficiency in fibroblasts enhances TGF-β1 secretion and then activates the TGF-β1/Smad signaling pathway of BCCs, thus promoting the metastasis and stemness of BCCs. Collectively, our findings indicate an unexpected role of CAV-1 deficiency in fibroblasts and the tumor microenvironment as a permissive factor, which is regulated by the TGF-β1 signaling pathway in BCCs.
Collapse
Affiliation(s)
- Qingyun Huang
- Department of PathophysiologyMedical CollegeNanchang UniversityNanchang330006China
| | - Longyuan Wu
- Department of PathophysiologyMedical CollegeNanchang UniversityNanchang330006China
| | - Yi Wang
- Department of PathophysiologyMedical CollegeNanchang UniversityNanchang330006China
| | - Xinyu Kong
- Department of PathophysiologyMedical CollegeNanchang UniversityNanchang330006China
| | - Xinhua Xiao
- The First Affiliated HospitalNanchang UniversityNanchang330006China
| | - Qiyuan Huang
- Department of PathophysiologyMedical CollegeNanchang UniversityNanchang330006China
| | - Miao Li
- Department of PathophysiologyMedical CollegeNanchang UniversityNanchang330006China
| | - Yujia Zhai
- Department of PathophysiologyMedical CollegeNanchang UniversityNanchang330006China
| | - Fuxiu Shi
- Department of PathophysiologyMedical CollegeNanchang UniversityNanchang330006China
| | - Ruichen Zhao
- Department of PathophysiologyMedical CollegeNanchang UniversityNanchang330006China
| | - Junpei Zhong
- Department of PathophysiologyMedical CollegeNanchang UniversityNanchang330006China
| | - Lixia Xiong
- Department of PathophysiologyMedical CollegeNanchang UniversityNanchang330006China,Key Laboratory of Functional and Clinical Translational MedicineFujian Province UniversityXiamen361023China,Correspondence address. Tel: +86-791-86360565;
| |
Collapse
|
7
|
Glabman RA, Choyke PL, Sato N. Cancer-Associated Fibroblasts: Tumorigenicity and Targeting for Cancer Therapy. Cancers (Basel) 2022; 14:cancers14163906. [PMID: 36010899 PMCID: PMC9405783 DOI: 10.3390/cancers14163906] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Cancer-associated fibroblasts (CAFs) are found in the tumor microenvironment and exhibit several protumorigenic functions. Preclinical studies suggest that CAFs can be reduced, eliminated, or reprogrammed; however, clinical translation has not yet occurred. A better understanding of these cells and their functions will undoubtedly improve cancer treatments. In this review, we summarize current research, highlight major challenges, and discuss future opportunities for improving our knowledge of CAF biology and targeting. Abstract Cancer-associated fibroblasts (CAFs) are a heterogenous group of activated fibroblasts and a major component of the tumor stroma. CAFs may be derived from fibroblasts, epithelial cells, endothelial cells, cancer stem cells, adipocytes, pericytes, or stellate cells. These complex origins may underlie their functional diversity, which includes pro-tumorigenic roles in extracellular matrix remodeling, the suppression of anti-tumor immunity, and resistance to cancer therapy. Several methods for targeting CAFs to inhibit tumor progression and enhance anti-tumor immunity have recently been reported. While preclinical studies have shown promise, to date they have been unsuccessful in human clinical trials against melanoma, breast cancer, pancreas cancer, and colorectal cancers. This review summarizes recent and major advances in CAF-targeting therapies, including DNA-based vaccines, anti-CAF CAR-T cells, and modifying and reprogramming CAF functions. The challenges in developing effective anti-CAF treatment are highlighted, which include CAF heterogeneity and plasticity, the lack of specific target markers for CAFs, the limitations in animal models recapitulating the human cancer microenvironment, and the undesirable off-target and systemic side effects. Overcoming these challenges and expanding our understanding of the basic biology of CAFs is necessary for making progress towards safe and effective therapeutic strategies against cancers in human patients.
Collapse
Affiliation(s)
- Raisa A. Glabman
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Comparative Medicine and Integrative Biology, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Peter L. Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Noriko Sato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Correspondence: ; Tel.: +1-240-858-3079
| |
Collapse
|
8
|
Díaz-Valdivia N, Simón L, Díaz J, Martinez-Meza S, Contreras P, Burgos-Ravanal R, Pérez VI, Frei B, Leyton L, Quest AFG. Mitochondrial Dysfunction and the Glycolytic Switch Induced by Caveolin-1 Phosphorylation Promote Cancer Cell Migration, Invasion, and Metastasis. Cancers (Basel) 2022; 14:cancers14122862. [PMID: 35740528 PMCID: PMC9221213 DOI: 10.3390/cancers14122862] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Caveolin-1 (CAV1) is a membrane protein that has been attributed a dual role in cancer, acting at early stages as a tumor suppressor and in later stages of the disease as a promoter of metastasis. In the latter case, enhanced expression of CAV1 favors the malignant phenotype and correlates with a poorer prognosis of the patients. Bearing in mind that the reprogramming of energy metabolism is required in cancer cells to meet both the bioenergetic and biosynthetic needs to sustain increased proliferation, migration, and invasion, we evaluated the metabolism of metastatic cells expressing or not CAV1. In this study, we show that the expression of CAV1 promotes in cancer cells a metabolic switch to an aerobic, glycolytic phenotype by blocking mitochondrial respiration. Abstract Cancer cells often display impaired mitochondrial function, reduced oxidative phosphorylation, and augmented aerobic glycolysis (Warburg effect) to fulfill their bioenergetic and biosynthetic needs. Caveolin-1 (CAV1) is a scaffolding protein that promotes cancer cell migration, invasion, and metastasis in a manner dependent on CAV1 phosphorylation on tyrosine-14 (pY14). Here, we show that CAV1 expression increased glycolysis rates, while mitochondrial respiration was reduced by inhibition of the mitochondrial complex IV. These effects correlated with increased reactive oxygen species (ROS) levels that favored CAV1-induced migration and invasion. Interestingly, pY14-CAV1 promoted the metabolic switch associated with increased migration/invasion and augmented ROS-inhibited PTP1B, a phosphatase that controls pY14 levels. Finally, the glycolysis inhibitor 2-deoxy-D-glucose reduced CAV1-enhanced migration in vitro and metastasis in vivo of murine melanoma cells. In conclusion, CAV1 promotes the Warburg effect and ROS production, which inhibits PTP1B to augment CAV1 phosphorylation on tyrosine-14, thereby increasing the metastatic potential of cancer cells.
Collapse
Affiliation(s)
- Natalia Díaz-Valdivia
- Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile; (N.D.-V.); (L.S.); (J.D.); (S.M.-M.); (P.C.); (R.B.-R.)
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
| | - Layla Simón
- Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile; (N.D.-V.); (L.S.); (J.D.); (S.M.-M.); (P.C.); (R.B.-R.)
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
| | - Jorge Díaz
- Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile; (N.D.-V.); (L.S.); (J.D.); (S.M.-M.); (P.C.); (R.B.-R.)
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
| | - Samuel Martinez-Meza
- Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile; (N.D.-V.); (L.S.); (J.D.); (S.M.-M.); (P.C.); (R.B.-R.)
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
| | - Pamela Contreras
- Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile; (N.D.-V.); (L.S.); (J.D.); (S.M.-M.); (P.C.); (R.B.-R.)
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
| | - Renato Burgos-Ravanal
- Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile; (N.D.-V.); (L.S.); (J.D.); (S.M.-M.); (P.C.); (R.B.-R.)
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
| | - Viviana I. Pérez
- Linus Pauling Institute, Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA; (V.I.P.); (B.F.)
| | - Balz Frei
- Linus Pauling Institute, Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA; (V.I.P.); (B.F.)
| | - Lisette Leyton
- Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile; (N.D.-V.); (L.S.); (J.D.); (S.M.-M.); (P.C.); (R.B.-R.)
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
- Correspondence: (L.L.); (A.F.G.Q.)
| | - Andrew F. G. Quest
- Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile; (N.D.-V.); (L.S.); (J.D.); (S.M.-M.); (P.C.); (R.B.-R.)
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
- Correspondence: (L.L.); (A.F.G.Q.)
| |
Collapse
|
9
|
Ren L, Zhou P, Wu H, Liang Y, Xu R, Lu H, Chen Q. Caveolin-1 is a prognostic marker and suppresses the proliferation of breast cancer. Transl Cancer Res 2022; 10:3797-3810. [PMID: 35116679 PMCID: PMC8798413 DOI: 10.21037/tcr-21-1139] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/19/2021] [Indexed: 12/13/2022]
Abstract
Background To explore the role of caveolin-1 (Cav-1) in breast cancer (BC). Methods Cav-1 expression data were downloaded from the Tumor Immune Estimation Resource (TIMER) and Gene Expression Omnibus (GEO) databases. We compared the expression of Cav-1 in different tumor tissues and between BC tissues and normal tissues (NTs), as well as the differences between different clinical traits. Kaplan-Meier survival analysis and univariate and multivariate Cox regression analyses were used to determine whether Cav-1 serves as a prognostic factor. The correlations of Cav-1 expression with the immune microenvironment and infiltrating immune cells were also analyzed. Quantitative polymerase chain reaction (qPCR) was used to detect Cav-1 mRNA expression in the MCF-7, SKB-R3, MDB-MB-231, and SUM-159 cell lines. LV-Cav-1-RNAi was transfected into MCF-7 and MDB-MB-231 cells, and the MTT assay was used to detect cell proliferation. Subsequently, MDB-MB-231 cells carrying the Cav-1-RNAi gene were used to determine the effects of Cav-1 knockdown on tumor growth in vivo using a severe combined immunodeficiency (SCID) model. Results Cav-1 was enriched in most solid tumors, and its expression was lower in BC tissues than in NT. Cav-1 expression was shown to be related to patients’ clinical outcomes. Cav-1 was expressed in the MCF-7, SKB-R3, MDB-MB-231, and SUM-159 cell lines. The MTT assay revealed that the proliferative ability of MDB-MB-231 and MCF-7 cells was accelerated. The tumor volume of SCID mice administered with LV-Cav-1-RNAi cells was increased. Conclusions These results suggest that Cav-1 may serve as a suppressor in the development of BC.
Collapse
Affiliation(s)
- Liping Ren
- Department of Breast Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Breast Disease, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peijuan Zhou
- Department of Traditional Chinese Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Huajia Wu
- Department of Breast Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Breast Disease, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuqi Liang
- Department of Breast Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Breast Disease, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rui Xu
- Department of Breast Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Breast Disease, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hai Lu
- Department of Breast Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Breast Disease, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qianjun Chen
- Department of Breast Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Breast Disease, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
10
|
Goswami S, Sarkar C, Singh S, Singh AP, Chakroborty D. Racial differences in prostate tumor microenvironment: implications for disparate clinical outcomes and potential opportunities. CANCER HEALTH DISPARITIES 2022; 6:214. [PMID: 36777283 PMCID: PMC9910060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Disparities in cancer incidence and outcome are common among the racial and ethnical minorities in the United States and are of significant social and clinical concern. Prostate cancer is the most commonly diagnosed non-cutaneous malignancy in American men and exhibits substantial racial disparities with African American men bearing the highest burden in terms of incidence and mortality. A multitude of factors, including socioeconomic, behavioral, and access to healthcare, have been implicated as the underlying causes of such disparities. More recent data also suggest that there are inherent molecular and biological differences in prostate tumors of patients having distinct racial backgrounds. Tumor microenvironment has tremendous impact on the course of cancer progression and clinical outcome and may also contribute to the racial disparities observed in prostate cancer. Therefore, a better understanding of critical differences in the tumor microenvironment components may provide newer directions to study the biological causes of prostate cancer health disparities and may identify novel therapeutic targets. This review discusses the findings related to the tumor microenvironment differences between African American and Caucasian American prostate cancer patients and makes suggestion regarding their potential significance in prostate cancer disparities.
Collapse
Affiliation(s)
- Sandeep Goswami
- Department of Pathology, University of South Alabama, Mobile, Alabama, USA.,Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Chandrani Sarkar
- Department of Pathology, University of South Alabama, Mobile, Alabama, USA.,Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Seema Singh
- Department of Pathology, University of South Alabama, Mobile, Alabama, USA.,Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Ajay Pratap Singh
- Department of Pathology, University of South Alabama, Mobile, Alabama, USA.,Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Debanjan Chakroborty
- Department of Pathology, University of South Alabama, Mobile, Alabama, USA.,Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
11
|
Lu T, Zhang Z, Pan X, Zhang J, Wang X, Wang M, Li H, Yan M, Chen W. Caveolin-1 promotes cancer progression via inhibiting ferroptosis in head and neck squamous cell carcinoma. J Oral Pathol Med 2021; 51:52-62. [PMID: 34874578 PMCID: PMC9300096 DOI: 10.1111/jop.13267] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 12/27/2022]
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) is an aggressive disease worldwide. Much progress has been made in exploring mechanisms and improving the therapy of HNSCC, but only a few studies have focused on the role of ferroptosis on HNSCC progression. The current study aimed to reveal the underlining mechanisms that caveolin‐1 (CAV1)‐ROS (reactive oxygen species)‐ferroptosis axis affect the process of HNSCC and discover novo therapeutic targets or strategies. Methods The role of CAV1 in ferroptosis was analyzed by FerrDb, and its clinical significance was examined by TCGA dataset of HNSCC. The expressions of caveolin‐1 (CAV1) in HNSCC tissues were measured by immunohistochemistry, western blot, and real‐time PCR assay. Three siRNA sequences were designed to silence CAV1 mRNA in HNSCC cells. Cell proliferation, colony formation, wound‐healing, and transwell assays were used to examine the proliferation, migration, and invasion of cancer cells. ROS evaluation and intracellular Fe2+ content assays were performed to examine the levels of ferroptosis. Results Through the analysis with published data, CAV1 was found to overexpress in HNSCC than normal tissues, and was one of the vital suppressors of ferroptosis pathway. Our study showed that CAV1 was over expressed in HNSCC tissues and the high level of CAV1 predicted poorer prognosis. Further experiments indicated that CAV1 could inhibit the ferroptosis of cancer cells and promote the proliferation, migration and invasion. Conclusions Overexpression of CAV1 in HNSCC inhibited the process of ferroptosis, leading to aggressive phenotypes, as well as worse prognosis. The regulatory pathway of CAV1 and ferroptosis are potential targets for designing diagnostic and combined therapeutic strategies for HNSCC patients.
Collapse
Affiliation(s)
- Tingwei Lu
- Department of Oral and Maxillofacial-Head & Neck Oncology, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Zhang
- Department of Oral and Maxillofacial-Head & Neck Oncology, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinhua Pan
- Department of Oral and Maxillofacial-Head & Neck Oncology, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianjun Zhang
- Department of Oral and Maxillofacial-Head & Neck Oncology, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Wang
- Department of Oral and Maxillofacial-Head & Neck Oncology, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Miaochen Wang
- Department of Oral and Maxillofacial-Head & Neck Oncology, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huasheng Li
- Department of Oral and Maxillofacial-Head & Neck Oncology, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Yan
- Department of Oral and Maxillofacial-Head & Neck Oncology, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wantao Chen
- Department of Oral and Maxillofacial-Head & Neck Oncology, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
Neagu AN, Whitham D, Buonanno E, Jenkins A, Alexa-Stratulat T, Tamba BI, Darie CC. Proteomics and its applications in breast cancer. Am J Cancer Res 2021; 11:4006-4049. [PMID: 34659875 PMCID: PMC8493401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023] Open
Abstract
Breast cancer is an individually unique, multi-faceted and chameleonic disease, an eternal challenge for the new era of high-integrated precision diagnostic and personalized oncomedicine. Besides traditional single-omics fields (such as genomics, epigenomics, transcriptomics and metabolomics) and multi-omics contributions (proteogenomics, proteotranscriptomics or reproductomics), several new "-omics" approaches and exciting proteomics subfields are contributing to basic and advanced understanding of these "multiple diseases termed breast cancer": phenomics/cellomics, connectomics and interactomics, secretomics, matrisomics, exosomics, angiomics, chaperomics and epichaperomics, phosphoproteomics, ubiquitinomics, metalloproteomics, terminomics, degradomics and metadegradomics, adhesomics, stressomics, microbiomics, immunomics, salivaomics, materiomics and other biomics. Throughout the extremely complex neoplastic process, a Breast Cancer Cell Continuum Concept (BCCCC) has been modeled in this review as a spatio-temporal and holistic approach, as long as the breast cancer represents a complex cascade comprising successively integrated populations of heterogeneous tumor and cancer-associated cells, that reflect the carcinoma's progression from a "driving mutation" and formation of the breast primary tumor, toward the distant secondary tumors in different tissues and organs, via circulating tumor cell populations. This BCCCC is widely sustained by a Breast Cancer Proteomic Continuum Concept (BCPCC), where each phenotype of neoplastic and tumor-associated cells is characterized by a changing and adaptive proteomic profile detected in solid and liquid minimal invasive biopsies by complex proteomics approaches. Such a profile is created, beginning with the proteomic landscape of different neoplastic cell populations and cancer-associated cells, followed by subsequent analysis of protein biomarkers involved in epithelial-mesenchymal transition and intravasation, circulating tumor cell proteomics, and, finally, by protein biomarkers that highlight the extravasation and distant metastatic invasion. Proteomics technologies are producing important data in breast cancer diagnostic, prognostic, and predictive biomarkers discovery and validation, are detecting genetic aberrations at the proteome level, describing functional and regulatory pathways and emphasizing specific protein and peptide profiles in human tissues, biological fluids, cell lines and animal models. Also, proteomics can identify different breast cancer subtypes and specific protein and proteoform expression, can assess the efficacy of cancer therapies at cellular and tissular level and can even identify new therapeutic target proteins in clinical studies.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of IașiCarol I bvd. No. 22, Iași 700505, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Emma Buonanno
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Avalon Jenkins
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Teodora Alexa-Stratulat
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and PharmacyIndependenței bvd. No. 16-18, Iași 700021, Romania
| | - Bogdan Ionel Tamba
- Advanced Center for Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and PharmacyMihail Kogălniceanu Street No. 9-13, Iași 700454, Romania
| | - Costel C Darie
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| |
Collapse
|
13
|
Lai X, Guo Y, Chen M, Wei Y, Yi W, Shi Y, Xiong L. Caveolin1: its roles in normal and cancer stem cells. J Cancer Res Clin Oncol 2021; 147:3459-3475. [PMID: 34498146 DOI: 10.1007/s00432-021-03793-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/03/2021] [Indexed: 12/09/2022]
Abstract
PURPOSE Stem cells are characterized by the capability of self-renewal and multi-differentiation. Normal stem cells, which are important for tissue repair and tissue regeneration, can be divided into embryonic stem cells (ESCs) and somatic stem cells (SSCs) depending on their origin. As a subpopulation of cells within cancer, cancer stem cells (CSCs) are at the root of therapeutic resistance. Tumor-initiating cells (TICs) are necessary for tumor initiation. Caveolin1 (Cav1), a membrane protein located at the caveolae, participates in cell lipid transport, cell migration, cell proliferation, and cell signal transduction. The purpose of this review was to explore the relationship between Cav1 and stem cells. RESULTS In ESCs, Cav1 is beneficial for self-renewal, proliferation, and migration. In SSCs, Cav1 exhibits positive or/and negative effects on stem cell self-renewal, differentiation, proliferation, migration, and angiogenic capacity. Cav1 deficiency impairs normal stem cell-based tissue repair. In CSCs, Cav1 inhibits or/and promotes CSC self-renewal, differentiation, invasion, migration, tumorigenicity ability, and CSC formation. And suppressing Cav1 promotes chemo-sensitivity in CSCs and TICs. CONCLUSION Cav1 shows dual roles in stem cell biology. Targeting the Cav1-stem cell axis would be a new way for tissue repair and cancer drug resistance.
Collapse
Affiliation(s)
- Xingning Lai
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China.,Second Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Yiling Guo
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China.,Second Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Miaomiao Chen
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China.,First Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Yuxuan Wei
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China.,Queen Mary School, Jiangxi Medical College of Nanchang University, Nanchang, 330006, China
| | - Wanting Yi
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China.,First Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Yubo Shi
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China.,Queen Mary School, Jiangxi Medical College of Nanchang University, Nanchang, 330006, China
| | - Lixia Xiong
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China. .,Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Nanchang, 330006, China.
| |
Collapse
|
14
|
Lee IS, Sahu D, Hur H, Yook JH, Kim BS, Goel A. Discovery and validation of an expression signature for recurrence prediction in high-risk diffuse-type gastric cancer. Gastric Cancer 2021; 24:655-665. [PMID: 33523340 DOI: 10.1007/s10120-021-01155-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Diffuse type gastric cancer (DGC), represented by low sensitivity to chemotherapy and poor prognosis, is a heterogenous malignancy in which patient subsets exhibit diverse oncological risk-profiles. This study aimed to develop molecular biomarkers for robust prognostic risk-stratification and improve survival outcomes in patients with diffuse type gastric cancer (DGC). METHODS We undertook a systematic and comprehensive discovery and validation effort to identify recurrence prediction biomarkers by analyzing genome-wide transcriptomic profiling data from 157 patients with DGC, followed by their validation in 254 patients from 2 clinical cohorts. RESULTS Genome-wide transcriptomic profiling identified a 7-gene panel for robust prediction of recurrence in DGC patients (AUC = 0.91), which was successfully validated in an independent dataset (AUC = 0.86). Examination of 180 specimens from a training cohort allowed us to establish a gene-based risk prediction model (AUC = 0.78; 95% CI 0.71-0.84), which was subsequently validated in an independent cohort of 74 GC patients (AUC = 0.83; 95% CI 0.72-0.90). The Kaplan-Meier analyses exhibited a consistently superior performance of our risk-prediction model in the identification of high- and low-risk patient subgroups, which was significantly improved when we combined our gene signature with the tumor stage in both clinical cohorts (AUC of 0.83 in the training cohort and 0.89 in the validation cohort). Finally, for an easier clinical translation, we established a nomogram that robustly predicted prognosis in patients with DGC. CONCLUSIONS Our novel transcriptomic signature for risk-stratification and identification of high-risk patients with recurrence could serve as an important clinical decision-making tool in patients with DGC.
Collapse
Affiliation(s)
- In-Seob Lee
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Biomedical Research Center, 1218 S. Fifth Avenue, Monrovia, CA, 91016, USA.,Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Divya Sahu
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Biomedical Research Center, 1218 S. Fifth Avenue, Monrovia, CA, 91016, USA
| | - Hoon Hur
- Department of Surgery, Ajou University of School of Medicine, Suwon, South Korea.,Cancer Biology Graduate Program, Ajou University Graduate School of Medicine, Suwon, South Korea
| | - Jeong-Hwan Yook
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Byung-Sik Kim
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Biomedical Research Center, 1218 S. Fifth Avenue, Monrovia, CA, 91016, USA.
| |
Collapse
|
15
|
Yang C, He B, Dai W, Zhang H, Zheng Y, Wang X, Zhang Q. The role of caveolin-1 in the biofate and efficacy of anti-tumor drugs and their nano-drug delivery systems. Acta Pharm Sin B 2021; 11:961-977. [PMID: 33996409 PMCID: PMC8105775 DOI: 10.1016/j.apsb.2020.11.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/24/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022] Open
Abstract
As one of the most important components of caveolae, caveolin-1 is involved in caveolae-mediated endocytosis and transcytosis pathways, and also plays a role in regulating the cell membrane cholesterol homeostasis and mediating signal transduction. In recent years, the relationship between the expression level of caveolin-1 in the tumor microenvironment and the prognostic effect of tumor treatment and drug treatment resistance has also been widely explored. In addition, the interplay between caveolin-1 and nano-drugs is bidirectional. Caveolin-1 could determine the intracellular biofate of specific nano-drugs, preventing from lysosomal degradation, and facilitate them penetrate into deeper site of tumors by transcytosis; while some nanocarriers could also affect caveolin-1 levels in tumor cells, thereby changing certain biophysical function of cells. This article reviews the role of caveolin-1 in tumor prognosis, chemotherapeutic drug resistance, antibody drug sensitivity, and nano-drug delivery, providing a reference for the further application of caveolin-1 in nano-drug delivery systems.
Collapse
Key Words
- 5-FU, 5-fluorouracil
- ADC, antibody drug conjugates
- BBB, blood–brain barrier
- Biofate
- CAFs, cancer-associated fibroblasts
- CPT, camptothecin
- CSD, caveolin scaffolding domain
- CTB, cholera toxins B
- Cancer
- Caveolin-1
- Drug resistance
- ECM, extracellular matrix
- EGF, epidermal growth factor
- EGFR, epidermal growth factor receptor
- ER, endoplasmic reticulum
- ERK, extracellular regulated protein kinases
- FGF2, fibroblast growth factor 2
- GGT, γ-glutamyl transpeptidase
- GPI, glycosylphosphatidylinositol
- HER2, human epidermal growth factor receptor 2
- HMG-CoA, 3-hydroxy-3-methylglutaryl-coenzyme A
- HSA, human serum albumin
- IBC, infiltrating breast cancer
- IR, insulin receptor
- MAPK, mitogen-activated protein kinase
- MDR, multidrug resistance
- MSV, multistage nanovectors
- NPs, nanoparticles
- Nano-drug delivery systems
- PC, prostate cancer
- PDGF, platelet-derived growth factor
- PFS, progression free survival
- ROS, reactive oxygen species
- SCLC, small cell lung cancer
- SV40, simian virus 40
- Transcytosis
- cell SMA, styrene maleic acid
Collapse
|
16
|
Panic A, Reis H, Wittka A, Darr C, Hadaschik B, Jendrossek V, Klein D. The Biomarker Potential of Caveolin-1 in Penile Cancer. Front Oncol 2021; 11:606122. [PMID: 33868995 PMCID: PMC8045968 DOI: 10.3389/fonc.2021.606122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/12/2021] [Indexed: 01/11/2023] Open
Abstract
Various types of human cancers were characterized by an altered expression of epithelial or stromal caveolin-1 (CAV1). However, the clinical significance of CAV1 expression in penile cancer remains largely unknown. Here the expression patterns of CAV1 were analyzed in a retrospective cohort (n=43) of penile squamous cell carcinomas (SCC). Upon penile cancer progression, significantly increased CAV1-levels were determined within the malignant epithelium, whereas within the tumor stroma, namely the fibroblastic tumor compartment harboring activated and/or cancer associated fibroblasts, CAV1 levels significantly decline. Concerning the clinicopathological significance of CAV1 expression in penile cancer as well as respective epithelial-stromal CAV1 distributions, high expression within the tumor cells as well as low expression of CAV1 within the stromal compartment were correlated with decreased overall survival of penile cancer patients. Herein, CAV1 expressions and distributions at advanced penile cancer stages were independent of the immunohistochemically proven tumor protein p53 status. In contrast, less differentiated p16-positive tumor epithelia (indicative for human papilloma virus infection) were characterized by significantly decreased CAV1 levels. Conclusively, we provide further and new evidence that the characteristic shift in stromal‐epithelial CAV1 being functionally relevant to tumor progression even occurs in penile SCC.
Collapse
Affiliation(s)
- Andrej Panic
- Department of Urology, West German Cancer Center, University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Henning Reis
- Institute of Pathology, West German Cancer Center, University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Alina Wittka
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Christopher Darr
- Department of Urology, West German Cancer Center, University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Boris Hadaschik
- Department of Urology, West German Cancer Center, University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Diana Klein
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Essen, Germany
| |
Collapse
|
17
|
Kaya S, Wiesmann N, Goldschmitt J, Krüger M, Al-Nawas B, Heider J. Differences in the expression of caveolin-1 isoforms in cancer-associated and normal fibroblasts of patients with oral squamous cell carcinoma. Clin Oral Investig 2021; 25:5823-5831. [PMID: 33774714 PMCID: PMC8443514 DOI: 10.1007/s00784-021-03887-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/12/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVES For many years, tumor development has been viewed as a cell-autonomous process; however, today we know that the tumor microenvironment (TME) and especially cancer-associated fibroblasts (CAFs) significantly contribute to tumor progression. Caveolin-1 (Cav-1) is a scaffolding protein which is involved in several cancer-associated processes as important component of the caveolae. Our goal was to shed light on the expression of the two different isoforms of Cav-1 in normal fibroblasts (NFs) and CAFs of patients with oral squamous cell carcinoma (OSCC). MATERIALS AND METHODS Fibroblasts from normal mucosa and CAFs were isolated and propagated in vitro. Gene expression of the different Cav-1 isoforms was assessed via quantitative real-time PCR (qPCR) and supplemented by protein expression analysis. RESULTS We could show that the Cav-1β isoform is more highly expressed in NFs and CAFs compared to Cav-1α. Furthermore, the different Cav-1 isoforms tended to be differently expressed in different tumor stages. However, this trend could not be seen consistently, which is in line with the ambiguous role of Cav-1 in tumor progression described in literature. Western blotting furthermore revealed that NFs and CAFs might differ in the oligomerization profile of the Cav-1 protein. CONCLUSION These differences in expression of Cav-1 between NFs and CAFs of patients with OSCC confirm that the protein might play a role in tumor progression and is of interest for further analyses. CLINICAL RELEVANCE Our findings support a possible role of the two isoforms of Cav-1 in the malignant transformation of OSCC.
Collapse
Affiliation(s)
- S Kaya
- Department of Oral and Maxillofacial Surgery Plastic Surgery, University Medical Center of the Johannes Gutenberg-University of Mainz, Augustusplatz 2, 55131, Mainz, Germany
| | - Nadine Wiesmann
- Department of Oral and Maxillofacial Surgery Plastic Surgery, University Medical Center of the Johannes Gutenberg-University of Mainz, Augustusplatz 2, 55131, Mainz, Germany. .,Molecular Tumor Biology, Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131, Mainz, Germany.
| | - J Goldschmitt
- Department of Oral and Maxillofacial Surgery Plastic Surgery, University Medical Center of the Johannes Gutenberg-University of Mainz, Augustusplatz 2, 55131, Mainz, Germany
| | - M Krüger
- Department of Oral and Maxillofacial Surgery Plastic Surgery, University Medical Center of the Johannes Gutenberg-University of Mainz, Augustusplatz 2, 55131, Mainz, Germany
| | - B Al-Nawas
- Department of Oral and Maxillofacial Surgery Plastic Surgery, University Medical Center of the Johannes Gutenberg-University of Mainz, Augustusplatz 2, 55131, Mainz, Germany
| | - J Heider
- Department of Oral and Maxillofacial Surgery Plastic Surgery, University Medical Center of the Johannes Gutenberg-University of Mainz, Augustusplatz 2, 55131, Mainz, Germany
| |
Collapse
|
18
|
Scatena C, Fanelli G, Fanelli GN, Menicagli M, Aretini P, Ortenzi V, Civitelli SP, Innocenti L, Sotgia F, Lisanti MP, Naccarato AG. New insights in the expression of stromal caveolin 1 in breast cancer spread to axillary lymph nodes. Sci Rep 2021; 11:2755. [PMID: 33531603 PMCID: PMC7854652 DOI: 10.1038/s41598-021-82405-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
Recent evidence suggests that a loss of expression of caveolin in the stromal compartment (sCav-1) of human invasive breast carcinoma (IBC) may be a predictor of disease recurrence, metastasis and poor outcome. At present, there is little knowledge regarding the expression of sCav-1 at the metastatic sites. We therefore studied sCav-1 expression in IBCs and in their axillary lymph nodes to seek a correlation with cancer metastasis. 189 consecutive invasive IBCs (53 with axillary lymph node metastases and 136 without) were studied by immunohistochemistry, using a rabbit polyclonal anti-Cav-1 antibody. In IBCs sCav-1 was evaluated in fibroblasts scattered in the tumor stroma whereas in lymph nodes sCav-1 was assessed in fibroblast-like stromal cells. For the first time, we observed a statistically significant progressive loss of sCav-1 from normal/reactive axillary lymph nodes of tumors limited to the breast to metastatic axillary lymph nodes, through normal/reactive axillary lymph nodes of tumors with axillary metastatic spread. These data indicate that Cav-1 expressed by the stromal compartment of lymph nodes, somehow, may possibly contribute to metastatic spread in IBC.
Collapse
Affiliation(s)
- Cristian Scatena
- Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126, Pisa, Italy. .,Department of Laboratory Medicine, Pisa University Hospital, Anatomia Patologica 1 Universitaria, 56126, Pisa, Italy.
| | - Giovanni Fanelli
- Department of Laboratory Medicine, Pisa University Hospital, Anatomia Patologica 1 Universitaria, 56126, Pisa, Italy
| | - Giuseppe Nicolò Fanelli
- Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126, Pisa, Italy
| | | | - Paolo Aretini
- Fondazione Pisana per la Scienza, 56017, Pisa, Italy
| | - Valerio Ortenzi
- Department of Laboratory Medicine, Pisa University Hospital, Anatomia Patologica 1 Universitaria, 56126, Pisa, Italy
| | - Sara Piera Civitelli
- Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126, Pisa, Italy
| | - Lorenzo Innocenti
- Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126, Pisa, Italy
| | - Federica Sotgia
- Translational Medicine, University of Salford, Greater Manchester, M5 4WT, UK
| | - Michael P Lisanti
- Translational Medicine, University of Salford, Greater Manchester, M5 4WT, UK
| | - Antonio Giuseppe Naccarato
- Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126, Pisa, Italy.,Department of Laboratory Medicine, Pisa University Hospital, Anatomia Patologica 1 Universitaria, 56126, Pisa, Italy
| |
Collapse
|
19
|
Khan I, Steeg PS. Endocytosis: a pivotal pathway for regulating metastasis. Br J Cancer 2021; 124:66-75. [PMID: 33262521 PMCID: PMC7782782 DOI: 10.1038/s41416-020-01179-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 12/16/2022] Open
Abstract
A potentially important aspect in the regulation of tumour metastasis is endocytosis. This process consists of internalisation of cell-surface receptors via pinocytosis, phagocytosis or receptor-mediated endocytosis, the latter of which includes clathrin-, caveolae- and non-clathrin or caveolae-mediated mechanisms. Endocytosis then progresses through several intracellular compartments for sorting and routing of cargo, ending in lysosomal degradation, recycling back to the cell surface or secretion. Multiple endocytic proteins are dysregulated in cancer and regulate tumour metastasis, particularly migration and invasion. Importantly, four metastasis suppressor genes function in part by regulating endocytosis, namely, the NME, KAI, MTSS1 and KISS1 pathways. Data on metastasis suppressors identify a new point of dysregulation operative in tumour metastasis, alterations in signalling through endocytosis. This review will focus on the multicomponent process of endocytosis affecting different steps of metastasis and how metastatic-suppressor genes use endocytosis to suppress metastasis.
Collapse
Affiliation(s)
- Imran Khan
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA.
| | - Patricia S Steeg
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| |
Collapse
|
20
|
Wang X, Qiu Y, Wang M, Zhang C, Zhang T, Zhou H, Zhao W, Zhao W, Xia G, Shao R. Endocytosis and Organelle Targeting of Nanomedicines in Cancer Therapy. Int J Nanomedicine 2020; 15:9447-9467. [PMID: 33268987 PMCID: PMC7701161 DOI: 10.2147/ijn.s274289] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022] Open
Abstract
Nanomedicines (NMs) have played an increasing role in cancer therapy as carriers to efficiently deliver therapeutics into tumor cells. For this application, the uptake of NMs by tumor cells is usually a prerequisite to deliver the cargo to intracellular locations, which mainly relies on endocytosis. NMs can enter cells through a variety of endocytosis pathways. Different endocytosis pathways exhibit different intracellular trafficking routes and diverse subcellular localizations. Therefore, a comprehensive understanding of endocytosis mechanisms is necessary for increasing cellular entry efficiency and to trace the fate of NMs after internalization. This review focuses on endocytosis pathways of NMs in tumor cells, mainly including clathrin- and caveolae-mediated endocytosis pathways, involving effector molecules, expression difference of those molecules between normal and tumor cells, as well as the intracellular trafficking route of corresponding endocytosis vesicles. Then, the latest strategies for NMs to actively employ endocytosis are described, including improving tumor cellular uptake of NMs by receptor-mediated endocytosis, transporter-mediated endocytosis and enabling drug activity by changing intracellular routes. Finally, active targeting strategies towards intracellular organelles are also mentioned. This review will be helpful not only in explicating endocytosis and the trafficking process of NMs and elucidating anti-tumor mechanisms inside the cell but also in rendering new ideas for the design of highly efficacious and cancer-targeted NMs.
Collapse
Affiliation(s)
- Xiaowei Wang
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Yuhan Qiu
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Mengyan Wang
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Conghui Zhang
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Tianshu Zhang
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Huimin Zhou
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Wenxia Zhao
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Wuli Zhao
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Guimin Xia
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Rongguang Shao
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
21
|
Shen C, Chen X, Xiao K, Che G. New relationship of E2F1 and BNIP3 with caveolin-1 in lung cancer-associated fibroblasts. Thorac Cancer 2020; 11:1369-1371. [PMID: 32212370 PMCID: PMC7262894 DOI: 10.1111/1759-7714.13408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 02/05/2023] Open
Abstract
In recent years, studies have found that E2F1, a downstream effector of caveolin‐1 (Cav‐1), participates in tumor cell metabolic reprogramming. E2F1 modulates mitochondrial fusion and mitophagy. Bioinformatic analysis has identified the E2F1‐MFN2 axis as a regulator of mitophagy. Our data establish a new novel paradigm for regulation of the tumor cell metabolic reprogramming pathway by Cav‐1 that is operationally linked and mutually dependent on the transcriptional activation of E2F1 and induces mitophagy with BNIP3 in cancer‐associated fibroblasts (CAFs).
Collapse
Affiliation(s)
- Cheng Shen
- Department of Thoracic Surgery, West-China Hospital, Sichuan University, Chengdu, China
| | - Xuanming Chen
- School of Medicine, West-China Hospital, Sichuan University, Chengdu, China.,Sichuan Kangcheng Biotechnology Co., Ltd., Chengdu, China
| | - Kai Xiao
- School of Medicine, West-China Hospital, Sichuan University, Chengdu, China.,Sichuan Kangcheng Biotechnology Co., Ltd., Chengdu, China
| | - Guowei Che
- Department of Thoracic Surgery, West-China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Garufi A, Traversi G, Cirone M, D'Orazi G. HIPK2 role in the tumor-host interaction: Impact on fibroblasts transdifferentiation CAF-like. IUBMB Life 2019; 71:2055-2061. [PMID: 31414572 PMCID: PMC6899452 DOI: 10.1002/iub.2144] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/26/2019] [Indexed: 12/16/2022]
Abstract
The dialogue between cancer cells and the surrounding fibroblasts, tumor-associated macrophages (TAM), and immune cells can create a tumor microenvironment (TME) able to promote tumor progression and metastasis and induce resistance to anticancer therapies. Cancer cells, by producing growth factors and cytokines, can recruit and activate fibroblasts in the TME inducing their transdifferention in cancer-associated fibroblasts (CAFs). Then, CAFs, in a reciprocal cross-talk with cancer cells, sustain cancer growth and survival and support malignancy and tumor resistance to therapies. Therefore, the identification of the molecular mechanisms regulating the interplay between cancer cells and fibroblasts can offer an intriguing opportunity for novel diagnostic and therapeutic anticancer purpose. HIPK2 is a multifunctional tumor suppressor protein that modulates cancer cell growth and apoptosis in response to anticancer drugs and negatively regulates pathways involved in tumor progression and chemoresistance. HIPK2 protein downregulation is induced by hypoxia and hyperglycemia and HIPK2 knockdown favors tumor progression and resistance to therapy other than a pseudohypoxic, inflammatory, and angiogenic cancer phenotype. Therefore, we hypothesized that HIPK2 modulation in cancer cells could contribute to modify the tumor-host interaction. In support of our hypothesis, here we provide evidence that culturing human fibroblasts (hFB) with conditioned media derived from cancer cells undergoing HIPK2 knockdown (CMsiHIPK2 ) triggered their transdifferentiation CAF-like, compared to hFB cultured with CM-derived from HIPK2-carrying control cancer cells. CAF transdifferentiation was identified by expression of several markers including α-smooth muscle actin (α-SMA) and collagen I and correlated with autophagy-mediated caveolin-1 degradation. Although the molecular mechanisms dictating CAF-transdifferentiation need to be elucidated, these results open the way to further study the role of HIPK2 in TME remodeling for prognostic and therapeutic purpose.
Collapse
Affiliation(s)
- Alessia Garufi
- Department of Medical SciencesUniversity “G. d'Annunzio”ChietiItaly
- Department of ResearchIRCCS Regina Elena National Cancer InstituteRomeItaly
| | - Gianandrea Traversi
- Department of Medical SciencesUniversity “G. d'Annunzio”ChietiItaly
- Department of ResearchIRCCS Regina Elena National Cancer InstituteRomeItaly
| | - Mara Cirone
- Department of Experimental Medicine“Sapienza” University of Rome, Italy, Laboratory affiliated to Pasteur InstituteRomeItaly
| | - Gabriella D'Orazi
- Department of Medical SciencesUniversity “G. d'Annunzio”ChietiItaly
- Department of ResearchIRCCS Regina Elena National Cancer InstituteRomeItaly
| |
Collapse
|
23
|
Joshi B, Pawling J, Shankar J, Pacholczyk K, Kim Y, Tran W, Meng F, Rahman AMA, Foster LJ, Leong HS, Dennis JW, Nabi IR. Caveolin-1 Y14 phosphorylation suppresses tumor growth while promoting invasion. Oncotarget 2019; 10:6668-6677. [PMID: 31803361 PMCID: PMC6877104 DOI: 10.18632/oncotarget.27313] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/26/2019] [Indexed: 01/07/2023] Open
Abstract
Caveolin-1 is a transmembrane protein with both tumor promoter and suppressor functions that remain poorly understood. Cav1 phosphorylation by Src kinase on tyrosine 14 is closely associated with focal adhesion dynamics and tumor cell migration, however the role of pCav1 in vivo in tumor progression remains poorly characterized. Herein, we expressed phosphomimetic Y14D, wild type, and non-phosphorylatable Y14F forms of Cav1 in MDA-MB-435 cancer cells. Expression of Cav1Y14D reduced cell proliferation and induced the TP53 tumor suppressor. Ectopic expression in MDA-MB-435 cells of Y14 phosphorylatable Cav1 was required for induction of TP53 in response to oxidative stress. Cav1Y14D promotes an apparent reversal of the Warburg effect and markedly inhibited tumor growth in vivo. However, Cav1 induced pseudopodial recruitment of glycolytic enzymes, and time-lapse intravital imaging showed increased invadopodia protrusion and extravasation into blood vessels for Cav1WT and Y14D but not for Y14F. Our results suggest that Cav1 Y14 phosphorylation levels play a role in the conflicting demands on metabolic resources associated with cancer cell proliferation versus motility.
Collapse
Affiliation(s)
- Bharat Joshi
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Judy Pawling
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Jay Shankar
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Karina Pacholczyk
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Yohan Kim
- Translational Prostate Cancer Research Group, London Regional Cancer Program, University of Western Ontario, London, Canada
| | - Wynn Tran
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Fanrui Meng
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Anas M Abdel Rahman
- Department of Genetics, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh, Saudi Arabia
| | - Leonard J Foster
- Centre for High-throughput Biology, University of British Columbia, Vancouver, Canada
| | - Hon S Leong
- Translational Prostate Cancer Research Group, London Regional Cancer Program, University of Western Ontario, London, Canada
| | - James W Dennis
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Ivan R Nabi
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| |
Collapse
|
24
|
Gong Y, Yang Y, Tian S, Chen H. Different Role of Caveolin-1 Gene in the Progression of Gynecological Tumors. Asian Pac J Cancer Prev 2019; 20:3259-3268. [PMID: 31759347 PMCID: PMC7062999 DOI: 10.31557/apjcp.2019.20.11.3259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Indexed: 12/13/2022] Open
Abstract
Caveolin-1 (Cav-1), an integral membrane protein, is a principal component of caveolae and has been reported to play a promoting or inhibiting role in cancer progression. Gynecologic tumor is a group of tumors that affect the tissue and organs of the female reproductive system, especially cervical cancer. Cervical cancer, as one of the most common cancers, severely affects female health in developing countries in particular because of its high morbidity and mortality. This review summarizes some mechanisms of Cav-1 in the development and progression of gynecological tumors. The role of Cav-1 in tumorigenesis, including dysregulation of cell cycle, apoptosis and autophagy, adhesion, invasion, and metastasis, such as the formation of invadopodia and matrix metalloproteinase degradation are presented in detail. In addition, Cav-1 modulates autophagy and the formation of invadopodia and target regulated by miRNAs to affect tumor progress. Taken together, we find that, no matter Cav-1 expression in the tumor or stromal cells , Cav-1 has paradoxical role in different types of gynecological tumors in vivo or in vitro and even in the same tumor from the same organ.
Collapse
Affiliation(s)
- Yan Gong
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, P. R. China
| | - Yuhan Yang
- Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan, P. R. China
| | - Sufang Tian
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, P. R. China
| | - Honglei Chen
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, P. R. China
| |
Collapse
|
25
|
Okada S, Raja SA, Okerblom J, Boddu A, Horikawa Y, Ray S, Okada H, Kawamura I, Murofushi Y, Murray F, Patel HH. Deletion of caveolin scaffolding domain alters cancer cell migration. Cell Cycle 2019; 18:1268-1280. [PMID: 31116089 DOI: 10.1080/15384101.2019.1618118] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Caveolin-1 (Cav-1) is an integral membrane protein that plays an important role in proliferative and terminally differentiated cells. As a structural component of Caveolae, Cav-1 interacts with signaling molecules via a caveolin scaffolding domain (CSD) regulating cell signaling. Recent reports have shown that Cav-1 is a negative regulator in tumor metastasis. Therefore, we hypothesize that Cav-1 inhibits cell migration through its CSD. HeLa cells were engineered to overexpress Cav-1 (Cav-1 OE), Cav-1 without a functional CSD (∆CSD), or enhanced green fluorescent protein (EGFP) as a control. HeLa cell migration was suppressed in Cav-1 OE cells while ∆CSD showed increased migration, which corresponded to a decrease in the tight junction protein, zonula occludens (ZO-1). The migration phenotype was confirmed in multiple cancer cell lines. Phosphorylated STAT-3 was decreased in Cav-1 OE cells compared to control and ∆CSD cells; reducing STAT-3 expression alone decreased cell migration. ∆CSD blunted HeLa proliferation by increasing the number of cells in the G2/M phase of the cell cycle. Overexpressing the CSD peptide alone suppressed HeLa cell migration and inhibited pSTAT3. These findings suggest that Cav-1 CSD may be critical in controlling the dynamic phenotype of cancer cells by facilitating the interaction of specific signal transduction pathways, regulating STAT3 and participating in a G2/M checkpoint. Modulating the CSD and targeting specific proteins may offer potential new therapies in the treatment of cancer metastasis.
Collapse
Affiliation(s)
- Sunaho Okada
- a Veterans Administration San Diego Healthcare System , San Diego , CA , USA.,b Department of Anesthesiology and UCSD School of Medicine , San Diego , CA , USA
| | - Sadaf A Raja
- c Department of Biosciences , COMSATS Institute of Information Technology , Islamabad , Pakistan
| | - Jonathan Okerblom
- a Veterans Administration San Diego Healthcare System , San Diego , CA , USA.,b Department of Anesthesiology and UCSD School of Medicine , San Diego , CA , USA
| | - Aayush Boddu
- a Veterans Administration San Diego Healthcare System , San Diego , CA , USA.,b Department of Anesthesiology and UCSD School of Medicine , San Diego , CA , USA
| | - Yousuke Horikawa
- d Department of Pediatrics , Sharp Rees-Stealy Medical Group , San Diego , CA , USA.,e Department of Anesthesiology , Tokushima University , Tokushima , Japan
| | | | - Hideshi Okada
- a Veterans Administration San Diego Healthcare System , San Diego , CA , USA.,g Department of Anesthesiology and Medicine , UCSD School of Medicine , San Diego , CA , USA.,h Department of Emergency and Disaster Medicine , Gifu University Graduate School of Medicine , Gifu , Japan
| | - Itta Kawamura
- i Department of Cardiovascular Medicine , Gifu Heart Center , Gifu , Japan
| | - Yoshiteru Murofushi
- g Department of Anesthesiology and Medicine , UCSD School of Medicine , San Diego , CA , USA
| | - Fiona Murray
- j Aberdeen Cardiovascular & Diabetes Centre, School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences , University of Aberdeen , Aberdeen , Scotland
| | - Hemal H Patel
- a Veterans Administration San Diego Healthcare System , San Diego , CA , USA.,b Department of Anesthesiology and UCSD School of Medicine , San Diego , CA , USA
| |
Collapse
|
26
|
Raja SA, Shah STA, Tariq A, Bibi N, Sughra K, Yousuf A, Khawaja A, Nawaz M, Mehmood A, Khan MJ, Hussain A. Caveolin-1 and dynamin-2 overexpression is associated with the progression of bladder cancer. Oncol Lett 2019; 18:219-226. [PMID: 31289491 DOI: 10.3892/ol.2019.10310] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 04/03/2019] [Indexed: 02/01/2023] Open
Abstract
Caveolae-mediated endocytosis regulates cell adhesion and growth in an anchorage-dependent manner. Studies of the endocytic function of caveolae have suggested a wide-ranging list of cargoes, including a number of receptors and extracellular proteins, ligands and nutrients from the extracellular matrix. Disruption of the processes of caveolae-mediated endocytosis mediated by signaling proteins is critical to cellular integrity. Caveolin-1 and dynamin-2 are the 2 major proteins associated with endocytotic function. Mechanistically, dynamin-2 has a co-equal role with caveolin-1 in terms of caveolae-derived endosome formation. Recent studies have revealed the pathological outcomes associated with the dysregulation of caveolin-1 and dynamin-2 expression. Increased expression levels of the gene for caveolin, Cav-1, resulting in augmented cellular metastasis and invasion, have been demonstrated in various types of cancer, and overexpression of the gene for dynamin-2, DNM2, has been associated with tumorigenesis in cervical, pancreatic and lung cancer. An increased expression of Cav-1 and DNM2 is known to be associated with the invasive behavior of cancer cells, and with cancer progression. Furthermore, it has been previously demonstrated that, in caveolar assembly and caveolae mediated endocytosis, Cav-1 interacts directly with DNM2 during the processes. Altered expression of the 2 genes is critical for the normal function of the cell. The expression patterns of Cav-1 and DNM2 have been previously examined in bladder cancer cell lines, and were each demonstrated to be overexpressed. In the present study, the expression levels of these 2 genes in bladder cancer samples were quantified. The gene expression levels of Cav-1 and DNM2 were identified to be increased 8.88- and 8.62-fold, respectively, in tumors compared with the normal controls. Furthermore, high-grade tumors exhibited significantly increased expression levels of Cav-1 and DNM2 (both P<0.0001) compared with the low-grade tumors. In addition, compared with normal control samples, the expression of the 2 genes in tumor samples was observed to be highly significant (P<0.0001), with a marked positive correlation identified for the tumors (Pearson's correlation coefficient, r=0.80 for the tumor samples vs. r=0.32 in the normal control samples). Taken together, the results of the present study demonstrated that the overexpression of Cav-1 and DNM2 genes, and a determination of their correlation coefficients, may be a potential risk factor for bladder cancer, in addition to other clinical factors.
Collapse
Affiliation(s)
- Sadaf Azad Raja
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan
| | | | - Aamira Tariq
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan
| | - Nazia Bibi
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan
| | - Kalsoom Sughra
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat 50700, Pakistan
| | - Arzu Yousuf
- Department of Urology and Kidney Transplant, Shifa International Hospital, Islamabad 44790, Pakistan
| | - Athar Khawaja
- Department of Urology and Kidney Transplant, Shifa International Hospital, Islamabad 44790, Pakistan
| | - Muhammad Nawaz
- Armed Forces Institute of Urology, Rawalpindi 46000, Pakistan
| | - Arshad Mehmood
- Armed Forces Institute of Urology, Rawalpindi 46000, Pakistan
| | - Muhammad Jadoon Khan
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan
| | - Alamdar Hussain
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan
| |
Collapse
|
27
|
Ketteler J, Panic A, Reis H, Wittka A, Maier P, Herskind C, Yagüe E, Jendrossek V, Klein D. Progression-Related Loss of Stromal Caveolin 1 Levels Mediates Radiation Resistance in Prostate Carcinoma via the Apoptosis Inhibitor TRIAP1. J Clin Med 2019; 8:jcm8030348. [PMID: 30871022 PMCID: PMC6462938 DOI: 10.3390/jcm8030348] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 12/16/2022] Open
Abstract
Tumour resistance to chemo- and radiotherapy, as well as molecularly targeted therapies, limits the effectiveness of current cancer treatments. We previously reported that the radiation response of human prostate tumours is critically regulated by CAV1 expression in stromal fibroblasts and that loss of stromal CAV1 expression in advanced tumour stages may contribute to tumour radiotherapy resistance. Here we investigated whether fibroblast secreted anti-apoptotic proteins could induce radiation resistance of prostate cancer cells in a CAV1-dependent manner and identified TRIAP1 (TP53 Regulated Inhibitor of Apoptosis 1) as a resistance-promoting CAV1-dependent factor. TRIAP1 expression and secretion was significantly higher in CAV1-deficient fibroblasts and secreted TRIAP1 was able to induce radiation resistance of PC3 and LNCaP prostate cancer cells in vitro, as well as of PC3 prostate xenografts derived from co-implantation of PC3 cells with TRIAP1-expressing fibroblasts in vivo. Immunohistochemical analyses of irradiated PC3 xenograft tumours, as well as of human prostate tissue specimen, confirmed that the characteristic alterations in stromal-epithelial CAV1 expression were accompanied by increased TRIAP1 levels after radiation in xenograft tumours and within advanced prostate cancer tissues, potentially mediating resistance to radiation treatment. In conclusion, we have determined the role of CAV1 alterations potentially induced by the CAV1-deficient, and more reactive, stroma in radio sensitivity of prostate carcinoma at a molecular level. We suggest that blocking TRIAP1 activity and thus avoiding drug resistance may offer a promising drug development strategy for inhibiting resistance-promoting CAV1-dependent signals.
Collapse
Affiliation(s)
- Julia Ketteler
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Virchowstrasse 173, 45122 Essen, Germany.
| | - Andrej Panic
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Virchowstrasse 173, 45122 Essen, Germany.
- Department of Urology and Urooncology, University of Duisburg-Essen, University Hospital, Essen, Hufelandstr. 55, 45122 Essen, Germany.
| | - Henning Reis
- Institute of Pathology, University of Duisburg-Essen, University Hospital, Hufelandstr. 55, 45122 Essen, Germany.
| | - Alina Wittka
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Virchowstrasse 173, 45122 Essen, Germany.
| | - Patrick Maier
- Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| | - Carsten Herskind
- Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| | - Ernesto Yagüe
- Cancer Research Center, Division of Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK.
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Virchowstrasse 173, 45122 Essen, Germany.
| | - Diana Klein
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Virchowstrasse 173, 45122 Essen, Germany.
| |
Collapse
|
28
|
Qian XL, Pan YH, Huang QY, Shi YB, Huang QY, Hu ZZ, Xiong LX. Caveolin-1: a multifaceted driver of breast cancer progression and its application in clinical treatment. Onco Targets Ther 2019; 12:1539-1552. [PMID: 30881011 PMCID: PMC6398418 DOI: 10.2147/ott.s191317] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human breast cancer is one of the most frequent cancer diseases and causes of death among female population worldwide. It appears at a high incidence and has a high malignancy, mortality, recurrence rate and poor prognosis. Caveolin-1 (Cav1) is the main component of caveolae and participates in various biological events. More and more experimental studies have shown that Cav1 plays a critical role in the progression of breast cancer including cell proliferation, apoptosis, autophagy, invasion, migration and breast cancer metastasis. Besides, Cav1 has been found to be involved in chemotherapeutics and radiotherapy resistance, which are still the principal problems encountered in clinical breast cancer treatment. In addition, stromal Cav1 may be a potential indicator for breast cancer patients' prognosis. In the current review, we cover the state-of-the-art study, development and progress on Cav1 and breast cancer, altogether describing the role of Cav1 in breast cancer progression and application in clinical treatment, in the hope of providing a basis for further research and promoting CAV1 gene as a potential target to diagnose and treat aggressive breast cancers.
Collapse
Affiliation(s)
- Xian-Ling Qian
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China, ;
- First Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Yi-Hang Pan
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China, ;
- First Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Qi-Yuan Huang
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China, ;
- Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Yu-Bo Shi
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China, ;
| | - Qing-Yun Huang
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China, ;
| | - Zhen-Zhen Hu
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China, ;
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Nanchang 330006, China, ;
| | - Li-Xia Xiong
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China, ;
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Nanchang 330006, China, ;
| |
Collapse
|
29
|
Gheida SF, Neinaa YMEH, Mohammed DAEA. Caveolin-1 expression in hyperproliferative skin disorders: A potential predictive marker of disease severity and progression. DERMATOL SIN 2018. [DOI: 10.1016/j.dsi.2018.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
30
|
Kamibeppu T, Yamasaki K, Nakahara K, Nagai T, Terada N, Tsukino H, Mukai S, Kamoto T. Caveolin-1 and -2 regulate cell motility in castration-resistant prostate cancer. Res Rep Urol 2018; 10:135-144. [PMID: 30324095 PMCID: PMC6174915 DOI: 10.2147/rru.s173377] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background Caveolin (Cav)-1 and Cav-2 are cell membrane proteins, which are structural proteins of caveolae and are reported to be positive regulators of cell survival and metastasis in prostate cancer (PC). In a previous study, we reported that elevated levels of Cav-1 and Cav-2 were significantly associated with PC progression. However, their functions in PC have not yet been clarified. In this study, we examined the function of Cav-1 and Cav-2 in PC cell invasiveness and motility. Materials and methods We introduced Cav-1- and Cav-2-specific small interfering into PC3 cells to knock-down (KD) both molecules. We also performed cell proliferation assay, wound healing assay, migration assay, and invasion assay using PC3 cells and compared the results between Cav-1-KD, Cav-2-KD, and negative control PC3 cells. In addition, we performed real-time quantitative PCR (RT-qPCR) and RT2 Profiler PCR Array analysis to identify factors influencing migration. Results We observed no significant difference in the proliferative and invasive activities of Cav-1-KD and Cav-2-KD PC3 cells; however, the cell motility was significantly decreased compared with negative control PC3 cells. RT-qPCR revealed that the expression of vimentin and N-cadherin was downregulated in Cav-1-KD PC3 cells. In addition, PCR array revealed a decreased expression of MGAT5, MMP13, and MYCL in Cav-1-KD PC3 and ETV4, FGFR4, and SRC in Cav-2-KD PC3. Conclusion Cav-1 and Cav-2 may positively contribute to the upregulation of castration-resistant PC cell migration. Cav-induced regulation of several molecules including vimentin, N-cadherin, MGAT5, MMP13, MYCL, ETV4, FGFR4, and SRC may have an important role in PC3 cell motility. However, further examination will be required.
Collapse
Affiliation(s)
- Toyoharu Kamibeppu
- Department of Urology, Faculty of Medicine, University of Miyazaki, Kiyotake, Japan,
| | - Koji Yamasaki
- Department of Urology, Faculty of Medicine, University of Miyazaki, Kiyotake, Japan,
| | - Kozue Nakahara
- Department of Urology, Faculty of Medicine, University of Miyazaki, Kiyotake, Japan,
| | - Takahiro Nagai
- Department of Urology, Faculty of Medicine, University of Miyazaki, Kiyotake, Japan,
| | - Naoki Terada
- Department of Urology, Faculty of Medicine, University of Miyazaki, Kiyotake, Japan,
| | - Hiromasa Tsukino
- Department of Urology, Faculty of Medicine, University of Miyazaki, Kiyotake, Japan,
| | - Shoichiro Mukai
- Department of Urology, Faculty of Medicine, University of Miyazaki, Kiyotake, Japan,
| | - Toshiyuki Kamoto
- Department of Urology, Faculty of Medicine, University of Miyazaki, Kiyotake, Japan,
| |
Collapse
|
31
|
Chai F, Li Y, Liu K, Li Q, Sun H. Caveolin enhances hepatocellular carcinoma cell metabolism, migration, and invasion in vitro via a hexokinase 2‐dependent mechanism. J Cell Physiol 2018; 234:1937-1946. [PMID: 30144070 DOI: 10.1002/jcp.27074] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/28/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Fang Chai
- Department of General Surgery Affiliated Hospital of Jinzhou Medical University Jinzhou China
| | - Yan Li
- Department of General Surgery The Fourth Affiliated Hospital of China Medical University Shenyang China
| | - Keyi Liu
- Department of General Surgery Affiliated Hospital of Jinzhou Medical University Jinzhou China
| | - Qiang Li
- Department of General Surgery Affiliated Hospital of Jinzhou Medical University Jinzhou China
| | - Hongzhi Sun
- Department of General Surgery Affiliated Hospital of Jinzhou Medical University Jinzhou China
| |
Collapse
|
32
|
Stromal Caveolin-1 and Caveolin-2 Expression in Primary Tumors and Lymph Node Metastases. Anal Cell Pathol (Amst) 2018; 2018:8651790. [PMID: 29850392 PMCID: PMC5914130 DOI: 10.1155/2018/8651790] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/23/2018] [Indexed: 12/26/2022] Open
Abstract
The expression of caveolin-1 (CAV1) in both tumor cell and cancer-associated fibroblasts (CAFs) has been found to correlate with tumor aggressiveness in different epithelial tumor entities, whereas less is known for caveolin-2 (CAV2). The aim of this study was to investigate the clinicopathological significance and prognostic value of stromal CAV1 and CAV2 expression in lung cancer. The expression of these two genes was investigated at protein level on a tissue microarray (TMA) consisting of 161 primary tumor samples. 50.7% of squamous cell lung cancer (SCC) tumors showed strong expression of CAV1 in the tumor-associated stromal cells, whereas only 15.1% of adenocarcinomas (AC) showed a strong CAV1 expression (p < 0.01). A strong CAV2 stromal expression was found in 46.0% of the lung tumor specimens, with no significant difference between the subtypes. Neither CAV1 nor CAV2 stromal expression was associated with any other clinicopathological factor including survival. When the stromal expression in matched primary tumors and lymph node metastases was compared, both CAV1 and CAV2 expressions were frequently found lost in the corresponding stroma of the lymph node metastasis (40.6%, p = 0.003 and 38.4%, p = 0.001, resp.). Loss of stromal CAV2 in the lymph node metastases was also significantly associated with earlier death (p = 0.011). In conclusion, in contrast to the expression patterns in the tumor tissue of lung cancer, stromal expression of CAV1 in primary tumors was not associated with clinical outcome whereas the stromal expression of especially CAV2 in the metastatic lymph nodes could be associated with lung cancer pathogenesis.
Collapse
|
33
|
Abstract
Resistance of solid tumors to chemo- and radiotherapy remains a major obstacle in anti-cancer treatment. Herein, the membrane protein caveolin-1 (CAV1) came into focus as it is highly expressed in many tumors and high CAV1 levels were correlated with tumor progression, invasion and metastasis, and thus a worse clinical outcome. Increasing evidence further indicates that the heterogeneous tumor microenvironment, also known as the tumor stroma, contributes to therapy resistance resulting in poor clinical outcome. Again, CAV1 seems to play an important role in modulating tumor host interactions by promoting tumor growth, metastasis, therapy resistance and cell survival. However, the mechanisms driving stroma-mediated tumor growth and radiation resistance remain to be clarified. Understanding these interactions and thus, targeting CAV1 may offer a novel strategy for preventing cancer therapy resistance and improving clinical outcomes. In this review, we will summarize the resistance-promoting effects of CAV1 in tumors, and emphasize its role in the tumor-stroma communication as well as the resulting malignant phenotype of epithelial tumors.
Collapse
Affiliation(s)
- Julia Ketteler
- Institute for Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Diana Klein
- Institute for Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
34
|
Yang J, Zhu T, Zhao R, Gao D, Cui Y, Wang K, Guo Y. Caveolin-1 Inhibits Proliferation, Migration, and Invasion of Human Colorectal Cancer Cells by Suppressing Phosphorylation of Epidermal Growth Factor Receptor. Med Sci Monit 2018; 24:332-341. [PMID: 29339715 PMCID: PMC5783188 DOI: 10.12659/msm.907782] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background Although downregulation of caveolin-1 (Cav-1), which is a key constituent of membrane caveolae and a regulator of cellular processes, is associated with colorectal cancer (CRC), its involvement in the disease progression is largely unknown. This study aimed to explore the role of Cav-1 in CRC and the associated mechanisms. Material/Methods Fresh tissues from patients with CRC and human CRC SW480 cells were used to evaluate Cav-1 and Ki-67 expression using immunohistochemistry and Western blotting. The MTS and Transwell assays were performed to determine the effects of Cav-1 overexpression via pcDNA3.1/Cav-1 plasmid on cell proliferation and metastasis. The effect of Cav-1 on the epidermal growth factor receptor (EGFR) activation was evaluated by Western blotting. The correlation of Cav-1 expression with clinicopathological factors was statistically analyzed. Results Overexpression of Cav-1 significantly reduced proliferation, migration, and invasion of SW480 cancer cells in vitro. The EGF-induced phosphorylation of EGFR and activations of the RAF-MEK-ERK and PI3K-AKT pathways were adversely regulated by Cav-1 overexpression in vitro. In 76 cases of CRC patients with EGFR expression, a negative correlation was observed between the level of Cav-1 and tumor-node-metastasis stage, lymph node metastasis, and distant metastasis (All p<0.05). Finally, the expression level of Cav-1 was negatively correlated with that of Ki-67. Conclusions This report is the first to show that overexpression of Cav-1significantly inhibits the proliferation, migration, and invasion potential of SW480 cells, possibly through reducing EGF-induced EGFR activation. High Cav-1 expression level may be a predictor of positive outcomes in patients with colorectal cancer.
Collapse
Affiliation(s)
- Juanli Yang
- Department of Pain and Rehabilitation, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Tienian Zhu
- Department of Immunology, Hebei Medical University, Key Laboratory of Immune Mechanism and Intervention in Serious Diseases in Hebei Province, Shijiazhuang, Hebei, China (mainland).,Department of Medical Oncology, Bethune International Peace Hospital, Shijiazhuang, Hebei, China (mainland)
| | - Ruijing Zhao
- Department of Immunology, Hebei Medical University, Key Laboratory of Immune Mechanism and Intervention in Serious Diseases in Hebei Province, Shijiazhuang, Hebei, China (mainland)
| | - Dongmei Gao
- Department of Medical Oncology, Bethune International Peace Hospital, Shijiazhuang, Hebei, China (mainland)
| | - Yujie Cui
- Department of Medical Oncology, Bethune International Peace Hospital, Shijiazhuang, Hebei, China (mainland)
| | - Kun Wang
- Department of Transfusion, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Yanli Guo
- Laboratory of Pathology, Hebei Cancer Institute, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| |
Collapse
|
35
|
Tassone P, Domingo-Vidal M, Whitaker-Menezes D, Lin Z, Roche M, Tuluc M, Martinez-Outschoorn U, Curry J. Metformin Effects on Metabolic Coupling and Tumor Growth in Oral Cavity Squamous Cell Carcinoma Coinjection Xenografts. Otolaryngol Head Neck Surg 2017; 158:867-877. [PMID: 29232177 DOI: 10.1177/0194599817746934] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Objective Many aggressive head and neck cancers contain 2 metabolically coupled tumor compartments: a glycolytic stromal compartment with low caveolin-1 (CAV1) and high monocarboxylate transporter 4 (MCT4) expression and a highly proliferative carcinoma cell compartment with high MCT1. Metabolites are shuttled by MCTs from stroma to carcinoma to fuel tumor growth. We studied the effect of carcinoma-fibroblast coinjection and metformin administration on a mouse model of head and neck squamous cell carcinoma. Study Design Xenograft head and neck squamous cell carcinoma model. Setting Basic science laboratory. Subjects and Methods Oral cavity carcinoma cells were injected alone or as coinjection with human fibroblasts into nude mice to generate xenograft tumors. Tumors were excised and stained with immunohistochemistry for markers of metabolic coupling and apoptosis, including MCT1, MCT4, CAV1, and TUNEL assay (terminal deoxynucleotidyl transferase nick end labeling). Strength of staining was assessed by a pathologist or computer-assisted pathology software. Metformin was administered orally to mice to test effects on immunohistochemical markers in xenografts. Results Coinjection tumors were 2.8-fold larger ( P = .048) and had 1.4-fold stronger MCT1 staining ( P = .016) than tumors from homotypic carcinoma cell injection. Metformin decreased the size of coinjection xenograft tumors by 45% ( P = .025). Metformin reduced MCT1 staining by 28% ( P = .05) and increased carcinoma cell apoptosis 1.8-fold as marked by TUNEL assay ( P = .005). Metformin did not have a significant effect on tumor size when CAV1 knockdown fibroblasts were used in coinjection. Conclusion Coinjection with fibroblasts increases tumor growth and metabolic coupling in oral cavity cancer xenografts. Fibroblast CAV1 expression is required for metformin to disrupt metabolic coupling and decrease xenograft size.
Collapse
Affiliation(s)
- Patrick Tassone
- 1 Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Marina Domingo-Vidal
- 2 Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Diana Whitaker-Menezes
- 2 Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Zhao Lin
- 2 Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Megan Roche
- 2 Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Madalina Tuluc
- 3 Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | - Joseph Curry
- 1 Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
36
|
Wang M, Tian T, Ma X, Zhu W, Guo Y, Duan Z, Fan J, Lin S, Liu K, Zheng Y, Sheng Q, Dai ZJ, Peng H. Genetic polymorphisms in caveolin-1 associate with breast cancer risk in Chinese Han population. Oncotarget 2017; 8:91654-91661. [PMID: 29207674 PMCID: PMC5710954 DOI: 10.18632/oncotarget.21560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/22/2017] [Indexed: 02/06/2023] Open
Abstract
Caveolin-1(CAV-1) was demonstrated to be a tumor suppressor gene and be implicated in the development of breast cancer (BC). Numerous potentially functional polymorphisms in CAV-1 have been identified, but their effects on BC were not clear. This case-control study aims to evaluate the relationship between CAV-1 polymorphisms and BC risk. 560 BC patients and 583 healthy controls were enrolled in the present study, all from Chinese Han population. We detected 3 single nucleotide polymorphisms (rs3807987, rs1997623, and rs7804372) in CAV-1 using the Sequenom MassARRAY method. The association between CAV-1genotypes and BC risk was assessed in six genetic models by calculating the odds ratio (OR) and 95% confidence intervals (95% CIs) with χ2-test. The CAV-1 rs3807987 polymorphism was observed to increase the risk of BC And the A allele of rs3807987 relates to a larger tumor size (≥2cm) and lower incidence of PR-positive BC while the AA genotype of rs7804372 associates with a higher ER and Her-2 positive rate among BC patients. In addition, Ars1997623Grs3807987Trs7804372 haplotype was linked to a decreased risk of BC (OR =0.64, 95%CI=0.44-0.93), whereas Crs1997623Ars3807987Trs7804372 haplotype was related to an increased BC risk (OR =1.74, 95%CI=1.04-2.92). Our study suggests that CAV-1 rs3807987 can increase the BC risk among Chinese Han women. And the rs3807987 and rs7804372 in CAV-1 may serve as predictors for prognosis of BC.
Collapse
Affiliation(s)
- Meng Wang
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Tian Tian
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaobin Ma
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wenge Zhu
- Department of Biochemistry and Molecular Medicine, The George Washington University Medical School, Washington, DC, USA
| | - Yan Guo
- School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Zhao Duan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jiangbo Fan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Shuai Lin
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Kang Liu
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yi Zheng
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Qianwen Sheng
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zhi-Jun Dai
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Huixia Peng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
37
|
Prognostic Value of Metastatic Tumoral Caveolin-1 Expression in Patients with Resected Gastric Cancer. Gastroenterol Res Pract 2017; 2017:5905173. [PMID: 28828003 PMCID: PMC5554552 DOI: 10.1155/2017/5905173] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/08/2017] [Accepted: 06/15/2017] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Caveolin-1 (Cav-1), as the main component of caveolae, has complex roles in tumourigenesis in human malignancies. We investigated Cav-1 in primary and metastatic tumor cells of gastric cancer (GC) and its association with clinical outcomes. METHODS We retrieved 145 cases of GC who had undergone curative gastrectomy. The expression levels of Cav-1 was evaluated by immunohistochemistry, and its association with clinicopathological parameters and patient survival was analyzed. RESULTS High expression of Cav-1 protein of the GC in the stomach and metastatic lymph node was 12.4% (18/145) and 16.5% (15/91). In the multivariate analysis, tumoral Cav-1 protein in metastatic lymph node showed prognostic significance for relapse-free survival (RFS, HR, 3.934; 95% CI, 1.882-8.224; P = 0.001) and cancer-specific survival outcome (CSS, HR, 2.681; 95% CI, 1.613-8.623; P = 0.002). Among the GCs with metastatic lymph node, it remained as a strong indicator of poor prognosis for RFS (HR, 3.136; 95% CI, 1.444-6.810; P = 0.004) and CSS (HR, 2.509; 95% CI, 1.078-5.837; P = 0.032). CONCLUSION High expression of tumoral Cav-1 protein in metastatic lymph node is associated with unfavorable prognosis of curative resected GC, indicating the potential of novel prognostic markers.
Collapse
|
38
|
Fu Y, Liu S, Yin S, Niu W, Xiong W, Tan M, Li G, Zhou M. The reverse Warburg effect is likely to be an Achilles' heel of cancer that can be exploited for cancer therapy. Oncotarget 2017; 8:57813-57825. [PMID: 28915713 PMCID: PMC5593685 DOI: 10.18632/oncotarget.18175] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/25/2017] [Indexed: 12/19/2022] Open
Abstract
Although survival outcomes of cancer patients have been improved dramatically via conventional chemotherapy and targeted therapy over the last decades, there are still some tough clinical challenges that badly needs to be overcome, such as anticancer drug resistance, inevitable recurrences, cancer progression and metastasis. Simultaneously, accumulated evidence demonstrates that aberrant glucose metabolism termed ‘the Warburg effect’ in cancer cell is closely associated with malignant phenotypes. In 2009, a novel ‘two-compartment metabolic coupling’ model, also named ‘the reverse Warburg effect’, was proposed and attracted lots of attention. Based on this new model, we consider whether this new viewpoint can be exploited for improving the existent anti-cancer therapeutic strategies. Our review focuses on the paradigm shift from ‘the Warburg effect’ to ‘the reverse Warburg effect’, the features and molecular mechanisms of ‘the reverse Warburg effect’, and then we discuss its significance in fundamental researches and clinical practice.
Collapse
Affiliation(s)
- Yaojie Fu
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P. R. China.,Cancer Research Institute, Central South University, Changsha, Hunan 410078, P. R. China.,Medical School of Xiangya, Central South University, Changsha, Hunan 410013, P. R. China
| | - Shanshan Liu
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P. R. China.,Cancer Research Institute, Central South University, Changsha, Hunan 410078, P. R. China.,Medical School of Xiangya, Central South University, Changsha, Hunan 410013, P. R. China
| | - Shanghelin Yin
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P. R. China.,Cancer Research Institute, Central South University, Changsha, Hunan 410078, P. R. China.,Medical School of Xiangya, Central South University, Changsha, Hunan 410013, P. R. China
| | - Weihong Niu
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P. R. China.,Cancer Research Institute, Central South University, Changsha, Hunan 410078, P. R. China
| | - Wei Xiong
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P. R. China.,Cancer Research Institute, Central South University, Changsha, Hunan 410078, P. R. China
| | - Ming Tan
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Guiyuan Li
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P. R. China.,Cancer Research Institute, Central South University, Changsha, Hunan 410078, P. R. China
| | - Ming Zhou
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P. R. China.,Cancer Research Institute, Central South University, Changsha, Hunan 410078, P. R. China
| |
Collapse
|
39
|
Weak stromal Caveolin-1 expression in colorectal liver metastases predicts poor prognosis after hepatectomy for liver-only colorectal metastases. Sci Rep 2017; 7:2058. [PMID: 28515480 PMCID: PMC5435693 DOI: 10.1038/s41598-017-02251-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 04/07/2017] [Indexed: 12/20/2022] Open
Abstract
Loss of stromal Caveolin-1 (CAV1) expression is associated with poor prognosis in various cancers. We evaluated the prognostic value of CAV1 expression of both cancer cells and stromal cells in colorectal liver metastases (CRLM) in patients undergoing hepatectomy. In this retrospective study, 109 patients were enrolled. CAV1 expression was studied by immunohistochemistry. The staining was scored semiquantitatively as weak or strong. Disease-free survival (DFS) and overall survival (OS) were calculated using both Kaplan–Meier and multivariate Coxregression methods. Weak stromal CAV1 expression was associated with decreased DFS and OS in univariate and in multivariate analysis (HR 2.00; 95% CI, 1.24–3.22; P = 0.004, and HR 2.47; 95% CI, 1.28–4.76; P = 0.007, respectively). Cancer cell CAV1 expression was not associated with DFS and OS. Five-year DFS and OS rates were 13% and 43%, respectively, in patients with weak stromal CAV1 expression and 40% and 71%, respectively, in patients with strong stromal CAV1 expression. In this study, we indicate that weak stromal CAV1 expression in CRLM is an adverse prognostic factor in patients who undergo liver resection for liver-only colorectal metastases. We suggest validation of this finding in an independent cohort and consideration of risk stratification for post-hepatectomy adjuvant follow-up and therapy.
Collapse
|
40
|
Yoshida GJ. Therapeutic strategies of drug repositioning targeting autophagy to induce cancer cell death: from pathophysiology to treatment. J Hematol Oncol 2017; 10:67. [PMID: 28279189 PMCID: PMC5345270 DOI: 10.1186/s13045-017-0436-9] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/02/2017] [Indexed: 02/07/2023] Open
Abstract
The 2016 Nobel Prize in Physiology or Medicine was awarded to the researcher that discovered autophagy, which is an evolutionally conserved catabolic process which degrades cytoplasmic constituents and organelles in the lysosome. Autophagy plays a crucial role in both normal tissue homeostasis and tumor development and is necessary for cancer cells to adapt efficiently to an unfavorable tumor microenvironment characterized by hypo-nutrient conditions. This protein degradation process leads to amino acid recycling, which provides sufficient amino acid substrates for cellular survival and proliferation. Autophagy is constitutively activated in cancer cells due to the deregulation of PI3K/Akt/mTOR signaling pathway, which enables them to adapt to hypo-nutrient microenvironment and exhibit the robust proliferation at the pre-metastatic niche. That is why just the activation of autophagy with mTOR inhibitor often fails in vain. In contrast, disturbance of autophagy–lysosome flux leads to endoplasmic reticulum (ER) stress and an unfolded protein response (UPR), which finally leads to increased apoptotic cell death in the tumor tissue. Accumulating evidence suggests that autophagy has a close relationship with programmed cell death, while uncontrolled autophagy itself often induces autophagic cell death in tumor cells. Autophagic cell death was originally defined as cell death accompanied by large-scale autophagic vacuolization of the cytoplasm. However, autophagy is a “double-edged sword” for cancer cells as it can either promote or suppress the survival and proliferation in the tumor microenvironment. Furthermore, several studies of drug re-positioning suggest that “conventional” agents used to treat diseases other than cancer can have antitumor therapeutic effects by activating/suppressing autophagy. Because of ever increasing failure rates and high cost associated with anticancer drug development, this therapeutic development strategy has attracted increasing attention because the safety profiles of these medicines are well known. Antimalarial agents such as artemisinin and disease-modifying antirheumatic drug (DMARD) are the typical examples of drug re-positioning which affect the autophagy regulation for the therapeutic use. This review article focuses on recent advances in some of the novel therapeutic strategies that target autophagy with a view to treating/preventing malignant neoplasms.
Collapse
Affiliation(s)
- Go J Yoshida
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan. .,Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan.
| |
Collapse
|
41
|
Fu P, Chen F, Pan Q, Zhao X, Zhao C, Cho WCS, Chen H. The different functions and clinical significances of caveolin-1 in human adenocarcinoma and squamous cell carcinoma. Onco Targets Ther 2017; 10:819-835. [PMID: 28243118 PMCID: PMC5317307 DOI: 10.2147/ott.s123912] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Caveolin-1 (Cav-1), a major structural protein of caveolae, is an integral membrane protein which plays an important role in the progression of carcinoma. However, whether Cav-1 acts as a tumor promoter or a tumor suppressor still remains controversial. For example, the tumor-promoting function of Cav-1 has been found in renal cancer, prostate cancer, tongue squamous cell carcinoma (SCC), lung SCC and bladder SCC. In contrast, Cav-1 also plays an inhibitory role in esophagus adenocarcinoma, lung adenocarcinoma and cutaneous SCC. The role of Cav-1 is still controversial in thyroid cancer, hepatocellular carcinoma, gastric adenocarcinoma, colon adenocarcinoma, breast cancer, pancreas cancer, oral SCC, laryngeal SCC, head and neck SCC, esophageal SCC and cervical SCC. Besides, it has been reported that the loss of stromal Cav-1 might predict poor prognosis in breast cancer, gastric cancer, pancreas cancer, prostate cancer, oral SCC and esophageal SCC. However, the accumulation of stromal Cav-1 has been found to be promoted by the progression of tongue SCC. Taken together, Cav-1 seems playing a different role in different cancer subtypes even of the same organ, as well as acting differently in the same cancer subtype of different organs. Thus, we hereby explore the functions of Cav-1 in human adenocarcinoma and SCC from the perspective of clinical significances and pathogenesis. We envision that novel targets may come with the further investigation of Cav-1 in carcinogenesis.
Collapse
Affiliation(s)
- Pin Fu
- Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan
| | - Fuchun Chen
- Department of Thoracosurgery, Traditional Chinese Medical Hospital of Wenling, Wenling, Zhejiang
| | - Qi Pan
- Department of Thoracosurgery, Traditional Chinese Medical Hospital of Wenling, Wenling, Zhejiang
| | - Xianda Zhao
- Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan
| | - Chen Zhao
- Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan
| | | | - Honglei Chen
- Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan; Department of Pathology, Maternal and Child Health Hospital of Hubei, Wuhan, People's Republic of China
| |
Collapse
|
42
|
Shimizu K, Kirita K, Aokage K, Kojima M, Hishida T, Kuwata T, Fujii S, Ochiai A, Funai K, Yoshida J, Tsuboi M, Ishii G. Clinicopathological significance of caveolin-1 expression by cancer-associated fibroblasts in lung adenocarcinoma. J Cancer Res Clin Oncol 2017; 143:321-328. [PMID: 27771795 DOI: 10.1007/s00432-016-2285-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/07/2016] [Indexed: 10/20/2022]
Abstract
PURPOSE Caveolin is an essential constituent of caveolae and has many biological functions. Expression of caveolin-1 in cancer cells was reported to be a prognostic marker in several types of cancers, the prognostic significance of its expression in cancer-associated fibroblasts (CAFs) has not been investigated. This study aimed to evaluate the clinicopathological significance of expression by CAFs in lung adenocarcinoma. METHODS We examined caveolin-1 expression in both CAFs and cancer cells in stage I invasive lung adenocarcinoma (n = 412) and analyzed the relationship between the expression and clinicopathological factors. RESULTS Caveolin-1 expression by CAFs and cancer cells was observed in 12.1% and 7.8% of adenocarcinomas, respectively. Tumors with caveolin-1-positive CAFs had vascular and pleural invasion significantly more frequently than those with caveolin-1-negative CAF (p < 0.05). This was also the cases with tumors with caveolin-1-positive cancer cells (p < 0.01). Caveolin-1 expression by CAFs and that by cancer cells were significant predictors of shorter recurrence-free survival (p < 0.001). Caveolin-1 expression by CAFs and cancer cells was found in 25% and 30% of solid predominant subtype, respectively, but only 9.2% and 2.7% of non-solid predominant subtype, respectively. The frequency of cases with caveolin-1-positive CAFs or cancer cells was significantly higher in the solid predominant subtype than in non-solid predominant subtype (p < 0.001). CONCLUSIONS Our current results highlight the prognostic importance of caveolin-1 expression by CAFs in stage I lung adenocarcinoma and provide new insights into the biological significance of caveolin-1 in the tumor microenvironment, especially in microenvironment of solid predominant adenocarcinoma.
Collapse
Affiliation(s)
- Kei Shimizu
- Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
- Division of Thoracic Surgery, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
- First Department of Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Keisuke Kirita
- Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Keiju Aokage
- Division of Thoracic Surgery, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Motohiro Kojima
- Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Tomoyuki Hishida
- Division of Thoracic Surgery, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Takeshi Kuwata
- Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Satoshi Fujii
- Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Atsushi Ochiai
- Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Kazuhito Funai
- First Department of Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Junji Yoshida
- Division of Thoracic Surgery, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Masahiro Tsuboi
- Division of Thoracic Surgery, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Genichiro Ishii
- Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan.
| |
Collapse
|
43
|
Klinis S, Symeonidis A, Karanasios D, Symvoulakis EK. Asymptomatic hyperCKemia during a two-year monitoring period: A case report and literature overview. Biomed Rep 2017; 6:79-82. [PMID: 28123712 DOI: 10.3892/br.2016.822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 11/18/2016] [Indexed: 11/05/2022] Open
Abstract
High creatine kinase (CK) levels can be associated with many disorders, including neuromuscular, cardiac, metabolic, endocrine and traumatic. Idiopathic hyperCKemia is a diagnostic dilemma for physicians even though its long-term prognosis is usually benign. We report a case of a Caucasian 61-year-old woman who presented as completely asymptomatic to her general practitioner with a serum CK (sCK) level at 6,122 IU/l. A complete diagnostic evaluation, including physical and laboratory examinations, electromyogram and muscle biopsy were negative for any neuromuscular or other disorder. Two years later the patient remains asymptomatic, active and overall healthy but sCK levels remain elevated, ≤6,591 IU/l (>50-fold higher than normal values).
Collapse
Affiliation(s)
- Spyridon Klinis
- Primary Health Care Unit of Alonakia, Kozani 50100, Greece; Hippocrates, Association of General Practice/Family Medicine of Greece, Athens 11525, Greece
| | - Athanasios Symeonidis
- New Mihaniona Primary Health Center, Thessaloniki 57004, Greece; Hippocrates, Association of General Practice/Family Medicine of Greece, Athens 11525, Greece
| | - Dimitrios Karanasios
- Hippocrates, Association of General Practice/Family Medicine of Greece, Athens 11525, Greece; New Madytos Primary Health Center, Thessaloniki 57014, Greece
| | | |
Collapse
|
44
|
Fluctuation of ROS regulates proliferation and mediates inhibition of migration by reducing the interaction between DLC1 and CAV-1 in breast cancer cells. In Vitro Cell Dev Biol Anim 2017; 53:354-362. [PMID: 28130753 DOI: 10.1007/s11626-016-0123-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/14/2016] [Indexed: 12/30/2022]
Abstract
The aim of our present study was to elucidate the effects of up-regulation and down-regulation of intracellular reactive oxygen species (ROS) level on proliferation, migration, and related molecular mechanism. Breast cancer cells were treated by catalase or H2O2. MTT, colony formation assay, and Hoechst/PI staining were used to evaluate proliferation and apoptosis. The level of intracellular ROS was measured by dichlorodihydrofluorescein diacetate probes. The ability of migration was detected by wound healing. Western blotting and coimmunoprecipitation (co-IP) were used to determine the expression of DLC1 and CAV-1 and their interaction. Our data indicated that up-regulation of intracellular ROS induced by H2O2 significantly inhibited proliferation and induced apoptosis accompanying G1 cell cycle arrest and elevated expression of p53. For cell migration, either up-regulation or down-regulation of ROS induced migration inhibition with reduction of interaction between DLC1 and CAV-1. Our results suggested that up-regulation of intracellular ROS inhibited proliferation by promoting expression of p53 and induced G1 cycle arrest and apoptosis. Fluctuation of ROS inhibited migration through reducing the interaction between DLC1 and CAV-1.
Collapse
|
45
|
Demirci NS, Dogan M, Erdem GU, Kacar S, Turhan T, Kilickap S, Cigirgan LC, Kayacetin E, Bozkaya Y, Zengin N. Is plasma caveolin-1 level a prognostic biomarker in metastatic pancreatic cancer? Saudi J Gastroenterol 2017; 23:183-189. [PMID: 28611342 PMCID: PMC5470378 DOI: 10.4103/sjg.sjg_483_16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND/AIMS To evaluate the prognostic significance of plasma caveolin (CAV)-1 and its association with survival and treatment response rates in metastatic pancreatic cancer (MPC). PATIENTS AND METHODS Plasma samples were prospectively collected from 41 patients with newly diagnosed MPC. Moreover, plasma samples were collected from 48 patients with chronic pancreatitis and 41 healthy individuals (control groups) for assessing Cav-1 levels. Plasma Cav-1 levels were evaluated at baseline and after three cycles of chemotherapy in the patients with MPC. RESULTS The median Cav-1 level was 13.8 ng/mL for the patients with MPC and 12.2 ng/mL for healthy individuals (P = 0.009). The Cav-1 cut-off level was calculated as 11.6 ng/mL by using the receiver operating characteristic curve. The median overall survival and progression-free survival rates were 5 and 2.4 months, respectively, for participants with a high basal plasma Cav-1 level; the corresponding values were 10.5 and 9.4 months for participants with a low plasma Cav-1 level (P = 0.011 and P= 0.003, respectively). Of the 41 patients with MPC, 23 completed at least three cycles of chemotherapy. The median Cav-1 level was 13 ng/mL for post-treatment MPC (r2: 0.917; P= 0.001). High basal plasma caveolin-1 level have continued to remain at high levels even after chemotherapy, showing a trend toward worse response rates (P = 0.086). CONCLUSION High basal plasma Cav-1 levels seem to be associated with poor survival and tend to yield worse therapeutic outcomes in patients with MPC. This study is the first to evaluate the prognostic significance of plasma Cav-1 levels as a prognostic factor in patients with MPC. However, larger prospective clinical trials are warranted.
Collapse
Affiliation(s)
- Nebi S. Demirci
- Department of Medical Oncology, Ankara Numune Training and Research Hospital, Ankara, Turkey,Address for correspondence: Dr. Nebi S. Demirci, Department of Medical Oncology, Ankara Numune Training and Research Hospital, Ankara, Turkey. E-mail:
| | - Mutlu Dogan
- Department of Medical Oncology, Ankara Numune Training and Research Hospital, Ankara, Turkey
| | - Gokmen U. Erdem
- Department of Medical Oncology, Ankara Numune Training and Research Hospital, Ankara, Turkey
| | - Sabite Kacar
- Department of Gastroenterology, Turkiye Yuksek Ihtisas Training and Research Hospital, Ankara, Turkey
| | - Turan Turhan
- Department of Biochemistry, Ankara Numune Training and Research Hospital, Ankara, Turkey
| | - Saadettin Kilickap
- Department of Medical Oncology, Hacettepe University Medical Faculty, Ankara, Turkey
| | - Lutfi C. Cigirgan
- Department of Biochemistry, Ankara Numune Training and Research Hospital, Ankara, Turkey
| | - Ertugrul Kayacetin
- Department of Gastroenterology, Turkiye Yuksek Ihtisas Training and Research Hospital, Ankara, Turkey
| | - Yakup Bozkaya
- Department of Medical Oncology, Ankara Numune Training and Research Hospital, Ankara, Turkey
| | - Nurullah Zengin
- Department of Medical Oncology, Ankara Numune Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
46
|
Exercise-Induced Changes in Caveolin-1, Depletion of Mitochondrial Cholesterol, and the Inhibition of Mitochondrial Swelling in Rat Skeletal Muscle but Not in the Liver. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:3620929. [PMID: 26839631 PMCID: PMC4709766 DOI: 10.1155/2016/3620929] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/22/2015] [Accepted: 10/11/2015] [Indexed: 01/09/2023]
Abstract
The reduction in cholesterol in mitochondria, observed after exercise, is related to the inhibition of mitochondrial swelling. Caveolin-1 (Cav-1) plays an essential role in the regulation of cellular cholesterol metabolism and is required by various signalling pathways. Therefore, the aim of this study was to investigate the effect of prolonged swimming on the mitochondrial Cav-1 concentration; additionally, we identified the results of these changes as they relate to the induction of changes in the mitochondrial swelling and cholesterol in rat skeletal muscle and liver. Male Wistar rats were divided into a sedentary control group and an exercise group. The exercised rats swam for 3 hours and were burdened with an additional 3% of their body weight. After the cessation of exercise, their quadriceps femoris muscles and livers were immediately removed for experimentation. The exercise protocol caused an increase in the Cav-1 concentration in crude muscle mitochondria; this was related to a reduction in the cholesterol level and an inhibition of mitochondrial swelling. There were no changes in rat livers, with the exception of increased markers of oxidative stress in mitochondria. These data indicate the possible role of Cav-1 in the adaptive change in the rat muscle mitochondria following exercise.
Collapse
|
47
|
Romero IL, Mukherjee A, Kenny HA, Litchfield LM, Lengyel E. Molecular pathways: trafficking of metabolic resources in the tumor microenvironment. Clin Cancer Res 2015; 21:680-6. [PMID: 25691772 DOI: 10.1158/1078-0432.ccr-14-2198] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A model of tumor metabolism is proposed that describes how the complementary metabolic functions of the local stroma and the tumor cells contribute to cancer progression. Cancer cells alter the metabolism of cancer-associated fibroblasts to obtain lactate and amino acids, which are utilized for energy production, rapid growth, and resistance to chemotherapy drugs. Cancer cells use glutamine supplied by cancer-associated fibroblasts to replenish tricarboxylic acid cycle intermediates and as a nitrogen source for nucleotide synthesis. Moreover, adipocytes in the microenvironment attract cancer cells through the secretion of inflammatory cytokines and proteases. The cancer cells then induce metabolic changes in the adipocytes to acquire free fatty acids that are oxidized by cancer cells to generate energy for proliferation. Increasing knowledge about the metabolic symbiosis within the tumor has led to novel therapeutic strategies designed to restrict metabolic adaptation, including inhibiting lactate transporters and repurposing antidiabetic drugs (thiazolidinediones, metformin).
Collapse
Affiliation(s)
- Iris L Romero
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, Center for Integrative Science, University of Chicago, Chicago, Illinois
| | - Abir Mukherjee
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, Center for Integrative Science, University of Chicago, Chicago, Illinois
| | - Hilary A Kenny
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, Center for Integrative Science, University of Chicago, Chicago, Illinois
| | - Lacey M Litchfield
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, Center for Integrative Science, University of Chicago, Chicago, Illinois
| | - Ernst Lengyel
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, Center for Integrative Science, University of Chicago, Chicago, Illinois.
| |
Collapse
|
48
|
Wang YP, Lin CF, Tsai SC, Tsai CH, Yeh TH. Upregulation of Caveolin-1 correlate with Akt expression and poor prognosis in NPC patients. Laryngoscope 2015; 125:E231-8. [DOI: 10.1002/lary.25297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 02/17/2015] [Accepted: 03/09/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Ying-Piao Wang
- Department of Otolaryngology; Mackay Memorial Hospital; Zhongzheng Rd Taipei Taiwan
- Department of Audiology and Speech Language Pathology and School of Medicine; Mackay Medical College; Zhongzheng Rd Taipei Taiwan
- Graduate Institute of Microbiology, College of Medicine National Taiwan University; Taipei Taiwan
| | - Chih-Feng Lin
- Department of Otolaryngology; National Taiwan University Hospital
| | - Shu-Chun Tsai
- Department of Otolaryngology; National Taiwan University Hospital
- Graduate Institute of Microbiology, College of Medicine National Taiwan University; Taipei Taiwan
| | - Ching-Hwa Tsai
- Department of Otolaryngology; National Taiwan University Hospital
| | - Te-Huei Yeh
- Department of Otolaryngology; National Taiwan University Hospital
- Graduate Institute of Microbiology, College of Medicine National Taiwan University; Taipei Taiwan
| |
Collapse
|
49
|
Abstract
It has been over 20 years since the discovery that caveolar lipid rafts function as signalling organelles. Lipid rafts create plasma membrane heterogeneity, and caveolae are the most extensively studied subset of lipid rafts. A newly emerging paradigm is that changes in caveolae also generate tumour metabolic heterogeneity. Altered caveolae create a catabolic tumour microenvironment, which supports oxidative mitochondrial metabolism in cancer cells and which contributes to dismal survival rates for cancer patients. In this Review, we discuss the role of caveolae in tumour progression, with a special emphasis on their metabolic and cell signalling effects, and their capacity to transform the tumour microenvironment.
Collapse
Affiliation(s)
- Ubaldo E Martinez-Outschoorn
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - Federica Sotgia
- 1] Breakthrough Breast Cancer Research Unit, Institute of Cancer Sciences, University of Manchester, Manchester M20 4BX, UK. [2] Manchester Centre for Cellular Metabolism (MCCM), University of Manchester, Manchester M20 4BX, UK
| | - Michael P Lisanti
- 1] Breakthrough Breast Cancer Research Unit, Institute of Cancer Sciences, University of Manchester, Manchester M20 4BX, UK. [2] Manchester Centre for Cellular Metabolism (MCCM), University of Manchester, Manchester M20 4BX, UK
| |
Collapse
|
50
|
Chen D, Che G. [Advancement of phenotype transformation of cancer-associated fibroblasts:
from genetic alterations to epigenetic modification]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2015; 18:117-22. [PMID: 25676407 PMCID: PMC5999850 DOI: 10.3779/j.issn.1009-3419.2015.02.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the field of human cancer research, even though the vast majority attentions were paid to tumor cells as "the seeds", the roles of tumor microenvironments as "the soil" are gradually explored in recent years. As a dominant compartment of tumor microenvironments, cancer-associated fibroblasts (CAFs) were discovered to correlated with tumorigenesis, tumor progression and prognosis. And the exploration of the mechanisms of CAF phenotype transformation would conducive to the further understand of the CAFs function in human cancers. As we known that CAFs have four main origins, including epithelial cells, endothelial cells, mesenchymal stem cells (MSCs) and local mesenchymal cells. However, researchers found that all these origins finally conduct similiar phenotypes from intrinsic to extrinsic ones. Thus, what and how a mechanism can conduct the phenotype transformation of CAFs with different origins? Two viewpoints are proposed to try to answer the quetsion, involving genetic alterations and epigenetic modifications. This review will systematically summarize the advancement of mechanisms of CAF phenotype transformations in the aspect of genentic and epigenetic modifications.
Collapse
Affiliation(s)
- Dali Chen
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guowei Che
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|