1
|
Lee J, Byeon YM, Choi MJ. Stabilization and sensorial/technological characterization of a sodium-reduced W 1/O/W 2 emulsion based on oriental ingredients. Food Chem 2025; 475:143208. [PMID: 39956076 DOI: 10.1016/j.foodchem.2025.143208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/20/2025] [Accepted: 02/02/2025] [Indexed: 02/18/2025]
Abstract
This study investigates the potential of vegetable extracts to enhance saltiness perception in high internal-phase double emulsions, offering a natural approach to sodium reduction in food products. Vegetable extracts were analyzed for their chemical and sensory properties. These extracts were incorporated into double emulsions containing NaCl to enhance saltiness perception. A 2:5:3 ratio (SLC253) of shiitake mushroom (S), lotus root (L), and Chinese cabbage (C) extracts was determined as the optimal formulation for further analysis. Including vegetable extracts, particularly in the SLC253, significantly enhanced the perception of saltiness through their high amino acid content, synergistically increasing both umami and saltiness. Emulsion stability was also improved by reducing droplet size and increasing ζ-potential, which prevented coalescence during storage. The results suggest that vegetable extracts can effectively reduce sodium intake while preserving sensory appeal, presenting a promising strategy for sodium reduction in food applications.
Collapse
Affiliation(s)
- Jiseon Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Yeong Mi Byeon
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Mi-Jung Choi
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
2
|
Sevgi B, Leblebici S. Exogenous sucrose alleviates salt stress in sunflower ( Helianthus annuus L.) and canola ( Brassica napus L.) by modulating osmotic adjustment and antioxidant defense system. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2025; 31:405-418. [PMID: 40256277 PMCID: PMC12006602 DOI: 10.1007/s12298-025-01571-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 04/22/2025]
Abstract
Salinity, a major ecological problem worldwide, adversely affects plant growth and productivity. Osmoprotectants are a possible strategy for plants to cope with and regulate their response to unfavorable environmental conditions, such as salinity. However, the role of sucrose in this process requires more precise elucidation. This study aims to investigate the ameliorative role of sucrose on growth parameters, proline content, antioxidant enzyme activity, and gene expression in sunflower and canola under salt stress. The treatments included a 3% sucrose concentration and two levels of salinity (75 and 150 mM NaCl). Salinity caused a remarkable reduction in stem-root growth, chlorophyll amounts and catalase (CAT) activity, whereas it unchanged ascorbate peroxidase (APX) activity. Furthermore, both plants grown under salt stress had considerably higher total protein, proline, malondialdehyde (MDA) content, and superoxide dismutase (SOD) activity. Exogenous sucrose increased plant growth, chlorophyll amounts and the activities of hydrogen peroxide-detoxifying antioxidant enzymes such as CAT and APX in salt-stressed plants, but dramatically depressed levels of osmoregulators such as protein and proline. Besides that, it balanced antioxidant enzyme levels by regulating SOD activity to the required level, thereby facilitating the effective operation of the antioxidant defense system. Additionally, sucrose had a different effect on gene expressions of antioxidants in sunflower and canola under salinity. These results revealed that sucrose can ameliorate the deleterious effects of salinity in sunflower and canola by modulating osmotic substance accumulation, the activity of antioxidant enzymes, and their gene expression. In conclusion, sucrose can be a potential tool for plants in salt stress alleviation. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-025-01571-9.
Collapse
Affiliation(s)
- Büşra Sevgi
- Institute of Graduate Education, Department of Molecular Biology and Genetics, Bilecik Şeyh Edebali University, Bilecik, 11230 Türkiye
| | - Sema Leblebici
- Faculty of Science, Department of Molecular Biology and Genetics, Bilecik Şeyh Edebali University, Bilecik, 11230 Türkiye
| |
Collapse
|
3
|
Kokebie D, Enyew A, Masresha G, Fentie T, Mulat E. Morphological, physiological, and biochemical responses of three different soybean ( Glycine max L.) varieties under salinity stress conditions. FRONTIERS IN PLANT SCIENCE 2024; 15:1440445. [PMID: 39354934 PMCID: PMC11443463 DOI: 10.3389/fpls.2024.1440445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/13/2024] [Indexed: 10/03/2024]
Abstract
Salinity is one of the most detrimental factors for the growth performance and productivity of crops worldwide. Therefore, understanding crop responses or growth potentials and their effectiveness in salinity mitigation is highly important for the selection of salinity-tolerant plant varieties. In this study, the effects of salinity at various stress levels (0 mM, 50 mM, 100 mM, and 150 mM NaCl) on the morphological, physiological, and biochemical parameters of three soybean varieties ('Afigat', 'Gishama', and 'Pawi-2') were investigated. The results showed that salinity significantly reduced morphological traits including plant height, number of leaves per plant, stem thickness, shoot and root length, and fresh and dry weight. This reduction was more prominent in the 'Afigat' variety for all of these traits except shoot and root length. The concentrations of chlorophyll a and b decreased with increasing salinity. In addition, salinity significantly increased leaf electrolyte leakage (EL), lipid peroxidation, proline accumulation, and phenol and flavonoid content. The 'Pawi-2' variety was more tolerant than the other studied varieties in terms of membrane stability (less EL and a low malondialdehyde content) and proline, phenol, and flavonoid accumulation. Therefore, 'Pawi-2' may be considered as the most salt-tolerant variety in comparison with the other studied soybean varieties. Further complementary studies in field conditions including anatomical parameters are needed to confirm these findings.
Collapse
Affiliation(s)
- Desilal Kokebie
- Department of Biology, College of Natural and Computational Sciences, University of Gondar, Gondar, Ethiopia
| | - Abiyu Enyew
- Department of Biology, College of Natural and Computational Sciences, University of Gondar, Gondar, Ethiopia
| | - Getinet Masresha
- Department of Biology, College of Natural and Computational Sciences, University of Gondar, Gondar, Ethiopia
| | - Tarekegn Fentie
- Department of Chemistry, College of Natural and Computational Sciences, University of Gondar, Gondar, Ethiopia
| | - Emebet Mulat
- Department of Biology, College of Natural and Computational Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
4
|
Liu R, Wang T, Wang J, Yan D, Lian Y, Lu Z, Hong Y, Yuan X, Wang Y, Li R. The Physiological Mechanism of Exogenous Melatonin on Improving Seed Germination and the Seedling Growth of Red Clover ( Trifolium pretense L.) under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:2527. [PMID: 39274011 PMCID: PMC11397702 DOI: 10.3390/plants13172527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/16/2024]
Abstract
Salt stress can affect various physiological processes in plants, ultimately hindering their growth and development. Melatonin (MT) can effectively resist multiple abiotic stresses, improving plant stress resistance. To analyze the mechanism of exogenous MT to enhance salt tolerance in red clover, we conducted a comprehensive study to examine the influence of exogenous MT on various parameters, including seed germination indices, seedling morphological traits, and physiological and photosynthetic indicators, using four distinct red clover varieties (H1, H2, H3, and H4). This investigation was performed under various salt stress conditions with differing pH values, specifically utilizing NaCl, Na2SO4, NaHCO3, and Na2CO3 as the salt stressors. The results showed that MT solution immersion significantly improved the germination indicators of red clover seeds under salt stress. The foliar spraying of 50 μM and 25 μM MT solution significantly increased SOD activity (21-127%), POD activity, soluble sugar content, proline content (22-117%), chlorophyll content (2-66%), and the net photosynthetic rate. It reduced the MDA content (14-55%) and intercellular CO2 concentration of red clover seedlings under salt stress. Gray correlation analysis and the Mantel test further verified that MT is a key factor in enhancing seed germination and seedling growth of red clover under salt stress; the most significant improvement was observed for NaHCO3 stress. MT is demonstrated to improve the salt tolerance of red clover through a variety of mechanisms, including an increase in antioxidant enzyme activity, osmoregulation ability, and cell membrane stability. Additionally, it improves photosynthetic efficiency and plant architecture, promoting energy production, growth, and optimal resource allocation. These mechanisms function synergistically, enabling red clover to sustain normal growth and development under salt stress.
Collapse
Affiliation(s)
- Rui Liu
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Ting Wang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Jiajie Wang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Di Yan
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Yijia Lian
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Zhengzong Lu
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Yue Hong
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Xue Yuan
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Ye Wang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing 102206, China
| | - Runzhi Li
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing 102206, China
| |
Collapse
|
5
|
Sun M, Zhao T, Liu S, Han J, Wang Y, Zhao X, Li Y, Teng W, Zhan Y, Han Y. QTL Detection of Salt Tolerance at Soybean Seedling Stage Based on Genome-Wide Association Analysis and Linkage Analysis. PLANTS (BASEL, SWITZERLAND) 2024; 13:2283. [PMID: 39204719 PMCID: PMC11360379 DOI: 10.3390/plants13162283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
The utilization of saline land is a global challenge, and cultivating salt-tolerant soybean varieties is beneficial for improving the efficiency of saline land utilization. Exploring the genetic basis of salt-tolerant soybean varieties and developing salt-tolerant molecular markers can effectively promote the process of soybean salt-tolerant breeding. In the study, the membership function method was used to evaluate seven traits related to salt tolerance and comprehensive salt tolerance at the soybean seedling stage; genome-wide association analysis (GWAS) was performed in a natural population containing 200 soybean materials; and linkage analysis was performed in 112 recombinant inbred lines (RIL) population to detect quantitative trait loci (QTLs) of salt tolerance. In the GWAS, 147 SNPs were mapped, explaining 5.28-17.16% of phenotypic variation. In the linkage analysis, 10 QTLs were identified, which could explain 6.9-16.16% of phenotypic variation. And it was found that there were two co-located regions between the natural population and the RIL population, containing seven candidate genes of salt tolerance in soybean. In addition, one colocalization interval was found to contain qZJS-15-1, rs47665107, and rs4793412, all of which could explain more than 10% of phenotypic variation rates, making it suitable for molecular marker development. The physical positions of rs47665107 and rs47934112 were included in qZJS-15-1. Therefore, a KASP marker was designed and developed using Chr. 15:47907445, which was closely linked to the qZJS-15-1. This marker could accurately and clearly cluster the materials of salt-tolerant genotypes in the heterozygous population tested. The QTLs and KASP markers found in the study provide a theoretical and technical basis for accelerating the salt-tolerant breeding of soybean.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yingpeng Han
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin 150030, China; (M.S.); (T.Z.); (S.L.); (J.H.); (Y.W.); (X.Z.); (Y.L.); (W.T.); (Y.Z.)
| |
Collapse
|
6
|
Sadeghi A, Razmjoo J, Karimmojeni H, Baldwin TC. Differential responses of Hollyhock (Alcea rosea L.) varieties to salt stress in relation to physiological and biochemical parameters. Sci Rep 2024; 14:8105. [PMID: 38582792 PMCID: PMC10998884 DOI: 10.1038/s41598-024-58537-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 04/01/2024] [Indexed: 04/08/2024] Open
Abstract
The response of 14 Hollyhock (Alcea rosea L.) varieties to salinity were evaluated in a field experiment over two growing seasons. Carotenoid, Chl a, Chl b, total Chl, proline and MDA content, CAT, APX and GPX activity and petal and seeds yields were determined in order to investigate the mechanism of salt tolerance exhibited by Hollyhock, and too identify salt tolerant varieties. Overall, the photosynthetic pigment content,petal and seed yields were reduced by salt stress. Whereas the proline and MDA content, and the CAT, APX and GPX activities increased as salt levels increased. However, the values of the measured traits were dependent upon the on the level of salt stress, the Varietie and the interaction between the two variables. Based upon the smallest reduction in petal yield, the Masouleh variety was shown to be the most salt tolerant, when grown under severe salt stress. However, based upon the smallest reduction in seed yield, Khorrmabad was the most tolerant variety to severe salt stress. These data suggest that the selection of more salt tolerant Hollyhock genotypes may be possible based upon the wide variation in tolerance to salinity exhibited by the varieties tested.
Collapse
Affiliation(s)
- Arezoo Sadeghi
- Department of Agronomy and Plant Breading, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Jamshid Razmjoo
- Department of Agronomy and Plant Breading, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Hassan Karimmojeni
- Department of Agronomy and Plant Breading, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Timothy C Baldwin
- Faculty of Science and Engineering, University of Wolverhampton, Wulfruna St, Wolverhampton, WV1 1LY, UK
| |
Collapse
|
7
|
Cao S, Wang M, Pan J, Luo D, Mubeen S, Wang C, Yue J, Wu X, Wu Q, Zhang H, Chen C, Rehman M, Xie S, Li R, Chen P. Physiological, transcriptome and gene functional analysis provide novel sights into cadmium accumulation and tolerance mechanisms in kenaf. J Environ Sci (China) 2024; 137:500-514. [PMID: 37980034 DOI: 10.1016/j.jes.2023.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 11/20/2023]
Abstract
Kenaf is considered to have great potential for remediation of heavy metals in ecosystems. However, studies on molecular mechanisms of root Cd accumulation and tolerance are still inadequate. In this study, two differently tolerant kenaf cultivars were selected as materials and the physiological and transcriptomic effects were evaluated under Cd stress. This study showed that 200 µmol/L CdCl2 treatment triggered the reactive oxygen species (ROS) explosion and membrane lipid peroxidation. Compared with the Cd-sensitive cultivar 'Z', the Cd-tolerant cultivar 'F' was able to resist oxidative stress in cells by producing higher antioxidant enzyme activities and increasing the contents of ascorbic acid (AsA) and glutathione (GSH). The root cell wall of 'F' exhibited higher polysaccharide contents under Cd treatment, providing more Cd-binding sites. There were 3,439 differentially expressed genes (DEGs) that were co-regulated by Cd treatment in two cultivars. Phenylpropanoid biosynthesis and plant hormone signal transduction pathways were significantly enriched by functional annotation analysis. DEGs associated with pectin, cellulose, and hemi-cellulose metabolism were involved in Cd chelation of root cell wall; V-ATPases, ABCC3 and Narmp3 could participated in vacuolar compartmentalization of Cd; PDR1 was responsible for Cd efflux; the organic acid transporters contributed to the absorption of Cd in soil. These genes might have played key roles in kenaf Cd tolerance and Cd accumulation. Moreover, HcZIP2 was identified to be involved in Cd uptake and transport in kenaf. Our findings provide a deeper understanding of the molecular pathways underlying Cd accumulation and detoxification mechanisms in kenaf.
Collapse
Affiliation(s)
- Shan Cao
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Meng Wang
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Jiao Pan
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Dengjie Luo
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Samavia Mubeen
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Caijin Wang
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Jiao Yue
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xia Wu
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Qijing Wu
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Hui Zhang
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Canni Chen
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Muzammal Rehman
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Sichen Xie
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Ru Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Peng Chen
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China.
| |
Collapse
|
8
|
Padmavathi G, Bangale U, Rao K, Balakrishnan D, Arun M, Singh RK, Sundaram RM. Progress and prospects in harnessing wild relatives for genetic enhancement of salt tolerance in rice. FRONTIERS IN PLANT SCIENCE 2024; 14:1253726. [PMID: 38371332 PMCID: PMC10870985 DOI: 10.3389/fpls.2023.1253726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/13/2023] [Indexed: 02/20/2024]
Abstract
Salt stress is the second most devastating abiotic stress after drought and limits rice production globally. Genetic enhancement of salinity tolerance is a promising and cost-effective approach to achieve yield gains in salt-affected areas. Breeding for salinity tolerance is challenging because of the genetic complexity of the response of rice plants to salt stress, as it is governed by minor genes with low heritability and high G × E interactions. The involvement of numerous physiological and biochemical factors further complicates this complexity. The intensive selection and breeding efforts targeted towards the improvement of yield in the green-revolution era inadvertently resulted in the gradual disappearance of the loci governing salinity tolerance and a significant reduction in genetic variability among cultivars. The limited utilization of genetic resources and narrow genetic base of improved cultivars have resulted in a plateau in response to salinity tolerance in modern cultivars. Wild species are an excellent genetic resource for broadening the genetic base of domesticated rice. Exploiting novel genes of underutilized wild rice relatives to restore salinity tolerance loci eliminated during domestication can result in significant genetic gain in rice cultivars. Wild species of rice, Oryza rufipogon and Oryza nivara, have been harnessed in the development of a few improved rice varieties like Jarava and Chinsura Nona 2. Furthermore, increased access to sequence information and enhanced knowledge about the genomics of salinity tolerance in wild relatives has provided an opportunity for the deployment of wild rice accessions in breeding programs, while overcoming the cross-incompatibility and linkage drag barriers witnessed in wild hybridization. Pre-breeding is another avenue for building material that are ready for utilization in breeding programs. Efforts should be directed towards systematic collection, evaluation, characterization, and deciphering salt tolerance mechanisms in wild rice introgression lines and deploying untapped novel loci to improve salinity tolerance in rice cultivars. This review highlights the potential of wild relatives of Oryza to enhance tolerance to salinity, track the progress of work, and provide a perspective for future research.
Collapse
Affiliation(s)
- Guntupalli Padmavathi
- Crop Improvement Section, Plant Breeding, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Hyderabad, India
| | - Umakanth Bangale
- Crop Improvement Section, Plant Breeding, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Hyderabad, India
| | - K. Nagendra Rao
- Genetics and Plant Breeding, Sugarcane Research Station, Vuyyuru, India
| | - Divya Balakrishnan
- Crop Improvement Section, Plant Breeding, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Hyderabad, India
| | - Melekote Nagabhushan Arun
- Crop Production Section, Agronomy, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Hyderabad, India
| | - Rakesh Kumar Singh
- Crop Diversification and Genetics Section, International Center for Biosaline Agriculture (ICBA), Dubai, United Arab Emirates
| | - Raman Meenakshi Sundaram
- Crop Improvement Section, Plant Breeding, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Hyderabad, India
| |
Collapse
|
9
|
Di Baccio D, Lorenzi A, Scartazza A, Rosellini I, Franchi E, Barbafieri M. Morphophysiological Characterisation of Guayule ( Parthenium argentatum A. Gray) in Response to Increasing NaCl Concentrations: Phytomanagement and Phytodesalinisation in Arid and Semiarid Areas. PLANTS (BASEL, SWITZERLAND) 2024; 13:378. [PMID: 38337911 PMCID: PMC10856980 DOI: 10.3390/plants13030378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
Water and soil salinity continuously rises due to climate change and irrigation with reused waters. Guayule (Parthenium argentatum A. Gray) is a desert perennial shrub native to northern Mexico and the southwestern United States; it is known worldwide for rubber production and is suitable for cultivation in arid and semiarid regions, such as the Mediterranean. In the present study, we investigated the effects of high and increasing concentrations of sodium chloride (NaCl) on the growth and the morphophysiological and biochemical characteristics of guayule to evaluate its tolerance to salt stress and suitability in phytomanagement and, eventually, the phytodesalinisation of salt-affected areas. Guayule originates from desert areas, but has not been found in salt-affected soils; thus, here, we tested the potential tolerance to salinity of this species, identifying the toxicity threshold and its possible sodium (Na) accumulation capacity. In a hydroponic floating root system, guayule seedlings were subjected to salinity-tolerance tests using increasing NaCl concentrations (from 2.5 to 40 g L-1 and from 43 to 684 mM). The first impairments in leaf morphophysiological traits appeared after adding 15 g L-1 (257 mM) NaCl, but the plants survived up to the hypersaline conditions of 35-40 g L-1 NaCl (about 600 mM). The distribution of major cell cations modulated the high Na content in the leaves, stems and roots; Na bioconcentration and translocation factors were close to one and greater than one, respectively. This is the first study on the morphophysiological and (bio)chemical response of guayule to different high and increasing levels of NaCl, showing the parameters and indices useful for identifying its salt tolerance threshold, adaptative mechanisms and reclamation potential in high-saline environments.
Collapse
Affiliation(s)
- Daniela Di Baccio
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (IRET-CNR), Via G. Moruzzi 1, 56124 Pisa, Italy; (A.L.); (A.S.); (I.R.)
| | - Aurora Lorenzi
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (IRET-CNR), Via G. Moruzzi 1, 56124 Pisa, Italy; (A.L.); (A.S.); (I.R.)
| | - Andrea Scartazza
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (IRET-CNR), Via G. Moruzzi 1, 56124 Pisa, Italy; (A.L.); (A.S.); (I.R.)
- National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133 Palermo, Italy
| | - Irene Rosellini
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (IRET-CNR), Via G. Moruzzi 1, 56124 Pisa, Italy; (A.L.); (A.S.); (I.R.)
| | - Elisabetta Franchi
- Eni S.p.A., R&D Environmental & Biological Laboratories, Via Maritano 26, San Donato Milanese, 20097 Milan, Italy;
| | - Meri Barbafieri
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (IRET-CNR), Via G. Moruzzi 1, 56124 Pisa, Italy; (A.L.); (A.S.); (I.R.)
- National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133 Palermo, Italy
| |
Collapse
|
10
|
Haq IU, Azam N, Ashraf M, Javaid MM, Murtaza G, Ahmed Z, Riaz MA, Iqbal R, Habib Ur Rahman M, Alwahibi MS, Elshikh MS, Aslam MU, Arslan M. Improving the genetic potential of okra (Abelmoschus esculentus L.) germplasm to tolerate salinity stress. Sci Rep 2023; 13:21504. [PMID: 38057336 PMCID: PMC10700504 DOI: 10.1038/s41598-023-48370-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/25/2023] [Indexed: 12/08/2023] Open
Abstract
Okra (Abelmoschus esculentus L.) is the most consumed vegetable worldwide with the potential for diverse ecological adaptation. However, increasing salinization and changing climatic conditions are posing serious threats to the growth, yield, and quality of okra. Therefore, to mitigate increasing soil salinization and ensure sustainable okra production under rapidly changing climatic conditions, evaluation of new okra germplasm to develop salt tolerant cultivars is direly needed. The present study was designed to evaluate the genetic resources of okra genotypes for salt tolerance at growth and reproductive phases. Based on mophological and physio-biochemical responses of plants under stress condition, genotypes were divided into salt tolerant and succeptible groups. The experiment was comprised of 100 okra genotypes and each genotype was grown under control conditions and 6.5 dS m-1 NaCl concentration in a pot having 10 kg capacity. The experiment was conducted in a completely randomized design and each treatment was replicated three times. The results showed vast genetic variability among the evaluated okra germplasm traits like days to emergence, pod length, pod diameter, plant height, stem girth, and other yield-related parameters. Correlation analysis showed a highly significant positive association among the number of leaves at first flower and plant height at first flower.Likewise, pod weight also revealed a highly significant positive relationship for pod weight plant-1, pod length, and K+: Na+. Principal Component Analysis (PCA) revealed that out of 16 principal components (PCs), five components showed more than one eigenvalue and the first six PCs contributed 67.2% of the variation. Bi-plot analysis illustrated that genotypes 95, 111, 133, 99, and 128, under salt stress conditions, exhibited both high yield per plant and salt-tolerant behavior in other yield-related traits. On the basis of all studied traits, a salt susceptible group and a salt-tolerant group were formed. The salt tolerant group comprised of 97, 68, 95, 114, 64, 99, 111, 133, 128, and 109 genotypes, whereas, the salt susceptible group contained 137, 139, 130, 94, and 125 genotypes. Salt-tolerant okra genotypes were suggested to be used in further breeding programs aimed to develop salt tolerance in okra. These insights will empower precision breeding, underscore the importance of genetic diversity, and bear the potential to address the challenges of salt-affected soils while promoting broader agricultural resilience, economic prosperity, and food security.
Collapse
Affiliation(s)
- Ikram Ul Haq
- Department of Plant Breeding and Genetics, College of Agriculture, University of Sargodha, Sargodha, 40100, Punjab, Pakistan
| | - Noman Azam
- Department of Plant Breeding and Genetics, College of Agriculture, University of Sargodha, Sargodha, 40100, Punjab, Pakistan
| | - Muhammad Ashraf
- Department of Soil and Environmental Sciences, College of Agriculture, University of Sargodha, Sargodha, 40100, Punjab, Pakistan
| | - Muhammad Mansoor Javaid
- Department of Agronomy, College of Agriculture, University of Sargodha, Sargodha, 40100, Punjab, Pakistan
| | - Ghulam Murtaza
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, Yunnan, China
| | - Zeeshan Ahmed
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, 38000, Punjab, Pakistan.
- College of Life Science, Shenyang Normal University, Shenyang, 110034, China.
| | - Muhammad Asam Riaz
- Department of Entomology, College of Agriculture, University of Sargodha, Sargodha, 41000, Punjab, Pakistan
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Muhammed Habib Ur Rahman
- Institute of Crop Science and Resource Conservation (INRES), Faculty of Agriculture, University of Bonn, Bonn, Germany
- Department of Seed Science and Technology, Institute of Plant Breeding and Biotechnology, MNS-University of Agricultural, Multan, Pakistan
| | - Mona S Alwahibi
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Muhammad Usman Aslam
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Arslan
- Institute of Crop Science and Resource Conservation (INRES), Faculty of Agriculture, University of Bonn, Bonn, Germany.
| |
Collapse
|
11
|
Pasaribu SA, Basyuni M, Purba E, Hasanah Y. Physiological characteristics of IRR 400 series rubber clones ( Hevea brasiliensis Muell. Arg.) under drought stress. F1000Res 2023; 12:106. [PMID: 39931164 PMCID: PMC11809680 DOI: 10.12688/f1000research.129421.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 02/13/2025] Open
Abstract
Background Drought stress is one of the main causes of plant death. Strategies for plants survival are morphological adaptations, specific signaling pathways, and tolerance mechanisms. Rubber plantations have many uses, such as foreign exchange sources, job sources, forest revitalization, and a source of alternative wood for building materials and furniture. The rubber plant's response to drought stress is a complex biological process. A tolerant rubber clone in a dry area is the right approach. The present study aimed to identify drought tolerant traits in order to select or identify drought-tolerant clones at juvenile stage. Methods The first factor examined for this work was clones (IRR 425, IRR 428, IRR 429, IRR 434, IRR 440, RRIC 100, and BPM 24) and the second factor was water content (30%, 60%, and 90%). The study was arranged on a factorial randomized block design and repeated three times. Characteristics observed were total sugar (µM), proline (mg/L), chlorophyll a, b, total (µg/mL), hydrogen peroxidase (µmol/g), ascorbate peroxidase (unit/mg), superoxide dismutase (unit/mg), and peroxide dismutase (unit/mg). Results The tolerance ability of the IRR 400 series rubber clones to drought stress was determined by observing the characteristics of sugar total and proline. The concentration of total sugar and proline were higher when the plant was treated with a lower water content. The selected clones tolerant to drought stress are RR 425 and IR 434 with high total sugar content and proline. Other characteristics, namely chlorophyll a, b, and total, as well as hydrogen peroxidase, ascorbate peroxidase, super oxide dismutase, peroxide dismutase, cannot be used as selection characteristics for this study. Conclusions This drought study of IRR 400 clones with varying water content percentages illustrated that the total sugar and proline characteristics could be used to distinguish tolerance levels from other observed characteristics.
Collapse
Affiliation(s)
- Syarifah Aini Pasaribu
- Unit Research Sungei Putih, Indonesian Rubber Research Institute, Galang, Deliserdang, North Sumatra, 20585, Indonesia
| | - Mohammad Basyuni
- Center of Excellence for Mangrove, Universitas Sumatera Utara, Medan, 20155, Indonesia
- Department of Forestry, Universitas Sumatera Utara, Medan, North Sumatra, 20155, Indonesia
| | - Edison Purba
- Department of Agrotechnology, Universitas Sumatera Utara, Medan, North Sumatra, 20155, Indonesia
| | - Yaya Hasanah
- Department of Agrotechnology, Universitas Sumatera Utara, Medan, North Sumatra, 20155, Indonesia
| |
Collapse
|
12
|
Pervaiz S, Gul H, Rauf M, Mohamed HI, Ur Rehman K, Wasila H, Ahmad I, Shah ST, Basit A, Ahmad M, Akbar S, Fahad S. Screening of Linum usitatissimum Lines Using Growth Attributes, Biochemical Parameters and Ionomics Under Salinity Stress. GESUNDE PFLANZEN 2023; 75:2591-2609. [DOI: 10.1007/s10343-023-00880-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/21/2023] [Indexed: 10/26/2023]
|
13
|
Mangena P. Cell Mutagenic Autopolyploidy Enhances Salinity Stress Tolerance in Leguminous Crops. Cells 2023; 12:2082. [PMID: 37626892 PMCID: PMC10453822 DOI: 10.3390/cells12162082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/30/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Salinity stress affects plant growth and development by causing osmotic stress and nutrient imbalances through excess Na+, K+, and Cl- ion accumulations that induce toxic effects during germination, seedling development, vegetative growth, flowering, and fruit set. However, the effects of salt stress on growth and development processes, especially in polyploidized leguminous plants, remain unexplored and scantly reported compared to their diploid counterparts. This paper discusses the physiological and molecular response of legumes towards salinity stress-based osmotic and ionic imbalances in plant cells. A multigenic response involving various compatible solutes, osmolytes, ROS, polyamines, and antioxidant activity, together with genes encoding proteins involved in the signal transduction, regulation, and response mechanisms to this stress, were identified and discussed. This discussion reaffirms polyploidization as the driving force in plant evolution and adaptation to environmental stress constraints such as drought, feverish temperatures, and, in particular, salt stress. As a result, thorough physiological and molecular elucidation of the role of gene duplication through induced autopolyploidization and possible mechanisms regulating salinity stress tolerance in grain legumes must be further studied.
Collapse
Affiliation(s)
- Phetole Mangena
- Department of Biodiversity, School of Molecular and Life Sciences, Faculty of Science and Agriculture, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa
| |
Collapse
|
14
|
Kwon EH, Adhikari A, Imran M, Lee DS, Lee CY, Kang SM, Lee IJ. Exogenous SA Applications Alleviate Salinity Stress via Physiological and Biochemical changes in St John's Wort Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:310. [PMID: 36679023 PMCID: PMC9861905 DOI: 10.3390/plants12020310] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
The plant St. John's wort contains high levels of melatonin, an important biochemical that has both beneficial and adverse effects on stress. Therefore, a method for increasing melatonin levels in plants without adversely affecting their growth is economically important. In this study, we investigated the regulation of melatonin levels in St. John's wort by exposing samples to salinity stress (150 mM) and salicylic acid (0.25 mM) to augment stress tolerance. The results indicated that salinity stress significantly reduced the plant chlorophyll content and damaged the photosystem, plant growth and development. Additionally, these were reconfirmed with biochemical indicators; the levels of abscisic acid (ABA) and proline were increased and the activities of antioxidants were reduced. However, a significant increase was found in melatonin content under salinity stress through upregulation in the relative expression of tryptophan decarboxylase (TDC), tryptamine 5-hydroxylase (T5H), serotonin N-acetyltransferase (SNAT), and N-acetylserotonin methyltransferase (ASMT). The salicylic acid (SA) treatment considerably improved their photosynthetic activity, the maximum photochemical quantum yield (133%), the potential activity of PSⅡ (294%), and the performance index of electron flux to the final PS I electron acceptors (2.4%). On the other hand, SA application reduced ABA levels (32%); enhanced the activity of antioxidant enzymes, such as superoxide dismutase (SOD) (15.4%) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) (120%); and increased polyphenol (6.4%) and flavonoid (75.4%) levels in salinity-stressed St. John's wort plants. Similarly, SA application under NaCl stress significantly modulated the melatonin content in terms of ion balance; the level of melatonin was reduced after SA application on salt-treated seedlings but noticeably higher than on only SA-treated and non-treated seedlings. Moreover, the proline content was reduced considerably and growth parameters, such as plant biomass, shoot length, and chlorophyll content, were enhanced following treatment of salinity-stressed St. John's wort plants with salicylic acid. These findings demonstrate the beneficial impact of salt stress in terms of a cost-effective approach to extract melatonin in larger quantities from St. John's wort. They also suggest the efficiency of salicylic acid in alleviating stress tolerance and promoting growth of St. John's wort plants.
Collapse
Affiliation(s)
- Eun-Hae Kwon
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Arjun Adhikari
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Muhammad Imran
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Da-Sol Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Chung-Yeol Lee
- Department of Statictics Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
15
|
Ikram M, Chen J, Xia Y, Li R, Siddique KHM, Guo P. Comprehensive transcriptome analysis reveals heat-responsive genes in flowering Chinese cabbage ( Brassica campestris L. ssp. chinensis) using RNA sequencing. FRONTIERS IN PLANT SCIENCE 2022; 13:1077920. [PMID: 36531374 PMCID: PMC9755508 DOI: 10.3389/fpls.2022.1077920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee, 2n=20, AA) is a vegetable species in southern parts of China that faces high temperatures in the summer and winter seasons. While heat stress adversely impacts plant productivity and survival, the underlying molecular and biochemical causes are poorly understood. This study investigated the gene expression profiles of heat-sensitive (HS) '3T-6' and heat-tolerant (HT) 'Youlu-501' varieties of flowering Chinese cabbage in response to heat stress using RNA sequencing. Among the 37,958 genes expressed in leaves, 20,680 were differentially expressed genes (DEGs) at 1, 6, and 12 h, with 1,078 simultaneously expressed at all time points in both varieties. Hierarchical clustering analysis identified three clusters comprising 1,958, 556, and 591 down-regulated, up-regulated, and up- and/or down-regulated DEGs (3205 DEGs; 8.44%), which were significantly enriched in MAPK signaling, plant-pathogen interactions, plant hormone signal transduction, and brassinosteroid biosynthesis pathways and involved in stimulus, stress, growth, reproductive, and defense responses. Transcription factors, including MYB (12), NAC (13), WRKY (11), ERF (31), HSF (17), bHLH (16), and regulatory proteins such as PAL, CYP450, and photosystem II, played an essential role as effectors of homeostasis, kinases/phosphatases, and photosynthesis. Among 3205 DEGs, many previously reported genes underlying heat stress were also identified, e.g., BraWRKY25, BraHSP70, BraHSPB27, BraCYP71A23, BraPYL9, and BraA05g032350.3C. The genome-wide comparison of HS and HT provides a solid foundation for understanding the molecular mechanisms of heat tolerance in flowering Chinese cabbage.
Collapse
Affiliation(s)
- Muhammad Ikram
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, International Crop Research Center for Stress Resistance, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Jingfang Chen
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, International Crop Research Center for Stress Resistance, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Yanshi Xia
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, International Crop Research Center for Stress Resistance, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Ronghua Li
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, International Crop Research Center for Stress Resistance, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture, UWA School of Agriculture & Environment, The University of Western Australia, Perth, WA, Australia
| | - Peiguo Guo
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, International Crop Research Center for Stress Resistance, School of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
16
|
Bano A, Noreen Z, Tabassum F, Zafar F, Rashid M, Aslam M, Shah AA, Shah AN, Jaremko M, Alasmael N, Abdelsalam NR, Hasan ME. Induction of salt tolerance in Brassica rapa by nitric oxide treatment. FRONTIERS IN PLANT SCIENCE 2022; 13:995837. [PMID: 36466280 PMCID: PMC9709477 DOI: 10.3389/fpls.2022.995837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/27/2022] [Indexed: 06/17/2023]
Abstract
Salinity is one of the major plant abiotic stresses increasing over time worldwide. The most important biological role of nitric oxide (NO) in plants is related to their development and growth under abiotic conditions. The present experiment was conducted to study the effect of salt stress (0 and 100 mM) and NO (0 and 80 μM) on two different ecotypes of Brassica rapa (L.): PTWG-HL and PTWG-PK. The different growth attributes, biochemical and physiological parameters, and the mineral contents were examined. The results indicated increased hydrogen peroxide (H2O2), relative membrane permeability, malondialdehyde (MDA), and Na+ content and decreased plant biomass in both ecotypes (PTWG-PK and PTWG-HL) under salt stress. In contrast, NO treatment resulted in increased plant biomass, chlorophyll content, and total soluble proteins and decreased H2O2, relative membrane permeability, MDA, total phenolic content, catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), and Na+. The combined effect of salt stress and NO application increased the chlorophyll a content, total phenolic content, and total soluble proteins, but decreased H2O2, relative membrane permeability, MDA, and Na+. The response of carotenoids, anthocyanins, and K+, Ca2+, and Cl- ions varied in both ecotypes under all treatment conditions. The PTWG-PK ecotype showed maximum overall growth response with the application of NO. Henceforth, it is proposed that the molecular mechanisms associated with NO-induced stress tolerance in plants may be exploited to attain sustainability in agriculture under changing climate scenarios.
Collapse
Affiliation(s)
- Atiyyah Bano
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Zahra Noreen
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Fariha Tabassum
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Fizza Zafar
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Madiha Rashid
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Muhammad Aslam
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Anis Ali Shah
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Mariusz Jaremko
- Smart-Health Initiative and Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Noura Alasmael
- Smart Hybrid Materials Laboratory, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Nader R. Abdelsalam
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Mohamed E. Hasan
- Bioinformatics Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| |
Collapse
|
17
|
Mohamed M, Siddiqui MN, Oyiga BC, Léon J, Ballvora A. Validation of a QTL on Chromosome 1DS Showing a Major Effect on Salt Tolerance in Winter Wheat. Int J Mol Sci 2022; 23:13745. [PMID: 36430224 PMCID: PMC9691212 DOI: 10.3390/ijms232213745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/28/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Salt stress is one the most destructive abiotic stressors, causing yield losses in wheat worldwide. A prerequisite for improving salt tolerance is the identification of traits for screening genotypes and uncovering causative genes. Two populations of F3 lines developed from crosses between sensitive and tolerant parents were tested for salt tolerance at the seedling stage. Based on their response, the offspring were classified as salt sensitive and tolerant. Under saline conditions, tolerant genotypes showed lower Na+ and proline content but higher K+, higher chlorophyll content, higher K+/Na+ ratio, higher PSII activity levels, and higher photochemical efficiency, and were selected for further molecular analysis. Five stress responsive QTL identified in a previous study were validated in the populations. A QTL on the short arm of chromosome 1D showed large allelic effects in several salt tolerant related traits. An expression analysis of associated candidate genes showed that TraesCS1D02G052200 and TraesCS5B02G368800 had the highest expression in most tissues. Furthermore, qRT-PCR expression analysis revealed that ZIP-7 had higher differential expressions under saline conditions compared to KefC, AtABC8 and 6-SFT. This study provides information on the genetic and molecular basis of salt tolerance that could be useful in development of salt-tolerant wheat varieties.
Collapse
Affiliation(s)
- Maisa Mohamed
- INRES Plant Breeding, Rheinische Friedrich-Wilhelms-University, 53115 Bonn, Germany
- Agronomy Department, College of Agriculture, South Valley University, Qena 83523, Egypt
| | - Md Nurealam Siddiqui
- INRES Plant Breeding, Rheinische Friedrich-Wilhelms-University, 53115 Bonn, Germany
| | - Benedict Chijioke Oyiga
- INRES Plant Breeding, Rheinische Friedrich-Wilhelms-University, 53115 Bonn, Germany
- Kleinwanzlebener Saatzucht (KWS) KWS SAAT SE & Co. KGaA, 37574 Einbeck, Germany
| | - Jens Léon
- INRES Plant Breeding, Rheinische Friedrich-Wilhelms-University, 53115 Bonn, Germany
| | - Agim Ballvora
- INRES Plant Breeding, Rheinische Friedrich-Wilhelms-University, 53115 Bonn, Germany
| |
Collapse
|
18
|
Rasheed A, Raza A, Jie H, Mahmood A, Ma Y, Zhao L, Xing H, Li L, Hassan MU, Qari SH, Jie Y. Molecular Tools and Their Applications in Developing Salt-Tolerant Soybean (Glycine max L.) Cultivars. Bioengineering (Basel) 2022; 9:bioengineering9100495. [PMID: 36290463 PMCID: PMC9598088 DOI: 10.3390/bioengineering9100495] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 01/18/2023] Open
Abstract
Abiotic stresses are one of the significant threats to soybean (Glycine max L.) growth and yields worldwide. Soybean has a crucial role in the global food supply chain and food security and contributes the main protein share compared to other crops. Hence, there is a vast scientific saddle on soybean researchers to develop tolerant genotypes to meet the growing need of food for the huge population. A large portion of cultivated land is damaged by salinity stress, and the situation worsens yearly. In past years, many attempts have increased soybean resilience to salinity stress. Different molecular techniques such as quantitative trait loci mapping (QTL), genetic engineering, transcriptome, transcription factor analysis (TFs), CRISPR/Cas9, as well as other conventional methods are used for the breeding of salt-tolerant cultivars of soybean to safeguard its yield under changing environments. These powerful genetic tools ensure sustainable soybean yields, preserving genetic variability for future use. Only a few reports about a detailed overview of soybean salinity tolerance have been published. Therefore, this review focuses on a detailed overview of several molecular techniques for soybean salinity tolerance and draws a future research direction. Thus, the updated review will provide complete guidelines for researchers working on the genetic mechanism of salinity tolerance in soybean.
Collapse
Affiliation(s)
- Adnan Rasheed
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Ali Raza
- Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou 350002, China
| | - Hongdong Jie
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Athar Mahmood
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Yushen Ma
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Long Zhao
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Hucheng Xing
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Linlin Li
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China
| | - Sameer H. Qari
- Department of Biology, Al-Jumum University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Yucheng Jie
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
- Correspondence:
| |
Collapse
|
19
|
Hannachi S, Steppe K, Eloudi M, Mechi L, Bahrini I, Van Labeke MC. Salt Stress Induced Changes in Photosynthesis and Metabolic Profiles of One Tolerant ('Bonica') and One Sensitive ('Black Beauty') Eggplant Cultivars ( Solanum melongena L.). PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11050590. [PMID: 35270060 PMCID: PMC8912544 DOI: 10.3390/plants11050590] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 05/05/2023]
Abstract
The impact of salinity on the physiological and biochemical parameters of tolerant (‘Bonica’) and susceptible (‘Black Beauty’) eggplant varieties (Solanum melongena L.) was determined. The results revealed that the increase in salinity contributes to a significant decline in net photosynthesis (An) in both varieties; however, at the highest salt concentration (160 mM NaCl), the decrease in photorespiration (Rl) was less pronounced in the tolerant cultivar ‘Bonica’. Stomatal conductance (gs) was significantly reduced in ‘Black Beauty’ following exposure to 40 mM NaCl. However, gs of ‘Bonica’ was only substantially reduced at the highest level of NaCl (160 mM). In addition, a significant decrease in Chla, Chlb, total Chl, Chla/b and carotenoids (p > 0.05) was found in ‘Black Beauty’, and soluble carbohydrates accumulation and electrolyte leakage (EL) were more pronounced in ‘Black Beauty’ than in ‘Bonica’. The total phenols increase in ‘Bonica’ was 65% higher than in ‘Black Beauty’. In ‘Bonica’, the roots displayed the highest enzyme scavenging activity compared to the leaves. Salt stress contributes to a significant augmentation of root catalase and guaiacol peroxidase activities. In ‘Bonica’, the Na concentration was higher in roots than in leaves, whereas in ‘Black Beauty‘, the leaves accumulated more Na. Salt stress significantly boosted the Na/K ratio in ‘Black Beauty’, while no significant change occurred in ‘Bonica’. ACC deaminase activity was significantly higher in ‘Bonica’ than in ‘Black Beauty’.
Collapse
Affiliation(s)
- Sami Hannachi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail 81451, Saudi Arabia;
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links, 653, 9000 Ghent, Belgium; (K.S.); (M.-C.V.L.)
- Correspondence: ; Tel.: +966-54-380-76-37
| | - Kathy Steppe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links, 653, 9000 Ghent, Belgium; (K.S.); (M.-C.V.L.)
| | - Mabrouka Eloudi
- Department of Chemistry, College of Science, University of Hail, P.O. Box 2440, Hail 8145, Saudi Arabia; (M.E.); (L.M.)
| | - Lassaad Mechi
- Department of Chemistry, College of Science, University of Hail, P.O. Box 2440, Hail 8145, Saudi Arabia; (M.E.); (L.M.)
| | - Insaf Bahrini
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail 81451, Saudi Arabia;
| | - Marie-Christine Van Labeke
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links, 653, 9000 Ghent, Belgium; (K.S.); (M.-C.V.L.)
| |
Collapse
|
20
|
Chaudhry S, Sidhu GPS. Climate change regulated abiotic stress mechanisms in plants: a comprehensive review. PLANT CELL REPORTS 2022; 41:1-31. [PMID: 34351488 DOI: 10.1007/s00299-021-02759-5] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/18/2021] [Indexed: 05/20/2023]
Abstract
Global climate change is identified as a major threat to survival of natural ecosystems. Climate change is a dynamic, multifaceted system of alterations in environmental conditions that affect abiotic and biotic components of the world. It results in alteration in environmental conditions such as heat waves, intensity of rainfall, CO2 concentration and temperature that lead to rise in new pests, weeds and pathogens. Climate change is one of the major constraints limiting plant growth and development worldwide. It impairs growth, disturbs photosynthesis, and reduces physiological responses in plants. The variations in global climate have gained the attention of researchers worldwide, as these changes negatively affect the agriculture by reducing crop productivity and food security. With this background, this review focuses on the effects of elevated atmospheric CO2 concentration, temperature, drought and salinity on the morphology, physiology and biochemistry of plants. Furthermore, this paper outlines an overview on the reactive oxygen species (ROS) production and their impact on the biochemical and molecular status of plants with increased climatic variations. Also additionally, different tolerance strategies adopted by plants to combat environmental adversities have been discussed.
Collapse
Affiliation(s)
- Smita Chaudhry
- Institute of Environmental Studies, Kurukshetra University, Kurukshetra, Haryana, 136119, India
- Centre for Applied Biology in Environment Sciences, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Gagan Preet Singh Sidhu
- Centre for Applied Biology in Environment Sciences, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
| |
Collapse
|
21
|
Hannachi S, Werbrouck S, Bahrini I, Abdelgadir A, Affan Siddiqui H. Agronomical, Physiological and Biochemical Characterization of In Vitro Selected Eggplant Somaclonal Variants under NaCl Stress. PLANTS (BASEL, SWITZERLAND) 2021; 10:2544. [PMID: 34834907 PMCID: PMC8624560 DOI: 10.3390/plants10112544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 05/23/2023]
Abstract
Previously, an efficient regeneration protocol was established and applied to regenerate plants from calli lines that could grow on eggplant leaf explants after a stepwise in vitro selection for tolerance to salt stress. Plants were regenerated from calli lines that could tolerate up to 120 mM NaCl. For further in vitro and in vivo evaluation, four plants with a higher number of leaves and longer roots were selected from the 32 plants tested in vitro. The aim of this study was to confirm the stability of salt tolerance in the progeny of these four mutants ('R18', 'R19', 'R23' and 'R30'). After three years of in vivo culture, we evaluated the impact of NaCl stress on agronomic, physiological and biochemical parameters compared to the parental control ('P'). The regenerated and control plants were assessed under in vitro and in vivo conditions and were subjected to 0, 40, 80 and 160 mM of NaCl. Our results show significant variation in salinity tolerance among regenerated and control plants, indicating the superiority of four regenerants ('R18', 'R19', 'R23' and 'R30') when compared to the parental line ('P'). In vitro germination kinetics and young seedling growth divided the lines into a sensitive and a tolerant group. 'P' tolerate only moderate salt stress, up to 40 mM NaCl, while the tolerance level of 'R18', 'R19', 'R23' and 'R30' was up to 80 mM NaCl. The quantum yield of PSII (ΦPSII) declined significantly in 'P' under salt stress. The photochemical quenching was reduced while nonphotochemical quenching rose in 'P' under salt stress. Interestingly, the regenerants ('R18', 'R19', 'R23' and 'R30') exhibited high apparent salt tolerance by maintaining quite stable Chl fluorescence parameters. Rising NaCl concentration led to a substantial increase in foliar proline, malondialdehyde and soluble carbohydrates accumulation in 'P'. On the contrary, 'R18', 'R19', 'R23' and 'R30' exhibited a decline in soluble carbohydrates and a significant enhancement in starch under salinity conditions. The water status reflected by midday leaf water potential (ψl) and leaf osmotic potential (ψπ) was significantly affected in 'P' and was maintained a stable level in 'R18', 'R19', 'R23' and 'R30' under salt stress. The increase in foliar Na+ and Cl- content was more accentuated in parental plants than in regenerated plants. The leaf K+, Ca2+ and Mg2+ content reduction was more aggravated under salt stress in 'P'. Under increased salt concentration, 'R18', 'R19', 'R23' and 'R30' associate lower foliar Na+ content with a higher plant tolerance index (PTI), thus maintaining a normal growth, while foliar Na+ accumulation was more pronounced in 'P', revealing their failure in maintaining normal growth under salinity stress. 'R18', 'R19', 'R23' and 'R30' showed an obvious salt tolerance by maintaining significantly high chlorophyll content. In 'R18', 'R19', 'R23' and 'R30', the enzyme scavenging machinery was more performant in the roots compared to the leaves. Salt stress led to a significant augmentation of catalase, ascorbate peroxidase and guaiacol peroxidase activities in the roots of 'R18', 'R19', 'R23' and 'R30'. In contrast, enzyme activities were less enhanced in 'P', indicating lower efficiency to cope with oxidative stress than in 'R18', 'R19', 'R23' and 'R30'. ACC deaminase activity was significantly higher in 'R18', 'R19', 'R23' and 'R30' than in 'P'. The present study suggests that regenerated plants 'R18', 'R19', 'R23' and 'R30' showed an evident stability in tolerating salinity, which shows their potential to be adopted as interesting selected mutants, providing the desired salt tolerance trait in eggplant.
Collapse
Affiliation(s)
- Sami Hannachi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 81451, Saudi Arabia; (I.B.); (A.A.)
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links, 653, 9000 Ghent, Belgium;
| | - Stefaan Werbrouck
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links, 653, 9000 Ghent, Belgium;
| | - Insaf Bahrini
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 81451, Saudi Arabia; (I.B.); (A.A.)
| | - Abdelmuhsin Abdelgadir
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 81451, Saudi Arabia; (I.B.); (A.A.)
| | - Hira Affan Siddiqui
- Department of Physics, College of Science, University of Hail, P.O. Box 2440, Ha’il 81451, Saudi Arabia;
| |
Collapse
|
22
|
Singhal RK, Saha D, Skalicky M, Mishra UN, Chauhan J, Behera LP, Lenka D, Chand S, Kumar V, Dey P, Indu, Pandey S, Vachova P, Gupta A, Brestic M, El Sabagh A. Crucial Cell Signaling Compounds Crosstalk and Integrative Multi-Omics Techniques for Salinity Stress Tolerance in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:670369. [PMID: 34484254 PMCID: PMC8414894 DOI: 10.3389/fpls.2021.670369] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/28/2021] [Indexed: 10/29/2023]
Abstract
In the era of rapid climate change, abiotic stresses are the primary cause for yield gap in major agricultural crops. Among them, salinity is considered a calamitous stress due to its global distribution and consequences. Salinity affects plant processes and growth by imposing osmotic stress and destroys ionic and redox signaling. It also affects phytohormone homeostasis, which leads to oxidative stress and eventually imbalances metabolic activity. In this situation, signaling compound crosstalk such as gasotransmitters [nitric oxide (NO), hydrogen sulfide (H2S), hydrogen peroxide (H2O2), calcium (Ca), reactive oxygen species (ROS)] and plant growth regulators (auxin, ethylene, abscisic acid, and salicylic acid) have a decisive role in regulating plant stress signaling and administer unfavorable circumstances including salinity stress. Moreover, recent significant progress in omics techniques (transcriptomics, genomics, proteomics, and metabolomics) have helped to reinforce the deep understanding of molecular insight in multiple stress tolerance. Currently, there is very little information on gasotransmitters and plant growth regulator crosstalk and inadequacy of information regarding the integration of multi-omics technology during salinity stress. Therefore, there is an urgent need to understand the crucial cell signaling crosstalk mechanisms and integrative multi-omics techniques to provide a more direct approach for salinity stress tolerance. To address the above-mentioned words, this review covers the common mechanisms of signaling compounds and role of different signaling crosstalk under salinity stress tolerance. Thereafter, we mention the integration of different omics technology and compile recent information with respect to salinity stress tolerance.
Collapse
Affiliation(s)
| | - Debanjana Saha
- Department of Biotechnology, Centurion University of Technology and Management, Bhubaneswar, India
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Udit N. Mishra
- Faculty of Agriculture, Sri Sri University, Cuttack, India
| | - Jyoti Chauhan
- Narayan Institute of Agricultural Sciences, Gopal Narayan Singh University, Jamuhar, India
| | - Laxmi P. Behera
- Department of Agriculture Biotechnology, Orissa University of Agriculture and Technology, Bhubaneswar, India
| | - Devidutta Lenka
- Department of Plant Breeding and Genetics, Orissa University of Agriculture and Technology, Bhubaneswar, India
| | - Subhash Chand
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Vivek Kumar
- Institute of Agriculture Sciences, Banaras Hindu University, Varanasi, India
| | - Prajjal Dey
- Faculty of Agriculture, Sri Sri University, Cuttack, India
| | - Indu
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Saurabh Pandey
- Department of Agriculture, Guru Nanak Dev University, Amritsar, India
| | - Pavla Vachova
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Aayushi Gupta
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Marian Brestic
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
- Department of Plant Physiology, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Ayman El Sabagh
- Department of Agronomy, Faculty of Agriculture, University of Kafrelsheikh, Kafr El Sheikh, Egypt
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt, Turkey
| |
Collapse
|
23
|
Li Z, Hu Y, Chang M, Kashif MH, Tang M, Luo D, Cao S, Lu H, Zhang W, Huang Z, Yue J, Chen P. 5-azacytidine pre-treatment alters DNA methylation levels and induces genes responsive to salt stress in kenaf (Hibiscus cannabinus L.). CHEMOSPHERE 2021; 271:129562. [PMID: 33453481 DOI: 10.1016/j.chemosphere.2021.129562] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/15/2020] [Accepted: 12/19/2020] [Indexed: 05/19/2023]
Abstract
Soil salinization is becoming a major threat to the sustainable development of global agriculture. Kenaf is an industrial fiber crop with high tolerance to salt stress and could be used for soil phytoremediation. However, the molecular mechanism of kenaf salt tolerance remains largely unknown. DNA methylation is an important epigenetic modifications phenomena and plays a key role in gene expression regulation under abiotic stress condition. In the present study, the kenaf seedlings were pre-treated or not with 50 μM 5-azacytidine (5-azaC, a DNA methylation inhibitor) and then subjected to different concentrations of NaCl. Results showed that the biomass and antioxidant activities (superoxide dismutase, peroxidase and catalase) of kenaf seedlings pre-treated with 5-azaC were significantly increased, while the contents of superoxide anion (O2-) and malondialdehyde (MDA) were decreased, indicating that 5-azaC pre-treatment could significantly alleviate salt stress injury. Furthermore, the methylation-sensitive amplified polymorphism (MSAP) analysis revealed that DNA methylation level of keanf seedlings pre-treated with 5-azaC significantly decreased. The expression of seven differentially methylated genes responsing to salt stress was significantly changed from real-time fluorescent quantitative (qRT-PCR) analysis. Finally, knocked-down of the l-ascorbate oxidase (L-AAO) gene by virus-induced gene silencing (VIGS) resulted in increased sensitivity of kenaf seedlings under salt stress. Overall, it was suggested that 5-azaC pre-treatment can significantly improve salt tolerance in kenaf by decreasing ROS content, raising anti-oxidant activities, and regulating DNA methylation and expression of stress-responsive genes.
Collapse
Affiliation(s)
- Zengqiang Li
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Yali Hu
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Mengmeng Chang
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Muhammad Haneef Kashif
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Meiqiong Tang
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Dengjie Luo
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Shan Cao
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Hai Lu
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Wenxian Zhang
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Zhen Huang
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Jiao Yue
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Peng Chen
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China.
| |
Collapse
|
24
|
Hussain MS, Naeem MS, Tanvir MA, Nawaz MF, Abd-Elrahman A. Eco-physiological evaluation of multipurpose tree species to ameliorate saline soils. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 23:969-981. [PMID: 33455421 DOI: 10.1080/15226514.2020.1871321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Salinity is a widespread soil and underground water contaminant threatening food security and economic stability. Phytoremediation is an efficient and environmental-friendly solution to mitigate salinity impacts. The present study was conducted to evaluate the phytoremediation potential of five multipurpose trees: Vachellia nilotica, Concorpus erectus, Syzygium cumini, Tamarix aphylla and Eucalyptus cammaldulensis under four salinity treatments: Control, 10, 20 and 30 dS m-1. Salinity negatively impacted all the tested species. However, E. cammaldulensis and T. aphylla exhibited the lowest reduction (28%) and (35%) in plant height respectively along with a minimal reduction in leaf gas exchange while V. nilotica, S. cumini and C. erectus showed severe dieback. Similarly, the antioxidant enzymes increased significantly in E. cammaldulensis and T. aphylla as Superoxide Dismutase (87% and 79%), Catalase (66% and 67%) and Peroxidase (89% and 81%), respectively. Furthermore, both of these species maintained optimum Na/K ratio reducing the highest levels of soil ECe and SAR, suggesting the best phytoremediation potential. The present study identifies that E. cammaldulensis and T. aphylla showed effective tolerance mechanisms and the highest salt sequestration; therefore, may be used for phyto-amelioration of salinity impacted lands. Novelty statement Although previous studies evaluated the tolerance potential of many tree species, comparative and physiochemical evaluation of multipurpose tree species has been remained unexplored. In this scenario, eco-physiological characterization of multipurpose tree species may inform tree species for phytoremediation of saline soils according to the level of salinity. Optimizing tree species selection also improves the success of wood for energy and revenue generation while restoring degraded soils.
Collapse
Affiliation(s)
- Muhammad Safdar Hussain
- Department of Forestry and Range Management, Faculty Agriculture, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Shahbaz Naeem
- Department of Agronomy, Faculty Agriculture, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Ayyoub Tanvir
- Department of Forestry and Range Management, Faculty Agriculture, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Farrakh Nawaz
- Department of Forestry and Range Management, Faculty Agriculture, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Amr Abd-Elrahman
- School of Forest Resources and Conservation Institute of Food and Agriculture, Gulf Coast Research and Education Center, University of Florida, Plant City, FL, USA
| |
Collapse
|
25
|
Growth, ionic homeostasis, and physiological responses of cotton under different salt and alkali stresses. Sci Rep 2020; 10:21844. [PMID: 33318587 PMCID: PMC7736318 DOI: 10.1038/s41598-020-79045-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/03/2020] [Indexed: 11/16/2022] Open
Abstract
To better understand the mechanism of salt tolerance, we analyzed cotton growth and the ionomes in different tissues under different types of salt–alkali stress. Cotton was exposed to the soil salt and alkali stresses, NaCl, Na2SO4, and Na2CO3 + NaHCO3, in a pot study. Salt and alkali stress significantly inhibited cotton growth, significantly reduced root length, surface area, and volume, and significantly increased relative electrical conductivity (REC) and malondialdehyde (MDA) content but also significantly increased antioxidant enzyme activities, and proline (Pro) content. The REC in leaves was higher under salt stress than under alkali stress, but the effects on Pro were in the order Na2CO3 + NaHCO3 > NaCl > Na2SO4. Principal component analysis showed a significant difference in ion composition under the different types of salt–alkali stress. Under the three types of salt–alkali stress, concentrations of Na and Mo increased significantly in different organs of cotton plants. Under NaCl stress, the absorption of Ca was inhibited, the transport capacity of P, Mg, and Cu was reduced, and the ion balance was maintained by promoting the uptake and transport of Zn, Mn, Al, and Mo. Under Na2SO4 stress, the absorption of P and Ca was inhibited, the transport capacity of Mg, B, and Cu was reduced, and the ion balance was maintained by promoting the uptake and transport of S, Zn, Fe, Mo, Al, and Co. Under Na2CO3 + NaHCO3 stress, the absorption of P and S was inhibited, the transport capacity of Mg and B was reduced, but that of Al and Fe increased, and the ion balance was maintained by promoting the uptake and transport of Mn, Mo, Ni, and Co. The relative expression of GhSOS1 and GhNHX1 in leaves increased significantly under salt stress but decreased under alkali stress. These results suggest that cotton is well-adapted to salt–alkali stress via the antioxidant enzyme system, adjustment of osmotic substances, and reconstruction of ionic equilibrium; neutral salt stress primarily disrupts the ion balance, whereas alkali stress decreases the ability to regulate Na and inhibits the absorption of mineral elements, as well as disrupts the ion balance; and the changes in the expression of salt tolerance-related genes may partially explain the accumulation of Na ions in cotton under salt–alkali stress.
Collapse
|
26
|
Omarova Z, Platonova N, Belous O, Omarov M. Evaluation of the physiological state of feijoa (Feijoa sellowiana Berg) in subtropical Russia. POTRAVINARSTVO 2020. [DOI: 10.5219/1290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The article presents the results of research examining varietal diversity with respect the activity of oxidative enzymes (EC 1.11.1.6) and the dry matter and Proline accumulation of leaves under optimal and stressful conditions. For feijoa, the most stressful period in the subtropics of Russia, with respect to hydrothermal conditions, occurs between July and September. Studies have shown that the highest degree of enzymatic activity is observed in August in the ‘Superba’ variety of feijoa, which was used as a control in this study, and the lowest level of activity was observed in the 'Sentjabrskaja' variety. The long-term water deficit experienced in September coincides with fruiting in feijoa. This causes a change in catalase activity in leaves, which is maintained until it is inhibited. Form ShV-1 of feijoa is characterised by its metabolic stability. In fact, the activity of oxidative enzymes in leaves of the variety is stable. Dry matter content per unit area increases as the leaf grows. During the drought period, which coincides with active fruiting, the leaves of the ‘Dachnaja' variety and the ShV-1 form accumulate significantly less dry matter than other varieties. In the ‘Dagomysskaja' variety, the intensity of organic matter consumption via respiration and outflow exceeds visible photosynthesis, which is expressed as a negative value (average = 1.96 g.dm-2 h). To fully characterise the physiological state of feijoa plants under the influence of abiotic factors and catalase activity in the humid subtropics of Russia, indicators of dry matter accumulation and true photosynthesis intensity can be used.
Collapse
|
27
|
Raza MA, Feng LY, Iqbal N, Khan I, Meraj TA, Xi ZJ, Naeem M, Ahmed S, Sattar MT, Chen YK, Huan CH, Ahmed M, Yang F, Yang W. Effects of contrasting shade treatments on the carbon production and antioxidant activities of soybean plants. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:342-354. [PMID: 32040939 DOI: 10.1071/fp19213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/24/2019] [Indexed: 06/10/2023]
Abstract
In China, maize-soybean relay-intercropping system follow the two main planting-patterns: (i) traditional relay-intercropping; maize-soybean equal row planting, where soybean experience severe maize shading on both sides of plants, and (ii) modern relay-intercropping; narrow-wide row planting, in this new planting pattern only one side of soybean leaves suffer from maize shading. Therefore, in this study, changes in morphological traits, cytochrome content, photosynthetic characteristics, carbon status, and the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) were investigated at 30 days after treatment (DAT) in shade-tolerant soybean variety Nandou-12 subjected to three different types of shading conditions; normal light (NL, all trifoliate-leaves of soybean plants were under normal light); unilateral shade (US, all right-side trifoliate-leaves of soybean plants from top to bottom were under shade while all the left-side of trifoliate-leaves from top to bottom were in normal light); bilateral shade (BS, all trifoliate-leaves of soybean plants were under complete shade). Compared with BS, US conditions decreased plant height and increased stem diameter, leaf area, and biomass at 30 DAT. Biomass distribution rates to stem, petiole and leaves, and photosynthetic characteristics were markedly improved by the US at all sampling stages, which proved to be a better growing condition than BS with respect to shade tolerance. The enhanced net photosynthesis and transpiration rates in the left-side leaves (LS) of soybean plants in US, when compared with the LS in BS, allowed them to produce higher total soluble sugar (by 70%) and total soluble protein (by 17%) at 30 DAT which reduce the adverse effects of shading at right-side leaves (RS) of the soybean plants. Similarly, soybean leaves under US accumulated higher proline content in US than the leaves of BS plants. Soybean leaves grown in shading conditions (LS and RS of BS and RS of US) developed antioxidative defence-mechanisms, including the accelerated activities of SOD, POD, APX, and CAT. Comparatively, soybean leaves in US displayed lower activity levels of the antioxidative enzymes than the leaves of BS plants, showing that soybean plants experienced less shade stress in US as compared with BS treatment. Overall, these results indicate that the association of improved photosynthetic characteristics, sugar and protein accumulation and optimum antioxidative defences could be an effective approach for growing soybean in intercropping environments.
Collapse
Affiliation(s)
- Muhammad Ali Raza
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Ling Yang Feng
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Nasir Iqbal
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Imran Khan
- Department of Grassland Science, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Tehseen Ahmad Meraj
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Zeng Jin Xi
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Muhammd Naeem
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Saeed Ahmed
- College of Food Science, Sichuan Agricultural University, Yaan 625014, PR China
| | - Muhammad Tayyab Sattar
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, PR China; and Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yuan Kai Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Chen Hui Huan
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Mukhtar Ahmed
- Department of Agronomy, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan; and Department of Agricultural Research for Northern Sweden, Swedish University of Agricultural Sciences Umea, Sweden
| | - Feng Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, PR China; and Correspondending authors. ;
| | - Wenyu Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, PR China; and Correspondending authors. ;
| |
Collapse
|
28
|
Alam P, Albalawi TH, Altalayan FH, Bakht MA, Ahanger MA, Raja V, Ashraf M, Ahmad P. 24-Epibrassinolide (EBR) Confers Tolerance against NaCl Stress in Soybean Plants by Up-Regulating Antioxidant System, Ascorbate-Glutathione Cycle, and Glyoxalase System. Biomolecules 2019; 9:E640. [PMID: 31652728 PMCID: PMC6920941 DOI: 10.3390/biom9110640] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 01/24/2023] Open
Abstract
: The present research was performed to assess the effect of 24-epibrassinolide (EBR) on salt-stressed soybean plants. Salt stress suppressed growth, biomass yield, gas exchange parameters, pigment content, and chlorophyll fluorescence, but all these parameters were up-regulated by EBR supply. Moreover, salt stress increased hydrogen peroxide, malondialdehyde, and electrolyte leakage. EBR supplementation reduced the accumulation of oxidative stress biomarkers. The activities of superoxide dismutase and catalase, and the accumulation of proline, glycinebetaine, total phenols, and total flavonoids increased with NaCl stress, but these attributes further increased with EBR supplementation. The activities of enzymes and the levels of non-enzymatic antioxidants involved in the Asc-Glu cycle also increased with NaCl stress, and further enhancement in these attributes was recorded by EBR supplementation. Salinity elevated the methylglyoxal content, but it was decreased by the EBR supplementation accompanying with up-regulation of the glyoxalase cycle (GlyI and GlyII). Salinity enhanced the Na+ uptake in root and shoot coupled with a decrease in uptake of Ca2+, K+, and P. However, EBR supplementation declined Na+ accumulation and promoted the uptake of the aforementioned nutrients. Overall, EBR supplementation regulated the salt tolerance mechanism in soybean plants by modulating osmolytes, activities of key enzymes, and the levels of non-enzymatic antioxidants.
Collapse
Affiliation(s)
- Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia.
| | - Thamer H Albalawi
- Department of Biology, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia.
| | - Fahad H Altalayan
- Department of Biology, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia.
| | - Md Afroz Bakht
- Department of Chemistry, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia.
| | | | - Vaseem Raja
- Department of Botany, Govt. College for women Baramulla-193101, Jammu and Kashmir, India.
| | - Muhammad Ashraf
- University of Agriculture Faisalabad, Faisalabad-38040, Pakistan.
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
- Department of Botany, S.P. College, Srinagar 190001, Jammu and Kashmir, India.
| |
Collapse
|
29
|
Kataria S, Baghel L, Jain M, Guruprasad K. Magnetopriming regulates antioxidant defense system in soybean against salt stress. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101090] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Na + and Cl - induce differential physiological, biochemical responses and metabolite modulations in vitro in contrasting salt-tolerant soybean genotypes. 3 Biotech 2019; 9:91. [PMID: 30800602 DOI: 10.1007/s13205-019-1599-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 01/31/2019] [Indexed: 12/21/2022] Open
Abstract
Chloride and sodium constitute as the major ions in most saline soils, contributing to salt-induced damage in plants. Research on salt tolerance has mostly concentrated on the sodium toxicity; however, chloride toxicity also needs to be considered to understand the physiological, biochemical, and metabolite changes under individual and additive salts. In this study, we investigated the effect of individual Na+ and/or Cl- ions (equimolar 100 mM NaCl, Na+ and Cl- salts) using in vitro cultures of four soybean genotypes with contrasting salt tolerance. In general, all the treatments significantly induced antioxidant enzymes activities such as catalase, ascorbate peroxidase, glutathione reductase, guaiacol peroxidase, and superoxide dismutase and osmolytes including proline, glycine betaine, and total soluble sugar (TSS). Both individual (Na+, Cl-) and additive (NaCl) stresses induced more pronounced activation of antioxidant enzyme machinery and osmolytes accumulation in the tolerant genotypes (MAUS-47 and Bragg). The sensitive genotypes (Gujosoya-2 and SL-295) showed higher accumulation of Na+ and Cl-, while the tolerant genotypes were found to maintain a low Na+/K+ and high Ca2+ level in combination with enhanced antioxidant defense and osmotic adjustment. Gas chromatography-mass spectrometry (GC-MS)-based metabolomic profiling depicted the association of certain metabolites under individualistic and additive salt effects. The genotype-specific metabolic changes indicated probable involvement of azetidine, 2-furanmethanol, 1,4-dioxin, 3-fluorothiophene, decanoic acid and 2-propenoic acid methyl ester in salt-tolerance mechanism of soybean.
Collapse
|
31
|
Mozafari AA, Ghadakchi asl A, Ghaderi N. Grape response to salinity stress and role of iron nanoparticle and potassium silicate to mitigate salt induced damage under in vitro conditions. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2018; 24:25-35. [PMID: 29398836 PMCID: PMC5787119 DOI: 10.1007/s12298-017-0488-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 10/13/2017] [Accepted: 11/13/2017] [Indexed: 05/08/2023]
Abstract
Grape softwood cuttings of Khoshnaw cultivar were cultured using tissue-culture methods to study the effect of iron nanoparticles and potassium silicate under salinity conditions during the 2015-2016 growing season. The treatments consisted of salinity stress (0, 50, and 100 mM NaCl), nanoparticles of iron (0, 0.08, and 0.8 ppm), and potassium silicate (0, 1, 2 mM). The results also showed that the application of iron nanoparticles and potassium silicate significantly increased the total protein content and reduced proline, enzymatic antioxidant activity and hydrogen peroxide. Salinity stress reduced membrane stability index while increased malondialdehyde content. Increase of membrane stability index and reduction of malondialdehyde content were obtained for 2 mM potassium silicate and 0.8 ppm iron nanoparticle. Iron and potassium silicate were shown to lower the sodium content and increase the potassium content under salinity-stress conditions. The highest ratio of sodium to potassium was observed in plants under salinity conditions (100 mM) treated with neither iron nanoparticles nor potassium silicate; conversely, the lowest ratio was achieved in plants treated with both 0.8 ppm iron nanoparticles with 1 mM and 2 mM potassium silicate under non-stress conditions. These results indicate that the application of micronutrients in stressful conditions is a suitable method to compensate for the negative effects of salinity stress. Tissue culture in this study was shown to be an economically efficient and applicable technique for producing grape softwood cuttings to be used in experiments.
Collapse
Affiliation(s)
- Ali-akbar Mozafari
- Department of Horticultural Sciences, Faculty of Agriculture, University of Kurdistan, P. O. Box: 416, Sanandaj, 66177-15175 Iran
| | - Ali Ghadakchi asl
- Department of Horticultural Sciences, Faculty of Agriculture, University of Kurdistan, P. O. Box: 416, Sanandaj, 66177-15175 Iran
| | - Nasser Ghaderi
- Department of Horticultural Sciences, Faculty of Agriculture, University of Kurdistan, P. O. Box: 416, Sanandaj, 66177-15175 Iran
| |
Collapse
|
32
|
Shelke DB, Pandey M, Nikalje GC, Zaware BN, Suprasanna P, Nikam TD. Salt responsive physiological, photosynthetic and biochemical attributes at early seedling stage for screening soybean genotypes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 118:519-528. [PMID: 28772255 DOI: 10.1016/j.plaphy.2017.07.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/08/2017] [Accepted: 07/14/2017] [Indexed: 06/07/2023]
Abstract
Salt stress affects all the stages of plant growth however seed germination and early seedling growth phases are more sensitive and can be used for screening of crop germplasm. In this study, we aimed to find the most effective indicators of salt tolerance for screening ten genotypes of soybean (SL-295, Gujosoya-2, PS-1042, PK-1029, ADT-1, RKS-18, KDS-344, MAUS-47, Bragg and PK-416). The principal component analysis (PCA) resulted in the formation of three different clusters, salt sensitive (SL-295, Gujosoya-2, PS-1042 and ADT-1), salt tolerant (MAUS-47, Bragg and PK-416) and moderately tolerant/sensitive (RKS-18, PK-1029 and KDS-344) suggesting that there was considerable genetic variability for salt tolerance in the soybean genotypes. Subsequently, genotypes contrasting in salt tolerance were analyzed for their physiological traits, photosynthetic efficiency and mitochondrial respiration at seedling and early germination stages under different salt (NaCl) treatments. It was found that salt mediated increase in AOX-respiration, root and shoot K+/Na+ ratio, improved leaf area and water use efficiency were the key determinants of salinity tolerance, which could modulate the net photosynthesis (carbon assimilation) and growth parameters (carbon allocation). The results suggest that these biomarkers could be can be useful for screening soybean genotypes for salt tolerance.
Collapse
Affiliation(s)
- D B Shelke
- Department of Botany, Savitribai Phule Pune University, Pune 411 007, MS, India; Department of Botany, Amruteshwar Art's, Commerce and Science College, Vinzar, Velha, Pune 412213, MS, India
| | - M Pandey
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Center, Trombay, Mumbai 400 085, MS, India
| | - G C Nikalje
- Department of Botany, Savitribai Phule Pune University, Pune 411 007, MS, India; Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Center, Trombay, Mumbai 400 085, MS, India; Department of Botany, R. K. Talreja College of Arts, Science and Commerce, Affiliated to University of Mumbai, Ulhasnagar- 421003, MS, India
| | - B N Zaware
- P.D.E.A.'s Anantrao Pawar College, Pirangut, Tal. Mulshi, Pune 411 042, MS, India
| | - P Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Center, Trombay, Mumbai 400 085, MS, India
| | - T D Nikam
- Department of Botany, Savitribai Phule Pune University, Pune 411 007, MS, India.
| |
Collapse
|
33
|
Zhu H, Li X, Zhai W, Liu Y, Gao Q, Liu J, Ren L, Chen H, Zhu Y. Effects of low light on photosynthetic properties, antioxidant enzyme activity, and anthocyanin accumulation in purple pak-choi (Brassica campestris ssp. Chinensis Makino). PLoS One 2017; 12:e0179305. [PMID: 28609452 PMCID: PMC5469474 DOI: 10.1371/journal.pone.0179305] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 05/26/2017] [Indexed: 01/05/2023] Open
Abstract
Anthocyanins are secondary metabolites that contribute to red, blue, and purple colors in plants and are affected by light, but the effects of low light on the physiological responses of purple pak-choi plant leaves are still unclear. In this study, purple pak-choi seedlings were exposed to low light by shading with white gauze and black shading in a phytotron. The responses in terms of photosynthetic properties, carbohydrate metabolism, antioxidant enzyme activity, anthocyanin biosynthetic enzyme activity, and the relative chlorophyll and anthocyanin content of leaves were measured. The results showed that chlorophyll b, intracellular CO2 content, stomatal conductance and antioxidant activities of guaiacol peroxidase, catalase and superoxide dismutase transiently increased in the shade treatments at 5 d. The malondialdehyde content also increased under low light stress, which damages plant cells. With the extension of shading time (at 15 d), the relative chlorophyll a, anthocyanin and soluble protein contents, net photosynthetic rate, transpiration rate, stomata conductance, antioxidant enzyme activities, and activities of four anthocyanin biosynthetic enzymes decreased significantly. Thus, at the early stage of low light treatment, the chlorophyll b content increased to improve photosynthesis. When the low light treatment was extended, antioxidant enzyme activity and the activity of anthocyanin biosynthesis enzymes were inhibited, causing the purple pak-choi seedlings to fade from purple to green. This study provides valuable information for further deciphering genetic mechanisms and improving agronomic traits in purple pak-choi under optimal light requirements.
Collapse
Affiliation(s)
- Hongfang Zhu
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, China
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xiaofeng Li
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Wen Zhai
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yang Liu
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, China
| | - Qianqian Gao
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jinping Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Li Ren
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, China
| | - Huoying Chen
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, China
| | - Yuying Zhu
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
34
|
Al-Khayri JM, Naik PM, Alwael HA. In Vitro Assessment of Abiotic Stress in Date Palm: Salinity and Drought. Methods Mol Biol 2017; 1637:333-346. [PMID: 28755357 DOI: 10.1007/978-1-4939-7156-5_27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Date palm is one of the major crops growing in regions where abiotic stress conditions are extreme. Abiotic stress affects plant growth, development, physiology, and biochemical processes. This chapter describes a protocol to evaluate the response of date palm cultures to abiotic stresses. Tolerance to salinity stress is assessed using calcium chloride (CaCl2), potassium chloride (KCl), and sodium chloride (NaCl) at 11.96, 12.06, and 9.45 g/L, respectively (equivalent to 0.8 MPa osmotic potential), with different exposure durations (1-12 days). Polyethylene glycol (PEG 8000) is tested at 0-30% (w/v) to assess tolerance to drought stress. Techniques are described to define the effects of these stress agents on the growth of callus and cell suspension cultures, water content, proline accumulation, and Na+ and K+ content ratio, in addition to the technique used for determining the median lethal dose (LD50) for PEG (29.5%) and NaCl (11.54 g/L). This protocol will be useful for future studies of in vitro selection of tolerant cell lines.
Collapse
Affiliation(s)
- Jameel M Al-Khayri
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Hassa, Saudi Arabia.
| | - Poornananda M Naik
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Hassa, Saudi Arabia
| | - Hussain A Alwael
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Hassa, Saudi Arabia
| |
Collapse
|
35
|
Chunthabur S, Sakuanrung S, Wongwarat T, Sanitchon J, Pattanagul W, Theerakulp P. Changes in Anthocyanin Content and Expression of Anthocyanin Synthesis Genes in Seedlings of Black Glutinous Rice in Response to Salt Stress. ACTA ACUST UNITED AC 2016. [DOI: 10.3923/ajps.2016.56.65] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
36
|
Plant Growth-Promoting Rhizobacteria Enhance Salinity Stress Tolerance in Okra through ROS-Scavenging Enzymes. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6284547. [PMID: 26951880 PMCID: PMC4756578 DOI: 10.1155/2016/6284547] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/29/2015] [Accepted: 12/30/2015] [Indexed: 11/24/2022]
Abstract
Salinity is a major environmental stress that limits crop production worldwide. In this study, we characterized plant growth-promoting rhizobacteria (PGPR) containing 1-aminocyclopropane-1-carboxylate (ACC) deaminase and examined their effect on salinity stress tolerance in okra through the induction of ROS-scavenging enzyme activity. PGPR inoculated okra plants exhibited higher germination percentage, growth parameters, and chlorophyll content than control plants. Increased antioxidant enzyme activities (SOD, APX, and CAT) and upregulation of ROS pathway genes (CAT, APX, GR, and DHAR) were observed in PGPR inoculated okra plants under salinity stress. With some exceptions, inoculation with Enterobacter sp. UPMR18 had a significant influence on all tested parameters under salt stress, as compared to other treatments. Thus, the ACC deaminase-containing PGPR isolate Enterobacter sp. UPMR18 could be an effective bioresource for enhancing salt tolerance and growth of okra plants under salinity stress.
Collapse
|
37
|
Brito LM, Mourão I, Coutinho J, Smith SR. Co-composting of invasive Acacia longifolia with pine bark for horticultural use. ENVIRONMENTAL TECHNOLOGY 2015; 36:1632-1642. [PMID: 25559143 DOI: 10.1080/09593330.2014.1002863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The feasibility of commercial-scale co-composting of waste biomass from the control of invasive Acacia species with pine bark waste from the lumber industry, in a blend ratio of 60:40 (v:v), was investigated and compared with previous research on the composting of Acacia without additional feedstock, to determine the potential process and end-product quality benefits of co-composting with bark. Pile temperatures rose rapidly to >70 °C and were maintained at >60 °C for several months. Acacia and bark biomass contained a large fraction of mineralizable organic matter (OM) equivalent to approximately 600 g kg(-1) of initial OM. Bark was more recalcitrant to biodegradation compared with Acacia, which degraded at twice the rate of bark. Therefore, incorporating the bark increased the final amount of compost produced compared with composting Acacia residues without bark. The relatively high C/N ratio of the composting matrix (C/N=56) and NH3 volatilization explained the limited increases in NH4+-N content, whereas concentrations of conservative nutrient elements (e.g. P, K, Ca, Mg, Fe) increased in proportion to OM mineralization, enriching the compost as a nutrient source for horticultural use. Nitrogen concentrations also increased to a small extent, but were much more dynamic and losses, probably associated with N volatilization mechanisms, were difficult to actively control. The physicochemical characteristics of the stabilized end-product, such as pH, electrical conductivity and OM content, were improved with the addition of bark to Acacia biomass, and the final compost characteristics were suitable for use for soil improvement and also as horticultural substrate components.
Collapse
Affiliation(s)
- Luis Miguel Brito
- a Mountain Research Centre (CIMO), Escola Superior Agrária , Instituto Politécnico de Viana do Castelo , Refóios, 4990-706 Ponte de Lima , Portugal
| | | | | | | |
Collapse
|
38
|
Yin Y, Yang R, Han Y, Gu Z. Comparative proteomic and physiological analyses reveal the protective effect of exogenous calcium on the germinating soybean response to salt stress. J Proteomics 2015; 113:110-26. [PMID: 25284050 DOI: 10.1016/j.jprot.2014.09.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 09/22/2014] [Accepted: 09/26/2014] [Indexed: 01/16/2023]
Abstract
Calcium enhances salt stress tolerance of soybeans. Nevertheless, the molecular mechanism of calcium's involvement in resistance to salt stress is unclear. A comparative proteomic approach was used to investigate protein profiles in germinating soybeans under NaCl-CaCl2 and NaCl-LaCl3 treatments. A total of 80 proteins affected by calcium in 4-day-old germinating soybean cotyledons and 71 in embryos were confidently identified. The clustering analysis showed proteins were subdivided into 5 and 6 clusters in cotyledon and embryo, respectively. Among them, proteins involved in signal transduction and energy pathways, in transportation, and in protein biosynthesis were largely enriched while those involved in proteolysis were decreased. Abundance of nucleoside diphosphate kinase and three antioxidant enzymes were visibly increased by calcium. Accumulation of gamma-aminobutyric acid and polyamines was also detected after application of exogenous calcium. This was consistent with proteomic results, which showed that proteins involved in the glutamate and methionine metabolism were mediated by calcium. Calcium could increase the salt stress tolerance of germinating soybeans via enriching signal transduction, energy pathway and transportation, promoting protein biosynthesis, inhibiting proteolysis, redistributing storage proteins, regulating protein processing in endoplasmic reticulum, enriching antioxidant enzymes and activating their activities, accumulating secondary metabolites and osmolytes, and other adaptive responses. Biological significance Soybean (Glycine max L.), as a traditional edible legume, is being targeted for designing functional foods. During soybean germination under stressful conditions especially salt stress, newly discovered functional components such as gamma-aminobutyric acid (GABA) are rapidly accumulated. However, soybean plants are relatively salt-sensitive and the growth, development and biomass of germinating soybeans are significantly suppressed under salt stress condition. According to previous studies, exogenous calcium counters the harmful effect of salt stress and increases the biomass and GABA content of germinating soybeans. Nevertheless, the precise molecular mechanism underlying the role of calcium in resistance to salt stress is still unknown. This paper is the first study employing comparative proteomic and physiological analyses to reveal the protective effect of exogenous calcium in the germinating soybean response to salt stress. Our study links the biological events with proteomic information and provides detailed peptide information on all identified proteins. The functions of those significantly changed proteins are also analyzed. The physiological and comparative proteomic analyses revealed the putative molecular mechanism of exogenous calcium treatment induced salt stress responses. The findings from this paper are beneficial to high GABA-rich germinating soybean biomass. Additionally, these findings also might be applicable to the genetic engineering of soybean plants to improve stress tolerance.
Collapse
Affiliation(s)
- Yongqi Yin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China; College of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Runqiang Yang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Yongbin Han
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Zhenxin Gu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|
39
|
Wu G, Zhou Z, Chen P, Tang X, Shao H, Wang H. Comparative ecophysiological study of salt stress for wild and cultivated soybean species from the Yellow River Delta, China. ScientificWorldJournal 2014; 2014:651745. [PMID: 24999494 PMCID: PMC4066866 DOI: 10.1155/2014/651745] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 04/18/2014] [Accepted: 04/21/2014] [Indexed: 11/30/2022] Open
Abstract
Osmotic and ionic stresses were the primary and instant damage produced by salt stress. They can also bring about other secondary stresses. Soybean is an important economic crop and the wild soybean aroused increasing attention for its excellent performance in salt resistance. For this reason, we compared the different performances of Glycine max L. (ZH13) and Glycine soja L. (BB52) in both young and mature seedlings, hoping to clarify the specific reasons. Our research revealed that, compared to the cultivated soybean, the wild soybean was able to maintain higher water potential and relative water content (RWC), accumulate more amount of proline and glycine betaine, reduce the contents of Na(+) and Cl(-) by faster efflux, and cut down the efflux of the K(+) as well as keep higher K(+)/Na(+) ratio. And what is more is that, almost all the excel behaviors became particularly obvious under higher NaCl concentration (300 mM). Therefore, according to all the detections and comparisons, we concluded that the wild soybean had different tolerance mechanisms and better salt resistance. It should be used as eminent germplasm resource to enhance the resistant ability of cultivated soybean or even other crops.
Collapse
Affiliation(s)
- Gang Wu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhengda Zhou
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- The Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Chen
- The Graduate University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Coastal Biology & Bioresources Utilization, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai 264003, China
| | - Xiaoli Tang
- The Graduate University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Coastal Biology & Bioresources Utilization, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai 264003, China
| | - Hongbo Shao
- Key Laboratory of Coastal Biology & Bioresources Utilization, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai 264003, China
- Institute for Life Science, Qingdao University of Science & Technology (QUST), Qingdao 266042, China
| | - Hongyan Wang
- The Graduate University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Coastal Biology & Bioresources Utilization, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai 264003, China
| |
Collapse
|
40
|
Alqarawi AA, Hashem A, Abd Allah EF, Alshahrani TS, Huqail AA. Effect of salinity on moisture content, pigment system, and lipid composition in Ephedra alata Decne. ACTA BIOLOGICA HUNGARICA 2014; 65:61-71. [PMID: 24561895 DOI: 10.1556/abiol.65.2014.1.6] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The present work was carried out to uncover the effect of salinity stress on shoot moisture percentage, pigment content and lipid composition of Ephedra alata Decne. The results suggested that salinity caused significant decrease in plant moisture content. The chl. a, b and carotenoids showed significant decrease with increasing concentration of salt. Total pigment content also showed decline at all salt stress levels. Salt stress caused significant decrease in total lipids (TL), triacylglycerol (TG) and sterol (S) accompanied with an increase in diacylglycerol (DG), sterol ester (SE), and non-esterified fatty acids (FAA) of E. alata. Moreover, saline stress caused significant decrease in all phospholipid fractions except phosphatidic acid which increases during salt stress. Salinity stress resulted in increase of saturated fatty acids and decreases the percentage of un-saturated fatty acids in E. alalta.
Collapse
Affiliation(s)
- A A Alqarawi
- King Saud University Plant Production Department, College of Food & Agriculture Sciences P. O. Box 2460 Riyadh 11451 Saudi Arabia
| | - Abeer Hashem
- King Saud University Department of Botany and Microbiology, College of Science Riyadh 11451 Saudi Arabia
| | - E F Abd Allah
- King Saud University Plant Production Department, College of Food & Agriculture Sciences P. O. Box 2460 Riyadh 11451 Saudi Arabia
| | - T S Alshahrani
- King Saud University Plant Production Department, College of Food & Agriculture Sciences P. O. Box 2460 Riyadh 11451 Saudi Arabia
| | - Asma A Huqail
- King Saud University Department of Botany and Microbiology, College of Science Riyadh 11451 Saudi Arabia
| |
Collapse
|
41
|
Huynh HN, Lal SK, Singh SK, Talukdar A. In vitro screening for NaCl tolerance of some soybean genotypes. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s40502-014-0056-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Biochemical and anatomical changes and yield reduction in rice (Oryza sativa L.) under varied salinity regimes. BIOMED RESEARCH INTERNATIONAL 2014; 2014:208584. [PMID: 24579076 PMCID: PMC3919121 DOI: 10.1155/2014/208584] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 11/19/2013] [Indexed: 11/18/2022]
Abstract
Five Malaysian rice (Oryza sativa L.) varieties, MR33, MR52, MR211, MR219, and MR232, were tested in pot culture under different salinity regimes for biochemical response, physiological activity, and grain yield. Three different levels of salt stresses, namely, 4, 8, and 12 dS m−1, were used in a randomized complete block design with four replications under glass house conditions. The results revealed that the chlorophyll content, proline, sugar content, soluble protein, free amino acid, and yield per plant of all the genotypes were influenced by different salinity levels. The chlorophyll content was observed to decrease with salinity level but the proline increased with salinity levels in all varieties. Reducing sugar and total sugar increased up to 8 dS m−1 and decreased up to 12 dS m−1. Nonreducing sugar decreased with increasing the salinity levels in all varieties. Soluble protein and free amino acid also decreased with increasing salinity levels. Cortical cells of MR211 and MR232 did not show cell collapse up to 8 dS m−1 salinity levels compared to susceptible checks (IR20 and BRRI dhan29). Therefore, considering all parameters, MR211 and MR232 showed better salinity tolerance among the tested varieties. Both cluster and principal component analyses depict the similar results.
Collapse
|
43
|
Khan F, Hakeem KR, Siddiqi TO, Ahmad A. RAPD markers associated with salt tolerance in soybean genotypes under salt stress. Appl Biochem Biotechnol 2013; 170:257-72. [PMID: 23504565 DOI: 10.1007/s12010-013-0182-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 03/04/2013] [Indexed: 11/29/2022]
Abstract
In order to investigate the influence of genetic background on salt tolerance in soybean (Glycine max), ten soybean genotypes (Pusa-20, Pusa-40, Pusa-37, Pusa-16, Pusa-24, Pusa-22, BRAGG, PK-416, PK-1042, and DS-9712) released in India, were selected and grown hydroponically. The 10-day-old seedlings were subjected to 0, 25, 50, 75, 100, 125, and 150 mM NaCl for 15 days. Plant growth, leaf osmotic adjustment, and random amplified polymorphic DNA (RAPD) analysis were studied. In comparison to control plants, the plant growth in all genotypes was decreased by salt stress, respectively. Salt stress decreased leaf osmotic potential in all genotypes; however, the maximum reduction was observed in genotype Pusa-24 followed by PK-416 and Pusa-20, while minimum reduction was shown by genotype Pusa-37, followed by BRAGG and PK-1042. Pusa-16, Pusa-22, Pusa-40, and DS-9712 were able to tolerate NaCl treatment up to the level of 75 Mm. The difference in osmotic adjustment between all the genotypes was correlated with the concentrations of ion examined such as Na(+) and the leaf proline concentration. These results suggest that the genotypic variation for salt tolerance can be partially accounted by plant physiological measures. Twenty RAPD primers revealed high polymorphism and genetic variation among ten soybean genotypes studied. The closer varieties in the cluster behaved similarly in their response to salinity tolerance. Intra-clustering within the two clusters precisely grouped the ten genotypes in sub-cluster as expected from their physiological findings. Our study shows that RAPD technique is a sensitive, precise, and efficient tool for genomic analysis in soybean genotypes.
Collapse
Affiliation(s)
- Faheema Khan
- Department of Botany and Microbiology, King Saud University, Riyadh, Saudi Arabia.
| | | | | | | |
Collapse
|
44
|
Mahajan M, Yadav SK. Effect of Quercetin and Epicatechin on the Transcript Expression and Activity of Antioxidant Enzymes in Tobacco Seedlings. ACTA ACUST UNITED AC 2012. [DOI: 10.3923/ajbmb.2013.81.90] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
45
|
Theerakulp P, Gunnula W. Exogenous Sorbitol and Trehalose Mitigated Salt Stress Damage in Salt-sensitive but not Salt-tolerant Rice Seedlings. ACTA ACUST UNITED AC 2012. [DOI: 10.3923/ajcs.2012.165.170] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
46
|
Ben Dkhil B, Denden M. Effect of Salt Stress on Growth, Anthocyanins, Membrane Permeability and Chlorophyll Fluorescence of Okra (Abelmoschus esculentus L.) Seedlings. ACTA ACUST UNITED AC 2012. [DOI: 10.3923/ajpp.2012.174.183] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
47
|
Al-Bahrany AM, Al-Khayri JM. In vitro Responses of Date Palm Cell Suspensions under Osmotic Stress Induced by Sodium, Potassium and Calcium Salts at Different Exposure Durations. ACTA ACUST UNITED AC 2012. [DOI: 10.3923/ajpp.2012.120.134] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
48
|
Morais MC, Panuccio MR, Muscolo A, Freitas H. Salt tolerance traits increase the invasive success of Acacia longifolia in Portuguese coastal dunes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 55:60-5. [PMID: 22543107 DOI: 10.1016/j.plaphy.2012.03.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 03/21/2012] [Indexed: 05/15/2023]
Abstract
Salt tolerance of two co-occurring legumes in coastal areas of Portugal, a native species--Ulex europaeus, and an invasive species--Acacia longifolia, was evaluated in relation to plant growth, ion content and antioxidant enzyme activities. Plants were submitted to four concentrations of NaCl (0, 50, 100 and 200 mM) for three months, under controlled conditions. The results showed that NaCl affects the growth of both species in different ways. Salt stress significantly reduced the plant height and the dry weight in Acacia longifolia whereas in U. europaeus the effect was not significant. Under salt stress, the root:shoot ratio (W(R):W(S)) and root mass ratio (W(R):W(RS)) increased as a result of increasing salinity in A. longifolia but the same was not observed in U. europaeus. In addition, salt stress caused a significant accumulation of Na+, especially in U. europaeus, and a decrease in K+ content and K+/Na+ ratio. The activities of antioxidant enzymes were higher in A. longifolia compared to U. europaeus. In A. longifolia, catalase (CAT, EC 1.11.1.6) and glutathione reductase (GR, EC 1.6.4.2.) activities increased significantly, while ascorbate peroxidase (APX, EC 1.11.1.11) and peroxidase (POX, EC 1.11.1.7) activities remained unchanged in comparison with the control. In U. europaeus, NaCl concentration significantly reduced APX activity but did not significantly affect CAT, GR and POX activities. Our results suggest that the invasive species copes better with salinity stress in part due to a higher rates of CAT and GR activities and a higher K+/Na+ ratio, which may represent an additional advantage when competing with native species in co-occurring salty habitats.
Collapse
Affiliation(s)
- Maria Cristina Morais
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, P.O. Box 3046, 3001-401 Coimbra, Portugal.
| | | | | | | |
Collapse
|
49
|
Al-Enezi NA, M. Al-Khay J. Effect of X-irradiation on Proline Accumulation, Growth and Water Content of Date Palm (Phoenix dactylifera L.) Seedlings. ACTA ACUST UNITED AC 2012. [DOI: 10.3923/jbs.2012.146.153] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
50
|
Ma H, Song L, Shu Y, Wang S, Niu J, Wang Z, Yu T, Gu W, Ma H. Comparative proteomic analysis of seedling leaves of different salt tolerant soybean genotypes. J Proteomics 2012; 75:1529-46. [PMID: 22155470 DOI: 10.1016/j.jprot.2011.11.026] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 11/18/2011] [Accepted: 11/21/2011] [Indexed: 12/12/2022]
Abstract
Salinity is one of the major environmental constraints limiting yield of crop plants in many semi-arid and arid regions around the world. To understand responses in soybean seedling to salt stress at proteomic level, the extracted proteins from seedling leaves of salt-sensitive genotype Jackson and salt-tolerant genotype Lee 68 under 150 mM NaCl stress for 1, 12, 72 and 144 h, respectively, were analyzed by 2-DE. Approximately 800 protein spots were detected on 2-DE gels. Among them, 91 were found to be differently expressed, with 78 being successfully identified by MALDI-TOF-TOF. The identified proteins were involved in 14 metabolic pathways and cellular processes. Based on most of the 78 salt-responsive proteins, a salt stress-responsive protein network was proposed. This network consisted of several functional components, including balancing between ROS production and scavenging, accelerated proteolysis and reduced biosynthesis of proteins, impaired photosynthesis, abundant energy supply and enhanced biosynthesis of ethylene. Salt-tolerant genotype Lee 68 possessed the ability of higher ROS scavenging, more abundant energy supply and ethylene production, and stronger photosynthesis than salt-sensitive genotype Jackson under salt stress, which may be the major reasons why it is more salt-tolerant than Jackson.
Collapse
Affiliation(s)
- Hongyu Ma
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|