1
|
Lykkesfeldt J, Carr AC. Vitamin C - a scoping review for Nordic Nutrition Recommendations 2023. Food Nutr Res 2023; 67:10300. [PMID: 38187788 PMCID: PMC10770653 DOI: 10.29219/fnr.v67.10300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/29/2022] [Accepted: 10/16/2023] [Indexed: 01/09/2024] Open
Abstract
Vitamin C has multiple metabolic functions in the body, but the available information on the exact relationship between these functions and the intake necessary to maintain them is very limited. However, most attempts to objectively measure adequacy of vitamin C status, including, for example, replacement of metabolic turnover, chronic disease prevention, urinary excretion, and saturation of immune cells and body compartment, currently point toward 50 µmol/L as a reasonable target plasma concentration. As a strong correlation between body weight and vitamin C status exists, recommended intakes (RIs) for other age groups may be extrapolated from the adult RI based on weight. However, as body weights above 70 kg are becoming increasingly common - also in the Nordic region - an RI of 140 mg/day for individuals weighing 100 kg or more should be considered to compensate for the larger volume of distribution. Finally, smoking continues to be a common contributor to poor vitamin C status; therefore, it is proposed that people who smoke increase their daily vitamin C intake by 40 mg/day to compensate for the increased metabolic turnover induced by smoking.
Collapse
Affiliation(s)
- Jens Lykkesfeldt
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anitra C. Carr
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| |
Collapse
|
2
|
Jia J, Zhang J, He Q, Wang M, Liu Q, Wang T, Chen X, Wang W, Xu H. Association between dietary vitamin C and abdominal aortic calcification among the US adults. Nutr J 2023; 22:58. [PMID: 37964312 PMCID: PMC10647183 DOI: 10.1186/s12937-023-00889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 10/30/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) is the leading cause of mortality, and vascular calcification has been highly correlated with CVD events. Abdominal aortic calcification (AAC) has been shown to predict subclinical CVD and incident CVD events. However, the relationship between vitamin C and abdominal aortic calcification remains unclear. OBJECTIVE To investigate the relationship of dietary vitamin C with AAC among the adult population in the US. METHODS The National Health and Nutrition Examination Survey (NHANES) 2013-2014 provided the data for the cross-sectional study. 2297 subjects (1089 males) were included in the study. Two scoring systems, AAC 24-point scale (Kauppila) and AAC 8-point scale (Schousboe), were used for the measurement of AAC score. Dietary vitamin C intake was calculated as the average of two rounds of 24-h interview recall data and classified in tertiles for analysis. We applied weighted multiple regression analyses to assess the relationship of dietary vitamin C with AAC score and the risk of having AAC. To ensure the robustness of the findings, subgroup and sensitivity analyses were performed. Additionally, smooth curve fittings, using generalized additive models (GAM) were employed to visualize potential nonlinear relationships. Furthermore, an exploratory analysis on the relationship of vitamin C supplements with AAC was also conducted. RESULTS The results showed that higher dietary vitamin C intake was related to a reduction in AAC score (AAC-24: β = -0.338, 95% confidence interval [CI] -0.565, -0.111, P = 0.004; AAC-8: β = -0.132, 95%CI -0.217, -0.047, P = 0.002), and lower risk of AAC (odds ratio [OR] = 0.807, 95%CI 0.659, 0.989, P = 0.038). However, the relationship of vitamin C supplements with AAC was not identified. CONCLUSIONS The study revealed that higher intake of dietary vitamin C rather than vitamin C supplements was related to reduced AAC score and lower risk of AAC, indicating that diets rich in vitamin C are recommended due to its potential benefits for protecting against vascular calcification and CVD among the adult population in the US.
Collapse
Affiliation(s)
- Jundi Jia
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Zhang
- National Integrated Traditional and Western Medicine Center for Cardiovascular Disease, China-Japan Friendship Hospital, Beijing, China
| | - Qiao He
- Clinical Epidemiology and Evidence-Based Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Mingqi Wang
- Clinical Epidemiology and Evidence-Based Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qiyu Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongxin Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Academy of Chinese Medical Sciences, Beijing, China
| | - Xuanye Chen
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Academy of Chinese Medical Sciences, Beijing, China
| | - Wen Wang
- Clinical Epidemiology and Evidence-Based Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Hao Xu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
3
|
Phadke I, Pouzolles M, Machado A, Moraly J, Gonzalez-Menendez P, Zimmermann VS, Kinet S, Levine M, Violet PC, Taylor N. Vitamin C deficiency reveals developmental differences between neonatal and adult hematopoiesis. Front Immunol 2022; 13:898827. [PMID: 36248829 PMCID: PMC9562198 DOI: 10.3389/fimmu.2022.898827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/02/2022] [Indexed: 11/25/2022] Open
Abstract
Hematopoiesis, a process that results in the differentiation of all blood lineages, is essential throughout life. The production of 1x1012 blood cells per day, including 200x109 erythrocytes, is highly dependent on nutrient consumption. Notably though, the relative requirements for micronutrients during the perinatal period, a critical developmental window for immune cell and erythrocyte differentiation, have not been extensively studied. More specifically, the impact of the vitamin C/ascorbate micronutrient on perinatal as compared to adult hematopoiesis has been difficult to assess in animal models. Even though humans cannot synthesize ascorbate, due to a pseudogenization of the L-gulono-γ-lactone oxidase (GULO) gene, its generation from glucose is an ancestral mammalian trait. Taking advantage of a Gulo-/- mouse model, we show that ascorbic acid deficiency profoundly impacts perinatal hematopoiesis, resulting in a hypocellular bone marrow (BM) with a significant reduction in hematopoietic stem cells, multipotent progenitors, and hematopoietic progenitors. Furthermore, myeloid progenitors exhibited differential sensitivity to vitamin C levels; common myeloid progenitors and megakaryocyte-erythrocyte progenitors were markedly reduced in Gulo-/- pups following vitamin C depletion in the dams, whereas granulocyte-myeloid progenitors were spared, and their frequency was even augmented. Notably, hematopoietic cell subsets were rescued by vitamin C repletion. Consistent with these data, peripheral myeloid cells were maintained in ascorbate-deficient Gulo-/- pups while other lineage-committed hematopoietic cells were decreased. A reduction in B cell numbers was associated with a significantly reduced humoral immune response in ascorbate-depleted Gulo-/- pups but not adult mice. Erythropoiesis was particularly sensitive to vitamin C deprivation during both the perinatal and adult periods, with ascorbate-deficient Gulo-/- pups as well as adult mice exhibiting compensatory splenic differentiation. Furthermore, in the pathological context of hemolytic anemia, vitamin C-deficient adult Gulo-/- mice were not able to sufficiently increase their erythropoietic activity, resulting in a sustained anemia. Thus, vitamin C plays a pivotal role in the maintenance and differentiation of hematopoietic progenitors during the neonatal period and is required throughout life to sustain erythroid differentiation under stress conditions.
Collapse
Affiliation(s)
- Ira Phadke
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Marie Pouzolles
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Alice Machado
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Josquin Moraly
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Pedro Gonzalez-Menendez
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Valérie S. Zimmermann
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Sandrina Kinet
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Mark Levine
- Molecular and Clinical Nutrition Section, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Mark Levine, ; Pierre-Christian Violet, ; Naomi Taylor,
| | - Pierre-Christian Violet
- Molecular and Clinical Nutrition Section, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Mark Levine, ; Pierre-Christian Violet, ; Naomi Taylor,
| | - Naomi Taylor
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- *Correspondence: Mark Levine, ; Pierre-Christian Violet, ; Naomi Taylor,
| |
Collapse
|
4
|
Albracht SP. Hypothesis: mutual dependency of ascorbate and calcidiol for optimal performance of the immune system. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
5
|
Coker SJ, Smith-Díaz CC, Dyson RM, Vissers MCM, Berry MJ. The Epigenetic Role of Vitamin C in Neurodevelopment. Int J Mol Sci 2022; 23:ijms23031208. [PMID: 35163133 PMCID: PMC8836017 DOI: 10.3390/ijms23031208] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 02/07/2023] Open
Abstract
The maternal diet during pregnancy is a key determinant of offspring health. Early studies have linked poor maternal nutrition during gestation with a propensity for the development of chronic conditions in offspring. These conditions include cardiovascular disease, type 2 diabetes and even compromised mental health. While multiple factors may contribute to these outcomes, disturbed epigenetic programming during early development is one potential biological mechanism. The epigenome is programmed primarily in utero, and during this time, the developing fetus is highly susceptible to environmental factors such as nutritional insults. During neurodevelopment, epigenetic programming coordinates the formation of primitive central nervous system structures, neurogenesis, and neuroplasticity. Dysregulated epigenetic programming has been implicated in the aetiology of several neurodevelopmental disorders such as Tatton-Brown-Rahman syndrome. Accordingly, there is great interest in determining how maternal nutrient availability in pregnancy might affect the epigenetic status of offspring, and how such influences may present phenotypically. In recent years, a number of epigenetic enzymes that are active during embryonic development have been found to require vitamin C as a cofactor. These enzymes include the ten-eleven translocation methylcytosine dioxygenases (TETs) and the Jumonji C domain-containing histone lysine demethylases that catalyse the oxidative removal of methyl groups on cytosines and histone lysine residues, respectively. These enzymes are integral to epigenetic regulation and have fundamental roles in cellular differentiation, the maintenance of pluripotency and development. The dependence of these enzymes on vitamin C for optimal catalytic activity illustrates a potentially critical contribution of the nutrient during mammalian development. These insights also highlight a potential risk associated with vitamin C insufficiency during pregnancy. The link between vitamin C insufficiency and development is particularly apparent in the context of neurodevelopment and high vitamin C concentrations in the brain are indicative of important functional requirements in this organ. Accordingly, this review considers the evidence for the potential impact of maternal vitamin C status on neurodevelopmental epigenetics.
Collapse
Affiliation(s)
- Sharna J. Coker
- Perinatal & Developmental Physiology Group, Department of Paediatrics & Child Health, University of Otago, Wellington 6242, New Zealand; (S.J.C.); (R.M.D.)
| | - Carlos C. Smith-Díaz
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand;
| | - Rebecca M. Dyson
- Perinatal & Developmental Physiology Group, Department of Paediatrics & Child Health, University of Otago, Wellington 6242, New Zealand; (S.J.C.); (R.M.D.)
| | - Margreet C. M. Vissers
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand;
- Correspondence: (M.C.M.V.); (M.J.B.)
| | - Mary J. Berry
- Perinatal & Developmental Physiology Group, Department of Paediatrics & Child Health, University of Otago, Wellington 6242, New Zealand; (S.J.C.); (R.M.D.)
- Correspondence: (M.C.M.V.); (M.J.B.)
| |
Collapse
|
6
|
Aumailley L, Bourassa S, Gotti C, Droit A, Lebel M. Vitamin C Differentially Impacts the Serum Proteome Profile in Female and Male Mice. J Proteome Res 2021; 20:5036-5053. [PMID: 34643398 DOI: 10.1021/acs.jproteome.1c00542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A suboptimal blood vitamin C (ascorbate) level increases the risk of several chronic diseases. However, the detection of hypovitaminosis C is not a simple task, as ascorbate is unstable in blood samples. In this study, we examined the serum proteome of mice lacking the gulonolactone oxidase (Gulo) required for the ascorbate biosynthesis. Gulo-/- mice were supplemented with different concentrations of ascorbate in drinking water, and serum was collected to identify proteins correlating with serum ascorbate levels using an unbiased label-free liquid chromatography-tandem mass spectrometry global quantitative proteomic approach. Parallel reaction monitoring was performed to validate the correlations. We uncovered that the serum proteome profiles differ significantly between male and female mice. Also, unlike Gulo-/- males, a four-week ascorbate treatment did not entirely re-establish the serum proteome profile of ascorbate-deficient Gulo-/- females to the optimal profile exhibited by Gulo-/- females that never experienced an ascorbate deficiency. Finally, the serum proteins involved in retinoid metabolism, cholesterol, and lipid transport were similarly affected by ascorbate levels in males and females. In contrast, the proteins regulating serum peptidases and the protein of the acute phase response were different between males and females. These proteins are potential biomarkers correlating with blood ascorbate levels and require further study in standard clinical settings. The complete proteomics data set generated in this study has been deposited to the public repository ProteomeXchange with the data set identifier: PXD027019.
Collapse
Affiliation(s)
- Lucie Aumailley
- Centre de recherche du CHU de Québec, Faculty of Medicine, Université Laval, Québec City, Québec G1 V 4G2, Canada
| | - Sylvie Bourassa
- Proteomics Platform, Centre de recherche du CHU de Québec, Faculty of Medicine, Université Laval, Québec City, Québec G1 V 4G2, Canada
| | - Clarisse Gotti
- Proteomics Platform, Centre de recherche du CHU de Québec, Faculty of Medicine, Université Laval, Québec City, Québec G1 V 4G2, Canada
| | - Arnaud Droit
- Centre de recherche du CHU de Québec, Faculty of Medicine, Université Laval, Québec City, Québec G1 V 4G2, Canada.,Proteomics Platform, Centre de recherche du CHU de Québec, Faculty of Medicine, Université Laval, Québec City, Québec G1 V 4G2, Canada
| | - Michel Lebel
- Centre de recherche du CHU de Québec, Faculty of Medicine, Université Laval, Québec City, Québec G1 V 4G2, Canada
| |
Collapse
|
7
|
Wang L, Song C, Wang N, Li S, Liu Q, Sun Z, Wang K, Yu SC, Yang Q. NADP modulates RNA m 6A methylation and adipogenesis via enhancing FTO activity. Nat Chem Biol 2020; 16:1394-1402. [PMID: 32719557 DOI: 10.1038/s41589-020-0601-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/11/2020] [Accepted: 06/24/2020] [Indexed: 12/28/2022]
Abstract
Metabolism is often regulated by the transcription and translation of RNA. In turn, it is likely that some metabolites regulate enzymes controlling reversible RNA modification, such as N6-methyladenosine (m6A), to modulate RNA. This hypothesis is at least partially supported by the findings that multiple metabolic diseases are highly associated with fat mass and obesity-associated protein (FTO), an m6A demethylase. However, knowledge about whether and which metabolites directly regulate m6A remains elusive. Here, we show that NADP directly binds FTO, independently increases FTO activity, and promotes RNA m6A demethylation and adipogenesis. We screened a set of metabolites using a fluorescence quenching assay and NADP was identified to remarkably bind FTO. In vitro demethylation assays indicated that NADP enhances FTO activity. Furthermore, NADP regulated mRNA m6A via FTO in vivo, and deletion of FTO blocked NADP-enhanced adipogenesis in 3T3-L1 preadipocytes. These results build a direct link between metabolism and RNA m6A demethylation.
Collapse
MESH Headings
- 3T3-L1 Cells
- Adenosine/analogs & derivatives
- Adenosine/metabolism
- Adipocytes/cytology
- Adipocytes/drug effects
- Adipocytes/enzymology
- Adipogenesis/drug effects
- Adipogenesis/genetics
- AlkB Homolog 5, RNA Demethylase/antagonists & inhibitors
- AlkB Homolog 5, RNA Demethylase/genetics
- AlkB Homolog 5, RNA Demethylase/metabolism
- Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics
- Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism
- Animals
- Binding Sites
- Cell Differentiation/drug effects
- Demethylation
- Enzyme Assays
- Gene Deletion
- Gene Expression Regulation
- HEK293 Cells
- High-Throughput Screening Assays
- Humans
- Kinetics
- Methyltransferases/antagonists & inhibitors
- Methyltransferases/genetics
- Methyltransferases/metabolism
- Mice
- Mice, Inbred C57BL
- Models, Molecular
- NADP/metabolism
- NADP/pharmacology
- Protein Binding
- Protein Structure, Secondary
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
Collapse
Affiliation(s)
- Lina Wang
- Institute of Cancer Stem Cell, DaLian Medical University, Dalian, Liaoning, China
| | - Chengli Song
- Institute of Cancer Stem Cell, DaLian Medical University, Dalian, Liaoning, China
| | - Na Wang
- Institute of Cancer Stem Cell, DaLian Medical University, Dalian, Liaoning, China
| | - Songyu Li
- Institute of Cancer Stem Cell, DaLian Medical University, Dalian, Liaoning, China
| | - Qiaoling Liu
- Institute of Cancer Stem Cell, DaLian Medical University, Dalian, Liaoning, China
| | - Zhen Sun
- Institute of Cancer Stem Cell, DaLian Medical University, Dalian, Liaoning, China
| | - Kai Wang
- Institute of Cancer Stem Cell, DaLian Medical University, Dalian, Liaoning, China
| | - Shi-Cang Yu
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Qingkai Yang
- Institute of Cancer Stem Cell, DaLian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
8
|
Mousavi S, Escher U, Thunhorst E, Kittler S, Kehrenberg C, Bereswill S, Heimesaat MM. Vitamin C alleviates acute enterocolitis in Campylobacter jejuni infected mice. Sci Rep 2020; 10:2921. [PMID: 32076081 PMCID: PMC7031283 DOI: 10.1038/s41598-020-59890-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 02/03/2020] [Indexed: 11/12/2022] Open
Abstract
Human foodborne infections with the zoonotic pathogen Campylobacter jejuni are on the rise and constitute a significant socioeconomic burden worldwide. The health-beneficial, particularly anti-inflammatory effects of vitamin C (ascorbate) are well known. In our preclinical intervention study, we assessed potential anti-pathogenic and immunomodulatory effects of ascorbate in C. jejuni-infected secondary abiotic IL-10-/- mice developing acute campylobacteriosis similar to humans. Starting 4 days prior peroral C. jejuni-infection, mice received synthetic ascorbate via the drinking water until the end of the experiment. At day 6 post-infection, ascorbate-treated mice harbored slightly lower colonic pathogen loads and suffered from less severe C. jejuni-induced enterocolitis as compared to placebo control animals. Ascorbate treatment did not only alleviate macroscopic sequelae of infection, but also dampened apoptotic and inflammatory immune cell responses in the intestines that were accompanied by less pronounced pro-inflammatory cytokine secretion. Remarkably, the anti-inflammatory effects of ascorbate pretreatment in C. jejuni-infected mice were not restricted to the intestinal tract but could also be observed in extra-intestinal compartments including liver, kidneys and lungs. In conclusion, due to the potent anti-inflammatory effects observed in the clinical murine C. jejuni-infection model, ascorbate constitutes a promising novel option for prophylaxis and treatment of acute campylobacteriosis.
Collapse
Affiliation(s)
- Soraya Mousavi
- Institute for Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ulrike Escher
- Institute for Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Elisa Thunhorst
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Sophie Kittler
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Corinna Kehrenberg
- Institute for Veterinary Food Science, Justus-Liebig-University, Giessen, Germany
| | - Stefan Bereswill
- Institute for Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Markus M Heimesaat
- Institute for Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
9
|
Pro- and Antioxidant Effects of Vitamin C in Cancer in correspondence to Its Dietary and Pharmacological Concentrations. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7286737. [PMID: 31934267 PMCID: PMC6942884 DOI: 10.1155/2019/7286737] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022]
Abstract
Vitamin C is an antioxidant that may scavenge reactive oxygen species preventing DNA damage and other effects important in cancer transformation. Dietary vitamin C from natural sources is taken with other compounds affecting its bioavailability and biological effects. High pharmacological doses of vitamin C may induce prooxidant effects, detrimental for cancer cells. An oxidized form of vitamin C, dehydroascorbate, is transported through glucose transporters, and cancer cells switch from oxidative phosphorylation to glycolysis in energy production so an excess of vitamin C may limit glucose transport and ATP production resulting in energetic crisis and cell death. Vitamin C may change the metabolomic and epigenetic profiles of cancer cells, and activation of ten-eleven translocation (TET) proteins and downregulation of pluripotency factors by the vitamin may eradicate cancer stem cells. Metastasis, the main reason of cancer-related deaths, requires breakage of anatomical barriers containing collagen, whose synthesis is promoted by vitamin C. Vitamin C induces degradation of hypoxia-inducible factor, HIF-1, essential for the survival of tumor cells in hypoxic conditions. Dietary vitamin C may stimulate the immune system through activation of NK and T cells and monocytes. Pharmacological doses of vitamin C may inhibit cancer transformation in several pathways, but further studies are needed to address both mechanistic and clinical aspects of this effect.
Collapse
|
10
|
Kumar R, Mohammad A, Saini RV, Chahal A, Wong CM, Sharma D, Kaur S, Kumar V, Winterbourn CC, Saini AK. Deciphering the in vivo redox behavior of human peroxiredoxins I and II by expressing in budding yeast. Free Radic Biol Med 2019; 145:321-329. [PMID: 31580947 DOI: 10.1016/j.freeradbiomed.2019.09.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 01/18/2019] [Accepted: 09/27/2019] [Indexed: 01/06/2023]
Abstract
Peroxiredoxins (Prxs), scavenge cellular peroxides by forming recyclable disulfides but under high oxidative stress, hyperoxidation of their active-site Cys residue results in loss of their peroxidase activity. Saccharomyces cerevisiae deficient in human Prx (hPrx) orthologue TSA1 show growth defects under oxidative stress. They can be complemented with hPRXI but not by hPRXII, but it is not clear how the disulfide and hyperoxidation states of the hPrx vary in yeast under oxidative stress. To understand this, we used oxidative-stress sensitive tsa1tsa2Δ yeast strain to express hPRXI or hPRXII. We found that hPrxI in yeast exists as a mixture of disulfide-linked dimer and reduced monomer but becomes hyperoxidized upon elevated oxidative stress as analyzed under denaturing conditions (SDS-PAGE). In contrast, hPrxII was present predominantly as the disulfide in unstressed cells and readily converted to its hyperoxidized, peroxidase-inactive form even with mild oxidative stress. Interestingly, we found that plant extracts containing polyphenol antioxidants provided further protection against the growth defects of the tsa1tsa2Δ strain expressing hPrx and preserved the peroxidase-active forms of the Prxs. The extracts also helped to protect against hyperoxidation of hPrxs in HeLa cells. Based on these findings we can conclude that resistance to oxidative stress of yeast cells expressing individual hPrxs requires the hPrx to be maintained in a redox state that permits redox cycling and peroxidase activity. Peroxidase activity decreases as the hPrx becomes hyperoxidized and the limited protection by hPrxII compared with hPrxI can be explained by its greater sensitivity to hyperoxidation.
Collapse
Affiliation(s)
- Rakesh Kumar
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, India
| | - Ashu Mohammad
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, India
| | - Reena V Saini
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, India
| | - Anterpreet Chahal
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, India
| | - Chi-Ming Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Special Administrative Region, People's Republic of China
| | - Deepak Sharma
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Sukhvir Kaur
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, India
| | - Vikas Kumar
- Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Christine C Winterbourn
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Adesh K Saini
- Faculty of Basic Sciences Shoolini University, Solan, India.
| |
Collapse
|
11
|
Vitamin C in Plants: From Functions to Biofortification. Antioxidants (Basel) 2019; 8:antiox8110519. [PMID: 31671820 PMCID: PMC6912510 DOI: 10.3390/antiox8110519] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/25/2019] [Accepted: 10/26/2019] [Indexed: 12/18/2022] Open
Abstract
Vitamin C (l-ascorbic acid) is an excellent free radical scavenger, not only for its capability to donate reducing equivalents but also for the relative stability of the derived monodehydroascorbate radical. However, vitamin C is not only an antioxidant, since it is also a cofactor for numerous enzymes involved in plant and human metabolism. In humans, vitamin C takes part in various physiological processes, such as iron absorption, collagen synthesis, immune stimulation, and epigenetic regulation. Due to the functional loss of the gene coding for l-gulonolactone oxidase, humans cannot synthesize vitamin C; thus, they principally utilize plant-based foods for their needs. For this reason, increasing the vitamin C content of crops could have helpful effects on human health. To achieve this objective, exhaustive knowledge of the metabolism and functions of vitamin C in plants is needed. In this review, the multiple roles of vitamin C in plant physiology as well as the regulation of its content, through biosynthetic or recycling pathways, are analyzed. Finally, attention is paid to the strategies that have been used to increase the content of vitamin C in crops, emphasizing not only the improvement of nutritional value of the crops but also the acquisition of plant stress resistance.
Collapse
|
12
|
High Vitamin C Status Is Associated with Elevated Mood in Male Tertiary Students. Antioxidants (Basel) 2018; 7:antiox7070091. [PMID: 30012945 PMCID: PMC6071228 DOI: 10.3390/antiox7070091] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 02/07/2023] Open
Abstract
Micronutrient status is thought to impact on psychological mood due to the role of nutrients in brain structure and function. The aim of the current study was to investigate the association of vitamin C status with mood state in a sample of male tertiary students. We measured fasting plasma vitamin C levels as an indicator of vitamin C status, and subjective mood was determined using the Profile of Mood States (POMS) questionnaire. One hundred and thirty-nine male students aged 18 to 35 years were recruited from local tertiary institutes in Christchurch, New Zealand. The average plasma vitamin C concentration was 58.2 ± 18.6 (SD) µmol/L and the average total mood disturbance score was 25.5 ± 26.6 (possible score −32 to 200 measuring low to high mood disturbance, respectively). Plasma vitamin C concentration was inversely correlated with total mood disturbance as assessed by POMS (r = −0.181, p < 0.05). Examination of the individual POMS subscales also showed inverse associations of vitamin C status with depression, confusion, and anger. These findings suggest that high vitamin C status may be associated with improved overall mood in young adult males.
Collapse
|
13
|
Vissers MCM, Das AB. Potential Mechanisms of Action for Vitamin C in Cancer: Reviewing the Evidence. Front Physiol 2018; 9:809. [PMID: 30018566 PMCID: PMC6037948 DOI: 10.3389/fphys.2018.00809] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/08/2018] [Indexed: 12/12/2022] Open
Abstract
Whether vitamin C (ascorbate) has a role to play as an anti-cancer agent has been debated for decades. Ascorbate has been used by cancer patients in an unregulated environment, either as a dietary supplement or in pharmacological doses administered by infusion, with numerous reports of clinical benefit, but in the absence of rigorous clinical trial data. The design of appropriate clinical trials has been hindered by a lack of understanding of the mechanism(s) of action that would inform the choice of effective dose, timing of administration and likely responsive cancer models. More recently, expanded understanding of the biological activities of ascorbate has led to a number of plausible hypotheses for mechanisms of anti-cancer activity. Prominent among these are the generation of significant quantities of hydrogen peroxide by the autoxidation of supra-physiological concentrations of ascorbate and stimulation of the 2-oxoglutarate-dependent dioxygenase family of enzymes (2-OGDDs) that have a cofactor requirement for ascorbate. Hydrogen peroxide generation is postulated to generate oxidative stress that preferentially targets cancer cells. The 2-OGDDs include the hydroxylases that regulate the hypoxic response, a major driver of tumor survival, angiogenesis, stem cell phenotype and metastasis, and the epigenetic histone and DNA demethylases. The latter are of particular interest, with recent studies suggesting a promising role for ascorbate in the regulation of the ten-eleven translocase (TET) DNA demethylases in hematological cancers. Support for these proposed mechanisms has come from many in vitro studies, and xenograft animal models have consistently shown an anti-cancer effect of ascorbate administration. However, decisive evidence for any particular mechanism(s) of action is not yet available from an in vivo setting. With a number of early phase clinical trials currently underway, evidence for potential mechanism(s) of action is required to inform the most appropriate study design and choice of cancer model. Hopefully such information will result in sound clinical data that will avert adding any further controversy to this already contentious debate.
Collapse
Affiliation(s)
- Margreet C M Vissers
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, Christchurch, New Zealand
| | - Andrew B Das
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, Christchurch, New Zealand
| |
Collapse
|
14
|
Lai CW, Chen HL, Tu MY, Lin WY, Röhrig T, Yang SH, Lan YW, Chong KY, Chen CM. A novel osteoporosis model with ascorbic acid deficiency in Akr1A1 gene knockout mice. Oncotarget 2018; 8:7357-7369. [PMID: 28060768 PMCID: PMC5352327 DOI: 10.18632/oncotarget.14458] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 12/07/2016] [Indexed: 12/26/2022] Open
Abstract
The AKR1A1 protein is a member of the aldo-keto reductase superfamily that is responsible for the conversion of D-glucuronate to L-gulonate in the ascorbic acid (vitamin C) synthesis pathway. In a pCAG-eGFP transgenic mouse line that was produced by pronuclear microinjection, the integration of the transgene resulted in a 30-kb genomic DNA deletion, including the Akr1A1 gene, and thus caused the knockout (KO) of the Akr1A1 gene and targeting of the eGFP gene. The Akr1A1 KO mice (Akr1A1eGFP/eGFP) exhibited insufficient serum ascorbic acid levels, abnormal bone development and osteoporosis. Using micro-CT analysis, the results showed that the microarchitecture of the 12-week-old Akr1A1eGFP/eGFP mouse femur was shorter in length and exhibited less cortical bone thickness, enlargement of the bone marrow cavity and a complete loss of the trabecular bone in the distal femur. The femoral head and neck of the proximal femur also showed a severe loss of bone mass. Based on the decreased levels of serum osteocalcin and osteoblast activity in the Akr1A1eGFP/eGFP mice, the osteoporosis might be caused by impaired bone formation. In addition, administration of ascorbic acid to the Akr1A1eGFP/eGFP mice significantly prevented the condition of osteoporotic femurs and increased bone formation. Therefore, through ascorbic acid administration, the Akr1A1 KO mice exhibited controllable osteoporosis and may serve as a novel model for osteoporotic research.
Collapse
Affiliation(s)
- Cheng-Wei Lai
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Hsiao-Ling Chen
- Department of Bioresources, Da-Yeh University, Changhua, Taiwan
| | - Min-Yu Tu
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,Department of Orthopaedic Surgery, Taichung Armed Forces General Hospital, Taichung, Taiwan and National Defense Medical Center, Taipei, Taiwan.,Department of Biomedical Engineering, Hungkuang University, Taichung, Taiwan
| | - Wei-Yu Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Theresa Röhrig
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Shang-Hsun Yang
- Department of Physiology and Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Ying-Wei Lan
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Kowit-Yu Chong
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.,Department of Thoracic Medicine, Chang Gung Memorial Hospital at Linkou, Tao-Yuan, Taiwan
| | - Chuan-Mu Chen
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan.,Rong-Hsing Translational Medicine Center, and iEGG Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
15
|
Carr AC, Rosengrave PC, Bayer S, Chambers S, Mehrtens J, Shaw GM. Hypovitaminosis C and vitamin C deficiency in critically ill patients despite recommended enteral and parenteral intakes. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2017; 21:300. [PMID: 29228951 PMCID: PMC5725835 DOI: 10.1186/s13054-017-1891-y] [Citation(s) in RCA: 251] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/13/2017] [Indexed: 02/07/2023]
Abstract
Background Vitamin C is an essential water-soluble nutrient which cannot be synthesised or stored by humans. It is a potent antioxidant with anti-inflammatory and immune-supportive roles. Previous research has indicated that vitamin C levels are depleted in critically ill patients. In this study we have assessed plasma vitamin C concentrations in critically ill patients relative to infection status (septic shock or non-septic) and level of inflammation (C-reactive protein concentrations). Vitamin C status was also assessed relative to daily enteral and parenteral intakes to determine if standard intensive care unit (ICU) nutritional support is adequate to meet the vitamin C needs of critically ill patients. Methods Forty-four critically ill patients (24 with septic shock, 17 non-septic, 3 uncategorised) were recruited from the Christchurch Hospital Intensive Care Unit. We measured concentrations of plasma vitamin C and a pro-inflammatory biomarker (C-reactive protein) daily over 4 days and calculated patients’ daily vitamin C intake from the enteral or total parenteral nutrition they received. We compared plasma vitamin C and C-reactive protein concentrations between septic shock and non-septic patients over 4 days using a mixed effects statistical model, and we compared the vitamin C status of the critically ill patients with known vitamin C bioavailability data using a four-parameter log-logistic response model. Results Overall, the critically ill patients exhibited hypovitaminosis C (i.e., < 23 μmol/L), with a mean plasma vitamin C concentration of 17.8 ± 8.7 μmol/L; of these, one-third had vitamin C deficiency (i.e., < 11 μmol/L). Patients with hypovitaminosis C had elevated inflammation (C-reactive protein levels; P < 0.05). The patients with septic shock had lower vitamin C concentrations and higher C-reactive protein concentrations than the non-septic patients (P < 0.05). Nearly 40% of the septic shock patients were deficient in vitamin C, compared with 25% of the non-septic patients. These low vitamin C levels were apparent despite receiving recommended intakes via enteral and/or parenteral nutritional therapy (mean 125 mg/d). Conclusions Critically ill patients have low vitamin C concentrations despite receiving standard ICU nutrition. Septic shock patients have significantly depleted vitamin C levels compared with non-septic patients, likely resulting from increased metabolism due to the enhanced inflammatory response observed in septic shock.
Collapse
Affiliation(s)
- Anitra C Carr
- Department of Pathology, University of Otago, Christchurch, PO Box 4345, Christchurch, 8140, New Zealand.
| | - Patrice C Rosengrave
- Department of Pathology, University of Otago, Christchurch, PO Box 4345, Christchurch, 8140, New Zealand
| | - Simone Bayer
- Department of Pathology, University of Otago, Christchurch, PO Box 4345, Christchurch, 8140, New Zealand
| | - Steve Chambers
- Department of Pathology, University of Otago, Christchurch, PO Box 4345, Christchurch, 8140, New Zealand
| | - Jan Mehrtens
- Department of Intensive Care Medicine, Christchurch Hospital, Private Bag 4710, Christchurch, 8140, New Zealand
| | - Geoff M Shaw
- Department of Intensive Care Medicine, Christchurch Hospital, Private Bag 4710, Christchurch, 8140, New Zealand
| |
Collapse
|
16
|
Abstract
Vitamin C is an essential micronutrient for humans, with pleiotropic functions related to its ability to donate electrons. It is a potent antioxidant and a cofactor for a family of biosynthetic and gene regulatory enzymes. Vitamin C contributes to immune defense by supporting various cellular functions of both the innate and adaptive immune system. Vitamin C supports epithelial barrier function against pathogens and promotes the oxidant scavenging activity of the skin, thereby potentially protecting against environmental oxidative stress. Vitamin C accumulates in phagocytic cells, such as neutrophils, and can enhance chemotaxis, phagocytosis, generation of reactive oxygen species, and ultimately microbial killing. It is also needed for apoptosis and clearance of the spent neutrophils from sites of infection by macrophages, thereby decreasing necrosis/NETosis and potential tissue damage. The role of vitamin C in lymphocytes is less clear, but it has been shown to enhance differentiation and proliferation of B- and T-cells, likely due to its gene regulating effects. Vitamin C deficiency results in impaired immunity and higher susceptibility to infections. In turn, infections significantly impact on vitamin C levels due to enhanced inflammation and metabolic requirements. Furthermore, supplementation with vitamin C appears to be able to both prevent and treat respiratory and systemic infections. Prophylactic prevention of infection requires dietary vitamin C intakes that provide at least adequate, if not saturating plasma levels (i.e., 100–200 mg/day), which optimize cell and tissue levels. In contrast, treatment of established infections requires significantly higher (gram) doses of the vitamin to compensate for the increased inflammatory response and metabolic demand.
Collapse
|
17
|
Vitamin C Status Correlates with Markers of Metabolic and Cognitive Health in 50-Year-Olds: Findings of the CHALICE Cohort Study. Nutrients 2017; 9:nu9080831. [PMID: 28771190 PMCID: PMC5579624 DOI: 10.3390/nu9080831] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 07/27/2017] [Accepted: 07/31/2017] [Indexed: 12/20/2022] Open
Abstract
A cohort of 50-year-olds from Canterbury, New Zealand (N = 404), representative of midlife adults, undertook comprehensive health and dietary assessments. Fasting plasma vitamin C concentrations (N = 369) and dietary vitamin C intake (N = 250) were determined. The mean plasma vitamin C concentration was 44.2 µmol/L (95% CI 42.4, 46.0); 62% of the cohort had inadequate plasma vitamin C concentrations (i.e., <50 µmol/L), 13% of the cohort had hypovitaminosis C (i.e., <23 µmol/L), and 2.4% had plasma vitamin C concentrations indicating deficiency (i.e., <11 µmol/L). Men had a lower mean plasma vitamin C concentration than women, and a higher percentage of vitamin C inadequacy and deficiency. A higher prevalence of hypovitaminosis C and deficiency was observed in those of lower socio-economic status and in current smokers. Adults with higher vitamin C levels exhibited lower weight, BMI and waist circumference, and better measures of metabolic health, including HbA1c, insulin and triglycerides, all risk factors for type 2 diabetes. Lower levels of mild cognitive impairment were observed in those with the highest plasma vitamin C concentrations. Plasma vitamin C showed a stronger correlation with markers of metabolic health and cognitive impairment than dietary vitamin C.
Collapse
|
18
|
Abstract
Disturbance of cerebral redox homeostasis is the primary cause of human neurodegenerative disorders, such as Parkinson's disease or Alzheimer's disease. Well known experimental research demonstrates that oxidative stress is a main cause of cell death. A high concentration of reactive oxygen and nitrogen species leads to damage of a lot of proteins, lipids and also DNA. Synthetic compounds used for the treatment in the neurodegenerative diseases failed to meet the hopes they had raised and often exhibit a number of side effects. Therefore, in recent years interest in natural compounds derived from plants appears to be on the rise. This review describes a few natural compounds (1MeTIQ, resveratrol, curcumin, vitamin C and Gingko biloba) which revealed neuroprotective potential both in experimental studies and clinical trials. 1MeTIQ has a privileged position because, as opposed to the remaining compounds, it is an endogenous amine synthesized in human and animal brain. Based on evidence from research, it seems that a common protective mechanism for all the above-mentioned natural compounds relies on their ability to inhibit or even scavenge the excess of free radicals generated in oxidative and neurotoxin-induced processes in nerve cells of the brain. However, it was demonstrated that further different molecular processes connected with neurotoxicity (e.g. the inhibition of mitochondrial complex I, activation of caspase-3, apoptosis) follow later and are initiated by the reactive oxygen species. What is more, these natural compounds are able to inhibit further stages of apoptosis triggered by neurotoxins in the brain.
Collapse
Affiliation(s)
- Agnieszka Wąsik
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neurochemistry, Kraków, Poland.
| | | |
Collapse
|
19
|
Endoplasmic Reticulum Oxidative Stress Triggers Tgf-Beta-Dependent Muscle Dysfunction by Accelerating Ascorbic Acid Turnover. Sci Rep 2017; 7:40993. [PMID: 28106121 PMCID: PMC5247721 DOI: 10.1038/srep40993] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/13/2016] [Indexed: 02/06/2023] Open
Abstract
Endoplasmic reticulum (ER) and oxidative stress are two related phenomena that have important metabolic consequences. As many skeletal muscle diseases are triggered by oxidative stress, we explored the chain of events linking a hyperoxidized ER (which causes ER and oxidative stress) with skeletal muscle dysfunction. An unbiased exon expression array showed that the combined genetic modulation of the two master ER redox proteins, selenoprotein N (SEPN1) and endoplasmic oxidoreductin 1 (ERO1), led to an SEPN1-related myopathic phenotype due to excessive signalling of transforming growth factor (TGF)-beta. The increased TGF-beta activity in the genetic mutants was caused by accelerated turnover of the ER localized (anti-oxidant) ascorbic acid that affected collagen deposition in the extracellular matrix. In a mouse mutant of SEPN1, which is dependent on exogenous ascorbic acid, a limited intake of ascorbic acid revealed a myopathic phenotype as a consequence of an altered TGF-beta signalling. Indeed, systemic antagonism of TGF-beta re-established skeletal muscle function in SEPN1 mutant mice. In conclusion, this study sheds new light on the molecular mechanism of SEPN1-related myopathies and indicates that the TGF-beta/ERO1/ascorbic acid axis offers potential for their treatment.
Collapse
|
20
|
Campbell EJ, Vissers MCM, Wohlrab C, Hicks KO, Strother RM, Bozonet SM, Robinson BA, Dachs GU. Pharmacokinetic and anti-cancer properties of high dose ascorbate in solid tumours of ascorbate-dependent mice. Free Radic Biol Med 2016; 99:451-462. [PMID: 27567539 DOI: 10.1016/j.freeradbiomed.2016.08.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 08/23/2016] [Accepted: 08/23/2016] [Indexed: 12/18/2022]
Abstract
Despite recent evidence for an anti-tumour role for high-dose ascorbate, potential mechanisms of action are still unclear. At mM concentrations that are achieved with high-dose intravenous administration, autoxidation of ascorbate can generate cytotoxic levels of H2O2. Ascorbate is also a required co-factor for the hydroxylases that suppress the transcription factor hypoxia-inducible factor (HIF-1). HIF-1 supports an aggressive tumour phenotype and is associated with poor prognosis, and previous studies have shown that optimizing intracellular ascorbate levels down-regulates HIF-1 activation. In this study we have simultaneously measured ascorbate concentrations and the HIF-1 pathway activity in tumour tissue following high dose ascorbate administration, and have studied tumour growth and physiology. Gulo-/- mice, a model of the human ascorbate dependency condition, were implanted with syngeneic Lewis lung tumours, 1g/kg ascorbate was administered into the peritoneum, and ascorbate concentrations were monitored in plasma, liver and tumours. Ascorbate levels peaked within 30min, and although plasma and liver ascorbate returned to baseline within 16h, tumour levels remained elevated for 48h, possibly reflecting increased stability in the hypoxic tumour environment. The expression of HIF-1 and its target proteins was down-regulated with tumour ascorbate uptake. Elevated tumour ascorbate levels could be maintained with daily administration, and HIF-1 and vascular endothelial growth factor protein levels were reduced in these conditions. Increased tumour ascorbate was associated with slowed tumour growth, reduced tumour microvessel density and decreased hypoxia. Alternate day administration of ascorbate resulted in lower tumour levels and did not consistently decrease HIF-1 pathway activity. Levels of sodium-dependent vitamin C transporters 1 and 2 were not clearly associated with ascorbate accumulation by murine tumour cells in vitro or in vivo. Our results support the suppression of the hypoxic response by ascorbate as a plausible mechanism of action of its anti-tumour activity, and this may be useful in a clinical setting.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/blood
- Antineoplastic Agents/pharmacokinetics
- Antineoplastic Agents/pharmacology
- Antioxidants/metabolism
- Antioxidants/pharmacokinetics
- Antioxidants/pharmacology
- Ascorbic Acid/blood
- Ascorbic Acid/pharmacokinetics
- Ascorbic Acid/pharmacology
- Carcinoma, Lewis Lung/drug therapy
- Carcinoma, Lewis Lung/genetics
- Carcinoma, Lewis Lung/metabolism
- Carcinoma, Lewis Lung/pathology
- Drug Administration Schedule
- Female
- Gene Expression Regulation, Neoplastic
- Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Injections, Intraperitoneal
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Mice
- Mice, Knockout
- Signal Transduction
- Sodium-Coupled Vitamin C Transporters/genetics
- Sodium-Coupled Vitamin C Transporters/metabolism
- Vascular Endothelial Growth Factor A/antagonists & inhibitors
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Elizabeth J Campbell
- Mackenzie Cancer Research Group, Department of Pathology, University of Otago, Christchurch 8011, New Zealand
| | - Margreet C M Vissers
- Centre for Free Radical Research, Department of Pathology, University of Otago, Christchurch 8011, New Zealand
| | - Christina Wohlrab
- Mackenzie Cancer Research Group, Department of Pathology, University of Otago, Christchurch 8011, New Zealand
| | - Kevin O Hicks
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1142, New Zealand
| | - R Matthew Strother
- Canterbury Regional Cancer and Haematology Service, Canterbury District Health Board, Christchurch 8011, New Zealand
| | - Stephanie M Bozonet
- Centre for Free Radical Research, Department of Pathology, University of Otago, Christchurch 8011, New Zealand
| | - Bridget A Robinson
- Mackenzie Cancer Research Group, Department of Pathology, University of Otago, Christchurch 8011, New Zealand; Canterbury Regional Cancer and Haematology Service, Canterbury District Health Board, Christchurch 8011, New Zealand; Department of Medicine, University of Otago, Christchurch 8011, New Zealand
| | - Gabi U Dachs
- Mackenzie Cancer Research Group, Department of Pathology, University of Otago, Christchurch 8011, New Zealand.
| |
Collapse
|
21
|
Camarena V, Wang G. The epigenetic role of vitamin C in health and disease. Cell Mol Life Sci 2016; 73:1645-58. [PMID: 26846695 PMCID: PMC4805483 DOI: 10.1007/s00018-016-2145-x] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 12/28/2015] [Accepted: 01/21/2016] [Indexed: 12/20/2022]
Abstract
Recent advances have uncovered a previously unknown function of vitamin C in epigenetic regulation. Vitamin C exists predominantly as an ascorbate anion under physiological pH conditions. Ascorbate was discovered as a cofactor for methylcytosine dioxygenases that are responsible for DNA demethylation, and also as a likely cofactor for some JmjC domain-containing histone demethylases that catalyze histone demethylation. Variation in ascorbate bioavailability thus can influence the demethylation of both DNA and histone, further leading to different phenotypic presentations. Ascorbate deficiency can be presented systematically, spatially and temporally in different tissues at the different stages of development and aging. Here, we review how ascorbate deficiency could potentially be involved in embryonic and postnatal development, and plays a role in various diseases such as neurodegeneration and cancer through epigenetic dysregulation.
Collapse
Affiliation(s)
- Vladimir Camarena
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Biomedical Research Building, Rm. 608, 1501 NW 10th Ave, Miami, FL, 33136, USA
| | - Gaofeng Wang
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Biomedical Research Building, Rm. 608, 1501 NW 10th Ave, Miami, FL, 33136, USA.
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
22
|
Carr AC, Shaw GM, Fowler AA, Natarajan R. Ascorbate-dependent vasopressor synthesis: a rationale for vitamin C administration in severe sepsis and septic shock? CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:418. [PMID: 26612352 PMCID: PMC4661979 DOI: 10.1186/s13054-015-1131-2] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Severe systemic inflammatory response to infection results in severe sepsis and septic shock, which are the leading causes of death in critically ill patients. Septic shock is characterised by refractory hypotension and is typically managed by fluid resuscitation and administration of catecholamine vasopressors such as norepinephrine. Vasopressin can also be administered to raise mean arterial pressure or decrease the norepinephrine dose. Endogenous norepinephrine and vasopressin are synthesised by the copper-containing enzymes dopamine β-hydroxylase and peptidylglycine α-amidating monooxygenase, respectively. Both of these enzymes require ascorbate as a cofactor for optimal activity. Patients with severe sepsis present with hypovitaminosis C, and pre-clinical and clinical studies have indicated that administration of high-dose ascorbate decreases the levels of pro-inflammatory biomarkers, attenuates organ dysfunction and improves haemodynamic parameters. It is conceivable that administration of ascorbate to septic patients with hypovitaminosis C could improve endogenous vasopressor synthesis and thus ameliorate the requirement for exogenously administered vasopressors. Ascorbate-dependent vasopressor synthesis represents a currently underexplored biochemical mechanism by which ascorbate could act as an adjuvant therapy for severe sepsis and septic shock.
Collapse
Affiliation(s)
- Anitra C Carr
- Department of Pathology, University of Otago, Christchurch, PO Box 4345, Christchurch, 8140, New Zealand.
| | - Geoffrey M Shaw
- Department of Intensive Care Medicine, Christchurch Hospital, Private Bag 4710, Christchurch, 8011, New Zealand.
| | - Alpha A Fowler
- Division of Pulmonary Disease and Critical Care Medicine, Department of Internal Medicine, School of Medicine, Virginia Commonwealth University, Box 980050, Richmond, VA, 23298, USA.
| | - Ramesh Natarajan
- Division of Pulmonary Disease and Critical Care Medicine, Department of Internal Medicine, School of Medicine, Virginia Commonwealth University, Box 980050, Richmond, VA, 23298, USA.
| |
Collapse
|
23
|
Yu SJ, Bae S, Kang JS, Yoon JH, Cho EJ, Lee JH, Kim YJ, Lee WJ, Kim CY, Lee HS. Hepatoprotective effect of vitamin C on lithocholic acid-induced cholestatic liver injury in Gulo(−/−) mice. Eur J Pharmacol 2015; 762:247-55. [DOI: 10.1016/j.ejphar.2015.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 06/01/2015] [Accepted: 06/02/2015] [Indexed: 12/21/2022]
|
24
|
Mohammed BM, Fisher BJ, Kraskauskas D, Ward S, Wayne JS, Brophy DF, Fowler AA, Yager DR, Natarajan R. Vitamin C promotes wound healing through novel pleiotropic mechanisms. Int Wound J 2015; 13:572-84. [PMID: 26290474 DOI: 10.1111/iwj.12484] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 05/27/2015] [Accepted: 07/14/2015] [Indexed: 01/11/2023] Open
Abstract
Vitamin C (VitC) or ascorbic acid (AscA), a cofactor for collagen synthesis and a primary antioxidant, is rapidly consumed post-wounding. Parenteral VitC administration suppresses pro-inflammatory responses while promoting anti-inflammatory and pro-resolution effects in human/murine sepsis. We hypothesised that VitC could promote wound healing by altering the inflammatory, proliferative and remodelling phases of wound healing. Mice unable to synthesise VitC (Gulo(-/-) ) were used in this study. VitC was provided in the water (sufficient), withheld from another group (deficient) and supplemented by daily intra-peritoneal infusion (200 mg/kg, deficient + AscA) in a third group. Full thickness excisional wounds (6 mm) were created and tissue collected on days 7 and 14 for histology, quantitative polymerase chain reaction (qPCR) and Western blotting. Human neonatal dermal fibroblasts (HnDFs) were used to assess effects of In conclusion, VitC favorably on proliferation. Histological analysis showed improved wound matrix deposition and organisation in sufficient and deficient +AscA mice. Wounds from VitC sufficient and deficient + AscA mice had reduced expression of pro-inflammatory mediators and higher expression of wound healing mediators. Supplementation of HnDF with AscA induced the expression of self-renewal genes and promoted fibroblast proliferation. VitC favourably impacts the spatiotemporal expression of transcripts associated with early resolution of inflammation and tissue remodelling.
Collapse
Affiliation(s)
- Bassem M Mohammed
- Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University, Richmond, VA, USA.,Department of Clinical Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Bernard J Fisher
- Division of Pulmonary Disease and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Donatas Kraskauskas
- Division of Pulmonary Disease and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Susan Ward
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Virginia Commonwealth University, Richmond, VA, USA
| | - Jennifer S Wayne
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Donald F Brophy
- Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Alpha A Fowler
- Division of Pulmonary Disease and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Dorne R Yager
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Virginia Commonwealth University, Richmond, VA, USA
| | - Ramesh Natarajan
- Division of Pulmonary Disease and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
25
|
Chen L, Tai WC, Hsiao WW. Dietary saponins from four popular herbal tea exert prebiotic-like effects on gut microbiota in C57BL/6 mice. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.06.050] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
26
|
Muñoz A, Villagrán M, Guzmán P, Solíz C, Gatica M, Aylwin C, Sweet K, Maldonado M, Escobar E, Reyes AM, Toledo JR, Sánchez O, Oñate SA, Carlos Vera J, Rivas CI. Cis-regulatory elements involved in species-specific transcriptional regulation of the SVCT1 gene in rat and human hepatoma cells. Free Radic Biol Med 2015; 85:183-96. [PMID: 25933589 DOI: 10.1016/j.freeradbiomed.2015.04.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/09/2015] [Accepted: 04/20/2015] [Indexed: 01/06/2023]
Abstract
Ascorbic acid is transported into cells by the sodium-coupled vitamin C transporters (SVCTs). Recently, we obtained evidence of differential regulation of SVCT expression in response to acute oxidative stress in cells from species that differ in their capacity to synthesize vitamin C, with a marked decrease in SVCT1 mRNA and protein levels in rat hepatoma cells that was not observed in human hepatoma cells. To better understand the regulatory aspects involved, we performed a structural and functional analysis of the proximal promoter of the SVCT1 rat gene. We cloned a 1476-bp segment containing the proximal promoter of the rat SVCT1 gene and generated deletion-derived truncated promoters of decreasing sizes and mutant promoters by modification of consensus binding sites for transcription factors by site-directed mutagenesis. We next analyzed their capacity to direct the transcription of a reporter gene after transfection into rat H4IIE and human HepG2 hepatoma cells, in experiments involving the coexpression of transcription factors whose consensus binding sequences are present in the SVCT1 promoter. This analysis revealed the presence of two critical cis-regulatory elements of the transcriptional activity of the rat SVCT1 gene promoter, sites containing consensus sequences for the binding of the transcription factors Bach1 and HNF4 that are not present in equivalent locations in the human SVCT1 gene promoter. Moreover, a consensus site for HNF1 that is crucial for the regulation of the human SVCT1 promoter is present in the SVCT1 rat promoter but has no effect on its transcriptional activity. These findings imply that regulation of vitamin C metabolism in the rat, a species with the capacity to synthesize large amounts of ascorbic acid, may differ from that of humans, a species that must obtain ascorbic acid from the diet through a transport mechanism that depends on proper SVCT1 expression.
Collapse
Affiliation(s)
- Alejandra Muñoz
- Departamento de Fisiopatología, Facultad de Medicina, Universidad de Concepción, Concepción, Bio-Bio 4070386, Chile
| | - Marcelo Villagrán
- Departamento de Fisiopatología, Facultad de Medicina, Universidad de Concepción, Concepción, Bio-Bio 4070386, Chile
| | - Paula Guzmán
- Departamento de Fisiopatología, Facultad de Medicina, Universidad de Concepción, Concepción, Bio-Bio 4070386, Chile
| | - Carlos Solíz
- Departamento de Fisiopatología, Facultad de Medicina, Universidad de Concepción, Concepción, Bio-Bio 4070386, Chile
| | - Marcell Gatica
- Departamento de Fisiopatología, Facultad de Medicina, Universidad de Concepción, Concepción, Bio-Bio 4070386, Chile
| | - Carlos Aylwin
- Departamento de Fisiopatología, Facultad de Medicina, Universidad de Concepción, Concepción, Bio-Bio 4070386, Chile
| | - Karen Sweet
- Departamento de Fisiopatología, Facultad de Medicina, Universidad de Concepción, Concepción, Bio-Bio 4070386, Chile
| | - Mafalda Maldonado
- Departamento de Fisiopatología, Facultad de Medicina, Universidad de Concepción, Concepción, Bio-Bio 4070386, Chile
| | - Elizabeth Escobar
- Departamento de Fisiopatología, Facultad de Medicina, Universidad de Concepción, Concepción, Bio-Bio 4070386, Chile
| | - Alejandro M Reyes
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile
| | - Jorge R Toledo
- Departamento de Fisiopatología, Facultad de Medicina, Universidad de Concepción, Concepción, Bio-Bio 4070386, Chile
| | - Oliberto Sánchez
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Bio-Bio 4070386, Chile
| | - Sergio A Oñate
- Departamento de Especialidades Médicas, Facultad de Medicina, Universidad de Concepción, Concepción, Bio-Bio 4070386, Chile
| | - Juan Carlos Vera
- Departamento de Fisiopatología, Facultad de Medicina, Universidad de Concepción, Concepción, Bio-Bio 4070386, Chile.
| | - Coralia I Rivas
- Departamento de Fisiopatología, Facultad de Medicina, Universidad de Concepción, Concepción, Bio-Bio 4070386, Chile.
| |
Collapse
|
27
|
Singh H, Kaur P, Kaur P, Muthuraman A, Singh G, Kaur M. Investigation of therapeutic potential and molecular mechanism of vitamin P and digoxin in I/R-induced myocardial infarction in rat. Naunyn Schmiedebergs Arch Pharmacol 2015; 388:565-74. [PMID: 25693978 DOI: 10.1007/s00210-015-1103-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 02/06/2015] [Indexed: 12/22/2022]
Abstract
Ischemic-reperfusion (I/R) is a major event in the pathogenesis of ischemic heart disease that leads to higher rate of mortality. The study has been designed to investigate the therapeutic potential and molecular mechanism of vitamin P and digoxin in I/R-induced myocardial infarction in isolated rat heart preparation by using Langendorff apparatus. The animals were treated with vitamin P (50 and 100 mg/kg; p.o.) and digoxin (500 μg/kg) for 5 consecutive days. Digoxin served as a positive control in the present study. On the sixth day, the heart was harvested and induced to 30 min of global ischemia followed by 120 min of reperfusion using Langendorff apparatus. The coronary effluent was collected at different time intervals (i.e. basal, 1, 15, 30, 45, 60 and 120 min.) for the assessment of myocardial contractility function. In addition, creatine kinase-M and B subunits (CK-MB), lactate dehydrogenase (LDH1) and Na(+)-K(+)-ATPase activity along with oxidative tissue biomarkers (i.e. thio-barbituric acid reactive substances (TBARS) and reduced glutathione (GSH)) changes were estimated. The I/R of myocardium produced decrease in coronary flow rate; increase in CK-MB, LDH1 and Na(+)-K(+)-ATPase activity along with increase in TBARS and decrease in GSH levels as compared to normal group. The treatment with vitamin P (100 mg/kg) and digoxin (500 μg/kg) have produced a significant (p < 0.05) ameliorative effect against I/R induced above functional, metabolic and tissue biomarkers changes. Vitamin P has an ameliorative potential against I/R induced myocardial functional changes. It may be due to its free radical scavenging and anti-infarct property via inhibition of Na(+)-K(+)-ATPase activity. Therefore, it can be used as a potential therapeutic medicine for the management of cardiovascular disorders.
Collapse
Affiliation(s)
- Harwinder Singh
- Department of Pharmacology, Cardiovascular Division, Akal Toxicology Research Centre, Akal College of Pharmacy and Technical Education, Mastuana Sahib, Sangrur, 148001, Punjab, India
| | | | | | | | | | | |
Collapse
|
28
|
Sowers MA, McCombs JR, Wang Y, Paletta JT, Morton SW, Dreaden EC, Boska MD, Ottaviani MF, Hammond PT, Rajca A, Johnson JA. Redox-responsive branched-bottlebrush polymers for in vivo MRI and fluorescence imaging. Nat Commun 2014; 5:5460. [PMID: 25403521 PMCID: PMC4269368 DOI: 10.1038/ncomms6460] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 10/02/2014] [Indexed: 12/15/2022] Open
Abstract
Stimuli-responsive multimodality imaging agents have broad potential in medical diagnostics. Herein, we report the development of a new class of branched-bottlebrush polymer dual-modality organic radical contrast agents--ORCAFluors--for combined magnetic resonance and near-infrared fluorescence imaging in vivo. These nitroxide radical-based nanostructures have longitudinal and transverse relaxation times that are on par with commonly used heavy-metal-based magnetic resonance imaging (MRI) contrast agents. Furthermore, these materials display a unique compensatory redox response: fluorescence is partially quenched by surrounding nitroxides in the native state; exposure to ascorbate or ascorbate/glutathione leads to nitroxide reduction and a concomitant 2- to 3.5-fold increase in fluorescence emission. This behaviour enables correlation of MRI contrast, fluorescence intensity and spin concentration with tissues known to possess high concentrations of ascorbate in mice. Our in vitro and in vivo results, along with our modular synthetic approach, make ORCAFluors a promising new platform for multimodality molecular imaging.
Collapse
Affiliation(s)
- Molly A Sowers
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Jessica R McCombs
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Ying Wang
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588, USA
| | - Joseph T Paletta
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588, USA
| | - Stephen W Morton
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research, Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Erik C Dreaden
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research, Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Michael D Boska
- Department of Radiology, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - M Francesca Ottaviani
- Department of Earth, Life and Environmental Sciences, University of Urbino, Loc. Corcicchia, 61029 Urbino, Italy
| | - Paula T Hammond
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research, Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Andrzej Rajca
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588, USA
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
29
|
Campbell EJ, Vissers MCM, Bozonet S, Dyer A, Robinson BA, Dachs GU. Restoring physiological levels of ascorbate slows tumor growth and moderates HIF-1 pathway activity in Gulo(-/-) mice. Cancer Med 2014; 4:303-14. [PMID: 25354695 PMCID: PMC4329013 DOI: 10.1002/cam4.349] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 08/21/2014] [Indexed: 12/18/2022] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1) governs cellular adaption to the hypoxic microenvironment and is associated with a proliferative, metastatic, and treatment-resistant tumor phenotype. HIF-1 levels and transcriptional activity are regulated by proline and asparagine hydroxylases, which require ascorbate as cofactor. Ascorbate supplementation reduced HIF-1 activation in vitro, but only limited data are available in relevant animal models. There is no information of the effect of physiological levels of ascorbate on HIF activity and tumor growth, which was measured in this study. C57BL/6 Gulo−/− mice (a model of the human ascorbate dependency condition) were supplemented with 3300 mg/L, 330 mg/L, or 33 mg/L of ascorbate in their drinking water before and during subcutaneous tumor growth of B16-F10 melanoma or Lewis lung carcinoma (LL/2). Ascorbate levels in tumors increased significantly with elevated ascorbate intake and restoration of wild-type ascorbate levels led to a reduction in growth of B16-F10 (log phase P < 0.001) and LL/2 tumors (lag growth P < 0.001, log phase P < 0.05). Levels of HIF-1α protein in tumors decreased as dietary ascorbate supplementation increased for both tumor models (P < 0.001). Similarly, tumor ascorbate was inversely correlated with levels of the HIF-1 target proteins CA-IX, GLUT-1, and VEGF in both B16-F10 and LL/2 tumors (P < 0.05). The extent of necrosis was similar between ascorbate groups but varied between models (30% for B16-F10 and 21% for LL/2), indicating that ascorbate did not affect tumor hypoxia. Our data support the hypothesis that restoration of optimal intracellular ascorbate levels reduces tumor growth via moderation of HIF-1 pathway activity.
Collapse
Affiliation(s)
- Elizabeth J Campbell
- Mackenzie Cancer Research Group, Department of Pathology, University of Otago, Christchurch, New Zealand
| | | | | | | | | | | |
Collapse
|
30
|
Campbell EJ, Dachs GU. Current limitations of murine models in oncology for ascorbate research. Front Oncol 2014; 4:282. [PMID: 25353008 PMCID: PMC4196513 DOI: 10.3389/fonc.2014.00282] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/29/2014] [Indexed: 12/15/2022] Open
Abstract
The role of vitamin C (ascorbate) in cancer prevention, tumor growth, and treatment is of intense public interest. Clinical trial data have been sparse, contradictory, and highly controversial, and robust pre-clinical data are required for progress. This paper reviews pre-clinical models and their limitations with respect to ascorbate research. Most studies have utilized animals able to synthesize ascorbate and thus are not ideal models of the human condition. More recently, genetically modified mouse models have become available; yet, all studies compared healthy and scorbutic mice. The majority of investigations to date concluded that increased ascorbate led to decreased tumor growth, but data on mechanisms and doses are inconclusive. Clinically relevant animal studies are still required to convince a generally sceptical medical audience of the potential worth of ascorbate as an adjunct to therapy.
Collapse
Affiliation(s)
- Elizabeth J Campbell
- Mackenzie Cancer Research Group, Department of Pathology, University of Otago , Christchurch , New Zealand
| | - Gabi U Dachs
- Mackenzie Cancer Research Group, Department of Pathology, University of Otago , Christchurch , New Zealand
| |
Collapse
|
31
|
Resolution of sterile inflammation: role for vitamin C. Mediators Inflamm 2014; 2014:173403. [PMID: 25294953 PMCID: PMC4175383 DOI: 10.1155/2014/173403] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/29/2014] [Accepted: 07/31/2014] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Macrophage reprogramming is vital for resolution of acute inflammation. Parenteral vitamin C (VitC) attenuates proinflammatory states in murine and human sepsis. However information about the mechanism by which VitC regulates resolution of inflammation is limited. METHODS To examine whether physiological levels of VitC modulate resolution of inflammation, we used transgenic mice lacking L-gulono-γ-lactone oxidase. VitC sufficient/deficient mice were subjected to a thioglycollate-elicited peritonitis model of sterile inflammation. Some VitC deficient mice received daily parenteral VitC (200 mg/kg) for 3 or 5 days following thioglycollate infusion. Peritoneal macrophages harvested on day 3 or day 5 were examined for intracellular VitC levels, pro- and anti-inflammatory protein and lipid mediators, mitochondrial function, and response to lipopolysaccharide (LPS). The THP-1 cell line was used to determine the modulatory activities of VitC in activated human macrophages. RESULTS VitC deficiency significantly delayed resolution of inflammation and generated an exaggerated proinflammatory response to in vitro LPS stimulation. VitC sufficiency and in vivo VitC supplementation restored macrophage phenotype and function in VitC deficient mice. VitC loading of THP-1 macrophages attenuated LPS-induced proinflammatory responses. CONCLUSION VitC sufficiency favorably modulates macrophage function. In vivo or in vitro VitC supplementation restores macrophage phenotype and function leading to timely resolution of inflammation.
Collapse
|
32
|
Michels AJ, Frei B. Myths, artifacts, and fatal flaws: identifying limitations and opportunities in vitamin C research. Nutrients 2013; 5:5161-92. [PMID: 24352093 PMCID: PMC3875932 DOI: 10.3390/nu5125161] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 11/23/2013] [Accepted: 11/27/2013] [Indexed: 01/01/2023] Open
Abstract
Research progress to understand the role of vitamin C (ascorbic acid) in human health has been slow in coming. This is predominantly the result of several flawed approaches to study design, often lacking a full appreciation of the redox chemistry and biology of ascorbic acid. In this review, we summarize our knowledge surrounding the limitations of common approaches used in vitamin C research. In human cell culture, the primary issues are the high oxygen environment, presence of redox-active transition metal ions in culture media, and the use of immortalized cell lines grown in the absence of supplemental ascorbic acid. Studies in animal models are also limited due to the presence of endogenous ascorbic acid synthesis. Despite the use of genetically altered rodent strains lacking synthesis capacity, there are additional concerns that these models do not adequately recapitulate the effects of vitamin C deprivation and supplementation observed in humans. Lastly, several flaws in study design endemic to randomized controlled trials and other human studies greatly limit their conclusions and impact. There also is anecdotal evidence of positive and negative health effects of vitamin C that are widely accepted but have not been substantiated. Only with careful attention to study design and experimental detail can we further our understanding of the possible roles of vitamin C in promoting human health and preventing or treating disease.
Collapse
Affiliation(s)
- Alexander J Michels
- Linus Pauling Institute, 307 Linus Pauling Science Center, Oregon State University, Corvallis, OR 97331, USA.
| | | |
Collapse
|
33
|
Carr AC, Bozonet SM, Vissers MCM. A randomised cross-over pharmacokinetic bioavailability study of synthetic versus kiwifruit-derived vitamin C. Nutrients 2013; 5:4451-61. [PMID: 24284610 PMCID: PMC3847741 DOI: 10.3390/nu5114451] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/08/2013] [Accepted: 10/24/2013] [Indexed: 11/17/2022] Open
Abstract
Kiwifruit are a rich source of vitamin C and also contain numerous phytochemicals, such as flavonoids, which may influence the bioavailability of kiwifruit-derived vitamin C. The aim of this study was to compare the relative bioavailability of synthetic versus kiwifruit-derived vitamin C using a randomised cross-over pharmacokinetic study design. Nine non-smoking males (aged 18–35 years) received either a chewable tablet (200 mg vitamin C) or the equivalent dose from gold kiwifruit (Actinidia chinensis var. Sungold). Fasting blood and urine were collected half hourly to hourly over the eight hours following intervention. The ascorbate content of the plasma and urine was determined using HPLC with electrochemical detection. Plasma ascorbate levels increased from 0.5 h after the intervention (P = 0.008). No significant differences in the plasma time-concentration curves were observed between the two interventions (P = 0.645). An estimate of the total increase in plasma ascorbate indicated complete uptake of the ingested vitamin C tablet and kiwifruit-derived vitamin C. There was an increase in urinary ascorbate excretion, relative to urinary creatinine, from two hours post intervention (P < 0.001). There was also a significant difference between the two interventions, with enhanced ascorbate excretion observed in the kiwifruit group (P = 0.016). Urinary excretion was calculated as ~40% and ~50% of the ingested dose from the vitamin C tablet and kiwifruit arms, respectively. Overall, our pharmacokinetic study has shown comparable relative bioavailability of kiwifruit-derived vitamin C and synthetic vitamin C.
Collapse
Affiliation(s)
- Anitra C Carr
- Centre for Free Radical Research, Department of Pathology & Biomedical Science, University of Otago, Christchurch, P.O. Box 4345, Christchurch 8140, New Zealand.
| | | | | |
Collapse
|
34
|
Carr AC, Vissers MCM. Synthetic or food-derived vitamin C--are they equally bioavailable? Nutrients 2013; 5:4284-304. [PMID: 24169506 PMCID: PMC3847730 DOI: 10.3390/nu5114284] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 09/22/2013] [Accepted: 10/14/2013] [Indexed: 12/14/2022] Open
Abstract
Vitamin C (ascorbate) is an essential water-soluble micronutrient in humans and is obtained through the diet, primarily from fruits and vegetables. In vivo, vitamin C acts as a cofactor for numerous biosynthetic enzymes required for the synthesis of amino acid-derived macromolecules, neurotransmitters, and neuropeptide hormones, and is also a cofactor for various hydroxylases involved in the regulation of gene transcription and epigenetics. Vitamin C was first chemically synthesized in the early 1930s and since then researchers have been investigating the comparative bioavailability of synthetic versus natural, food-derived vitamin C. Although synthetic and food-derived vitamin C is chemically identical, fruit and vegetables are rich in numerous nutrients and phytochemicals which may influence its bioavailability. The physiological interactions of vitamin C with various bioflavonoids have been the most intensively studied to date. Here, we review animal and human studies, comprising both pharmacokinetic and steady-state designs, which have been carried out to investigate the comparative bioavailability of synthetic and food-derived vitamin C, or vitamin C in the presence of isolated bioflavonoids. Overall, a majority of animal studies have shown differences in the comparative bioavailability of synthetic versus natural vitamin C, although the results varied depending on the animal model, study design and body compartments measured. In contrast, all steady state comparative bioavailability studies in humans have shown no differences between synthetic and natural vitamin C, regardless of the subject population, study design or intervention used. Some pharmacokinetic studies in humans have shown transient and small comparative differences between synthetic and natural vitamin C, although these differences are likely to have minimal physiological impact. Study design issues and future research directions are discussed.
Collapse
Affiliation(s)
- Anitra C Carr
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, P.O. Box 4345, Christchurch 8140, New Zealand.
| | | |
Collapse
|
35
|
Carr AC, Bozonet SM, Pullar JM, Simcock JW, Vissers MCM. A randomized steady-state bioavailability study of synthetic versus natural (kiwifruit-derived) vitamin C. Nutrients 2013; 5:3684-95. [PMID: 24067392 PMCID: PMC3798928 DOI: 10.3390/nu5093684] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 08/15/2013] [Accepted: 08/26/2013] [Indexed: 01/07/2023] Open
Abstract
Whether vitamin C from wholefoods has equivalent bioavailability to a purified supplement remains unclear. We have previously showed that kiwifruit provided significantly higher serum and tissue ascorbate levels than synthetic vitamin C in a genetically vitamin C-deficient mouse model, suggesting a synergistic activity of the whole fruit. To determine if these results are translatable to humans, we carried out a randomized human study comparing the bioavailability of vitamin C from kiwifruit with that of a vitamin C tablet of equivalent dosage. Thirty-six young non-smoking adult males were randomized to receive either half a gold kiwifruit (Actinidia Chinensis var. Hort 16A) per day or a comparable vitamin C dose (50 mg) in a chewable tablet for six weeks. Ascorbate was monitored weekly in fasting venous blood and in urine, semen, leukocytes, and skeletal muscle (vastus lateralis) pre- and post-intervention. Dietary intake of vitamin C was monitored using seven day food and beverage records. Participant ascorbate levels increased in plasma (P < 0.001), urine (P < 0.05), mononuclear cells (P < 0.01), neutrophils (P < 0.01) and muscle tissue (P < 0.001) post intervention. There were no significant differences in vitamin C bioavailability between the two intervention groups in any of the fluid, cell or tissue samples tested. Overall, our study showed comparable bioavailability of synthetic and kiwifruit-derived vitamin C.
Collapse
Affiliation(s)
- Anitra C. Carr
- Centre for Free Radical Research, Department of Pathology & Biomedical Science, University of Otago, Christchurch, PO Box 4345, Christchurch 8140, New Zealand; E-Mails: (S.M.B.); (J.M.P.); margreet.vissers@otag (M.C.M.V.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +64-3-378-6498; Fax: +64-3-378-6540
| | - Stephanie M. Bozonet
- Centre for Free Radical Research, Department of Pathology & Biomedical Science, University of Otago, Christchurch, PO Box 4345, Christchurch 8140, New Zealand; E-Mails: (S.M.B.); (J.M.P.); margreet.vissers@otag (M.C.M.V.)
| | - Juliet M. Pullar
- Centre for Free Radical Research, Department of Pathology & Biomedical Science, University of Otago, Christchurch, PO Box 4345, Christchurch 8140, New Zealand; E-Mails: (S.M.B.); (J.M.P.); margreet.vissers@otag (M.C.M.V.)
| | - Jeremy W. Simcock
- Department of Plastic and Reconstructive Surgery, University of Otago, Christchurch, PO Box 4345, Christchurch 8140, New Zealand; E-Mail:
| | - Margreet C. M. Vissers
- Centre for Free Radical Research, Department of Pathology & Biomedical Science, University of Otago, Christchurch, PO Box 4345, Christchurch 8140, New Zealand; E-Mails: (S.M.B.); (J.M.P.); margreet.vissers@otag (M.C.M.V.)
| |
Collapse
|
36
|
Mohammed BM, Fisher BJ, Kraskauskas D, Farkas D, Brophy DF, Fowler AA, Natarajan R. Vitamin C: a novel regulator of neutrophil extracellular trap formation. Nutrients 2013; 5:3131-51. [PMID: 23939536 PMCID: PMC3775246 DOI: 10.3390/nu5083131] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/30/2013] [Accepted: 08/05/2013] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Neutrophil extracellular trap (NET) formation was recently identified as a novel mechanism to kill pathogens. However, excessive NET formation in sepsis can injure host tissues. We have recently shown that parenteral vitamin C (VitC) is protective in sepsis. Whether VitC alters NETosis is unknown. METHODS We used Gulo-/- mice as they lack the ability to synthesize VitC. Sepsis was induced by intraperitoneal infusion of a fecal stem solution (abdominal peritonitis, FIP). Some VitC deficient Gulo-/- mice received an infusion of ascorbic acid (AscA, 200 mg/kg) 30 min after induction of FIP. NETosis was assessed histologically and by quantification for circulating free DNA (cf-DNA) in serum. Autophagy, histone citrullination, endoplasmic reticulum (ER) stress, NFκB activation and apoptosis were investigated in peritoneal PMNs. RESULTS Sepsis produced significant NETs in the lungs of VitC deficient Gulo-/- mice and increased circulating cf-DNA. This was attenuated in the VitC sufficient Gulo-/- mice and in VitC deficient Gulo-/- mice infused with AscA. Polymorphonuclear neutrophils (PMNs) from VitC deficient Gulo-/- mice demonstrated increased activation of ER stress, autophagy, histone citrullination, and NFκB activation, while apoptosis was inhibited. VitC also significantly attenuated PMA induced NETosis in PMNs from healthy human volunteers. CONCLUSIONS Our in vitro and in vivo findings identify VitC as a novel regulator of NET formation in sepsis. This study complements the notion that VitC is protective in sepsis settings.
Collapse
Affiliation(s)
- Bassem M. Mohammed
- Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University, Richmond, VA 23298, USA; E-Mails: (B.M.M.); (D.F.B.)
- Department of Clinical Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Bernard J. Fisher
- Division of Pulmonary Disease and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; E-Mails: (B.J.F.); (D.K.); (D.F.); (A.A.F.)
| | - Donatas Kraskauskas
- Division of Pulmonary Disease and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; E-Mails: (B.J.F.); (D.K.); (D.F.); (A.A.F.)
| | - Daniela Farkas
- Division of Pulmonary Disease and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; E-Mails: (B.J.F.); (D.K.); (D.F.); (A.A.F.)
| | - Donald F. Brophy
- Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University, Richmond, VA 23298, USA; E-Mails: (B.M.M.); (D.F.B.)
| | - Alpha A. Fowler
- Division of Pulmonary Disease and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; E-Mails: (B.J.F.); (D.K.); (D.F.); (A.A.F.)
| | - Ramesh Natarajan
- Division of Pulmonary Disease and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; E-Mails: (B.J.F.); (D.K.); (D.F.); (A.A.F.)
| |
Collapse
|
37
|
Fisher BJ, Kraskauskas D, Martin EJ, Farkas D, Puri P, Massey HD, Idowu MO, Brophy DF, Voelkel NF, Fowler AA, Natarajan R. Attenuation of sepsis-induced organ injury in mice by vitamin C. JPEN J Parenter Enteral Nutr 2013; 38:825-39. [PMID: 23917525 DOI: 10.1177/0148607113497760] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Multiple organ dysfunction syndrome (MODS) is the principal cause of death in patients with sepsis. Recent work supports the notion that parenteral vitamin C (VitC) is protective in sepsis through pleiotropic mechanisms. Whether suboptimal levels of circulating VitC increase susceptibility to sepsis-induced MODS is unknown. MATERIALS AND METHODS Unlike mice, humans lack the ability to synthesize VitC because of loss of L-gulono-γ-lactone oxidase (Gulo), the final enzyme in the biosynthesis of VitC. To examine whether physiological levels of VitC are required for defense against a catastrophic infection, we induced sepsis in VitC sufficient and VitC deficient Gulo(-/-) mice by intraperitoneal infusion of a fecal stem solution (FIP). Some VitC deficient Gulo(-/-) mice received a parenteral infusion of ascorbic acid (AscA, 200 mg/kg) 30 minutes after induction of FIP. We used molecular, histological, and biochemical analyses to assess for MODS as well as abnormalities in the coagulation system and circulating blood cells. RESULTS FIP produced injury to lungs, kidneys and liver (MODS) in VitC deficient Gulo(-/-) mice. MODS was not evident in FIP-exposed VitC sufficient Gulo(-/-) mice and attenuated in VitC deficient Gulo(-/-) mice infused with AscA. Septic VitC deficient Gulo(-/-) mice developed significant abnormalities in the coagulation system and circulating blood cells. These were attenuated by VitC sufficiency/infusion in septic Gulo(-/-) mice. CONCLUSIONS VitC deficient Gulo(-/-) mice were more susceptible to sepsis-induced MODS. VitC sufficiency or parenteral infusion of VitC, following induction of sepsis, normalized physiological functions that attenuated the development of MODS in sepsis.
Collapse
Affiliation(s)
- Bernard J Fisher
- Division of Pulmonary Disease and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Donatas Kraskauskas
- Division of Pulmonary Disease and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Erika J Martin
- Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Daniela Farkas
- Division of Pulmonary Disease and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Puneet Puri
- Division of Gastroenterology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - H Davis Massey
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Michael O Idowu
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Donald F Brophy
- Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Norbert F Voelkel
- Division of Pulmonary Disease and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Alpha A Fowler
- Division of Pulmonary Disease and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Ramesh Natarajan
- Division of Pulmonary Disease and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
38
|
Lindblad M, Tveden-Nyborg P, Lykkesfeldt J. Regulation of vitamin C homeostasis during deficiency. Nutrients 2013; 5:2860-79. [PMID: 23892714 PMCID: PMC3775232 DOI: 10.3390/nu5082860] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/15/2013] [Accepted: 07/18/2013] [Indexed: 12/31/2022] Open
Abstract
Large cross-sectional population studies confirm that vitamin C deficiency is common in humans, affecting 5%–10% of adults in the industrialized world. Moreover, significant associations between poor vitamin C status and increased morbidity and mortality have consistently been observed. However, the absorption, distribution and elimination kinetics of vitamin C in vivo are highly complex, due to dose-dependent non-linearity, and the specific regulatory mechanisms are not fully understood. Particularly, little is known about how adaptive mechanisms during states of deficiency affect the overall regulation of vitamin C transport in the body. This review discusses mechanisms of vitamin C transport and potential means of regulation with special emphasis on capacity and functional properties, such as differences in the Km of vitamin C transporters in different target tissues, in some instances demonstrating a tissue-specific distribution.
Collapse
Affiliation(s)
- Maiken Lindblad
- Section of Experimental Animal Models, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, Frederiksberg C 1870, Denmark.
| | | | | |
Collapse
|
39
|
Abstract
We show that Enterococcus faecalis can utilize ascorbate for fermentative growth. In chemically defined media, growth yield was limited by the supply of amino acids, and the cells showed a much higher demand for amino acids than when they were grown on glucose.
Collapse
|
40
|
Stonehouse W, Gammon CS, Beck KL, Conlon CA, von Hurst PR, Kruger R. Kiwifruit: our daily prescription for health. Can J Physiol Pharmacol 2013; 91:442-7. [PMID: 23746068 DOI: 10.1139/cjpp-2012-0303] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Kiwifruit are unequalled, compared with other commonly consumed fruit, for their nutrient density, health benefits, and consumer appeal. Research into their health benefits has focussed on the cultivars Actinidia deliciosa 'Hayward' (green kiwifruit) and Actinidia chinensis 'Hort 16A', ZESPRI(®) (gold kiwifruit). Compared with other commonly consumed fruit, both green and gold kiwifruit are exceptionally high in vitamins C, E, K, folate, carotenoids, potassium, fibre, and phytochemicals acting in synergy to achieve multiple health benefits. Kiwifruit, as part of a healthy diet, may increase high-density lipoprotein cholesterol, and decrease triglycerides, platelet aggregation, and elevated blood pressure. Consuming gold kiwifruit with iron-rich meals improves poor iron status, and green kiwifruit aids digestion and laxation. As a rich source of antioxidants, they may protect the body from endogenous oxidative damage. Kiwifruit may support immune function and reduce the incidence and severity of cold or flu-like illness in at-risk groups such as older adults and children. However, kiwifruit are allergenic, and although symptoms in most susceptible individuals are mild, severe reactions have been reported. While many research gaps remain, kiwifruit with their multiple health benefits have the potential to become part of our "daily prescription for health."
Collapse
Affiliation(s)
- Welma Stonehouse
- Institute of Food, Nutrition and Human Health, Massey University, Private Bag 102 904, North Shore City, 0745 Auckland, New Zealand.
| | | | | | | | | | | |
Collapse
|
41
|
Leontowicz M, Jesion I, Leontowicz H, Park YS, Namiesnik J, Rombolà AD, Weisz M, Gorinstein S. Health-promoting effects of ethylene-treated kiwifruit 'Hayward' from conventional and organic crops in rats fed an atherogenic diet. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:3661-3668. [PMID: 23566063 DOI: 10.1021/jf400165k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Kiwifruit is a subtropical fruit that is very popular among consumers. Kiwifruit 'Hayward' ( Actinidia deliciosa C.F. Liang et A.R. Ferguson) is an important source of bioactive compounds and possesses high antioxidant capacity, but its value can be changed during ripening. The aim of this study was to compare the levels of total polyphenols (TP), ascorbic acid (AA), and total antioxidant capacities (TACs) of ethylene-treated and nontreated kiwifruits 'Hayward' from conventional and organic farming. The influence of these fruits on lipid profile, TAC, and liver enzymes in plasma of rats fed diets with cholesterol was studied. Ethylene treatment shortened the ripening of kiwifruits. Ethylene-treated kiwifruits from organic farming (OHE) have the highest contents of TP and TAC. The experiment in vivo was performed during 33 days on male Wistar rats (111 ± 5 g), divided into six groups: one without cholesterol, control (C), and five groups with 1% of cholesterol (Chol). Four groups with cholesterol were supplemented with 5% of lyophilized kiwifruits: ethylene treated, organic (Chol/OHE) or conventional (Chol/CHE); and untreated, organic (Chol/OHC) or conventional (Chol/CHC). Cholesterol diets supplemented with kiwifruit influenced the palatability and feed intake, body gain, and FER. Diets containing kiwifruits significantly influenced the decrease of TG (61%), TC (29%), LDL-C (38%), atherogenic index TC/HDL-C (25%), and atherogenic index (AI, 32%), without differences between treatments. A significant increase of TAC in plasma of rats fed kiwifruit was obtained by DPPH (18%), FRAP (55%), and ABTS (55%). Aspartate aminotransferase (AST) activity in serum was significantly lower for all groups with kiwifruit supplementation. Alanine aminotransferase (ALT) was lower only in diet groups supplemented with conventional fruits in comparison with the cholesterol group. Glucose levels were higher in groups with kiwifruit supplementation than in C and Chol groups. Supplementation of Chol groups with organic kiwifruits influenced the prothrombin index and significantly decreased the amount of platelets (PLT) in blood. In conclusion, studied kiwifruit 'Hayward' can be a very good ingredient of the diet, especially for patients suffering from hypercholesterolemia and with other cardiovascular diseases, but not for diabetic patients.
Collapse
Affiliation(s)
- Maria Leontowicz
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Warsaw, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Carr AC, Bozonet SM, Pullar JM, Simcock JW, Vissers MC. Human skeletal muscle ascorbate is highly responsive to changes in vitamin C intake and plasma concentrations. Am J Clin Nutr 2013; 97:800-7. [PMID: 23446899 PMCID: PMC3607654 DOI: 10.3945/ajcn.112.053207] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Vitamin C (ascorbate) is likely to be essential for skeletal muscle structure and function via its role as an enzyme cofactor for collagen and carnitine biosynthesis. Vitamin C may also protect these metabolically active cells from oxidative stress. OBJECTIVE We investigated the bioavailability of vitamin C to human skeletal muscle in relation to dietary intake and plasma concentrations and compared this relation with ascorbate uptake by leukocytes. DESIGN Thirty-six nonsmoking men were randomly assigned to receive 6 wk of 0.5 or 2 kiwifruit/d, an outstanding dietary source of vitamin C. Fasting blood samples were drawn weekly, and 24-h urine and leukocyte samples were collected before intervention, after intervention, and after washout. Needle biopsies of skeletal muscle (vastus lateralis) were carried out before and after intervention. RESULTS Baseline vastus lateralis ascorbate concentrations were ~16 nmol/g tissue. After intervention with 0.5 or 2 kiwifruit/d, these concentrations increased ~3.5-fold to 53 and 61 nmol/g, respectively. There was no significant difference between the responses of the 2 groups. Mononuclear cell and neutrophil ascorbate concentrations increased only ~1.5- and ~2-fold, respectively. Muscle ascorbate concentrations were highly correlated (P < 0.001) with dietary intake (R = 0.61) and plasma concentrations (R = 0.75) in the range from 5 to 80 μmol/L. CONCLUSIONS Human skeletal muscle is highly responsive to vitamin C intake and plasma concentrations and exhibits a greater relative uptake of ascorbate than leukocytes. Thus, muscle appears to comprise a relatively labile pool of ascorbate and is likely to be prone to ascorbate depletion with inadequate dietary intake. This trial was registered at the Australian New Zealand Clinical Trials Registry (www.anzctr.org.au) as ACTRN12611000162910.
Collapse
Affiliation(s)
- Anitra C Carr
- Centre for Free Radical Research, Department of Pathology, University of Otago, Christchurch, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
43
|
Thompson CM, Proctor DM, Suh M, Haws LC, Kirman CR, Harris MA. Assessment of the mode of action underlying development of rodent small intestinal tumors following oral exposure to hexavalent chromium and relevance to humans. Crit Rev Toxicol 2013; 43:244-74. [PMID: 23445218 PMCID: PMC3604738 DOI: 10.3109/10408444.2013.768596] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 01/16/2013] [Accepted: 01/17/2013] [Indexed: 12/13/2022]
Abstract
Abstract Chronic exposure to high concentrations of hexavalent chromium (Cr(VI)) in drinking water causes intestinal adenomas and carcinomas in mice, but not in rats. Cr(VI) causes damage to intestinal villi and crypt hyperplasia in mice after only one week of exposure. After two years of exposure, intestinal damage and crypt hyperplasia are evident in mice (but not rats), as are intestinal tumors. Although Cr(VI) has genotoxic properties, these findings suggest that intestinal tumors in mice arise as a result of chronic mucosal injury. To better understand the mode of action (MOA) of Cr(VI) in the intestine, a 90-day drinking water study was conducted to collect histological, biochemical, toxicogenomic and pharmacokinetic data in intestinal tissues. Using MOA analyses and human relevance frameworks proposed by national and international regulatory agencies, the weight of evidence supports a cytotoxic MOA with the following key events: (a) absorption of Cr(VI) from the intestinal lumen, (b) toxicity to intestinal villi, (c) crypt regenerative hyperplasia and (d) clonal expansion of mutations within the crypt stem cells, resulting in late onset tumorigenesis. This article summarizes the data supporting each key event in the MOA, as well as data that argue against a mutagenic MOA for Cr(VI)-induced intestinal tumors.
Collapse
|
44
|
Vissers MC, Carr AC, Pullar JM, Bozonet SM. The Bioavailability of Vitamin C from Kiwifruit. NUTRITIONAL BENEFITS OF KIWIFRUIT 2013; 68:125-47. [DOI: 10.1016/b978-0-12-394294-4.00007-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
45
|
Kiwifruit consumption favourably affects plasma lipids in a randomised controlled trial in hypercholesterolaemic men. Br J Nutr 2012; 109:2208-18. [DOI: 10.1017/s0007114512004400] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The unique composition of green kiwifruit has the potential to benefit CVD risk. The aim of the present study was to investigate the effect of consuming two green kiwifruits daily in conjunction with a healthy diet on plasma lipids and other metabolic markers and to examine response according toAPOEgenotype in hypercholesterolaemic men. After undergoing a 4-week healthy diet, eighty-five hypercholesterolaemic men (LDL-cholesterol (LDL-C) >3·0 mmol/l and TAG < 3 mmol/l) completed an 8-week randomised controlled cross-over study of two 4-week intervention sequences of two green kiwifruits per d plus healthy diet (intervention) or healthy diet alone (control). Anthropometric measures, blood pressure (BP) and fasting blood samples (plasma lipids, serum apoA1 and apoB, insulin, glucose, high-sensitivity C-reactive protein (hs-CRP)) were taken at baseline, and at 4 and 8 weeks. After the kiwifruit intervention, plasma HDL-cholesterol (HDL-C) concentrations were significantly higher (mean difference 0·04; 95 % CI 0·01, 0·07 mmol/l;P= 0·004) and the total cholesterol (TC):HDL-C ratio was significantly lower (mean difference − 0·15; 95 % CI − 0·24, − 0·05 mmol/l;P= 0·002) compared with the control. In carriers of theAPOE4allele, TAG decreased significantly (mean difference − 0·18; 95 % CI − 0·34, − 0·02 mmol/l;P= 0·03) with kiwifruit compared with control. There were no significant differences between the two interventions for plasma TC, LDL-C, insulin, glucose, hs-CRP and BP. The small but significant increase in HDL-C and decrease in TC:HDL-C ratio and TAG (inAPOE4carriers) suggest that the regular inclusion of green kiwifruit as part of a healthy diet may be beneficial in improving the lipid profiles of men with high cholesterol.
Collapse
|
46
|
Bioavailability of vitamin C from kiwifruit in non-smoking males: determination of 'healthy' and 'optimal' intakes. J Nutr Sci 2012; 1:e14. [PMID: 25191543 PMCID: PMC4153093 DOI: 10.1017/jns.2012.15] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 08/08/2012] [Accepted: 08/10/2012] [Indexed: 01/13/2023] Open
Abstract
Vitamin C is an essential nutrient in humans and must be obtained through the diet. The aim of this study was to determine vitamin C uptake in healthy volunteers after consuming kiwifruit (Actinidia chinensis var. Hort. 16A), and to determine the amount of fruit required to raise plasma vitamin C to 'healthy' (i.e. >50 µmol/l) and 'optimal' or saturating levels (i.e. >70 µmol/l). Leucocyte and urinary vitamin C levels were also determined. A total of fifteen male university students with below average levels of plasma vitamin C were selected for the study. Weekly fasting blood samples were obtained for a 4-week lead-in period and following supplementation with, sequentially, half, one, two and three Gold kiwifruit per d for 4-6 weeks each, followed by a final 4-week washout period. The results showed that addition of as little as half a kiwifruit per d resulted in a significant increase in plasma vitamin C. However, one kiwifruit per d was required to reach what is considered healthy levels. Increasing the dose of kiwifruit to two per d resulted in further increases in plasma vitamin C levels as well as increased urinary output of the vitamin, indicating that plasma levels were saturating at this dosage. Dividing the participants into high and low vitamin C groups based on their baseline plasma and leucocyte vitamin C levels demonstrated that it is critical to obtain a study population with low initial levels of the vitamin in order to ascertain a consistent effect of supplementation.
Collapse
|
47
|
Bulley S, Wright M, Rommens C, Yan H, Rassam M, Lin-Wang K, Andre C, Brewster D, Karunairetnam S, Allan AC, Laing WA. Enhancing ascorbate in fruits and tubers through over-expression of the L-galactose pathway gene GDP-L-galactose phosphorylase. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:390-7. [PMID: 22129455 DOI: 10.1111/j.1467-7652.2011.00668.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Ascorbate, or vitamin C, is obtained by humans mostly from plant sources. Various approaches have been made to increase ascorbate in plants by transgenic means. Most of these attempts have involved leaf material from model plants, with little success reported using genes from the generally accepted l-galactose pathway of ascorbate biosynthesis. We focused on increasing ascorbate in commercially significant edible plant organs using a gene, GDP-l-galactose phosphorylase (GGP or VTC2), that we had previously shown to increase ascorbate concentration in tobacco and Arabidopsis thaliana. The coding sequence of Actinidia chinensis GGP, under the control of the 35S promoter, was expressed in tomato and strawberry. Potato was transformed with potato or Arabidopsis GGP genes under the control of the 35S promoter or a polyubiquitin promoter (potato only). Five lines of tomato, up to nine lines of potato, and eight lines of strawberry were regenerated for each construct. Three lines of tomato had a threefold to sixfold increase in fruit ascorbate, and all lines of strawberry showed a twofold increase. All but one line of each potato construct also showed an increase in tuber ascorbate of up to threefold. Interestingly, in tomato fruit, increased ascorbate was associated with loss of seed and the jelly of locular tissue surrounding the seed which was not seen in strawberry. In both strawberry and tomato, an increase in polyphenolic content was associated with increased ascorbate. These results show that GGP can be used to raise significantly ascorbate concentration in commercially significant edible crops.
Collapse
Affiliation(s)
- Sean Bulley
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
|
49
|
|
50
|
Davis RM, Mitchell JB, Krishna MC. Nitroxides as cancer imaging agents. Anticancer Agents Med Chem 2011; 11:347-58. [PMID: 21434855 DOI: 10.2174/187152011795677526] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 03/09/2011] [Indexed: 01/13/2023]
Abstract
Nitroxides are low molecular weight (150-400 Da) superoxide dismutase mimics that exhibit antioxidant, radical scavenging, and radioprotective activity. Additionally, the paramagnetic nature of nitroxides makes them viable as both spin probes for electron paramagnetic resonance imaging as well as contrast agents for magnetic resonance imaging. These imaging techniques enable in vivo monitoring of nitroxide metabolism. In biological systems, nitroxide metabolism occurs predominantly via reduction of the nitroxide to a hydroxylamine. The rate of nitroxide reduction can increase or decrease due to either oxidative stress, suggesting that nitroxides can provide an imaging-based assay of tissue redox status. The current review briefly summarizes the potential clinical applications of nitroxides, and focuses on the biochemical and tumor microenvironmental factors that affect the rate of nitroxide reduction. The potential therapeutic applications and bio-reduction mechanisms are discussed in the context of their relevance to oncology.
Collapse
Affiliation(s)
- Ryan M Davis
- Radiation Biology Branch, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|