1
|
Ma S, Hubal M, Morris M, Ross L, Huffman K, Vann C, Moore N, Hauser E, Bareja A, Jiang R, Kummerfeld E, Barberio M, Houmard J, Bennett W, Johnson J, Timmons J, Broderick G, Kraus V, Aliferis C, Kraus W. Sex-specific skeletal muscle gene expression responses to exercise reveal novel direct mediators of insulin sensitivity change. NAR MOLECULAR MEDICINE 2025; 2:ugaf010. [PMID: 40225320 PMCID: PMC11992681 DOI: 10.1093/narmme/ugaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 03/07/2025] [Accepted: 03/27/2025] [Indexed: 04/15/2025]
Abstract
Understanding how exercise improves whole-body insulin sensitivity (Si) involves complex molecular signaling. This study examines skeletal muscle gene expression changes related to Si, considering sex differences, exercise amount, and intensity to identify pharmacologic targets mimicking exercise benefits. Fifty-three participants from STRRIDE (Studies of Targeted Risk Reduction Interventions through Defined Exercise) I and II completed eight months of aerobic training. Gene expression was assessed via Affymetrix and Illumina technologies, and Si was measured using intravenous glucose tolerance tests. A novel discovery protocol integrating literature-derived and data-driven modeling identified causal pathways and direct transcriptional targets. In women, exercise amount primarily influenced transcription factor targets, which were generally inhibitory, while in men, exercise intensity drove activating targets. Common transcription factors included ATF1, CEBPA, BACH2, and STAT1. Si-related transcriptional targets included TACR3 and TMC7 for intensity-driven effects, and GRIN3B and EIF3B for amount-driven effects. Two key pathways mediating Si improvements were identified: estrogen signaling and protein kinase C (PKC) signaling, both converging on the epidermal growth factor receptor (EGFR) and other relevant targets. The molecular pathways underlying Si improvements varied by sex and exercise parameters, highlighting potential skeletal muscle-specific drug targets such as EGFR to replicate the metabolic benefits of exercise.
Collapse
Affiliation(s)
- Sisi Ma
- Institute for Health Informatics (IHI), Academic Health Center, University of Minnesota, Minneapolis, MN 55455, United States
| | - Monica J Hubal
- Department of Kinesiology, Indiana University Indianapolis, Indianapolis, IN 46202, United States
| | - Matthew C Morris
- Center for Clinical Systems Biology, Rochester General Hospital, Rochester, NY 14621, United States
| | - Leanna M Ross
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, United States
| | - Kim M Huffman
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, United States
| | - Christopher G Vann
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, United States
| | - Nadia Moore
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, United States
| | - Elizabeth R Hauser
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, United States
| | - Akshay Bareja
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, United States
| | - Rong Jiang
- Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, NC 27701, United States
| | - Eric Kummerfeld
- Institute for Health Informatics (IHI), Academic Health Center, University of Minnesota, Minneapolis, MN 55455, United States
| | - Matthew D Barberio
- Department of Exercise and Nutrition Sciences, George Washington University, Washington DC 20052, United States
| | - Joseph A Houmard
- Department of Kinesiology, ECU, Greenville, NC 27858, United States
| | - William C Bennett
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, United States
| | - Johanna L Johnson
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, United States
| | - James A Timmons
- School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ, United Kingdom
| | - Gordon Broderick
- Center for Clinical Systems Biology, Rochester General Hospital, Rochester, NY 14621, United States
| | - Virginia B Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, United States
| | - Constantin F Aliferis
- Institute for Health Informatics (IHI), Academic Health Center, University of Minnesota, Minneapolis, MN 55455, United States
| | - William E Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, United States
| |
Collapse
|
2
|
Zhao J, Li X, Liang C, Yan Y. Can Exercise-Mediated Adipose Browning Provide an Alternative Explanation for the Obesity Paradox? Int J Mol Sci 2025; 26:1790. [PMID: 40076419 PMCID: PMC11898606 DOI: 10.3390/ijms26051790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/06/2025] [Accepted: 02/14/2025] [Indexed: 03/14/2025] Open
Abstract
Overweight patients with cardiovascular disease (CVD) tend to survive longer than normal-weight patients, a phenomenon known as the "obesity paradox". The phenotypic characteristics of adipose distribution in these patients (who survive longer) often reveal a larger proportion of subcutaneous white adipose tissue (scWAT), suggesting that the presence of scWAT is negatively associated with all-cause mortality and that scWAT appears to provide protective benefits in patients facing unhealthy states. Exercise-mediated browning is a crucial aspect of the benign remodeling process of adipose tissue (AT). Reduced accumulation, reduced inflammation, and associated adipokine secretion are directly related to the reduction in CVD mortality. This paper summarized the pathogenetic factors associated with AT accumulation in patients with CVD and analyzed the possible role and pathway of exercise-mediated adipose browning in reducing the risk of CVD and CVD-related mortality. It is suggested that exercise-mediated browning may provide a new perspective on the "obesity paradox"; that is, overweight CVD patients who have more scWAT may gain greater cardiovascular health benefits through exercise.
Collapse
Affiliation(s)
- Jiani Zhao
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing 100084, China; (J.Z.); (X.L.)
| | - Xuehan Li
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing 100084, China; (J.Z.); (X.L.)
| | - Chunyu Liang
- School of Physical Education, Guangxi University (GXU), Nanning 530004, China
| | - Yi Yan
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing 100084, China; (J.Z.); (X.L.)
- Laboratory of Sports Stress and Adaptation of General Administration of Sport, Beijing Sport University (BSU), Beijing 100084, China
- Exercise and Physical Fitness, Beijing Sport University (BSU), Beijing 100084, China
| |
Collapse
|
3
|
Rao Z, Geng X, Huang P, Wei Q, Liu S, Qu C, Zhao J. Housing temperature influences exercise-induced glucose regulation and expression of exerkines in mice. Exp Physiol 2024. [PMID: 39721028 DOI: 10.1113/ep092319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024]
Abstract
The impact of housing temperature on exercise-induced metabolic adaptations is not well understood, despite extensive research on the benefits of exercise for metabolic health. The aim of this study was to elucidate how housing temperatures influence the molecular responses and metabolic benefits of exercise in mice. Male C57BL/6N mice were housed at either room temperature (RT, 21°C) or in a thermoneutral environment (TN, 29°C) and subjected to either a 6-week or acute exercise regimen. The results demonstrated that chronic exercise in TN conditions significantly improved glucose tolerance, whereas no such improvement was observed in RT conditions. Exercise reduced adipocyte size in inguinal and epididymal white adipose tissue in RT conditions, but no significant exercise-induced browning of inguinal white adipose tissue was detected at either housing temperature. Additionally, housing temperature predominantly influenced key metabolic proteins in skeletal muscle, with exercise and temperature exhibiting interactive effects on glycogen synthase, Glut4 and Pgc-1α. Moreover, the regulation of exerkines, including Fgf21, fetuin-A, irisin, Gdf15, spexin and apelin, was temperature dependent after both long-term and acute exercise. Notably, expression of Metrnl was consistently upregulated in skeletal muscle after long-term exercise in both RT and TN environments, but was downregulated after acute exercise. These findings highlight that environmental temperature critically modulates the metabolic benefits of exercise and the expression of exerkines. The results of this study suggest that conventional RT conditions might obscure the full metabolic effects of exercise. We recommend the use of TN conditions in future research to reduce confounding factors and provide a more accurate assessment of the metabolic benefits of exercise.
Collapse
Affiliation(s)
- Zhijian Rao
- Exercise Biological Center, China Institute of Sport Science, Beijing, China
- College of Physical Education, Shanghai Normal University, Shanghai, China
| | - Xue Geng
- Exercise Biological Center, China Institute of Sport Science, Beijing, China
| | - Peng Huang
- Exercise Biological Center, China Institute of Sport Science, Beijing, China
| | - Qiangman Wei
- Exercise Biological Center, China Institute of Sport Science, Beijing, China
| | - Shijie Liu
- Exercise Biological Center, China Institute of Sport Science, Beijing, China
| | - Chaoyi Qu
- College of Physical Education, Hebei Normal University, Hebei, China
| | - Jiexiu Zhao
- Exercise Biological Center, China Institute of Sport Science, Beijing, China
| |
Collapse
|
4
|
Kononova YA, Tuchina TP, Babenko AY. Brown and Beige Adipose Tissue: One or Different Targets for Treatment of Obesity and Obesity-Related Metabolic Disorders? Int J Mol Sci 2024; 25:13295. [PMID: 39769065 PMCID: PMC11677471 DOI: 10.3390/ijms252413295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
The failure of the fight against obesity makes us turn to new goals in its treatment. Now, brown adipose tissue has attracted attention as a promising target for the treatment of obesity and associated metabolic disorders such as insulin resistance, dyslipidemia, and glucose tolerance disorders. Meanwhile, the expansion of our knowledge has led to awareness about two rather different subtypes: classic brown and beige (inducible brown) adipose tissue. These subtypes have different origin, differences in the expression of individual genes but also a lot in common. Both tissues are thermogenic, which means that, by increasing energy consumption, they can improve their balance with excess intake. Both tissues are activated in response to specific inducers (cold, beta-adrenergic receptor activation, certain food and drugs), but beige adipose tissue transdifferentiates back into white adipose tissue after the cessation of inducing action, while classic brown adipose tissue persists, but its activity decreases. In this review, we attempted to understand whether there are differences in the effects of different groups of thermogenesis-affecting drugs on these tissues. The analysis showed that this area of research is rather sparse and requires close attention in further studies.
Collapse
Affiliation(s)
- Yulia A. Kononova
- World-Class Scientific Center “Center for Personalized Medicine”, Almazov National Medical Research Centre, 197341 St. Petersburg, Russia;
| | - Taisiia P. Tuchina
- Endocrinology Department, Almazov National Medical Research Centre, 197341 St. Petersburg, Russia;
| | - Alina Yu. Babenko
- World-Class Scientific Center “Center for Personalized Medicine”, Almazov National Medical Research Centre, 197341 St. Petersburg, Russia;
| |
Collapse
|
5
|
Haddish K, Yun JW. Silencing of dopamine receptor D5 inhibits the browning of 3T3-L1 adipocytes and ATP-consuming futile cycles in C2C12 muscle cells. Arch Physiol Biochem 2024; 130:555-567. [PMID: 37140438 DOI: 10.1080/13813455.2023.2206983] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/19/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND As a part of the catecholamines, dopamine receptors (DRs) have not been extensively studied like β3-AR in the thermogenesis process. The present study investigates the effect of DRD5 in browning events and ATP-consuming futile cycles. METHODS siRNA technology, qPCR, immunoblot analysis, immunofluorescence, and staining methods were used to investigate the effect of DRD5 on 3T3-L1 and C2C12 cells. RESULTS siDdr5 increased lipogenesis-associated effectors, and adipogenesis markers while reducing the expression of beige fat effectors. ATP-consuming futile cycle markers were also reduced following the siDrd5. On the contrary, pharmacological activation of DRD5 stimulated these effectors. Our mechanistic studies elucidated that DRD5 mediates fat browning via the cAMP-PKA-p38 MAPK signalling pathway in 3T3-L1 cells as well as the cAMP-SERCA-RyR pathway for the ATP-consuming futile cycles in both cells. CONCLUSIONS siDrd5 positively regulates browning and ATP-consuming futile cycles, and understanding its functions will provide insights into novel strategies to treat obesity.
Collapse
Affiliation(s)
- Kiros Haddish
- Department of Biotechnology, Daegu University, Gyeongbuk, Republic of Korea
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Gyeongbuk, Republic of Korea
| |
Collapse
|
6
|
Ma S, Morris MC, Hubal MJ, Ross LM, Huffman KM, Vann CG, Moore N, Hauser ER, Bareja A, Jiang R, Kummerfeld E, Barberio MD, Houmard JA, Bennett WB, Johnson JL, Timmons JA, Broderick G, Kraus VB, Aliferis CF, Kraus WE. Sex-Specific Skeletal Muscle Gene Expression Responses to Exercise Reveal Novel Direct Mediators of Insulin Sensitivity Change. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.07.24313236. [PMID: 39281755 PMCID: PMC11398589 DOI: 10.1101/2024.09.07.24313236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
BACKGROUND Understanding the causal pathways, systems, and mechanisms through which exercise impacts human health is complex. This study explores molecular signaling related to whole-body insulin sensitivity (Si) by examining changes in skeletal muscle gene expression. The analysis considers differences by biological sex, exercise amount, and exercise intensity to identify potential molecular targets for developing pharmacologic agents that replicate the health benefits of exercise. METHODS The study involved 53 participants from the STRRIDE I and II trials who completed eight months of aerobic training. Skeletal muscle gene expression was measured using Affymetrix and Illumina technologies, while pre- and post-training Si was assessed via an intravenous glucose tolerance test. A novel gene discovery protocol, integrating three literature-derived and data-driven modeling strategies, was employed to identify causal pathways and direct causal factors based on differentially expressed transcripts associated with exercise intensity and amount. RESULTS In women, the transcription factor targets identified were primarily influenced by exercise amount and were generally inhibitory. In contrast, in men, these targets were driven by exercise intensity and were generally activating. Transcription factors such as ATF1, CEBPA, BACH2, and STAT1 were commonly activating in both sexes. Specific transcriptional targets related to exercise-induced Si improvements included TACR3 and TMC7 for intensity-driven effects, and GRIN3B and EIF3B for amount-driven effects. Two key signaling pathways mediating aerobic exercise-induced Si improvements were identified: one centered on estrogen signaling and the other on phorbol ester (PKC) signaling, both converging on the epidermal growth factor receptor (EGFR) and other relevant targets. CONCLUSIONS The signaling pathways mediating Si improvements from aerobic exercise differed by sex and were further distinguished by exercise intensity and amount. Transcriptional adaptations in skeletal muscle related to Si improvements appear to be causally linked to estrogen and PKC signaling, with EGFR and other identified targets emerging as potential skeletal muscle-specific drug targets to mimic the beneficial effects of exercise on Si.
Collapse
Affiliation(s)
- S Ma
- Institute for Health Informatics (IHI), Academic Health Center, University of Minnesota, Minneapolis, MN 55455
| | - M C Morris
- Center for Clinical Systems Biology, Rochester General Hospital, Rochester, NY 14621
| | - M J Hubal
- Department of Kinesiology, Indiana University - Indianapolis, Indianapolis IN 46202
| | - L M Ross
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701
| | - K M Huffman
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701
| | - C G Vann
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701
| | - N Moore
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701
| | - E R Hauser
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701
- Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, NC 27701
| | - A Bareja
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701
| | - R Jiang
- Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, NC 27701
| | - E Kummerfeld
- Institute for Health Informatics (IHI), Academic Health Center, University of Minnesota, Minneapolis, MN 55455
| | - M D Barberio
- Department of Exercise and Nutrition Sciences, George Washington University, Washington DC 20052
| | - J A Houmard
- Department of Kinesiology, ECU, Greenville, NC 27858
| | - W B Bennett
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701
| | - J L Johnson
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701
| | - J A Timmons
- School of Medicine and Dentistry, Queen Mary University of London, UK
| | - G Broderick
- Center for Clinical Systems Biology, Rochester General Hospital, Rochester, NY 14621
| | - V B Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701
| | - C F Aliferis
- Institute for Health Informatics (IHI), Academic Health Center, University of Minnesota, Minneapolis, MN 55455
| | - W E Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701
| |
Collapse
|
7
|
Hu Y, Huang Y, Jiang Y, Weng L, Cai Z, He B. The Different Shades of Thermogenic Adipose Tissue. Curr Obes Rep 2024; 13:440-460. [PMID: 38607478 DOI: 10.1007/s13679-024-00559-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 04/13/2024]
Abstract
PURPOSE OF REVIEW By providing a concise overview of adipose tissue types, elucidating the regulation of adipose thermogenic capacity in both physiological contexts and chronic wasting diseases (a protracted hypermetabolic state that precipitates sustained catabolism and consequent progressive corporeal atrophy), and most importantly, delving into the ongoing discourse regarding the role of adipose tissue thermogenic activation in chronic wasting diseases, this review aims to provide researchers with a comprehensive understanding of the field. RECENT FINDINGS Adipose tissue, traditionally classified as white, brown, and beige (brite) based on its thermogenic activity and potential, is intricately regulated by complex mechanisms in response to exercise or cold exposure. This regulation is adipose depot-specific and dependent on the duration of exposure. Excessive thermogenic activation of adipose tissue has been observed in chronic wasting diseases and has been considered a pathological factor that accelerates disease progression. However, this conclusion may be confounded by the detrimental effects of excessive lipolysis. Recent research also suggests that such activation may play a beneficial role in the early stages of chronic wasting disease and provide potential therapeutic effects. A more comprehensive understanding of the changes in adipose tissue thermogenesis under physiological and pathological conditions, as well as the underlying regulatory mechanisms, is essential for the development of novel interventions to improve health and prevent disease.
Collapse
Affiliation(s)
- Yunwen Hu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yijie Huang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yangjing Jiang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Lvkan Weng
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Zhaohua Cai
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| |
Collapse
|
8
|
Li L, Zhou Z, Fang J, Liu D, Deng C, Chen Y, Ahasan Z, Zhu W, Cai K. The characterization of metabolic changes in adipose tissues and muscles due to different exercise intensities by Dixon in healthy young men. Eur J Radiol 2024; 177:111559. [PMID: 38865759 PMCID: PMC11440905 DOI: 10.1016/j.ejrad.2024.111559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
PURPOSE To delineate the alterations in adipose and muscle tissue composition and functionality among healthy young men across varying exercise intensities, which help to elucidate the impact of exercise intensity on weight management and inform fitness planning. METHOD 3D Dixon MRI scans were performed on the neck and supraclavicular area in 10 high-intensity exercises (HIE) athletes, 20 moderate intensity exercises (MIE) athletes and 19 low-intensity exercises non-athlete male controls (NCM). Twelve imaging parameters, including the total volume of muscle, white adipose tissue (WAT), brown adipose tissue (BAT), and the mean fat-water fraction (FWF) within these tissues. Additionally, ratios of BAT or WAT to total fat (BATr or WATr) and the proportions of muscle, BAT, or WAT to total tissue volume (Musp, BATp, and WATp) were calculated. Parameters were compared across groups and correlated with Body Mass Index (BMI), waistline, and hipline. RESULTS The HIE group exhibited the highest total muscle (totalMUS) and brown adipose tissue (totalBAT) volumes among the three groups. Conversely, the NCM group had significantly higher fwfFAT and fwfBAT values. The MUSp was higher in the HIE and MIE groups compared to NCM, while the BATp and WATp were lower. Furthermore, the BATr in HIE and MIE groups were higher than NCM group while the WATr were lower. Significant linear relationships were observed between totalBAT, totalWAT, MUSp, BATr, fwfFAT, and BMI, waistline (P < 0.05) across all groups. CONCLUSIONS MIE is sufficient for the purpose of weight control, While HIE helps to further increase the muscle mass. All three physical indexes were significantly associated with the image parameters, with waistline emerging as the most effective indicator for detecting metabolic changes across all groups.
Collapse
Affiliation(s)
- Li Li
- Radiology Department, Tongji Hospital, Tongji Medical College, HUST, Wuhan, China
| | - Zhiguo Zhou
- Orthopedics Department, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, HUST, Wuhan, China.
| | - Jicheng Fang
- Radiology Department, Tongji Hospital, Tongji Medical College, HUST, Wuhan, China
| | - Dong Liu
- Radiology Department, Tongji Hospital, Tongji Medical College, HUST, Wuhan, China
| | - Chenghu Deng
- Department of Physical Education, Wuhan University of Technology, Wuhan, China
| | - Yong Chen
- Endocrinology Department, Tongji Hospital, Tongji Medical College, HUST, Wuhan, China
| | - Zoheb Ahasan
- Radiology Department, Bioengineering Department, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States; Bioengineering Department, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Wenzhen Zhu
- Radiology Department, Tongji Hospital, Tongji Medical College, HUST, Wuhan, China
| | - Kejia Cai
- Radiology Department, Bioengineering Department, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States; Bioengineering Department, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
9
|
Ortiz GU, de Freitas EC. Physical activity and batokines. Am J Physiol Endocrinol Metab 2023; 325:E610-E620. [PMID: 37819193 DOI: 10.1152/ajpendo.00160.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Abstract
Brown and beige adipose tissue share similar functionality, being both tissues specialized in producing heat through nonshivering thermogenesis and also playing endocrine roles through the release of their secretion factors called batokines. This review elucidates the influence of physical exercise, and myokines released in response, on the regulation of thermogenic and secretory functions of these adipose tissues and discusses the similarity of batokines actions with physical exercise in the remodeling of adipose tissue. This adipose tissue remodeling promoted by autocrine and paracrine batokines or physical exercise seems to optimize its functionality associated with better health outcomes.
Collapse
Affiliation(s)
- Gabriela Ueta Ortiz
- Department of Health Sciences, Ribeirao Preto Medical School, University of São Paulo-FMRP USP, São Paulo, Brazil
| | - Ellen Cristini de Freitas
- Department of Health Sciences, Ribeirao Preto Medical School, University of São Paulo-FMRP USP, São Paulo, Brazil
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Masson SWC, Madsen S, Cooke KC, Potter M, Vegas AD, Carroll L, Thillainadesan S, Cutler HB, Walder KR, Cooney GJ, Morahan G, Stöckli J, James DE. Leveraging genetic diversity to identify small molecules that reverse mouse skeletal muscle insulin resistance. eLife 2023; 12:RP86961. [PMID: 37494090 PMCID: PMC10371229 DOI: 10.7554/elife.86961] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023] Open
Abstract
Systems genetics has begun to tackle the complexity of insulin resistance by capitalising on computational advances to study high-diversity populations. 'Diversity Outbred in Australia (DOz)' is a population of genetically unique mice with profound metabolic heterogeneity. We leveraged this variance to explore skeletal muscle's contribution to whole-body insulin action through metabolic phenotyping and skeletal muscle proteomics of 215 DOz mice. Linear modelling identified 553 proteins that associated with whole-body insulin sensitivity (Matsuda Index) including regulators of endocytosis and muscle proteostasis. To enrich for causality, we refined this network by focusing on negatively associated, genetically regulated proteins, resulting in a 76-protein fingerprint of insulin resistance. We sought to perturb this network and restore insulin action with small molecules by integrating the Broad Institute Connectivity Map platform and in vitro assays of insulin action using the Prestwick chemical library. These complementary approaches identified the antibiotic thiostrepton as an insulin resistance reversal agent. Subsequent validation in ex vivo insulin-resistant mouse muscle and palmitate-induced insulin-resistant myotubes demonstrated potent insulin action restoration, potentially via upregulation of glycolysis. This work demonstrates the value of a drug-centric framework to validate systems-level analysis by identifying potential therapeutics for insulin resistance.
Collapse
Affiliation(s)
- Stewart WC Masson
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneyCamperdownAustralia
| | - Søren Madsen
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneyCamperdownAustralia
| | - Kristen C Cooke
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneyCamperdownAustralia
| | - Meg Potter
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneyCamperdownAustralia
| | - Alexis Diaz Vegas
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneyCamperdownAustralia
| | - Luke Carroll
- Australian Proteome Analysis Facility, Macquarie UniversityMacquarie ParkAustralia
| | - Senthil Thillainadesan
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneyCamperdownAustralia
| | - Harry B Cutler
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneyCamperdownAustralia
| | - Ken R Walder
- School of Medicine, Deakin UniversityGeelongAustralia
| | - Gregory J Cooney
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneyCamperdownAustralia
| | - Grant Morahan
- Centre for Diabetes Research, Harry Perkins Institute of Medical ResearchMurdochAustralia
| | - Jacqueline Stöckli
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneyCamperdownAustralia
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneyCamperdownAustralia
- School of Medical Sciences University of SydneySydneyAustralia
| |
Collapse
|
11
|
Stokes T, Cen HH, Kapranov P, Gallagher IJ, Pitsillides AA, Volmar C, Kraus WE, Johnson JD, Phillips SM, Wahlestedt C, Timmons JA. Transcriptomics for Clinical and Experimental Biology Research: Hang on a Seq. ADVANCED GENETICS (HOBOKEN, N.J.) 2023; 4:2200024. [PMID: 37288167 PMCID: PMC10242409 DOI: 10.1002/ggn2.202200024] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Indexed: 06/09/2023]
Abstract
Sequencing the human genome empowers translational medicine, facilitating transcriptome-wide molecular diagnosis, pathway biology, and drug repositioning. Initially, microarrays are used to study the bulk transcriptome; but now short-read RNA sequencing (RNA-seq) predominates. Positioned as a superior technology, that makes the discovery of novel transcripts routine, most RNA-seq analyses are in fact modeled on the known transcriptome. Limitations of the RNA-seq methodology have emerged, while the design of, and the analysis strategies applied to, arrays have matured. An equitable comparison between these technologies is provided, highlighting advantages that modern arrays hold over RNA-seq. Array protocols more accurately quantify constitutively expressed protein coding genes across tissue replicates, and are more reliable for studying lower expressed genes. Arrays reveal long noncoding RNAs (lncRNA) are neither sparsely nor lower expressed than protein coding genes. Heterogeneous coverage of constitutively expressed genes observed with RNA-seq, undermines the validity and reproducibility of pathway analyses. The factors driving these observations, many of which are relevant to long-read or single-cell sequencing are discussed. As proposed herein, a reappreciation of bulk transcriptomic methods is required, including wider use of the modern high-density array data-to urgently revise existing anatomical RNA reference atlases and assist with more accurate study of lncRNAs.
Collapse
Affiliation(s)
- Tanner Stokes
- Faculty of ScienceMcMaster UniversityHamiltonL8S 4L8Canada
| | - Haoning Howard Cen
- Life Sciences InstituteUniversity of British ColumbiaVancouverV6T 1Z3Canada
| | | | - Iain J Gallagher
- School of Applied SciencesEdinburgh Napier UniversityEdinburghEH11 4BNUK
| | | | | | | | - James D. Johnson
- Life Sciences InstituteUniversity of British ColumbiaVancouverV6T 1Z3Canada
| | | | | | - James A. Timmons
- Miller School of MedicineUniversity of MiamiMiamiFL33136USA
- William Harvey Research InstituteQueen Mary University LondonLondonEC1M 6BQUK
- Augur Precision Medicine LTDStirlingFK9 5NFUK
| |
Collapse
|
12
|
Hillock-Watling C, Gotlieb AI. The pathobiology of perivascular adipose tissue (PVAT), the fourth layer of the blood vessel wall. Cardiovasc Pathol 2022; 61:107459. [PMID: 35907442 DOI: 10.1016/j.carpath.2022.107459] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/24/2022] [Accepted: 07/21/2022] [Indexed: 12/21/2022] Open
Abstract
The perivascular adipose tissue (PVAT) is an adipose tissue depot which surrounds most human blood vessels. It is metabolically active and has both a protective and a pathogenic role in vascular biology and pathobiology. It regulates vascular homeostasis and promotes vascular dysfunction. The purpose of this review is to consider the origin, structure, function, and dysfunction of this unique adipose depot consisting of white (WAT), brown (BAT) and beige adipose tissue, to support the concept that PVAT may be considered the fourth layer of the normal arterial wall (tunica adiposa), in which dysfunction creates a microenvironment that regulates, in part, the initiation and growth of the fibro-inflammatory lipid atherosclerotic plaque. Experimental in-vivo and in-vitro studies and human investigations show that the adipocytes, extracellular matrix, nerve fibers and vasa vasorum found in PVAT form a functional adipose tissue unit adjacent to, but not anatomically separated from, the adventitia. PVAT maintains and regulates the structure and function of the normal arterial wall through autocrine and paracrine mechanisms, that include modulation of medial smooth muscle cell contractility and secretion of anti-inflammatory molecules. PVAT shows regional phenotypic heterogeneity which may be important in its effect on the wall of specific sections of the aorta and its muscular branches during perturbations and various injuries including obesity and diabetes. In atherosclerosis, a pan-vascular microenvironment is created that functionally links the intima-medial atherosclerotic plaque to the adventitia and PVAT beneath the plaque, highlighting the local impact of PVAT on atherogenesis. PVAT adipocytes have inflammatory effects which in response to injury show activation and phenotypic changes, some of which are considered to have direct and indirect effects on the intima and media during the initiation, growth, and development of complicated atherosclerotic plaques. Thus, it is important to maintain the integrity of the full vascular microenvironment so that design of experimental and human studies include investigation of PVAT. The era of discarding PVAT tissue in both experimental and human research and clinical vascular studies should end.
Collapse
Affiliation(s)
- Cassie Hillock-Watling
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - Avrum I Gotlieb
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Kim YJ, Kim HJ, Lee SG, Kim DH, In Jang S, Go HS, Lee WJ, Seong JK. Aerobic exercise for eight weeks provides protective effects towards liver and cardiometabolic health and adipose tissue remodeling under metabolic stress for one week: A study in mice. Metabolism 2022; 130:155178. [PMID: 35227728 DOI: 10.1016/j.metabol.2022.155178] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/07/2022] [Accepted: 02/20/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND The relationship between exercise training and health benefits is under thorough investigation. However, the effects of exercise training on the maintenance of metabolic health are unclear. METHODS Our experimental design involved initial exercise training followed by a high-fat diet (HFD) challenge. Eight-week-old male was trained under voluntary wheel running aerobic exercise for eight weeks to determine the systemic metabolic changes induced by exercise training and whether such changes persisted even after discontinuing exercise. The mice were given either a normal chow diet (NCD) or HFD ad libitum for one week after discontinuation of exercise (CON-NCD, n = 29; EX-NCD, n = 29; CON-HFD, n = 30; EX-HFD, n = 31). RESULTS Our study revealed that metabolic stress following the transition to an HFD in mice that discontinued training failed to reverse the aerobic exercise training-induced improvement in metabolism. We report that the mice subjected to exercise training could better counteract weight gain, adipose tissue hypertrophy, insulin resistance, fatty liver, and mitochondrial dysfunction in response to an HFD compared with untrained mice. This observation could be attributed to the fact that exercise enhances the browning of white fat, whole-body oxygen uptake, and heat generation. Furthermore, we suggest that the effects of exercise persist due to PPARα-FGF21-FGFR1 mechanisms, although additional pathways cannot be excluded and require further research. Although our study suggests the preventive potential of exercise, appropriate human trials are needed to demonstrate the efficacy in subjects who cannot perform sustained exercise; this may provide an important basis regarding human health.
Collapse
Affiliation(s)
- Youn Ju Kim
- Laboratory of Developmental Biology and Genomics, BK21 Program for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea; The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Korea Mouse Phenotyping Center (KMPC), Seoul National University, 08826 Seoul, Republic of Korea
| | - Hye Jin Kim
- The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Korea Mouse Phenotyping Center (KMPC), Seoul National University, 08826 Seoul, Republic of Korea
| | - Sang Gyu Lee
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, 08826 Seoul, Republic of Korea
| | - Do Hyun Kim
- Laboratory of Developmental Biology and Genomics, BK21 Program for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea; The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Korea Mouse Phenotyping Center (KMPC), Seoul National University, 08826 Seoul, Republic of Korea
| | - Su In Jang
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, 08826 Seoul, Republic of Korea
| | - Hye Sun Go
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, 08826 Seoul, Republic of Korea
| | - Won Jun Lee
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, 08826 Seoul, Republic of Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, BK21 Program for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea; The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Korea Mouse Phenotyping Center (KMPC), Seoul National University, 08826 Seoul, Republic of Korea; Interdisciplinary Program for Bioinformatics, Program for Cancer Biology, BIO-MAX/N-Bio Institute, Seoul National University, 08826 Seoul, Republic of Korea.
| |
Collapse
|
14
|
Altınova AE. Beige Adipocyte as the Flame of White Adipose Tissue: Regulation of Browning and Impact of Obesity. J Clin Endocrinol Metab 2022; 107:e1778-e1788. [PMID: 34967396 DOI: 10.1210/clinem/dgab921] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Indexed: 11/19/2022]
Abstract
Beige adipocyte, the third and relatively new type of adipocyte, can emerge in white adipose tissue (WAT) under thermogenic stimulations that is termed as browning of WAT. Recent studies suggest that browning of WAT deserves more attention and therapies targeting browning of WAT can be helpful for reducing obesity. Beyond the major inducers of browning, namely cold and β 3-adrenergic stimulation, beige adipocytes are affected by several factors, and excess adiposity per se may also influence the browning process. The objective of the present review is to provide an overview of recent clinical and preclinical studies on the hormonal and nonhormonal factors that affect the browning of WAT. This review further focuses on the role of obesity per se on browning process.
Collapse
Affiliation(s)
- Alev Eroğlu Altınova
- Gazi University Faculty of Medicine, Department of Endocrinology and Metabolism, 06500 Ankara, Turkey
| |
Collapse
|
15
|
Bonfante ILP, Monfort-Pires M, Duft RG, da Silva Mateus KC, de Lima Júnior JC, Dos Santos Trombeta JC, Finardi EAR, Brunelli DT, Morari J, de Lima JAB, Bellotto ML, de Araújo TMF, Ramos CD, Chacon-Mikahil MPT, Velloso LA, Cavaglieri CR. Combined training increases thermogenic fat activity in patients with overweight and type 2 diabetes. Int J Obes (Lond) 2022; 46:1145-1154. [PMID: 35173278 DOI: 10.1038/s41366-022-01086-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Exercise is an important strategy in the management of diabetes. Experimental studies have shown that exercise acts, at least in part, by inducing the production of myokines that improve metabolic control and activate brown/beige adipose tissue depots. Combined training (CT) is recommended by the major diabetes guidelines due to its metabolic and cardiovascular benefits, however, its impact on brown/beige adipose tissue activities has never been tested in humans with overweight and type 2 diabetes (T2D). Here, we evaluated the effects of 16-week combined training (CT) program on brown adipose tissue activity; browning and autophagy markers, and serum pro-thermogenic/inflammatory inducers in patients with overweight and T2D. METHODS Thirty-four patients with overweight and T2D were assigned to either a control group (CG) or a combined training group (CTG) in a randomized and controlled study. Functional/fitness parameters, anthropometry/body composition parameters, blood hormone/biochemical parameters, thermogenic/autophagic gene expression in subcutaneous adipose tissue were evaluated before and at the end of the intervention. In addition, cold-induced 18-Fluoroxyglucose Positron Emission Computed Tomography (18F-FDG PET/CT) was performed in the training group before and after the end of the intervention. RESULTS CT increased cervical/supraclavicular brown adipose tissue (BAT) thermogenic activity (p = 0.03) as well as in perirenal adipose tissue (p = 0.02). In addition, CT increased the expression of genes related to thermogenic profile (TMEM26: + 95%, p = 0.04; and EPSTI1: + 26%, p = 0.03) and decreased autophagic genes (ULK1: -15%, p = 0.04; LC3: -5%, p = 0.02; and ATG4: -22%, p < 0.001) in subcutaneous adipose tissue. There were positive correlations between Δ% BAT activity with Δ% of post training energy expenditure cold exposure, HDL-c, IL4, adiponectin, irisin, meteorin-like, and TMEM26 and ZIC1 genes, besides negative correlations with LDL-c, total cholesterol and C-reactive protein. CONCLUSION This is the first evidence of the beneficial actions of CT on adipose tissue thermogenic activity in humans, and it adds important support for the recommendation of CT as a strategy in the management of diabetes.
Collapse
Affiliation(s)
- Ivan Luiz Padilha Bonfante
- Laboratory of Exercise Physiology, School of Physical Education, University of Campinas, Campinas, SP, 13083-970, Brazil. .,Federal Institute of Education, Science and Technology of São Paulo, Hortolândia campus, Hortolândia, SP, 13183-091, Brazil.
| | - Milena Monfort-Pires
- Laboratory of Cell Signaling, Department of Internal Medicine, University of Campinas, Campinas, SP, 13084-970, Brazil.,Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, 13084-970, Brazil
| | - Renata Garbellini Duft
- Laboratory of Exercise Physiology, School of Physical Education, University of Campinas, Campinas, SP, 13083-970, Brazil
| | - Keryma Chaves da Silva Mateus
- Laboratory of Exercise Physiology, School of Physical Education, University of Campinas, Campinas, SP, 13083-970, Brazil
| | - José Carlos de Lima Júnior
- Laboratory of Cell Signaling, Department of Internal Medicine, University of Campinas, Campinas, SP, 13084-970, Brazil.,Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, 13084-970, Brazil
| | | | | | - Diego Trevisan Brunelli
- Laboratory of Exercise Physiology, School of Physical Education, University of Campinas, Campinas, SP, 13083-970, Brazil
| | - Joseane Morari
- Laboratory of Cell Signaling, Department of Internal Medicine, University of Campinas, Campinas, SP, 13084-970, Brazil.,Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, 13084-970, Brazil
| | | | - Maria Luisa Bellotto
- Laboratory of Exercise Physiology, School of Physical Education, University of Campinas, Campinas, SP, 13083-970, Brazil
| | - Thiago Matos Ferreira de Araújo
- Laboratory of Cell Signaling, Department of Internal Medicine, University of Campinas, Campinas, SP, 13084-970, Brazil.,Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, 13084-970, Brazil
| | - Celso Darío Ramos
- Department of Radiology, University of Campinas, Campinas, SP, 13084-970, Brazil
| | | | - Licio Augusto Velloso
- Laboratory of Cell Signaling, Department of Internal Medicine, University of Campinas, Campinas, SP, 13084-970, Brazil.,Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, 13084-970, Brazil
| | - Cláudia Regina Cavaglieri
- Laboratory of Exercise Physiology, School of Physical Education, University of Campinas, Campinas, SP, 13083-970, Brazil.
| |
Collapse
|
16
|
Timmons JA, Anighoro A, Brogan RJ, Stahl J, Wahlestedt C, Farquhar DG, Taylor-King J, Volmar CH, Kraus WE, Phillips SM. A human-based multi-gene signature enables quantitative drug repurposing for metabolic disease. eLife 2022; 11:68832. [PMID: 35037854 PMCID: PMC8763401 DOI: 10.7554/elife.68832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 11/26/2021] [Indexed: 12/22/2022] Open
Abstract
Insulin resistance (IR) contributes to the pathophysiology of diabetes, dementia, viral infection, and cardiovascular disease. Drug repurposing (DR) may identify treatments for IR; however, barriers include uncertainty whether in vitro transcriptomic assays yield quantitative pharmacological data, or how to optimise assay design to best reflect in vivo human disease. We developed a clinical-based human tissue IR signature by combining lifestyle-mediated treatment responses (>500 human adipose and muscle biopsies) with biomarkers of disease status (fasting IR from >1200 biopsies). The assay identified a chemically diverse set of >130 positively acting compounds, highly enriched in true positives, that targeted 73 proteins regulating IR pathways. Our multi-gene RNA assay score reflected the quantitative pharmacological properties of a set of epidermal growth factor receptor-related tyrosine kinase inhibitors, providing insight into drug target specificity; an observation supported by deep learning-based genome-wide predicted pharmacology. Several drugs identified are suitable for evaluation in patients, particularly those with either acute or severe chronic IR.
Collapse
Affiliation(s)
- James A Timmons
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom.,Augur Precision Medicine LTD, Stirling, United Kingdom
| | | | | | - Jack Stahl
- Center for Therapeutic Innovation, Miller School of Medicine, University of Miami, Miami, United States
| | - Claes Wahlestedt
- Center for Therapeutic Innovation, Miller School of Medicine, University of Miami, Miami, United States
| | | | | | - Claude-Henry Volmar
- Center for Therapeutic Innovation, Miller School of Medicine, University of Miami, Miami, United States
| | | | - Stuart M Phillips
- Faculty of Science, Kinesiology, McMaster University, Hamilton, Canada
| |
Collapse
|
17
|
Yu J, Zhu J, Deng J, Shen J, Du F, Wu X, Chen Y, Li M, Wen Q, Xiao Z, Zhao Y. Dopamine receptor D1 signaling stimulates lipolysis and browning of white adipocytes. Biochem Biophys Res Commun 2021; 588:83-89. [PMID: 34953210 DOI: 10.1016/j.bbrc.2021.12.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 11/02/2022]
Abstract
Adipocytes express several kinds of catecholamine receptors, including adrenergic receptors, and dopamine receptors. Signaling pathways mediated by catecholamine receptors, such as β3-adrenergic receptor pathway, can induce body energy expenditure via activating thermogenesis of adipose tissue. However, the roles of adipose dopamine receptors on adipocytes are still unclear. Here, we investigate the role of dopamine receptor D1 (DRD1) on adipocytes. To this end, we use DRD1 agonist Fenoldopam and antagonist SCH23390 to stimulate and inhibit DRD1 signaling, respectively. We found that, compared with control group mice, Fenoldopam-treated and SCH23390-treated high-fat-diet (HFD)-fed mice showed smaller and bigger white adipose tissue/adipocyte sizes, respectively. Meanwhile, activating of DRD1 signaling enhanced intracellular levels of cAMP, phosphorylation levels of protein kinase A substrates, and hormone-sensitive lipase, a key enzyme for lipolysis in mature 3T3-L1 adipocytes and white adipose tissue of HFD-fed mice. As a result, the levels of free fatty acid or glycerol were increased, indicating stimulation of lipolysis by DRD1 activation. Moreover, activating DRD1 can induce the browning of adipocytes, as indicated by enhanced phosphorylation of P38 MAP kinase, increased expression of beige cell markers (PGC-1α, UCP-1, and CD81), mitochondrion content, and expression of β-oxidation related genes. All of these effects were reduced after treating with SCH23390 both in vitro and in HFD-fed mice. Collectively, our study indicated that DRD1 signaling stimulates lipolysis and browning of white adipocytes in vitro and in vivo. Understanding the functions of DRD1 on human adipocytes and adipose tissues will help us to design novel strategies to treat obesity.
Collapse
Affiliation(s)
- Jing Yu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China; Luzhou Key Laboratory of Cell Therapy and Cell Drugs, Southwest Medical University, Luzhou, Sichuan, 646000, China; Department of Pharmacy, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453000, China
| | - Jiabing Zhu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China; Luzhou Key Laboratory of Cell Therapy and Cell Drugs, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jian Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China; Luzhou Key Laboratory of Cell Therapy and Cell Drugs, Southwest Medical University, Luzhou, Sichuan, 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China; Luzhou Key Laboratory of Cell Therapy and Cell Drugs, Southwest Medical University, Luzhou, Sichuan, 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China; Luzhou Key Laboratory of Cell Therapy and Cell Drugs, Southwest Medical University, Luzhou, Sichuan, 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China; Luzhou Key Laboratory of Cell Therapy and Cell Drugs, Southwest Medical University, Luzhou, Sichuan, 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China; Luzhou Key Laboratory of Cell Therapy and Cell Drugs, Southwest Medical University, Luzhou, Sichuan, 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China; Luzhou Key Laboratory of Cell Therapy and Cell Drugs, Southwest Medical University, Luzhou, Sichuan, 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, China
| | - Qinglian Wen
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, China; Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China; Luzhou Key Laboratory of Cell Therapy and Cell Drugs, Southwest Medical University, Luzhou, Sichuan, 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, China.
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China; Luzhou Key Laboratory of Cell Therapy and Cell Drugs, Southwest Medical University, Luzhou, Sichuan, 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
18
|
McKie GL, Wright DC. The confounding effects of sub-thermoneutral housing temperatures on aerobic exercise-induced adaptations in mouse subcutaneous white adipose tissue. Biol Lett 2021; 17:20210171. [PMID: 34186002 DOI: 10.1098/rsbl.2021.0171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mice are the most commonly used model organism for human biology, and failure to acknowledge fundamental differences in thermal biology between these species has confounded the study of adipose tissue metabolism in mice and its translational relevance to humans. Here, using exercise biochemistry as an example, we highlight the subtle yet detrimental effects sub-thermoneutral housing temperatures can have on the study of adipose tissue metabolism in mice. We encourage academics and publishers to consider ambient housing temperature as a key determinant in the methodological conception and reporting of all research on rodent white adipose tissue metabolism.
Collapse
Affiliation(s)
- Greg L McKie
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
| | - David C Wright
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|
19
|
Nigro P, Middelbeek RJW, Alves CRR, Rovira-Llopis S, Ramachandran K, Rowland LA, Møller AB, Takahashi H, Alves-Wagner AB, Vamvini M, Makarewicz NS, Albertson BG, Hirshman MF, Goodyear LJ. Exercise Training Promotes Sex-Specific Adaptations in Mouse Inguinal White Adipose Tissue. Diabetes 2021; 70:1250-1264. [PMID: 33563587 PMCID: PMC8275891 DOI: 10.2337/db20-0790] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022]
Abstract
Recent studies demonstrate that adaptations to white adipose tissue (WAT) are important components of the beneficial effects of exercise training on metabolic health. Exercise training favorably alters the phenotype of subcutaneous inguinal WAT (iWAT) in male mice, including decreasing fat mass, improving mitochondrial function, inducing beiging, and stimulating the secretion of adipokines. In this study, we find that despite performing more voluntary wheel running compared with males, these adaptations do not occur in the iWAT of female mice. Consistent with sex-specific adaptations, we report that mRNA expression of androgen receptor coactivators is upregulated in iWAT from trained male mice and that testosterone treatment of primary adipocytes derived from the iWAT of male, but not female mice, phenocopies exercise-induced metabolic adaptations. Sex specificity also occurs in the secretome profile, as we identify cysteine-rich secretory protein 1 (Crisp1) as a novel adipokine that is only secreted from male iWAT in response to exercise. Crisp1 expression is upregulated by testosterone and functions to increase glucose and fatty acid uptake. Our finding that adaptations to iWAT with exercise training are dramatically greater in male mice has potential clinical implications for understanding the different metabolic response to exercise training in males and females and demonstrates the importance of investigating both sexes in studies of adipose tissue biology.
Collapse
Affiliation(s)
- Pasquale Nigro
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Roeland J W Middelbeek
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Christiano R R Alves
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Susana Rovira-Llopis
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Krithika Ramachandran
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Leslie A Rowland
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Andreas B Møller
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Hirokazu Takahashi
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Ana B Alves-Wagner
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Maria Vamvini
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Nathan S Makarewicz
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Brent G Albertson
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Michael F Hirshman
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Laurie J Goodyear
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
20
|
Biochemical adaptations in white adipose tissue following aerobic exercise: from mitochondrial biogenesis to browning. Biochem J 2020; 477:1061-1081. [PMID: 32187350 DOI: 10.1042/bcj20190466] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/24/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023]
Abstract
Our understanding of white adipose tissue (WAT) biochemistry has evolved over the last few decades and it is now clear that WAT is not simply a site of energy storage, but rather a pliable endocrine organ demonstrating dynamic responsiveness to the effects of aerobic exercise. Similar to its established effects in skeletal muscle, aerobic exercise induces many biochemical adaptations in WAT including mitochondrial biogenesis and browning. While past research has focused on the regulation of these biochemical processes, there has been renewed interest as of late given the potential of harnessing WAT mitochondrial biogenesis and browning to treat obesity and type II diabetes. Unfortunately, despite increasing evidence that innumerable factors, both exercise induced and pharmacological, can elicit these biochemical adaptations in WAT, the underlying mechanisms remain poorly defined. Here, we begin with a historical account of our understanding of WAT exercise biochemistry before presenting detailed evidence in favour of an up-to-date model by which aerobic exercise induces mitochondrial biogenesis and browning in WAT. Specifically, we discuss how aerobic exercise induces increases in WAT lipolysis and re-esterification and how this could be a trigger that activates the cellular energy sensor 5' AMP-activated protein kinase to mediate the induction of mitochondrial biogenesis and browning via the transcriptional co-activator peroxisome proliferator-activated receptor gamma co-activator-1 alpha. While this review primarily focuses on mechanistic results from rodent studies special attention is given to the translation of these results, or lack thereof, to human physiology.
Collapse
|
21
|
Picoli CDC, Gilio GR, Henriques F, Leal LG, Besson JC, Lopes MA, Franzói de Moraes SM, Hernandes L, Batista Junior ML, Peres SB. Resistance exercise training induces subcutaneous and visceral adipose tissue browning in Swiss mice. J Appl Physiol (1985) 2020; 129:66-74. [PMID: 32501777 DOI: 10.1152/japplphysiol.00742.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aerobic exercise training (AER) may promote several adaptations in white adipose tissue (WAT), including a phenotypic change known as browning. The present study aimed at assessing if resistance exercise training (RES) would be as efficient as AER in inducing a brown-like adipocyte reprogramming in WAT. Thirty Swiss male mice were randomly divided into 3 groups with 10 animals each: 1) sedentary (SED), 2) AER, and 3) RES. After the adaptation training, an incremental test was performed at the beginning of each week to adjust training load. Mice were submitted to 8 wk of AER or RES. After the experimental period, inguinal and retroperitoneal WAT (iWAT and rpWAT) and brown adipose tissue (BAT) were collected. The prescription of AER and RES was effective in increasing the performance of both groups. Also, RES presented a lower body weight than AER/SED. AER and RES reduced the area of iWAT and rpWAT adipocytes and the lipid area of BAT, induced an increase of vascular endothelial growth factor (VEGF) and cluster of differentiation 31 (CD31) and uncoupling protein 1 (UCP-1), and increased the expression of selective genes of brown and beige phenotype in adipocytes after 8 wk. In general, we demonstrated here that AER and RES training similarly induced the browning of iWAT and rpWAT.NEW & NOTEWORTHY Aerobic exercise training (AER) induces the browning of white adipose tissue, turning adipocytes multilocular, highly vascularized and expressing uncoupling protein 1 (UCP-1). The current study compared the efficiency of resistance to aerobic exercise training to promote a brown-like phenotype. Our results suggest that both types of training similarly induce subcutaneous and visceral adipose tissue browning.
Collapse
Affiliation(s)
| | - Gustavo Renan Gilio
- Department of Physical Education, State University of Maringá, Maringá-Paraná, Brazil.,Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Felipe Henriques
- Department of Integrated Biotechnology Group, University of Mogi das Cruzes, Mogi-São Paulo, Brazil.,Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Luana Garcia Leal
- Department of Integrated Biotechnology Group, University of Mogi das Cruzes, Mogi-São Paulo, Brazil
| | - Jean Carlos Besson
- Department of Morphological Sciences, State University of Maringá, Maringá-Paraná, Brazil
| | - Magno Alves Lopes
- Department of Integrated Biotechnology Group, University of Mogi das Cruzes, Mogi-São Paulo, Brazil
| | | | - Luzmarina Hernandes
- Department of Morphological Sciences, State University of Maringá, Maringá-Paraná, Brazil
| | | | - Sidney Barnabé Peres
- Department of Physiological Sciences, State University of Maringá, Maringá-Paraná, Brazil
| |
Collapse
|
22
|
Dinas PC, Krase A, Nintou E, Georgakopoulos A, Granzotto M, Metaxas M, Karachaliou E, Rossato M, Vettor R, Georgoulias P, S Mayor T, Koutsikos J, Athanasiou K, Ioannou LG, Gkiata P, Carrillo AE, Koutedakis Y, Metsios GS, Jamurtas AZ, Chatziioannou S, Flouris AD. Human white-fat thermogenesis: Experimental and meta-analytic findings. Temperature (Austin) 2020; 8:39-52. [PMID: 33553504 PMCID: PMC7849687 DOI: 10.1080/23328940.2020.1769530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
White adipose tissue (WAT) thermogenic activity may play a role in whole-body energy balance and two of its main regulators are thought to be environmental temperature (Tenv) and exercise. Low Tenv may increase uncoupling protein one (UCP1; the main biomarker of thermogenic activity) in WAT to regulate body temperature. On the other hand, exercise may stimulate UCP1 in WAT, which is thought to alter body weight regulation. However, our understanding of the roles (if any) of Tenv and exercise in WAT thermogenic activity remains incomplete. Our aim was to examine the impacts of low Tenv and exercise on WAT thermogenic activity, which may alter energy homeostasis and body weight regulation. We conducted a series of four experimental studies, supported by two systematic reviews and meta-analyses. We found increased UCP1 mRNA (p = 0.03; but not protein level) in human WAT biopsy samples collected during the cold part of the year, a finding supported by a systematic review and meta-analysis (PROSPERO review protocol: CRD42019120116). Additional clinical trials (NCT04037371; NCT04037410) using Positron Emission Tomography/Computed Tomography (PET/CT) revealed no impact of low Tenv on human WAT thermogenic activity (p > 0.05). Furthermore, we found no effects of exercise on UCP1 mRNA or protein levels (p > 0.05) in WAT biopsy samples from a human randomized controlled trial (Clinical trial: NCT04039685), a finding supported by systematic review and meta-analytic data (PROSPERO review protocol: CRD42019120213). Taken together, the present experimental and meta-analytic findings of UCP1 and SUVmax, demonstrate that cold and exercise may play insignificant roles in human WAT thermogenic activity. Abbreviations: WAT:White adipose tissue; Tenv: Environmental temperature; UCP1: Uncoupling protein one; BAT: Brown adipose tissue; BMI:Body mass index; mRNA: Messenger ribonucleic acid; RCT: Randomized controlled trial; WHR: Waist-to-hip ratio; PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-analyses; PET/CT: Positron Emission Tomography and Computed Tomography; REE: Resting energy expenditure; 18F-FDG: F18 fludeoxyglucose; VO2peak:Peak oxygen consumption; 1RM: One repetition maximum; SUVmax: Maximum standardized uptake value; Std: Standardized mean difference.
Collapse
Affiliation(s)
- Petros C Dinas
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece.,Faculty of Education Health and Wellbeing, University of Wolverhampton, Walsall, UK
| | - Argyro Krase
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece
| | - Eleni Nintou
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece
| | | | - Marnie Granzotto
- Department of Medicine - DIMED, Internal Medicine 3, University of Padova, Padova, Italy
| | - Marinos Metaxas
- PET/CT Department, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Elena Karachaliou
- PET/CT Department, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Marco Rossato
- Department of Medicine - DIMED, Internal Medicine 3, University of Padova, Padova, Italy
| | - Roberto Vettor
- Department of Medicine - DIMED, Internal Medicine 3, University of Padova, Padova, Italy
| | | | - Tiago S Mayor
- SIMTECH Laboratory, Transport Phenomena Research Centre, Engineering Faculty of Porto University, Porto, Portugal
| | - John Koutsikos
- Nuclear Medicine Department, 401 General Military Hospital, Athens, Greece
| | | | - Leonidas G Ioannou
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece
| | - Paraskevi Gkiata
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece
| | - Andres E Carrillo
- Department of Movement Science, Chatham University, Pittsburgh, PA, USA
| | - Yiannis Koutedakis
- Faculty of Education Health and Wellbeing, University of Wolverhampton, Walsall, UK.,School of Physical Education and Exercise Science, University of Thessaly, Trikala, Greece
| | - George S Metsios
- Faculty of Education Health and Wellbeing, University of Wolverhampton, Walsall, UK
| | - Athanasios Z Jamurtas
- School of Physical Education and Exercise Science, University of Thessaly, Trikala, Greece
| | - Sofia Chatziioannou
- PET/CT Department, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Andreas D Flouris
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece
| |
Collapse
|
23
|
Mesri Alamdari N, Irandoost P, Roshanravan N, Vafa M, Asghari Jafarabadi M, Alipour S, Roshangar L, Alivand M, Farsi F, Shidfar F. Effects of Royal Jelly and Tocotrienol Rich Fraction in obesity treatment of calorie-restricted obese rats: a focus on white fat browning properties and thermogenic capacity. Nutr Metab (Lond) 2020; 17:42. [PMID: 32508963 PMCID: PMC7266117 DOI: 10.1186/s12986-020-00458-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/07/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Obesity has reached an alarming rate worldwide. Promoting thermogenesis via increasing the function of brown adipose tissue (BAT) or white adipose tissue (WAT) browning has been proposed as a new protective approach against obesity. The goal of this study was to evaluate the effects of Royal Jelly (RJ) and tocotrienol rich fraction (TRF) on BAT activation and WAT browning during calorie restriction diet (CRD) in obesity model. METHODS In this experimental study, 50 obese Wistar rats were randomly divided into 5 groups and then received one of the following treatments for a period of 8-week: High-fat diet (HFD), CRD, RJ + CRD, TRF + CRD, and RJ + TRF + CRD. Effects of RJ and TRF, individually and in combination on body weight and the expression of key thermoregulatory genes in WAT and BAT were examined by quantitative real-time (qRT-PCR). Also, morphological alterations were assessed by hematoxylin and eosin staining. RESULTS RJ (- 67.21 g ±4.84 g) and RJ + TRF (- 73.29 g ±4.51 g) significantly reduced weight gain relative to the CRD group (- 40.70 g ±6.50 g, P < 0.001). In comparison with the CRD group, RJ and RJ + TRF remarkably enhanced the uncoupling protein1 (UCP1) expression in WAT (5.81, 4.72 fold, P < 0.001) and BAT (4.99, 4.75 fold, P < 0.001). The expression of PR domain containing 16(PRDM 16), cAMP response element-binding protein1 (CREB1), P38 mitogen-activated protein kinases (P38MAPK), and Bone morphogenetic protein8B (BMP8B) have significantly increased following RJ and RJ + TRF treatments (P < 0.001). However, the expression levels of CCAAT/enhancer-binding protein beta (CEBPβ) and Bone morphogenetic protein7 ( BMP7) did not remarkably change. Multilocular beige cells in WAT and compacted dense adipocytes were also observed in BAT of RJ and RJ + TRF received groups. TRF showed no substantial effects on the expression of the mentioned thermoregulatory genes and brown fat-like phenotype. CONCLUSION Our results suggest that, Royal Jelly promotes thermogenesis and browning of WAT, contributing to an increase in energy expenditure. Thus, Royal Jelly may give rise to a novel dietary choice to attenuate obesity.
Collapse
Affiliation(s)
- Naimeh Mesri Alamdari
- Department of Nutrition,Student research committee, School of Health, Iran University of Medical Sciences, Tehran, Iran
| | - Pardis Irandoost
- Department of Nutrition,Student research committee, School of Health, Iran University of Medical Sciences, Tehran, Iran
| | - Neda Roshanravan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadreza Vafa
- Road Traffic Injury Prevention Research Center, School of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Shahriar Alipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Farnaz Farsi
- Department of Nutrition, School of Health, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Shidfar
- Road Traffic Injury Prevention Research Center, School of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
24
|
Farrash W, Brook M, Crossland H, Phillips BE, Cegielski J, Wilkinson DJ, Constantin-Teodosiu D, Greenhaff PL, Smith K, Cleasby M, Atherton PJ. Impacts of rat hindlimb Fndc5/irisin overexpression on muscle and adipose tissue metabolism. Am J Physiol Endocrinol Metab 2020; 318:E943-E955. [PMID: 32369414 PMCID: PMC7311674 DOI: 10.1152/ajpendo.00034.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Myokines, such as irisin, have been purported to exert physiological effects on skeletal muscle in an autocrine/paracrine fashion. In this study, we aimed to investigate the mechanistic role of in vivo fibronectin type III domain-containing 5 (Fndc5)/irisin upregulation in muscle. Overexpression (OE) of Fndc5 in rat hindlimb muscle was achieved by in vivo electrotransfer, i.e., bilateral injections of Fndc5 harboring vectors for OE rats (n = 8) and empty vector for control rats (n = 8). Seven days later, a bolus of D2O (7.2 mL/kg) was administered via oral gavage to quantify muscle protein synthesis. After an overnight fast, on day 9, 2-deoxy-d-glucose-6-phosphate (2-DG6P; 6 mg/kg) was provided during an intraperitoneal glucose tolerance test (2 g/kg) to assess glucose handling. Animals were euthanized, musculus tibialis cranialis muscles and subcutaneous fat (inguinal) were harvested, and metabolic and molecular effects were evaluated. Muscle Fndc5 mRNA increased with OE (~2-fold; P = 0.014), leading to increased circulating irisin (1.5 ± 0.9 to 3.5 ± 1.2 ng/mL; P = 0.049). OE had no effect on protein anabolism or mitochondrial biogenesis; however, muscle glycogen was increased, along with glycogen synthase 1 gene expression (P = 0.04 and 0.02, respectively). In addition to an increase in glycogen synthase activation in OE (P = 0.03), there was a tendency toward increased glucose transporter 4 protein (P = 0.09). However, glucose uptake (accumulation of 2-DG6P) was identical. Irisin elicited no endocrine effect on mitochondrial biogenesis or uncoupling proteins in white adipose tissue. Hindlimb overexpression led to physiological increases in Fndc5/irisin. However, our data indicate limited short-term impacts of irisin in relation to muscle anabolism, mitochondrial biogenesis, glucose uptake, or adipose remodeling.
Collapse
Affiliation(s)
- W Farrash
- Medical Research Council Versus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham National Institute for Health Research Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, United Kingdom
- College of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - M Brook
- Medical Research Council Versus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham National Institute for Health Research Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, United Kingdom
| | - H Crossland
- Medical Research Council Versus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham National Institute for Health Research Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, United Kingdom
| | - B E Phillips
- Medical Research Council Versus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham National Institute for Health Research Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, United Kingdom
| | - J Cegielski
- Medical Research Council Versus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham National Institute for Health Research Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, United Kingdom
| | - D J Wilkinson
- Medical Research Council Versus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham National Institute for Health Research Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, United Kingdom
| | - D Constantin-Teodosiu
- Medical Research Council Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - P L Greenhaff
- Medical Research Council Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - K Smith
- Medical Research Council Versus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham National Institute for Health Research Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, United Kingdom
| | - M Cleasby
- Molecular Physiology of Diabetes Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, United Kingdom
| | - P J Atherton
- Medical Research Council Versus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham National Institute for Health Research Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, United Kingdom
| |
Collapse
|
25
|
Vidal P, Stanford KI. Exercise-Induced Adaptations to Adipose Tissue Thermogenesis. Front Endocrinol (Lausanne) 2020; 11:270. [PMID: 32411099 PMCID: PMC7201000 DOI: 10.3389/fendo.2020.00270] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/14/2020] [Indexed: 12/15/2022] Open
Abstract
Exercise training results in beneficial adaptations to numerous tissues and offers protection against metabolic disorders including obesity and type 2 diabetes. Multiple studies have indicated that both white (WAT) and brown (BAT) adipose tissue may play an important role to mediate the beneficial effects of exercise. Studies from both rodents and humans have identified exercise-induced changes in WAT including increased mitochondrial activity and glucose uptake, an altered endocrine profile, and in rodents, a beiging of the WAT. Studies investigating the effects of exercise on BAT have resulted in conflicting data in terms of mitochondrial activity, glucose uptake, and thermogenic activity in rodents and humans, and remain an important area of investigation. This review discusses the exercise-induced adaptations to white and brown adipose tissue, distinguishing important differences between rodents and humans and highlighting the latest studies in the field and their implications.
Collapse
|
26
|
Scheele C, Wolfrum C. Brown Adipose Crosstalk in Tissue Plasticity and Human Metabolism. Endocr Rev 2020; 41:bnz007. [PMID: 31638161 PMCID: PMC7006230 DOI: 10.1210/endrev/bnz007] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 10/15/2019] [Indexed: 12/20/2022]
Abstract
Infants rely on brown adipose tissue (BAT) as a primary source of thermogenesis. In some adult humans, residuals of brown adipose tissue are adjacent to the central nervous system and acute activation increases metabolic rate. Brown adipose tissue (BAT) recruitment occurs during cold acclimation and includes secretion of factors, known as batokines, which target several different cell types within BAT, and promote adipogenesis, angiogenesis, immune cell interactions, and neurite outgrowth. All these processes seem to act in concert to promote an adapted BAT. Recent studies have also provided exciting data on whole body metabolic regulation with a broad spectrum of mechanisms involving BAT crosstalk with liver, skeletal muscle, and gut as well as the central nervous system. These widespread interactions might reflect the property of BAT of switching between an active thermogenic state where energy is highly consumed and drained from the circulation, and the passive thermoneutral state, where energy consumption is turned off. (Endocrine Reviews 41: XXX - XXX, 2020).
Collapse
Affiliation(s)
- Camilla Scheele
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- The Centre of Inflammation and Metabolism and Centre for Physical Activity Research Rigshospitalet, University Hospital of Copenhagen, Denmark
| | - Christian Wolfrum
- Institute of Food, Nutrition, and Health, ETH Zürich, Schorenstrasse, Schwerzenbach, Switzerland
| |
Collapse
|
27
|
Liu B, Page AJ, Hutchison AT, Wittert GA, Heilbronn LK. Intermittent fasting increases energy expenditure and promotes adipose tissue browning in mice. Nutrition 2019; 66:38-43. [DOI: 10.1016/j.nut.2019.03.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/07/2019] [Accepted: 03/10/2019] [Indexed: 12/14/2022]
|
28
|
Timmons JA, Volmar C, Crossland H, Phillips BE, Sood S, Janczura KJ, Törmäkangas T, Kujala UM, Kraus WE, Atherton PJ, Wahlestedt C. Longevity-related molecular pathways are subject to midlife "switch" in humans. Aging Cell 2019; 18:e12970. [PMID: 31168962 PMCID: PMC6612641 DOI: 10.1111/acel.12970] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 12/12/2022] Open
Abstract
Emerging evidence indicates that molecular aging may follow nonlinear or discontinuous trajectories. Whether this occurs in human neuromuscular tissue, particularly for the noncoding transcriptome, and independent of metabolic and aerobic capacities, is unknown. Applying our novel RNA method to quantify tissue coding and long noncoding RNA (lncRNA), we identified ~800 transcripts tracking with age up to ~60 years in human muscle and brain. In silico analysis demonstrated that this temporary linear "signature" was regulated by drugs, which reduce mortality or extend life span in model organisms, including 24 inhibitors of the IGF-1/PI3K/mTOR pathway that mimicked, and 5 activators that opposed, the signature. We profiled Rapamycin in nondividing primary human myotubes (n = 32 HTA 2.0 arrays) and determined the transcript signature for reactive oxygen species in neurons, confirming that our age signature was largely regulated in the "pro-longevity" direction. Quantitative network modeling demonstrated that age-regulated ncRNA equaled the contribution of protein-coding RNA within structures, but tended to have a lower heritability, implying lncRNA may better reflect environmental influences. Genes ECSIT, UNC13, and SKAP2 contributed to a network that did not respond to Rapamycin, and was associated with "neuron apoptotic processes" in protein-protein interaction analysis (FDR = 2.4%). ECSIT links inflammation with the continued age-related downwards trajectory of mitochondrial complex I gene expression (FDR < 0.01%), implying that sustained inhibition of ECSIT may be maladaptive. The present observations link, for the first time, model organism longevity programs with the endogenous but temporary genome-wide responses to aging in humans, revealing a pattern that may ultimately underpin personalized rates of health span.
Collapse
Affiliation(s)
- James A. Timmons
- Division of Genetics and Molecular MedicineKing's College LondonLondonUK
- Scion HouseStirling University Innovation ParkStirlingUK
| | - Claude‐Henry Volmar
- Department of Psychiatry and Behavioral Sciences, Center for Therapeutic InnovationUniversity of Miami Miller School of MedicineMiamiFlorida
| | - Hannah Crossland
- Division of Genetics and Molecular MedicineKing's College LondonLondonUK
- School of Medicine, Royal Derby HospitalUniversity of NottinghamDerbyUK
| | | | - Sanjana Sood
- Division of Genetics and Molecular MedicineKing's College LondonLondonUK
| | - Karolina J. Janczura
- Department of Psychiatry and Behavioral Sciences, Center for Therapeutic InnovationUniversity of Miami Miller School of MedicineMiamiFlorida
| | - Timo Törmäkangas
- Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | - Urho M. Kujala
- Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | | | | | - Claes Wahlestedt
- Department of Psychiatry and Behavioral Sciences, Center for Therapeutic InnovationUniversity of Miami Miller School of MedicineMiamiFlorida
| |
Collapse
|
29
|
McKie GL, Medak KD, Knuth CM, Shamshoum H, Townsend LK, Peppler WT, Wright DC. Housing temperature affects the acute and chronic metabolic adaptations to exercise in mice. J Physiol 2019; 597:4581-4600. [PMID: 31297830 DOI: 10.1113/jp278221] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/14/2019] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Mice are commonly housed at room temperatures below their thermoneutral zone meaning they are exposed to chronic thermal stress. Endurance exercise induces browning and mitochondrial biogenesis in white adipose tissue of rodents, but there are conflicting reports of this phenomenon in humans. We hypothesized that the ambient room temperature at which mice are housed could partially explain these discrepant reports between humans and rodents. We housed mice at room temperature or thermoneutrality and studied their physiological responses to acute and chronic exercise. We found that thermoneutral housing altered running behaviour and glucose homeostasis, and further, that exercise-induced markers of mitochondrial biogenesis and the browning of white adipose tissue were reduced in mice housed at thermoneutrality. ABSTRACT Mice are often housed at temperatures below their thermoneutral zone resulting in compensatory increases in thermogenesis. Despite this, many studies report housing mice at room temperature (RT), likely for the convenience of the researchers studying them. As such, the conflicting reports between humans and rodents regarding the ability of exercise to increase mitochondrial and thermogenic markers in white adipose tissue may be explained by the often-overlooked variable, housing temperature. To test this hypothesis, we housed male C57BL/6 mice at RT (22°C) or thermoneutrality (TN) (29°C) with or without access to a voluntary running wheel for 6 weeks or subjected them to an acute exhaustive bout of treadmill running. We examined the gene expression and protein content of select mitochondrial and thermogenic markers in skeletal muscle, epididymal white adipose tissue (eWAT), inguinal white adipose tissue (iWAT) and brown adipose tissue (BAT). We also assessed adipocyte morphology and indices of glucose homeostasis. Housing temperature influenced glucose tolerance and insulin action in vivo, yet the beneficial effects of exercise, both acute and chronic, remained intact in eWAT, BAT and skeletal muscle irrespective of housing temperature. Housing mice at TN led to an attenuation of some of the effects of exercise on iWAT. Collectively, we present data characterizing the acute and chronic metabolic adaptations to exercise at different housing temperatures and demonstrate, for the first time, that temperature influences the ability of exercise to increase markers of mitochondrial biogenesis and the browning of white adipose tissue.
Collapse
Affiliation(s)
- Greg L McKie
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Kyle D Medak
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Carly M Knuth
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, ON, Canada.,Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Hesham Shamshoum
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Logan K Townsend
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Willem T Peppler
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, ON, Canada.,Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - David C Wright
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
30
|
Abstract
One of the biggest challenges in the management of obesity is the prevention of weight regain after successful weight loss. Weight regain after weight loss has large interindividual variation. Although many factors probably contribute to this variation, we hypothesize that variability in biological responses associated with weight loss-induced shrinking of subcutaneous adipocytes has an important role. In this Review, we show that weight loss-induced variations in cellular stress, extracellular matrix remodelling, inflammatory responses, adipokine secretion and lipolysis seem to be associated with the amount of weight that is regained after successful weight loss. Weight regain could therefore, at least in part, depend on a combination of these factors. Further research on the causality of these associations could aid the development of effective strategies to prevent weight regain after successful weight loss.
Collapse
Affiliation(s)
- Marleen A van Baak
- NUTRIM School for Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University, Maastricht, Netherlands.
| | - Edwin C M Mariman
- NUTRIM School for Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
31
|
Luong Q, Huang J, Lee KY. Deciphering White Adipose Tissue Heterogeneity. BIOLOGY 2019; 8:biology8020023. [PMID: 30978929 PMCID: PMC6628053 DOI: 10.3390/biology8020023] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 01/09/2023]
Abstract
Adipose tissue not only stores energy, but also controls metabolism through secretion of hormones, cytokines, proteins, and microRNAs that affect the function of cells and tissues throughout the body. Adipose tissue is organized into discrete depots throughout the body, and these depots are differentially associated with insulin resistance and increased risk of metabolic disease. In addition to energy-dissipating brown and beige adipocytes, recent lineage tracing studies have demonstrated that individual adipose depots are composed of white adipocytes that are derived from distinct precursor populations, giving rise to distinct subpopulations of energy-storing white adipocytes. In this review, we discuss this developmental and functional heterogeneity of white adipocytes both between and within adipose depots. In particular, we will highlight findings from our recent manuscript in which we find and characterize three major subtypes of white adipocytes. We will discuss these data relating to the differences between subcutaneous and visceral white adipose tissue and in relationship to previous work deciphering adipocyte heterogeneity within adipose tissue depots. Finally, we will discuss the possible implications of adipocyte heterogeneity may have for the understanding of lipodystrophies.
Collapse
Affiliation(s)
- Quyen Luong
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA.
- The Diabetes Institute, Ohio University, Athens, OH 45701, USA.
| | - Jun Huang
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA.
- The Diabetes Institute, Ohio University, Athens, OH 45701, USA.
| | - Kevin Y Lee
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA.
- The Diabetes Institute, Ohio University, Athens, OH 45701, USA.
| |
Collapse
|
32
|
Senese R, Cioffi F, De Matteis R, Petito G, de Lange P, Silvestri E, Lombardi A, Moreno M, Goglia F, Lanni A. 3,5 Diiodo-l-Thyronine (T₂) Promotes the Browning of White Adipose Tissue in High-Fat Diet-Induced Overweight Male Rats Housed at Thermoneutrality. Cells 2019; 8:cells8030256. [PMID: 30889829 PMCID: PMC6468521 DOI: 10.3390/cells8030256] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/08/2019] [Accepted: 03/14/2019] [Indexed: 12/22/2022] Open
Abstract
The conversion of white adipose cells into beige adipose cells is known as browning, a process affecting energy metabolism. It has been shown that 3,5 diiodo-l-thyronine (T₂), an endogenous metabolite of thyroid hormones, stimulates energy expenditure and a reduction in fat mass. In light of the above, the purpose of this study was to test whether in an animal model of fat accumulation, T₂ has the potential to activate a browning process and to explore the underlying mechanism. Three groups of rats were used: (i) receiving a standard diet for 14 weeks; (ii) receiving a high-fat diet (HFD) for 14 weeks; and (iii) receiving a high fat diet for 10 weeks and being subsequently treated for four weeks with an HFD together with the administration of T₂. We showed that T₂ was able to induce a browning in the white adipose tissue of T₂-treated rats. We also showed that some miRNA (miR133a and miR196a) and MAP kinase 6 were involved in this process. These results indicate that, among others, the browning may be another cellular/molecular mechanism by which T₂ exerts its beneficial effects of contrast to overweight and of reduction of fat mass in rats subjected to HFD.
Collapse
Affiliation(s)
- Rosalba Senese
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", 81100 Caserta, Italy.
| | - Federica Cioffi
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy.
| | - Rita De Matteis
- Department of Biomolecular Sciences, Urbino University, 61029 Urbino, Italy.
| | - Giuseppe Petito
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", 81100 Caserta, Italy.
| | - Pieter de Lange
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", 81100 Caserta, Italy.
| | - Elena Silvestri
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy.
| | - Assunta Lombardi
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy.
| | - Maria Moreno
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy.
| | - Fernando Goglia
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy.
| | - Antonia Lanni
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", 81100 Caserta, Italy.
| |
Collapse
|
33
|
|
34
|
Townsend LK, Wright DC. Looking on the "brite" side exercise-induced browning of white adipose tissue. Pflugers Arch 2019; 471:455-465. [PMID: 29982948 DOI: 10.1007/s00424-018-2177-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 12/17/2022]
Abstract
The need for effective and convenient ways of combatting obesity has created great interest in brown adipose tissue (BAT). However, because adult humans have relatively little amounts of BAT, the possibility of browning white adipose tissue (WAT), i.e., switching the metabolism of WAT from an energy storing to energy burning organ, has gained considerable attention. Exercise has countless health benefits, and has consistently been shown to cause browning in rodent white adipose tissue. The purpose of this review is to provide an overview of recent studies examining the effects of exercise and other interventions on the browning of white adipose tissue. The role of various endocrine factors, including catecholamines, interleukin-6, irisin, and meteorin-like in addition to local re-esterification-mediated mechanisms in inducing the browning of WAT will be discussed. The physiological importance of browning will be discussed, as will discrepancies in the literature between human and rodent studies.
Collapse
Affiliation(s)
- Logan K Townsend
- Department of Human Health and Nutritional Science, University of Guelph, 50 Stone Rd E, Guelph, Ontario, N1G 2W1, Canada
| | - David C Wright
- Department of Human Health and Nutritional Science, University of Guelph, 50 Stone Rd E, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
35
|
Peres Valgas da Silva C, Hernández-Saavedra D, White JD, Stanford KI. Cold and Exercise: Therapeutic Tools to Activate Brown Adipose Tissue and Combat Obesity. BIOLOGY 2019; 8:biology8010009. [PMID: 30759802 PMCID: PMC6466122 DOI: 10.3390/biology8010009] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 12/11/2022]
Abstract
The rise in obesity over the last several decades has reached pandemic proportions. Brown adipose tissue (BAT) is a thermogenic organ that is involved in energy expenditure and represents an attractive target to combat both obesity and type 2 diabetes. Cold exposure and exercise training are two stimuli that have been investigated with respect to BAT activation, metabolism, and the contribution of BAT to metabolic health. These two stimuli are of great interest because they have both disparate and converging effects on BAT activation and metabolism. Cold exposure is an effective mechanism to stimulate BAT activity and increase glucose and lipid uptake through mitochondrial uncoupling, resulting in metabolic benefits including elevated energy expenditure and increased insulin sensitivity. Exercise is a therapeutic tool that has marked benefits on systemic metabolism and affects several tissues, including BAT. Compared to cold exposure, studies focused on BAT metabolism and exercise display conflicting results; the majority of studies in rodents and humans demonstrate a reduction in BAT activity and reduced glucose and lipid uptake and storage. In addition to investigations of energy uptake and utilization, recent studies have focused on the effects of cold exposure and exercise on the structural lipids in BAT and secreted factors released from BAT, termed batokines. Cold exposure and exercise induce opposite responses in terms of structural lipids, but an important overlap exists between the effects of cold and exercise on batokines. In this review, we will discuss the similarities and differences of cold exposure and exercise in relation to their effects on BAT activity and metabolism and its relevance for the prevention of obesity and the development of type 2 diabetes.
Collapse
Affiliation(s)
- Carmem Peres Valgas da Silva
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Diego Hernández-Saavedra
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Joseph D White
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Kristin I Stanford
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| |
Collapse
|
36
|
Otero-Díaz B, Rodríguez-Flores M, Sánchez-Muñoz V, Monraz-Preciado F, Ordoñez-Ortega S, Becerril-Elias V, Baay-Guzmán G, Obando-Monge R, García-García E, Palacios-González B, Villarreal-Molina MT, Sierra-Salazar M, Antuna-Puente B. Exercise Induces White Adipose Tissue Browning Across the Weight Spectrum in Humans. Front Physiol 2018; 9:1781. [PMID: 30618796 PMCID: PMC6297830 DOI: 10.3389/fphys.2018.01781] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/26/2018] [Indexed: 01/02/2023] Open
Abstract
While the effect of exercise on white adipose tissue browning and metabolic improvement in rodents is clear, there are few studies in humans with inconclusive results. Thus, the aim of the study was to assess whether an exercise intervention promotes subcutaneous adipose tissue browning in humans, and whether this response is associated with metabolic improvement in three groups of individuals defined by body mass index (BMI) (kg/m2). Sedentary adult subjects with different BMI were enrolled in a 12-week bicycle-training program (3 times per week, intensity 70-80% HRmax). Brown and beige gene expression in subcutaneous adipose tissue (scWAT) biopsies, and serum glucose, insulin, lipid, adipokine, and myokine levels were compared before and after the exercise intervention. Thirty-three non-diabetic subjects (mean age 30.4 ± 4.6 years; 57.57% female; 13 normal weight, 10 overweight and 10 with obesity) completed the exercise intervention. Without any significant change in body composition, exercise improved several metabolic parameters, most notably insulin resistance and particularly in the overweight group. Circulating adiponectin, apelin, and irisin exercise-induced changes predicted 60% of the insulin sensitivity improvement. After exercise UCP1, TBX1, CPT1B scWAT expression significantly increased, along with P2RX5 significant positive staining. These changes are compatible with scWAT browning, however, they were not associated with glucose metabolism improvement. In conclusion, 12-weeks of exercise training produced brown/beige gene expression changes in abdominal scWAT of non-diabetic individuals with different BMI, which did not contribute to the metabolic improvement. However, this result should not be interpreted as a lack of effect of browning on metabolic parameters. These findings suggest that a bigger effect is needed and should not preclude the development of more effective strategies of browning. Furthermore, exercise-induced changes in adiponectin, apelin, and irisin predicted insulin sensitivity improvement, supporting the important role of adipokines and myokines in metabolism homeostasis.
Collapse
Affiliation(s)
- Berenice Otero-Díaz
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Marcela Rodríguez-Flores
- Departamento de Endocrinología, Clínica de Obesidad y Trastornos de la Conducta Alimentaria, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Mexico City, Mexico
| | - Verónica Sánchez-Muñoz
- Centro de Nutrición y Obesidad, The American British Cowdray (ABC) Medical Center, Mexico City, Mexico
| | - Fernando Monraz-Preciado
- Departamento de Cirugía, Servicio de Cirugía Endocrina y Laparoscopia Avanzada, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Mexico City, Mexico
| | - Samuel Ordoñez-Ortega
- Departamento de Cirugía, Servicio de Cirugía Endocrina y Laparoscopia Avanzada, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Mexico City, Mexico
| | - Vicente Becerril-Elias
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Guillermina Baay-Guzmán
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Rodolfo Obando-Monge
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Eduardo García-García
- Departamento de Endocrinología, Clínica de Obesidad y Trastornos de la Conducta Alimentaria, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Mexico City, Mexico
| | | | | | - Mauricio Sierra-Salazar
- Departamento de Cirugía, Servicio de Cirugía Endocrina y Laparoscopia Avanzada, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Mexico City, Mexico
| | - Barbara Antuna-Puente
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| |
Collapse
|
37
|
Troglitazone activates TRPV1 and causes deacetylation of PPARγ in 3T3-L1 cells. Biochim Biophys Acta Mol Basis Dis 2018; 1865:445-453. [PMID: 30496795 DOI: 10.1016/j.bbadis.2018.11.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 10/18/2018] [Accepted: 11/05/2018] [Indexed: 01/25/2023]
Abstract
Published research suggests that activation of transient receptor potential vanilloid subfamily 1 (TRPV1) enhances the expression and deacetylation of peroxisome proliferator-activated receptor gamma (PPARγ) to cause browning of white adipose tissue. Here, we show that TRPV1 activation by capsaicin significantly prevents high fat diet-induced obesity in mice. This is associated with an increase in the expression and deacetylation of PPARγ in the epididymal fat of these mice. Consistent with the TRPV1 activation in vivo, overexpression of TRPV1 enhanced the PPARγ and other thermogenic genes in cultured 3T3-L1 preadipocytes. To determine the interaction between TRPV1 and PPARγ signaling, we analyzed the effect of Troglitazone (Trog; a thiazolidinedione derivative and an agonist of PAARγ) treatment on cultured 3T3-L1 cells. Trog enhanced the expression of TRPV1, PPARγ and thermogenic proteins in undifferentiated 3T3-L1 cells but not in differentiated cells. Acute application of Trog stimulated a robust Ca2+ influx into 3T3-L1 cells and TRPV1 inhibition by capsazepine prevented this. More interestingly, Trog or capsaicin treatment caused the deacetylation of PPARγ in 3T3-L1 cells and inhibition of TRPV1 or Sirtuin 1 - prevented this. Our data suggest a novel effect of Trog to induce PPARγ deacetylation by activating TRPV1. This research has a significant implication on the role of TRPV1 and PPARγ signaling in the browning of white adipose tissue.
Collapse
|
38
|
Ulrich CM, Himbert C, Holowatyj AN, Hursting SD. Energy balance and gastrointestinal cancer: risk, interventions, outcomes and mechanisms. Nat Rev Gastroenterol Hepatol 2018; 15:683-698. [PMID: 30158569 PMCID: PMC6500387 DOI: 10.1038/s41575-018-0053-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Obesity increases the risk of multiple gastrointestinal cancers and worsens disease outcomes. Conversely, strong inverse associations have emerged between physical activity and colon cancer and possibly other gastrointestinal malignancies. The effect of weight loss interventions - such as modifications of diet and/or physical activity or bariatric surgery - remains unclear in patients who are obese and have gastrointestinal cancer, although large clinical trials are underway. Human intervention studies have already shed light on potential mechanisms underlying the energy balance-cancer relationship, with preclinical models supporting emerging pathway effects. Central to interventions that reduce obesity or increase physical activity are pluripotent cancer-preventive effects (including reduced systemic and adipose tissue inflammation and angiogenesis, altered adipokine levels and improved insulin resistance) that directly interface with the hallmarks of cancer. Other mechanisms, such as DNA repair, oxidative stress and telomere length, immune function, effects on cancer stem cells and the microbiome, could also contribute to energy balance effects on gastrointestinal cancers. Although some mechanisms are well understood (for instance, systemic effects on inflammation and insulin signalling), other areas remain unclear. The current state of knowledge supports the need to better integrate mechanistic approaches with preclinical and human studies to develop effective, personalized diet and exercise interventions to reduce the burden of obesity on gastrointestinal cancer.
Collapse
Affiliation(s)
- Cornelia M. Ulrich
- Huntsman Cancer Institute, Salt Lake City, UT, USA.,Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA.,
| | - Caroline Himbert
- Huntsman Cancer Institute, Salt Lake City, UT, USA.,Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Andreana N. Holowatyj
- Huntsman Cancer Institute, Salt Lake City, UT, USA.,Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Stephen D. Hursting
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA.,UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| |
Collapse
|
39
|
Timmons JA, Atherton PJ, Larsson O, Sood S, Blokhin IO, Brogan RJ, Volmar CH, Josse AR, Slentz C, Wahlestedt C, Phillips SM, Phillips BE, Gallagher IJ, Kraus WE. A coding and non-coding transcriptomic perspective on the genomics of human metabolic disease. Nucleic Acids Res 2018; 46:7772-7792. [PMID: 29986096 PMCID: PMC6125682 DOI: 10.1093/nar/gky570] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 05/23/2018] [Accepted: 06/13/2018] [Indexed: 12/13/2022] Open
Abstract
Genome-wide association studies (GWAS), relying on hundreds of thousands of individuals, have revealed >200 genomic loci linked to metabolic disease (MD). Loss of insulin sensitivity (IS) is a key component of MD and we hypothesized that discovery of a robust IS transcriptome would help reveal the underlying genomic structure of MD. Using 1,012 human skeletal muscle samples, detailed physiology and a tissue-optimized approach for the quantification of coding (>18,000) and non-coding (>15,000) RNA (ncRNA), we identified 332 fasting IS-related genes (CORE-IS). Over 200 had a proven role in the biochemistry of insulin and/or metabolism or were located at GWAS MD loci. Over 50% of the CORE-IS genes responded to clinical treatment; 16 quantitatively tracking changes in IS across four independent studies (P = 0.0000053: negatively: AGL, G0S2, KPNA2, PGM2, RND3 and TSPAN9 and positively: ALDH6A1, DHTKD1, ECHDC3, MCCC1, OARD1, PCYT2, PRRX1, SGCG, SLC43A1 and SMIM8). A network of ncRNA positively related to IS and interacted with RNA coding for viral response proteins (P < 1 × 10-48), while reduced amino acid catabolic gene expression occurred without a change in expression of oxidative-phosphorylation genes. We illustrate that combining in-depth physiological phenotyping with robust RNA profiling methods, identifies molecular networks which are highly consistent with the genetics and biochemistry of human metabolic disease.
Collapse
Affiliation(s)
- James A Timmons
- Division of Genetics and Molecular Medicine, King's College London, London, UK
- Scion House, Stirling University Innovation Park, Stirling, UK
| | | | - Ola Larsson
- Department of Oncology-Pathology, Science For Life Laboratory, Stockholm, Sweden
| | - Sanjana Sood
- Division of Genetics and Molecular Medicine, King's College London, London, UK
| | | | - Robert J Brogan
- Scion House, Stirling University Innovation Park, Stirling, UK
| | | | | | - Cris Slentz
- Duke University School of Medicine, Durham, USA
| | - Claes Wahlestedt
- Department of Oncology-Pathology, Science For Life Laboratory, Stockholm, Sweden
| | | | | | - Iain J Gallagher
- Scion House, Stirling University Innovation Park, Stirling, UK
- School of Health Sciences and Sport, University of Stirling, Stirling, UK
| | | |
Collapse
|
40
|
Libby AE, Bales ES, Monks J, Orlicky DJ, McManaman JL. Perilipin-2 deletion promotes carbohydrate-mediated browning of white adipose tissue at ambient temperature. J Lipid Res 2018; 59:1482-1500. [PMID: 29866659 DOI: 10.1194/jlr.m086249] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/31/2018] [Indexed: 12/22/2022] Open
Abstract
Mice lacking perilipin-2 (Plin2-null) are resistant to obesity, insulin resistance, and fatty liver induced by Western or high-fat diets. In the current study, we found that, compared with WT mice on Western diet, Plin2-null adipose tissue was more insulin sensitive and inguinal subcutaneous white adipose tissue (iWAT) exhibited profound browning and robust induction of thermogenic and carbohydrate-responsive genetic programs at room temperature. Surprisingly, these Plin2-null responses correlated with the content of simple carbohydrates, rather than fat, in the diet, and were independent of adipose Plin2 expression. To define Plin2 and sugar effects on adipose browning, WT and Plin2-null mice were placed on chow diets containing 20% sucrose in their drinking water for 6 weeks. Compared with WT mice, iWAT of Plin2-null mice exhibited pronounced browning and striking increases in the expression of thermogenic and insulin-responsive genes on this diet. Significantly, Plin2-null iWAT browning was associated with reduced sucrose intake and elevated serum fibroblast growth factor (FGF)21 levels, which correlated with greatly enhanced hepatic FGF21 production. These data identify Plin2 actions as novel mediators of sugar-induced adipose browning through indirect effects of hepatic FGF21 expression, and suggest that adipose browning mechanisms may contribute to Plin2-null resistance to obesity.
Collapse
Affiliation(s)
- Andrew E Libby
- Integrated Physiology Graduate Program, University of Colorado at Denver, Anschutz Medical Campus, Aurora, CO 80045.,Division of Reproductive Sciences, University of Colorado at Denver, Anschutz Medical Campus, Aurora, CO 80045
| | - Elise S Bales
- Division of Reproductive Sciences, University of Colorado at Denver, Anschutz Medical Campus, Aurora, CO 80045
| | - Jenifer Monks
- Division of Reproductive Sciences, University of Colorado at Denver, Anschutz Medical Campus, Aurora, CO 80045
| | - David J Orlicky
- Department of Pathology, University of Colorado at Denver, Anschutz Medical Campus, Aurora, CO 80045
| | - James L McManaman
- Integrated Physiology Graduate Program, University of Colorado at Denver, Anschutz Medical Campus, Aurora, CO 80045 .,Division of Reproductive Sciences, University of Colorado at Denver, Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
41
|
Carobbio S, Guénantin AC, Samuelson I, Bahri M, Vidal-Puig A. Brown and beige fat: From molecules to physiology and pathophysiology. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:37-50. [PMID: 29852279 DOI: 10.1016/j.bbalip.2018.05.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/31/2018] [Accepted: 05/23/2018] [Indexed: 12/20/2022]
Abstract
The adipose organ portrays adipocytes of diverse tones: white, brown and beige, each type with distinct functions. Adipocytes orchestrate their adaptation and expansion to provide storage to excess nutrients, the quick mobilisation of fuel to supply peripheral functional demands, insulation, and, in their thermogenic form, heat generation to maintain core body temperature. Thermogenic adipocytes could be targets for anti-obesity and anti-diabetic therapeutic approaches aiming to restore adipose tissue functionality and increase energy dissipation. However, for thermogenic adipose tissue to become therapeutically relevant, a better understanding of its development and origins, its progenitors and their characteristics and the composition of its niche, is essential. Also crucial is the identification of stimuli and molecules promoting its specific differentiation and activation. Here we highlight the structural/cellular differences between human and rodent brown adipose tissue and discuss how obesity and metabolic complication affects brown and beige cells as well as how they could be targeted to improve their activation and improve global metabolic homeostasis. Finally, we describe the limitations of current research models and the advantages of new emerging approaches.
Collapse
Affiliation(s)
- Stefania Carobbio
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK; Metabolic Research Laboratories, Addenbrooke's Treatment Centre, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.
| | - Anne-Claire Guénantin
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK; Metabolic Research Laboratories, Addenbrooke's Treatment Centre, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.
| | - Isabella Samuelson
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK; Metabolic Research Laboratories, Addenbrooke's Treatment Centre, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Myriam Bahri
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK; Metabolic Research Laboratories, Addenbrooke's Treatment Centre, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Antonio Vidal-Puig
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK; Metabolic Research Laboratories, Addenbrooke's Treatment Centre, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
42
|
Aldiss P, Betts J, Sale C, Pope M, Budge H, Symonds ME. Exercise-induced 'browning' of adipose tissues. Metabolism 2018; 81:63-70. [PMID: 29155135 PMCID: PMC5893183 DOI: 10.1016/j.metabol.2017.11.009] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/30/2017] [Accepted: 11/13/2017] [Indexed: 12/18/2022]
Abstract
Global rates of obesity continue to rise and are necessarily the consequence of a long-term imbalance between energy intake and energy expenditure. This is the result of an expansion of adipose tissue due to both the hypertrophy of existing adipocytes and hyperplasia of adipocyte pre-cursors. Exercise elicits numerous physiological benefits on adipose tissue, which are likely to contribute to the associated cardiometabolic benefits. More recently it has been demonstrated that exercise, through a range of mechanisms, induces a phenotypic switch in adipose tissue from energy storing white adipocytes to thermogenic beige adipocytes. This has generated the hypothesis that the process of adipocyte 'browning' may partially underlie the improved cardiometabolic health in physically active populations. Interestingly, 'browning' also occurs in response to various stressors and could represent an adaptive response. In the context of exercise, it is not clear whether the appearance of beige adipocytes is metabolically beneficial or whether they occur as a transient adaptive process to exercise-induced stresses. The present review discusses the various mechanisms (e.g. fatty acid oxidation during exercise, decreased thermal insulation, stressors and angiogenesis) by which the exercise-induced 'browning' process may occur.
Collapse
Affiliation(s)
- Peter Aldiss
- The Early Life Research Unit, Division of Child Health, Obstetrics and Gynaecology, University of Nottingham, Nottingham NG7 2UH, UK
| | - James Betts
- Department for Health, University of Bath, Bath, BA2 7AY, UK
| | - Craig Sale
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Mark Pope
- The Early Life Research Unit, Division of Child Health, Obstetrics and Gynaecology, University of Nottingham, Nottingham NG7 2UH, UK
| | - Helen Budge
- The Early Life Research Unit, Division of Child Health, Obstetrics and Gynaecology, University of Nottingham, Nottingham NG7 2UH, UK
| | - Michael E Symonds
- The Early Life Research Unit, Division of Child Health, Obstetrics and Gynaecology, University of Nottingham, Nottingham NG7 2UH, UK; Nottingham Digestive Disease Centre and Biomedical Research Centre School of Medicine, University Hospital, University of Nottingham, Nottingham, UK, NG7 2UH.
| |
Collapse
|
43
|
Rodrigues KCDC, Pereira RM, de Campos TDP, de Moura RF, da Silva ASR, Cintra DE, Ropelle ER, Pauli JR, de Araújo MB, de Moura LP. The Role of Physical Exercise to Improve the Browning of White Adipose Tissue via POMC Neurons. Front Cell Neurosci 2018; 12:88. [PMID: 29643769 PMCID: PMC5882867 DOI: 10.3389/fncel.2018.00088] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 03/13/2018] [Indexed: 12/22/2022] Open
Abstract
Obesity is a public health issue that affects more than 600 million adults worldwide. The disease is characterized by fat accumulation, mainly in the abdominal area. The human body is mainly composed of two types of adipose tissue: white adipose tissue (WAT) and brown adipose tissue (BAT); however, the browning process generates a different type of brown fat-like adipocyte in WAT, which similar to BAT has thermogenic capacity by activating UCP-1. The hypothalamic arcuate nucleus plays an important role in WAT browning via POMC neurons, which are influenced by synergistic insulin and leptin signaling. On the other hand, stimulation of AgRP neurons suppresses WAT browning. The hypothalamic inflammatory process that occurs in obesity impairs insulin and leptin signaling in this tissue and, consequently, can decrease WAT browning. In addition, practicing physical exercise may be a great strategy for triggering the browning process since it reduces hypothalamic inflammation and increases POMC neurons gene expression. Moreover, physical exercise stimulates irisin gene expression, which has an important impact on thermogenesis, which in turn culminates in increased gene expression of proteins such as UCP-1 and Cidea, which are related to WAT browning. Furthermore, thermogenetic activation of WAT leads to increased energy expenditure, favoring obesity treatment. Therefore, this mini-review aimed to highlight the most recent studies that link the control of hypothalamic activity with the browning metabolism of adipose tissue in response to physical exercise.
Collapse
Affiliation(s)
- Kellen C da Cruz Rodrigues
- Laboratory of Molecular Biology of Exercise, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Rodrigo M Pereira
- Laboratory of Molecular Biology of Exercise, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Thaís D P de Campos
- Laboratory of Molecular Biology of Exercise, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Rodrigo F de Moura
- Department of Health Science, Federal University of Lavras, Lavras, Brazil
| | - Adelino S R da Silva
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Dennys E Cintra
- Laboratory of Nutritional Genomics, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Eduardo R Ropelle
- Laboratory of Molecular Biology of Exercise, School of Applied Sciences, University of Campinas, Limeira, Brazil.,Center of Research in Sport Sciences, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - José R Pauli
- Laboratory of Molecular Biology of Exercise, School of Applied Sciences, University of Campinas, Limeira, Brazil.,Center of Research in Sport Sciences, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | | | - Leandro P de Moura
- Laboratory of Molecular Biology of Exercise, School of Applied Sciences, University of Campinas, Limeira, Brazil.,Center of Research in Sport Sciences, School of Applied Sciences, University of Campinas, Limeira, Brazil.,Postgraduate Program in Motricity Sciences, São Paulo State University, São Paulo, Brazil
| |
Collapse
|
44
|
Barquissau V, Léger B, Beuzelin D, Martins F, Amri EZ, Pisani DF, Saris WHM, Astrup A, Maoret JJ, Iacovoni J, Déjean S, Moro C, Viguerie N, Langin D. Caloric Restriction and Diet-Induced Weight Loss Do Not Induce Browning of Human Subcutaneous White Adipose Tissue in Women and Men with Obesity. Cell Rep 2018; 22:1079-1089. [PMID: 29386128 DOI: 10.1016/j.celrep.2017.12.102] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/18/2017] [Accepted: 12/27/2017] [Indexed: 01/25/2023] Open
Abstract
Caloric restriction (CR) is standard lifestyle therapy in obesity management. CR-induced weight loss improves the metabolic profile of individuals with obesity. In mice, occurrence of beige fat cells in white fat depots favors a metabolically healthy phenotype, and CR promotes browning of white adipose tissue (WAT). Here, human subcutaneous abdominal WAT samples were analyzed in 289 individuals with obesity following a two-phase dietary intervention consisting of an 8 week very low calorie diet and a 6-month weight-maintenance phase. Before the intervention, we show sex differences and seasonal variation, with higher expression of brown and beige markers in women with obesity and during winter, respectively. The very low calorie diet resulted in decreased browning of subcutaneous abdominal WAT. During the whole dietary intervention, evolution of body fat and insulin resistance was independent of changes in brown and beige fat markers. These data suggest that diet-induced effects on body fat and insulin resistance are independent of subcutaneous abdominal WAT browning in people with obesity.
Collapse
Affiliation(s)
- Valentin Barquissau
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, Toulouse, France
| | - Benjamin Léger
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, Toulouse, France
| | - Diane Beuzelin
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, Toulouse, France
| | - Frédéric Martins
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, Toulouse, France
| | - Ez-Zoubir Amri
- University of Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | | | - Wim H M Saris
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Arne Astrup
- Department of Nutrition, Exercise and Sports, Faculty of Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jean-José Maoret
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, Toulouse, France
| | - Jason Iacovoni
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, Toulouse, France
| | - Sébastien Déjean
- University of Toulouse, Paul Sabatier University, Toulouse, France; CNRS, UMR 5219, Toulouse Mathematics Institute, Toulouse, France
| | - Cédric Moro
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, Toulouse, France
| | - Nathalie Viguerie
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, Toulouse, France
| | - Dominique Langin
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, Toulouse, France; Toulouse University Hospitals, Laboratory of Clinical Biochemistry, Toulouse, France.
| |
Collapse
|
45
|
Tsiloulis T, Carey AL, Bayliss J, Canny B, Meex RCR, Watt MJ. No evidence of white adipocyte browning after endurance exercise training in obese men. Int J Obes (Lond) 2017; 42:721-727. [PMID: 29188818 DOI: 10.1038/ijo.2017.295] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 10/31/2017] [Accepted: 11/10/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND/OBJECTIVES The phenomenon of adipocyte 'beiging' involves the conversion of non-classic brown adipocytes to brown-like adipose tissue with thermogenic, fat-burning properties, and this phenomenon has been shown in rodents to slow the progression of obesity-associated metabolic diseases. Rodent studies consistently report adipocyte beiging after endurance exercise training, indicating that increased thermogenic capacity in these adipocytes may underpin the improved health benefits of exercise training. The aim of this study was to determine whether prolonged endurance exercise training induces beige adipogenesis in subcutaneous adipose tissues of obese men. SUBJECTS/METHODS Molecular markers of beiging were examined in adipocytes obtained from abdominal subcutaneous (AbSC) and gluteofemoral (GF) subcutaneous adipose tissues before and after 6 weeks of endurance exercise training in obese men (n=6, 37.3±2.3 years, 30.1±2.3 kg m-2). RESULTS The mRNAs encoding the brown or beige adipocyte-selective proteins were very lowly expressed in AbSC and GF adipose tissues and exercise training did not alter the mRNA expression of UCP1, CD137, CITED, TBX1, LHX8 and TCF21. Using immunohistochemistry, neither multilocular adipocytes, nor UCP1 or CD137-positive adipocytes were detected in any sample. MicroRNAs known to regulate brown and/or beige adipose development were highly expressed in white adipocytes but endurance exercise training did not impact their expression. CONCLUSIONS The present study reaffirms emerging data in humans demonstrating no evidence of white adipose tissue beiging in response to exercise training, and supports a growing body of work demonstrating divergence of brown/beige adipose location, molecular characterization and physiological function between rodents and humans.
Collapse
Affiliation(s)
- T Tsiloulis
- Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity Program, and the Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - A L Carey
- Metabolic and Vascular Physiology Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - J Bayliss
- Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity Program, and the Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - B Canny
- Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity Program, and the Department of Physiology, Monash University, Clayton, Victoria, Australia.,School of Medicine, Faculty of Health, University of Tasmania, Hobart, Tasmania, Australia
| | - R C R Meex
- Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity Program, and the Department of Physiology, Monash University, Clayton, Victoria, Australia.,Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - M J Watt
- Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity Program, and the Department of Physiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
46
|
Dinas PC, Valente A, Granzotto M, Rossato M, Vettor R, Zacharopoulou A, Carrillo AE, Davies NA, Gkiata P, Jamurtas AZ, Koutedakis Y, Metsios GS, Flouris AD. Browning formation markers of subcutaneous adipose tissue in relation to resting energy expenditure, physical activity and diet in humans. Horm Mol Biol Clin Investig 2017; 31:hmbci-2017-0008. [PMID: 28678735 DOI: 10.1515/hmbci-2017-0008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/09/2017] [Indexed: 11/15/2022]
Abstract
Background Regular exercise and diet may contribute to white adipose tissue (WAT) conversion into a brown adipose-like phenotype that may increase resting energy expenditure (REE), leading to weight loss. We examined the relationship between REE, physical activity (PA) participation and diet with browning formation markers of subcutaneous WAT in healthy men. Materials and methods We assessed REE, diet and body composition of 32 healthy men [age (years): 36.06 ± 7.36, body mass index (BMI): 27.06 ± 4.62 (kg/m2)]. Participants also underwent measurements of PA [metabolic equivalent (MET)-min/week] using the International Physical Activity Questionnaire (IPAQ), while they undertook a subcutaneous fat biopsy from the abdominal region to assess the mRNA expressions of uncoupling protein 1 (UCP1), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), peroxisome proliferator-activated receptor alpha (PPARα) and peroxisome proliferator-activated receptor gamma (PPARγ). Results We found no associations between the UCP1, PGC-1α, PPARα and PPARγ mRNAs with REE, PA levels and diet (p > 0.05). However, the PGC-1α, PPARα and PPARγ mRNAs were more expressed in individuals displaying moderate rather than low PA levels (p < 0.05). Furthermore, PGC-1α, PPARα and PPARγ mRNAs were negatively correlated with fat mass percentage (p < 0.05). PGC-1α and PPARα mRNAs were also negatively correlated with BMI, while PGC-1α mRNA was inversely associated with waist-to-hip ratio (p < 0.05). Conclusion REE, PA levels and diet are not associated with browning formation indices of subcutaneous adipose tissue in healthy adult men.
Collapse
Affiliation(s)
- Petros C Dinas
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Karies, Trikala, 42100, Greece, Phone: + 30 6974010118, Fax: +30 2431 047 042
- Institute of Sport, Faculty of Education Health and Wellbeing, University of Wolverhampton, Walsall, West Midlands, UK
| | - Angelica Valente
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece
| | - Marnie Granzotto
- Department of Medicine - DIMED, Internal Medicine 3, University of Padua, Pauda, Italy
| | - Marco Rossato
- Department of Medicine - DIMED, Internal Medicine 3, University of Padua, Pauda, Italy
| | - Roberto Vettor
- Department of Medicine - DIMED, Internal Medicine 3, University of Padua, Pauda, Italy
| | | | - Andres E Carrillo
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece
- Department of Exercise Science, Chatham University, Pittsburgh, PA, USA
| | - Natalie A Davies
- Department of Exercise Science, Chatham University, Pittsburgh, PA, USA
| | - Paraskevi Gkiata
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece
| | - Athanasios Z Jamurtas
- School of Physical Education and Exercise Science, University of Thessaly, Trikala, Greece
| | - Yiannis Koutedakis
- Institute of Sport, Faculty of Education Health and Wellbeing, University of Wolverhampton, Walsall, West Midlands, UK
- School of Physical Education and Exercise Science, University of Thessaly, Trikala, Greece
| | - George S Metsios
- Institute of Sport, Faculty of Education Health and Wellbeing, University of Wolverhampton, Walsall, West Midlands, UK
| | - Andreas D Flouris
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece
| |
Collapse
|
47
|
Mo Q, Salley J, Roshan T, Baer LA, May FJ, Jaehnig EJ, Lehnig AC, Guo X, Tong Q, Nuotio-Antar AM, Shamsi F, Tseng YH, Stanford KI, Chen MH. Identification and characterization of a supraclavicular brown adipose tissue in mice. JCI Insight 2017; 2:93166. [PMID: 28570265 PMCID: PMC5453704 DOI: 10.1172/jci.insight.93166] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/20/2017] [Indexed: 12/29/2022] Open
Abstract
A fundamental challenge to our understanding of brown adipose tissue (BAT) is the lack of an animal model that faithfully represents human BAT. Such a model is essential for direct assessment of the function and therapeutic potential of BAT depots in humans. In human adults, most of the thermoactive BAT depots are located in the supraclavicular region of the neck, while mouse studies focus on depots located in the interscapular region of the torso. We recently discovered BAT depots that are located in a region analogous to that of human supraclavicular BAT (scBAT). Here, we report that the mouse scBAT depot has morphological characteristics of classical BAT, possesses the potential for high thermogenic activity, and expresses a gene signature that is similar to that of human scBAT. Taken together, our studies reveal a mouse BAT depot that represents human BAT and provides a unique tool for developing new translatable approaches for utilizing human scBAT.
Collapse
Affiliation(s)
- Qianxing Mo
- Department of Medicine and Dan L. Duncan Cancer Center, and
| | - Jordan Salley
- US Department of Agriculture/Agricultural Research Center (USDA/ARS), Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Tony Roshan
- US Department of Agriculture/Agricultural Research Center (USDA/ARS), Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Lisa A. Baer
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Francis J. May
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Eric J. Jaehnig
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Adam C. Lehnig
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Xin Guo
- US Department of Agriculture/Agricultural Research Center (USDA/ARS), Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Qiang Tong
- US Department of Agriculture/Agricultural Research Center (USDA/ARS), Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Alli M. Nuotio-Antar
- US Department of Agriculture/Agricultural Research Center (USDA/ARS), Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Farnaz Shamsi
- Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Yu-Hua Tseng
- Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Kristin I. Stanford
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Miao-Hsueh Chen
- US Department of Agriculture/Agricultural Research Center (USDA/ARS), Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
48
|
Zuriaga MA, Fuster JJ, Gokce N, Walsh K. Humans and Mice Display Opposing Patterns of "Browning" Gene Expression in Visceral and Subcutaneous White Adipose Tissue Depots. Front Cardiovasc Med 2017; 4:27. [PMID: 28529941 PMCID: PMC5418233 DOI: 10.3389/fcvm.2017.00027] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/18/2017] [Indexed: 01/12/2023] Open
Abstract
Visceral adiposity is much more strongly associated with cardiometabolic disease in humans than subcutaneous adiposity. Browning, the appearance of brown-like adipocytes in the white adipose tissue (WAT), has been shown to protect mice against metabolic dysfunction, suggesting the possibility of new therapeutic approaches to treat obesity and type 2 diabetes. In mice, subcutaneous WAT depots express higher levels of browning genes when compared with visceral WAT, further suggesting that differences in WAT browning could contribute to the differences in the pathogenicity of the two depots. However, the expression of browning genes in different WAT depots of human has not been characterized. Here, it is shown that the expression of browning genes is higher in visceral than in subcutaneous WAT in humans, a pattern that is opposite to what is observed in mice. These results suggest that caution should be applied in extrapolating the results of murine browning gene expression studies to human pathophysiology.
Collapse
Affiliation(s)
- Maria A. Zuriaga
- Molecular Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Jose J. Fuster
- Molecular Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Noyan Gokce
- Cardiovascular Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Kenneth Walsh
- Molecular Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
49
|
Limb proportions show developmental plasticity in response to embryo movement. Sci Rep 2017; 7:41926. [PMID: 28165010 PMCID: PMC5292730 DOI: 10.1038/srep41926] [Citation(s) in RCA: 265] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 01/03/2017] [Indexed: 02/06/2023] Open
Abstract
Animals have evolved limb proportions adapted to different environments, but it is not yet clear to what extent these proportions are directly influenced by the environment during prenatal development. The developing skeleton experiences mechanical loading resulting from embryo movement. We tested the hypothesis that environmentally-induced changes in prenatal movement influence embryonic limb growth to alter proportions. We show that incubation temperature influences motility and limb bone growth in West African Dwarf crocodiles, producing altered limb proportions which may, influence post-hatching performance. Pharmacological immobilisation of embryonic chickens revealed that altered motility, independent of temperature, may underpin this growth regulation. Use of the chick also allowed us to merge histological, immunochemical and cell proliferation labelling studies to evaluate changes in growth plate organisation, and unbiased array profiling to identify specific cellular and transcriptional targets of embryo movement. This disclosed that movement alters limb proportions and regulates chondrocyte proliferation in only specific growth plates. This selective targeting is related to intrinsic mTOR (mechanistic target of rapamycin) pathway activity in individual growth plates. Our findings provide new insights into how environmental factors can be integrated to influence cellular activity in growing bones and ultimately gross limb morphology, to generate phenotypic variation during prenatal development.
Collapse
|
50
|
Loft A, Forss I, Mandrup S. Genome-Wide Insights into the Development and Function of Thermogenic Adipocytes. Trends Endocrinol Metab 2017; 28:104-120. [PMID: 27979331 DOI: 10.1016/j.tem.2016.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/01/2016] [Accepted: 11/07/2016] [Indexed: 12/31/2022]
Abstract
Brown and brown-like adipocytes are specialized adipocytes with a high capacity to convert metabolic energy to heat. This function is not only eminent in supporting organismal thermogenesis, but may also have potential in the fight against obesity. The latter has spurred a massive interest in understanding the development and regulation of these thermogenic adipocytes. Here, we review how genome-wide studies based on next-generation sequencing have provided insight into how the chromatin and transcriptional landscapes are established in thermogenic adipocytes and how thermogenic signals can change the genomic programming of white adipocytes. Furthermore, we discuss how the integration of genomic data can be used to discover novel transcriptional pathways that may be modulated as part of therapeutic strategies for the treatment of obesity.
Collapse
Affiliation(s)
- Anne Loft
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark; Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, 85764 Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Isabel Forss
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Susanne Mandrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark.
| |
Collapse
|