1
|
Ni X, Zhang Z, Deng ZY, Duan S, Szeto IMY, He J, Li T, Li J. Global Levels and Variations of Cholesterol and Polar Lipids of Human Milk: A Systematic Review and Meta-analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7046-7064. [PMID: 40091209 DOI: 10.1021/acs.jafc.4c11942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Polar lipids and cholesterol are vital structural components of the milk fat globule membrane, playing a crucial role in infant growth and development; however, systematic global reports on their content in human milk are currently lacking. This study conducted a systematic literature search in Chinese and English databases, including 69,392 human milk samples from 96 studies. A random-effects model based on global data was used to assess the content of total lipids, cholesterol, gangliosides, and phospholipids in human milk and their variations with the lactation stage, geographical region, and sample year. The mean contents of total lipids, cholesterol, and total phospholipids were 2774.15 mg/100 g (95% CI: 2614.88, 2933.42 mg/100 g), 21.15 mg/100 g (18.35, 23.95 mg/100 g), and 70.72 mg/100 g (68.84, 72.60 mg/100 g), respectively, with gangliosides GM3 and GD3 at 0.63 mg/100 g (0.54, 0.72 mg/100 g) and 0.34 mg/100 g (0.32, 0.36 mg/100 g). The major phospholipids SM, PC, PE, PS, and PI averaged 24.19 mg/100 g (23.17 and 25.21 mg/100 g), 21.27 mg/100 g (19.92 and 22.62 mg/100 g), 18.28 mg/100 g (17.46 and 19.10 mg/100 g), 2.86 mg/100 g (2.32 and 3.40 mg/100 g), and 2.12 mg/100 g (1.75 and 2.49 mg/100 g). With the progression of lactation, total lipids, gangliosides, and most phospholipids (SM, PC, PS, PI) increased, while cholesterol and PE decreased. Over the years, total lipids, gangliosides, and PE showed an upward trend, whereas cholesterol and most phospholipids declined. Human milk from Europe had lower total lipid and cholesterol levels compared with other regions. While the total phospholipid content did not show significant regional differences (P > 0.05), variations in phospholipid composition were observed. These findings emphasize the importance of understanding spatiotemporal changes in human milk lipids to develop personalized nutrition strategies that support optimal infant growth and development.
Collapse
Affiliation(s)
- Xinggang Ni
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Zhiyi Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Ze-Yuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Sufang Duan
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, Inner Mongolia 010110, China
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, Inner Mongolia 010110, China
- National Center for Technology Innovation of Dairy, Ltd., Hohhot, Inner Mongolia 010110, China
| | - Ignatius Man-Yau Szeto
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, Inner Mongolia 010110, China
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, Inner Mongolia 010110, China
- National Center for Technology Innovation of Dairy, Ltd., Hohhot, Inner Mongolia 010110, China
| | - Jian He
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, Inner Mongolia 010110, China
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, Inner Mongolia 010110, China
- National Center for Technology Innovation of Dairy, Ltd., Hohhot, Inner Mongolia 010110, China
| | - Ting Li
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, Inner Mongolia 010110, China
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, Inner Mongolia 010110, China
- National Center for Technology Innovation of Dairy, Ltd., Hohhot, Inner Mongolia 010110, China
| | - Jing Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| |
Collapse
|
2
|
Talbert JA, Townsend SD. Human milk as a complex natural product. Nat Prod Rep 2025; 42:406-420. [PMID: 39831434 DOI: 10.1039/d4np00058g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Covering: up to the end of 2024Breastfeeding is one of the most effective ways to promote child health. However, characterizing the chemistry that fortifies the benefits of breastfeeding remains a grand challenge. Current efforts in the community are focused on characterizing the roles of the different carbohydrates, proteins, and fats in milk. The goal of this review is to highlight and describe current knowledge about the major classes of macromolecules in human milk and their potential role in infant health and wellness.
Collapse
Affiliation(s)
- Julie A Talbert
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37240, USA.
| | - Steven D Townsend
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37240, USA.
| |
Collapse
|
3
|
France TC, Kennedy E, O'Regan J, Goulding DA. Current perspectives on the use of milk fat globule membrane in infant milk formula. Crit Rev Food Sci Nutr 2024:1-16. [PMID: 39428709 DOI: 10.1080/10408398.2024.2417791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Sources of milk fat globule membrane (MFGM) are desirable to include in infant milk formula (IMF) to mimic the composition and functionality of human milk MFGM. MFGM in its natural form consists of a trilayer structure containing lipids (e.g., cholesterol, phospholipids, gangliosides, ceramides), proteins (e.g., butyrophilin, xanthine oxidase, mucin-1, adipophilin) and glycans (e.g., sialic acid). Components of MFGM have been associated with various biological benefit areas including intestinal, neurocognitive, and immune health. There are many aspects to consider when supplementing IMF with MFGM ingredients, of which the major ones are highlighted and critiqued in this review from an industrial research perspective. Features include compositional unknowns, discussion on how best to incorporate MFGM to IMF, analytical method needs, biological function unknowns, and considerations on how best to communicate MFGM in different contexts. It is hoped that by identifying the key scientific gaps outstanding in this subject area, collective efforts can proceed to ensure the potential impact of MFGM on infant health is realized.
Collapse
Affiliation(s)
- Thomas C France
- Nestlé Development Centre Nutrition, Wyeth Nutritionals Ireland, Askeaton, Co. Limerick, Ireland
| | - Elaine Kennedy
- Nestlé Development Centre Nutrition, Wyeth Nutritionals Ireland, Askeaton, Co. Limerick, Ireland
| | - Jonathan O'Regan
- Nestlé Development Centre Nutrition, Wyeth Nutritionals Ireland, Askeaton, Co. Limerick, Ireland
| | - David A Goulding
- Nestlé Development Centre Nutrition, Wyeth Nutritionals Ireland, Askeaton, Co. Limerick, Ireland
| |
Collapse
|
4
|
Mondragon Portocarrero ADC, Lopez-Santamarina A, Lopez PR, Ortega ISI, Duman H, Karav S, Miranda JM. Substitutive Effects of Milk vs. Vegetable Milk on the Human Gut Microbiota and Implications for Human Health. Nutrients 2024; 16:3108. [PMID: 39339708 PMCID: PMC11435326 DOI: 10.3390/nu16183108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Background: In the last two decades, the consumption of plant-based dairy substitutes in place of animal-based milk has increased in different geographic regions of the world. Dairy substitutes of vegetable origin have a quantitative composition of macronutrients such as animal milk, although the composition of carbohydrates, proteins and fats, as well as bioactive components, is completely different from that of animal milk. Many milk components have been shown to have relevant effects on the intestinal microbiota. Methods: Therefore, the aim of this review is to compare the effects obtained by previous works on the composition of the gut microbiota after the ingestion of animal milk and/or vegetable beverages. Results: In general, the results obtained in the included studies were very positive for animal milk intake. Thus, we found an increase in gut microbiota richness and diversity, increase in the production of short-chain fatty acids, and beneficial microbes such as Bifidobacterium, lactobacilli, Akkermansia, Lachnospiraceae or Blautia. In other cases, we found a significant decrease in potential harmful bacteria such as Proteobacteria, Erysipelotrichaceae, Desulfovibrionaceae or Clostridium perfingens after animal-origin milk intake. Vegetable beverages have also generally produced positive results in the gut microbiota such as the increase in the relative presence of lactobacilli, Bifidobacterium or Blautia. However, we also found some potential negative results, such as increases in the presence of potential pathogens such as Enterobacteriaceae, Salmonella and Fusobacterium. Conclusions: From the perspective of their effects on the intestinal microbiota, milks of animal origin appear to be more beneficial for human health than their vegetable substitutes. These different effects on the intestinal microbiota should be considered in those cases where the replacement of animal milks by vegetable substitutes is recommended.
Collapse
Affiliation(s)
- Alicia del Carmen Mondragon Portocarrero
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.d.C.M.P.); (A.L.-S.); (P.R.L.)
| | - Aroa Lopez-Santamarina
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.d.C.M.P.); (A.L.-S.); (P.R.L.)
| | - Patricia Regal Lopez
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.d.C.M.P.); (A.L.-S.); (P.R.L.)
| | - Israel Samuel Ibarra Ortega
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo km. 4.5, Pachuca 42076, Hidalgo, Mexico;
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (H.D.); (S.K.)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (H.D.); (S.K.)
| | - Jose Manuel Miranda
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.d.C.M.P.); (A.L.-S.); (P.R.L.)
| |
Collapse
|
5
|
Kondrashina A, Mamone G, Giblin L, Lane JA. Infant Milk Formula Enriched in Dairy Cream Brings Its Digestibility Closer to Human Milk and Supports Intestinal Health in Pre-Clinical Studies. Nutrients 2024; 16:3065. [PMID: 39339664 PMCID: PMC11434767 DOI: 10.3390/nu16183065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Human breast milk (HBM) is the "gold standard" for infant nutrition. When breast milk is insufficient or unavailable, infant milk formula (IMF) can provide a safe and nutritious alternative. However, IMFs differ considerably from HBM in composition and health function. We compared the digestibility and potential health functions of IMF containing low cream (LC-) or high cream (HC-) with pooled HBM. After simulated infant digestion of these samples, the bioavailability of key nutrients and immunomodulatory activities were determined via cell-based in vitro assays. A Caenorhabditis elegans leaky gut model was established to investigate cream effects on gut health. Distinct differences were observed in peptide diversity and sequences released from HC-IMF compared with LC-IMF during simulated digestion (p < 0.05). Higher levels of free fatty acids were absorbed through 21-day differentiated Caco-2/HT-29MTX monolayers from HC-IMF, compared with LC-IMF and HBM (p < 0.05). Furthermore, the immune-modulating properties of HC-IMF appeared to be more similar to HBM than LC-IMF, as observed by comparable secretion of cytokines IL-10 and IL-1β from THP-1 macrophages (p > 0.05). HC-IMF also supported intestinal recovery in C. elegans following distortion versus LC-IMF (p < 0.05). These observations suggest that cream as a lipid source in IMF may provide added nutritional and functional benefits more aligned with HBM.
Collapse
Affiliation(s)
- Alina Kondrashina
- Health and Happiness (H&H) Group, H&H Research, Global Research and Technology Centre, Fermoy, P61 K202 Co. Cork, Ireland
| | - Gianfranco Mamone
- Institute of Food Science, National Research Council, 83100 Avellino, Italy
| | - Linda Giblin
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 P302 Co. Cork, Ireland
| | - Jonathan A Lane
- Health and Happiness (H&H) Group, H&H Research, Global Research and Technology Centre, Fermoy, P61 K202 Co. Cork, Ireland
| |
Collapse
|
6
|
Sun J, Han J, Jiang X, Ying Y, Li S. Association between breastfeeding duration and BMI, 2009-2018: a population-based study. Front Nutr 2024; 11:1463089. [PMID: 39296510 PMCID: PMC11408305 DOI: 10.3389/fnut.2024.1463089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/21/2024] [Indexed: 09/21/2024] Open
Abstract
Background In the 21st century, childhood overweight and obesity have become major public health issues worldwide. Previous studies have shown that breastfeeding helps prevent overweight or obesity in children. Despite the significant advantages of breastfeeding, the global exclusive breastfeeding rate for infants under 6 months old is only 40%, while in the United States, the rate is only 25%. The aim of this study is to explore the relationship between breastfeeding duration and BMI in children aged 2 to 6 in the United States, and to raise awareness of breastfeeding. Methods A cross-sectional study included 2,769 participants between the ages of 2 and 6 from a sample that represented the entire NHANES 2009-2018. Data was analyzed using EmpowerStats, (www.empowerstats.com) linear regression as well as Chi-square test, t-tests, multivariate regression analysis and smooth cure fitting were done. Results Breastfeeding duration long-term group exhibited a statistically significant negative association with BMI, with a regression coefficient of -0.21 (P < 0.05). The continuous analysis of breastfeeding duration by tertile also demonstrate a statistically significant negative association with BMI. Subgroup analysis revealed that the potential benefits of breastfeeding on BMI were more obvious in low-income environments and maternal age 18 to 35 years, with a regression coefficient of -0.57 and -0.24, respectively (all P < 0.05). Conclusion The findings emphasize the importance of breastfeeding in reducing childhood overweight/obesity and preventing associated diseases, both in clinical and public health settings.
Collapse
Affiliation(s)
- Jiaqing Sun
- Wenyan Branch of the First People's Hospital of Xiaoshan District, Hangzhou, China
| | - Jian Han
- Wenyan Branch of the First People's Hospital of Xiaoshan District, Hangzhou, China
| | - Xiaofeng Jiang
- Wenyan Branch of the First People's Hospital of Xiaoshan District, Hangzhou, China
| | - Yali Ying
- Wenyan Branch of the First People's Hospital of Xiaoshan District, Hangzhou, China
| | - Shenghao Li
- The First People's Hospital of Xiaoshan District, Hangzhou, China
| |
Collapse
|
7
|
Bai X, Shang J, Cao X, Li M, Yu H, Wu C, Yang M, Yue X. Proteomic and phosphoproteomic reveal immune-related function of milk fat globule membrane in bovine milk of different lactation periods. Food Chem 2024; 451:139295. [PMID: 38729042 DOI: 10.1016/j.foodchem.2024.139295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/04/2024] [Accepted: 04/07/2024] [Indexed: 05/12/2024]
Abstract
Information regarding protein expression and phosphorylation modifications in the bovine milk fat globule membrane is scarce, particularly throughout various lactation periods. This study employed a complete proteome and phosphoproteome between bovine colostrum and mature milk. A total of 11 proteins were seen in both protein expression and phosphorylation levels. There were 400 proteins identified in only protein expression, and 104 phosphoproteins identified in only phosphorylation levels. A total of 232 significant protein characteristics were identified within the proteome and significant phosphorylation sites within 86 phosphoproteins of the phosphoproteome. Biological activities and pathways primarily exhibited associations with the immune system. Simultaneously, a comprehensive analysis of proteins and phosphorylation sites using a multi-omics approach. Hence, the data we have obtained has the potential to expand our understanding of how the bovine milk fat globule membrane might be utilized as a beneficial component in dairy products.
Collapse
Affiliation(s)
- Xue Bai
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Jingwen Shang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Xueyan Cao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Mohan Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Hong Yu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Chunshuang Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Mei Yang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China.
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| |
Collapse
|
8
|
Gould JF, Gibson RA, Yelland LN, Colombo J, McPhee AJ, Gallier S, Roberts RM, Shaddy DJ, Bednarz J, Makrides M. Infant formula supplemented with milk fat globule membrane compared with standard infant formula for the cognitive development of healthy term-born formula-fed infants: protocol for a randomised controlled trial. BMJ Open 2024; 14:e083399. [PMID: 38951000 PMCID: PMC11331355 DOI: 10.1136/bmjopen-2023-083399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/13/2024] [Indexed: 07/03/2024] Open
Abstract
INTRODUCTION Milk fat globule membrane (MFGM) is a complex lipid-protein structure in mammalian milk and human milk that is largely absent from breastmilk substitutes. The objective of this trial is to investigate whether providing infant formula enriched with MFGM versus standard infant formula improves cognitive development at 12 months of age in exclusively formula-fed full-term infants. METHODS AND ANALYSIS This is a randomised, controlled, clinician-blinded, researcher-blinded and participant-blinded trial of two parallel formula-fed groups and a breastfed reference group that were recruited in the suburban Adelaide (Australia) community by a single study centre (a medical research institute). Healthy, exclusively formula-fed, singleton, term-born infants under 8 weeks of age were randomised to either an MFGM-supplemented formula (intervention) or standard infant formula (control) from enrolment until 12 months of age. The reference group was not provided with formula. The primary outcome is the Cognitive Scale of the Bayley Scales of Infant Development, Fourth Edition (Bayley-IV) at 12 months. Secondary outcomes are the Bayley-IV Cognitive Scale at 24 months, other Bayley-IV domains (language, motor, emotional and behavioural development) at 12 and 24 months of age, infant attention at 4 and 9 months of age, parent-rated language at 12 and 24 months of age, parent-rated development at 6 and 18 months of age as well as growth, tolerance and safety of the study formula. To ensure at least 80% power to detect a 5-point difference in the mean Bayley-IV cognitive score, >200 infants were recruited in each group. ETHICS AND DISSEMINATION The Women's and Children Health Network Human Research Ethics Committee reviewed and approved the study (HREC/19/WCHN/140). Caregivers gave written informed consent prior to enrolling in the trial. Findings of this study will be disseminated through peer-reviewed publications and conference presentations. TRIAL REGISTRATION NUMBER ACTRN12620000552987; Australian and New Zealand Clinical Trial Registry: anzctr.org.au.
Collapse
Affiliation(s)
- Jacqueline F Gould
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, North Adelaide, South Australia, Australia
- School of Psychology, The University of Adelaide, Adelaide, South Australia, Australia
| | - Robert A Gibson
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, North Adelaide, South Australia, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, South Australia, Australia
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute Limited, Adelaide, South Australia, Australia
| | - Lisa N Yelland
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, North Adelaide, South Australia, Australia
- School of Public Health, The University of Adelaide, Adelaide, South Australia, Australia
| | - John Colombo
- Department of Psychology, The University of Kansas, Lawrence, Kansas, USA
| | - Andrew J McPhee
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, North Adelaide, South Australia, Australia
- Neonatal Medicine, Women's and Children's Health Network, North Adelaide, South Australia, Australia
| | - Sophie Gallier
- Fonterra Research and Development Centre, Palmerston North, New Zealand
- Hamilton, Stockholm, Sweden
| | - Rachel M Roberts
- School of Psychology, The University of Adelaide, Adelaide, South Australia, Australia
| | - D Jill Shaddy
- Department of Dietetics & Nutrition, The University of Kansas, Lawrence, Kansas, USA
| | - Jana Bednarz
- SAHMRI Women and Kids Theme, South Australian Health and Medical Research Institute Limited, Adelaide, South Australia, Australia
| | - Maria Makrides
- Discipline of Paediatrics, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
9
|
Sangild PT. Science and Faith to Understand Milk Bioactivity for Infants. Nutrients 2024; 16:1676. [PMID: 38892610 PMCID: PMC11174769 DOI: 10.3390/nu16111676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Milk bioactivity refers to the specific health effects of milk components beyond nutrition. The science of milk bioactivity involves the systematic study of these components and their health effects, as verified by empirical data, controlled experiments, and logical arguments. Conversely, 'faith in milk bioactivity' can be defined as personal opinion, meaning, value, trust, and hope for health effects that are beyond investigation by natural, social, or human sciences. Faith can be strictly secular, but also influenced by spirituality or religion. The aim of this paper is to show that scientific knowledge is frequently supplemented with faith convictions to establish personal and public understanding of milk bioactivity. Mammalian milk is an immensely complex fluid containing myriad proteins, carbohydrates, lipids, and micronutrients with multiple functions across species, genetics, ages, environments, and cultures. Human health includes not only physical health, but also social, mental, and spiritual health, requiring widely different fields of science to prove the relevance, safety, and efficacy of milk interventions. These complex relationships between milk feeding and health outcomes prevent firm conclusions based on science and logic alone. Current beliefs in and understanding of the value of breast milk, colostrum, infant formula, or isolated milk proteins (e.g., immunoglobulins, α-lactalbumin, lactoferrin, and growth factors) show that both science and faith contribute to understand, stimulate, or restrict the use of milk bioactivity. The benefits of breastfeeding for infants are beyond doubt, but the strong beliefs in its health effects rely not only on science, and mechanisms are unclear. Likewise, fear of, or trust in, infant formula may rely on both science and faith. Knowledge from science safeguards individuals and society against 'milk bioactivity superstition'. Conversely, wisdom from faith-based convictions may protect science from unrealistic 'milk bioactivity scientism'. Honesty and transparency about the potentials and limitations of both scientific knowledge and faith convictions are important when informing individuals and society about the nutritious and bioactive qualities of milk.
Collapse
Affiliation(s)
- Per T. Sangild
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Copenhagen, Denmark;
- Department of Neonatology, Rigshospitalet, 2100 Copenhagen, Denmark
- Hans Christian Andersen Children’s Hospital, Odense University Hospital, 5000 Odense, Denmark
- Cross-Faculty Center for Science and Faith, Faculty of Theology, University of Copenhagen, 2300 Copenhagen, Denmark
| |
Collapse
|
10
|
Bai X, Shang J, Wu C, Yu H, Chen X, Yue X, Yang M. Phosphoproteomics Revealed Differentially Expressed Sites and Function of the Bovine Milk Fat Globule Membrane in Colostrum and Mature Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6040-6052. [PMID: 38454851 DOI: 10.1021/acs.jafc.3c08957] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
One type of large and intricate post-translational modification of milk proteins that has significant biological implications is phosphorylation. The characterization of phosphoproteins found in the bovine milk fat globule membrane (MFGM) is still mostly unknown. Here, label-free phosphoproteomics was used to identify 94 phosphorylation sites from 54 MFGM phosphoproteins in bovine colostrum (BC) and 136 phosphorylation sites from 91 MFGM phosphoproteins in bovine mature milk (BM). αs1-Casein and β-casein were the most phosphorylated proteins in bovine colostrum. In bovine mature milk, perilipin-2 was the protein with the greatest number of phosphorylation sites. The results show that bovine colostrum MFGM phosphoproteins were mainly involved in immune function, whereas bovine mature MFGM phosphoproteins were mainly involved in metabolic function. Plasminogen and osteopontin were the most strongly interacting proteins in colostrum, whereas perilipin-2 was the most strongly interacting protein in bovine mature milk. This work demonstrates the unique alterations in the phosphorylation manner of the bovine MFGM protein during lactation and further expands our knowledge of the site characteristics of bovine MFGM phosphoproteins. This result confirms the value of MFGM as a reference ingredient for infant formula during different stages.
Collapse
Affiliation(s)
- Xue Bai
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P. R. China
| | - Jingwen Shang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P. R. China
| | - Chunshuang Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P. R. China
| | - Hong Yu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P. R. China
| | - Xinping Chen
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P. R. China
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P. R. China
| | - Mei Yang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P. R. China
| |
Collapse
|
11
|
Torres-Gonzalez M, Rice Bradley BH. Whole-Milk Dairy Foods: Biological Mechanisms Underlying Beneficial Effects on Risk Markers for Cardiometabolic Health. Adv Nutr 2023; 14:1523-1537. [PMID: 37684008 PMCID: PMC10721525 DOI: 10.1016/j.advnut.2023.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/20/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Lifestyle modifications that include adherence to healthy dietary patterns that are low in saturated fat have been associated with reduced risk for cardiovascular disease, the leading cause of death globally. Whole-milk dairy foods, including milk, cheese, and yogurt, are leading sources of saturated fat in the diet. Dietary guidelines around the world recommend the consumption of low-fat and fat-free dairy foods to obtain overall healthy dietary patterns that help meet nutrient recommendations while keeping within recommended calorie and saturated fat limitations. A body of observational and clinical evidence indicates, however, that whole-milk dairy food consumption, despite saturated fat content, does not increase the risk for cardiovascular disease. This review describes the proposed biological mechanisms underlying inverse associations between whole-milk dairy food consumption and risk markers for cardiometabolic health, such as altered lipid digestion, absorption, and metabolism; influence on the gut microflora; and regulation of oxidative stress and inflammatory responses. The dairy food matrix, a term used to describe how the macronutrients and micronutrients and other bioactive components of dairy foods are differentially packaged and compartmentalized among fluid milk, cheese, and yogurt, may dictate how each affects cardiovascular risk. Current evidence indicates consideration of dairy foods as complex food matrices, rather than delivery systems for isolated nutrients, such as saturated fatty acids, is warranted.
Collapse
Affiliation(s)
| | - Beth H Rice Bradley
- Department of Nutrition and Food Sciences, University of Vermont, Burlington, VT, United States.
| |
Collapse
|
12
|
Duman H, Karav S. Bovine colostrum and its potential contributions for treatment and prevention of COVID-19. Front Immunol 2023; 14:1214514. [PMID: 37908368 PMCID: PMC10613682 DOI: 10.3389/fimmu.2023.1214514] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 09/27/2023] [Indexed: 11/02/2023] Open
Abstract
Bovine colostrum (BC) is the initial milk an animal produces after giving birth, particularly in the first few days. Numerous bioactive substances found in BC, including proteins, enzymes, growth factors, immunoglobulins, etc., are beneficial to human health. BC has a significant role to play as part of a healthy diet, with well-documented health and nutritional advantages for people. Therefore, the use of BC and its crucial derivatives in the development of functional food and pharmaceuticals for the prevention of several diseases such as gastrointestinal and respiratory system disorders is becoming increasingly popular around the world. A novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified as the cause of a cluster of pneumonia cases that is called Coronavirus Disease 2019 (COVID-19) in China. After the first SARS-CoV-2 virus-related fatality was announced, the illness quickly spread throughout China and to other continents, causing a pandemic. Since then, numerous studies have been initiated to develop safe and efficient treatments. To prevent viral infection and potential lingering effects, it is important to investigate alternative treatments for COVID-19. Due to its effective bioactive profile and its immunomodulatory roles in biological processes, BC might be considered a promising approach to assist in combating people affected by the SARS-CoV-2 or prevention from the virus. BC has immunomodulatory effects because to its high concentration of bioactive components such as immunoglobulins, lactoferrin, cytokines, and growth factors, etc., which might help control immunological responses, potentially fostering a balanced immune response. Furthermore, its bioactive components have a potential cross-reactivity against SARS-CoV-2, aiding in virus neutralization and its comprehensive food profile also supplies important vitamins, minerals, and amino acids, fostering a healthy immune system. Hence, the possible contributions of BC to the management of COVID-19 were reviewed in this article based on the most recent research on the subject. Additionally, the key BC components that influence immune system modulation were evaluated. These components may serve as potential mediators or therapeutic advantages in COVID-19.
Collapse
Affiliation(s)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale, Türkiye
| |
Collapse
|
13
|
Pokala A, Quarles WR, Ortega-Anaya J, Jimenez-Flores R, Cao S, Zeng M, Hodges JK, Bruno RS. Milk-Fat-Globule-Membrane-Enriched Dairy Milk Compared with a Soy-Lecithin-Enriched Beverage Did Not Adversely Affect Endotoxemia or Biomarkers of Gut Barrier Function and Cardiometabolic Risk in Adults with Metabolic Syndrome: A Randomized Controlled Crossover Trial. Nutrients 2023; 15:3259. [PMID: 37513677 PMCID: PMC10384269 DOI: 10.3390/nu15143259] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Full-fat dairy milk may protect against cardiometabolic disorders, due to the milk fat globule membrane (MFGM), through anti-inflammatory and gut-health-promoting activities. We hypothesized that a MFGM-enriched milk beverage (MEB) would alleviate metabolic endotoxemia in metabolic syndrome (MetS) persons by improving gut barrier function and glucose tolerance. In a randomized crossover trial, MetS persons consumed for two-week period a controlled diet with MEB (2.3 g/d milk phospholipids) or a comparator beverage (COMP) formulated with soy phospholipid and palm/coconut oil. They then provided fasting blood and completed a high-fat/high-carbohydrate test meal challenge for evaluating postprandial metabolism and intestinal permeability. Participants had no adverse effects and achieved high compliance, and there were no between-trial differences in dietary intakes. Compared with COMP, fasting endotoxin, glucose, incretins, and triglyceride were unaffected by MEB. The meal challenge increased postprandial endotoxin, triglyceride, and incretins, but were unaffected by MEB. Insulin sensitivity; fecal calprotectin, myeloperoxidase, and short-chain fatty acids; and small intestinal and colonic permeability were also unaffected by MEB. This short-term study demonstrates that controlled administration of MEB in MetS persons does not affect gut barrier function, glucose tolerance, and other cardiometabolic health biomarkers, which contradicts observational evidence that full-fat milk heightens cardiometabolic risk. Registered at ClinicalTrials.gov (NCT03860584).
Collapse
Affiliation(s)
- Avinash Pokala
- Human Nutrition Program, The Ohio State University, Columbus, OH 43201, USA
| | - William R Quarles
- Human Nutrition Program, The Ohio State University, Columbus, OH 43201, USA
| | - Joana Ortega-Anaya
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43201, USA
| | - Rafael Jimenez-Flores
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43201, USA
| | - Sisi Cao
- Human Nutrition Program, The Ohio State University, Columbus, OH 43201, USA
| | - Min Zeng
- Human Nutrition Program, The Ohio State University, Columbus, OH 43201, USA
| | - Joanna K Hodges
- Human Nutrition Program, The Ohio State University, Columbus, OH 43201, USA
- Department of Nutritional Sciences, The Pennsylvania State University, State College, PA 16802, USA
| | - Richard S Bruno
- Human Nutrition Program, The Ohio State University, Columbus, OH 43201, USA
| |
Collapse
|
14
|
Pawar A, Zabetakis I, Gavankar T, Lordan R. Milk polar lipids: Untapped potential for pharmaceuticals and nutraceuticals. PHARMANUTRITION 2023. [DOI: 10.1016/j.phanu.2023.100335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
15
|
Lectin microarray profiling demonstrates equivalent global glycosylation for whey protein ingredients enriched with α-lactalbumin and milk fat globule membrane. Food Res Int 2023; 164:112416. [PMID: 36737995 DOI: 10.1016/j.foodres.2022.112416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022]
Abstract
Human milk fat globule membrane (MFGM) and whey proteins are nutritionally and functionally valuable, with many beneficial bioactivities associated with their glycosylation. However glycosylation of milk components other than free milk oligosaccharides are underinvestigated. Whey protein concentrate (WPC) ingredients with various enrichments or depletions are used in infant formula (IF) formulations to contribute to human milk equivalence and bioactivity benefits, but their overall or global glycosylation has not been compared. We compared the global glycosylation of commercial WPC ingredients for use in various IF formulations; two MFGM-enriched WPC ingredients (high fat HF1 and lower fat HF2), an α-lactalbumin-enriched WPC (WPC Lac) which has α-lactalbumin concentration closer to human milk and significantly less β-lactoglobulin which is not present in human milk, and two base WPC ingredients (WPC 80 and WPC 35) using lectin microarray profiling. WPC Lac and WPC HF1 glycosylation were highly similar to each other and both somewhat similar to WPC 35, while WPC HF2 was more similar to the base WPC 80 ingredient. N-linked glycosylation analysis demonstrated that WPC HF1 and WPC Lac were qualitatively most similar to one another, with WPC 80 and WPC 35 having similar structures, confirming lectin microarray profiling as a valuable method to compare global glycosylation. Thus WPC Lac may be a valuable ingredient for providing equivalent glycosylation to MFGM supplementation.
Collapse
|
16
|
Associations between Maternal Diet, Human Milk Macronutrients, and Breast-Fed Infant Growth during the First Month of Life in the SMILE Iwamizawa in Japan. Nutrients 2023; 15:nu15030654. [PMID: 36771361 PMCID: PMC9921570 DOI: 10.3390/nu15030654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
Maternal diet may affect human milk macronutrients, but it remains to be elucidated whether this is also influential in infant growth. This study aimed to examine (1) how maternal diet influences human milk macronutrients, and (2) to what extent the variation in milk macronutrients affects infant growth during the first month of life. In 71 Japanese lactating women, maternal dietary information was collected from the brief-type self-administered diet history questionnaire, and anthropometry of mother-infant dyads was collected from medical records. Macronutrients in milk were analyzed by a Human Milk Analyzer. Maternal retinol intake was associated with the carbohydrate content in human milk at 1-month postpartum (standardized β coefficient: 0.287; p = 0.038). Moreover, the energy content in human milk was associated with an increase in the weight standard deviation score based on the WHO growth standard at 1 month of age (standardized β coefficient: 0.399; p = 0.046). Nevertheless, the milk macronutrient was not associated with the risk of infant growth abnormalities. In conclusion, a part of the maternal diet impacts macronutrient contents in human milk, but milk macronutrients have a limited effect on infant growth only within the normal growth curve during the first month of life.
Collapse
|
17
|
Strzalkowski AJ, Järvinen KM, Schmidt B, Young BE. Protein and carbohydrate content of infant formula purchased in the United States. Clin Exp Allergy 2022; 52:1291-1301. [PMID: 36129802 DOI: 10.1111/cea.14232] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND The protein and carbohydrate composition of formula fed infants' diets in the United States (US) has not been described. The aims of this study were to characterize these dietary exposures in infant formula purchased in the US and to estimate the proportion of formula purchased which is hypoallergenic or lactose-reduced formula. METHODS Powdered infant formula purchase data from all major physical stores in the US prior to the COVID-19 pandemic, between 2017 and 2019, were obtained from Information Resources, Inc. Protein and carbohydrate composition and scoop sizes for each formula were obtained from manufacturers. Ready to feed liquid products, products for premature infants and products for over 1 year old were not included. RESULTS Total volumes of term formula purchased were 216 million kg of formula powder (equivalent to 1.65 billion litres) over 3 years. Intact protein formula was 67.9% of formula purchased, 26.6% was partially hydrolysed and 5.5% was hypoallergenic (5.2% extensively hydrolysed protein; 0.3% amino acid based). Soy protein formula represented 5.1% of formula purchased. Carbohydrate content overall was 52.7% lactose, 42.3% glucose polymers and 5.0% sucrose. 23.7% of formula purchased included sucrose as a carbohydrate. Of all formula purchased, 59.0% was lactose reduced, containing a non-lactose carbohydrate. Of 'standard' formula, defined as intact protein, non-thickened, cow's milk formula, 32.3% was lactose reduced. The proportion of hypoallergenic formula purchased significantly exceeded the prevalence of cow's milk protein allergy and increased over the 3-year study period from 4.9% to 7.6% of all formula sold. CONCLUSIONS US infants are exposed to unnecessarily high levels of non-lactose carbohydrates and hypoallergenic formula, and this may represent a significant nutritional health risk.
Collapse
Affiliation(s)
- Alexander J Strzalkowski
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Kirsi M Järvinen
- Department of Pediatrics Allergy and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Brianne Schmidt
- Department of Pediatrics Allergy and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Bridget E Young
- Department of Pediatrics Allergy and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
18
|
Charton E, Bourgeois A, Bellanger A, Le-Gouar Y, Dahirel P, Romé V, Randuineau G, Cahu A, Moughan PJ, Montoya CA, Blat S, Dupont D, Deglaire A, Le Huërou-Luron I. Infant nutrition affects the microbiota-gut-brain axis: Comparison of human milk vs. infant formula feeding in the piglet model. Front Nutr 2022; 9:976042. [PMID: 36211510 PMCID: PMC9532976 DOI: 10.3389/fnut.2022.976042] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Early nutrition plays a dominant role in infant development and health. It is now understood that the infant diet impacts the gut microbiota and its relationship with gut function and brain development. However, its impact on the microbiota-gut-brain axis has not been studied in an integrative way. The objective here was to evaluate the effects of human milk (HM) or cow’s milk based infant formula (IF) on the relationships between gut microbiota and the collective host intestinal-brain axis. Eighteen 10-day-old Yucatan mini-piglets were fed with HM or IF. Intestinal and fecal microbiota composition, intestinal phenotypic parameters, and the expression of genes involved in several gut and brain functions were determined. Unidimensional analyses were performed, followed by multifactorial analyses to evaluate the relationships among all the variables across the microbiota-gut-brain axis. Compared to IF, HM decreased the α-diversity of colonic and fecal microbiota and modified their composition. Piglets fed HM had a significantly higher ileal and colonic paracellular permeability assessed by ex vivo analysis, a lower expression of genes encoding tight junction proteins, and a higher expression of genes encoding pro-inflammatory and anti-inflammatory immune activity. In addition, the expression of genes involved in endocrine function, tryptophan metabolism and nutrient transport was modified mostly in the colon. These diet-induced intestinal modifications were associated with changes in the brain tissue expression of genes encoding the blood-brain barrier, endocrine function and short chain fatty acid receptors, mostly in hypothalamic and striatal areas. The integrative approach underlined specific groups of bacteria (Veillonellaceae, Enterobacteriaceae, Lachnospiraceae, Rikenellaceae, and Prevotellaceae) associated with changes in the gut-brain axis. There is a clear influence of the infant diet, even over a short dietary intervention period, on establishment of the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Elise Charton
- STLO, INRAE, Institut Agro, Rennes, France
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint-Gilles, France
| | | | | | | | - Patrice Dahirel
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint-Gilles, France
| | - Véronique Romé
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint-Gilles, France
| | | | - Armelle Cahu
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint-Gilles, France
| | - Paul J. Moughan
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Carlos A. Montoya
- Riddet Institute, Massey University, Palmerston North, New Zealand
- Smart Foods and Bioproducts Innovation Centre of Excellence, AgResearch Limited, Palmerston North, New Zealand
| | - Sophie Blat
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint-Gilles, France
| | | | | | - Isabelle Le Huërou-Luron
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint-Gilles, France
- *Correspondence: Isabelle Le Huërou-Luron,
| |
Collapse
|
19
|
Zuiderwijk MO, van der Burg M, Bekker V, Schoenaker MHD. Regulatory T Cells in Development and Prediction of Necrotizing Enterocolitis in Preterm Neonates: A Scoping Review. Int J Mol Sci 2022; 23:10903. [PMID: 36142816 PMCID: PMC9504949 DOI: 10.3390/ijms231810903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is a leading cause of mortality in premature infants. However, the pathophysiology and influence of regulatory T cells (Tregs) have not been sufficiently elucidated. We performed a scoping review to investigate current knowledge on the influence of Tregs in NEC, and to investigate the predictive value of Treg number in NEC development. Pubmed, Embase, Prospero and Cochrane Library were searched during December 2020. Primary research articles discussing Tregs and NEC development written in English were selected. Two reviewers screened title and abstract for relevance, after which full-text screening was performed. A total of 20 articles were selected-13 of the articles discussed studies performed in animal models, while 8 used human neonate data. One study discussed both animal and human data. It was shown that after NEC diagnosis or induction, Treg levels were decreased while Th17 levels were increased. No studies were found which investigated the predictive value of Treg number in NEC development. A reduced Treg level is found in animals and neonates with NEC. The question remains whether this effect is a factor on the causal pathway of NEC development or a bystander effect. Future research focusing on the pathophysiological timeline of NEC and the involvement of Tregs is required for better understanding of this disease.
Collapse
Affiliation(s)
- Mara O. Zuiderwijk
- Willem Alexander Children’s Hospital, Division of Neonatology, Department of Pediatrics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Mirjam van der Burg
- Willem Alexander Children’s Hospital, Laboratory for Pediatric Immunology, Department of Pediatrics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Vincent Bekker
- Willem Alexander Children’s Hospital, Division of Neonatology, Department of Pediatrics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Michiel H. D. Schoenaker
- Willem Alexander Children’s Hospital, Division of Neonatology, Department of Pediatrics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Willem Alexander Children’s Hospital, Laboratory for Pediatric Immunology, Department of Pediatrics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
20
|
Jiang B, Xia Y, Zhou L, Liang X, Chen X, Chen M, Li X, Lin S, Zhang N, Zheng L, Tao M, Petocz P, Gallier S, Rowan A, Wang B. Safety and tolerance assessment of milk fat globule membrane-enriched infant formulas in healthy term Chinese infants: a randomised multicenter controlled trial. BMC Pediatr 2022; 22:465. [PMID: 35918695 PMCID: PMC9347101 DOI: 10.1186/s12887-022-03507-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/19/2022] [Indexed: 11/30/2022] Open
Abstract
Background Milk fat globule membrane (MFGM), natural to breast milk, is essential for neonatal development, but lacking from standard infant formulas. Objectives To evaluate the safety and tolerability of MFGM supplementation in formula for infants 0 to 12 months. Methods In a prospective, multicentre, double-blind, randomized trial, healthy term infants were randomized to a standard formula (SF, n = 104) or an MFGM-enriched formula (MF, n = 108) for 6 months and a corresponding follow-on formula until 12 months. Exclusively breast-fed infants (n = 206) were recruited as the reference group (BFR). Tolerance and safety events were recorded continuously. Anthropometric measurements were assessed at enrolment, 42 days and 4, 6, 8 and 12 months. Results Infants (n = 375) completed the study with average dropout of < 20%. Stool frequency, color, and consistency between SF and MF were not significantly different throughout, except the incidence of loose stools in MF at 6 months being lower than for SF (odds ratio 0.216, P < 0.05) and the frequency of green-colored stools at 12 months being higher in MF (CI 95%, odds ratio 8.92, P < 0.05). The BFR had a higher frequency of golden stools and lower rate of green stools (4–6 months) than the two formula-fed groups (P < 0.05). SF displayed more diarrhoea (4.8%) than MF (1%) and BFR (1%) at the 8-month visit (P < 0.05). BFR (0–1%) had significantly less (P < 0.05) lower respiratory infections than MF (4.6–6.5%) and SF (2.9–5.8%) at 6- and 8-months, respectively. Formula intake, frequency of spit-up/vomiting or poor sleep were similar between SF and MF. Growth rate (g/day) was similar at 4, 6, 8 and 12 months between the 3 groups, but growth rate for BFR was significantly higher than for SF and MF at 42 days (95% CI, P = 0.001). Conclusions MFGM-enriched formula was safe and well-tolerated in healthy term infants between 0 and 12 months, and total incidences of adverse events were similar to that for the SF group. A few differences in formula tolerance were observed, however these differences were not in any way related to poor growth.
Collapse
Affiliation(s)
- BoWen Jiang
- Maternal &, Child Health Hospital of Fuzhou, Fuzhou, 350005, China.,School of Medicine, Xiamen University, Xiamen City, 361005, China
| | - Yong Xia
- Maternal &, Child Health Hospital of Fuzhou, Fuzhou, 350005, China.,School of Medicine, Xiamen University, Xiamen City, 361005, China
| | - LiHong Zhou
- School of Medicine, Xiamen University, Xiamen City, 361005, China
| | - XiaoYing Liang
- Maternal &, Child Health Hospital of Fuzhou, Fuzhou, 350005, China
| | - XuHui Chen
- Maternal &, Child Health Hospital of Fuqing, Fuqing, 350300, China
| | | | - XiaoXia Li
- Second Hospital of Fuzhou, Fuzhou, 350007, China
| | - Shan Lin
- Maternal &, Child Health Hospital of Fuzhou, Fuzhou, 350005, China
| | - Nai Zhang
- Maternal &, Child Health Hospital of Fuzhou, Fuzhou, 350005, China
| | - Ling Zheng
- Maternal &, Child Health Hospital of Fuqing, Fuqing, 350300, China
| | - Miao Tao
- Maternal &, Child Health Hospital of Fuzhou, Fuzhou, 350005, China
| | - Peter Petocz
- Macquarie University, Sydney, NSW, 2109, Australia
| | - Sophie Gallier
- Fonterra Co-Operative Group Limited, Wellington, New Zealand
| | - Angela Rowan
- Fonterra Co-Operative Group Limited, Wellington, New Zealand
| | - Bing Wang
- School of Medicine, Xiamen University, Xiamen City, 361005, China.
| |
Collapse
|
21
|
Jiang R, Du X, Brink L, Lönnerdal B. The role of orally ingested milk fat globule membrane on intestinal barrier functions evaluated with a suckling rat pup supplementation model and a human enterocyte model. J Nutr Biochem 2022; 108:109084. [PMID: 35716863 DOI: 10.1016/j.jnutbio.2022.109084] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/21/2022] [Accepted: 05/14/2022] [Indexed: 12/12/2022]
Abstract
Milk fat globule membrane (MFGM), the membrane surrounding secreted fat droplets in milk, contains components involved in a wide range of bioprocesses including cell proliferation and differentiation. The intestine is relatively immature and permeable at birth. Since MFGM is partly resistant to digestion in infancy, we hypothesized that orally ingested MFGM promotes intestinal development by enhancing intestinal barrier functions in early life. An established suckling rat model was used; Sprague-Dawley rats were bred, and litters were culled to 10 pups/dam. Pups were supplemented orally with MFGM (0, 100, or 300 mg/kg/day) from postnatal day 1 to 20. Intestine samples were collected for histology, qRT-PCR, immunoblotting, and immunohistochemistry analysis. Additionally, differentiated Caco-2 cells were used to assess effects of MFGM on the human intestinal barrier. Control and MFGM-supplemented rat pups showed similar growth. Intestinal differentiation and expression of tight junction proteins in jejunum and colon were significantly increased by orally ingested MFGM, and MFGM supplementation significantly activated PI3K/Akt/mTOR, MAPK, and MLCK signaling pathways, suggesting that MFGM promotes intestinal development by triggering various signaling pathways. In human enterocytes (polarized Caco-2 cells), MFGM (400 µg/mL for 72 h) decreased permeability, as revealed by increased transepithelial electrical resistance. In Caco-2 cells, MFGM also enhanced expression of tight junction proteins, including claudin-4 and ZO-2. In conclusion, orally ingested MFGM may exert beneficial roles in intestinal development by activating various cell signaling pathways to upregulate tight junction proteins and thereby increasing intestinal barrier functions.
Collapse
Affiliation(s)
- Rulan Jiang
- Department of Nutrition, University of California, Davis, California, USA
| | - Xiaogu Du
- Department of Nutrition, University of California, Davis, California, USA
| | - Lauren Brink
- Department of Medical and Scientific Affairs, Reckitt, Evansville, Indiana, USA
| | - Bo Lönnerdal
- Department of Nutrition, University of California, Davis, California, USA.
| |
Collapse
|
22
|
Mohamed HJJ, Lee EKH, Woo KCK, Sarvananthan R, Lee YY, Zabidi‐Hussin ZAMH. Brain
–
immune
–
gut
benefits with early life supplementation of milk fat globule membrane. JGH OPEN 2022; 6:454-461. [PMID: 35822117 PMCID: PMC9260205 DOI: 10.1002/jgh3.12775] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/11/2022] [Accepted: 05/15/2022] [Indexed: 12/18/2022]
Abstract
The milk fat globule membrane (MFGM) has been recognized as a milk component for more than 60 years, but its exact benefits remain unknown. Research on human MFGM has revealed that the membrane holds a host of bioactive components with potential benefits for the brain–immune–gut (BiG) axis in early life. Gangliosides and sphingomyelin, components within the MFGM, have been included in infant formulas for many years. Recent advancements in dairy milk processing have allowed the successful separation of MFGM from bovine milk, enabling it to be used for supplementing infant formulas. Evidence indicates the potential benefits of MFGM in early life supplementation, including better cognitive development, reduction of infection risks, and modulation of the gut microbiome. However, larger and more robust randomized trials are needed, in addition to long‐term outcome data beyond the infancy period.
Collapse
Affiliation(s)
- Hamid Jan Jan Mohamed
- Nutrition and Dietetics Programme, School of Health Sciences Universiti Sains Malaysia Kelantan Malaysia
| | | | | | | | - Yeong Yeh Lee
- School of Medical Sciences Hospital Universiti Sains Malaysia Kelantan Malaysia
| | - ZAMH Zabidi‐Hussin
- School of Medicine International Medical University Kuala Lumpur Malaysia
| |
Collapse
|
23
|
Breastfeeding as a regulating factor of the development of the intestinal microbiome in the early stages of life. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04012-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Nieto-Ruiz A, García-Santos JA, Verdejo-Román J, Diéguez E, Sepúlveda-Valbuena N, Herrmann F, Cerdó T, De-Castellar R, Jiménez J, Bermúdez MG, Pérez-García M, Miranda MT, López-Sabater MC, Catena A, Campoy C. Infant Formula Supplemented With Milk Fat Globule Membrane, Long-Chain Polyunsaturated Fatty Acids, and Synbiotics Is Associated With Neurocognitive Function and Brain Structure of Healthy Children Aged 6 Years: The COGNIS Study. Front Nutr 2022; 9:820224. [PMID: 35356726 PMCID: PMC8959863 DOI: 10.3389/fnut.2022.820224] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/01/2022] [Indexed: 12/25/2022] Open
Abstract
Background Adequate nutrient intake during the first few months of life plays a critical role on brain structure and function development. Objectives To analyze the long-term effects of an experimental infant formula (EF) on neurocognitive function and brain structure in healthy children aged 6 years compared to those fed with a standard infant formula or breastfed. Methods The current study involved 108 healthy children aged 6 years and participating in the COGNIS Study. At 0-2 months, infants were randomized to receive up to 18 months of life a standard infant formula (SF) or EF enriched with milk fat globule membrane (MFGM), long-chain polyunsaturated fatty acids (LC-PUFAs) and synbiotics. Furthermore, a reference group of breastfed (BF) infants were also recruited. Children were assessed using neurocognitive tests and structural Magnetic Resonance Imaging (MRI) at 6 years old. Results Experimental infant formula (EF) children showed greater volumes in the left orbital cortex, higher vocabulary scores and IQ, and better performance in an attention task than BF children. EF children also presented greater volumes in parietal regions than SF kids. Additionally, greater cortical thickness in the insular, parietal, and temporal areas were found in children from the EF group than those fed with SF or BF groups. Further correlation analyses suggest that higher volumes and cortical thickness of different parietal and frontal regions are associated with better cognitive development in terms of language (verbal comprehension) and executive function (working memory). Finally, arachidonic acid (ARA), adrenic acid (AdA), docosahexaenoic acid (DHA) levels in cheek cell glycerophospholipids, ARA/DHA ratio, and protein, fatty acid, and mineral intake during the first 18 months of life seem to be associated with changes in the brain structures at 6 years old. Conclusions Supplemented infant formula with MFGM components, LC-PUFAs, and synbiotics seems to be associated to long-term effects on neurocognitive development and brain structure in children at 6 years old. Clinical Trial Registration https://www.clinicaltrials.gov/, identifier: NCT02094547.
Collapse
Affiliation(s)
- Ana Nieto-Ruiz
- Department of Paediatrics, School of Medicine, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Health Sciences Technological Park, Granada, Spain
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, Granada, Spain
| | - José A. García-Santos
- Department of Paediatrics, School of Medicine, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Health Sciences Technological Park, Granada, Spain
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, Granada, Spain
| | - Juan Verdejo-Román
- Department of Personality, Assessment & Psychological Treatment, School of Psychology, University of Granada, Granada, Spain
| | - Estefanía Diéguez
- Department of Paediatrics, School of Medicine, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Health Sciences Technological Park, Granada, Spain
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, Granada, Spain
| | - Natalia Sepúlveda-Valbuena
- Nutrition and Biochemistry Department, Faculty of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Florian Herrmann
- Department of Paediatrics, School of Medicine, University of Granada, Granada, Spain
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, Granada, Spain
| | - Tomás Cerdó
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, Granada, Spain
- Carlos III Health Institute, Madrid, Spain
| | | | | | - Mercedes G. Bermúdez
- Department of Paediatrics, School of Medicine, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Health Sciences Technological Park, Granada, Spain
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, Granada, Spain
| | - Miguel Pérez-García
- Department of Personality, Assessment & Psychological Treatment, School of Psychology, University of Granada, Granada, Spain
- Mind, Brain and Behavior Research Centre—CIMCYC, University of Granada, Granada, Spain
| | - M. Teresa Miranda
- Department of Biostatistics, School of Medicine, University of Granada, Granada, Spain
| | - M. Carmen López-Sabater
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària de la UB (INSA-UB), Barcelona, Spain
- National Network of Research in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III (Barcelona's Node), Madrid, Spain
| | - Andrés Catena
- Mind, Brain and Behavior Research Centre—CIMCYC, University of Granada, Granada, Spain
- Department of Experimental Psychology, School of Psychology, University of Granada, Granada, Spain
| | - Cristina Campoy
- Department of Paediatrics, School of Medicine, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Health Sciences Technological Park, Granada, Spain
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, Granada, Spain
- National Network of Research in Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III (Granada's Node), Madrid, Spain
| |
Collapse
|
25
|
Human milk cholesterol is associated with lactation stage and maternal plasma cholesterol in Chinese populations. Pediatr Res 2022; 91:970-976. [PMID: 33846555 DOI: 10.1038/s41390-021-01440-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/23/2020] [Accepted: 12/01/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Milk cholesterol concentrations throughout lactation were analyzed, and the relationship between maternal plasma cholesterol and milk cholesterol in various Chinese populations was examined. METHODS A sub-sample of 1138 lactating women was randomly selected from a large cross-sectional study in China (n = 6481). Milk cholesterol concentrations were determined by HPLC, and concentrations of maternal plasma lipids were determined by an automated biochemical analyzer. RESULTS The mean cholesterol concentrations were 200, 171, and 126 mg/L for colostrum, transitional milk, and mature milk, respectively. Cholesterol concentrations differed significantly between stages of lactation (colostrum vs. transitional milk, colostrum vs. mature milk, transitional milk vs. mature milk, all p < 0.001). Concentrations of maternal plasma total cholesterol (TC) (p = 0.02) and low-density lipoprotein cholesterol (LDL-C) (p = 0.03) were significantly associated with milk cholesterol. Milk cholesterol concentrations varied among different ethnicities (Tibetan vs. Hui: 164 vs. 131 mg/L, p = 0.027) but not among different geographic regions. CONCLUSIONS The concentration of cholesterol in human milk changes dynamically throughout lactation. Milk cholesterol concentrations are significantly associated with maternal plasma concentrations of TC and LDL-C, and milk cholesterol concentrations vary across ethnicities in China. IMPACT Concentrations of milk cholesterol were measured in various Chinese populations. Cholesterol concentrations differ significantly between stages of lactation. Maternal plasma total cholesterol and low-density lipoprotein cholesterol are associated with milk cholesterol. Milk cholesterol concentrations vary across ethnicities in China.
Collapse
|
26
|
Bagel A, Sergentet D. Shiga Toxin-Producing Escherichia coli and Milk Fat Globules. Microorganisms 2022; 10:496. [PMID: 35336072 PMCID: PMC8953591 DOI: 10.3390/microorganisms10030496] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/09/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are zoonotic Gram-negative bacteria. While raw milk cheese consumption is healthful, contamination with pathogens such as STEC can occur due to poor hygiene practices at the farm level. STEC infections cause mild to serious symptoms in humans. The raw milk cheese-making process concentrates certain milk macromolecules such as proteins and milk fat globules (MFGs), allowing the intrinsic beneficial and pathogenic microflora to continue to thrive. MFGs are surrounded by a biological membrane, the milk fat globule membrane (MFGM), which has a globally positive health effect, including inhibition of pathogen adhesion. In this review, we provide an update on the adhesion between STEC and raw MFGs and highlight the consequences of this interaction in terms of food safety, pathogen detection, and therapeutic development.
Collapse
Affiliation(s)
- Arthur Bagel
- ‘Bacterial Opportunistic Pathogens and Environment’ Research Team, Université de Lyon, UMR5557 Ecologie Microbienne Lyon, CNRS (National Center of Scientific Research), VetAgro Sup, Marcy-l’Etoile, 69280 Lyon, France;
| | - Delphine Sergentet
- ‘Bacterial Opportunistic Pathogens and Environment’ Research Team, Université de Lyon, UMR5557 Ecologie Microbienne Lyon, CNRS (National Center of Scientific Research), VetAgro Sup, Marcy-l’Etoile, 69280 Lyon, France;
- Laboratoire d’Etudes des Microorganismes Alimentaires Pathogènes-French National Reference Laboratory for Escherichia coli Including Shiga Toxin-Producing E. coli (NRL-STEC), VetAgro Sup—Campus Vétérinaire, Université de Lyon, Marcy-l’Etoile, 69280 Lyon, France
| |
Collapse
|
27
|
van Stigt AH, Oude Rengerink K, Bloemenkamp KWM, de Waal W, Prevaes SMPJ, Le TM, van Wijk F, Nederend M, Hellinga AH, Lammers CS, den Hartog G, van Herwijnen MJC, Garssen J, Knippels LMJ, Verhagen LM, de Theije CGM, Lopez-Rincon A, Leusen JHW, Van't Land B, Bont L. Analysing the protection from respiratory tract infections and allergic diseases early in life by human milk components: the PRIMA birth cohort. BMC Infect Dis 2022; 22:152. [PMID: 35164699 PMCID: PMC8842741 DOI: 10.1186/s12879-022-07107-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/29/2022] [Indexed: 11/28/2022] Open
Abstract
Background Many studies support the protective effect of breastfeeding on respiratory tract infections. Although infant formulas have been developed to provide adequate nutritional solutions, many components in human milk contributing to the protection of newborns and aiding immune development still need to be identified. In this paper we present the methodology of the “Protecting against Respiratory tract lnfections through human Milk Analysis” (PRIMA) cohort, which is an observational, prospective and multi-centre birth cohort aiming to identify novel functions of components in human milk that are protective against respiratory tract infections and allergic diseases early in life. Methods For the PRIMA human milk cohort we aim to recruit 1000 mother–child pairs in the first month postpartum. At one week, one, three, and six months after birth, fresh human milk samples will be collected and processed. In order to identify protective components, the level of pathogen specific antibodies, T cell composition, Human milk oligosaccharides, as well as extracellular vesicles (EVs) will be analysed, in the milk samples in relation to clinical data which are collected using two-weekly parental questionnaires. The primary outcome of this study is the number of parent-reported medically attended respiratory infections. Secondary outcomes that will be measured are physician diagnosed (respiratory) infections and allergies during the first year of life. Discussion The PRIMA human milk cohort will be a large prospective healthy birth cohort in which we will use an integrated, multidisciplinary approach to identify the longitudinal effect human milk components that play a role in preventing (respiratory) infections and allergies during the first year of life. Ultimately, we believe that this study will provide novel insights into immunomodulatory components in human milk. This may allow for optimizing formula feeding for all non-breastfed infants. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-022-07107-w.
Collapse
Affiliation(s)
- Arthur H van Stigt
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Katrien Oude Rengerink
- Department of Biostatistics and Research Support, Clinical Trial Methodology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kitty W M Bloemenkamp
- Department of Gynaecology and Obstetrics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wouter de Waal
- Department of Pediatrics, Diakonessenhuis, Utrecht, The Netherlands
| | - Sabine M P J Prevaes
- Department of Pediatric Pulmonology and Allergology, Wilhelmina Children's Hospital/University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Thuy-My Le
- Department of Dermatology/Allergology, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Femke van Wijk
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maaike Nederend
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anneke H Hellinga
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Christianne S Lammers
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gerco den Hartog
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Martijn J C van Herwijnen
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,Danone Nutricia Research, Utrecht, The Netherlands
| | - Léon M J Knippels
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,Danone Nutricia Research, Utrecht, The Netherlands
| | - Lilly M Verhagen
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, The Netherlands
| | - Caroline G M de Theije
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Alejandro Lopez-Rincon
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jeanette H W Leusen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Belinda Van't Land
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.,Danone Nutricia Research, Utrecht, The Netherlands
| | - Louis Bont
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands. .,Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, The Netherlands. .,ReSViNET Foundation, Zeist, The Netherlands.
| | | |
Collapse
|
28
|
Preparation of Human Milk Fat Substitutes: A Review. Life (Basel) 2022; 12:life12020187. [PMID: 35207476 PMCID: PMC8874823 DOI: 10.3390/life12020187] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 11/17/2022] Open
Abstract
Human milk is generally regarded as the best choice for infant feeding. Human milk fat (HMF) is one of the most complex natural lipids, with a unique fatty acid composition and distribution and complex lipid composition. Lipid intake in infants not only affects their energy intake but also affects their metabolic mode and overall development. Infant formula is the best substitute for human milk when breastfeeding is not possible. As the main energy source in infant formula, human milk fat substitutes (HMFSs) should have a composition similar to that of HMF in order to meet the nutritional needs of infant growth and development. At present, HMFS preparation mainly focuses on the simulation of fatty acid composition, the application of structured lipids and the addition of milk fat globule membrane (MFGM) supplements. This paper first reviews the composition and structure of HMF, and then the preparation development of structured lipids and MFGM supplements are summarized. Additionally, the evaluation and regulation of HMFSs in infant formula are also presented.
Collapse
|
29
|
Abstract
Low-quality dietary patterns impair cardiometabolic health by increasing the risk of obesity-related disorders. Cardiometabolic risk relative to dairy-food consumption continues to be a controversial topic, due to recommendations that endorse low-fat and nonfat dairy foods over full-fat varieties despite accumulated evidence that does not strongly support these recommendations. Controlled human studies and mechanistic preclinical investigations support that full-fat dairy foods decrease cardiometabolic risk by promoting gut health, reducing inflammation, and managing dyslipidemia. These gut- and systemic-level cardiometabolic benefits are attributed, at least in part, to milk polar lipids (MPLs) derived from the phospholipid- and sphingolipid-rich milk fat globule membrane that is of higher abundance in full-fat dairy milk. The controversy surrounding full-fat dairy food consumption is discussed in this review relative to cardiometabolic health and MPL bioactivities that alleviate dyslipidemia, shift gut microbiota composition, and reduce inflammation. This summary, therefore, is expected to advance the understanding of full-fat dairy foods through their MPLs and the need for translational research to establish evidence-based dietary recommendations.
Collapse
Affiliation(s)
- Richard S Bruno
- Human Nutrition Program, The Ohio State University, Columbus, Ohio, USA
| | - Avinash Pokala
- Human Nutrition Program, The Ohio State University, Columbus, Ohio, USA
| | | | - Christopher N Blesso
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
30
|
Abstract
The significance of dairy in human health and nutrition is gaining significant momentum as consumers continue to desire wholesome, nutritious foods to fulfill their health and wellness needs. Bovine milk not only consists of all the essential nutrients required for growth and development, it also provides a broad range of bioactive components that play an important role in managing human homeostasis and immune function. In recent years, milk bioactives, including α-lactalbumin, lactoferrin, glycomacropeptide, milk fat globule membrane, and milk oligosaccharides, have been intensively studied because of their unique bioactivity and functionality. Challenges for the application of these bioactive components in food and pharmaceutical formulations are associated with their isolation and purification on an industrial scale and also with their physical and chemical instability during processing, storage, and digestion. These challenges can be overcome by advanced separation techniques and sophisticated nano- or micro-encapsulation technologies. Current knowledge about the chemistry, separation, and encapsulation technology of major bioactives derived from bovine milk and their application in the food industry is reviewed here.
Collapse
Affiliation(s)
- Tiantian Lin
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| | - Gopinathan Meletharayil
- Gopinathan Meletharayil and Rohit Kapoor are with the National Dairy Council, Rosemont, Illinois, USA
| | - Rohit Kapoor
- Gopinathan Meletharayil and Rohit Kapoor are with the National Dairy Council, Rosemont, Illinois, USA
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| |
Collapse
|
31
|
Phospholipid composition and fat globule structure change during low temperature storage of human milk. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Fil JE, Joung S, Hauser J, Rytz A, Hayes CA, Dilger RN. Influence of Dietary Polar Lipid Supplementation on Memory and Longitudinal Brain Development. Nutrients 2021; 13:2486. [PMID: 34444644 PMCID: PMC8398977 DOI: 10.3390/nu13082486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 12/13/2022] Open
Abstract
Polar lipids, which are found in human milk, serve essential functions within biological membranes, hence their importance in brain development and cognition. Therefore, we aimed to evaluate the longitudinal effects on brain macrostructural and microstructural development and recognition memory of early-life polar lipid supplementation using the translational pig model. Twenty-eight intact (i.e., not castrated) male pigs were provided either a control diet (n = 14) or the control diet supplemented with polar lipids (n = 14) from postnatal day 2 until postnatal week 4. After postnatal week 4, all animals were provided the same nutritionally-adequate diets until postnatal week 24. Pigs underwent magnetic resonance imaging at 8 longitudinal time-points to model brain macrostructural and microstructural developmental trajectories. The novel object recognition task was implemented at postnatal weeks 4 and 8 to evaluate recognition memory. Subtle differences were observed between groups in hippocampal absolute brain volumes and fractional anisotropy, and no differences in myelin water fraction developmental patterns were noted. Behavioral outcomes did not differ in recognition memory, and only minimal differences were observed in exploratory behaviors. Our findings suggest that early-life dietary supplementation of polar lipids has limited effect on brain developmental patterns, object recognition memory, and exploratory behaviors.
Collapse
Affiliation(s)
- Joanne E. Fil
- Neuroscience Program, University of Illinois, Urbana, IL 61801, USA; (J.E.F.); (S.J.)
| | - Sangyun Joung
- Neuroscience Program, University of Illinois, Urbana, IL 61801, USA; (J.E.F.); (S.J.)
| | - Jonas Hauser
- Société des Produits Nestlé, 1000 Lausanne, Switzerland; (J.H.); (A.R.)
| | - Andreas Rytz
- Société des Produits Nestlé, 1000 Lausanne, Switzerland; (J.H.); (A.R.)
| | - Courtney A. Hayes
- College of Veterinary Medicine, University of Illinois, Urbana, IL 61801, USA;
| | - Ryan N. Dilger
- Neuroscience Program, University of Illinois, Urbana, IL 61801, USA; (J.E.F.); (S.J.)
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
33
|
Buffet-Bataillon S, Bellanger A, Boudry G, Gangneux JP, Yverneau M, Beuchée A, Blat S, Le Huërou-Luron I. New Insights Into Microbiota Modulation-Based Nutritional Interventions for Neurodevelopmental Outcomes in Preterm Infants. Front Microbiol 2021; 12:676622. [PMID: 34177860 PMCID: PMC8232935 DOI: 10.3389/fmicb.2021.676622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022] Open
Abstract
Gut microbiota and the central nervous system have parallel developmental windows during pre and post-natal life. Increasing evidences suggest that intestinal dysbiosis in preterm infants predisposes the neonate to adverse neurological outcomes later in life. Understanding the link between gut microbiota colonization and brain development to tailor therapies aimed at optimizing initial colonization and microbiota development are promising strategies to warrant adequate brain development and enhance neurological outcomes in preterm infants. Breast-feeding has been associated with both adequate cognitive development and healthy microbiota in preterms. Infant formula are industrially produced substitutes for infant nutrition that do not completely recapitulate breast-feeding benefices and could be largely improved by the understanding of the role of breast milk components upon gut microbiota. In this review, we will first discuss the nutritional and bioactive component information on breast milk composition and its contribution to the assembly of the neonatal gut microbiota in preterms. We will then discuss the emerging pathways connecting the gut microbiota and brain development. Finally, we will discuss the promising microbiota modulation-based nutritional interventions (including probiotic and prebiotic supplementation of infant formula and maternal nutrition) for improving neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Sylvie Buffet-Bataillon
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint-Gilles, France
- Department of Clinical Microbiology, CHU Rennes, Rennes, France
| | - Amandine Bellanger
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint-Gilles, France
- Department of Pediatrics-Neonatology, CHU Rennes, Rennes, France
| | - Gaelle Boudry
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint-Gilles, France
| | | | | | - Alain Beuchée
- Department of Pediatrics-Neonatology, Univ Rennes, CHU Rennes, LTSI-UMR 1099, Rennes, France
| | - Sophie Blat
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint-Gilles, France
| | | |
Collapse
|
34
|
Bioactive Compounds in Infant Formula and Their Effects on Infant Nutrition and Health: A Systematic Literature Review. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2021; 2021:8850080. [PMID: 34095293 PMCID: PMC8140835 DOI: 10.1155/2021/8850080] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 04/22/2021] [Indexed: 12/12/2022]
Abstract
Infant formulas are an alternative to replace or supplement human milk when breastfeeding is not possible. The knowledge of human milk's bioactive compounds and their beneficial effects has attracted the interest of researchers in the field of infant nutrition, as well as researchers of technology and food sciences that seek to improve the nutritional characteristics of infant formulas. Several scientific studies evaluate the optimization of infant formula composition. The bioactive compound inclusion has been used to upgrade the quality and nutrition of infant formulas. In this context, the purpose of this systematic literature review is to assess the scientific evidence of bioactive compounds present in infant formulas (α-lactalbumin, lactoferrin, taurine, milk fat globule membrane, folates, polyamines, long-chain polyunsaturated fatty acids, prebiotics, and probiotics) and their effects on infant nutrition and health. Through previously determined criteria, studies published in the last fifteen years from five different databases were included to identify the advances in the optimization of infant formula composition. Over the last few years, there has been optimization of the infant formula composition, not only to increase the similarities in their content of macro and micronutrients but also to include novel bioactive ingredients with potential health benefits for infants. Although the infant food industry has advanced in the last years, there is no consensus on whether novel bioactive ingredients added to infant formulas have the same functional effects as the compounds found in human milk. Thus, further studies about the impact of bioactive compounds in infant nutrition are fundamental to infant health.
Collapse
|
35
|
Ye L, Zhang Q, Xin F, Cao B, Qian L, Dong Y. Neonatal Milk Fat Globule Membrane Supplementation During Breastfeeding Ameliorates the Deleterious Effects of Maternal High-Fat Diet on Metabolism and Modulates Gut Microbiota in Adult Mice Offspring in a Sex-Specific Way. Front Cell Infect Microbiol 2021; 11:621957. [PMID: 33816333 PMCID: PMC8017235 DOI: 10.3389/fcimb.2021.621957] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/01/2021] [Indexed: 12/16/2022] Open
Abstract
Exposure to adverse events in early life increases the risk of chronic metabolic disease in adulthood. The objective of this study was to determine the significance of milk fat globule membrane (MFGM)-mediated alterations in the gut microbiome to the metabolic health of offspring in the long-term. Female C57BL/6 mice were fed either a high-fat diet (HFD) or a control diet for 3 weeks before pregnancy and throughout pregnancy and lactation. During lactation, pups from the HFD group were breast-fed with or without 1,000 mg/kg BW/day MFGM supplementation (HFD and HFD-MS group, respectively). After weaning, the offspring in each group were divided into male and female subgroups. The weaned mice were then shifted to a control diet for 8 weeks. At the eleventh week, stool samples were collected for 16S rRNA gene sequencing. Serum biochemical parameters were analyzed, and intraperitoneal glucose and insulin tolerance tests were performed. Neonatal supplementation with MFGM ameliorated metabolic disorder and improved glucose tolerance in offspring exposed to maternal HFD in a sex-specific manner. Furthermore, maternal HFD induced gut microbiota perturbation in offspring in adulthood. Neonatal MFGM supplementation significantly enriched g-Parabacteroides, g-Bifidobacterium, g-Faecalibaculum, and g-Lactobacillus in male offspring exposed to maternal HFD, while significantly enriched g-Parabacteroides and g-Alistipes in female offspring exposed to maternal HFD. These bacteria may be associated with the favorable changes in metabolism that occur in adulthood. Sex differences in the changes of metagenomic pathways related to oxidative phosphorylation, citrate cycle, electron transfer carries, and ubiquinone biosynthesis were also observed in the offspring. Maternal HFD has an adverse effect on the metabolism of offspring in later life. Neonatal MFGM supplementation could modulate the structure of gut microbiota communities and may have long-term protective effects on lipid and glucose metabolism, but these effects are sex dimorphic.
Collapse
Affiliation(s)
- Lin Ye
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Qianren Zhang
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Fengzhi Xin
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Baige Cao
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Linxi Qian
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yan Dong
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| |
Collapse
|
36
|
Correlations of Fat Content in Human Milk with Fat Droplet Size and Phospholipid Species. Molecules 2021; 26:molecules26061596. [PMID: 33805759 PMCID: PMC8000790 DOI: 10.3390/molecules26061596] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 01/18/2023] Open
Abstract
Fat globule size and phospholipid (PL) content in human milk (HM) were investigated. HM was classified into three groups depending on fat content (A < B < C). PL content (mg/100 g HM) was significantly higher in the C group (p < 0.05), indicating its positive relationship with HM fat content. When the PL content was normalized (mg/g fat), that of group A was significantly higher (p < 0.05) and fat droplet size in group C was slightly larger, suggesting that HM fat content is affected by fat droplet numbers to a larger extent than by fat droplet size. A correlation between PC and SM content in HM was observed regardless of fat content, while correlation between PE and either PC or SM increased in the order of C > B > A, hence the composition and content of PL species in HM varied according to its fat content.
Collapse
|
37
|
Timby N, Adamsson M, Domellöf E, Grip T, Hernell O, Lönnerdal B, Domellöf M. Neurodevelopment and growth until 6.5 years of infants who consumed a low-energy, low-protein formula supplemented with bovine milk fat globule membranes: a randomized controlled trial. Am J Clin Nutr 2021; 113:586-592. [PMID: 33564853 DOI: 10.1093/ajcn/nqaa354] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/02/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND We previously reported results from a randomized controlled trial in which we found that Swedish infants consuming an experimental low-energy, low-protein formula (EF) supplemented with bovine milk fat globule membranes (MFGMs) until 6 mo of age had several positive outcomes, including better performance in the cognitive domain of Bayley Scales of Infant and Toddler Development 3rd Edition at 12 mo of age, and higher plasma cholesterol concentrations during the intervention, than infants consuming standard formula (SF). OBJECTIVES We aimed to evaluate neurodevelopment, growth, and plasma cholesterol status at 6 and 6.5 y of age in the same study population. METHODS We assessed cognitive and executive functions using the Wechsler Intelligence Scale for Children 4th Edition (WISC-IV), Brown Attention-Deficit Disorder Scales for Children and Adolescents (Brown-ADD), and Quantified Behavior (Qb) tests, and behavior using the Child Behavior Checklist (CBCL) and Teacher's Report Form (TRF), at 6.5 y of age. Anthropometrics and plasma lipids were assessed at 6 y of age. RESULTS There were no differences between the EF and SF groups in any of the subscales in WISC-IV or Brown-ADD at 6.5 y of age, in the proportion of children with scores outside the normal range in the Qb test, nor in clinical or borderline indications of problems in adaptive functioning from parental and teacher's scoring using the CBCL and TRF. There were no differences between the EF and SF groups in weight, length, or head or abdominal circumferences, nor in plasma concentrations of homocysteine, lipids, insulin, or glucose. CONCLUSIONS Among children who as infants consumed a low-energy, low-protein formula supplemented with bovine MFGMs, there were no effects on neurodevelopment, growth, or plasma cholesterol status 6-6.5 y later.
Collapse
Affiliation(s)
- Niklas Timby
- Pediatrics, Department of Clinical Sciences, Umeå University, Umeå, Sweden
| | - Marie Adamsson
- Pediatrics, Department of Clinical Sciences, Umeå University, Umeå, Sweden
| | - Erik Domellöf
- Department of Psychology, Umeå University, Umeå, Sweden
| | - Tove Grip
- Pediatrics, Department of Clinical Sciences, Umeå University, Umeå, Sweden
| | - Olle Hernell
- Pediatrics, Department of Clinical Sciences, Umeå University, Umeå, Sweden
| | - Bo Lönnerdal
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Magnus Domellöf
- Pediatrics, Department of Clinical Sciences, Umeå University, Umeå, Sweden
| |
Collapse
|
38
|
Lipid Composition, Digestion, and Absorption Differences among Neonatal Feeding Strategies: Potential Implications for Intestinal Inflammation in Preterm Infants. Nutrients 2021; 13:nu13020550. [PMID: 33567518 PMCID: PMC7914900 DOI: 10.3390/nu13020550] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/18/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is a significant cause of morbidity and mortality in the neonatal population. Formula feeding is among the many risk factors for developing the condition, a practice often required in the cohort most often afflicted with NEC, preterm infants. While the virtues of many bioactive components of breast milk have been extolled, the ability to digest and assimilate the nutritional components of breast milk is often overlooked. The structure of formula differs from that of breast milk, both in lipid composition and chemical configuration. In addition, formula lacks a critical digestive enzyme produced by the mammary gland, bile salt-stimulated lipase (BSSL). The gastrointestinal system of premature infants is often incapable of secreting sufficient pancreatic enzymes for fat digestion, and pasteurization of donor milk (DM) has been shown to inactivate BSSL, among other important compounds. Incompletely digested lipids may oxidize and accumulate in the distal gut. These lipid fragments are thought to induce intestinal inflammation in the neonate, potentially hastening the development of diseases such as NEC. In this review, differences in breast milk, pasteurized DM, and formula lipids are highlighted, with a focus on the ability of those lipids to be digested and subsequently absorbed by neonates, especially those born prematurely and at risk for NEC.
Collapse
|
39
|
Cohen Kadosh K, Muhardi L, Parikh P, Basso M, Jan Mohamed HJ, Prawitasari T, Samuel F, Ma G, Geurts JMW. Nutritional Support of Neurodevelopment and Cognitive Function in Infants and Young Children-An Update and Novel Insights. Nutrients 2021; 13:nu13010199. [PMID: 33435231 PMCID: PMC7828103 DOI: 10.3390/nu13010199] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Proper nutrition is crucial for normal brain and neurocognitive development. Failure to optimize neurodevelopment early in life can have profound long-term implications for both mental health and quality of life. Although the first 1000 days of life represent the most critical period of neurodevelopment, the central and peripheral nervous systems continue to develop and change throughout life. All this time, development and functioning depend on many factors, including adequate nutrition. In this review, we outline the role of nutrients in cognitive, emotional, and neural development in infants and young children with special attention to the emerging roles of polar lipids and high quality (available) protein. Furthermore, we discuss the dynamic nature of the gut-brain axis and the importance of microbial diversity in relation to a variety of outcomes, including brain maturation/function and behavior are discussed. Finally, the promising therapeutic potential of psychobiotics to modify gut microbial ecology in order to improve mental well-being is presented. Here, we show that the individual contribution of nutrients, their interaction with other micro- and macronutrients and the way in which they are organized in the food matrix are of crucial importance for normal neurocognitive development.
Collapse
Affiliation(s)
- Kathrin Cohen Kadosh
- School of Psychology, University of Surrey, Guildford GU2 7XH, UK; (K.C.K.); (M.B.)
| | - Leilani Muhardi
- FrieslandCampina AMEA, Singapore 039190, Singapore; (L.M.); (P.P.)
| | - Panam Parikh
- FrieslandCampina AMEA, Singapore 039190, Singapore; (L.M.); (P.P.)
| | - Melissa Basso
- School of Psychology, University of Surrey, Guildford GU2 7XH, UK; (K.C.K.); (M.B.)
- Department of General Psychology, University of Padova, 35131 Padova, Italy
| | - Hamid Jan Jan Mohamed
- Nutrition and Dietetics Programme, School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia;
| | - Titis Prawitasari
- Nutrition and Metabolic Diseases Working Group, Indonesian Pediatric Society, Jakarta 10310, Indonesia;
- Department of Pediatrics, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusomo National Referral Hospital Jakarta, Jakarta 10430, Indonesia
| | - Folake Samuel
- Department of Human Nutrition, University of Ibadan, Ibadan 200284, Nigeria;
| | - Guansheng Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 38 Xue Yuan Road, Haidian District, Beijing 100191, China;
- Laboratory of Toxicological Research and Risk assessment for Food Safety, Peking University, 38 Xue Yuan Road, Haidian District, Beijing 100191, China
| | - Jan M. W. Geurts
- FrieslandCampina, 3818 LE Amersfoort, The Netherlands
- Correspondence: ; Tel.: +31-6-53310499
| |
Collapse
|
40
|
Monaco MH, Gross G, Donovan SM. Whey Protein Lipid Concentrate High in Milk Fat Globule Membrane Components Inhibit Porcine and Human Rotavirus in vitro. Front Pediatr 2021; 9:731005. [PMID: 34540774 PMCID: PMC8442734 DOI: 10.3389/fped.2021.731005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/10/2021] [Indexed: 12/29/2022] Open
Abstract
Background: The milk fat globule membrane (MFMG) is a complex milk component that has been shown to inhibit rotavirus (RV) binding to cell membranes in vitro. Herein, a whey protein lipid concentrate high in MFGM components (WPLC) and whey protein concentrate (WPC; control) were screened for anti-infective activity against porcine OSU and human Wa strains of RV in both the African Green Monkey kidney (MA104) and the human colorectal adenocarcinoma (Caco-2) cell lines. Materials and Methods: Confluent cells were exposed to OSU or Wa RV in the presence of WPLC or WPC (control) at 0, 0.1, 0.5, 1.0, 2.5, or 5 mg/ml. Infectivity was detected by immunohistochemistry and expressed as % inhibition relative to 0 mg/ml. WPLC efficacy over WPC was expressed as fold-change. One-way ANOVA analyzed data for the independent and interactive effects of concentration, test material, and RV strain. Results: Both WPLC and WPC exhibited concentration-dependent inhibition of human Wa and porcine OSU RV infectivity in MA104 and Caco-2 cells (p < 0.0001). WPLC was 1.5-4.8-fold more effective in reducing infectivity than WPC. WPLC efficacy was independent of RV strains, but varied between cell lines. WPLC and WPC at concentrations ≥0.5 mg/mL were most effective in reducing human Wa RV infectivity in MA104 cells (p < 0.0001). Conclusions: WPLC decreased infectivity of two strains for RV which differ in their dependency on sialic acid for binding to cells. Inhibition was observed in the most commonly used cell type for RV infectivity assays (MA104) and an intestinal cell line (Caco-2). An effect on virus infectivity might be a potential mechanisms of action contributing to beneficial effects of supplementation of infant formula with MGFM reducing the risk of infections and consequently diarrhea incidence in infants.
Collapse
Affiliation(s)
- Marcia H Monaco
- Department of Food Science & Human Nutrition, University of Illinois, Urbana, IL, United States
| | - Gabriele Gross
- Medical and Scientific Affairs, Reckitt Benckiser/Mead Johnson Nutrition Institute, Nijmegen, Netherlands
| | - Sharon M Donovan
- Department of Food Science & Human Nutrition, University of Illinois, Urbana, IL, United States
| |
Collapse
|
41
|
Quarles WR, Pokala A, Shaw EL, Ortega-Anaya J, Hillmann L, Jimenez-Flores R, Bruno RS. Alleviation of Metabolic Endotoxemia by Milk Fat Globule Membrane: Rationale, Design, and Methods of a Double-Blind, Randomized, Controlled, Crossover Dietary Intervention in Adults with Metabolic Syndrome. Curr Dev Nutr 2020; 4:nzaa130. [PMID: 32885133 PMCID: PMC7456308 DOI: 10.1093/cdn/nzaa130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Milk fat globule membrane (MFGM) is a phospholipid-rich component of dairy fat that might explain the benefits of full-fat dairy products on cardiometabolic risk. Preclinical studies support that MFGM decreases gut permeability, which could attenuate gut-derived endotoxin translocation and consequent inflammatory responses that impair cardiometabolic health. OBJECTIVES To describe the rationale, study design, and planned outcomes that will evaluate the efficacy of MFGM-enriched milk compared with a comparator beverage on health-promoting gut barrier functions in persons with metabolic syndrome (MetS). METHODS We plan a double-blind, randomized, crossover trial in which people with MetS will receive a rigorously controlled eucaloric diet for 2 wk that contains 3 daily servings of an MFGM-enriched bovine milk beverage or a comparator beverage that is formulated with nonfat dairy powder, coconut and palm oils, and soy phospholipids. Compliance will be monitored by assessing urinary para-aminobenzoic acid that is added to all test beverages. After the intervention, participants will ingest a high-fat/high-carbohydrate meal challenge to assess metabolic excursions at 30-min intervals for 3 h. Nondigestible sugar probes also will be ingested prior to collecting 24-h urine to assess region-specific gut permeability. Intervention efficacy will be determined based on circulating endotoxin (primary outcome) and glycemia (secondary outcome). Tertiary outcomes include: gut and systemic inflammatory responses, microbiota composition and SCFAs, gut permeability, and circulating insulin and incretins. EXPECTED RESULTS MFGM is expected to decrease circulating endotoxin and glycemia without altering body mass. These improvements are anticipated to be accompanied by decreased gut permeability, decreased intestinal and circulating biomarkers of inflammation, increased circulating incretins, and beneficial antimicrobial and prebiotic effects in the gut microbiome. CONCLUSIONS Demonstration of improvements in gut barrier functions that limit endotoxemia and glycemia could help to establish direct evidence that full-fat dairy lowers cardiometabolic risk, especially in people with MetS.The clinical trial associated with this article has been registered at clinicaltrials.gov (NCT03860584).
Collapse
Affiliation(s)
- William R Quarles
- Human Nutrition Program, The Ohio State University, Columbus, OH, USA
| | - Avi Pokala
- Human Nutrition Program, The Ohio State University, Columbus, OH, USA
| | - Emily L Shaw
- Human Nutrition Program, The Ohio State University, Columbus, OH, USA
| | - Joana Ortega-Anaya
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA
| | - Lisa Hillmann
- Human Nutrition Program, The Ohio State University, Columbus, OH, USA
| | - Rafael Jimenez-Flores
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA
| | - Richard S Bruno
- Human Nutrition Program, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
42
|
Mohan MS, O'Callaghan TF, Kelly P, Hogan SA. Milk fat: opportunities, challenges and innovation. Crit Rev Food Sci Nutr 2020; 61:2411-2443. [PMID: 32649226 DOI: 10.1080/10408398.2020.1778631] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Milk fat is a high-value milk component that is processed mainly as butter, cheese, cream and whole milk powder. It is projected that approximately 35 million tonnes of milk fat will be produced globally by 2025. This surplus, enhances the need for diversification of milk fat products and the milk pool in general. Infant milk formula producers, for instance, have incorporated enzyme modified ("humanised") milk fat and fat globule phospholipids to better mimic human milk fat structures. Minor components like mono- and di-glycerides from milk fat are increasingly utilized as emulsifiers, replacing palm esters in premium-priced food products. This review examines the chemistry of milk fat and the technologies employed for its modification, fractionation and enrichment. Emerging processing technologies such as ultrasound, high pressure processing, supercritical fluid extraction and fractionation, can be employed to improve the nutritional and functional attributes of milk fat. The potential of recent developments in biological intervention, through dietary manipulation of milk fatty acid profiles in cattle also offers significant promise. Finally, this review provides evidence to help redress the imbalance in reported associations between milk fat consumption and human health, and elucidates the health benefits associated with consumption of milk fat and dairy products.
Collapse
Affiliation(s)
- Maneesha S Mohan
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Tom F O'Callaghan
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Phil Kelly
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Sean A Hogan
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| |
Collapse
|
43
|
Zhang L, Chichlowski M, Gross G, Holle MJ, Lbarra-Sánchez LA, Wang S, Miller MJ. Milk Fat Globule Membrane Protects Lactobacillus rhamnosus GG from Bile Stress by Regulating Exopolysaccharide Production and Biofilm Formation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6646-6655. [PMID: 32396007 DOI: 10.1021/acs.jafc.0c02267] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The milk fat globule membrane (MFGM) is a complex, highly conserved structure surrounding fat droplets secreted into mammalian milk. This study evaluated the impact of MFGM on Lactobacillus rhamnosus GG (LGG). MFGM-10 (2.5 g/L, 5 g/L, and 10 g/L) did not affect LGG growth in MRS medium but enhanced the ability of LGG to survive in the presence of 0.5% porcine bile. In the presence of MFGM-10 (5 g/L) and bile (0.5%), there were less complex polysaccharides in the media and less capsular polysaccharides associated with the LGG cells compared to the bile exposure alone (p < 0.05). The expression of four EPS genes was modulated by bile stress and MFGM. Biofilm thickness was increased (p < 0.05) during bile stress with MFGM compared to other treatments. Furthermore, MFGM increased LGG survival during transit in the murine GI tract. Future experiments will determine the impact of MFGM on LGG probiotic functionality.
Collapse
Affiliation(s)
- Lili Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, 905 South Goodwin Avenue, Urbana, Illinois 61801, United States
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Maciej Chichlowski
- Mead Johnson Nutrition, Evansville, Indiana 47721, United States
- Mead Johnson Nutrition, Nijmegen 6545 CJ, The Netherlands
| | - Gabriele Gross
- Mead Johnson Nutrition, Evansville, Indiana 47721, United States
- Mead Johnson Nutrition, Nijmegen 6545 CJ, The Netherlands
| | - Maxwell J Holle
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, 905 South Goodwin Avenue, Urbana, Illinois 61801, United States
| | - Luis A Lbarra-Sánchez
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, 905 South Goodwin Avenue, Urbana, Illinois 61801, United States
| | - Shumei Wang
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, 905 South Goodwin Avenue, Urbana, Illinois 61801, United States
| | - Michael J Miller
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, 905 South Goodwin Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
44
|
Fontecha J, Brink L, Wu S, Pouliot Y, Visioli F, Jiménez-Flores R. Sources, Production, and Clinical Treatments of Milk Fat Globule Membrane for Infant Nutrition and Well-Being. Nutrients 2020; 12:E1607. [PMID: 32486129 PMCID: PMC7352329 DOI: 10.3390/nu12061607] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/18/2022] Open
Abstract
Research on milk fat globule membrane (MFGM) is gaining traction. The interest is two-fold; on the one hand, it is a unique trilayer structure with specific secretory function. On the other hand, it is the basis for ingredients with the presence of phospho- and sphingolipids and glycoproteins, which are being used as food ingredients with valuable functionality, in particular, for use as a supplement in infant nutrition. This last application is at the center of this Review, which aims to contribute to understanding MFGM's function in the proper development of immunity, cognition, and intestinal trophism, in addition to other potential effects such as prevention of diseases including cardiovascular disease, impaired bone turnover and inflammation, skin conditions, and infections as well as age-associated cognitive decline and muscle loss. The phospholipid composition of MFGM from bovine milk is quite like human milk and, although there are some differences due to dairy processing, these do not result in a chemical change. The MFGM ingredients, as used to improve the formulation in different clinical studies, have indeed increased the presence of phospholipids, sphingolipids, glycolipids, and glycoproteins with the resulting benefits of different outcomes (especially immune and cognitive outcomes) with no reported adverse effects. Nevertheless, the precise mechanism(s) of action of MFGM remain to be elucidated and further basic investigation is warranted.
Collapse
Affiliation(s)
- Javier Fontecha
- Food Lipid Biomarkers and Health Group, Institute of Food Science Research (CIAL, CSIC-UAM), 28049 Madrid, Spain
| | - Lauren Brink
- Department of Medical Affairs, Mead Johnson Nutrition, Evansville, IN 47721, USA; (L.B.); (S.W.)
| | - Steven Wu
- Department of Medical Affairs, Mead Johnson Nutrition, Evansville, IN 47721, USA; (L.B.); (S.W.)
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yves Pouliot
- STELA Dairy Research Center, Institute of Nutrition and Functional Foods (INAF), Department of Food Sciences, Laval University, Québec, QC G1V 0A6, Canada;
| | - Francesco Visioli
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy;
- IMDEA-Food, CEI UAM + CSIC, 28049 Madrid, Spain
| | - Rafael Jiménez-Flores
- Food Science and Technology Department, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
45
|
Toro-Campos R, Algarín C, Peirano P, Peña M, Murguia-Peniche T, Wu SS, Uauy R. Effect of feeding mode on infant growth and cognitive function: study protocol of the Chilean infant Nutrition randomized controlled Trial (ChiNuT). BMC Pediatr 2020; 20:225. [PMID: 32423392 PMCID: PMC7236373 DOI: 10.1186/s12887-020-02087-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 04/15/2020] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND A central aim for pediatric nutrition is to develop infant formula compositionally closer to human milk. Milk fat globule membranes (MFGM) have shown to have functional components that are found in human milk, suggesting that addition of bovine sources of MFGM (bMFGM) to infant formula may promote beneficial outcomes potentially helping to narrow the gap between infants who receive human breast milk or infant formula. The objective of the current study is to determine how the addition of bMFGM in infant formula and consumption in early infancy affects physical growth and brain development when compared to infants fed with a standard formula and a reference group of infants fed with mother's own milk. METHODS Single center, double-blind, and parallel randomized controlled trial. Planned participant enrollment includes: infants exclusively receiving breast milk (n = 200; human milk reference group; HM) and infants whose mothers chose to initiate exclusive infant formula feeding before 4 months of age (n = 340). The latter were randomized to receive one of two study formulas until 12 months of age: 1) cow's milk based infant formula that had docosahexaenoic (DHA) (17 mg/100 kcal) and arachidonic acid (ARA) (25 mg/100 kcal); 1.9 g protein/100 kcal; 1.2 mg Fe/100 kcal (Standard formula; SF) or 2) a similar infant formula with an added source of bovine MFGM (whey protein-lipid concentrate (Experimental formula; EF). Primary outcomes will be: 1) Physical growth (Body weight, length, and head circumference) at 730 days of age; and 2) Cognitive development (Auditory Event-Related Potential) at 730 days of age. Data will be analyzed for all participants allocated to each study feeding group. DISCUSSION The results of this study will complement the knowledge regarding addition of bMFGM in infant formula including support of healthy growth and improvement of neurodevelopmental outcomes. TRIAL REGISTRATION NCT02626143, registered on December 10th 2015.
Collapse
Affiliation(s)
- Rosario Toro-Campos
- Institute of Nutrition and Food Technology (INTA), University of Chile, Av El Libano 5524, Macul, Santiago, Chile
| | - Cecilia Algarín
- Institute of Nutrition and Food Technology (INTA), University of Chile, Av El Libano 5524, Macul, Santiago, Chile
| | - Patricio Peirano
- Institute of Nutrition and Food Technology (INTA), University of Chile, Av El Libano 5524, Macul, Santiago, Chile
| | - Marcela Peña
- Psychology Department, Pontific Catholic University, Santiago, Chile
| | | | - Steven S. Wu
- Medical Affairs, Mead Johnson Nutrition, Evansville, IN USA
| | - Ricardo Uauy
- Institute of Nutrition and Food Technology (INTA), University of Chile, Av El Libano 5524, Macul, Santiago, Chile
| |
Collapse
|
46
|
Lucas A, Boscardin J, Abrams SA. Preterm Infants Fed Cow's Milk-Derived Fortifier Had Adverse Outcomes Despite a Base Diet of Only Mother's Own Milk. Breastfeed Med 2020; 15:297-303. [PMID: 32239968 PMCID: PMC7232708 DOI: 10.1089/bfm.2019.0133] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Objective: An increasingly common practice is to feed preterm infants a base diet comprising only human milk (HM), usually fortified with a cow's milk (CM)-derived fortifier (CMDF). We evaluated the safety of CMDF in a diet of 100% mother's own milk (MOM) against a HM-derived fortifier (HMDF). To date, this has received little research attention. Study Design: We reanalyzed a 12-center randomized trial, originally comparing exclusive HM feeding, including MOM, donor milk (DM), and HMDF, versus a CM exposed group fed MOM, preterm formula (PTF), and CMDF1. However, for the current study, we performed a subgroup analysis (n = 114) selecting only infants receiving 100% MOM base diet plus fortification, and fed no DM or PTF. This allowed for an isolated comparison of fortifier type: CMDF versus HMDF to evaluate the primary outcomes: necrotizing enterocolitis (NEC) and a severe morbidity index of NEC surgery or death; and several secondary outcomes. Results: CMDF and HMDF groups had similar baseline characteristics. CMDF was associated with higher risk of NEC; relative risk (RR) 4.2 (p = 0.038), NEC surgery or death (RR 5.1, p = 0.014); and reduced head circumference gain (p = 0.04). Conclusions: In neonates fed, as currently recommended with a MOM-based diet, the safety of CMDF when compared to HMDF has been little researched. We conclude that available evidence points to an increase in adverse outcomes with CMDF, including NEC and severe morbidity comprising NEC surgery or death.
Collapse
Affiliation(s)
- Alan Lucas
- Institute of Child Health, University College, London, United Kingdom
| | - John Boscardin
- Department of Medicine and University of California, San Francisco, California, USA
- Department of Epidemiology & Biostatistics, University of California, San Francisco, California, USA
| | - Steven A. Abrams
- Department of Pediatrics, Dell Medical School, The University of Texas, Austin, Texas, USA
| |
Collapse
|
47
|
Production of Milk Phospholipid-Enriched Dairy Ingredients. Foods 2020; 9:foods9030263. [PMID: 32121655 PMCID: PMC7143133 DOI: 10.3390/foods9030263] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/22/2020] [Accepted: 02/23/2020] [Indexed: 02/01/2023] Open
Abstract
Milk phospholipids (MPLs) have been used as ingredients for food fortification, such as bakery products, yogurt, and infant formula, because of their technical and nutritional functionalities. Starting from either buttermilk or beta serum as the original source, this review assessed four typical extraction processes and estimated that the life-cycle carbon footprints (CFs) of MPLs were 87.40, 170.59, 159.07, and 101.05 kg CO2/kg MPLs for membrane separation process, supercritical fluid extraction (SFE) by CO2 and dimethyl ether (DME), SFE by DME, and organic solvent extraction, respectively. Regardless of the MPL content of the final products, membrane separation remains the most efficient way to concentrate MPLs, yielding an 11.1-20.0% dry matter purity. Both SFE and solvent extraction processes are effective at purifying MPLs to relatively higher purity (76.8-88.0% w/w).
Collapse
|
48
|
Abbink MR, Schipper L, Naninck EF, de Vos CM, Meier R, van der Beek EM, Lucassen PJ, Korosi A. The Effects of Early Life Stress, Postnatal Diet Modulation, and Long-Term Western-Style Diet on Later-Life Metabolic and Cognitive Outcomes. Nutrients 2020; 12:nu12020570. [PMID: 32098348 PMCID: PMC7071477 DOI: 10.3390/nu12020570] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/27/2020] [Accepted: 02/19/2020] [Indexed: 12/22/2022] Open
Abstract
Early life stress (ES) increases the risk to develop metabolic and brain disorders in adulthood. Breastfeeding (exclusivity and duration) is associated with improved metabolic and neurocognitive health outcomes, and the physical properties of the dietary lipids may contribute to this. Here, we tested whether early life exposure to dietary lipids mimicking some physical characteristics of breastmilk (i.e., large, phospholipid-coated lipid droplets; Concept Nuturis® infant milk formula (N-IMF)), could protect against ES-induced metabolic and brain abnormalities under standard circumstances, and in response to prolonged Western-style diet (WSD) in adulthood. ES was induced by exposing mice to limited nesting material from postnatal day (P) 2 to P9. From P16 to P42, male offspring were fed a standard IMF (S-IMF) or N-IMF, followed by either standard rodent diet (SD) or WSD until P230. We then assessed body composition development, fat mass, metabolic hormones, hippocampus-dependent cognitive function, and neurogenesis (proliferation and survival). Prolonged WSD resulted in an obesogenic phenotype at P230, which was not modulated by previous ES or N-IMF exposure. Nevertheless, ES and N-IMF modulated the effect of WSD on neurogenesis at P230, without affecting cognitive function, highlighting programming effects of the early life environment on the hippocampal response to later life challenges at a structural level.
Collapse
Affiliation(s)
- Maralinde R. Abbink
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands; (M.R.A.); (R.M.); (P.J.L.)
| | - Lidewij Schipper
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (L.S.); (E.M.v.d.B.)
| | - Eva F.G. Naninck
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands; (M.R.A.); (R.M.); (P.J.L.)
| | - Cato M.H. de Vos
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands; (M.R.A.); (R.M.); (P.J.L.)
| | - Romy Meier
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands; (M.R.A.); (R.M.); (P.J.L.)
| | - Eline M. van der Beek
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (L.S.); (E.M.v.d.B.)
- Department of Pediatrics, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Paul J. Lucassen
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands; (M.R.A.); (R.M.); (P.J.L.)
| | - Aniko Korosi
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands; (M.R.A.); (R.M.); (P.J.L.)
- Correspondence: ; Tel.: +0031205257638
| |
Collapse
|
49
|
Li Y, Pan X, Nguyen DN, Ren S, Moodley A, Sangild PT. Bovine Colostrum Before or After Formula Feeding Improves Systemic Immune Protection and Gut Function in Newborn Preterm Pigs. Front Immunol 2020; 10:3062. [PMID: 32082298 PMCID: PMC7002359 DOI: 10.3389/fimmu.2019.03062] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
Objectives: Maternal milk is often absent or in limited supply just after preterm birth. Many preterm infants are therefore fed infant formula as their first enteral feed despite an increased risk of feeding intolerance, necrotizing enterocolitis (NEC), and infection. Using preterm pigs as a model for preterm infants, we hypothesized that bovine colostrum given before or after formula feeding would alleviate formula-induced detrimental effects during the first days after preterm birth. Methods: A total of 74 preterm pigs received gradually increasing volumes of formula (F) or bovine colostrum (C) until day 5, when they were euthanized or transitioned to either C or F for another 4 days, resulting in six groups: C or F until day 5 (C5, F5, n = 11 each), C or F until day 9 (CC, FF n = 12–13 each), C followed by F (CF, n = 14), and F followed by C (FC, n = 13). Results: Systemically, colostrum feeding stimulated circulating neutrophil recruitment on day 5 (C5 vs. F5, P < 0.05). Relative to initial formula feeding, initial colostrum feeding promoted the development of systemic immune protection as indicated by a decreased T-helper cell population and an increased regulatory T-cell population (CC + CF vs. FC + FF, P < 0.01). In the gut, colostrum feeding improved intestinal parameters such as villus heights, enzymes, hexose absorption, colonic goblet cell density, and decreased the incidence of severe NEC (27 vs. 64%), diarrhea (16 vs. 49%), and gut permeability on day 5, coupled with lowered expression of LBP, MYD88, IL8, HIF1A, and CASP3 (C5 vs. F5, all P < 0.05). On day 9, the incidence of severe NEC was similarly low across groups (15–21%), but diarrhea resistance and intestinal parameters were further improved by colostrum feeding, relative to exclusive formula feeding (CC, CF, or FC vs. FF, respectively, all P < 0.05). The expression of MYD88 and CASP3 remained downregulated by exclusive colostrum feeding (CC vs. FF, P < 0.01) and colostrum before or after formula feeding down regulated HIF1A and CASP3 expression marginally. Conclusion: Colostrum feeding ameliorated detrimental effects of formula feeding on systemic immunity and gut health in preterm newborns, especially when given immediately after birth.
Collapse
Affiliation(s)
- Yanqi Li
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Xiaoyu Pan
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Duc Ninh Nguyen
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Shuqiang Ren
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Arshnee Moodley
- Veterinary Clinical Microbiology, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Per Torp Sangild
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark.,Department of Paediatrics, Odense University Hospital, Odense, Denmark
| |
Collapse
|
50
|
Wei W, Yang J, Yang D, Wang X, Yang Z, Jin Q, Wang M, Lai J, Wang X. Phospholipid Composition and Fat Globule Structure I: Comparison of Human Milk Fat from Different Gestational Ages, Lactation Stages, and Infant Formulas. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13922-13928. [PMID: 31746600 DOI: 10.1021/acs.jafc.9b04247] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We compared phospholipids (PLs), PL fatty acid (FA) composition, and milk fat globule size and structure in human milk (n = 120) from mothers of full-term and preterm infants during lactation (colostrum, transition, 1 mo, 2 mo, and 3 mo) and 8 brands of infant formulas. The absolute quantification of PLs was analyzed using 31P NMR spectroscopy. Sphingomyelin was the dominant PLs (35.01 ± 3.31%) in human milk, whereas phosphatidylcholine and phosphatidylethanolamine were the dominant PLs in infant formulas. The PL content in preterm milk increased during lactation, whereas that in term milk remained stable. Saturated FAs (mainly 16:0 and 18:0) were the most abundant (>60%) PL FA in both preterm and term milk and increased throughout lactation. The mean diameter of milk fat globules in infant formulas was much smaller than that found in human milk (200 nm vs 5.63 μm). Significant differences were observed between human milk and infant formulas with regard to PLs, suggesting that more research is needed to mimic the PL profile in infant formulas.
Collapse
Affiliation(s)
| | | | - Dan Yang
- Nutrition & Health Research Institute, Beijing Key Laboratory of Nutrition & Health and Food Safety , COFCO Corporation , Beijing 102209 , China
| | - Xiangyu Wang
- Nutrition & Health Research Institute, Beijing Key Laboratory of Nutrition & Health and Food Safety , COFCO Corporation , Beijing 102209 , China
| | - Zhenyu Yang
- National Institute for Nutrition and Health , Chinese Center for Disease Control and Prevention , Beijing 100050 , China
| | | | - Manyi Wang
- Nutrition & Health Research Institute, Beijing Key Laboratory of Nutrition & Health and Food Safety , COFCO Corporation , Beijing 102209 , China
| | - Jianqiang Lai
- National Institute for Nutrition and Health , Chinese Center for Disease Control and Prevention , Beijing 100050 , China
| | | |
Collapse
|