1
|
Ferriere F, Aasi N, Flouriot G, Pakdel F. Exploring the Complex Mechanisms of Isoflavones: From Cell Bioavailability, to Cell Dynamics and Breast Cancer. Phytother Res 2025; 39:957-979. [PMID: 39707600 PMCID: PMC11832364 DOI: 10.1002/ptr.8417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/29/2024] [Accepted: 12/07/2024] [Indexed: 12/23/2024]
Abstract
In Western countries, the increase in the consumption of soy-derived products raises the population's exposure to isoflavones. These molecules, present in many foods, have numerous effects on the body's cells, including regulation of the transcription and epigenetics, cell signaling, cell cycle, cell growth, apoptosis, and oxidative stress. However, despite the multitude of studies conducted, on these compounds, it remains difficult to draw definitive conclusions regarding their safety or dangerousness in the diet. Indeed, some epidemiological studies highlight health benefits in consuming isoflavone-rich foods, notably by reducing the risk of certain cancers. However, several studies conducted on cell models show that these molecules can have negative effects on cell fate, particularly with regard to proliferation and survival of mammary tumor cells. Isoflavones are mainly genistein, daidzein, formononetin, and biochanin A. These molecules belong to the family of phytoestrogens, which are capable of interacting with both nuclear estrogen receptor, ERα and ERβ, to trigger agonistic and antagonistic effects. Due to their estrogenic properties, isoflavones are suspected to promote hormone-dependent cancers such as breast cancer. This suspicion is based primarily on their ability to bind to ERα in breast cells, thereby altering the signaling pathways that control cell growth. However, study results are sometimes contradictory. Some studies suggest that isoflavones may protect against breast cancer by acting as selective estrogen receptor modulators, while others highlight their potential role in stimulating tumor growth. This review explores the literature on the effects of isoflavones, focusing on their influence on ERα-dependent signaling in breast tumor cells.
Collapse
Affiliation(s)
- François Ferriere
- Université de Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) – UMR_S 1085RennesFrance
| | - Nagham Aasi
- Université de Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) – UMR_S 1085RennesFrance
| | - Gilles Flouriot
- Université de Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) – UMR_S 1085RennesFrance
| | - Farzad Pakdel
- Université de Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) – UMR_S 1085RennesFrance
| |
Collapse
|
2
|
Mir R, Albarqi SA, Albalawi W, Alatwi HE, Alatawy M, Bedaiwi RI, Almotairi R, Husain E, Zubair M, Alanazi G, Alsubaie SS, Alghabban RI, Alfifi KA, Bashir S. Emerging Role of Gut Microbiota in Breast Cancer Development and Its Implications in Treatment. Metabolites 2024; 14:683. [PMID: 39728464 DOI: 10.3390/metabo14120683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/14/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Background: The human digestive system contains approximately 100 trillion bacteria. The gut microbiota is an emerging field of research that is associated with specific biological processes in many diseases, including cardiovascular disease, obesity, diabetes, brain disease, rheumatoid arthritis, and cancer. Emerging evidence indicates that the gut microbiota affects the response to anticancer therapies by modulating the host immune system. Recent studies have explained a high correlation between the gut microbiota and breast cancer: dysbiosis in breast cancer may regulate the systemic inflammatory response, hormone metabolism, immune response, and the tumor microenvironment. Some of the gut bacteria are related to estrogen metabolism, which may increase or decrease the risk of breast cancer by changing the number of hormones. Further, the gut microbiota has been seen to modulate the immune system in respect of its ability to protect against and treat cancers, with a specific focus on hormone receptor-positive breast cancer. Probiotics and other therapies claiming to control the gut microbiome by bacterial means might be useful in the prevention, or even in the treatment, of breast cancer. Conclusions: The present review underlines the various aspects of gut microbiota in breast cancer risk and its clinical application, warranting research on individualized microbiome-modulated therapeutic approaches to breast cancer treatment.
Collapse
Affiliation(s)
- Rashid Mir
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, Prince Fahd Bin Sultan Research Chair for Biomedical Research, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Shrooq A Albarqi
- Molecular Medicine, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Wed Albalawi
- Molecular Medicine, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Hanan E Alatwi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Marfat Alatawy
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Ruqaiah I Bedaiwi
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, Prince Fahd Bin Sultan Research Chair for Biomedical Research, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Reema Almotairi
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, Prince Fahd Bin Sultan Research Chair for Biomedical Research, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Eram Husain
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, Prince Fahd Bin Sultan Research Chair for Biomedical Research, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Mohammad Zubair
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Ghaida Alanazi
- Molecular Medicine, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Shouq S Alsubaie
- Molecular Medicine, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Razan I Alghabban
- Molecular Medicine, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Khalid A Alfifi
- Department of Laboratory and Blood Bank, King Fahd Special Hospital, Tabuk 47717, Saudi Arabia
| | - Shabnam Bashir
- Mubarak Hospital, Srinagar 190002, Jammu and Kashmir, India
| |
Collapse
|
3
|
Mohapatra S, Kumar PA, Aggarwal A, Iqubal A, Mirza MA, Iqbal Z. Phytotherapeutic approach for conquering menopausal syndrome and osteoporosis. Phytother Res 2024; 38:2728-2763. [PMID: 38522005 DOI: 10.1002/ptr.8172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 02/06/2024] [Accepted: 02/11/2024] [Indexed: 03/25/2024]
Abstract
Women face a significant change in their reproductive health as menopause sets in. It is marred with numerous physiological changes that negatively impact their quality of life. This universal, transition phase is associated with menopausal and postmenopausal syndrome, which may spread over 2-10 years. This creates a depletion of female hormones causing physical, mental, sexual and social problems and may, later on, manifest as postmenopausal osteoporosis leading to weak bones, causing fractures and ultimately morbidity and mortality. Menopausal hormone therapy generally encompasses the correction of hormone balance through various pharmacological agents, but the associated side effects often lead to cessation of therapy with poor clinical outcomes. However, it has been noticed that phytotherapeutics is trusted by women for the amelioration of symptoms related to menopause and for improving bone health. This could primarily be due to their reduced side effects and lesser costs. This review attempts to bring forth the suitability of phytotherapeutics/herbals for the management of menopausal, postmenopausal syndrome, and menopausal osteoporosis through several published research. It tries to enlist the available botanicals with their key constituents and mechanism of action for mitigating symptoms associated with menopause as well as osteoporosis. It also includes a list of a few herbal commercial products available for these complications. The article also intends to collate the findings of various clinical trials and patents available in this field and provide a window for newer research avenues in this highly important yet ignored health segment.
Collapse
Affiliation(s)
- Sradhanjali Mohapatra
- Nanotechnology Lab, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - P Ayash Kumar
- Sun Pharmaceutical Industries Limited, R&D Centre, Gurugram, India
| | - Akshay Aggarwal
- Sun Pharmaceutical Industries Limited, R&D Centre, Gurugram, India
| | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Mohd Aamir Mirza
- Nanotechnology Lab, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Zeenat Iqbal
- Nanotechnology Lab, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| |
Collapse
|
4
|
Banyś K, Jelińska M, Wrzosek M, Skrajnowska D, Wrzesień R, Bielecki W, Bobrowska-Korczak B. Inflammation Factors and Genistein Supplementation in Cancer-Preliminary Research. Curr Issues Mol Biol 2024; 46:2166-2180. [PMID: 38534756 DOI: 10.3390/cimb46030140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 03/28/2024] Open
Abstract
The purpose of this study was to evaluate the effect of genistein in nano, micro, and macro forms on the intensity of the DMBA-induced tumor process in rats and to understand the mechanisms of this action. The effect of genistein supplementation on the content of selected eicosanoids (HETEs, HODE, and HEPE) in the serum of rats was evaluated. The levels and expression of genes encoding various pro-inflammatory cytokines (IL-1, IL-6) and MMP-9 in the blood of rats were also investigated. The biological material for the study was blood obtained from female rats of the Sprague Dawley strain (n = 32). The animals were randomly divided into four groups: animals without supplementation, and animals supplemented at a dose of 0.2 mg/kg b.w. (0.1 mg/mL) with macro, micro (587 ± 83 nm), or nano (92 ± 41 nm) genistein. To induce mammary neoplasia (adenocarcinoma), rats were given 7,12-dimethyl-1,2-benz[a]anthracene (DMBA). The content of selected eicosanoids was determined by liquid chromatography with UV detection. An immunoenzymatic method was used to determine the content of cytokines and MMP-9. The expression of the IL-6, IL-1beta, and MMP-9 genes was determined with quantitative real-time PCR (qRT-PCR) using TaqMan probes. Based on the study, it was shown that supplementation of animals with genistein in macro, micro, and nano forms increased the intensity of the tumor process in rats. It was shown that the content of 12-HEPE, HODE, and 12-HETE in the serum of genistein-supplemented rats was statistically significantly lower with respect to the content of the aforementioned markers in the serum of rats receiving only a standard diet, devoid of supplementation. It was found that animals supplemented with nano-, micro-, and macrogenistein had higher levels of metalloproteinase-9, MMP-9, compared to animals without supplementation. There was a significant increase in MMP-9 gene expression in the blood of macrogenistein-supplemented animals, relative to the other groups of rats. On the basis of the study, it was shown that supplementation of animals with nano-, micro-, and macrogenistein had an effect on the development of the tumor process. Dietary supplementation with genistein significantly decreased the level of selected eicosanoids, which may have significant impacts on cancer development and progression.
Collapse
Affiliation(s)
- Karolina Banyś
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Poland, Banacha 1, 02-097 Warsaw, Poland
| | - Małgorzata Jelińska
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Poland, Banacha 1, 02-097 Warsaw, Poland
| | - Małgorzata Wrzosek
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, Poland, Banacha 1, 02-097 Warsaw, Poland
| | - Dorota Skrajnowska
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Poland, Banacha 1, 02-097 Warsaw, Poland
| | - Robert Wrzesień
- Central Laboratory of Experimental Animals, Medical University of Warsaw, Poland, Banacha 1, 02-097 Warsaw, Poland
| | - Wojciech Bielecki
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Live Sciences, Nowoursynowska 159c Street, 02-787 Warsaw, Poland
| | - Barbara Bobrowska-Korczak
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Poland, Banacha 1, 02-097 Warsaw, Poland
| |
Collapse
|
5
|
Aslam S, Iqbal R, Saeed RF, Akram N, Ijaz F, Liaqat I, Aslam AS. Nutritional Genomics and Cancer Prevention. Cancer Treat Res 2024; 191:217-244. [PMID: 39133410 DOI: 10.1007/978-3-031-55622-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The scientific innovations have emphasized the importance of diet for one's health and wellbeing. The genetic revolution has enhanced our understanding about the effect of nutrients on genomic and transcriptomic profiles and gene-nutrition interactions (nutritional genomics). Furthermore, the contribution of micronutrient insufficiencies and macronutrient excess is evident in the development and progression of many diseases, especially cancer. It is speculated that nutrients have capacity to implicitly affect the physiological and pathophysiological processes via gene expression various regulatory processes. Moreover, the nutrients are known to affect the cellular networks involved in cancer progression and cancer inhibitory mechanisms targeting apoptosis or impaired angiogenesis. The interplay of regulatory processes in physiological systems and nutrients provides basis for the nutrigenomics. The functional genomics data further argue that cellular and molecular processes involved in the cancer progression are possibly programed genes during early development which may persist into adulthood and become detrimental. The incorporation of the functional interactions between nutrients and the genome has revolutionized the field of personalized medicine and provided the foundation for targeted cancer therapy through nutrients. There is growing evidence on the beneficial impacts of eating habits on lowering the risk of cancer, even if it can be difficult to pinpoint the precise role of nutrients. The nutrigenomic information may provide bases to develop disease prevention and treatment via nutrition, at the molecular level.
Collapse
Affiliation(s)
- Shaista Aslam
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan.
| | - Riffat Iqbal
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Rida Fatima Saeed
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Nuzhat Akram
- Hamdard College of Medicine, Hamdard University, Karachi, Pakistan
| | - Farhat Ijaz
- CMH Lahore Medical College & IOD (NUMS), Lahore, Pakistan
| | - Irfana Liaqat
- Department of Zoology, Government College University, Lahore, Pakistan
| | | |
Collapse
|
6
|
Garbiec E, Cielecka-Piontek J, Kowalówka M, Hołubiec M, Zalewski P. Genistein-Opportunities Related to an Interesting Molecule of Natural Origin. Molecules 2022; 27:815. [PMID: 35164079 PMCID: PMC8840253 DOI: 10.3390/molecules27030815] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/19/2022] Open
Abstract
Nowadays, increasingly more attention is being paid to a holistic approach to health, in which diet contributes to disease prevention. There is growing interest in functional food that not only provides basic nutrition but has also been demonstrated to be an opportunity for the prevention of disorders. A promising functional food is soybean, which is the richest source of the isoflavone, genistein. Genistein may be useful in the prevention and treatment of such disorders as psoriasis, cataracts, cystic fibrosis, non-alcoholic fatty liver disease and type 2 diabetes. However, achievable concentrations of genistein in humans are low, and the use of soybean as a functional food is not devoid of concerns, which are related to genistein's potential side effects resulting from its estrogenic and goitrogenic effects.
Collapse
Affiliation(s)
- Ewa Garbiec
- Department of Pharmacognosy, Faculty of Pharmacy, Poznan University of Medical Sciences, 4 Święcickiego St., 60-780 Poznan, Poland; (E.G.); (P.Z.)
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Faculty of Pharmacy, Poznan University of Medical Sciences, 4 Święcickiego St., 60-780 Poznan, Poland; (E.G.); (P.Z.)
| | - Magdalena Kowalówka
- Department of Bromatology, Faculty of Pharmacy, Poznan University of Medical Sciences, 42 Marcelińska St., 60-354 Poznan, Poland;
| | - Magdalena Hołubiec
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna 27/33 St., 60-572 Poznan, Poland;
| | - Przemysław Zalewski
- Department of Pharmacognosy, Faculty of Pharmacy, Poznan University of Medical Sciences, 4 Święcickiego St., 60-780 Poznan, Poland; (E.G.); (P.Z.)
| |
Collapse
|
7
|
Yu L, Rios E, Castro L, Liu J, Yan Y, Dixon D. Genistein: Dual Role in Women's Health. Nutrients 2021; 13:3048. [PMID: 34578926 PMCID: PMC8472782 DOI: 10.3390/nu13093048] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 12/22/2022] Open
Abstract
Advanced research in recent years has revealed the important role of nutrients in the protection of women's health and in the prevention of women's diseases. Genistein is a phytoestrogen that belongs to a class of compounds known as isoflavones, which structurally resemble endogenous estrogen. Genistein is most often consumed by humans via soybeans or soya products and is, as an auxiliary medicinal, used to treat women's diseases. In this review, we focused on analyzing the geographic distribution of soybean and soya product consumption, global serum concentrations of genistein, and its metabolism and bioactivity. We also explored genistein's dual effects in women's health through gathering, evaluating, and summarizing evidence from current in vivo and in vitro studies, clinical observations, and epidemiological surveys. The dose-dependent effects of genistein, especially when considering its metabolites and factors that vary by individuals, indicate that consumption of genistein may contribute to beneficial effects in women's health and disease prevention and treatment. However, consumption and exposure levels are nuanced because adverse effects have been observed at lower concentrations in in vitro models. Therefore, this points to the duplicity of genistein as a possible therapeutic agent in some instances and as an endocrine disruptor in others.
Collapse
Affiliation(s)
| | | | | | | | | | - Darlene Dixon
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch (MTB), Division of the National Toxicology Program (DNTP), National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Research Triangle Park, Durham, NC 27709, USA; (L.Y.); (E.R.); (L.C.); (J.L.); (Y.Y.)
| |
Collapse
|
8
|
Ghoreishy SM, Aminianfar A, Benisi-Kohansal S, Azadbakht L, Esmaillzadeh A. Association between dietary phytochemical index and breast cancer: a case-control study. Breast Cancer 2021; 28:1283-1291. [PMID: 34120329 DOI: 10.1007/s12282-021-01265-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/07/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Dietary intake of isoflavones has been positively associated with risk of breast cancer (BC) in some earlier studies. In addition, most studies on diet-disease associations came from western countries and limited data are available in the Middle-East. METHODS This case-control study was performed on 350 women with BC aged over 30 years who were recruited from hospitals or private clinics in Isfahan, Iran. All patients were diagnosed with BC during the maximum of the last 6 months using physical examination and mammography findings. Using cluster method sampling, 700 apparently healthy age- and socioeconomic status-matched controls were randomly selected from healthy women who had no relationship with BC patients and had no familial history of BC. Data on dietary intakes were collected using a validated food-frequency questionnaire. The DPI was calculated based on dietary energy derived from foods rich in phytochemicals (kcal) divided by total daily energy intake (kcal) of each participant. RESULTS Mean ± SD age and BMI in the study participants were 62.4 ± 10.8 years and 24.3 ± 5.2 kg/m2, respectively. In the crude model, participants in the highest quartile of DPI had 63% lower odds of breast cancer compared to those in the lowest quartile (95% CI 0.26, 0.54; P-trend < 0.001). After adjustment for potential confounders, this inverse association became strengthened (95% CI 0.22, 0.49; P-trend < 0.001). Further adjustment for BMI did not change the association (OR for the highest quartile vs. the lowest quartile = 0.40, 95% CI 0.26, 0.60; P-trend < 0.001). CONCLUSION In conclusion, a protective association was observed between DPI and BC in this case-control study. Therefore, high consumption of foods rich in phytochemicals such as fruits, vegetables, and whole grains might help reducing the odds of BC among women.
Collapse
Affiliation(s)
- Seyed Mojtaba Ghoreishy
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadeh Aminianfar
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Sanaz Benisi-Kohansal
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, P.O. Box 14155-6117, Tehran, Iran
| | - Leila Azadbakht
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, P.O. Box 14155-6117, Tehran, Iran
| | - Ahmad Esmaillzadeh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, P.O. Box 14155-6117, Tehran, Iran. .,Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular -Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran. .,Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
9
|
Obesity and aging: Molecular mechanisms and therapeutic approaches. Ageing Res Rev 2021; 67:101268. [PMID: 33556548 DOI: 10.1016/j.arr.2021.101268] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 01/19/2021] [Accepted: 02/02/2021] [Indexed: 02/08/2023]
Abstract
The epidemic of obesity is a major challenge for health policymakers due to its far-reaching effects on population health and potentially overwhelming financial burden on healthcare systems. Obesity is associated with an increased risk of developing acute and chronic diseases, including hypertension, stroke, myocardial infarction, cardiovascular disease, diabetes, and cancer. Interestingly, the metabolic dysregulation associated with obesity is similar to that observed in normal aging, and substantial evidence suggests the potential of obesity to accelerate aging. Therefore, understanding the mechanism of fat tissue dysfunction in obesity could provide insights into the processes that contribute to the metabolic dysfunction associated with the aging process. Here, we review the molecular and cellular mechanisms underlying both obesity and aging, and how obesity and aging can predispose individuals to chronic health complications. The potential of lifestyle and pharmacological interventions to counter obesity and obesity-related pathologies, as well as aging, is also addressed.
Collapse
|
10
|
Fouad S, El Shebini SM, Abdel-Moaty M, Ahmed NH, Hussein AMS, Essa HA, Tapozada ST. Menopause Anxiety and Depression; How Food Can Help? Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.5555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Anxiety and depression are reported as two major frequent and chief complaints among peri-menopausal women in several societies.
AIM: The objective of the study was to study the effect of using two dietary supplements to beat depression and anxiety associated with menopause.
SUBJECTS AND METHODS: Sixty-six volunteers’ menopausal women participated on the study for 8 weeks, 35 subjects consumed daily cookies prepared mainly from soya flour and flaxseed, and 31 females consumed daily a blend composed mainly of raw unroasted peanut and raw sesame. Follow-up was performed with menopause rating scale, anxiety score, depression score, and biochemical parameters.
RESULTS: Soya cookies were rich in plant-based protein and total phenols while blend was a good source of unsaturated fatty acid. Blend consumers showed significant percentage reduction in beck anxiety score and beck depression score after intervention, more than cookies consumers group. The anthropometrics parameters were statistical significant changed on both groups, more on the group who consumed the soya cookies. Soya cookies demonstrated an anti-inflammatory effect, while blend had an antioxidant and anti-inflammatory effects as was shown on the serum assay of interleukin-6 and malondialdehyde as an inflammatory marker and an antioxidant marker, respectively.
CONCLUSION: From the results, it can be concluded that the supplementation of products enriched with unsaturated fatty acid was more beneficial to slow down the psychological menopause symptoms than natural estrogen rich product consumption.
Collapse
|
11
|
Rouhimoghadam M, Lu AS, Salem AK, Filardo EJ. Therapeutic Perspectives on the Modulation of G-Protein Coupled Estrogen Receptor, GPER, Function. Front Endocrinol (Lausanne) 2020; 11:591217. [PMID: 33329395 PMCID: PMC7719807 DOI: 10.3389/fendo.2020.591217] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/19/2020] [Indexed: 12/21/2022] Open
Abstract
Estrogens exert their physiological and pathophysiological effects via cellular receptors, named ERα, ERβ, and G-protein coupled estrogen receptor (GPER). Estrogen-regulated physiology is tightly controlled by factors that regulate estrogen bioavailability and receptor sensitivity, while disruption of these control mechanisms can result in loss of reproductive function, cancer, cardiovascular and neurodegenerative disease, obesity, insulin resistance, endometriosis, and systemic lupus erythematosus. Restoration of estrogen physiology by modulating estrogen bioavailability or receptor activity is an effective approach for treating these pathological conditions. Therapeutic interventions that block estrogen action are employed effectively for the treatment of breast and prostate cancer as well as for precocious puberty and anovulatory infertility. Theoretically, treatments that block estrogen biosynthesis should prevent estrogen action at ERs and GPER, although drug resistance and ligand-independent receptor activation may still occur. In addition, blockade of estrogen biosynthesis does not prevent activation of estrogen receptors by naturally occurring or man-made exogenous estrogens. A more complicated scenario is provided by anti-estrogen drugs that antagonize ERs since these drugs function as GPER agonists. Based upon its association with metabolic dysregulation and advanced cancer, GPER represents a therapeutic target with promise for the treatment of several critical health concerns facing Western society. Selective ligands that specifically target GPER have been developed and may soon serve as pharmacological agents for treating human disease. Here, we review current forms of estrogen therapy and the implications that GPER holds for these therapies. We also discuss existing GPER targeted drugs, additional approaches towards developing GPER-targeted therapies and how these therapies may complement existing modalities of estrogen-targeted therapy.
Collapse
Affiliation(s)
- Milad Rouhimoghadam
- Department of Surgery, University of Iowa, Carver College of Medicine, Iowa City, IA, United States
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States
| | - Anh S. Lu
- College of Pharmacy, University of Iowa, Iowa City, IA, United States
| | - Aliasger K. Salem
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States
- College of Pharmacy, University of Iowa, Iowa City, IA, United States
| | - Edward J. Filardo
- Department of Surgery, University of Iowa, Carver College of Medicine, Iowa City, IA, United States
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
12
|
Managing acute cancer pain. JAAPA 2020; 33:31-36. [PMID: 32452959 DOI: 10.1097/01.jaa.0000662384.93538.a2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cancer-related pain is an ongoing concern for patients and families. Clinicians should include pain management or palliative care specialists who have advanced knowledge in pharmacotherapy and who have the ability to perform interventional procedures to help alleviate patients' pain and reduce opioid use. This article discusses available interventions for patients with cancer pain.
Collapse
|
13
|
Mercer KE, Bhattacharyya S, Sharma N, Chaudhury M, Lin H, Yeruva L, Ronis MJ. Infant Formula Feeding Changes the Proliferative Status in Piglet Neonatal Mammary Glands Independently of Estrogen Signaling. J Nutr 2020; 150:730-738. [PMID: 31687754 PMCID: PMC7138673 DOI: 10.1093/jn/nxz273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Soy infant formula contains isoflavones, which are able to bind to and activate estrogen receptor (ER) pathways. The mammary gland is sensitive to estrogens, raising concern that the use of soy formulas may promote premature development. OBJECTIVE We aimed to determine if soy formula feeding increases mammary gland proliferation and differentiation in comparison to other infant postnatal diets. METHODS White-Dutch Landrace piglets aged 2 d received either sow milk (Sow), or were provided milk formula (Milk), soy formula (Soy), milk formula supplemented with 17-beta-estradiol (2 mg/(kg·d); M + E2), or milk formula supplemented with genistein (84 mg/L of diet; M + G) until day 21. Mammary gland proliferation and differentiation was assessed by histology, and real-time RT-PCR confirmation of differentially expressed genes identified by microarray analysis. RESULTS Mammary terminal end bud numbers were 19-31% greater in the Milk, Soy, and M + G groups relative to the Sow and M + E2, P <0.05. Microarray analysis identified differentially expressed genes between each formula-fed group relative to the Sow (±1.7-fold, P <0.05). Real-time RT-PCR confirmed 2- to 4-fold increases in mRNA transcripts of genes involved in cell proliferation, insulin-like growth factor 1 (IGF1), fibroblast growth factor 10 (FGF10), and fibroblast growth factor 18 (FGF18), in all groups relative to the Sow, P <0.05. In contrast, genes involved in cell differentiation and ductal morphogenesis, angiotensin II receptor type 2 (AGTR2), microtubule associated protein 1b (MAP1B), and kinesin family member 26b (KIF26B), were significantly upregulated by 2-, 4-, and 13-fold, respectively, in the M + E2 group. Additionally, mRNA expression of ER-specific gene targets, progesterone receptor (PGR), was increased by 12-fold, and amphiregulin (AREG) and Ras-like estrogen regulated growth inhibitor (RERG) expression by 1.5-fold in the M + E2 group, P <0.05. In the soy and M + G groups, mRNA expressions of fatty acid synthesis genes were increased 2- to 4-fold. CONCLUSIONS Our data indicate soy formula feeding does not promote ER-signaling in the piglet mammary gland. Infant formula feeding (milk- or soy-based) may initiate proliferative pathways independently of estrogenic signaling.
Collapse
Affiliation(s)
- Kelly E Mercer
- Arkansas Children's Nutrition Center, Little Rock, AR, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sudeepa Bhattacharyya
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Neha Sharma
- Arkansas Children's Nutrition Center, Little Rock, AR, USA
| | | | - Haixia Lin
- Arkansas Children's Nutrition Center, Little Rock, AR, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Laxmi Yeruva
- Arkansas Children's Nutrition Center, Little Rock, AR, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Martin J Ronis
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
14
|
Cui C, Birru RL, Snitz BE, Ihara M, Kakuta C, Lopresti BJ, Aizenstein HJ, Lopez OL, Mathis CA, Miyamoto Y, Kuller LH, Sekikawa A. Effects of soy isoflavones on cognitive function: a systematic review and meta-analysis of randomized controlled trials. Nutr Rev 2020; 78:134-144. [PMID: 31504836 PMCID: PMC7808187 DOI: 10.1093/nutrit/nuz050] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
CONTEXT The results of preclinical and observational studies support the beneficial effect of soy isoflavones on cognition. OBJECTIVE This review aimed to evaluate the effects of soy isoflavones on cognition in adults. DATA SOURCES The PUBMED, EMBASE, Ovid Medline, Cochrane Library, and clinicaltrials.gov databases were searched. STUDY SELECTION Two researchers independently screened 1955 records, using the PICOS criteria: participants were adults; intervention was dietary sources with soy isoflavones or isolated soy isoflavones; comparator was any comparator; outcome was cognitive function; study type was randomized controlled trials (RCTs). A third researcher was consulted to resolve any discrepancies. Sixteen RCTs were included and their quality assessed. DATA EXTRACTION Information on study design, characteristics of participants, and outcomes was extracted. PRISMA guidelines were followed. DATA ANALYSIS A random-effects meta-analysis was used to pool estimates across studies. In the 16 RCTs (1386 participants, mean age = 60 y), soy isoflavones were found to improve overall cognitive function (standardized mean difference [SMD], 0.19; 95% confidence interval [CI], 0.07-0.32) and memory (SMD, 0.15; 95%CI, 0.03-0.26). CONCLUSION The results showed that soy isoflavones may improve cognitive function in adults. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42018082070.
Collapse
Affiliation(s)
- Chendi Cui
- C. Cui, L. Kuller, and A. Sekikawa are with the Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rahel L Birru
- R. Birru is with the Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Beth E Snitz
- B. Snitz and O. Lopez are with the Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Masafumi Ihara
- M. Ihara, A. Higashiyama, C. Kakuta, and Y. Miyamoto are with the National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Chikage Kakuta
- M. Ihara, A. Higashiyama, C. Kakuta, and Y. Miyamoto are with the National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Brian J Lopresti
- B. Lopresti and C. Mathis are with the Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Howard J Aizenstein
- H. Aizenstein is with the Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Oscar L Lopez
- B. Snitz and O. Lopez are with the Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Chester A Mathis
- B. Lopresti and C. Mathis are with the Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yoshihiro Miyamoto
- M. Ihara, A. Higashiyama, C. Kakuta, and Y. Miyamoto are with the National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Lewis H Kuller
- C. Cui, L. Kuller, and A. Sekikawa are with the Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Akira Sekikawa
- C. Cui, L. Kuller, and A. Sekikawa are with the Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
15
|
Nogueira-de-Almeida CA, Ferraz IS, Ued FDV, Almeida ACF, Ciampo LAD. Impact of soy consumption on human health: integrative review. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2020. [DOI: 10.1590/1981-6723.12919] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Abstract Soy consumption is a millenary habit of populations of the eastern world and has recently increased in the western world. The risks and benefits of this practice have been extensively studied, with a current fundamental need of integration of available information. The aim of this study was to carry out an integrative review on this topic, in order to consolidate the available information. Based on the main question: “What is the impact of soy consumption on human health?”, were reviewed publications classified as original articles and reviews published from 1998 to 2020 in the databases Scopus, PubMed, SciELO, Web of Science, and Cochrane Library. A total of 97 studies were selected. In the present review were described the general impact of soy on human health and its protein quality, the effects of early exposure using soy formulas, and the effects of soy consumption on breast cancer, endometrial and ovarian cancer, prostate cancer, gastrointestinal cancer, cardiovascular disease, glucose metabolism and type 2 diabetes, obesity, reproductive health, menopause, female and male osteoporosis, microbiota, immunity and immunomodulation, thyroid function, attention-deficit hyperactivity disorder, and renal function.
Collapse
|
16
|
Yang Y, Liu G, Qin L, Ye L, Zhu F, Ying Y. Overexpression of UHRF1 and its potential role in the development of invasive ductal breast cancer validated by integrative bioinformatics and immunohistochemistry analyses. Transl Cancer Res 2019; 8:1086-1096. [PMID: 35116851 PMCID: PMC8797458 DOI: 10.21037/tcr.2019.06.19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/28/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Increasing evidence has highlighted the role of ubiquitin-like PHD and RING finger domain-containing protein 1 (UHRF1) in the development of cancers, including hepatocellular carcinoma, pancreatic cancer, and bladder cancer. However, the correlation between UHRF1 and breast cancer remains unclear. The present study aimed to analyze the expression of UHRF1 and its role in the development of invasive ductal breast cancer (IDC) by integrating multilevel expression data and immunohistochemistry analysis. METHODS The Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases were used to gather UHRF1 expression data on IDC. Additionally, immunohistochemistry analysis was used to investigate the correlations between UHRF1 expression and the clinical characteristics of IDC. RESULTS The GEO and TCGA databases indicated that UHRF1 was up-regulated in IDC. Consistently, the immunohistochemical specimens showed that the significant overexpression of UHRF1 in IDC, and its expression level showed an increasing trend from ductal carcinomas in situ to IDC. Notably, the increased levels of UHRF1 were closely correlated with estrogen receptor expression, pathological grade, and the prognosis of the disease. In addition, patients with a high UHRF1 expression had a poorer prognosis. CONCLUSIONS In conclusion, our findings suggested that UHRF1 plays a promoting role in breast tumorigenesis, and the over-expression of UHRF1 could serve as a biomarker for the prognosis in invasive ductal carcinomas in breast cancer.
Collapse
Affiliation(s)
- Yichen Yang
- Department of Pathophysiology, Jiangxi Medical College of Nanchang University, Nanchang 330006, China
| | - Guanjun Liu
- Department of Oncology, Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Lifang Qin
- Department of Pathology, Xinxiang Center Hospital, Xinxiang 450003, China
| | - Li Ye
- Department of Pathology, Xinxiang Center Hospital, Xinxiang 450003, China
| | - Fangheng Zhu
- Department of Pathology, Xinxiang Center Hospital, Xinxiang 450003, China
| | - Ying Ying
- Department of Pathophysiology, Jiangxi Medical College of Nanchang University, Nanchang 330006, China
| |
Collapse
|
17
|
Bioconversion of Genistein to Orobol by Bacillus subtilis Spore Displayed Tyrosinase and Monitoring the Anticancer Effects of Orobol on MCF-7 Breast Cancer Cells. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-019-0067-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Microbial Metabolites in Cancer Promotion or Prevention. MICROBIOME AND CANCER 2019. [DOI: 10.1007/978-3-030-04155-7_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
19
|
Kostecka M. The Potential Influence of Dietary Counseling on Nutritional Status and Dietary Supplement Consumption in Breast Cancer Patients: A Pilot Study. Nutr Cancer 2019; 71:749-755. [PMID: 30632832 DOI: 10.1080/01635581.2018.1531138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Cancer, in particular breast cancer, is one of the leading causes of death among women. Good nutritional status contributes to the efficacy of treatment and recovery, and nutritional interventions can minimize the adverse effects of cancer therapy. AIM The aim of this study was to describe the potential role of dietary counseling in breast cancer patients. The impact of nutritional advice on the nutritional status of patients, the use of dietary supplements, and the knowledge of phytoestrogens were assessed. MATERIALS AND METHODS The study was conducted between April and July 2016 in the Lublin Oncology Center on a group of 173 female patients undergoing breast cancer treatment. The patients filled out a questionnaire containing 34 open-ended and closed-ended questions. The collected data were processed in Excel and Statistica 5.0 programs, and the results were regarded as significant at P < 0.05. RESULTS The mean age of the evaluated patients was 66.8 ± 11.3 years. The duration of disease was significantly correlated with the patients' nutritional status expressed by the body mass index (P = 0.0368). The main sources of knowledge about nutrition in cancer care were nurses (29.71%), physicians (12.31%), and nutritionists (13.78%). Patients who received nutritional advice had significantly greater knowledge about phytoestrogens (P = 0.0001), and they were of the opinion that a diet rich in phytoestrogens was safe (P = 0.001). More than 85% of the polled subjects used dietary supplements during treatment, and 2/3 of them did so without professional advice. In this study, 73.07% of the respondents regularly monitored their body weight. Patients who did not receive dietary advice less frequently informed their physician about weight changes. CONCLUSIONS The nutritional status of patients was correlated with access to nutrition and dietary advice during illness. The risk of malnutrition was minimized when patients received and understood educational materials. The patients who did not receive dietary advice more frequently overdosed on dietary supplements. Phytoestrogens were more widely used by patients who regularly attended a dietitian.
Collapse
Affiliation(s)
- Małgorzata Kostecka
- a University of Life Sciences in Lublin , Faculty of Food Science and Biotechnology , Lublin , Poland
| |
Collapse
|
20
|
Sivoňová MK, Kaplán P, Tatarková Z, Lichardusová L, Dušenka R, Jurečeková J. Androgen receptor and soy isoflavones in prostate cancer. Mol Clin Oncol 2018; 10:191-204. [PMID: 30680195 DOI: 10.3892/mco.2018.1792] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/16/2018] [Indexed: 12/13/2022] Open
Abstract
Androgens and androgen receptor (AR) play a critical role not only in normal prostate development, but also in prostate cancer. For that reason, androgen deprivation therapy (ADT) is the primary treatment for prostate cancer. However, the majority of patients develop castration-resistant prostate cancer, which eventually leads to mortality. Novel therapeutic approaches, including dietary changes, have been explored. Soy isoflavones have become a focus of interest because of their positive health benefits on numerous diseases, particularly hormone-related cancers, including prostate and breast cancers. An important strategy for the prevention and/or treatment of prostate cancer might thus be the action of soy isoflavones on the AR signaling pathway. The current review article provides a detailed overview of the anticancer potential of soy isoflavones (genistein, daidzein and glycitein), as mediated by their effect on AR.
Collapse
Affiliation(s)
- Monika Kmetová Sivoňová
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Peter Kaplán
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia.,Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Zuzana Tatarková
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Lucia Lichardusová
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Róbert Dušenka
- Department of Urology, Jessenius Faculty of Medicine and UHM in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Jana Jurečeková
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| |
Collapse
|
21
|
Rizzo G, Baroni L. Soy, Soy Foods and Their Role in Vegetarian Diets. Nutrients 2018; 10:E43. [PMID: 29304010 PMCID: PMC5793271 DOI: 10.3390/nu10010043] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/30/2017] [Accepted: 01/03/2018] [Indexed: 02/07/2023] Open
Abstract
Soy is a basic food ingredient of traditional Asian cuisine used for thousands of years. In Western countries, soybeans have been introduced about a hundred years ago and recently they are mainly used for surrogate foods production. Soy and soy foods are common nutritional solutions for vegetarians, due to their high protein content and versatility in the production of meat analogues and milk substitutes. However, there are some doubts about the potential effects on health, such as the effectiveness on cardiovascular risk reduction or, conversely, on the possible disruption of thyroid function and sexual hormones. The soy components that have stimulated the most research interest are isoflavones, which are polyphenols with estrogenic properties highly contained in soybeans. In this review, we discuss the characteristics of soy and soy foods, focusing on their nutrient content, including phytoestrogens and other bioactive substances that are noteworthy for vegetarians, the largest soy consumers in the Western countries. The safety of use will also be discussed, given the growing trend in adoption of vegetarian styles and the new soy-based foods availability.
Collapse
Affiliation(s)
| | - Luciana Baroni
- Primary Care Unit, Northern District, Local Health Unit 2, 31100 Treviso, Italy.
| |
Collapse
|
22
|
Jarić I, Živanović J, Miler M, Ajdžanović V, Blagojević D, Ristić N, Milošević V, Nestorović N. Genistein and daidzein treatments differently affect uterine homeostasis in the ovary-intact middle-aged rats. Toxicol Appl Pharmacol 2018; 339:73-84. [DOI: 10.1016/j.taap.2017.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 11/07/2017] [Accepted: 12/02/2017] [Indexed: 01/16/2023]
|
23
|
Uterine Fibroids (Leiomyomata). Integr Med (Encinitas) 2018. [DOI: 10.1016/b978-0-323-35868-2.00058-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Lee D, Kim MJ, Ahn J, Lee SH, Lee H, Kim JH, Park S, Jang Y, Ha T, Jung CH. Nutrikinetics of Isoflavone Metabolites After Fermented Soybean Product (Cheonggukjang) Ingestion in Ovariectomized Mice. Mol Nutr Food Res 2017; 61:1700322. [PMID: 28981201 PMCID: PMC6139428 DOI: 10.1002/mnfr.201700322] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 08/28/2017] [Indexed: 12/31/2022]
Abstract
SCOPE Cheonggukjang (CGJ) is a soybean-based quick-fermented food popular in Korea that contains a variety of biologically active compounds including isoflavones and saponins. Isoflavone bioavailability may be important for the bone health of postmenopausal women; therefore, the aim of this study is to evaluate the influence of fermentation on the isoflavone metabolite nutrikinetic profile after single dose CGJ or unfermented soybean administration in ovariectomized (OVX) and sham mice. METHODS AND RESULTS We identify 34 isoflavone metabolites using UPLC-QTOF-MS and analyze their nutrikinetics at different time points (0.25, 0.5, 1, 2, 4, 8, 16, and 24 h) to understand their fermentation- and OVX-mediated time-dependent concentration changes. Nutrikinetics analysis shows that genistein, daidzein, genistein 4'-sulfate, dihydrodaidzein sulfate, equol 4'-sulfate, and equol-7-glucuronide are present at high concentrations in all groups based on area-under-the-curve analysis. OVX mice appear to show lower isoflavone bioavailability than mice in the sham group. CGJ enhances various isoflavone metabolite bioavailability including genistein, 3-hydroxygenistein, and equol 7-glucuronide, compared to the unfermented soybean-treated group. Among these metabolites, intact isoflavones, 3-hydroxygenistein, genistein 4'-sulfate, and equol 7-glucuronide promote osteoblastogenesis and inhibit osteoclast formation. CONCLUSIONS CGJ has good isoflavone bioavailability and may be beneficial for the bone health of postmenopausal women.
Collapse
Affiliation(s)
- Da‐Hye Lee
- Research Group of Metabolic MechanismKorea Food Research InstituteSeongnamRepublic of Korea
- Department of Food BiotechnologyKorea University of Science and TechnologySeongnamRepublic of Korea
| | - Min Jung Kim
- Research Group of Metabolic MechanismKorea Food Research InstituteSeongnamRepublic of Korea
| | - Jiyun Ahn
- Research Group of Metabolic MechanismKorea Food Research InstituteSeongnamRepublic of Korea
- Department of Food BiotechnologyKorea University of Science and TechnologySeongnamRepublic of Korea
| | - Sang Hee Lee
- Research Group of Metabolic MechanismKorea Food Research InstituteSeongnamRepublic of Korea
| | - Hyunjung Lee
- Research Group of Metabolic MechanismKorea Food Research InstituteSeongnamRepublic of Korea
| | - Jin Hee Kim
- Research Group of Metabolic MechanismKorea Food Research InstituteSeongnamRepublic of Korea
| | - So‐Hyun Park
- Research Group of Metabolic MechanismKorea Food Research InstituteSeongnamRepublic of Korea
- Department of Food BiotechnologyKorea University of Science and TechnologySeongnamRepublic of Korea
| | - Young‐Jin Jang
- Research Group of Metabolic MechanismKorea Food Research InstituteSeongnamRepublic of Korea
| | - Tae‐Youl Ha
- Research Group of Metabolic MechanismKorea Food Research InstituteSeongnamRepublic of Korea
- Department of Food BiotechnologyKorea University of Science and TechnologySeongnamRepublic of Korea
| | - Chang Hwa Jung
- Research Group of Metabolic MechanismKorea Food Research InstituteSeongnamRepublic of Korea
- Department of Food BiotechnologyKorea University of Science and TechnologySeongnamRepublic of Korea
| |
Collapse
|
25
|
The Phytoestrogen Genistein Produces Similar Effects as 17 β-Estradiol on Anxiety-Like Behavior in Rats at 12 Weeks after Ovariectomy. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9073816. [PMID: 29226152 PMCID: PMC5684542 DOI: 10.1155/2017/9073816] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/09/2017] [Accepted: 10/03/2017] [Indexed: 11/30/2022]
Abstract
The phytoestrogen genistein produces anxiolytic-like effects in ovariectomized rats, which highlights its potential therapeutic effect in ameliorating anxiety in surgical menopausal women. However, no studies have directly compared the effects of identical doses of genistein and 17β-estradiol, the main estrogen used in hormone replacement therapy in menopausal women. The present study evaluated the anxiolytic-like effects of identical doses of genistein and 17β-estradiol (0.045, 0.09, and 0.18 mg/kg/7 days, s.c.) in a surgical menopause model in rats in the elevated plus maze and locomotor activity tests at 12 weeks after ovariectomy. Additionally, the participation of estrogen receptor-β in the anxiolytic-like effect of genistein and 17β-estradiol was explored by previous administration of the 5 mg/kg tamoxifen antagonist. Genistein and 17β-estradiol (0.09 and 0.18 mg/kg) similarly reduced anxiety-like behavior in the elevated plus maze and also increased the time spent grooming and rearing, without affecting crossing in locomotor activity test. These effects were blocked by tamoxifen. Present results indicate that the phytoestrogen genistein has a similar behavioral profile as 17β-estradiol in rats at 12 weeks after ovariectomy through action at the estrogen receptor-β. Thus genistein has potential for reducing anxiety-like behavior associated with low concentrations of ovarian hormones, which normally occurs during natural and surgical menopause.
Collapse
|
26
|
Huang G, Xu J, Lefever DE, Glenn TC, Nagy T, Guo TL. Genistein prevention of hyperglycemia and improvement of glucose tolerance in adult non-obese diabetic mice are associated with alterations of gut microbiome and immune homeostasis. Toxicol Appl Pharmacol 2017; 332:138-148. [PMID: 28412308 PMCID: PMC5592136 DOI: 10.1016/j.taap.2017.04.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/25/2017] [Accepted: 04/10/2017] [Indexed: 12/17/2022]
Abstract
Although studies have linked soy phytoestrogen 4,7,4-trihydroxyisoflavone genistein (GEN) to reduced type 1 diabetes (T1D) risk, the mechanism of dietary GEN on T1D remains unknown. In our studies, adult non-obese diabetic (NOD) mouse model was employed to investigate the effects of GEN exposure on blood glucose level (BGL), glucose tolerance, gut microbiome, and immune responses. Adult male and female NOD mice were fed with either soy-based or casein-based diet, and received GEN at 20mg/kg body weight by gavage daily. The BGL and immune responses (represented by serum antibodies, cytokines and chemokines, and histopathology) were monitored, while the fecal gut microbiome was sequenced for 16S ribosomal RNA to reveal any alterations in gut microbial communities. A significantly reduced BGL was found in NOD males fed with soy-based diet on day 98 after initial dosing, and an improved glucose tolerance was observed on both diets. In addition, an anti-inflammatory response (suggested by reduced IgG2b and cytokine/chemokine levels, and alterations in the microbial taxonomy) was accompanied by an altered β-diversity in gut microbial species. Among the NOD females exposed to GEN, a later onset of T1D was observed. However, the profiles of gut microbiome, antibodies and cytokines/chemokines were all indicative of pro-inflammation. This study demonstrated an association among GEN exposure, gut microbiome alteration, and immune homeostasis in NOD males. Although the mechanisms underlying the protective effects of GEN in NOD mice need to be explored further, the current study suggested a GEN-induced sex-specific effect in inflammatory status and gut microbiome.
Collapse
Affiliation(s)
- Guannan Huang
- Department of Environmental Health Sciences, College of Public Health, United States
| | - Joella Xu
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, United States
| | - Daniel E Lefever
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, United States
| | - Travis C Glenn
- Department of Environmental Health Sciences, College of Public Health, United States
| | - Tamas Nagy
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, United States
| | - Tai L Guo
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, United States.
| |
Collapse
|
27
|
Robust optimization for the simultaneous enhancement of nitric oxide inhibition and reduction of hepatotoxicity from green tea catechins. Food Sci Biotechnol 2017; 26:1725-1734. [PMID: 30263711 DOI: 10.1007/s10068-017-0111-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/16/2017] [Accepted: 06/23/2017] [Indexed: 12/12/2022] Open
Abstract
To provide a platform for evaluating significant interactions contributing to the enhanced physiological efficacy and reduced hepatotoxicity, we used a robust design to determine the optimal combination of six major green tea catechins, epigallocatechin gallate (EGCG), epigallocatechin (EGC), epicatechin gallate (ECG), epicatechin (EC), gallocatechin, and catechin. Based on the mixture design, 28 experiments were performed to inhibit nitric oxide (NO) in RAW 264.7 cells and hepatotoxicity in Chang liver cells. Significant candidates, EGCG, EC, gallocatechin and catechin, were selected after optimization. The combination showing simultaneous enhancement of NO inhibition and reduction of hepatotoxicity was EGCG and gallocatechin at a ratio of 0.65 to 0.35 by surface response methodology and desirability function, through which their co-treatment was validated. Here, we describe a platform for simultaneously determining the optimized combination of natural components exerting enhanced efficacy and reduced toxicity.
Collapse
|
28
|
Rietjens IMCM, Louisse J, Beekmann K. The potential health effects of dietary phytoestrogens. Br J Pharmacol 2017; 174:1263-1280. [PMID: 27723080 PMCID: PMC5429336 DOI: 10.1111/bph.13622] [Citation(s) in RCA: 300] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/04/2016] [Accepted: 09/05/2016] [Indexed: 12/14/2022] Open
Abstract
Phytoestrogens are plant-derived dietary compounds with structural similarity to 17-β-oestradiol (E2), the primary female sex hormone. This structural similarity to E2 enables phytoestrogens to cause (anti)oestrogenic effects by binding to the oestrogen receptors. The aim of the present review is to present a state-of-the-art overview of the potential health effects of dietary phytoestrogens. Various beneficial health effects have been ascribed to phytoestrogens, such as a lowered risk of menopausal symptoms like hot flushes and osteoporosis, lowered risks of cardiovascular disease, obesity, metabolic syndrome and type 2 diabetes, brain function disorders, breast cancer, prostate cancer, bowel cancer and other cancers. In contrast to these beneficial health claims, the (anti)oestrogenic properties of phytoestrogens have also raised concerns since they might act as endocrine disruptors, indicating a potential to cause adverse health effects. The literature overview presented in this paper illustrates that several potential health benefits of phytoestrogens have been reported but that, given the data on potential adverse health effects, the current evidence on these beneficial health effects is not so obvious that they clearly outweigh the possible health risks. Furthermore, the data currently available are not sufficient to support a more refined (semi) quantitative risk-benefit analysis. This implies that a definite conclusion on possible beneficial health effects of phytoestrogens cannot be made. LINKED ARTICLES This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc.
Collapse
Affiliation(s)
| | - Jochem Louisse
- Division of ToxicologyWageningen UniversityWageningenThe Netherlands
| | - Karsten Beekmann
- Division of ToxicologyWageningen UniversityWageningenThe Netherlands
| |
Collapse
|
29
|
Ziaei S, Halaby R. Dietary Isoflavones and Breast Cancer Risk. MEDICINES 2017; 4:medicines4020018. [PMID: 28930233 PMCID: PMC5590054 DOI: 10.3390/medicines4020018] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/22/2017] [Accepted: 03/24/2017] [Indexed: 12/20/2022]
Abstract
Breast cancer is the deadliest neoplasm in women globally, resulting in a significant health burden. In many cases, breast cancer becomes resistant to chemotherapy, radiation, and hormonal therapies. It is believed that genetics is not the major cause of breast cancer. Other contributing risk factors include age at first childbirth, age at menarche, age at menopause, use of oral contraceptives, race and ethnicity, and diet. Diet has been shown to influence breast cancer incidence, recurrence, and prognosis. Soy isoflavones have long been a staple in Asian diets, and there appears to be an increase, albeit modest, compared to Asian populations, in soy consumption among Americans. Isoflavones are phytoestrogens that have antiestrogenic as well as estrogenic effects on breast cancer cells in culture, in animal models, and in clinical trials. This study will investigate anticancer and tumor promoting properties of dietary isoflavones and evaluate their effects on breast cancer development. Furthermore, this work seeks to elucidate the putative molecular pathways by which these phytochemicals modulate breast cancer risk by synergizing or antagonizing the estrogen receptor (ER) and in ER-independent signaling mechanisms.
Collapse
Affiliation(s)
- Samira Ziaei
- Department of Biology, Montclair State University, 1 Normal Avenue, Montclair, NJ 07043, USA.
| | - Reginald Halaby
- Department of Biology, Montclair State University, 1 Normal Avenue, Montclair, NJ 07043, USA.
| |
Collapse
|
30
|
Engel N, Adamus A, Schauer N, Kühn J, Nebe B, Seitz G, Kraft K. Synergistic Action of Genistein and Calcitriol in Immature Osteosarcoma MG-63 Cells by SGPL1 Up-Regulation. PLoS One 2017; 12:e0169742. [PMID: 28125641 PMCID: PMC5268493 DOI: 10.1371/journal.pone.0169742] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 12/21/2016] [Indexed: 11/18/2022] Open
Abstract
Background Phytoestrogens such as genistein, the most prominent isoflavone from soy, show concentration-dependent anti-estrogenic or estrogenic effects. High genistein concentrations (>10 μM) also promote proliferation of bone cancer cells in vitro. On the other hand, the most active component of the vitamin D family, calcitriol, has been shown to be tumor protective in vitro and in vivo. The purpose of this study was to examine a putative synergism of genistein and calcitriol in two osteosarcoma cell lines MG-63 (early osteoblast), Saos-2 (mature osteoblast) and primary osteoblasts. Methods Thus, an initial screening based on cell cycle phase alterations, estrogen (ER) and vitamin D receptor (VDR) expression, live cell metabolic monitoring, and metabolomics were performed. Results Exposure to the combination of 100 μM genistein and 10 nM calcitriol reduced the number of proliferative cells to control levels, increased ERß and VDR expression, and reduced extracellular acidification (40%) as well as respiratory activity (70%), primarily in MG-63 cells. In order to identify the underlying cellular mechanisms in the MG-63 cell line, metabolic profiling via GC/MS technology was conducted. Combined treatment significantly influenced lipids and amino acids preferably, whereas metabolites of the energy metabolism were not altered. The comparative analysis of the log2-ratios revealed that after combined treatment only the metabolite ethanolamine was highly up-regulated. This is the result: a strong overexpression (350%) of the enzyme sphingosine-1-phosphate lyase (SGPL1), which irreversibly degrades sphingosine-1-phosphate (S1P), thereby, generating ethanolamine. S1P production and secretion is associated with an increased capability of migration and invasion of cancer cells. Conclusion From these results can be concluded that the tumor promoting effect of high concentrations of genistein in immature osteosarcoma cells is reduced by the co-administration of calcitriol, primarily by the breakdown of S1P. It should be tested whether this anti-metastatic pathway can be stimulated by combined treatment also in metastatic xenograft mice models.
Collapse
Affiliation(s)
- Nadja Engel
- Department of Pediatric Surgery, University Hospital Marburg, Baldingerstraße, Marburg, Germany
- Department of Cell Biology, Rostock University Medical Center, Schillingallee, Rostock, Germany
- * E-mail: ,
| | - Anna Adamus
- Department of Pediatric Surgery, University Hospital Marburg, Baldingerstraße, Marburg, Germany
- Department of Cell Biology, Rostock University Medical Center, Schillingallee, Rostock, Germany
| | - Nicolas Schauer
- Metabolomic Discoveries GmbH, Am Mühlenberg, Potsdam-Golm, Germany
| | - Juliane Kühn
- Department of Cell Biology, Rostock University Medical Center, Schillingallee, Rostock, Germany
| | - Barbara Nebe
- Department of Cell Biology, Rostock University Medical Center, Schillingallee, Rostock, Germany
| | - Guido Seitz
- Department of Pediatric Surgery, University Hospital Marburg, Baldingerstraße, Marburg, Germany
| | - Karin Kraft
- Complementary Medicine, Center of Internal Medicine, Rostock University Medical Center, Ernst-Heydemann-Straße 6, Rostock, Germany
| |
Collapse
|
31
|
Liquid chromatography with absorbance detection and with isotope-dilution mass spectrometry for determination of isoflavones in soy standard reference materials. Anal Bioanal Chem 2016; 409:949-960. [PMID: 27832301 DOI: 10.1007/s00216-016-9997-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/30/2016] [Accepted: 09/30/2016] [Indexed: 11/27/2022]
Abstract
Two independent analytical approaches, based on liquid chromatography with absorbance detection and liquid chromatography with mass spectrometric detection, have been developed for determination of isoflavones in soy materials. These two methods yield comparable results for a variety of soy-based foods and dietary supplements. Four Standard Reference Materials (SRMs) have been produced by the National Institute of Standards and Technology to assist the food and dietary supplement community in method validation and have been assigned values for isoflavone content using both methods. These SRMs include SRM 3234 Soy Flour, SRM 3236 Soy Protein Isolate, SRM 3237 Soy Protein Concentrate, and SRM 3238 Soy-Containing Solid Oral Dosage Form. A fifth material, SRM 3235 Soy Milk, was evaluated using the methods and found to be inhomogeneous for isoflavones and unsuitable for value assignment. Graphical Abstract Separation of six isoflavone aglycones and glycosides found in Standard Reference Material (SRM) 3236 Soy Protein Isolate.
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW The estrogenic effects of genistein, as reconfirmed by the American National Toxicology Program (USA-NTP), have led to several new clinical studies being undertaken. Here, we highlight the most relevant recent data, reporting either beneficial or adverse effects. RECENT FINDINGS Phytoestrogens are natural molecules from edible plants exhibiting estrogenic activities. Post-USA-NTP studies investigated both human and animal reproductive and other physiological issues. These studies showed that estrogens can be either deleterious for reproduction and estrogen-dependent diseases, or beneficial for those with steroid deficiencies, that is more than 50. The specific outcome depends on exposure level and on the estrogenic status of the patients exposed. Recently, it was reported that, with the industrialization of soybean process, phytoestrogen exposure dramatically increased in both humans and cattle, whereas traditional Asian soy-food-processing empirically removed isoflavones. Phytoestrogen exposure has also become more widespread with the progressive internationalization of soybean use in human and cattle food. SUMMARY Phytoestrogens should be considered as modern endocrine disruptors and studied as such.
Collapse
Affiliation(s)
- Catherine Bennetau-Pelissero
- aUniversity Bordeaux, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862 bINSERM, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U1215 Bordeaux cBordeaux Sciences Agro, Gradignan, France
| |
Collapse
|
33
|
Grassi TF, da Silva GN, Bidinotto LT, Rossi BF, Quinalha MM, Kass L, Muñoz-de-Toro M, Barbisan LF. Global gene expression and morphological alterations in the mammary gland after gestational exposure to bisphenol A, genistein and indole-3-carbinol in female Sprague-Dawley offspring. Toxicol Appl Pharmacol 2016; 303:101-109. [DOI: 10.1016/j.taap.2016.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/06/2016] [Accepted: 05/07/2016] [Indexed: 12/27/2022]
|
34
|
Yu J, Bi X, Yu B, Chen D. Isoflavones: Anti-Inflammatory Benefit and Possible Caveats. Nutrients 2016; 8:nu8060361. [PMID: 27294954 PMCID: PMC4924202 DOI: 10.3390/nu8060361] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/19/2016] [Accepted: 06/02/2016] [Indexed: 12/15/2022] Open
Abstract
Inflammation, a biological response of body tissues to harmful stimuli, is also known to be involved in a host of diseases, such as obesity, atherosclerosis, rheumatoid arthritis, and even cancer. Isoflavones are a class of flavonoids that exhibit antioxidant, anticancer, antimicrobial, and anti-inflammatory properties. Increasing evidence has highlighted the potential for isoflavones to prevent the chronic diseases in which inflammation plays a key role, though the underlying mechanisms remain unclear. Recently, some studies have raised concerns about isoflavones induced negative effects like carcinogenesis, thymic involution, and immunosuppression. Therefore, this review aims to summarize the anti-inflammatory effects of isoflavones, unravel the underlying mechanisms, and present the potential health risks.
Collapse
Affiliation(s)
- Jie Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xiaojuan Bi
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China.
| | - Bing Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China.
| | - Daiwen Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
35
|
Johnson KA, Vemuri S, Alsahafi S, Castillo R, Cheriyath V. Glycone-rich Soy Isoflavone Extracts Promote Estrogen Receptor Positive Breast Cancer Cell Growth. Nutr Cancer 2016; 68:622-33. [PMID: 27043076 DOI: 10.1080/01635581.2016.1154578] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Due to the association of hormone replacement therapy (HRT) with breast cancer risk, estrogenically active soy isoflavones are considered as an HRT alternative to alleviate menopausal symptoms. However, several recent reports challenged the health benefits of soy isoflavones and associated them with breast cancer promotion. While glyconic isoflavones are the major constituents of soybean seeds, due to their low cell permeability, they are considered to be biologically inactive. The glyconic isoflavones may exert their effects on membrane-bound estrogen receptors or could be converted to aglycones by extracellular β-glucosidases. Therefore, we hypothesized that despite their low cell permeability, soybean cultivars with high glyconic isoflavones may promote breast cancer cell growth. To test this, composition and estrogenic activity of isoflavones from 54 commercial soybean cultivars were determined. Soybean seeds produced in identical climate and growth conditions were used to minimize the effects of extraneous factors on isoflavone profile and concentrations. The glyconic daidzin concentration negatively correlated with genistin and with other aglycones. Relative to control, isoflavone extracts from 51 cultivars were estrogenic and promoted the growth of estrogen receptor positive (ER+) breast cancer cell line MCF-7 from 1.14 to 4.59 folds and other three cultivars slightly reduced the growth. Among these, extracts from three cultivars were highly estrogenic and promoted MCF-7 cell growth by 2.59-4.64 folds (P<0.005). Among six isoflavones, daidzin was positively associated with MCF-7 cell growth (P<0.005, r = 0.13966), whereas the negative correlation between genistin and MCF-7 cell growth was nearly significant (P≤0.0562, r = -0.026141). Furthermore, in drug interaction studies daidzin-rich isoflavone extracts antagonized tamoxifen, an ER inhibitor. Taken together, our results suggest that the glyconic daidzin-rich soy isoflavone extracts may exert estrogenic effects and promote ER+ breast cancer growth.
Collapse
Affiliation(s)
- Kailee A Johnson
- a Department of Biological and Environmental Sciences , Texas A&M University-Commerce , Commerce , Texas , USA
| | - Sravan Vemuri
- a Department of Biological and Environmental Sciences , Texas A&M University-Commerce , Commerce , Texas , USA
| | - Sameerh Alsahafi
- a Department of Biological and Environmental Sciences , Texas A&M University-Commerce , Commerce , Texas , USA
| | - Rudy Castillo
- a Department of Biological and Environmental Sciences , Texas A&M University-Commerce , Commerce , Texas , USA
| | - Venugopalan Cheriyath
- a Department of Biological and Environmental Sciences , Texas A&M University-Commerce , Commerce , Texas , USA
| |
Collapse
|
36
|
de la Parra C, Castillo-Pichardo L, Cruz-Collazo A, Cubano L, Redis R, Calin GA, Dharmawardhane S. Soy Isoflavone Genistein-Mediated Downregulation of miR-155 Contributes to the Anticancer Effects of Genistein. Nutr Cancer 2016; 68:154-64. [PMID: 26771440 DOI: 10.1080/01635581.2016.1115104] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
We previously reported that dietary genistein inhibits mammary tumor growth and metastasis of the highly metastatic MDA-MB-435 cancer cells in immunocompromised mice. The purpose herein was to characterize the role of the novel oncogenic microRNA (miRNA) miR-155 in the anticancer effects of genistein in metastatic breast cancer. The effect of genistein was determined on breast cancer cell viability, apoptosis, and expression of miR-155 and its targets. At low physiologically relevant concentrations, genistein inhibits cell viability and induces apoptosis in metastatic MDA-MB-435 and Hs578t breast cancer cells, without affecting the viability of nonmetastatic MCF-7 breast cancer cells. In parallel with reduced cell viability, miR-155 is downregulated, whereas proapoptotic and anticell proliferative miR-155 targets FOXO3, PTEN, casein kinase, and p27 are upregulated in MDA-MB-435 and Hs578t cells in response to genistein treatment. However, miR-155 levels remain unchanged in response to genistein in the MCF-7 cells. Ectopic expression of miR-155 in MDA-MB-435 and Hs578t cells decreases the effects of genistein on cell viability and abrogates the effects of genistein on apoptosis and expression of proapoptotic genes. Therefore, genistein-mediated downregulation of miR-155 contributes to the anticancer effects of genistein in metastatic breast cancer.
Collapse
Affiliation(s)
- Columba de la Parra
- a Department of Biochemistry , School of Medicine, University of Puerto Rico Medical Sciences Campus , San Juan , Puerto Rico
| | - Linette Castillo-Pichardo
- b Department of Biochemistry , School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico and Department of Pathology and Laboratory Medicine, Universidad Central del Caribe , Bayamon , Puerto Rico
| | - Ailed Cruz-Collazo
- c Department of Biochemistry , School of Medicine, University of Puerto Rico Medical Sciences Campus , San Juan , Puerto Rico
| | - Luis Cubano
- d Department of Anatomy and Cell Biology , Universidad Central del Caribe , Bayamon , Puerto Rico
| | - Roxana Redis
- e Department of Experimental Therapeutics , The University of Texas MD Anderson Cancer Center , Houston , Texas , USA
| | - George A Calin
- e Department of Experimental Therapeutics , The University of Texas MD Anderson Cancer Center , Houston , Texas , USA
| | - Suranganie Dharmawardhane
- f Department of Biochemistry , School of Medicine, University of Puerto Rico Medical Sciences Campus , San Juan , Puerto Rico
| |
Collapse
|
37
|
Cojocneanu Petric R, Braicu C, Raduly L, Zanoaga O, Dragos N, Monroig P, Dumitrascu D, Berindan-Neagoe I. Phytochemicals modulate carcinogenic signaling pathways in breast and hormone-related cancers. Onco Targets Ther 2015; 8:2053-2066. [PMID: 26273208 PMCID: PMC4532173 DOI: 10.2147/ott.s83597] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Over the years, nutrition and environmental factors have been demonstrated to influence human health, specifically cancer. Owing to the fact that cancer is a leading cause of death worldwide, efforts are being made to elucidate molecular mechanisms that trigger or delay carcinogenesis. Phytochemicals, in particular, have been shown to modulate oncogenic processes through their antioxidant and anti-inflammatory activities and their ability to mimic the chemical structure and activity of hormones. These compounds can act not only by influencing oncogenic proteins, but also by modulating noncoding RNAs such as microRNAs and long noncoding RNAs. Although we are only beginning to understand the complete effects of many natural compounds, such as phytochemicals, researchers are motivated to combine these agents with traditional, chemo-based, or hormone-based therapies to fight against cancer. Since ongoing studies continue to prove effective, herein we exalt the importance of improving dietary choices as a chemo-preventive strategy.
Collapse
Affiliation(s)
- Roxana Cojocneanu Petric
- Department of Biology, Babes-Bolyai University, Cluj-Napoca, Romania
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Lajos Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Physiopathology, Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, Cluj-Napoca, Romania
| | - Oana Zanoaga
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Nicolae Dragos
- Department of Biology, Babes-Bolyai University, Cluj-Napoca, Romania
- Department of Taxonomy and Ecology, Institute of Biological Research, Cluj-Napoca, Romania
| | - Paloma Monroig
- Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, TX, USA
| | - Dan Dumitrascu
- 2nd Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, TX, USA
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute “Prof Dr Ion Chiricuţă”, Cluj-Napoca, Romania
- Department of Immunology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
38
|
Liu Y, Hilakivi-Clarke L, Zhang Y, Wang X, Pan YX, Xuan J, Fleck SC, Doerge DR, Helferich WG. Isoflavones in soy flour diet have different effects on whole-genome expression patterns than purified isoflavone mix in human MCF-7 breast tumors in ovariectomized athymic nude mice. Mol Nutr Food Res 2015; 59:1419-30. [PMID: 25820259 PMCID: PMC5763549 DOI: 10.1002/mnfr.201500028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/04/2015] [Accepted: 04/07/2015] [Indexed: 12/31/2022]
Abstract
SCOPE Soy flour diet (MS) prevented isoflavones from stimulating MCF-7 tumor growth in athymic nude mice, indicating that other bioactive compounds in soy can negate the estrogenic properties of isoflavones. The underlying signal transduction pathways to explain the protective effects of soy flour consumption were studied here. METHODS AND RESULTS Ovariectomized athymic nude mice inoculated with MCF-7 human breast cancer cells were fed either Soy flour diet (MS) or purified isoflavone mix diet (MI), both with equivalent amounts of genistein. Positive controls received estradiol pellets and negative controls received sham pellets. GeneChip Human Genome U133 Plus 2.0 Array platform was used to evaluate gene expressions, and results were analyzed using bioinformatics approaches. Tumors in MS-fed mice exhibited higher expression of tumor growth suppressing genes ATP2A3 and BLNK and lower expression of oncogene MYC. Tumors in MI-fed mice expressed a higher level of oncogene MYB and a lower level of MHC-I and MHC-II, allowing tumor cells to escape immunosurveillance. MS-induced gene expression alterations were predictive of prolonged survival among estrogen-receptor-positive breast cancer patients, whilst MI-induced gene changes were predictive of shortened survival. CONCLUSION Our findings suggest that dietary soy flour affects gene expression differently than purified isoflavones, which may explain why soy foods prevent isoflavones-induced stimulation of MCF-7 tumor growth in athymic nude mice.
Collapse
Affiliation(s)
- Yunxian Liu
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Leena Hilakivi-Clarke
- Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Yukun Zhang
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Xiao Wang
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Yuan-xiang Pan
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Jianhua Xuan
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Stefanie C. Fleck
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Daniel R. Doerge
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - William G. Helferich
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, IL 61801, USA
| |
Collapse
|
39
|
Ferrini K, Ghelfi F, Mannucci R, Titta L. Lifestyle, nutrition and breast cancer: facts and presumptions for consideration. Ecancermedicalscience 2015; 9:557. [PMID: 26284121 PMCID: PMC4531134 DOI: 10.3332/ecancer.2015.557] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is the most common cancer in women worldwide, and the high incidence of this cancer coupled with improvements in initial treatments has led to an ever-increasing number of breast cancer survivors. Among the prospective epidemiological studies on diet and breast cancer incidence and recurrence, to date, there is no association that is strong, reproducible and statistically significant, with the exception of alcohol intake, overweight, and weight gain. Nevertheless, many beliefs about food and breast cancer persist in the absence of supporting scientific evidence. After a comprehensive review regarding the role of lifestyle on breast cancer outcomes and a thorough study of the dissemination field including mass media, clinical institutions, and academic figures, we briefly reported the most common presumptions and also facts from the literature regarding lifestyle, nutrition, and breast cancer. The randomised controlled trial is the best study-design that could provide direct evidence of a causal relationship; however, there are methodological difficulties in applying and maintaining a lifestyle intervention for a sufficient period; consequently, there is a lack of this type of study in the literature. Instead, it is possible to obtain indirect evidence from observational prospective studies. In this article, it becomes clear that for now the best advice for women’s health is to follow the World Cancer Research Fund/American Institute of Cancer Research (WCRF/AICR) recommendations on diet, nutrition, physical activity, and weight management for cancer prevention, because they are associated with a lower risk of developing most types of cancer, including breast cancer. Despite current awareness of the role of nutrition in cancer outcomes, there is inadequate translation from research findings into clinical practice. We suggest the establishment of a multidisciplinary research consortium to demonstrate the real power of lifestyle interventions.
Collapse
Affiliation(s)
- Krizia Ferrini
- SmartFood Program, European Institute of Oncology, Milan 20141, Italy ; Università degli Studi di Pavia, 27100, Italy
| | - Francesca Ghelfi
- SmartFood Program, European Institute of Oncology, Milan 20141, Italy ; Università degli Studi di Parma, 43121, Italy
| | - Roberta Mannucci
- SmartFood Program, European Institute of Oncology, Milan 20141, Italy
| | - Lucilla Titta
- SmartFood Program, European Institute of Oncology, Milan 20141, Italy
| |
Collapse
|
40
|
Carbonel AAF, Calió ML, Santos MA, Bertoncini CRA, Sasso GDS, Simões RS, Simões MJ, Soares JM. Soybean isoflavones attenuate the expression of genes related to endometrial cancer risk. Climacteric 2015; 18:389-98. [PMID: 25242508 DOI: 10.3109/13697137.2014.964671] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE We evaluated whether genistein or estrogen treatment has the same effect when administered immediately or late to rats induced with menopause using ovariectomy. METHODS Sixty adult female rats were divided into six treatment groups: GI = vehicle immediately after ovariectomy; GII = vehicle 30 days after ovariectomy; GIII = genistein immediately after ovariectomy; GIV = genistein 30 days after ovariectomy; GV = estrogen immediately after ovariectomy; and GVI = estrogen 30 days after ovariectomy. All animals were treated for 30 consecutive days. At the end of the treatment, part of the uteri was removed for subsequent histological studies and another part was used to evaluate estrogen receptors 1 and 2, cell proliferation (cyclin A1 and A2, cyclin D1, cyclin-dependent kinase inhibitors 1, 1B and 2, antigen identified by the monoclonal antibody Ki67) and angiogenesis (vascular endothelial growth factor, VEGF-A) gene expression. RESULTS Late treatment after castration in rats resulted in more developed endometrium, enhanced cell proliferation and estrogen-signalling pathways, particularly the cyclin-related genes Ki67 and VEGF-A, compared to early treatment. Interestingly, these same effects were less intense with genistein compared to those induced by estrogen, especially when genistein was administered late. CONCLUSION Our data show that isoflavone renders a lower risk of cancer when compared to estrogen in treatments.
Collapse
|
41
|
de la Parra C, Borrero-Garcia LD, Cruz-Collazo A, Schneider RJ, Dharmawardhane S. Equol, an isoflavone metabolite, regulates cancer cell viability and protein synthesis initiation via c-Myc and eIF4G. J Biol Chem 2015; 290:6047-57. [PMID: 25593313 PMCID: PMC4358247 DOI: 10.1074/jbc.m114.617415] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/30/2014] [Indexed: 12/28/2022] Open
Abstract
Epidemiological studies implicate dietary soy isoflavones as breast cancer preventives, especially due to their anti-estrogenic properties. However, soy isoflavones may also have a role in promoting breast cancer, which has yet to be clarified. We previously reported that equol, a metabolite of the soy isoflavone daidzein, may advance breast cancer potential via up-regulation of the eukaryotic initiation factor 4GI (eIF4GI). In estrogen receptor negative (ER-) metastatic breast cancer cells, equol induced elevated levels of eIF4G, which were associated with increased cell viability and the selective translation of mRNAs that use non-canonical means of initiation, including internal ribosome entry site (IRES), ribosome shunting, and eIF4G enhancers. These mRNAs typically code for oncogenic, survival, and cell stress molecules. Among those mRNAs translationally increased by equol was the oncogene and eIF4G enhancer, c-Myc. Here we report that siRNA-mediated knockdown of c-Myc abrogates the increase in cancer cell viability and mammosphere formation by equol, and results in a significant down-regulation of eIF4GI (the major eIF4G isoform), as well as reduces levels of some, but not all, proteins encoded by mRNAs that are translationally stimulated by equol treatment. Knockdown of eIF4GI also markedly reduces an equol-mediated increase in IRES-dependent mRNA translation and the expression of specific oncogenic proteins. However, eIF4GI knockdown did not reciprocally affect c-Myc levels or cell viability. This study therefore implicates c-Myc as a potential regulator of the cancer-promoting effects of equol via up-regulation of eIF4GI and selective initiation of translation on mRNAs that utilize non-canonical initiation, including certain oncogenes.
Collapse
Affiliation(s)
- Columba de la Parra
- From the Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico 00936 and Department of Microbiology and Radiation Oncology, NYU Cancer Institute, New York University School of Medicine, New York, New York 10016
| | - Luis D Borrero-Garcia
- From the Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico 00936 and
| | - Ailed Cruz-Collazo
- From the Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico 00936 and
| | - Robert J Schneider
- Department of Microbiology and Radiation Oncology, NYU Cancer Institute, New York University School of Medicine, New York, New York 10016
| | - Suranganie Dharmawardhane
- From the Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico 00936 and
| |
Collapse
|
42
|
Remely M, Lovrecic L, de la Garza AL, Migliore L, Peterlin B, Milagro FI, Martinez AJ, Haslberger AG. Therapeutic perspectives of epigenetically active nutrients. Br J Pharmacol 2014; 172:2756-68. [PMID: 25046997 DOI: 10.1111/bph.12854] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/24/2014] [Accepted: 07/10/2014] [Indexed: 12/17/2022] Open
Abstract
Many nutrients are known for a wide range of activities in prevention and alleviation of various diseases. Recently, their potential role in regulating human health through effects on epigenetics has become evident, although specific mechanisms are still unclear. Thus, nutriepigenetics/nutriepigenomics has emerged as a new and promising field in current epigenetics research in the past few years. In particular, polyphenols, as part of the central dynamic interaction between the genome and the environment with specificity at physiological concentrations, are well known to affect mechanisms underlying human health. This review summarizes the effects of dietary compounds on epigenetic mechanisms in the regulation of gene expression including expression of enzymes and other molecules responsible for drug absorption, distribution, metabolism and excretion in cancer, metabolic syndrome, neurodegenerative disorders and hormonal dysfunction.
Collapse
Affiliation(s)
- M Remely
- Department of Nutritional Sciences, University Vienna, Vienna, Austria
| | - L Lovrecic
- Clinical Institute of Medical Genetics, Department of Gynecology and Obstetrics, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - A L de la Garza
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, Pamplona, Spain
| | - L Migliore
- Department of Translational Research and New Technologies in Medicine and Surgery, Division of Medical Genetics, University of Pisa, Pisa, Italy.,Research Center Nutraceuticals and Food for Health - Nutrafood, University of Pisa, Pisa, Italy
| | - B Peterlin
- Clinical Institute of Medical Genetics, Department of Gynecology and Obstetrics, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - F I Milagro
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, Pamplona, Spain
| | - A J Martinez
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, Pamplona, Spain.,Physiopathology of Obesity and Nutrition, CIBERobn, Carlos III Health Research Institute, Madrid, Spain
| | - A G Haslberger
- Department of Nutritional Sciences, University Vienna, Vienna, Austria
| |
Collapse
|
43
|
Basse C, Arock M. The increasing roles of epigenetics in breast cancer: Implications for pathogenicity, biomarkers, prevention and treatment. Int J Cancer 2014; 137:2785-94. [PMID: 25410431 DOI: 10.1002/ijc.29347] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/14/2014] [Indexed: 12/14/2022]
Abstract
Nowadays, the mechanisms governing the occurrence of cancer are thought to be the consequence not only of genetic defects but also of epigenetic modifications. Therefore, epigenetic has become a very attractive and increasingly investigated field of research in order to find new ways of prevention and treatment of neoplasia, and this is particularly the case for breast cancer (BC). Thus, this review will first develop the main known epigenetic modifications that can occur in cancer and then expose the future role that control of epigenetic modifications might play in prevention, prognostication, follow-up and treatment of BC. Indeed, epigenetic biomarkers found in peripheral blood might become new tools to detect BC, to define its prognostic and to predict its outcome, whereas epi-drugs might have an increasing potential of development in the next future. However, if DNA methyltransferase inhibitors and histone desacetylase inhibitors have shown encouraging results in BC, their action remains nonspecific. Thus, additional clinical studies are needed to evaluate more precisely the effects of these molecules, even if they have provided encouraging results in cotreatment and combined therapies. This review will also deal with the potential of RNA interference (RNAi) as epi-drugs. Finally, we will focus on the potential prevention of BC through epigenetic based on diet and we will particularly develop the possible place of isothiocyanates from cruciferous vegetables or of Genistein from soybean in a dietary program that might potentially reduce the risk of BC in large populations.
Collapse
Affiliation(s)
- Clémence Basse
- Medical Oncology Unit, Anticancer Center Henri Becquerel, Rouen, France
| | - Michel Arock
- Molecular Oncology and Pharmacology, LBPA CNRS UMR8113, Ecole Normale Supérieure de Cachan, Cachan, France
| |
Collapse
|
44
|
Grosser G, Döring B, Ugele B, Geyer J, Kulling SE, Soukup ST. Transport of the soy isoflavone daidzein and its conjugative metabolites by the carriers SOAT, NTCP, OAT4, and OATP2B1. Arch Toxicol 2014; 89:2253-63. [DOI: 10.1007/s00204-014-1379-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/19/2014] [Indexed: 12/25/2022]
|
45
|
Bilal I, Chowdhury A, Davidson J, Whitehead S. Phytoestrogens and prevention of breast cancer: The contentious debate. World J Clin Oncol 2014; 5:705-712. [PMID: 25302172 PMCID: PMC4129534 DOI: 10.5306/wjco.v5.i4.705] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/26/2014] [Accepted: 05/19/2014] [Indexed: 02/06/2023] Open
Abstract
Phytoestrogens have multiple actions within target cells, including the epigenome, which could be beneficial to the development and progression of breast cancer. In this brief review the action of phytoestrogens on oestrogen receptors, cell signalling pathways, regulation of the cell cycle, apoptosis, steroid synthesis and epigenetic events in relation to breast cancer are discussed. Phytoestrogens can bind weakly to oestrogen receptors (ERs) and some have a preferential affinity for ERβ which can inhibit the transcriptional growth-promoting activity of ERα. However only saturating doses of phytoestrogens, stimulating both ERα and β, exert growth inhibitory effects. Such effects on growth may be through phytoestrogens inhibiting cell signalling pathways. Phytoestrogens have also been shown to inhibit cyclin D1 expression but increase the expression of cyclin-dependent kinase inhibitors (p21 and p27) and the tumour suppressor gene p53. Again these effects are only observed at high (> 10) µmol/L doses of phytoestrogens. Finally the effects of phytoestrogens on breast cancer may be mediated by their ability to inhibit local oestrogen synthesis and induce epigenetic changes. There are, though, difficulties in reconciling epidemiological and experimental data due to the fact experimental doses, both in vivo and in vitro, far exceed the circulating concentrations of “free” unbound phytoestrogens measured in women on a high phytoestrogen diet or those taking phytoestrogen supplements.
Collapse
|
46
|
Targets for the Action of Phytoestrogens in Breast Cancer—Focus on Isoflavones and Resveratrol. CURRENT BREAST CANCER REPORTS 2014. [DOI: 10.1007/s12609-014-0141-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
47
|
Lose dose genistein inhibits glucocorticoid receptor and ischemic brain injury in female rats. Neurochem Int 2014; 65:14-22. [DOI: 10.1016/j.neuint.2013.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 11/23/2013] [Accepted: 12/04/2013] [Indexed: 11/19/2022]
|
48
|
Conroy SM, Maskarinec G, Park SY, Wilkens LR, Henderson BE, Kolonel LN. The effects of soy consumption before diagnosis on breast cancer survival: the Multiethnic Cohort Study. Nutr Cancer 2013; 65:527-37. [PMID: 23659444 DOI: 10.1080/01635581.2013.776694] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This study tested the hypothesis that prediagnostic soy intake was inversely associated with all-cause and breast cancer-specific mortality. The analyses included 3842 women in the Multiethnic Cohort (MEC) study of African Americans, Native Hawaiians, Japanese Americans, Latinos, and Caucasians, who completed a quantitative food frequency questionnaire, aged ≥50 yr at cohort entry, and diagnosed with primary invasive breast cancer following cohort entry (1993-2007). Hazard ratios (HR) and 95% confidence intervals (CI) were estimated from Cox proportional hazards regression with adjustment for known clinical and lifestyle factors. During a mean follow-up after diagnosis of invasive breast cancer of 6.2 ± 3.8 yr, there were 804 deaths including 376 breast cancer-specific deaths. The HR (95%CI) for all-cause and breast cancer-specific morality comparing the highest versus lowest tertiles were 1.03 (0.81-1.33) and 1.03 (0.71-1.50) for soy products and 0.99 (0.82-1.20) and 0.95 (0.71-1.28) for total isoflavones, respectively (Ptrend > 0.60 for all). There was limited evidence of differences by hormone receptor status, tumor stage, or ethnic group. Prediagnostic soy intake was unrelated to mortality in postmenopausal women. Our findings are consistent with the literature that soy consumption does not adversely affect breast cancer survival in women.
Collapse
Affiliation(s)
- Shannon M Conroy
- Department of Population Health Research, Alberta Health Services-Cancer Care, Calgary, Alberta, Canada.
| | | | | | | | | | | |
Collapse
|
49
|
Yanagihara K, Takigahira M, Mihara K, Kubo T, Morimoto C, Morita Y, Terawaki K, Uezono Y, Seyama T. Inhibitory effects of isoflavones on tumor growth and cachexia in newly established cachectic mouse models carrying human stomach cancers. Nutr Cancer 2013; 65:578-89. [PMID: 23659450 DOI: 10.1080/01635581.2013.776089] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cachexia, a negative prognostic factor, worsens a patient's quality of life. We established 2 novel cachexia models with the human stomach cancer cell line MKN-45, which was subcloned to produce potent cachexia-inducing cells by repeating the xenografts in immune-deficient mice. After subsequent xenografts, we isolated potent cachexia-inducing cells (MKN45cl85 and 85As2mLuc). Xenografts of MKN45cl85 cells in mice led to substantial weight loss and reduced adipose tissue and musculature volumes, whereas xenografts of 85As2mLuc cells resulted in highly metastatic and cachectic mice. Surgical removal of tumor tissues helped the mice regain body-weight in both mouse models. In vitro studies using these cells showed that isoflavones reduced their proliferation, implying that the isoflavones possess antiproliferative effects of these cancer cell lines. Isoflavone treatment on the models induced tumor cytostasis, attenuation of cachexia, and prolonged survival whereas discontinuation of the treatment resulted in progressive tumor growth and weight loss. The inhibitory effects of tumor growth and weight loss by isoflavones were graded as soy isoflavone aglycone AglyMax > daidzein > genistein. These results demonstrated that the 2 novel cachectic mouse models appear useful for analyzing the mechanism of cancer cachexia and monitoring the efficacy of anticachectic agents.
Collapse
|
50
|
Li R, Zhao F, Diao H, Xiao S, Ye X. Postweaning dietary genistein exposure advances puberty without significantly affecting early pregnancy in C57BL/6J female mice. Reprod Toxicol 2013; 44:85-92. [PMID: 24365114 DOI: 10.1016/j.reprotox.2013.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 12/12/2013] [Accepted: 12/12/2013] [Indexed: 01/06/2023]
Abstract
An epidemiological study indicates higher plasma level of genistein in girls with earlier puberty. This study tests the hypothesis in C57BL/6J mice that postweaning (peripubertal) dietary genistein exposure could result in earlier puberty in females assessed by vaginal opening, estrous cyclicity, corpus luteum and mammary gland development. Newly weaned female mice were fed with 0, 5, 100, or 500 ppm genistein diets. Decreased age at vaginal opening, increased length on estrus stage, and accelerated mammary gland development were detected in 100 and 500 ppm genistein-treated groups. Increased presence of corpus luteum was found in 5 ppm genistein-treated group at 6 weeks old only. Increased expression of epithelial-specific genes but not that of ERα or ERβ was detected in 500 ppm genistein-treated mammary glands at 5 weeks old. No significant adverse effect on embryo implantation was observed. These data demonstrate causal effect of dietary genistein on earlier puberty in female mice.
Collapse
Affiliation(s)
- Rong Li
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA.
| | - Fei Zhao
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA.
| | - Honglu Diao
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
| | - Shuo Xiao
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA.
| | - Xiaoqin Ye
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|