1
|
Feng Y, Peng L, Liu X, Zheng Q, Qian M, Deng M, Peng J, Li Y, Lin L, Peng Q. Rutin-Associated Hepatoprotection: A Review of Mechanisms and Therapeutic Prospects. Basic Clin Pharmacol Toxicol 2025; 136:e70042. [PMID: 40357890 DOI: 10.1111/bcpt.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/01/2025] [Accepted: 04/12/2025] [Indexed: 05/15/2025]
Abstract
BACKGROUND Liver disorders pose a considerable global health challenge, accompanied by rising mortality rates. Current therapeutic strategies, though effective, often face limitations due to adverse effects and therapeutic resistance, prompting the exploration of alternative treatments, particularly safer natural compounds. Rutin, a widely available bioflavonoid, has emerged as a promising candidate owing to its varied pharmacological properties. METHODS We conducted a comprehensive search on PubMed and Web of Science using the following keywords: 'rutin', 'liver diseases', 'hepatoprotection', 'clinical observations', 'mechanisms, pharmacology' and various combinations of these terms. RESULTS This review systematically examines rutin's therapeutic potential in hepatic disorders, focusing on its molecular mechanisms, particularly its effects on inflammatory pathways, oxidative stress and hepatocellular protection. CONCLUSION We analyse existing evidence supporting rutin's hepatoprotective efficacy, identify its cellular and molecular targets and evaluate its potential applications in various liver diseases. Our systematic analysis provides theoretical support for developing rutin-based therapies in hepatic disease management and identifies future research directions and clinical applications.
Collapse
Affiliation(s)
- Yanting Feng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, the School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Lanchun Peng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, the School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaohui Liu
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, the School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Qingzhu Zheng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, the School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Min Qian
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, the School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Meiling Deng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, the School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Jiangli Peng
- Hunan Engineering Technology Research Center Bioactivity Substance Discovery, Hunan University of Chinese Medicine, Changsha, China
| | - Yamei Li
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, the School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Limei Lin
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, the School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Qiuxian Peng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, the School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
2
|
Alla C, Ali A, Mehiou A, Salhi Y, Bouanani N, Legssyer A, Ziyyat A. Phytochemical Composition of Ziziphus lotus (L.) Lam and Its Impact on the Metabolic Syndrome: A Review. Adv Pharmacol Pharm Sci 2025; 2025:8276090. [PMID: 40035065 PMCID: PMC11873318 DOI: 10.1155/adpp/8276090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 01/29/2025] [Indexed: 03/05/2025] Open
Abstract
The long-term pathological state known as metabolic syndrome is characterized by hypertension, insulin resistance diabetes, abdominal obesity, and hyperlipidemia. Seeking healthcare strategies with fewer side effects, such as herbal remedies, is preferable in terms of mitigating the negative consequences of synthetic medications. Ziziphus lotus (L.) (Rhamnaceae) or wild jujube, commonly known as "Sedra," is one of the best choices as it contains a variety of phytochemicals and biologically active compounds. Several flavonoids and stilbenes have been recognized as the primary bioactive components in wild jujube, including rutin, hyperin, isoquercitrin, and resveratrol. These polyphenols are pharmacologically active and have broad-spectrum beneficial effects for reducing the risk factors associated with metabolic syndrome. They exhibit antioxidant and anti-inflammatory properties, regulate lipid metabolism, and possess antiobesity, antihypertensive, and antidiabetic characteristics. However, there are certain limitations to their therapeutic application, such as low bioavailability. Various strategies have been proposed to enhance their pharmacokinetic profile and therapeutic potential for future use. The main goal of this review is to explore the underlying mechanisms related to the therapeutic effects of wild jujube and its active compounds in the treatment and prevention of metabolic syndrome.
Collapse
Affiliation(s)
- Chaimae Alla
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, University Mohammed First, Oujda, Morocco
| | - Amanat Ali
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, University Mohammed First, Oujda, Morocco
| | - Afaf Mehiou
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, University Mohammed First, Oujda, Morocco
| | - Youssra Salhi
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, University Mohammed First, Oujda, Morocco
| | - Nourelhouda Bouanani
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, University Mohammed First, Oujda, Morocco
| | - Abdelkhaleq Legssyer
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, University Mohammed First, Oujda, Morocco
| | - Abderrahim Ziyyat
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, University Mohammed First, Oujda, Morocco
| |
Collapse
|
3
|
Al Shammari L. Phytochemical diversity, therapeutic potential, and ecological roles of the Cecropia genus. Heliyon 2024; 10:e40375. [PMID: 39759284 PMCID: PMC11699044 DOI: 10.1016/j.heliyon.2024.e40375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/30/2024] [Accepted: 11/12/2024] [Indexed: 01/07/2025] Open
Abstract
The genus Cecropia, a pivotal component of Neotropical flora, is renowned for its integration of traditional medicinal uses with significant ecological functions. This review aims to highlight the phytochemical diversity and pharmacological activities of the Cecropia genus, with a particular focus on well-documented species such as C. angustifolia, C. glaziovii, and C. pachystachya. Through a comprehensive review of the literature and current studies, this review identifies critical phytochemicals, including flavonoids, phenolic acids, and terpenoids, and correlates these compounds with biological activities such as anti-inflammatory, antimicrobial, and antioxidant effects. Notably, the review delves into the pharmacological potential of less than ten out of the sixty-six accepted Cecropia species, revealing a significant research opportunity within the genus. The findings advocate for intensified drug discovery initiatives involving advanced phytochemical analyses, bioactivity assessments, and the integration of conservation strategies. These efforts are crucial for the sustainable utilization of new therapeutic agents for Cecropia species. Additionally, this review discusses the ecological roles of Cecropia, particularly its contributions to forest regeneration and its symbiotic relationships with ants and proposes future research directions aimed at bridging current knowledge gaps and enhancing conservation measures for this valuable genus.
Collapse
Affiliation(s)
- Latifah Al Shammari
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hafr Al Batin, P.O. Box 1803, Hafr Al Batin, 31991, Saudi Arabia
| |
Collapse
|
4
|
Mahmoud MM, El-Batran SA, Hegazy R, El-Sayed WM. Taurine and enzymatically modified isoquercitrin protected against methotrexate-induced deteriorations in the conductivity and rhythmicity of the heart in rats: Antioxidant, anti-inflammatory, and histological architecture approach. J Appl Toxicol 2024; 44:1924-1935. [PMID: 39135265 DOI: 10.1002/jat.4682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/09/2024] [Accepted: 07/25/2024] [Indexed: 10/06/2024]
Abstract
Cardiotoxicity is one of the most devastating complications of cancer treatment by methotrexate (MTX). The present study aimed to investigate the potential anti-cardiotoxic efficacy of taurine (Tau) and enzymatically modified isoquercitrin (EMIQ) alone or combined against MTX-induced cardiotoxicity in adult male rats. A total of 36 rats were randomly divided into six groups (six animals each): control, MTX (a single i.p. dose of 20 mg/kg), EMIQ + MTX (26 mg/kg of EMIQ, p.o. for 16 days), Tau + MTX (500 mg/kg of Tau, p.o. for 16 days), EMIQ + Tau + MTX at the same previous doses, and (EMIQ + Tau)½ + MTX. MTX reduced the percentage of body weight change, the expression of dihydrofolate reductase (DHFR) and folypolyglutamyl synthetase (FPGS), the cleaved tumor necrosis factor alpha (TNF-α) level in the cardiac tissue, and the elevated serum TNF-α level. MTX extensively deteriorated the electrocardiography (ECG), inducing tachycardia with shortening of the time intervals between successive heartbeats (R-R interval), associated with elongation of ventricular depolarization (QRS interval), and the corrected total time for ventricular de- and repolarization (QTc) duration. Treatment with MTX resulted in a significant reduction in atrial depolarization (P amplitude) and rapid repolarization (T amplitude) and a significant elevation in plateau phase (ST height). MTX treatment resulted in swelling of cardiomyocytes with extensive vacuolization of sarcoplasm with numerous variably sized vacuoles in addition to apoptotic cells. Tau and EMIQ protected against MTX-induced deteriorations in the conductivity and rhythmicity of the heart through antioxidative, anti-inflammatory, and antiapoptotic activities. Treatment with tau and EMIQ combined at high or low doses offered superior protection to the heart than using each agent alone.
Collapse
Affiliation(s)
- Marwa M Mahmoud
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Seham A El-Batran
- Department of Pharmacology, Medical Division, National Research Centre, Giza, Egypt
| | - Rehab Hegazy
- Department of Pharmacology, Medical Division, National Research Centre, Giza, Egypt
| | - Wael M El-Sayed
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
5
|
Liu X, Liu H, Wang K, Qin C, He Y, Luo L, Lin S, Chen Y. Transcriptome Profiling Unveils the Mechanisms of Inflammation, Apoptosis, and Fibrosis in the Liver of Juvenile Largemouth Bass Micropterus salmoides Fed High-Starch Diets. Animals (Basel) 2024; 14:3394. [PMID: 39682360 DOI: 10.3390/ani14233394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
The aim of this study was to explain the mechanism underlying the liver injury of juvenile largemouth bass Micropterus salmoides in response to high-starch diet intake. Three diets were formulated with different starch levels, being abbreviated as treatment LS (low starch, 8.13% starch), MS (medium starch, 14.1% starch), and HS (high starch, 20.1% starch), respectively. Fish were fed with their respective diets to apparent satiation for 56 days. The results showed that growth retardation of the HS fish was associated with the reduction in feed intake rather than feed utilization. Histological evaluation of the livers showed that vacuolization was the most prevalent characteristic in the MS fish, while ballooning degeneration, apoptosis, fibrosis, and inflammation were observed in the HS fish. Transcriptome profiling suggested that liver inflammation was mediated by Tlr signal transduction, which activated the Pi3k/Akt/Nfκb signaling axis to promote the release of proinflammatory factors including Il-8 and Ip-10. Hepatocyte apoptosis was mediated by the extrinsic pathway through death receptors including Fas and Tnfr, which coordinately activated the Fadd/caspase-8 death signaling axis. An autonomous inhibition program was identified to counteract the apoptosis signal, and the PI3K/Akt signaling pathway might play an important role in this process through regulating the expression of iap and diablo. Liver fibrosis was mediated through the Tgf-β and Hh signaling pathways. Upon secretion, Tgf-β1/3 bound to TgfβrI/II complex on the liver cell membrane, which induced the phosphorylation of downstream Smad2/3. When Hh interacted with the membrane receptor Ptc, Smo was activated to initiate signaling, driving the activation of Gli. The activation of both Smad2/3 and Gli promoted their nuclear translocation thereby regulating the transcription of target genes, which resulted in the activation and proliferation of HSCs. The activated HSCs constantly expressed colla1 and ctgf, which facilitated substantial accumulation of ECM. It should be noted that the molecular mechanism of liver injury in this study was speculated from the transcriptome data thus further experimental verification is warranted for this speculation.
Collapse
Affiliation(s)
- Xifeng Liu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Fisheries, Southwest University, Chongqing 400715, China
| | - Hongkang Liu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Fisheries, Southwest University, Chongqing 400715, China
| | - Kangwei Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Fisheries, Southwest University, Chongqing 400715, China
| | - Chuanjie Qin
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641100, China
| | - Yuanfa He
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Fisheries, Southwest University, Chongqing 400715, China
| | - Li Luo
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Fisheries, Southwest University, Chongqing 400715, China
| | - Shimei Lin
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Fisheries, Southwest University, Chongqing 400715, China
| | - Yongjun Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Fisheries, Southwest University, Chongqing 400715, China
| |
Collapse
|
6
|
Wang Q, Zhang Y, Lu R, Zhao Q, Gao Y. The multiple mechanisms and therapeutic significance of rutin in metabolic dysfunction-associated fatty liver disease (MAFLD). Fitoterapia 2024; 178:106178. [PMID: 39153555 DOI: 10.1016/j.fitote.2024.106178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/20/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
The global incidence of metabolic dysfunction-associated fatty liver disease (MAFLD) has been steadily increasing, making it a leading chronic liver disease. MAFLD refers to a metabolic syndrome linked with type 2 diabetes mellitus, obesity. However, its pathophysiology is complex, there are currently no effective and approved medicines for therapy. Rutin, a naturally occurring polyphenolic flavonoid, is widely distributed in fruits, vegetables, and other plants. It exhibits a plethora of bioactive properties, such as antioxidant, anticancer, and anti-inflammatory and neuroprotective activities, making it an extremely promising phytochemical. Rutin has shown great potential in the treatment of a wide variety of metabolic diseases and received considerable attention in recent years. Fortuitously, various research studies have validated rutin's extensive biological functions in treating metabolic disorders. Despite the fact that the exact pathophysiological mechanisms through which rutin has a hepatoprotective effect on MAFLD are still not fully elucidated. This review comprehensively outlines rutin's multifaceted preventive and therapeutic effects in MAFLD, including the modulation of lipid metabolism, reduction of insulin resistance, diminution of inflammation and oxidative stress, combatting of obesity, and influence on intestinal flora. This paper details the known molecular targets and pathways of rutin in MAFLD pathogenesis. It endeavored to provide new ideas for treating MAFLD and accelerating its translation from bench to bedside.
Collapse
Affiliation(s)
- Qianzhuo Wang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yingjuan Zhang
- Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Zhejiang 310006, China
| | - Ruiling Lu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Qingwen Zhao
- Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Zhejiang 310006, China.
| | - Yue Gao
- Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Zhejiang 310006, China.
| |
Collapse
|
7
|
Ma L, Zhou B, Liu H, Chen S, Zhang J, Wang T, Wang C. Dietary rutin improves the antidiarrheal capacity of weaned piglets by improving intestinal barrier function, antioxidant capacity and cecal microbiota composition. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6262-6275. [PMID: 38466088 DOI: 10.1002/jsfa.13456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Early weaning is prone to damage intestinal barrier function, resulting in diarrhea, whereas rutin, as a natural flavonoid with multiple biological functions, shows potential in piglets. Therefore, the effects of dietary rutin on growth, antidiarrheal, barrier function, antioxidant status and cecal microbiota of weaned piglets were investigated with the control group (CON) (basal diet) and Rutin (basal diet+500 mg kg-1 rutin) groups fed for 14 days. RESULTS The results showed that dietary 500 mg kg-1 rutin significantly decreased diarrhea index, serum diamine oxidase activity and total aerobic bacterial population in mesenteric lymph nodes, whereas it significantly increased the gain-to-feed ratio (G:F) and serum growth hormone content, jejunal villus height and villus height to crypt depth ratio, and also enhanced jejunal claudin-1 and zonula occludens-1 mRNA and protein expression. Meanwhile, dietary rutin significantly decreased inflammation-associated mRNA expression, malondialdehyde (MDA) content, swollen mitochondrial number and mitochondrial area in the jejunum, whereas it increased the total superoxide dismutase (T-SOD) and glutathione peroxidase activities and activated the Nrf2 signaling pathway. Moreover, dietary rutin significantly increased Firmicutes abundance and decreased Campylobacterota abundance, which were closely associated with the decreased diarrhea index and MDA content or increased Claudin-1 expression and T-SOD activity. CONCLUSION Dietary 500 mg kg-1 rutin increased G:F by improving intestinal morphology, and alleviated diarrhea by enhancing intestinal barrier, which might be associated with the enhanced antioxidant capacity via activating the Nrf2/Keap1 signaling pathway and the improved cecal microbial composition in weaned piglets. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Longfei Ma
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Binbin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Huijuan Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shun Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jiaqi Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Chao Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
8
|
Gu W, Wu G, Chen G, Meng X, Xie Z, Cai S. Polyphenols alleviate metabolic disorders: the role of ubiquitin-proteasome system. Front Nutr 2024; 11:1445080. [PMID: 39188976 PMCID: PMC11345163 DOI: 10.3389/fnut.2024.1445080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/04/2024] [Indexed: 08/28/2024] Open
Abstract
Metabolic disorders include obesity, nonalcoholic fatty liver disease, insulin resistance and type 2 diabetes. It has become a major health issue around the world. Ubiquitin-proteasome system (UPS) is essential for nearly all cellular processes, functions as a primary pathway for intracellular protein degradation. Recent researches indicated that dysfunctions in the UPS may result in the accumulation of toxic proteins, lipotoxicity, oxidative stress, inflammation, and insulin resistance, all of which contribute to the development and progression of metabolic disorders. An increasing body of evidence indicates that specific dietary polyphenols ameliorate metabolic disorders by preventing lipid synthesis and transport, excessive inflammation, hyperglycemia and insulin resistance, and oxidative stress, through regulation of the UPS. This review summarized the latest research progress of natural polyphenols improving metabolic disorders by regulating lipid accumulation, inflammation, oxidative stress, and insulin resistance through the UPS. In addition, the possible mechanisms of UPS-mediated prevention of metabolic disorders are comprehensively proposed. We aim to provide new angle to the development and utilization of polyphenols in improving metabolic disorders.
Collapse
Affiliation(s)
- Wei Gu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, Anhui, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, Anhui, China
| | - Guohuo Wu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, Anhui, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, Anhui, China
| | - Guijie Chen
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, Anhui, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, Anhui, China
| | - Xianghui Meng
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China
| | - Zhongwen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, Anhui, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, Anhui, China
| | - Shanbao Cai
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
9
|
Banerjee T, Sarkar A, Ali SZ, Bhowmik R, Karmakar S, Halder AK, Ghosh N. Bioprotective Role of Phytocompounds Against the Pathogenesis of Non-alcoholic Fatty Liver Disease to Non-alcoholic Steatohepatitis: Unravelling Underlying Molecular Mechanisms. PLANTA MEDICA 2024; 90:675-707. [PMID: 38458248 DOI: 10.1055/a-2277-4805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD), with a global prevalence of 25%, continues to escalate, creating noteworthy concerns towards the global health burden. NAFLD causes triglycerides and free fatty acids to build up in the liver. The excessive fat build-up causes inflammation and damages the healthy hepatocytes, leading to non-alcoholic steatohepatitis (NASH). Dietary habits, obesity, insulin resistance, type 2 diabetes, and dyslipidemia influence NAFLD progression. The disease burden is complicated due to the paucity of therapeutic interventions. Obeticholic acid is the only approved therapeutic agent for NAFLD. With more scientific enterprise being directed towards the understanding of the underlying mechanisms of NAFLD, novel targets like lipid synthase, farnesoid X receptor signalling, peroxisome proliferator-activated receptors associated with inflammatory signalling, and hepatocellular injury have played a crucial role in the progression of NAFLD to NASH. Phytocompounds have shown promising results in modulating hepatic lipid metabolism and de novo lipogenesis, suggesting their possible role in managing NAFLD. This review discusses the ameliorative role of different classes of phytochemicals with molecular mechanisms in different cell lines and established animal models. These compounds may lead to the development of novel therapeutic strategies for NAFLD progression to NASH. This review also deliberates on phytomolecules undergoing clinical trials for effective management of NAFLD.
Collapse
Affiliation(s)
- Tanmoy Banerjee
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Arnab Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Sk Zeeshan Ali
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Rudranil Bhowmik
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Sanmoy Karmakar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Amit Kumar Halder
- Dr. B. C. Roy College of Pharmacy and Allied Health Sciences, Dr. Meghnad Saha Sarani, Bidhannagar, Durgapur, West Bengal, India
| | - Nilanjan Ghosh
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| |
Collapse
|
10
|
Mohammadian K, Fakhar F, Keramat S, Stanek A. The Role of Antioxidants in the Treatment of Metabolic Dysfunction-Associated Fatty Liver Disease: A Systematic Review. Antioxidants (Basel) 2024; 13:797. [PMID: 39061866 PMCID: PMC11273623 DOI: 10.3390/antiox13070797] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a global public health problem that causes liver-related morbidity and mortality. It is also an independent risk factor for non-communicable diseases. In 2020, a proposal was made to refer to it as "metabolic dysfunction-associated fatty liver disease (MAFLD)", with concise diagnostic criteria. Given its widespread occurrence, its treatment is crucial. Increased levels of oxidative stress cause this disease. This review aims to evaluate various studies on antioxidant therapies for patients with MAFLD. A comprehensive search for relevant research was conducted on the PubMed, SCOPUS, and ScienceDirect databases, resulting in the identification of 87 studies that met the inclusion criteria. In total, 31.1% of human studies used natural antioxidants, 53.3% used synthetic antioxidants, and 15.5% used both natural and synthetic antioxidants. In human-based studies, natural antioxidants showed 100% efficacy in the treatment of MAFLD, while synthetic antioxidants showed effective results in only 91% of the investigations. In animal-based research, natural antioxidants were fully effective in the treatment of MAFLD, while synthetic antioxidants demonstrated effectiveness in only 87.8% of the evaluations. In conclusion, antioxidants in their natural form are more helpful for patients with MAFLD, and preserving the correct balance of pro-oxidants and antioxidants is a useful way to monitor antioxidant treatment.
Collapse
Affiliation(s)
- Kiana Mohammadian
- Division of Hematology and Blood Banking, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz 71348, Iran; (K.M.); (F.F.)
| | - Fatemeh Fakhar
- Division of Hematology and Blood Banking, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz 71348, Iran; (K.M.); (F.F.)
| | - Shayan Keramat
- VAS-European Independent Foundation in Angiology/Vascular Medicine, Via GB Grassi 74, 20157 Milan, Italy;
- Support Association of Patients of Buerger’s Disease, Buerger’s Disease NGO, Mashhad 9183785195, Iran
| | - Agata Stanek
- VAS-European Independent Foundation in Angiology/Vascular Medicine, Via GB Grassi 74, 20157 Milan, Italy;
- Department and Clinic of Internal Medicine, Angiology, and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-902 Bytom, Poland
| |
Collapse
|
11
|
Zhang L, Gong J, Xi L, Yang B, Hao Y, Zhang H, Feng Z, Li Q. Positive effects of rutin on egg quality, lipid peroxidation and metabolism in post-peak laying hens. Front Vet Sci 2024; 11:1426377. [PMID: 38872794 PMCID: PMC11169854 DOI: 10.3389/fvets.2024.1426377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 05/23/2024] [Indexed: 06/15/2024] Open
Abstract
Excessive fat deposition due to impaired fat metabolism in chickens is a major problem in the poultry industry. Nutritional interventions are effective solutions, but current options are limited. A safe phytochemical, rutin, has shown positive effects in animals, but its effect on lipid metabolism in poultry remains unknown. Hence, this study is to investigate the effects of rutin on egg quality, serum biochemistry, fat deposition, lipid peroxidation and hepatic lipid metabolism in post-peak laying hens. A total of 360 Taihang laying hens (49-week-old) were randomly divided into five groups and fed a basal diet (control group, 0%) and a basal diet supplemented with 300 (0.03%), 600 (0.06%), 900 (0.09%), and 1,200 (0.12%) mg rutin/kg feed, respectively. The results showed that eggshell strength was significantly (p < 0.05) higher in the dietary rutin groups, whereas yolk percentage (p < 0.05), total cholesterol (TC) (p < 0.01) and yolk fat ratio (p < 0.01) decreased linearly (p < 0.05) in the dietary rutin groups. Importantly, dietary rutin reduced serum triglyceride (TG) and TC levels, decreased abdominal lipid deposition and liver index (p < 0.05), and which concomitantly decreased hepatic lipid (TG, TC, and free fatty acid) accumulation (p < 0.05). An increase (p < 0.05) in total antioxidant capacity and superoxide dismutase activity and a decrease (p < 0.05) in malondialdehyde levels were also found. At the same time, the activities of hepatic lipase, acetyl-CoA carboxylase and malic enzyme in the liver were decreased (p < 0.05). Dietary rutin also increased (p < 0.05) the expression of fatty acid oxidation-related genes (carnitine palmitoyl transferase 1, peroxisome proliferator-activated receptor α, farnesoid X receptor). Additionally, it decreased fatty acid synthesis genes (sterol regulatory element binding protein-1c, acetyl-CoA carboxylase α, stearoyl-CoA desaturase 1) (p < 0.05). In conclusion, the addition of rutin (0.06-0.12%) to the diet improved the fat metabolism and increased liver antioxidant capacity in post-peak laying hens, and these positive changes improved egg quality to some extent.
Collapse
Affiliation(s)
- Leizheng Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Jiangang Gong
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Lin Xi
- Department of Animal Science, North Carolina State University, Raleigh, NC, United States
| | - Bowen Yang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Yanshuang Hao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Haihua Zhang
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Zhihua Feng
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Qian Li
- Hebei Institute of Animal Husbandry and Veterinary Medicine, Baoding, China
| |
Collapse
|
12
|
Wang N, Que H, Luo Q, Zheng W, Li H, Wang Q, Gu J. Mechanisms of ferroptosis in nonalcoholic fatty liver disease and therapeutic effects of traditional Chinese medicine: a review. Front Med (Lausanne) 2024; 11:1356225. [PMID: 38590315 PMCID: PMC10999571 DOI: 10.3389/fmed.2024.1356225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/22/2024] [Indexed: 04/10/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by excessive accumulation of fat in hepatocytes (nonalcoholic fatty liver (NAFL)), and lobular inflammation and hepatocyte damage (which characterize nonalcoholic steatohepatitis (NASH) are found in most patients). A subset of patients will gradually develop liver fibrosis, cirrhosis, and eventually hepatocellular carcinoma, which is a deadly disease that threatens human life worldwide. Ferroptosis, a novel nonapoptotic form of programmed cell death (PCD) characterized by iron-dependent accumulation of reactive oxygen radicals and lipid peroxides, is closely related to NAFLD. Traditional Chinese medicine (TCM) has unique advantages in the prevention and treatment of NAFLD due to its multicomponent, multipathway and multitarget characteristics. In this review, we discuss the effect of TCM on NAFLD by regulating ferroptosis, in order to provide reference for the further development and application of therapeutic drugs to treat NAFLD.
Collapse
Affiliation(s)
- Nan Wang
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Hanyun Que
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Qiulin Luo
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Wenxin Zheng
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Hong Li
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Qin Wang
- College of Pharmacy, Southwest Minzu University, Chengdu, China
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Jian Gu
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| |
Collapse
|
13
|
Zhao XY, Wang JQ, Neely GG, Shi YC, Wang QP. Natural compounds as obesity pharmacotherapies. Phytother Res 2024; 38:797-838. [PMID: 38083970 DOI: 10.1002/ptr.8083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/20/2023] [Accepted: 11/22/2023] [Indexed: 02/15/2024]
Abstract
Obesity has become a serious global public health problem, affecting over 988 million people worldwide. Nevertheless, current pharmacotherapies have proven inadequate. Natural compounds have garnered significant attention due to their potential antiobesity effects. Over the past three decades, ca. 50 natural compounds have been evaluated for the preventive and/or therapeutic effects on obesity in animals and humans. However, variations in the antiobesity efficacies among these natural compounds have been substantial, owing to differences in experimental designs, including variations in animal models, dosages, treatment durations, and administration methods. The feasibility of employing these natural compounds as pharmacotherapies for obesity remained uncertain. In this review, we systematically summarized the antiobesity efficacy and mechanisms of action of each natural compound in animal models. This comprehensive review furnishes valuable insights for the development of antiobesity medications based on natural compounds.
Collapse
Affiliation(s)
- Xin-Yuan Zhao
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Ji-Qiu Wang
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - G Gregory Neely
- The Dr. John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life & Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Yan-Chuan Shi
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Qiao-Ping Wang
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
14
|
Gong P, Long H, Guo Y, Wang Z, Yao W, Wang J, Yang W, Li N, Xie J, Chen F. Chinese herbal medicines: The modulator of nonalcoholic fatty liver disease targeting oxidative stress. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116927. [PMID: 37532073 DOI: 10.1016/j.jep.2023.116927] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 08/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plants are a natural treasure trove; their secondary metabolites participate in several pharmacological processes, making them a crucial component in the synthesis of novel pharmaceuticals and serving as a reserve resource foundation in this process. Nonalcoholic fatty liver disease (NAFLD) is associated with the risk of progression to hepatitis and liver cancer. The "Treatise on Febrile Diseases," "Compendium of Materia Medica," and "Thousand Golden Prescriptions" have listed herbal remedies to treat liver diseases. AIM OF THE REVIEW Chinese herbal medicines have been widely used for the prevention and treatment of NAFLD owing to their efficacy and low side effects. The production of reactive oxygen species (ROS) during NAFLD, and the impact and potential mechanism of ROS on the pathogenesis of NAFLD are discussed in this review. Furthermore, common foods and herbs that can be used to prevent NAFLD, as well as the structure-activity relationships and potential mechanisms, are discussed. METHODS Web of Science, PubMed, CNKI database, Google Scholar, and WanFang database were searched for natural products that have been used to treat or prevent NAFLD in the past five years. The primary search was performed using the following keywords in different combinations in full articles: NAFLD, herb, natural products, medicine, and ROS. More than 400 research papers and review articles were found and analyzed in this review. RESULTS By classifying and discussing the literature, we obtained 86 herbaceous plants, 28 of which were derived from food and 58 from Chinese herbal medicines. The mechanism of NAFLD was proposed through experimental studies on thirteen natural compounds (quercetin, hesperidin, rutin, curcumin, resveratrol, epigallocatechin-3-gallate, salvianolic acid B, paeoniflorin, ginsenoside Rg1, ursolic acid, berberine, honokiol, emodin). The occurrence and progression of NAFLD could be prevented by natural antioxidants through several pathways to prevent ROS accumulation and reduce hepatic cell injuries caused by excessive ROS. CONCLUSION This review summarizes the natural products and routinely used herbs (prescription) in the prevention and treatment of NAFLD. Firstly, the mechanisms by which natural products improve NAFLD through antioxidant pathways are elucidated. Secondly, the potential of traditional Chinese medicine theory in improving NAFLD is discussed, highlighting the safety of food-medicine homology and the broader clinical potential of multi-component formulations in improving NAFLD. Aiming to provide theoretical basis for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Pin Gong
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Hui Long
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Yuxi Guo
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Zhineng Wang
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Wenbo Yao
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Jing Wang
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Wenjuan Yang
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Nan Li
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Jianwu Xie
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Fuxin Chen
- School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China.
| |
Collapse
|
15
|
Li Z, Liang S, Sun H, Bao C, Li Y. Antilipogenesis Effect of Rutin-Loaded Liposomes Using a Microneedle Delivery System. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54294-54303. [PMID: 37972277 DOI: 10.1021/acsami.3c12795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Rutin, a flavonoid glycoside phytochemical compound, has a remarkable antiobesity effect. However, its therapeutic potential is hindered by its poor water solubility and low oral bioavailability. In this study, rutin was loaded into liposomes (LR) through the self-assembly of lecithin and cholesterol. It was discovered that liposomes improved the water solubility and cellular uptake of rutin in adipocytes. These rutin-loaded liposomes were then incorporated into a microneedle patch (MP) system formed by polyvinylpyrrolidone and poly(vinyl alcohol), and the MP-LR showed an increased release percentage in the adipose tissue microenvironment of pH 6.5 and achieved local delivery of rutin into adipocytes. Next, the therapeutic potentials of rutin, LR, and MP-LR were investigated in a high-fat diet (HFD)-induced obese mouse model. The MP-LR formulation decreased the weight of the HFD mice the most significantly. The antilipogenesis mechanisms of MP-LR are downregulating the lipid synthesis-related proteins (PPAR γ and C/EBP α) in adipocytes and promoting the expression of the beige adipogenesis-related proteins (UCP 1 and Cyt C). The MP systems further promote the local penetration of LR into the adipose tissue specifically, which again elevates their antiobesity effect. Overall, this study suggests that MP-delivered liposome-based formulation is a promising approach to enhance the antiobesity efficacy of antilipogenesis bioactive compounds.
Collapse
Affiliation(s)
- Zekun Li
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Shuang Liang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Huijuan Sun
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Cheng Bao
- School of Life Science, Ludong University, Yantai 264000, China
| | - Yuan Li
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
16
|
Wang Q, Chen J, Zhang Y, Xu D, Wu H, Lin P, He L, Qin Z, Yao Z. Metabolic profile and potential mechanisms of Wendan decoction on coronary heart disease by ultra-high-performance quadrupole time of flight-mass spectrometry combined with network pharmacology analysis. J Sep Sci 2023; 46:e2200456. [PMID: 36300722 DOI: 10.1002/jssc.202200456] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/12/2022] [Accepted: 10/16/2022] [Indexed: 01/11/2023]
Abstract
Wendan decoction, a well-known classical traditional Chinese medicine prescription, has been widely used in the clinical application of coronary heart disease for thousands of years. However, due to a lack of research on the overall metabolism of Wendan decoction, the bioavailable components responsible for the therapeutic effects remain unclear, hindering the revelation of its mechanisms against coronary heart disease. Consequently, an efficient joint research pattern combined with characterization of the metabolic profile and network pharmacology analysis was proposed. As a result, a total of 172 Wendan decoction-related xenobiotics (57 prototypes and 115 metabolites) were detected based on the exploration of the typical metabolic pathways of representative pure compounds in vivo, describing their multi-component metabolic characteristics comprehensively. Subsequently, an integrated network of "herbs-bioavailable compounds-coronary heart disease targets-pathways-therapeutic effects" was constructed, and its seven compounds were finally screened out as the key components acting on five main targets of coronary heart disease. Overall, this work not only provided a crucial biological foundation for interpreting the effective components and action mechanisms of Wendan decoction on coronary heart disease but also showed a reference value for revealing the bioactive components of traditional Chinese medicine prescriptions.
Collapse
Affiliation(s)
- Qi Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Jiayun Chen
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Yezi Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Danping Xu
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510020, P. R. China
| | - Huanlin Wu
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510020, P. R. China
| | - Pei Lin
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, P. R. China
| | - Liangliang He
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Zifei Qin
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Zhihong Yao
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
17
|
Qingda granule prevents obesity-induced hypertension and cardiac dysfunction by inhibiting adverse Akt signaling activation. Heliyon 2022; 8:e12099. [PMID: 36578425 PMCID: PMC9791312 DOI: 10.1016/j.heliyon.2022.e12099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/29/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Obesity rates have rapidly increased worldwide and obesity-related diseases such as hypertension and cardiovascular diseases have become leading factors for global morbidity and mortality. Currently, there are no effective treatments that can prevent or reverse obesity long-term, and hence the prevention of obesity-related adverse effects such as hypertension is critical. Qingda granule (QDG) is a condensed Traditional Chinese Medicine (TCM) formula that has been used clinically for treating hypertension, however, its effectiveness in obesity-induced hypertension and cardiac dysfunction remains explored. Mouse models of obesity via long-term feeding of high-fat high-fructose diet (HFFD) were established to examine the effect and mechanism of QDG in protecting against obesity-induced hypertension and cardiac dysfunction. C57BL/6 mice were fed with either normal diet or HFFD over a period of 16 weeks and administered with either saline or QDG for assessment of obesity-induced blood pressure and cardiac function. QDG administration demonstrated robust anti-hypertensive effects and significantly attenuated HFFD-induced elevations in blood pressures. Moreover, QDG treatment also demonstrated robust cardioprotective effects during obesity-induced hypertension by markedly improving cardiac function and preventing cardiac hypertrophy. QDG protected against obesity-induced hypertension and cardiac dysfunction was due to its ability to prevent adverse chronic activation of Akt signaling pathway during long-term feeding of HFFD. Long-term usage of QDG treatments exhibited no observable side effects and also completely prevented obesity-induced organ damage, demonstrating the feasibility and safety of prolonged use. Our findings thus elucidated the role of QDG in preventing obesity-induced hypertension and cardiac hypertrophy via inhibiting adverse activation of Akt signaling activation. Therefore, our study provides the theoretical basis for the utilization of QDG as both a safe and effective drug in the therapeutic treatment of metabolic diseases such as obesity-induced hypertension.
Collapse
|
18
|
Zhong L, Liu H, Zhang H, Zhang W, Li M, Huang Y, Yao J, Huang X, Geng Y, Chen D, Ouyang P, Yang S, Luo W, Yin L. High Starch in Diet Leads to Disruption of Hepatic Glycogen Metabolism and Liver Fibrosis in Largemouth Bass (Micropterus salmoides), Which is Mediated by the PI3K/Akt Signaling Pathway. Front Physiol 2022; 13:880513. [PMID: 35677086 PMCID: PMC9168315 DOI: 10.3389/fphys.2022.880513] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022] Open
Abstract
Due to its special flavour and cheapness, starch is a source of nutrition for humans and most animals, some of whom even prefer to consume large amounts of starchy foods. However, the use of starch by carnivorous fish is limited and excessive starch intake can lead to liver damage, but the mechanism of damage is not clear. Therefore, in this study, two isonitrogenous and isolipid semi-pure diets, Z diet (0% starch) and G diet (22% starch), were formulated, respectively. The largemouth bass (M. salmoides) cultured in fiberglass tanks were randomly divided into two groups and fed the two diets for 45 days. Blood and liver were collected on day 30 and 45 for enzymology, histopathology, ultramicropathology, flow cytometry, and transcriptomics to investigate the damage of high starch on the liver of largemouth bass and its damage mechanism. The results showed that the high starch not affect the growth performance of largemouth bass. However, high starch caused a whitening of the liver and an increase in hepatopancreas index (HSI), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) in the serum. Histopathological observations showed that high starch led to severe vacuolisation, congestion, and moderate to severe necrotizing hepatitis in the liver. The high starch intake led to a significant increase in postprandial blood glucose and insulin in serum of largemouth bass, promoting the synthesis and accumulation of large amounts of hepatic glycogen in the liver, leading to the loss of hepatocyte organelles and inducing liver fibrosis. Meanwhile, high starch induced the production of oxidative stress and promoted apoptosis and necrosis of hepatocytes. Transcriptome analysis revealed that there were 10,927 and 2,656 unique genes in the G and Z groups, respectively. KEGG enrichment analysis showed that 19 pathways were significantly enriched, including those related to glucose metabolism and cell survival. Network mapping based on enrichment pathways and differential expressing genes showed the emergence of a regulatory network dominated by PI3K/Akt signaling pathway. This indicated that the PI3K/Akt signalling pathway plays a very important role in this process, regulating the liver injury caused by high starch. Our results provide a reference for the mechanism of liver injury caused by high starch, and the PI3K/Akt signalling pathway could be a potential therapeutic target for liver injury caused by high starch.
Collapse
Affiliation(s)
- Liang Zhong
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hongli Liu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Haiqi Zhang
- Zhejiang Institute of Freshwater Fisheries, Hangzhou, China
| | - Weidong Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Minghao Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Ya Huang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jiayun Yao
- Zhejiang Institute of Freshwater Fisheries, Hangzhou, China
- *Correspondence: Jiayun Yao, ; Xiaoli Huang,
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Jiayun Yao, ; Xiaoli Huang,
| | - Yi Geng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chendu, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Ping Ouyang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chendu, China
| | - Shiyong Yang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Wei Luo
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Lizi Yin
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chendu, China
| |
Collapse
|
19
|
Su R, Jin X, Zhao W, Wu X, Zhai F, Li Z. Rutin ameliorates the promotion effect of fine particulate matter on vascular calcification in calcifying vascular cells and ApoE -/- mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113410. [PMID: 35279519 DOI: 10.1016/j.ecoenv.2022.113410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Atmospheric PM2.5 exposure greatly contributes to the incidence of and mortality from cardiovascular disease (CVD). Owing to the crucial role of vascular calcification in the progression of CVD, it is imperative to elucidate the effects of PM2.5 on vascular calcification to understand the toxic mechanisms of haze-induced CVD. However, the effects of PM2.5 exposure on vascular calcification and the underlying molecular mechanisms are still unclear. In this work, the in vitro and in vivo models were used to illuminate the effects of PM2.5 on vascular calcification. We found that PM2.5 promoted the deposition of hydroxyapatite in calcifying vascular cells. Moreover, hydroxyapatite deposition was significantly enhanced by 3.5 times compared with those in the control group in aortas of ApoE-/- mice after exposure winter PM2.5 (1.5 mg/kg b.w.), accompanied by activation of the OPG/RANKL pathway and inflammatory cytokines' expressions. Moreover, PM2.5-induced reactive oxygen species (ROS) generation was observed. NAC, an ROS inhibitor, observably alleviated the promotion effects of PM2.5 on vascular calcification. Furthermore, rutin effectively prevented vascular calcification by regulating the OPG/RANKL pathway. Our results suggest that PM2.5 play an important role in the occurrence and development of vascular calcification, and that rutin has an antagonistic effect on it.
Collapse
Affiliation(s)
- Ruijun Su
- Department of Biology, Taiyuan Normal University, Taiyuan 030619, China
| | - Xiaoting Jin
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Wenjing Zhao
- Department of Biology, Taiyuan Normal University, Taiyuan 030619, China
| | - Xiaoying Wu
- Department of Biology, Taiyuan Normal University, Taiyuan 030619, China
| | - Feihong Zhai
- Department of Biology, Taiyuan Normal University, Taiyuan 030619, China
| | - Zhuoyu Li
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China; Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
20
|
Bardelčíková A, Miroššay A, Šoltýs J, Mojžiš J. Therapeutic and prophylactic effect of flavonoids in post-COVID-19 therapy. Phytother Res 2022; 36:2042-2060. [PMID: 35302260 PMCID: PMC9111001 DOI: 10.1002/ptr.7436] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 12/17/2022]
Abstract
The high incidence of post-covid symptoms in humans confirms the need for effective treatment. Due to long-term complications across several disciplines, special treatment programs emerge for affected patients, emphasizing multidisciplinary care. For these reasons, we decided to look at current knowledge about possible long-term complications of COVID-19 disease and then present the effect of flavonoids, which could help alleviate or eliminate complications in humans after overcoming the COVID-19 infection. Based on articles published from 2003 to 2021, we summarize the flavonoids-based molecular mechanisms associated with the post-COVID-19 syndrome and simultaneously provide a complex view regarding their prophylactic and therapeutic potential. Review clearly sorts out the outcome of post-COVID-19 syndrome according particular body systems. The conclusion is that flavonoids play an important role in prevention of many diseases. We suggest that flavonoids as critical nutritional supplements, are suitable for the alleviation and shortening of the period associated with the post-COVID-19 syndrome. The most promising flavonoid with noteworthy therapeutic and prophylactic effect appears to be quercetin.
Collapse
Affiliation(s)
- Annamária Bardelčíková
- Department of Pharmacology, Medical Faculty of University of Pavol Jozef Šafárik in Košice, Košice, Slovak Republic
| | - Andrej Miroššay
- Department of Pharmacology, Medical Faculty of University of Pavol Jozef Šafárik in Košice, Košice, Slovak Republic
| | - Jindřich Šoltýs
- Institute of Parasitology, Slovak Academy of Science, Košice, Slovak Republic
| | - Ján Mojžiš
- Department of Pharmacology, Medical Faculty of University of Pavol Jozef Šafárik in Košice, Košice, Slovak Republic
| |
Collapse
|
21
|
Arif MU, Khan MKI, Riaz S, Nazir A, Maan AA, Amin U, Saeed F, Afzaal M. Role of fruits in aging and age-related disorders. Exp Gerontol 2022; 162:111763. [DOI: 10.1016/j.exger.2022.111763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/04/2022] [Accepted: 02/27/2022] [Indexed: 11/24/2022]
|
22
|
Syahputra RA, Harahap U, Dalimunthe A, Nasution MP, Satria D. The Role of Flavonoids as a Cardioprotective Strategy against Doxorubicin-Induced Cardiotoxicity: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041320. [PMID: 35209107 PMCID: PMC8878416 DOI: 10.3390/molecules27041320] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 01/26/2022] [Accepted: 02/02/2022] [Indexed: 12/14/2022]
Abstract
Doxorubicin is a widely used and promising anticancer drug; however, a severe dose-dependent cardiotoxicity hampers its therapeutic value. Doxorubicin may cause acute and chronic issues, depending on the duration of toxicity. In clinical practice, the accumulative toxic dose is up to 400 mg/m2 and increasing the dose will increase the probability of cardiac toxicity. Several molecular mechanisms underlying the pathogenesis of doxorubicin cardiotoxicity have been proposed, including oxidative stress, topoisomerase beta II inhibition, mitochondrial dysfunction, Ca2+ homeostasis dysregulation, intracellular iron accumulation, ensuing cell death (apoptosis and necrosis), autophagy, and myofibrillar disarray and loss. Natural products including flavonoids have been widely studied both in cell, animal, and human models which proves that flavonoids alleviate cardiac toxicity caused by doxorubicin. This review comprehensively summarizes cardioprotective activity flavonoids including quercetin, luteolin, rutin, apigenin, naringenin, and hesperidin against doxorubicin, both in in vitro and in vivo models.
Collapse
Affiliation(s)
- Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia;
- Correspondence: (R.A.S.); (U.H.)
| | - Urip Harahap
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia;
- Correspondence: (R.A.S.); (U.H.)
| | - Aminah Dalimunthe
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia;
| | - M. Pandapotan Nasution
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia; (M.P.N.); (D.S.)
| | - Denny Satria
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia; (M.P.N.); (D.S.)
| |
Collapse
|
23
|
Khan MA, Kassianos AJ, Hoy WE, Alam AK, Healy HG, Gobe GC. Promoting Plant-Based Therapies for Chronic Kidney Disease. J Evid Based Integr Med 2022; 27:2515690X221079688. [PMID: 35243916 PMCID: PMC8902019 DOI: 10.1177/2515690x221079688] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Chronic kidney disease (CKD) is debilitating, increasing in incidence worldwide, and a financial and social burden on health systems. Kidney failure, the final stage of CKD, is life-threatening if untreated with kidney replacement therapies. Current therapies using commercially-available drugs, such as angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers and calcium channel blockers, generally only delay the progression of CKD. This review article focuses on effective alternative therapies to improve the prevention and treatment of CKD, using plants or plant extracts. Three mechanistic processes that are well-documented in CKD pathogenesis are inflammation, fibrosis, and oxidative stress. Many plants and their extracts are already known to ameliorate kidney dysfunction through antioxidant action, with subsequent benefits on inflammation and fibrosis. In vitro and in vivo experiments using plant-based therapies for pre-clinical research demonstrate some robust therapeutic benefits. In the CKD clinic, combination treatments of plant extracts with conventional therapies that are seen as relatively successful currently may confer additive or synergistic renoprotective effects. Therefore, the aim of recent research is to identify, rigorously test pre-clinically and clinically, and avoid any toxic outcomes to obtain optimal therapeutic benefit from medicinal plants. This review may prove to be a filtering tool to researchers into complementary and alternative medicines to find out the current trends of using plant-based therapies for the treatment of kidney diseases, including CKD.
Collapse
Affiliation(s)
- Muhammad Ali Khan
- NHMRC CKD CRE (CKD.QLD), Univ of Queensland, Brisbane, Australia.,School of Biomedical Sciences, Faculty of Medicine, Univ of Queensland, Australia.,Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, Queensland, Australia.,Kidney Disease Research Collaborative, Princess Alexandra Hospital and Univ of Queensland, Translational Research Institute, Brisbane, Australia.,Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Bangladesh
| | - Andrew J Kassianos
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, Queensland, Australia.,Centre for Chronic Disease, Faculty of Medicine, Univ of Queensland, Brisbane, Australia.,Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Australia.,IHBI, Queensland Univ of Technology, Brisbane, Australia
| | - Wendy E Hoy
- NHMRC CKD CRE (CKD.QLD), Univ of Queensland, Brisbane, Australia.,Centre for Chronic Disease, Faculty of Medicine, Univ of Queensland, Brisbane, Australia
| | | | - Helen G Healy
- NHMRC CKD CRE (CKD.QLD), Univ of Queensland, Brisbane, Australia.,Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, Queensland, Australia.,Centre for Chronic Disease, Faculty of Medicine, Univ of Queensland, Brisbane, Australia.,Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Glenda C Gobe
- NHMRC CKD CRE (CKD.QLD), Univ of Queensland, Brisbane, Australia.,School of Biomedical Sciences, Faculty of Medicine, Univ of Queensland, Australia.,Kidney Disease Research Collaborative, Princess Alexandra Hospital and Univ of Queensland, Translational Research Institute, Brisbane, Australia
| |
Collapse
|
24
|
Ghattamaneni NKR, Brown L. Functional foods from the tropics to relieve chronic normobaric hypoxia. Respir Physiol Neurobiol 2020; 286:103599. [PMID: 33333240 DOI: 10.1016/j.resp.2020.103599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/16/2020] [Accepted: 12/09/2020] [Indexed: 12/28/2022]
Abstract
Functional foods with antioxidant and anti-inflammatory properties are regarded as a complementary therapy to improve chronic diseases such as obesity and inflammatory bowel disease (IBD). Obesity is a chronic low-grade inflammatory state leading to organ damage with increased risk of common diseases including cardiovascular and metabolic disease, non-alcoholic fatty liver disease, osteoarthritis and some cancers. IBD is a chronic intestinal inflammation categorised as Crohn's disease and ulcerative colitis depending on the location of inflammation. These inflammatory states are characterised by normobaric hypoxia in adipose and intestinal tissues, respectively. Tropical foods especially from Australia and South America are discussed in this review to show their potential in attenuation of these chronic diseases. The phytochemicals from these foods have antioxidant and anti-inflammatory activities to reduce chronic normobaric hypoxia in the tissues. These health benefits of the tropical foods are relevant not only for health economy but also in providing a global solution by improving the sustainability of their cultivation and assisting the local economies.
Collapse
Affiliation(s)
- Naga K R Ghattamaneni
- Functional Foods Research Group, University of Southern Queensland, Ipswich, 4305, Australia; School of Health and Wellbeing, University of Southern Queensland, Ipswich, 4305, Australia
| | - Lindsay Brown
- Functional Foods Research Group, University of Southern Queensland, Ipswich, 4305, Australia; School of Health and Wellbeing, University of Southern Queensland, Ipswich, 4305, Australia.
| |
Collapse
|
25
|
Hashizume Y, Tandia M. The reduction impact of monoglucosyl rutin on abdominal visceral fat: A randomized, placebo-controlled, double-blind, parallel-group. J Food Sci 2020; 85:3577-3589. [PMID: 32935866 DOI: 10.1111/1750-3841.15429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/29/2020] [Accepted: 08/10/2020] [Indexed: 11/30/2022]
Abstract
Water soluble α-glycosylated rutin (4G-α-D-glucopyranosyl rutin, monoglucosyl rutin, MR) was used in this study to evaluate its ability to reduce abdominal visceral fat (AVF). We conducted a study examining 66 healthy Japanese men and women with a body mass index of ≥23 and <30 kg/m2 for 8 weeks. The subjects were randomly assigned to groups via computer random numbers as follows: MR200 group (MR 200 mg/day), MR400 group (MR 400mg/day), or placebo group. The primary outcome was change in the AVF area after 8 weeks of intervention. The secondary outcomes were effects of MR on total fat and subcutaneous fat of umbilical area, lipid-related markers, and subjective symptoms. The per-protocol set analysis involved 18 subjects in the placebo group (7 males and 11 females), 20 subjects in the MR200 group (8 males and 12 females), and 20 subjects in the MR400 group (8 males and 12 females). AVF area in both the MR200 and MR400 groups was reduced at week 8, with changes from the baseline (week 0) significantly higher than the placebo group. Additionally, the MR400 group reported improved subjective symptoms concerning being "worried about abdominal fat" at week 4 compared with the placebo group. These results indicate that the consumption of MR (200 and 400 mg/day) for 8 weeks reduced AVF. PRACTICAL APPLICATION: Monoglucosyl rutin, an enzymatically modified form of rutin, is a highly stable and water-soluble flavonoid widely used in food and beverages to prevent oxidation. The present clinical study demonstrated that it may improve overall health by reducing abdominal visceral fat.
Collapse
Affiliation(s)
- Yushi Hashizume
- Toyo Sugar Refining Co., Ltd, Yoto Bldg., 18-20, Nihombashi-Koamicho, Chuo-ku, Tokyo, 103-0016, Japan
| | - Mahamadou Tandia
- Toyo Sugar Refining Co., Ltd, Yoto Bldg., 18-20, Nihombashi-Koamicho, Chuo-ku, Tokyo, 103-0016, Japan
| |
Collapse
|
26
|
Singh A, Yau YF, Leung KS, El-Nezami H, Lee JCY. Interaction of Polyphenols as Antioxidant and Anti-Inflammatory Compounds in Brain-Liver-Gut Axis. Antioxidants (Basel) 2020; 9:antiox9080669. [PMID: 32722619 PMCID: PMC7465954 DOI: 10.3390/antiox9080669] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 02/08/2023] Open
Abstract
Oxidative stress plays an important role in the onset as well as the progression of inflammation. Without proper intervention, acute inflammation could progress to chronic inflammation, resulting in the development of inflammatory diseases. Antioxidants, such as polyphenols, have been known to possess anti-oxidative properties which promote redox homeostasis. This has encouraged research on polyphenols as potential therapeutics for inflammation through anti-oxidative and anti-inflammatory pathways. In this review, the ability of polyphenols to modulate the activation of major pathways of inflammation and oxidative stress, and their potential to regulate the activity of immune cells are examined. In addition, in this review, special emphasis has been placed on the effects of polyphenols on inflammation in the brain–liver–gut axis. The data derived from in vitro cell studies, animal models and human intervention studies are discussed.
Collapse
|
27
|
Zou Y, Qi Z. Understanding the Role of Exercise in Nonalcoholic Fatty Liver Disease: ERS-Linked Molecular Pathways. Mediators Inflamm 2020; 2020:6412916. [PMID: 32774148 PMCID: PMC7397409 DOI: 10.1155/2020/6412916] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/11/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is globally prevalent and characterized by abnormal lipid accumulation in the liver, frequently accompanied by insulin resistance (IR), enhanced hepatic inflammation, and apoptosis. Recent studies showed that endoplasmic reticulum stress (ERS) at the subcellular level underlies these featured pathologies in the development of NAFLD. As an effective treatment, exercise significantly reduces hepatic lipid accumulation and thus alleviates NAFLD. Confusingly, these benefits of exercise are associated with increased or decreased ERS in the liver. Further, the interaction between diet, medication, exercise types, and intensity in ERS regulation is more confusing, though most studies have confirmed the benefits of exercise. In this review, we focus on understanding the role of exercise-modulated ERS in NAFLD and ERS-linked molecular pathways. Moderate ERS is an essential signaling for hepatic lipid homeostasis. Higher ERS may lead to increased inflammation and apoptosis in the liver, while lower ERS may lead to the accumulation of misfolded proteins. Therefore, exercise acts like an igniter or extinguisher to keep ERS at an appropriate level by turning it up or down, which depends on diet, medications, exercise intensity, etc. Exercise not only enhances hepatic tolerance to ERS but also prevents the malignant development of steatosis due to excessive ERS.
Collapse
Affiliation(s)
- Yong Zou
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai 200241, China
- School of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Zhengtang Qi
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai 200241, China
- School of Physical Education and Health, East China Normal University, Shanghai 200241, China
| |
Collapse
|
28
|
du Preez R, Wanyonyi S, Mouatt P, Panchal SK, Brown L. Saskatoon Berry Amelanchier alnifolia Regulates Glucose Metabolism and Improves Cardiovascular and Liver Signs of Diet-Induced Metabolic Syndrome in Rats. Nutrients 2020; 12:nu12040931. [PMID: 32230955 PMCID: PMC7231198 DOI: 10.3390/nu12040931] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/13/2022] Open
Abstract
Saskatoon berry (Amelanchier alnifolia) is a potential functional food containing anthocyanins and flavonols, as well as ellagitannins and phenolic acids. We have determined the potential therapeutic effects of Saskatoon berry in diet-induced metabolic syndrome. Nine- to ten-week-old male Wistar rats were randomly assigned to four groups. Two groups were fed on control diets, either corn starch (C) or high-carbohydrate, high-fat diet (H) respectively, for 16 weeks. Two further groups were fed on C or H diet for 16 weeks with Saskatoon berry powder added to the diet for the final 8 weeks (CSSK, HSSK). After 16 weeks, H rats showed symptoms of metabolic syndrome, including increased body weight, visceral adiposity, systolic blood pressure, cardiac fibrosis, plasma concentrations of triglycerides and non-esterified fatty acids, and plasma activities of alanine transaminase and aspartate transaminase. Saskatoon berry intervention normalised body weight and adiposity, improved glucose tolerance, decreased systolic blood pressure, improved heart and liver structure and function with decreased infiltration of inflammatory cells, and decreased plasma total cholesterol. Further, Saskatoon berry normalised liver expression of hexokinase 1 and glycogen phosphorylase and increased glucose 6-phosphatase relative to H rats. These results suggest that Saskatoon berry regulates glycolysis, gluconeogenesis and glycogenesis to improve metabolic syndrome.
Collapse
Affiliation(s)
- Ryan du Preez
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia; (R.d.P.); (S.W.); (S.K.P.)
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - Stephen Wanyonyi
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia; (R.d.P.); (S.W.); (S.K.P.)
| | - Peter Mouatt
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia;
| | - Sunil K. Panchal
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia; (R.d.P.); (S.W.); (S.K.P.)
| | - Lindsay Brown
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia; (R.d.P.); (S.W.); (S.K.P.)
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba, QLD 4350, Australia
- Correspondence: ; Tel.: +61-7-3812-6366
| |
Collapse
|
29
|
Ibrahim WS, Ibrahim IAAEH, Mahmoud MF, Mahmoud AAA. Carvedilol Diminishes Cardiac Remodeling Induced by High-Fructose/High-Fat Diet in Mice via Enhancing Cardiac β-Arrestin2 Signaling. J Cardiovasc Pharmacol Ther 2020; 25:354-363. [PMID: 32052660 DOI: 10.1177/1074248420905683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Insulin resistance (IR) is a well-known risk factor for cardiovascular complications. This study aimed to investigate the effect of a dietary model of IR in mice on cardiac remodeling, cardiac β-arrestin2 signaling, and the protective effects of carvedilol as a β-arrestin-biased agonist. METHODS AND RESULTS Insulin resistance was induced by feeding mice high-fructose/high-fat diet (HFrHFD) for 16 weeks. Carvedilol was adiministered for 4 weeks starting at week 13. At the end of the experiment, body weight, heart weight, left and right ventricular thickness, visceral fat weight, fasting blood glucose (FBG), serum insulin, IR index, and serum endothelin-1 were measured. In addition, cardiac tissue samples were histopathologically examined. Also, cardiac levels of cardiotrophin-1, β-arrestin2, phosphatidylinositol 4,5 bisphosphate (PIP2), diacylglycerol (DAG), and phosphoserine 473 Akt (pS473 Akt) were measured. Results showed significant increases in the FBG, serum insulin, IR index, serum endothelin-1, cardiac DAG, cardiac fibrosis, and degenerated cardiac myofibrils in HFrHFD-fed mice associated with a significant reduction in cardiac levels of cardiotrophin-1, β-arrestin2, PIP2, and pS473 Akt. On the other hand, carvedilol significantly reduced the heart weight, FBG, serum insulin, IR index, serum endothelin-1, cardiac DAG, left ventricular thickness, right ventricular fibrosis, and degeneration of cardiac myofibrils. In addition, carvedilol significantly increased cardiac levels of cardiotrophin-1, β-arrestin2, PIP2, and pS473 Akt. CONCLUSION Carvedilol enhances cardiac β-arrestin2 signaling and reduces cardiac remodeling in HFrHFD-fed mice.
Collapse
Affiliation(s)
- Wael S Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.,Department of Pharmacology, School of Pharmacy, Badr University, Cairo, Egypt
| | - Islam A A E-H Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mona F Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Amr A A Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.,Department of Pharmacology, Pharmacy Program, Oman College of Health Sciences, Muscat, Oman
| |
Collapse
|
30
|
Shellenberger NW, Collinsworth KK, Subbiah S, Klein D, Neary JM. Hypoxia induces an increase in intestinal permeability and pulmonary arterial pressures in neonatal Holstein calves despite feeding the flavonoid rutin. J Dairy Sci 2020; 103:2821-2828. [PMID: 31954560 DOI: 10.3168/jds.2019-17289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/13/2019] [Indexed: 12/23/2022]
Abstract
The purposes of this study were to determine whether the naturally occurring flavonoid quercetin, as its glucorhamnoside rutin, reduces intestinal permeability and susceptibility to hypoxia-induced pulmonary hypertension in neonatal Holstein calves. A 2 × 2 between-subjects factorial design was conducted using Holstein steers (n = 16). Factors included oxygen level (simulated altitude of 4,572 m vs. 975 m) and quercetin supplementation as its glucorhamnoside rutin (4 g of quercetin per day vs. 0 g per day). Two days after arrival (d 0 of study) the calves were blocked by body mass into treatment groups, and treatments were initiated. Pulmonary arterial pressure, echocardiography, and serum concentrations of orally administered lactulose (0.45 g/kg) and mannitol (0.15 g/kg) were measured on d 12, 13, and 14, respectively. Calves were euthanized on d 15 and pulmonary tissues collected for semiquantitative scoring of histological lesions. Data were analyzed using linear regression, generalized estimating equations, and 2-sample proportion tests. Hypoxia, but not rutin, was found to be associated with intestinal permeability. The lactulose-mannitol ratio was 0.54 ± 0.13 (standard error) in hypoxic calves and 0.02 ± 0.13 in normoxic controls. Hypoxia increased mean pulmonary arterial pressure. Calves fed rutin under hypoxic conditions tended to have a lower mean pulmonary arterial pressure (59 ± 7 mmHg) than control calves (80 ± 7 mmHg) but similar pressures under normoxic conditions. Paradoxically, however, a greater proportion of calves fed rutin had histological evidence of pulmonary arteriolar medial hypertrophy and adventitial hyperplasia than did controls. In conclusion, the findings of this study indicate that hypoxia increased intestinal permeability in neonatal calves. The flavonoid quercetin, as its glucorhamnoside rutin, had no protective effect on intestinal permeability, and, although it tended to reduce the severity of hypoxia-induced pulmonary hypertension, a greater proportion of calves fed rutin had histological lesions consistent with pulmonary arteriolar remodeling.
Collapse
Affiliation(s)
- Nicholas W Shellenberger
- Department of Animal and Food Sciences, College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock 79409
| | - Keleigh K Collinsworth
- Department of Animal and Food Sciences, College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock 79409
| | - Seenivasan Subbiah
- Department of Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock 79409
| | - David Klein
- Department of Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock 79409
| | - Joseph M Neary
- Department of Livestock Health and Welfare, Institute of Veterinary Science, University of Liverpool, Neston, CH64 7TE, UK.
| |
Collapse
|
31
|
Liu J, He Z, Ma N, Chen ZY. Beneficial Effects of Dietary Polyphenols on High-Fat Diet-Induced Obesity Linking with Modulation of Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:33-47. [PMID: 31829012 DOI: 10.1021/acs.jafc.9b06817] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Obesity is caused by an imbalance of energy intake and expenditure. It is characterized by a higher accumulation of body fat with a chronic low-grade inflammation. Many reports have shown that gut microbiota in the host plays a pivotal role in mediating the interaction between consumption of a high-fat diet (HFD) and onset of obesity. Accumulative evidence has suggested that the changes in the composition of gut microbiota may affect the host's energy homeostasis, systemic inflammation, lipid metabolism, and insulin sensitivity. As one of the major components in human diet, polyphenols have demonstrated to be capable of modulating the composition of gut microbiota and reducing the HFD-induced obesity. The present review summarizes the findings of recent studies on dietary polyphenols regarding their metabolism and interaction with bacteria in the intestine as well as the underlying mechanisms by which they modulate the gut microbiota and alleviate the HFD-induced obesity.
Collapse
Affiliation(s)
- Jianhui Liu
- College of Food Science and Engineering , Nanjing University of Finance & Economics , Nanjing , China
- School of Life Sciences , The Chinese University of Hong Kong , Shatin NT , Hong Kong , China
| | - Zouyan He
- School of Life Sciences , The Chinese University of Hong Kong , Shatin NT , Hong Kong , China
| | - Ning Ma
- College of Food Science and Engineering , Nanjing University of Finance & Economics , Nanjing , China
- School of Life Sciences , The Chinese University of Hong Kong , Shatin NT , Hong Kong , China
| | - Zhen-Yu Chen
- School of Life Sciences , The Chinese University of Hong Kong , Shatin NT , Hong Kong , China
| |
Collapse
|
32
|
Peng L, Zhang Q, Zhang Y, Yao Z, Song P, Wei L, Zhao G, Yan Z. Effect of tartary buckwheat, rutin, and quercetin on lipid metabolism in rats during high dietary fat intake. Food Sci Nutr 2020; 8:199-213. [PMID: 31993146 PMCID: PMC6977491 DOI: 10.1002/fsn3.1291] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/28/2019] [Accepted: 10/05/2019] [Indexed: 12/25/2022] Open
Abstract
Tartary buckwheat is rich in flavonoids. However, the health-promoting effect of these flavonoids has not been adequately studied. In the present study, we investigated the impact of rutin, quercetin, and Tartary buckwheat on the lipid metabolism of rats on a high-fat diet. Quercetin could significantly reduce body weight, serum triacylglycerol, low-density lipoprotein cholesterol, TNF-α, insulin, and ameliorate glucose tolerance. It was surprising that Tartary buckwheat significantly increased the weight of the rats. Rutin, quercetin, and Tartary buckwheat tended to decreased fat deposition in the liver of rats but have little effect on short-chain fatty acid production. The changes in the structure and diversity of the microbiota were found to be modulated by these diets. It was concluded that quercetin could attenuate high-fat diet-induced obesity, rutin, quercetin, and Tartary buckwheat can shape the specific structure of gut microbiota. Mechanism of Tartary buckwheat on lipid metabolism needs further systematic research.
Collapse
Affiliation(s)
- Lianxin Peng
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural AffairsChengdu UniversityChengduChina
- Pharmacy CollegeChengdu University of Traditional Chinese MedicineChengduChina
| | - Qu Zhang
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural AffairsChengdu UniversityChengduChina
| | - Yanhong Zhang
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural AffairsChengdu UniversityChengduChina
| | - Zhendong Yao
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural AffairsChengdu UniversityChengduChina
| | - Panpan Song
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural AffairsChengdu UniversityChengduChina
| | - Lijuan Wei
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural AffairsChengdu UniversityChengduChina
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural AffairsChengdu UniversityChengduChina
| | - Zhuyun Yan
- Pharmacy CollegeChengdu University of Traditional Chinese MedicineChengduChina
| |
Collapse
|
33
|
Sun Z, Lu X, Zhang W, Hou C, Xu J, Ren Q. Cloning and identification of rutin‐degrading enzyme genes from
Aspergillus niger
in wheat Qu. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhan‐Bin Sun
- Beijing Advanced innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing 100048 China
| | - Xin Lu
- Beijing Advanced innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing 100048 China
- State Key Laboratory for Infectious Disease Prevention and Control National Institute for Communicable Disease Control and Prevention Chinese Center for Disease Control and Prevention Beijing 102206 China
| | - Wei Zhang
- College of Food Science and Technology Hebei Agricultural University Baoding 071001 China
| | - Chang Hou
- Beijing Advanced innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing 100048 China
| | - Jia‐Liang Xu
- Beijing Advanced innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing 100048 China
| | - Qing Ren
- Beijing Advanced innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing 100048 China
| |
Collapse
|
34
|
|
35
|
Morikawa T, Nagatomo A, Oka T, Miki Y, Taira N, Shibano-Kitahara M, Hori Y, Muraoka O, Ninomiya K. Glucose Tolerance-Improving Activity of Helichrysoside in Mice and Its Structural Requirements for Promoting Glucose and Lipid Metabolism. Int J Mol Sci 2019; 20:ijms20246322. [PMID: 31847420 PMCID: PMC6941121 DOI: 10.3390/ijms20246322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 01/02/2023] Open
Abstract
An acylated flavonol glycoside, helichrysoside, at a dose of 10 mg/kg/day per os for 14 days, improved the glucose tolerance in mice without affecting the food intake, visceral fat weight, liver weight, and other plasma parameters. In this study, using hepatoblastoma-derived HepG2 cells, helichrysoside, trans-tiliroside, and kaempferol 3-O-β-d-glucopyranoside enhanced glucose consumption from the medium, but their aglycones and p-coumaric acid did not show this activity. In addition, several acylated flavonol glycosides were synthesized to clarify the structural requirements for lipid metabolism using HepG2 cells. The results showed that helichrysoside and related analogs significantly inhibited triglyceride (TG) accumulation in these cells. The inhibition by helichrysoside was more potent than that by other acylated flavonol glycosides, related flavonol glycosides, and organic acids. As for the TG metabolism-promoting activity in high glucose-pretreated HepG2 cells, helichrysoside, related analogs, and their aglycones were found to significantly reduce the TG contents in HepG2 cells. However, the desacyl flavonol glycosides and organic acids derived from the acyl groups did not exhibit an inhibitory impact on the TG contents in HepG2 cells. These results suggest that the existence of the acyl moiety at the 6′′ position in the D-glucopyranosyl part is essential for glucose and lipid metabolism-promoting activities.
Collapse
Affiliation(s)
- Toshio Morikawa
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan; (A.N.); (T.O.); (Y.M.); (N.T.); (M.S.-K.); (Y.H.); (O.M.); (K.N.)
- Antiaging Center, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
- Correspondence: ; Tel.: +81-6-4307-4306; Fax: +81-6-6729-3577
| | - Akifumi Nagatomo
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan; (A.N.); (T.O.); (Y.M.); (N.T.); (M.S.-K.); (Y.H.); (O.M.); (K.N.)
| | - Takahiro Oka
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan; (A.N.); (T.O.); (Y.M.); (N.T.); (M.S.-K.); (Y.H.); (O.M.); (K.N.)
| | - Yoshinobu Miki
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan; (A.N.); (T.O.); (Y.M.); (N.T.); (M.S.-K.); (Y.H.); (O.M.); (K.N.)
| | - Norihisa Taira
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan; (A.N.); (T.O.); (Y.M.); (N.T.); (M.S.-K.); (Y.H.); (O.M.); (K.N.)
| | - Megumi Shibano-Kitahara
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan; (A.N.); (T.O.); (Y.M.); (N.T.); (M.S.-K.); (Y.H.); (O.M.); (K.N.)
| | - Yuichiro Hori
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan; (A.N.); (T.O.); (Y.M.); (N.T.); (M.S.-K.); (Y.H.); (O.M.); (K.N.)
| | - Osamu Muraoka
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan; (A.N.); (T.O.); (Y.M.); (N.T.); (M.S.-K.); (Y.H.); (O.M.); (K.N.)
- Antiaging Center, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Kiyofumi Ninomiya
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan; (A.N.); (T.O.); (Y.M.); (N.T.); (M.S.-K.); (Y.H.); (O.M.); (K.N.)
- Antiaging Center, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| |
Collapse
|
36
|
The Beneficial Effects of Stingless Bee Honey from Heterotrigona itama against Metabolic Changes in Rats Fed with High-Carbohydrate and High-Fat Diet. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16244987. [PMID: 31817937 PMCID: PMC6950152 DOI: 10.3390/ijerph16244987] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023]
Abstract
Metabolic syndrome (MetS) is a group of conditions including central obesity, hyperglycemia, dyslipidemia, and hypertension that increases the risk for cardiometabolic diseases. Kelulut honey (KH) produced by stingless honey bees has stronger antioxidant properties compared to other honey types and may be a functional food against MetS. This study aimed to determine the efficacy of KH in preventing metabolic changes in rats with MetS induced by high-carbohydrate and high-fat (HCHF) diet. Male Wistar rats were randomly assigned to the control (C), HCHF diet-induced MetS (S), and MetS supplemented with KH (K) groups. The K group was given KH (1 g/kg/day) for eight weeks. Compared to the control, the S group had significant higher omental fat mass, serum triglyceride, systolic blood pressure, diastolic blood pressures, adipocyte area, and adipocyte perimeter (p < 0.05). KH supplementation significantly prevented these MetS-induced changes at week 16 (p < 0.05). Several compounds, including 4-hydroxyphenyl acetic acid, coumaric and caffeic acids, had been detected via liquid chromatography-mass spectrometry analysis that might contribute to the reversal of these changes. The beneficial effects of KH against MetS-induced rats provide the basis for future KH research to investigate its potential use in humans and its molecular mechanisms in alleviating the disease.
Collapse
|
37
|
Micháliková D, Tyukos Kaprinay B, Lipták B, Švík K, Slovák L, Sotníková R, Knezl V, Gaspárová Z. Natural substance rutin versus standard drug atorvastatin in a treatment of metabolic syndrome-like condition. Saudi Pharm J 2019; 27:1196-1202. [PMID: 31885479 PMCID: PMC6921224 DOI: 10.1016/j.jsps.2019.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 10/02/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Metabolic syndrome is a cluster of metabolic risk factors. The clear causes of its development are not known yet and there is no comprehensive treatment of this disease. There is a trend to use natural substances in the treatment of various diseases, but their effects need to be well explored. We decided to test effect of rutin compared to the effect of the standard drug atorvastatin. METHODS As a model of metabolic syndrome we used males of hypertriacylglycerolemic rats in combination with high-fat-high-fructose diet. Rutin (100 mg/kg) and atorvastatin (50 mg/kg) were administered orally daily for 5 weeks. RESULTS We determined biochemical parameters from blood: HDL-cholesterol, LDL-cholesterol, total cholesterol, triacylglycerols. Relaxation and contraction response of aorta was measured to determine vessel dysfunctions and possible predisposition to cardiovascular disease. The negative influence on cognitive functions could be associated with the development of metabolic cognitive syndrome. Therefore we aimed to monitor spatial memory by Morris water maze test. Both rutin and atorvastatin had a tendency to decrease levels of serum triacylglycerols, but only atorvastatin significantly reduced levels od LDL-cholesterol and increased HDL-cholesterol levels. Both compounds significantly reduced the phenylephrine-induced contractile response of the aorta and improved the relaxation response. Further, treated animals learned better compared to untreated rats in the Morris water maze. CONCLUSION Based on our results we can assume that atorvastatin and rutin had positive effect on spatial memory and vessel reactivity. Atorvastatin optimized lipid profile of blood serum.
Collapse
Key Words
- ACh, acetylcholine
- AD, Alzheimer disease
- ANOVA, one-way analysis of variance
- Aorta
- Atorvastatin
- Dyslipidemia
- GLUT-4, glucose transporter 4
- Glc, glucose
- HDL-cholesterol, high density lipoprotein cholesterol
- HFFD, high-fat-high-fructose diet
- HMG-CoA, β-hydroxy β-methylglutaryl-CoA
- HTG, hypertriacylglycerolemic
- HTG-HFFD, hypertriacylglycerolemic rat with high-fat-high-fructose diet
- HTG-HFFD-A, hypertriacylglycerolemic rat with high-fat-high-fructose diet with atorvastatin
- HTG-HFFD-R, hypertriacylglycerolemic rat with high-fat-high-fructose diet with rutin
- IRS-1, insulin receptor substrate 1
- LDL-cholesterol, low density lipoprotein cholesterol
- MWM, Morris water maze
- MetS, metabolic syndrome
- Metabolic syndrome
- NOS, NO synthase
- O
2
¯
, superoxide anion
- OGTT, oral glucose tolerance test
- PKC, proteinkinase C
- PXR, pregnane X receptor
- ROS, reactive oxygen species
- Rutin
- SEM, standard error of the mean
- Spatial memory
- TG, triacylglycerols
- cAMP, cyclic adenosine monophosphate
- eNOS, endothelial NO synthase
Collapse
Affiliation(s)
- Dominika Micháliková
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, Slovakia
- Department of Pharmacology, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
| | - Barbara Tyukos Kaprinay
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, Slovakia
- Department of Pharmacology, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
| | - Boris Lipták
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, Slovakia
- Department of Pharmacology, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
| | - Karol Švík
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, Slovakia
| | - Lukáš Slovák
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, Slovakia
- Department of Pharmacology, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
| | - Ružena Sotníková
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, Slovakia
| | - Vladimír Knezl
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, Slovakia
| | - Zdenka Gaspárová
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, Slovakia
| |
Collapse
|
38
|
Li S, Qian Y, Xie R, Li Y, Jia Z, Zhang Z, Huang R, Tuo L, Quan Y, Yu Z, Liu J, Xiang M. Exploring the protective effect of ShengMai-Yin and Ganmaidazao decoction combination against type 2 diabetes mellitus with nonalcoholic fatty liver disease by network pharmacology and validation in KKAy mice. JOURNAL OF ETHNOPHARMACOLOGY 2019; 242:112029. [PMID: 31216433 DOI: 10.1016/j.jep.2019.112029] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 05/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE ShengMai-Yin and Ganmaidazao decoction are classic formulas in traditional Chinese medicine. Individually, Shengmai-Yin is used to treat cardiovascular diseases, and Ganmaidazao decoction for therapy of mental disorders. The combination of Shengmai-Yin and Ganmaidazao decoction (SGD) is normally used as adjuvant therapy for type 2 diabetes mellitus (T2DM). AIM OF THE STUDY The central aim is to elucidate the pharmacological efficacy of SGD and its mechanism in the treatment of T2DM with non-alcoholic fatty liver disease (NAFLD). MATERIALS AND METHODS Active ingredients in SGD and their drug targets were identified using network analysis followed by experimental validation. First, existing databases were mined for information relevant to SGD, including pharmacological actions, chemical components, physicochemical characteristics, potential targets, and implicated diseases. Candidate patterns obtained with the network analysis were then tested in a KKAy mouse model of T2DM with NAFLD. Various doses of SGD were administered, followed by measurements of fasting blood glucose, oral glucose tolerance tests, insulin tolerance tests, markers of lipid metabolism - including free fatty acids (FFA), triglycerides (TG), and total cholesterol (TC) - liver histology, and expression levels of implicated molecules including PI3K/AKT and PPARα. RESULTS Over 300 potential active compounds with their physicochemical characteristics and 562 candidate targets were collected, and then the network of them was constructed. Follow-up pathway and functional enrichment analyses indicated that SGD influences metabolism-related signaling pathways including PI3K-Akt, AMPK, and PPAR. In validation experiments, treatment of KKAy mice with SGD reduced serum levels of glucose, TC, TG, and FFA, decreased numbers of crown-like structures in visceral adipose tissue, reduced adipocyte size, and lowered liver lipid deposits. Further, SGD improved liver metabolism by increasing the expressions of PPARα, HSL, and PI3K/Akt, and decreasing expressions of SREBP-1 and FASN, inhibiting lipid biosynthesis, and increasing insulin sensitivity. CONCLUSION Experimental validation of network analysis revealed anti-diabetic effects of the plant product SGD, manifested most notably by improved serum profiles and diminished insulin resistance. These experimental results may have clinical implications.
Collapse
Affiliation(s)
- Senlin Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ying Qian
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Rui Xie
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yangsha Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zhao Jia
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zijun Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Rongrong Huang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Lingling Tuo
- Department of Traditional Chinese Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yihong Quan
- Department of Traditional Chinese Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zhihong Yu
- Department of Traditional Chinese Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jue Liu
- Department of Traditional Chinese Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ming Xiang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
39
|
Oboh G, Adebayo AA, Ademosun AO, Olowokere OG. Rutin alleviates cadmium-induced neurotoxicity in Wistar rats: involvement of modulation of nucleotide-degrading enzymes and monoamine oxidase. Metab Brain Dis 2019; 34:1181-1190. [PMID: 30972687 DOI: 10.1007/s11011-019-00413-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/26/2019] [Indexed: 01/23/2023]
Abstract
Rutin is a flavonoid commonly found in many vegetables, fruits and other plant species. Thus, this study investigated the protective role of rutin on cognitive function and impairment of ectonucleotidase, monoamine oxidase (MAO) and antioxidant enzymes activities in the cortex and hippocampus of cadmium-induced rats. Cognitive impairment was induced by an oral administration of 5 mg/kg Cadmium chloride for 14 consecutive days. Rutin was dissolved in 2% dimethyl sulfoxide (DMSO) and administered orally at the doses of 25 and 50 mg/kg for 14 days. Thereafter, animals were divided into six groups (n = 6) as follows: control, rutin 25 mg/kg, rutin 50 mg/kg, cadmium, cadmium plus rutin 25 mg/kg, cadmium plus rutin 50 mg/kg. After treatment period of 14 days, animals were sacrificed and the brain was dissected into cortex and hippocampus. Results showed that cadmium caused a significant increase in ectonucleotidases, adenosine deaminase (ADA) and MAO activities, with a concomitant decrease in thiol levels and antioxidant enzymes activities. However, treatment with rutin decreased ectonucleotidase, ADA and MAO activities in cadmium-induced rats. In addition, rutin reduced residual level of cadmium ion in the brain of cadmium-induced rats. Conclusively, present findings revealed that rutin could prevent/restored the impairment of the enzymes that regulate the purinergic and monoaminergic extracellular signaling and restore antioxidant status in cognitive impairment caused by prolonged cadmium exposure.
Collapse
Affiliation(s)
- Ganiyu Oboh
- Functional Foods and Nutraceutical Research Laboratory, Biochemistry Department, Federal University of Technology, P.M.B. 704, Akure, 340001, Nigeria.
| | - Adeniyi A Adebayo
- Functional Foods and Nutraceutical Research Laboratory, Biochemistry Department, Federal University of Technology, P.M.B. 704, Akure, 340001, Nigeria.
| | - Ayokunle O Ademosun
- Functional Foods and Nutraceutical Research Laboratory, Biochemistry Department, Federal University of Technology, P.M.B. 704, Akure, 340001, Nigeria
| | - Olanike G Olowokere
- Functional Foods and Nutraceutical Research Laboratory, Biochemistry Department, Federal University of Technology, P.M.B. 704, Akure, 340001, Nigeria
| |
Collapse
|
40
|
Evidence for Toxic Advanced Glycation End-Products Generated in the Normal Rat Liver. Nutrients 2019; 11:nu11071612. [PMID: 31315223 PMCID: PMC6683103 DOI: 10.3390/nu11071612] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/28/2019] [Accepted: 07/05/2019] [Indexed: 12/11/2022] Open
Abstract
Glucose/fructose in beverages/foods containing high-fructose corn syrup (HFCS) are metabolized to glyceraldehyde (GA) in the liver. We previously reported that GA-derived advanced glycation end-products (toxic AGEs, TAGE) are generated and may induce the onset/progression of non-alcoholic fatty liver disease (NAFLD). We revealed that the generation of TAGE in the liver and serum TAGE levels were higher in NAFLD patients than in healthy humans. Although we propose the intracellular generation of TAGE in the normal liver, there is currently no evidence to support this, and the levels of TAGE produced have not yet been measured. In the present study, male Wister/ST rats that drank normal water or 10% HFCS 55 (HFCS beverage) were maintained for 13 weeks, and serum TAGE levels and intracellular TAGE levels in the liver were analyzed. Rats in the HFCS group drank 127.4 mL of the HFCS beverage each day. Serum TAGE levels and intracellular TAGE levels in the liver both increased in the HFCS group. A positive correlation was observed between intracellular TAGE levels in the liver and serum TAGE levels. On the other hand, in male Wister/ST rats that drank Lactobacillus beverage for 12 weeks-a commercial drink that contains glucose, fructose, and sucrose- no increases were observed in intracellular TAGE or serum TAGE levels. Intracellular TAGE were generated in the normal rat liver, and their production was promoted by HFCS, which may increase the risk of NAFLD.
Collapse
|
41
|
The edible native Australian fruit, Davidson’s plum (Davidsonia pruriens), reduces symptoms in rats with diet-induced metabolic syndrome. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.03.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
42
|
Kim SY, Lee MS, Chang E, Jung S, Ko H, Lee E, Lee S, Kim CT, Kim IH, Kim Y. Tartary Buckwheat Extract Attenuated the Obesity-Induced Inflammation and Increased Muscle PGC-1a/SIRT1 Expression in High Fat Diet-Induced Obese Rats. Nutrients 2019; 11:nu11030654. [PMID: 30889894 PMCID: PMC6471111 DOI: 10.3390/nu11030654] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/13/2019] [Accepted: 03/13/2019] [Indexed: 02/07/2023] Open
Abstract
Obesity is intimately related to a chronic inflammatory state, with augmentation of macrophage infiltration and pro-inflammatory cytokine secretion in white adipose tissue (WAT) and mitochondrial dysfunction in skeletal muscle. The specific aim of this study is to evaluate effects of tartary buckwheat extract (TB) on obesity-induced adipose tissue inflammation and muscle peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α/sirtulin 1 (SIRT1) pathway in rats fed a high-fat diet. Sprague-Dawley rats were divided into four groups and fed either a normal diet (NOR), 45% high-fat diet (HF), HF + low dose of TB (TB-L; 5 g/kg diet), or HF + high dose of TB (TB-H; 10 g/kg diet) for 13 weeks. TB significantly reduced adipose tissue mass with decreased adipogenic gene expression of PPAR-γ and aP2. Serum nitric oxide levels and adipose tissue macrophage M1 polarization gene markers, such as iNOS, CD11c, and Arg1, and pro-inflammatory gene expression, including TNF-α, IL-6, and MCP-1, were remarkably downregulated in the TB-L and TB-H groups. Moreover, TB supplementation increased gene expression of PGC-1α and SIRT1, involved in muscle biogenesis and function. These results suggested that TB might attenuate obesity-induced inflammation and mitochondrial dysfunction by modulating adipose tissue inflammation and the muscle PGC-1α/SIRT1 pathway.
Collapse
Affiliation(s)
- Seog-Young Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea.
| | - Mak-Soon Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea.
| | - Eugene Chang
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea.
| | - Sunyoon Jung
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea.
| | - Hyunmi Ko
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea.
| | - Eunyoung Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea.
| | - Soojin Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea.
| | - Chong-Tai Kim
- R&D Center, EastHill Corporation, Gwonseon-gu, Suwon-si, Gyeonggi-do 16642, Korea.
| | - In-Hwan Kim
- Department of Integrated Biomedical and Life Sciences, Korea University, Seoul 02841, Korea.
| | - Yangha Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|
43
|
Xu Y, Han J, Dong J, Fan X, Cai Y, Li J, Wang T, Zhou J, Shang J. Metabolomics Characterizes the Effects and Mechanisms of Quercetin in Nonalcoholic Fatty Liver Disease Development. Int J Mol Sci 2019; 20:ijms20051220. [PMID: 30862046 PMCID: PMC6429195 DOI: 10.3390/ijms20051220] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 12/19/2022] Open
Abstract
As metabolomics is widely used in the study of disease mechanisms, an increasing number of studies have found that metabolites play an important role in the occurrence of diseases. The aim of this study is to investigate the effects and mechanisms of quercetin in high-fat-sucrose diet (HFD)-induced nonalcoholic fatty liver disease (NAFLD) development using nontargeted metabolomics. A rat model of NAFLD was established by feeding with an HFD for 30 and 50 days. The results indicated quercetin exhibited hepatoprotective activity in 30-day HFD-induced NAFLD rats by regulating fatty acid related metabolites (adrenic acid, etc.), inflammation-related metabolites (arachidonic acid, etc.), oxidative stress-related metabolites (2-hydroxybutyric acid) and other differential metabolites (citric acid, etc.). However, quercetin did not improve NAFLD in the 50-day HFD; perhaps quercetin was unable to reverse the inflammation induced by a long-term high-fat diet. These data indicate that dietary quercetin may be beneficial to NAFLD in early stages. Furthermore, combining metabolomics and experimental approaches opens avenues to study the effects and mechanisms of drugs for complex diseases.
Collapse
Affiliation(s)
- Yan Xu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Jichun Han
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Jinjin Dong
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Xiangcheng Fan
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Yuanyuan Cai
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Jing Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| | - Tao Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 211198, China.
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China.
| | - Jia Zhou
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Jing Shang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
- Qinghai Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences; Xining 810008, China.
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China.
| |
Collapse
|
44
|
Magnetic solid-phase extraction of quercetin on magnetic-activated carbon cloth (MACC). JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-019-01622-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
45
|
Al-Harbi NO, Imam F, Al-Harbi MM, Al-Shabanah OA, Alotaibi MR, As Sobeai HM, Afzal M, Kazmi I, Al Rikabi AC. Rutin inhibits carfilzomib-induced oxidative stress and inflammation via the NOS-mediated NF-κB signaling pathway. Inflammopharmacology 2019; 27:817-827. [PMID: 30600471 DOI: 10.1007/s10787-018-0550-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/12/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Carfilzomib (CFZ), a proteasome inhibitor approved by the FDA to treat multiple myeloma, may cause nephrotoxicity. HYPOTHESIS Rutin is a bioflavonoid with antioxidant properties. We aimed to examine whether rutin protects the kidney from CFZ-induced nephrotoxicity. STUDY DESIGN This study aimed to demonstrate the effect of rutin on CFZ-induced renal injury via the inhibition of oxidative stress and inflammation. METHODS Wistar albino rats were divided into six groups (n = 6): Group 1 (normal control; NC) was administered normal saline for 3 weeks; Group 2 (CFZ/toxic group) received CFZ [4 mg/kg, intraperitoneal (i.p.) injection] twice weekly for 3 weeks; Group 3 (standard treatment group) was administered CFZ (4 mg/kg, i.p.) and olmesartan (2 mg/kg, p.o.) for 3 weeks; Group 4 was administered CFZ (4 mg/kg, i.p.) and rutin (10 mg/kg, p.o.) for 3 weeks; Group 5 was administered CFZ (4 mg/kg, i.p.) and rutin (20 mg/kg, p.o.) for 3 weeks; and Group 6 was administered CFZ (4 mg/kg, i.p.) and rutin (40 mg/kg, p.o.) for 3 weeks. We carried out haematological and biochemical analyses, determined oxidative stress, caspase-3 activity, and protein levels, and performed a histopathological evaluation to confirm CFZ-induced nephrotoxicity and its prevention by rutin administration. RESULTS Exposure to only CFZ significantly (p < 0.05) increased white blood cell (WBC) count, Hb%, and HTC% concentration; however, these features were significantly decreased (p < 0.05) when olmesartan and rutin were administered. CFZ administration significantly decreased (p < 0.0001) the level of antioxidant enzymes; whereas, administration of olmesartan and rutin significantly reversed (p < 0.05) their levels toward the normal range. The levels of caspase-3 enzyme significantly increased (p < 0.001) in the CFZ group and were reduced toward the normal values by olmesartan and rutin administration. Furthermore, the results of NOS-2, NF-κB, IkBa, and IL-17 protein estimation and the histopathological evaluation strengthened our findings that rutin exhibits a protective effect against CFZ-induced nephrotoxicity. CONCLUSION These findings clearly demonstrate that rutin ameliorates CFZ-induced oxidative stress and inflammation in nephrotoxicity via the NOS-mediated NF-κB signaling pathway.
Collapse
Affiliation(s)
- Naif O Al-Harbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2457, Riyadh, 11431, Kingdom of Saudi Arabia
| | - Faisal Imam
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2457, Riyadh, 11431, Kingdom of Saudi Arabia.
| | - Mohammed M Al-Harbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2457, Riyadh, 11431, Kingdom of Saudi Arabia
| | - Othman A Al-Shabanah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2457, Riyadh, 11431, Kingdom of Saudi Arabia
| | - Moureq Rashed Alotaibi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2457, Riyadh, 11431, Kingdom of Saudi Arabia
| | - Homood M As Sobeai
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2457, Riyadh, 11431, Kingdom of Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmacology and Toxicology, College of Pharmacy, Al Jauf University, Sakakah, Kingdom of Saudi Arabia
| | - Imran Kazmi
- Department of Pharmacology and Toxicology, School of Pharmacy, Glocal University, Saharan Pur, India
| | - Ammar Cherkess Al Rikabi
- Department of Pathology, College of Medicine, King Khalid University Hospital, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
46
|
Optimization of Ultrasonic-Assisted Simultaneous Extraction of Three Active Compounds from the Fruits of Forsythia suspensa and Comparison with Conventional Extraction Methods. Molecules 2018; 23:molecules23092115. [PMID: 30142873 PMCID: PMC6225468 DOI: 10.3390/molecules23092115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 08/14/2018] [Accepted: 08/16/2018] [Indexed: 02/01/2023] Open
Abstract
An efficient ultrasonic-assisted extraction (UAE) method was developed for simultaneous extraction of three active compounds, forsythiaside A (FSA), phillyrin (PHI) and rutin (RT), from the fruits of Forsythia suspensa. The effects of various factors including a binary mixed solvent of methanol/water and ethanol/water, the pH of the solvent, particle size, temperature, solvent to material ratio, ultrasonic input power and extraction time on UAE were investigated in detail. The mass transfer mechanism of UAE using different mixed solvents was further explained by comparison with the maceration extraction method. The response surface methodology was used to optimize the experimental variables including ethanol concentration, solvent to material ratio and extraction time. The optimized conditions for the simultaneous extraction of RT, FSA and PHI were: particle size 60–80 mesh, temperature 30 °C, ultrasonic power 200 W, ethanol concentration 50%, solvent to material ratio 32 mL/g and extraction time 37 min. Compared to conventional extraction methods, UAE provided the highest extraction efficiency and offered many advantages including the reduction of solvent, temperature and time for extraction.
Collapse
|
47
|
Diwan V, Brown L, Gobe GC. Adenine-induced chronic kidney disease in rats. Nephrology (Carlton) 2018; 23:5-11. [PMID: 29030945 DOI: 10.1111/nep.13180] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2017] [Indexed: 12/24/2022]
Abstract
Many animal models have been developed to study the causes and treatments of chronic kidney disease (CKD) in humans, an insidious disease resulting from kidney injury and characterized by persistent functional decline for more than 3 months, with or without evidence of structural deficit. The eventual outcome of CKD may be end-stage kidney disease (ESKD), where patients need dialysis or transplantation to survive. Cardiovascular disease is accelerated in patients with CKD and contributes to increased mortality, with the relationship between CKD and cardiovascular disease being bi-directional. Most animal models do not mimic the complexity of the human disease as many do not develop CKD-associated cardiovascular disease. The adenine diet model of CKD in rodents is an exception. The original adenine diet model produced rapid-onset kidney disease with extensive tubulointerstitial fibrosis, tubular atrophy, crystal formation and marked vessel calcification. Since then, lower adenine intake in rats has been found to induce slowly progressive kidney damage and cardiovascular disease. These chronic adenine diet models allow the characterization of relatively stable kidney and cardiovascular disease, similar to CKD in humans. In addition, interventions for reversal can be tested. Here the key features of the adenine diet model of CKD are noted, along with some limitations of other available models. In summary, the data presented here support the use of chronic low-dose adenine diet in rats as an easy and effective model for understanding human CKD, especially the links with cardiovascular disease, and developing potential therapeutic interventions.
Collapse
Affiliation(s)
- Vishal Diwan
- UQ Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Lindsay Brown
- School of Health and Wellbeing, The University of Southern Queensland, Toowoomba, Queensland, Australia
| | - Glenda C Gobe
- UQ Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, Queensland, Australia.,NHMRC Centre for Research Excellence, Centre for Chronic Disease, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
48
|
Beet Stalks and Leaves ( Beta vulgaris L.) Protect Against High-Fat Diet-Induced Oxidative Damage in the Liver in Mice. Nutrients 2018; 10:nu10070872. [PMID: 29976910 PMCID: PMC6073334 DOI: 10.3390/nu10070872] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 12/22/2022] Open
Abstract
Some flavonoids identified in beet stalks can help the antioxidant endogenous defenses during a chronic inflammation process. The current study investigates the effect of polyphenols present in beet stalks and leaves on liver oxidative damage in mice fed a high-fat diet (HF). The control (CT) or HF diet groups were supplemented with dehydrated beet stalks and leaves (SL) or beet stalk and leaf ethanolic extract (EX). In terms of Vitexin-rhaminoside equivalents (VRE), EX groups received ~5.91 mg of VRE·100 g−1 diet, while the SL groups received ~3.07 mg VRE·100 g−1 diet. After 8 weeks, we evaluated fasting blood glucose; cholesterol, hepatic Malondialdehyde (MDA) levels and hepatic Glutathione (GSH), Glutathione peroxidase (GPx), Glutathione reductase (GR) and Superoxide dismutase (SOD) activity. Dehydrated beet stalks and leaves (HFSL) attenuated the deleterious effects of a HF diet on lipid metabolism, reduced fasting blood glucose levels, ameliorated cholesterol levels and reduced GPx and GR activities (p < 0.05) compared to the HF group. However; the addition of ethanolic extract from beet stalks and leaves was unable (p > 0.05) to prevent the liver damage caused by HF diet in mice. The presence of flavonoids, such as Vitexin derivatives in beet stalks and leaves can help the liver damage induced by HF diet.
Collapse
|
49
|
Li L, Lietz G, Seal C. Buckwheat and CVD Risk Markers: A Systematic Review and Meta-Analysis. Nutrients 2018; 10:E619. [PMID: 29762481 PMCID: PMC5986499 DOI: 10.3390/nu10050619] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 01/01/2023] Open
Abstract
The effects of buckwheat intake on cardiovascular diseases (CVDs) have not been systematically investigated. The aim of the present study was to comprehensively summarize studies in humans and animals, evaluating the impact of buckwheat consumption on CVD risk markers and to conduct a meta-analysis of relevant data. Thirteen randomized, controlled human studies, two cross-sectional human studies and twenty-one animal studies were identified. Using random-effects models, the weighted mean difference of post-intervention concentrations of blood glucose, total cholesterol and triglycerides were significantly decreased following buckwheat intervention compared with controls [differences in blood glucose: -0.85 mmol/L (95% CI: -1.31, -0.39), total cholesterol: 0.50 mmol/L (95% CI: -0.80, -0.20) and triglycerides: 0.25 mmol/L (95% CI: -0.49, -0.02)]. Responses of a similar magnitude were seen in two cross-sectional studies. For animal studies, nineteen of twenty-one studies showed a significant reduction in total cholesterol of between 12% and 54%, and fourteen of twenty studies showed a significant reduction in triglycerides of between 2% and 74%. All exhibited high unexplained heterogeneity. There was inconsistency in HDL cholesterol outcomes in both human and animal studies. It remains unclear whether increased buckwheat intake significantly benefits other markers of CVD risk, such as weight, blood pressure, insulin, and LDL-cholesterol, and underlying mechanisms responsible for any effects are unclear.
Collapse
Affiliation(s)
- Liangkui Li
- Human Nutrition Research Centre, Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Georg Lietz
- Human Nutrition Research Centre, Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Chris Seal
- Human Nutrition Research Centre, Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
50
|
Guillén-Enríquez C, López-Teros V, Martín-Orozco U, López-Díaz JA, Del Hierro-Ochoa J, Ramos-Jiménez A, Astiazarán-García H, Martínez-Ruiz NDR, Wall-Medrano A. Selected Physiological Effects of a Garcinia Gummi-Gutta Extract in Rats Fed with Different Hypercaloric Diets. Nutrients 2018; 10:E565. [PMID: 29734675 PMCID: PMC5986445 DOI: 10.3390/nu10050565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/18/2018] [Accepted: 05/02/2018] [Indexed: 12/20/2022] Open
Abstract
Garcinia gummi-gutta (GGG) rind extract is effective for reducing appetite, body weight and adiposity of obese rodents fed high-fat (HF), high-sugar (HS) or high fat/sugar (HFS)-based diets, but these effects have not been simultaneously evaluated. Thirty obese (~425 g) male Wistar rats were fed for eleven weeks with six hypercaloric diets (4.1 kcal/g; five rats/diet) non-supplemented (HF, HS, HFS), or supplemented (HF+, HS+, HFS+) with GGG extract (5.9%), while rats from the control group (375 g) were fed a normocaloric diet (3.5 kcal/g). Body weight, dietary intake, body fat distribution, and histological and biochemical parameters were recorded. Compared to control rats, non-supplemented and supplemented groups consumed significantly less food (14.3% and 24.6% (−4.3 g/day), respectively) (p < 0.05). Weight loss was greater in the HF+ group (35⁻52 g), which consumed 1.9 times less food than the HS+ or HFS+ fed groups. The HF and HFS groups showed 40% less plasma triacylglycerides and lower glucose levels compared to the HF+. GGG-supplemented diets were associated with lower ketonuria. The HF+ diet was associated with the best anti-adiposity effect (as measured with the dual X-ray absorptiometry (DXA) and Soxhlet methods). The severity of hepatocyte lipidosis was HF > control > HF+, and no signs of toxicity in the testes were observed. The results indicate that GGG is more effective when co-administered with HF diets in obese rats.
Collapse
Affiliation(s)
- Carolina Guillén-Enríquez
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del PRONAF y Estocolmo s/n, Ciudad Juárez 32310, Chihuahua, Mexico.
| | - Veronica López-Teros
- División de Ciencias Biológicas y de la Salud, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico.
| | - Ubicelio Martín-Orozco
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del PRONAF y Estocolmo s/n, Ciudad Juárez 32310, Chihuahua, Mexico.
| | - José A López-Díaz
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del PRONAF y Estocolmo s/n, Ciudad Juárez 32310, Chihuahua, Mexico.
| | - Julio Del Hierro-Ochoa
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del PRONAF y Estocolmo s/n, Ciudad Juárez 32310, Chihuahua, Mexico.
| | - Arnulfo Ramos-Jiménez
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del PRONAF y Estocolmo s/n, Ciudad Juárez 32310, Chihuahua, Mexico.
| | - Humberto Astiazarán-García
- Centro de Investigación en Alimentación y Desarrollo, AC (Unidad Hermosillo), Coordinación de Nutrición, Carretera a la Victoria km. 0.6, AP 1735, Hermosillo 83000, Sonora, Mexico.
| | - Nina Del Rocío Martínez-Ruiz
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del PRONAF y Estocolmo s/n, Ciudad Juárez 32310, Chihuahua, Mexico.
| | - Abraham Wall-Medrano
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del PRONAF y Estocolmo s/n, Ciudad Juárez 32310, Chihuahua, Mexico.
| |
Collapse
|