1
|
Wu N, Li S, Kuang Y, He W, Zhu H, Gao Q, Liu L, Cheng S, Liu Y, Cong X, Wang D. Effect of Cardamine violifolia on muscle protein degradation and anti-oxidative capacity in weaned piglets after Lipopolysaccharide challenge. Innate Immun 2025; 31:17534259251322589. [PMID: 39967238 PMCID: PMC11837137 DOI: 10.1177/17534259251322589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/16/2025] [Accepted: 02/06/2025] [Indexed: 02/20/2025] Open
Abstract
This study aimed to investigate the impact of Cardamine violifolia on muscle protein degradation, the inflammatory response and antioxidant function in weaned piglets following LPS challenge. Twenty-four weaned piglets were used in a 2 × 2 factorial experiment with dietary treatment (sodium selenite or Cardamine violifolia) and LPS challenge. After 28 days of feeding, pigs were injected intraperitoneally with 100 μg/kg LPS or saline. Dietary supplementation with Cardamine violifolia mitigated the reduction in insulin and growth hormone levels induced by LPS. It also curbed the LPS-induced elevation of plasma glucagon, urea nitrogen, and creatinine concentrations. Cardamine violifolia reduced muscle damage caused by LPS, as evidenced by increased protein content and protein/DNA ratio and decreased TNF-α and IL-1β mRNA expression. Furthermore, Cardamine violifolia modulated the expression of FOXO1, FOXO4, and MuRF1 in muscle, indicative of the protective effect against muscle protein degradation. Enhanced muscle antioxidant function was observed in the form of increased T-AOC, reduced MDA concentration, and decreased mRNA expression of GPX3, DIO3, TXNRD1, SELENOS, SELENOI, SELENOO, and SEPHS2 in LPS-treated piglets. The findings suggest that Cardamine violifolia supplementation can effectively alleviate muscle protein degradation induced by LPS and enhance the antioxidant capacity in piglets.
Collapse
Affiliation(s)
- Nianbang Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Shunkang Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Yanling Kuang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Wensheng He
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Huiling Zhu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Qingyu Gao
- Enshi Se-Run Material Engineering Technology Co., Ltd., Enshi, China
| | - Liping Liu
- Beijng Center for Disease Prevention and Control, Beijing, China
| | - Shuiyuan Cheng
- National R&D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Xin Cong
- Enshi Se-Run Material Engineering Technology Co., Ltd., Enshi, China
| | - Dan Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
2
|
Zhong S, Sun Z, Tian Q, Wen W, Chen F, Huang X, Li Y. Lactobacillus delbrueckii alleviates lipopolysaccharide-induced muscle inflammation and atrophy in weaned piglets associated with inhibition of endoplasmic reticulum stress and protein degradation. FASEB J 2024; 38:e70041. [PMID: 39250170 DOI: 10.1096/fj.202400969rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024]
Abstract
Pro-inflammatory cytokines in muscle play a pivotal role in physiological responses and in the pathophysiology of inflammatory disease and muscle atrophy. Lactobacillus delbrueckii (LD), as a kind of probiotics, has inhibitory effects on pro-inflammatory cytokines associated with various inflammatory diseases. This study was conducted to explore the effect of dietary LD on the lipopolysaccharide (LPS)-induced muscle inflammation and atrophy in piglets and to elucidate the underlying mechanism. A total of 36 weaned piglets (Duroc × Landrace × Large Yorkshire) were allotted into three groups with six replicates (pens) of two piglets: (1) Nonchallenged control; (2) LPS-challenged (LPS); (3) 0.2% LD diet and LPS-challenged (LD+LPS). On d 29, the piglets were injected intraperitoneally with LPS or sterilized saline, respectively. All piglets were slaughtered at 4 h after LPS or saline injection, the blood and muscle samples were collected for further analysis. Our results showed that dietary supplementation of LD significantly attenuated LPS-induced production of pro-inflammatory cytokines IL-6 and TNF-α in both serum and muscle of the piglets. Concomitantly, pretreating the piglets with LD also clearly inhibited LPS-induced nuclear translocation of NF-κB p65 subunits in the muscle, which correlated with the anti-inflammatory effects of LD on the muscle of piglets. Meanwhile, LPS-induced muscle atrophy, indicated by a higher expression of muscle atrophy F-box, muscle RING finger protein (MuRF1), forkhead box O 1, and autophagy-related protein 5 (ATG5) at the transcriptional level, whereas pretreatment with LD led to inhibition of these upregulations, particularly genes for MuRF1 and ATG5. Moreover, LPS-induced mRNA expression of endoplasmic reticulum stress markers, such as eukaryotic translational initiation factor 2α (eIF-2α) was suppressed by pretreatment with LD, which was accompanied by a decrease in the protein expression levels of IRE1α and GRP78. Additionally, LD significantly prevented muscle cell apoptotic death induced by LPS. Taken together, our data indicate that the anti-inflammatory effect of LD supply on muscle atrophy of piglets could be likely regulated by inhibiting the secretion of pro-inflammatory cytokines through the inactivation of the ER stress/NF-κB singling pathway, along with the reduction in protein degradation.
Collapse
Affiliation(s)
- Songshi Zhong
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, P.R. China
| | - Zhiyuan Sun
- College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
| | - Qiyu Tian
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, P.R. China
- Hunan Engineering Research Center of Poultry Production Safety, Changsha, P.R. China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha, P.R. China
| | - Wei Wen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, P.R. China
| | - Fengming Chen
- Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, P.R. China
| | - Xingguo Huang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, P.R. China
- Hunan Engineering Research Center of Poultry Production Safety, Changsha, P.R. China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha, P.R. China
| | - Yinghui Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, P.R. China
- Hunan Engineering Research Center of Poultry Production Safety, Changsha, P.R. China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha, P.R. China
| |
Collapse
|
3
|
Zhang B, Yang Q, Liu N, Zhong Q, Sun Z. The Effects of Glutamine Supplementation on Liver Inflammatory Response and Protein Metabolism in Muscle of Lipopolysaccharide-Challenged Broilers. Animals (Basel) 2024; 14:480. [PMID: 38338123 PMCID: PMC10854980 DOI: 10.3390/ani14030480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/21/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
The aim of our present study was to investigate the effects of Gln supplementation on liver inflammatory responses as well as protein synthesis and degradation in the muscle of LPS-challenged broilers. A total of 120 one-day-old male broiler chickens (Arbor Acres Plus) were randomly arranged in a 2 × 2 factorial design with five replicates per treatment and six broilers per replicate, containing two main factors: immune challenge (injected with LPS in a dose of 0 or 500 µg/kg of body weight) and dietary treatments (supplemented with 1.22% alanine or 1% Gln). After feeding with an alanine or Gln diet for 15 days, broilers were administrated an LPS or a saline injection at 16 and 21 days. The results showed that Gln supplementation alleviated the increased mRNA expressions of interleukin-6, interleukin-1β, and tumor necrosis factor-α induced by LPS in liver. Moreover, the increased activity of aspartate aminotransferase combined with the decreased expression of glutaminase in muscle were observed following Gln addition. In addition, in comparison with the saline treatment, LPS challenge altered the signaling molecules' mRNA expressions associated with protein synthesis and degradation. However, Gln supplementation reversed the negative effects on protein synthesis and degradation in muscle of LPS-challenged broilers. Taken together, Gln supplementation had beneficial effects: alleviating inflammatory responses, promoting protein synthesis, and inhibiting protein degradation of LPS-challenged broilers.
Collapse
Affiliation(s)
- Bolin Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Chang Cheng Road, Cheng Yang District, Qingdao 266109, China
- Department of Biology and Agriculture, Zunyi Normal College, Ping’an Avenue, Hong Huagang District, Zunyi 563006, China
| | - Qian Yang
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888, Xincheng Road, Jingyue District, Changchun 130118, China; (Q.Y.); (N.L.); (Q.Z.)
| | - Ning Liu
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888, Xincheng Road, Jingyue District, Changchun 130118, China; (Q.Y.); (N.L.); (Q.Z.)
| | - Qingzhen Zhong
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888, Xincheng Road, Jingyue District, Changchun 130118, China; (Q.Y.); (N.L.); (Q.Z.)
| | - Zewei Sun
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888, Xincheng Road, Jingyue District, Changchun 130118, China; (Q.Y.); (N.L.); (Q.Z.)
| |
Collapse
|
4
|
Xiong L, Dorus S, Ramalingam L. Role of Fish Oil in Preventing Paternal Obesity and Improving Offspring Skeletal Muscle Health. Biomedicines 2023; 11:3120. [PMID: 38137341 PMCID: PMC10740802 DOI: 10.3390/biomedicines11123120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/24/2023] Open
Abstract
This study investigates the effects of fish oil supplementation during the periconceptional period in male mice. Specifically, it examines the impact of fish oil on intergenerational health, as determined by skeletal muscle markers. To mimic paternal obesity, thirty mice were separated into three groups with distinct dietary regimes for 10 weeks: a high-fat diet (HF), a high-fat diet supplemented with fish oil (FO), and a low-fat diet (LF). Then, these mice mated with control female mice. Dams and offspring consumed a chow diet during gestation and lactation, and the offspring continued on a chow diet. To study short-term (8 weeks) and long-term (16 weeks) effects of FO, skeletal muscle was isolated at the time of sacrifice, and gene analyses were performed. Results suggest that offspring born to FO-supplemented sires exhibited a significant, short-term upregulation of genes associated with insulin signaling, fatty acid oxidation, and skeletal muscle growth with significant downregulation of genes involved in fatty acid synthesis at 8 weeks. Prominent differences in the above markers were observed at 8 weeks compared to 16 weeks. These findings suggest the potential benefits of FO supplementation for fathers during the periconceptional period in reducing the health risks of offspring due to paternal obesity.
Collapse
Affiliation(s)
- Ligeng Xiong
- Department of Nutrition and Food Studies, Syracuse University, Syracuse, NY 13244, USA
| | - Stephen Dorus
- Department of Biology, Syracuse University, Syracuse, NY 13244, USA
| | - Latha Ramalingam
- Department of Nutrition and Food Studies, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
5
|
Guo J, Qin X, Wang Y, Li X, Wang X, Zhu H, Chen S, Zhao J, Xiao K, Liu Y. Necroptosis Mediates Muscle Protein Degradation in a Cachexia Model of Weanling Pig with Lipopolysaccharide Challenge. Int J Mol Sci 2023; 24:10923. [PMID: 37446099 DOI: 10.3390/ijms241310923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Necroptosis, an actively researched form of programmed cell death closely related to the inflammatory response, is important in a variety of disorders and diseases. However, the relationship between necroptosis and muscle protein degradation in cachexia is rarely reported. This study aimed to elucidate whether necroptosis played a crucial role in muscle protein degradation in a cachexia model of weaned piglets induced by lipopolysaccharide (LPS). In Experiment 1, the piglets were intraperitoneally injected with LPS to construct the cachexia model, and sacrificed at different time points after LPS injection (1, 2, 4, 8, 12, and 24 h). In Experiment 2, necrostatin-1 (Nec-1), a necroptosis blocker, was pretreated in piglets before the injection of LPS to inhibit the occurrence of necroptosis. Blood and longissimus dorsi muscle samples were collected for further analysis. In the piglet model with LPS-induced cachexia, the morphological and ultrastructural damage, and the release of pro-inflammatory cytokines including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 were dynamically elicited in longissimus dorsi muscle. Further, protein concentration and protein/DNA ratio were dynamically decreased, and protein degradation signaling pathway, containing serine/threonine kinase (Akt), Forkhead box O (FOXO), muscular atrophy F-box (MAFbx), and muscle ring finger protein 1 (MuRF1), was dynamically activated in piglets after LPS challenge. Moreover, mRNA and protein expression of necroptosis signals including receptor-interacting protein kinase (RIP)1, RIP3, and mixed lineage kinase domain-like pseudokinase (MLKL), were time-independently upregulated. Subsequently, when Nec-1 was used to inhibit necroptosis, the morphological damage, the increase in expression of pro-inflammatory cytokines, the reduction in protein content and protein/DNA ratio, and the activation of the protein degradation signaling pathway were alleviated. These results provide the first evidence that necroptosis mediates muscle protein degradation in cachexia by LPS challenge.
Collapse
Affiliation(s)
- Junjie Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xu Qin
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yang Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiangen Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiuying Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Huiling Zhu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shaokui Chen
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA
| | - Kan Xiao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, No. 68 Xuefu South Rd., Wuhan 430023, China
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, No. 68 Xuefu South Rd., Wuhan 430023, China
| |
Collapse
|
6
|
Kim YA, Lee SH, Koh JM, Kwon SH, Lee Y, Cho HJ, Kim H, Kim SJ, Lee JH, Yoo HJ, Seo JH. Fatty acid amides as potential circulating biomarkers for sarcopenia. J Cachexia Sarcopenia Muscle 2023. [PMID: 37127296 DOI: 10.1002/jcsm.13244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/14/2023] [Accepted: 04/03/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND Sarcopenia is characterized by a progressive decrease in skeletal muscle mass and function with age. Given that sarcopenia is associated with various metabolic disorders, effective metabolic biomarkers for its early detection are required. We aimed to investigate the metabolic biomarkers related to sarcopenia in elderly men and perform experimental studies using metabolomics. METHODS Plasma metabolites from 142 elderly men, comprising a sarcopenia group and an age-matched control group, were measured using global metabolome profiling. Muscle and plasma samples from an aging mouse model of sarcopenia, as well as cell media and cell lysates during myoblast differentiation, were analysed based on targeted metabolome profiling. Based on these experimental results, fatty acid amides were quantified from human plasma as well as human muscle tissues. The association of fatty acid amide levels with sarcopenia parameters was evaluated. RESULTS Global metabolome profiling showed that fatty acid amide levels were significantly different in the plasma of elderly men with sarcopenia (all Ps < 0.01). Consistent with these results in human plasma, targeted metabolome profiling in an aging mouse model of sarcopenia showed decreased levels of fatty acid amides in plasma but not in muscle tissue. In addition, the levels of fatty acid amides increased in cell lysates during muscle cell differentiation. Targeted metabolome profiling in men showed decreased docosahexaenoic acid ethanolamide (DHA EA) levels in the plasma (P = 0.016) but not in the muscle of men with sarcopenia. DHA EA level was positively correlated with sarcopenia parameters such as skeletal muscle mass index (SMI) and handgrip strength (HGS) (P = 0.001, P = 0.001, respectively). The area under the receiver-operating characteristic curve (AUC) for DHA EA level ≤ 4.60 fmol/μL for sarcopenia was 0.618 (95% confidence interval [CI]: 0.532-0.698). DHA EA level ≤ 4.60 fmol/μL was associated with a significantly greater likelihood of sarcopenia (odds ratio [OR]: 2.11, 95% CI: 1.03-4.30), independent of HGS. The addition of DHA EA level to age and HGS significantly improved the AUC from 0.620 to 0.691 (P = 0.0497). CONCLUSIONS Our study demonstrated that fatty acid amides are potential circulating biomarkers in elderly men with sarcopenia. DHA EA, in particular, strongly related to muscle mass and strength, can be a key metabolite to become a reliable metabolic biomarker for sarcopenia. Further research on fatty acid amides will provide insights into the metabolomic changes relevant to sarcopenia from an aging perspective.
Collapse
Affiliation(s)
- Ye An Kim
- Division of Endocrinology, Department of Internal Medicine, Veterans Health Service Medical Center, Seoul, South Korea
| | - Seung Hun Lee
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jung-Min Koh
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Seung-Hyun Kwon
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, South Korea
| | - Young Lee
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, South Korea
| | - Han Jin Cho
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Hanjun Kim
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Su Jung Kim
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Ji Hyun Lee
- Division of Endocrinology, Department of Internal Medicine, Veterans Health Service Medical Center, Seoul, South Korea
| | - Hyun Ju Yoo
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Je Hyun Seo
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, South Korea
| |
Collapse
|
7
|
Lang CH. IMPORTANCE OF THE INNATE IMMUNE RESPONSE IN SKELETAL MUSCLE TO SEPSIS-INDUCED ALTERATIONS IN PROTEIN BALANCE. Shock 2023; 59:214-223. [PMID: 36730901 PMCID: PMC9957944 DOI: 10.1097/shk.0000000000002029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
ABSTRACT There is growing appreciation that skeletal muscle is a fully functional component of the body's innate immune system with the potential to actively participate in the host response to invading bacteria as opposed to being a passive target. In this regard, skeletal muscle in general and myocytes specifically possess an afferent limb that recognizes a wide variety of host pathogens via their interaction with multiple classes of cell membrane-bound and intracellular receptors, including toll-like receptors, cytokine receptors, NOD-like receptors, and the NLRP inflammasome. The efferent limb of the innate immune system in muscle is equally robust and with an increased synthesis and secretion of a variety of myocyte-derived cytokines (i.e., myokines), including TNF-α, IL-1, IL-6, and NO as well as multiple chemokines in response to appropriate stimulation. Herein, the current narrative review focuses primarily on the immune response of myocytes per se as opposed to other cell types within whole muscle. Moreover, because there are important differences, this review focuses specifically on systemic infection and inflammation as opposed to the response of muscle to direct injury and various types of muscular dystrophies. To date, however, there are few definitive muscle-specific studies that are necessary to directly address the relative importance of muscle-derived immune activation as a contributor to either the systemic immune response or the local immune microenvironment within muscle during sepsis and the resultant downstream metabolic disturbances.
Collapse
Affiliation(s)
- Charles H Lang
- Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
8
|
Zhang Y, Li Q, Wang Z, Dong Y, Yi D, Wu T, Wang L, Zhao D, Hou Y. Dietary supplementation with a complex of cinnamaldehyde, carvacrol, and thymol negatively affects the intestinal function in LPS-challenged piglets. Front Vet Sci 2023; 10:1098579. [PMID: 37065240 PMCID: PMC10097997 DOI: 10.3389/fvets.2023.1098579] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/13/2023] [Indexed: 04/18/2023] Open
Abstract
Background The effects of cinnamaldehyde, carvacrol and thymol complex (CCT) on the growth performance and intestinal function of piglets challenged with lipopolysaccharide (LPS) were determined. Colistin sulphate (CS) was as a positive control. Method Piglets (n = 24, 32 days of age) were allocated to four treatments: Control group (fed basal diet), LPS group (fed basal diet), CS+LPS group (fed basal diet + 50 mg/kg CS), and CCT+LPS group (fed basal diet + 50 mg/kg CCT). Results Results showed that diarrhea rates of piglets were significantly reduced by CCT and CS supplementation respectively. Further research showed that CS supplementation tended to improve the intestinal absorption function in LPS-challenged piglets. Moreover, CS supplementation significantly reduced the contents of cortisol in blood and malondialdehyde in the duodenum and the activities of inducible nitric oxide synthase in the duodenum and ileum and total nitric oxide synthase in the ileum in LPS-challenged piglets. CS supplementation significantly increased the activities of sucrase in the ileum and myeloperoxidase in the jejunum in LPS-challenged piglets. CS supplementation significantly alleviated the reduced mRNA levels of immune-related genes (IL-4, IL-6, IL-8, IL-10) in mesenteric lymph nodes and jejunum and mucosal growth-related genes (IGF-1, mTOR, ALP) in LPS-challenged piglets. These results suggested that CS supplementation improved the intestinal function in LPS-challenged piglets by improving intestinal oxidative stress, immune stress, and absorption and repair function. However, although CCT supplementation improved oxidative stress by reducing (p < 0.05) the content of malondialdehyde and the activity of nitric oxide synthase in the duodenum, CCT supplementation tended to aggravate the intestinal absorption dysfunction in LPS-challenged piglets. Furthermore, compared with the control and LPS groups, CCT supplementation remarkably elevated the content of prostaglandin in plasma and the mRNA levels of pro-inflammatory factor IL-6 in mesenteric lymph nodes and jejunum, and reduced the activity of maltase in the ileum in LPS-challenged piglets. These results suggested that CCT supplementation had a negative effect on intestinal function by altering intestinal immune stress response and reducing disaccharidase activity in LPS-challenged piglets. Conclusions Compared to CS, CCT supplementation exhibited a negative effect on intestinal function, suggesting whether CCT can be as an effective feed additive still needs further study.
Collapse
|
9
|
He Z, Xu C, Chen F, Lou Y, Nie G, Xie D. Dietary DHA Enhanced the Textural Firmness of Common Carp ( Cyprinus carpio L.) Fed Plant-Derived Diets through Restraining FoxO1 Pathways. Foods 2022; 11:foods11223600. [PMID: 36429191 PMCID: PMC9689754 DOI: 10.3390/foods11223600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Omega-3 fatty acids have a positive effect on the muscle textural firmness of fish, while the intrinsic mechanism is poorly understood. To investigate the potential mechanism of textural modification caused by dietary docosahexaenoic acid ( DHA) in common carp (Cyprinus carpio L.), three plant-derived diets with varying DHA levels (0%, 0.5%, 1%, D1-D3) were prepared to feed juveniles (initial weight 15.27 ± 0.77 g) for 8 weeks, and the muscular texture, fibers density, and transcriptome were analyzed. The results showed that the growth performance, muscular DHA content, fibers density, and texture of the fish fed diets D2 and D3 were significantly ameliorated compared with the fish fed diet D1. The muscular transcriptome profiles indicated that the up-regulated genes of fish fed dietary DHA mainly in response to muscle proliferation, as well as the FoxO pathway, were significantly enriched in the D2 and D3 groups. Consistent with this, the Quantitative Real-Time PCR (qRT-PCR ) assays indicated that the expression of myogenic regulatory factors (myog, myod, mrf4, mrf5) was up-regulated in the high-DHA groups. Additionally, the expression of foxo1 (inhibitor of myofiber development) mRNA was down-regulated, while its negative regulatory pathway (MAPK and PI3K) was activated in the D2 and D3 groups. The results suggested that the DHA supplementation is beneficial to modifying the muscular textural firmness of common carp fed plant-derived diets, which could be attributed to the inhibition of FoxO1 pathways.
Collapse
Affiliation(s)
- Zijie He
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
- Laboratory of Aquatic Animal Nutrition and Diet, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Chao Xu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Fang Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yunkun Lou
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Guoxing Nie
- Laboratory of Aquatic Animal Nutrition and Diet, College of Fisheries, Henan Normal University, Xinxiang 453007, China
- Correspondence: (G.N.); (D.X.); Tel./Fax: +86-373-3329129 (G.N.); +86-20-85283529 (D.X.)
| | - Dizhi Xie
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (G.N.); (D.X.); Tel./Fax: +86-373-3329129 (G.N.); +86-20-85283529 (D.X.)
| |
Collapse
|
10
|
Wu Y, Zhang Y, Jiao J. The relationship between n-3 polyunsaturated fatty acids and telomere: A review on proposed nutritional treatment against metabolic syndrome and potential signaling pathways. Crit Rev Food Sci Nutr 2022; 64:4457-4476. [PMID: 36330807 DOI: 10.1080/10408398.2022.2142196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Metabolic syndrome (MetS), a cluster of metabolic abnormalities composed of central obesity, elevated blood pressure, glucose disturbances, hypercholesterolemia and dyslipidaemia, has increasingly become a public health problem in the 21st century worldwide. The dysfunction of telomeres, the repetitive DNA with highly conserved sequences (5'-TTAGGG-3'), is remarkably correlated with organismal aging, even suggesting a causal relationship with metabolic disorders. The health benefits of n-3 polyunsaturated fatty acids (PUFAs) in multiple disorders are associated with telomere length in evidence, which have recently drawn wide attention. However, functional targets and pathways for the associations of n-3 PUFAs and telomere with MetS remain scare. Few studies have summarized the role of n-3 PUFAs in DNA damage repair pathways, anti-inflammatory pathways, and redox balance, linking with telomere biology, and other potential telomere-related signaling pathways. This review aims to (i) elucidate how n-3 PUFAs ameliorate telomere attrition in the context of anti-oxidation and anti-inflammation; (ii) unravel the role of n-3 PUFAs in modulating telomere-related neuron dysfunction and regulating the neuro-endocrine-immunological network in MetS; (iii) epidemiologically implicate the associations of metabolic disorders and n-3 PUFAs with telomere length; and (iv) suggest promising biochemical approaches and advancing methodologies to overcome the inter-variation problem helpful for future research.
Collapse
Affiliation(s)
- Yuqi Wu
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yu Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingjing Jiao
- Department of Nutrition, School of Public Health, Department of Clinical Nutrition, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Dang DX, Kim IH. Coated refined fish oil supplementation improves growth performance and meat quality in finishing pigs. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.105099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Barouki R, Audouze K, Becker C, Blaha L, Coumoul X, Karakitsios S, Klanova J, Miller GW, Price EJ, Sarigiannis D. The Exposome and Toxicology: A Win-Win Collaboration. Toxicol Sci 2022; 186:1-11. [PMID: 34878125 PMCID: PMC9019839 DOI: 10.1093/toxsci/kfab149] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The development of the exposome concept has been one of the hallmarks of environmental and health research for the last decade. The exposome encompasses the life course environmental exposures including lifestyle factors from the prenatal period onwards. It has inspired many research programs and is expected to influence environmental and health research, practices, and policies. Yet, the links bridging toxicology and the exposome concept have not been well developed. In this review, we describe how the exposome framework can interface with and influence the field of toxicology, as well as how the field of toxicology can help advance the exposome field by providing the needed mechanistic understanding of the exposome impacts on health. Indeed, exposome-informed toxicology is expected to emphasize several orientations including (1) developing approaches integrating multiple stressors, in particular chemical mixtures, as well as the interaction of chemicals with other stressors, (2) using mechanistic frameworks such as the adverse outcome pathways to link the different stressors with toxicity outcomes, (3) characterizing the mechanistic basis of long-term effects by distinguishing different patterns of exposures and further exploring the environment-DNA interface through genetic and epigenetic studies, and (4) improving the links between environmental and human health, in particular through a stronger connection between alterations in our ecosystems and human toxicology. The exposome concept provides the linkage between the complex environment and contemporary mechanistic toxicology. What toxicology can bring to exposome characterization is a needed framework for mechanistic understanding and regulatory outcomes in risk assessment.
Collapse
Affiliation(s)
- Robert Barouki
- Inserm UMR S-1124, Université de Paris, T3S, Paris F-75006, France
- Service de Biochimie métabolomique et protéomique, Hôpital Necker enfants malades, AP-HP, Paris, France
| | - Karine Audouze
- Inserm UMR S-1124, Université de Paris, T3S, Paris F-75006, France
| | - Christel Becker
- Inserm UMR S-1124, Université de Paris, T3S, Paris F-75006, France
| | - Ludek Blaha
- RECETOX, Faculty of Science, Masaryk University, Brno 60200, Czech Republic
| | - Xavier Coumoul
- Inserm UMR S-1124, Université de Paris, T3S, Paris F-75006, France
| | - Spyros Karakitsios
- Center for Interdisciplinary Research and Innovation, HERACLES Research Center on the Exposome and Health, Aristotle University of Thessaloniki, Thessaloniki 57001, Greece
- Enve.X, Thessaloniki 55133, Greece
| | - Jana Klanova
- RECETOX, Faculty of Science, Masaryk University, Brno 60200, Czech Republic
| | - Gary W Miller
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Elliott J Price
- RECETOX, Faculty of Science, Masaryk University, Brno 60200, Czech Republic
- Faculty of Sports Studies, Masaryk University, Brno 62500, Czech Republic
| | - Denis Sarigiannis
- Center for Interdisciplinary Research and Innovation, HERACLES Research Center on the Exposome and Health, Aristotle University of Thessaloniki, Thessaloniki 57001, Greece
- Enve.X, Thessaloniki 55133, Greece
| |
Collapse
|
13
|
Effect of TBC of raw milk and thermal treatment intensity on endotoxin contents of milk products. Food Res Int 2022; 152:110816. [DOI: 10.1016/j.foodres.2021.110816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/24/2021] [Accepted: 11/15/2021] [Indexed: 11/18/2022]
|
14
|
Inflammatory Mediation of Heat Stress-Induced Growth Deficits in Livestock and Its Potential Role as a Target for Nutritional Interventions: A Review. Animals (Basel) 2021; 11:ani11123539. [PMID: 34944316 PMCID: PMC8698153 DOI: 10.3390/ani11123539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 12/05/2022] Open
Abstract
Simple Summary Heat stress is a persistent challenge for livestock producers. Molecular changes throughout the body that result from sustained heat stress slow muscle growth and thus are detrimental to carcass yield and value. Feedlot animals are at particularly high risk for heat stress because their confinement limits their ability to pursue shade and other natural cooling behaviors. Changes in infrastructure to reduce the impact of heat stress are often cost-prohibitive, but recent studies have revealed that anti-inflammatory therapies may help to improve growth deficits in heat-stressed animals. This review describes the conditions that cause heat stress and explains the role of inflammation in muscle growth impairment. Additionally, it discusses the potential for several natural anti-inflammatory dietary additives to improve muscle growth outcomes in heat-stressed livestock. Abstract Heat stress is detrimental to well-being and growth performance in livestock, and systemic inflammation arising during chronic heat stress contributes to these poor outcomes. Sustained exposure of muscle and other tissues to inflammation can impair the cellular processes that facilitate muscle growth and intramuscular fat deposition, thus reducing carcass quality and yield. Climate change is expected to produce more frequent extreme heat events, increasing the potential impact of heat stress on sustainable livestock production. Feedlot animals are at particularly high risk for heat stress, as confinement limits their ability to seek cooling from the shade, water, or breeze. Economically practical options to circumvent heat stress in feedlot animals are limited, but understanding the mechanistic role of inflammation in heat stress outcomes may provide the basis for treatment strategies to improve well-being and performance. Feedlot animals receive formulated diets daily, which provides an opportunity to administer oral nutraceuticals and other bioactive products to mitigate heat stress-induced inflammation. In this review, we examine the complex associations between heat stress, systemic inflammation, and dysregulated muscle growth in meat animals. We also present evidence for potential nutraceutical and dietary moderators of inflammation and how they might improve the unique pathophysiology of heat stress.
Collapse
|
15
|
Liu SH, Chen YC, Tzeng HP, Chiang MT. Fish oil enriched ω-3 fatty acids ameliorates protein synthesis/degradation imbalance, inflammation, and wasting in muscles of diet-induced obese rats. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
16
|
Ghnaimawi S, Rebello L, Baum J, Huang Y. DHA but not EPA induces the trans-differentiation of C2C12 cells into white-like adipocytes phenotype. PLoS One 2021; 16:e0249438. [PMID: 34473703 PMCID: PMC8412409 DOI: 10.1371/journal.pone.0249438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/12/2021] [Indexed: 01/21/2023] Open
Abstract
Muscle derived stem cells (MDSCs) and myoblast play an important role in myotube regeneration when muscle tissue is injured. However, these cells can be induced to differentiate into adipocytes once exposed to PPARγ activator like EPA and DHA that are highly suggested during pregnancy. The objective of this study aims at determining the identity of trans-differentiated cells by exploring the effect of EPA and DHA on C2C12 undergoing differentiation into brown and white adipocytes. DHA but not EPA committed C2C12 cells reprograming into white like adipocyte phenotype. Also, DHA promoted the expression of lipolysis regulating genes but had no effect on genes regulating β-oxidation referring to its implication in lipid re-esterification. Furthermore, DHA impaired C2C12 cells differentiation into brown adipocytes through reducing the thermogenic capacity and mitochondrial biogenesis of derived cells independent of UCP1. Accordingly, DHA treated groups showed an increased accumulation of lipid droplets and suppressed mitochondrial maximal respiration and spare respiratory capacity. EPA, on the other hand, reduced myogenesis regulating genes, but no significant differences were observed in the expression of adipogenesis key genes. Likewise, EPA suppressed the expression of WAT signature genes indicating that EPA and DHA have an independent role on white adipogensis. Unlike DHA treatment, EPA supplementation had no effect on the differential of C2C12 cells into brown adipocytes. In conclusion, DHA is a potent adipogenic and lipogenic factor that can change the metabolic profile of muscle cells by increasing myocellular fat.
Collapse
Affiliation(s)
- Saeed Ghnaimawi
- Department of Cell and Molecular Biology Program, University of Arkansas, Fayetteville, North Carolina, United States of America
| | - Lisa Rebello
- Department of Cell and Molecular Biology Program, University of Arkansas, Fayetteville, North Carolina, United States of America
| | - Jamie Baum
- Department of Food Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, United States of America
| | - Yan Huang
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, North Carolina, United States of America
| |
Collapse
|
17
|
Mavrommatis A, Theodorou G, Politis I, Tsiplakou E. Schizochytrium sp. Dietary supplementation modify Toll-like receptor 4 (TLR4) transcriptional regulation in monocytes and neutrophils of dairy goats. Cytokine 2021; 148:155588. [PMID: 34403896 DOI: 10.1016/j.cyto.2021.155588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/26/2021] [Accepted: 05/17/2021] [Indexed: 12/29/2022]
Abstract
Animals protect themselves against pathogens or abiotic factors by innate or adaptive mechanisms. Long-chain polyunsaturated fatty acids (ω3) of microalgae modify both human and mice' immune systems resulting in a beneficial balance between pro-inflammatory and anti-inflammatory pathways. However, scarce information exists on their impact on lactating animals' immunity. The objective of this study was to investigate the impact of dietary inclusion of Schizochytrium sp. (rich in docosapentaenoic and docosahexaenoic acid), on the expression of several genes involved in the innate immunity of goats. Twenty-four dairy goats were divided into four homogeneous sub-groups (n = 6). All goats were fed individually with alfalfa hay and concentrate. The concentrate of the control group (CON) had no microalgae while those of the treated groups were supplemented daily with 20 (ALG20), 40 (ALG40), and 60 (ALG60) g Schizochytrium sp. Monocytes and neutrophils were isolated from goats' blood in the 20th, 40th, and 60th days from the beginning of the experimental period. The relative transcript levels of TLR4, MYD88, MAPK, IRF3, IFNG, and pro-inflammatory cytokines (IL1B, IL2, IL8, TNF), and chemokines (CCL5 and CXCL16) were decreased in monocytes of microalgae treated goats compared to the CON. In contrast, MAPK and IL1B relative transcript levels were increased in neutrophils of ALG40 and ALG60 groups. In conclusion, the supplementation of goats' diet with 20 g Schizochytrium sp. resulted in a downregulation of the pro-inflammatory transcriptions, and following further research could be considered as a sustainable alternative strategy to improve immune function.
Collapse
Affiliation(s)
- Alexandros Mavrommatis
- Department of Animal Science, Laboratory of Nutritional Physiology and Feeding, Agricultural University of Athens, Iera Odos 75, Athens GR-11855, Greece
| | - Georgios Theodorou
- Department of Animal Science, Laboratory of Animal Breeding & Husbandry, Agricultural University of Athens, Greece, Iera Odos 75, Athens GR-11855, Greece
| | - Ioannis Politis
- Department of Animal Science, Laboratory of Animal Breeding & Husbandry, Agricultural University of Athens, Greece, Iera Odos 75, Athens GR-11855, Greece
| | - Eleni Tsiplakou
- Department of Animal Science, Laboratory of Nutritional Physiology and Feeding, Agricultural University of Athens, Iera Odos 75, Athens GR-11855, Greece.
| |
Collapse
|
18
|
Gala K, Desai V, Liu N, Omer EM, McClave SA. How to Increase Muscle Mass in Critically Ill Patients: Lessons Learned from Athletes and Bodybuilders. Curr Nutr Rep 2021; 9:369-380. [PMID: 33098051 DOI: 10.1007/s13668-020-00334-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE OF REVIEW Decades of research on nutrition and exercise on athletes and bodybuilders has yielded various strategies to promote anabolism and improve muscle health and growth. We reviewed these interventions in the context of muscle loss in critically ill patients. RECENT FINDINGS For critically ill patients, ensuring optimum protein intake is important, potentially using a whey-containing source and supplemented with vitamin D and leucine. Agents like hydroxyl β-methylbutyrate and creatine can be used to promote muscle synthesis. Polyunsaturated fatty acids stimulate muscle production as well as have anti-inflammatory properties that may be useful in critical illness. Adjuncts like oxandralone promote anabolism. Resistance training has shown mixed results in the ICU setting but needs to be explored further with specific outcomes. Critically ill patients suffer from severe proteolysis during hospitalization as well as persistent inflammation, immunosuppression, and catabolism syndrome after discharge. High protein supplementation, ergogenic aids, anti-inflammatories, and anabolic adjuncts have shown potential in alleviating muscle loss and should be used in intensive care units to optimize patient recovery.
Collapse
Affiliation(s)
- Khushboo Gala
- Department of Internal Medicine, University of Louisville, 550 S Jackson Street, 3rd Floor, Ambulatory Care Building, Louisville, KY, 40202, USA.
| | - Viral Desai
- Department of Internal Medicine, University of Louisville, 550 S Jackson Street, 3rd Floor, Ambulatory Care Building, Louisville, KY, 40202, USA
| | - Nanlong Liu
- Department of Gastroenterology and Hepatology, University of Louisville, Louisville, KY, USA
| | - Endashaw M Omer
- Department of Gastroenterology and Hepatology, University of Louisville, Louisville, KY, USA
| | - Stephen A McClave
- Department of Gastroenterology and Hepatology, University of Louisville, Louisville, KY, USA
| |
Collapse
|
19
|
Nutraceuticals in the Prevention and Treatment of the Muscle Atrophy. Nutrients 2021; 13:nu13061914. [PMID: 34199575 PMCID: PMC8227811 DOI: 10.3390/nu13061914] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 12/15/2022] Open
Abstract
Imbalance of protein homeostasis, with excessive protein degradation compared with protein synthesis, leads to the development of muscle atrophy resulting in a decrease in muscle mass and consequent muscle weakness and disability. Potential triggers of muscle atrophy include inflammation, malnutrition, aging, cancer, and an unhealthy lifestyle such as sedentariness and high fat diet. Nutraceuticals with preventive and therapeutic effects against muscle atrophy have recently received increasing attention since they are potentially more suitable for long-term use. The implementation of nutraceutical intervention might aid in the development and design of precision medicine strategies to reduce the burden of muscle atrophy. In this review, we will summarize the current knowledge on the importance of nutraceuticals in the prevention of skeletal muscle mass loss and recovery of muscle function. We also highlight the cellular and molecular mechanisms of these nutraceuticals and their possible pharmacological use, which is of great importance for the prevention and treatment of muscle atrophy.
Collapse
|
20
|
Kang P, Huang X, Wan Z, Liang T, Wang Y, Li X, Zhang J, Zhu H, Liu Y. Kinetics of changes in gene and microRNA expression related with muscle inflammation and protein degradation following LPS-challenge in weaned piglets. Innate Immun 2020; 27:23-30. [PMID: 33232194 PMCID: PMC7780359 DOI: 10.1177/1753425920971032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To test the dynamic changes of the expression of genes and microRNA in the gastrocnemius muscle after LPS challenge, 36 piglets were assigned to a control group (slaughtered 0 h after saline injection) and LPS groups (slaughtered at 1 h, 2 h, 4 h, 8 h, and 12 h after LPS treatment, respectively). After LPS treatment, the mRNA expression of IL-1β, IL-6, and TNF-α reached maximal levels at 1 h, 2 h, and 1 h, respectively (P < 0.05), and mRNA expression of TLR4, NODs, muscle-specific ring finger 1, and muscle atrophy F-box peaked at 12 h (P < 0.05). Moreover, the expression of miR-122, miR-135a, and miR-370 reduced at 1 h, 1 h, and 2 h, respectively (P < 0.05), and miR-34a, miR-224, miR-132, and miR-145 reached maximum expression levels at 1 h, 1 h, 2 h, and 4 h, respectively (P < 0.05). These results suggested that mRNA expression of pro-inflammatory cytokines was elevated in the early stage, mRNA expression of genes related to TLR4 and NODs signaling pathways and protein degradation increased in the later phase, and the expression of microRNA related to muscle inflammation and protein degradation changed in the early stage after LPS injection.
Collapse
Affiliation(s)
- Ping Kang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, 74615Wuhan Polytechnic University, China
| | - Xingfa Huang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, 74615Wuhan Polytechnic University, China
| | - Zhicheng Wan
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, 74615Wuhan Polytechnic University, China
| | - Tianzeng Liang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, 74615Wuhan Polytechnic University, China
| | - Yang Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, 74615Wuhan Polytechnic University, China
| | - Xiangen Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, 74615Wuhan Polytechnic University, China
| | - Jing Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, 74615Wuhan Polytechnic University, China
| | - Huiling Zhu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, 74615Wuhan Polytechnic University, China
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, 74615Wuhan Polytechnic University, China
| |
Collapse
|
21
|
Jalili M, Hekmatdoost A. Dietary ω-3 fatty acids and their influence on inflammation via Toll-like receptor pathways. Nutrition 2020; 85:111070. [PMID: 33545546 DOI: 10.1016/j.nut.2020.111070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/05/2020] [Accepted: 11/02/2020] [Indexed: 12/17/2022]
Abstract
Dietary intake of long-chain, highly unsaturated ω-3 fatty acids (FAs) is considered indispensable for humans. The ω-3 FAs have been known to be anti-inflammatory and immunomodulatory dietary factors; however, the modes of action on pathogen recognition receptors (PRRs) and downstream signaling pathways have not been fully elucidated. Dietary sources contain various amounts of ω-3 long-chain fatty acids (LCFAs) of different lengths and the association between intake of these polyunsaturated fatty acids (PUFAs) with underlying mechanisms of various immune-related disorders can be of great interest. The potential anti-inflammatory role for ω-3 LCFAs can be explained by modification of lipid rafts, modulation of inflammatory mediators such as cytokines and PRRs. Toll-like receptors (TLRs) are a group of PRRs that play an important role in the recognition of bacterial infections and ω-3 FAs have been implicated in the modulation of downstream signaling of TLR-4, an important receptor for recognition of gram-negative bacteria. The ω-3 FAs docosahexaenoic acid and eicosapentaenoic acid have been investigated in vivo and in vitro for their effects on the nuclear factor-κB activation pathway. Identification of the effects of ω-3 FAs on other key molecular factors like prostaglandins and leukotrienes and their signals may help the recognition and development of medicines to suppress the main mediators and turn on the expression of anti-inflammatory cytokines and nuclear receptors.
Collapse
Affiliation(s)
- Mahsa Jalili
- Cell, Molecular Biology Group, Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Azita Hekmatdoost
- Department of Clinical Nutrition, Faculty of Nutrition and Food Sciences, Shahid Beheshti University of Medical Sciences, National Nutrition and Food Technology Research Institute, Tehran, Iran
| |
Collapse
|
22
|
Lu N, Meyer T, Bruckner G, Monegue H, Lindemann M. Effects of dietary n-6:n-3 fatty acid ratio on growth performance, plasma fatty acid profile, intestinal morphology, and immune function of pigs. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.104042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Wen C, Li F, Guo Q, Zhang L, Duan Y, Wang W, Li J, He S, Chen W, Yin Y. Protective effects of taurine against muscle damage induced by diquat in 35 days weaned piglets. J Anim Sci Biotechnol 2020; 11:56. [PMID: 32514342 PMCID: PMC7268319 DOI: 10.1186/s40104-020-00463-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/24/2020] [Indexed: 12/12/2022] Open
Abstract
Background Oxidative stress is a key factor that influences piglets’ health. Taurine plays an imperative role in keeping the biological system from damage. This study was conducted to investigate the protective effect of taurine against muscle injury due to the secondary effect of diquat toxicity. Results Our study found that taurine effectively and dose-dependently alleviated the diquat toxicity induced rise of feed/gain, with a concurrent improvement of carcass lean percentage. The plasma content of taurine was considerably increased in a dose-dependent manner. Consequently, dietary taurine efficiently improved the activity of plasma antioxidant enzymes. Furthermore, taurine attenuated muscle damage by restoring mitochondrial micromorphology, suppressing protein degradation and reducing the percentage of apoptotic cells in the skeletal muscle. Taurine supplementation also suppressed the genes expression levels of the antioxidant-, mitochondrial biogenesis-, and muscle atrophy-related genes in the skeletal muscle of piglets with oxidative stress. Conclusions These results showed that the dose of 0.60% taurine supplementation in the diet could attenuate skeletal muscle injury induced by diquat toxicity. It is suggested that taurine could be a potential nutritional intervention strategy to improve growth performance.
Collapse
Affiliation(s)
- Chaoyue Wen
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, 410125 China.,Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125 China.,Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, 410125 China.,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, 410125 China.,Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, 410125 China.,Laboratory of Animal Nutrition and Human Health, Hunan Normal University, Changsha, 410081 Hunan China.,Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, 410081 Hunan China.,Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Science, Hunan Normal University, Changsha, 410081 Hunan China
| | - Fengna Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, 410125 China.,Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125 China.,Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, 410125 China.,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, 410125 China.,Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, 410125 China
| | - Qiuping Guo
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, 410125 China.,Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125 China.,Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, 410125 China.,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, 410125 China.,Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, 410125 China.,University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Lingyu Zhang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, 410125 China.,Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125 China.,Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, 410125 China.,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, 410125 China.,Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, 410125 China.,University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Yehui Duan
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, 410125 China.,Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125 China.,Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, 410125 China.,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, 410125 China.,Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, 410125 China
| | - Wenlong Wang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, 410125 China.,Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125 China.,Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, 410125 China.,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, 410125 China.,Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, 410125 China.,Laboratory of Animal Nutrition and Human Health, Hunan Normal University, Changsha, 410081 Hunan China.,Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, 410081 Hunan China.,Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Science, Hunan Normal University, Changsha, 410081 Hunan China
| | - Jianzhong Li
- Laboratory of Animal Nutrition and Human Health, Hunan Normal University, Changsha, 410081 Hunan China.,Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, 410081 Hunan China.,Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Science, Hunan Normal University, Changsha, 410081 Hunan China
| | - Shanping He
- Laboratory of Animal Nutrition and Human Health, Hunan Normal University, Changsha, 410081 Hunan China.,Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, 410081 Hunan China.,Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Science, Hunan Normal University, Changsha, 410081 Hunan China
| | - Wen Chen
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, 410125 China.,Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125 China.,Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, 410125 China.,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, 410125 China.,Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, 410125 China
| | - Yulong Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, 410125 China.,Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125 China.,Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, 410125 China.,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, 410125 China.,Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, 410125 China
| |
Collapse
|
24
|
Peixoto JVC, Paula LMRD, Iagher F, Silva IK, Dias FAL, Fogaça RTH. Shark liver oil consumption decreases contractility in EDL muscle of trained rats. FISIOTERAPIA EM MOVIMENTO 2020. [DOI: 10.1590/1980-5918.033.ao11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Abstract Introduction: Professional and recreational athletes make daily use of nutritional supplements to improve physical performance. Polyunsaturated fatty acids (PUFAs) have been used in this sense. N-3 PUFA, particularly eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids are involved in important physiological functions and the benefits of supplementation are demonstrated in several types of users. Shark liver oil (SLO) is a natural source of n-3 PUFA. Objective: To evaluate the effect of supplementation with SLO on contractility of skeletal muscles with different metabolic characteristics, soleus and extensor digitorum longus (EDL) from rats submitted to eight weeks of interval training of progressive intensity on a motorized treadmill. In the supplemented group, animals were supplemented with SLO (1 g/kg) five times a week for eight weeks. Method: Contractile parameters as maximum isometric twitch force (Tmax), maximum speed of force development (+dF/dt), maximum speed of force decrease (-dF/dt), maximum tetanic force (Fmax) and resistance to fatigue were analyzed in isolated muscle. Results: Compared to the control group, EDL muscles from the supplemented group reduced Tmax at the first (10.82 ± 0.89 vs 14.30 ± 0.67 mN/mm2. p < 0.01) and second minutes of experimentation (9.85 ± 0.63 vs 13.12 ± 0.70 mN/mm2. p < 0.01). However, it increased resistance to fatigue (22.80 ± 0.97 vs 18.60 ± 0.51 seconds. p = 0.005). Conclusion: No difference was observed in the soleus muscle.
Collapse
|
25
|
Effect of flaxseed oil on muscle protein loss and carbohydrate oxidation impairment in a pig model after lipopolysaccharide challenge. Br J Nutr 2019; 123:859-869. [PMID: 31524111 DOI: 10.1017/s0007114519002393] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Flaxseed oil is rich in α-linolenic acid (ALA), which is the metabolic precursor of EPA and DHA. The present study investigated the effect of flaxseed oil supplementation on lipopolysaccharide (LPS)-induced muscle atrophy and carbohydrate oxidation impairment in a piglet model. Twenty-four weaned pigs were used in a 2 × 2 factorial experiment including dietary treatment (5 % maize oil v. 5 % flaxseed oil) and LPS challenge (saline v. LPS). On day 21 of treatment, the pigs were injected intraperitoneally with 100 μg/kg body weight LPS or sterile saline. At 4 h after injection, blood, gastrocnemius muscle and longissimus dorsi muscle were collected. Flaxseed oil supplementation increased ALA, EPA, total n-3 PUFA contents, protein:DNA ratio and pyruvate dehydrogenase complex quantity in muscles (P < 0·05). In addition, flaxseed oil reduced mRNA expression of toll-like receptor (TLR) 4 and nucleotide-binding oligomerisation domain protein (NOD) 2 and their downstream signalling molecules in muscles and decreased plasma concentrations of TNF-α, IL-6 and IL-8, and mRNA expression of TNF-α, IL-1β and IL-6 (P < 0·05). Moreover, flaxseed oil inclusion increased the ratios of phosphorylated protein kinase B (Akt) 1:total Akt1 and phosphorylated Forkhead box O (FOXO) 1:total FOXO1 and reduced mRNA expression of FOXO1, muscle RING finger (MuRF) 1 and pyruvate dehydrogenase kinase 4 in muscles (P < 0·05). These results suggest that flaxseed oil might have a positive effect on alleviating muscle protein loss and carbohydrates oxidation impairment induced by LPS challenge through regulation of the TLR4/NOD and Akt/FOXO signalling pathways.
Collapse
|
26
|
Stupin M, Kibel A, Stupin A, Selthofer-Relatić K, Matić A, Mihalj M, Mihaljević Z, Jukić I, Drenjančević I. The Physiological Effect of n-3 Polyunsaturated Fatty Acids (n-3 PUFAs) Intake and Exercise on Hemorheology, Microvascular Function, and Physical Performance in Health and Cardiovascular Diseases; Is There an Interaction of Exercise and Dietary n-3 PUFA Intake? Front Physiol 2019; 10:1129. [PMID: 31543828 PMCID: PMC6728652 DOI: 10.3389/fphys.2019.01129] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/16/2019] [Indexed: 12/15/2022] Open
Abstract
Physical activity has a beneficial effect on systemic hemodynamics, physical strength, and cardiac function in cardiovascular (CV) patients. Potential beneficial effects of dietary intake of n-3 polyunsaturated fatty acids (n-3 PUFAs), such as α-linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid on hemorheology, vascular function, inflammation and potential to improve physical performance as well as other CV parameters are currently investigated. Recent meta-analysis suggests no effect of n-3 PUFA supplementation on CV function and outcomes of CV diseases. On the other hand, some studies support beneficial effects of n-3 PUFAs dietary intake on CV and muscular system, as well as on immune responses in healthy and in CV patients. Furthermore, the interaction of exercise and dietary n-3 PUFA intake is understudied. Supplementation of n-3 PUFAs has been shown to have antithrombotic effects (by decreasing blood viscosity, decreasing coagulation factor and PAI-1 levels and platelet aggregation/reactivity, enhancing fibrinolysis, but without effects on erythrocyte deformability). They decrease inflammation by decreasing IL-6, MCP-1, TNFα and hsCRP levels, expression of endothelial cell adhesion molecules and significantly affect blood composition of fatty acids. Treatment with n-3 PUFAs enhances brachial artery blood flow and conductance during exercise and enhances microvascular post-occlusive hyperemic response in healthy humans, however, the effects are unknown in cardiovascular patients. Supplementation of n-3 PUFAs may improve anaerobic endurance and may modulate oxygen consumption during intense exercise, may increase metabolic capacity, enhance endurance capacity delaying the onset of fatigue, and improving muscle hypertrophy and neuromuscular function in humans and animal models. In addition, n-3 PUFAs have anti-inflammatory and anti-nociceptive effects and may attenuate delayed-onset muscle soreness and muscle stiffness, and preserve joint mobility. On the other hand, effects of n-3 PUFAs were variably observed in men and women and they vary depending on dietary protocol, type of supplementation and type of sports activity undertaken, both in healthy and cardiovascular patients. In this review we will discuss the physiological effects of n-3 PUFA intake and exercise on hemorheology, microvascular function, immunomodulation and inflammation and physical performance in healthy persons and in cardiovascular diseases; elucidating if there is an interaction of exercise and diet.
Collapse
Affiliation(s)
- Marko Stupin
- Institute and Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.,Croatian National Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.,Department of Cardiovascular Diseases, Osijek University Hospital, Osijek, Croatia
| | - Aleksandar Kibel
- Institute and Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.,Croatian National Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.,Department of Cardiovascular Diseases, Osijek University Hospital, Osijek, Croatia
| | - Ana Stupin
- Institute and Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.,Croatian National Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.,Department of Pathophysiology, Physiology and Immunology, Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Kristina Selthofer-Relatić
- Department of Cardiovascular Diseases, Osijek University Hospital, Osijek, Croatia.,Department of Internal Medicine, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Anita Matić
- Institute and Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.,Croatian National Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Martina Mihalj
- Institute and Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.,Croatian National Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.,Department of Dermatology, Osijek University Hospital, Osijek, Croatia
| | - Zrinka Mihaljević
- Institute and Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.,Croatian National Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Ivana Jukić
- Institute and Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.,Croatian National Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Ines Drenjančević
- Institute and Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.,Croatian National Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
27
|
Duan Y, Zheng C, Zhong Y, Song B, Yan Z, Kong X, Deng J, Li F, Yin Y. Beta-hydroxy beta-methyl butyrate decreases muscle protein degradation via increased Akt/FoxO3a signaling and mitochondrial biogenesis in weanling piglets after lipopolysaccharide challenge. Food Funct 2019; 10:5152-5165. [PMID: 31373594 DOI: 10.1039/c9fo00769e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The aim of this study was to investigate the effects of dietary β-hydroxy-β-methylbutyrate (HMB) on lipopolysaccharide (LPS)-induced muscle atrophy and to investigate the mechanisms involved. Sixty pigs (21 ± 2 days old, 5.86 ± 0.18 kg body weight) were used in a 2 × 3 factorial design and the main factors included diet (0, 0.60%, or 1.20% HMB) and immunological challenge (LPS or saline). After 15 d of treatment with LPS and/or HMB, growth performance, blood parameters, and muscle protein degradation rate were measured. The results showed that in LPS-injected pigs, 0.60% HMB supplementation increased the average daily gain and average daily feed intake and decreased the feed : gain ratio (P < 0.05), with a concurrent increase of lean percentage. Moreover, 0.60% HMB supplementation decreased the serum concentrations of blood urea nitrogen, IL-1β, and TNF-α and the rate of protein degradation as well as cell apoptosis in selected muscles (P < 0.05). In addition, dietary HMB supplementation (0.60%) regulated the expression of genes involved in mitochondrial biogenesis and increased the phosphorylation of Akt and Forkhead Box O3a (FoxO3a) in selected muscles, accompanied by decreased protein expression of muscle RING finger 1 and muscle atrophy F-box. These results indicate that HMB may exert protective effects against LPS-induced muscle atrophy by normalizing the Akt/FoxO3a axis that regulates ubiquitin proteolysis and by improving mitochondrial biogenesis.
Collapse
Affiliation(s)
- Yehui Duan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Komiya Y, Kobayashi C, Uchida N, Otsu S, Tanio T, Yokoyama I, Nagasao J, Arihara K. Effect of dietary fish oil intake on ubiquitin ligase expression during muscle atrophy induced by sciatic nerve denervation in mice. Anim Sci J 2019; 90:1018-1025. [PMID: 31132809 DOI: 10.1111/asj.13224] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/03/2019] [Accepted: 04/18/2019] [Indexed: 12/11/2022]
Abstract
Dietary fish oil intake improves muscle atrophy in several atrophy models however the effect on denervation-induced muscle atrophy is not clear. Thus, the aim of this study was to investigate the effects of dietary fish oil intake on muscle atrophy and the expression of muscle atrophy markers induced by sciatic nerve denervation in mice. We performed histological and quantitative mRNA expression analysis of muscle atrophy markers in mice fed with fish oil with sciatic nerve denervation. Histological analysis indicated that dietary fish oil intake slightly prevented the decrease of muscle fiber diameter induced by denervation treatment. In addition, dietary fish oil intake suppressed the MuRF1 (tripartite motif-containing 63) expression up-regulated by denervation treatment, and this was due to decreased tumor necrosis factor-alpha (TNF-α) production in skeletal muscle. We concluded that dietary fish oil intake suppressed MuRF1 expression by decreasing TNF-α production during muscle atrophy induced by sciatic nerve denervation in mice.
Collapse
Affiliation(s)
- Yusuke Komiya
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Chiaki Kobayashi
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Naoyasu Uchida
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Shohei Otsu
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Tatsuki Tanio
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Issei Yokoyama
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Jun Nagasao
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Keizo Arihara
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| |
Collapse
|
29
|
Brown KM, Sharma S, Baker E, Hawkins W, van der Merwe M, Puppa MJ. Delta-6-desaturase (FADS2) inhibition and omega-3 fatty acids in skeletal muscle protein turnover. Biochem Biophys Rep 2019; 18:100622. [PMID: 30923750 PMCID: PMC6424014 DOI: 10.1016/j.bbrep.2019.100622] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/21/2019] [Accepted: 02/26/2019] [Indexed: 02/07/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are essential dietary components. They are not only used for energy, but also act as signaling molecules. The delta-6 desaturase (D6D) enzyme, encoded by the FADS2 gene, is one of two rate limiting enzymes that convert the PUFA precursors – α-linolenic (n-3) and linoleic acid (n-6) to their respective metabolites. Alterations in the D6D enzyme activity alters fatty acid profiles and are associated with metabolic and inflammatory diseases including cardiovascular disease and type 2 diabetes. Omega-3 PUFAs, specifically its constituent fatty acids DHA and EPA, are known for their anti-inflammatory ability and are also beneficial in the prevention of skeletal muscle wasting, however the mechanism for muscle preservation is not well understood. Moreover, little is known of the effects of altering the n-6/n-3 ratio in the context of a high-fat diet, which is known to downregulate protein synthesis. Twenty C57BL6 male mice were fed a high-fat lard (HFL, 45% fat (mostly lard), 35% carbohydrate and 20% protein, n-6:n-3 PUFA, 13:1) diet for 6 weeks. Mice were then divided into 4 groups (n = 5 per group): HFL– , high-fat oil– (HFO, 45% fat (mostly Menhaden oil), 35% carbohydrate and 20% protein, n-6:n-3 PUFA, 1:3), HFL+ (HFL diet plus an orally administered FADS2 inhibitor, 100 mg/kg/day), and HFO+ (HFO diet plus an orally administered FADS2 inhibitor, 100 mg/kg/day). After 2 weeks on their respective diets and treatments, animals were sacrificed and gastrocnemius muscle harvested. Protein turnover signaling were analyzed via Western Blot. 4-EBP1 and ribosomal protein S6 expression were measured. A two-way ANOVA revealed no significant change in the phosphorylation of both 4EBP-1 and ribosomal protein S6 with diet or inhibitor. There was a significant reduction in STAT3 phosphorylation with the inhibition of FADS2 (p = 0.03). Additionally, we measured markers of protein degradation through levels of FOXO phosphorylation, ubiquitin, and LC3B expression; there was a trend towards increased phosphorylation of FOXO (p = 0.08) and ubiquitinated proteins (p = 0.05) with FADS2 inhibition. LC3B expression, a marker of autophagy, was significantly higher in the HFL plus FADS2 inhibition group from all other comparisons. Lastly, we analyzed activation of mitochondrial biogenesis which is closely linked with protein synthesis through PGC1-α and Cytochrome-C expression, however no significant differences were associated with either marker across all groups. Collectively, these data suggest that the protective effects of muscle mass by omega-3 fatty acids are from inhibition of protein degradation. Our aim was to determine the role of PUFA metabolites, DHA and EPA, in skeletal muscle protein turnover and assess the effects of n-3s independently. We observed that by inhibiting the FADS2 enzyme, the protective effect of n-3s on protein synthesis and proliferation was lost; concomitantly, protein degradation was increased with FADS2 inhibition regardless of diet. High fat omega-3 rich diets increase STAT3 signaling in a FADS2 dependent manner. Inhibition of FADS2 attenuates the protective effects of omega-3 rich diet. Inhibition of FADS2 increases protein degradation regardless of diet.
Collapse
Affiliation(s)
- Katie M Brown
- University of Memphis, School of Health Studies, Memphis, TN, USA
| | - Sunita Sharma
- University of Memphis, School of Health Studies, Memphis, TN, USA
| | - Ella Baker
- University of Memphis, School of Health Studies, Memphis, TN, USA
| | - William Hawkins
- University of Memphis, School of Health Studies, Memphis, TN, USA
| | | | - Melissa J Puppa
- University of Memphis, School of Health Studies, Memphis, TN, USA
| |
Collapse
|
30
|
Zhang J, Xu X, Liu Y, Zhang L, Odle J, Lin X, Zhu H, Wang X, Liu Y. EPA and DHA Inhibit Myogenesis and Downregulate the Expression of Muscle-related Genes in C2C12 Myoblasts. Genes (Basel) 2019; 10:genes10010064. [PMID: 30669396 PMCID: PMC6356802 DOI: 10.3390/genes10010064] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 01/11/2019] [Indexed: 12/31/2022] Open
Abstract
This study was conducted to elucidate the biological effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on cell proliferation, differentiation and gene expression in C2C12 myoblasts. C2C12 were treated with various concentrations of EPA or DHA under proliferation and differentiation conditions. Cell viability was analyzed using cell counting kit-8 assays (CCK-8). The Edu assays were performed to analyze cell proliferation. To analyze cell differentiation, the expressions of myogenic marker genes were determined at the transcriptional and translational levels by qRT-PCR, immunoblotting and immunofluorescence. Global gene expression patterns were characterized using RNA-sequencing. Phosphorylation levels of ERK and Akt were examined by immunoblotting. Cell viability and proliferation was significantly inhibited after incubation with EPA (50 and 100 μM) or DHA (100 μM). Both EPA and DHA suppressed C2C12 myoblasts differentiation. RNA-sequencing analysis revealed that some muscle-related genes were significantly downregulated following EPA or DHA (50 μM) treatment, including insulin-like growth factor 2 (IGF-2), troponin T3 (Tnnt3), myoglobin (Mb), myosin light chain phosphorylatable fast skeletal muscle (Mylpf) and myosin heavy polypeptide 3 (Myh3). IGF-2 was crucial for the growth and differentiation of skeletal muscle and could activate the PI3K/Akt and the MAPK/ERK cascade. We found that EPA and DHA (50 μM) decreased the phosphorylation levels of ERK1/2 and Akt in C2C12 myoblasts. Thus, this study suggested that EPA and DHA exerted an inhibitory effect on myoblast proliferation and differentiation and downregulated muscle-related genes expression.
Collapse
Affiliation(s)
- Jing Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Xin Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Yan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Lin Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Jack Odle
- Laboratory of Development Nutrition, Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA.
| | - Xi Lin
- Laboratory of Development Nutrition, Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA.
| | - Huiling Zhu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Xiuying Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
31
|
Fappi A, Neves JDC, Kawasaki KA, Bacelar L, Sanches LN, P. da Silva F, Larina‐Neto R, Chadi G, Zanoteli E. Omega-3 multiple effects increasing glucocorticoid-induced muscle atrophy: autophagic, AMPK and UPS mechanisms. Physiol Rep 2019; 7:e13966. [PMID: 30648357 PMCID: PMC6333722 DOI: 10.14814/phy2.13966] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/23/2022] Open
Abstract
Muscle atrophy occurs in many conditions, including use of glucocorticoids. N-3 (omega-3) is widely consumed due its healthy properties; however, concomitant use with glucocorticoids can increase its side effects. We evaluated the influences of N-3 on glucocorticoid atrophy considering IGF-1, Myostatin, MEK/ERK, AMPK pathways besides the ubiquitin-proteasome system (UPS) and autophagic/lysosomal systems. Sixty animals constituted six groups: CT, N-3 (EPA 100 mg/kg/day for 40 days), DEXA 1.25 (DEXA 1.25 mg/kg/day for 10 days), DEXA 1.25 + N3 (EPA for 40 days + DEXA 1.25 mg/kg/day for the last 10 days), DEXA 2.5 (DEXA 2.5 mg/kg/day for 10 days), and DEXA 2.5 + N3 (EPA for 40 days + DEXA 2.5 mg/kg/day for 10 days). Results: N-3 associated with DEXA increases atrophy (fibers 1 and 2A), FOXO3a, P-SMAD2/3, Atrogin-1/MAFbx (mRNA) expression, and autophagic protein markers (LC3II, LC3II/LC3I, LAMP-1 and acid phosphatase). Additionally, N-3 supplementation alone decreased P-FOXO3a, PGC1-alpha, and type 1 muscle fiber area. Conclusion: N-3 supplementation increases muscle atrophy caused by DEXA in an autophagic, AMPK and UPS process.
Collapse
Affiliation(s)
- Alan Fappi
- Department of NeurologyFaculdade de Medicina FMUSPUniversidade de Sao PauloSP, Brazil
| | - Juliana de C. Neves
- Department of NeurologyFaculdade de Medicina FMUSPUniversidade de Sao PauloSP, Brazil
| | - Karine A. Kawasaki
- Department of NeurologyFaculdade de Medicina FMUSPUniversidade de Sao PauloSP, Brazil
| | - Luana Bacelar
- Department of NeurologyFaculdade de Medicina FMUSPUniversidade de Sao PauloSP, Brazil
| | - Leandro N. Sanches
- Department of NeurologyFaculdade de Medicina FMUSPUniversidade de Sao PauloSP, Brazil
| | - Felipe P. da Silva
- Department of NeurologyFaculdade de Medicina FMUSPUniversidade de Sao PauloSP, Brazil
| | - Rubens Larina‐Neto
- Department of NeurologyFaculdade de Medicina FMUSPUniversidade de Sao PauloSP, Brazil
| | - Gerson Chadi
- Department of NeurologyFaculdade de Medicina FMUSPUniversidade de Sao PauloSP, Brazil
| | - Edmar Zanoteli
- Department of NeurologyFaculdade de Medicina FMUSPUniversidade de Sao PauloSP, Brazil
| |
Collapse
|
32
|
Kulagina TP, Gritsyna YV, Aripovsky AV, Zhalimov VK, Vikhlyantsev IM. Fatty Acid Levels in Striated Muscles of Chronic Alcohol-Fed Rats. Biophysics (Nagoya-shi) 2018. [DOI: 10.1134/s0006350918050135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
33
|
Wang L, Luo L, Zhao W, Yang K, Shu G, Wang S, Gao P, Zhu X, Xi Q, Zhang Y, Jiang Q, Wang L. Lauric Acid Accelerates Glycolytic Muscle Fiber Formation through TLR4 Signaling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6308-6316. [PMID: 29877088 DOI: 10.1021/acs.jafc.8b01753] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Lauric acid (LA), which is the primary fatty acid in coconut oil, was reported to have many metabolic benefits. TLR4 is a common receptor of lipopolysaccharides and involved mainly in inflammation responses. Here, we focused on the effects of LA on skeletal muscle fiber types and metabolism. We found that 200 μM LA treatment in C2C12 or dietary supplementation of 1% LA increased MHCIIb protein expression and the proportion of type IIb muscle fibers from 0.452 ± 0.0165 to 0.572 ± 0.0153, increasing the mRNA expression of genes involved in glycolysis, such as HK2 and LDH2 (from 1.00 ± 0.110 to 1.35 ± 0.0843 and from 1.00 ± 0.123 to 1.71 ± 0.302 in vivo, respectively), decreasing the catalytic activity of lactate dehydrogenase (LDH), and transforming lactic acid to pyruvic acid. Furthermore, LA activated TLR4 signaling, and TLR4 knockdown reversed the effect of LA on muscle fiber type and glycolysis. Thus, we inferred that LA promoted glycolytic fiber formation through TLR4 signaling.
Collapse
|
34
|
Kitagawa M, Haji S, Amagai T. Elevated Serum AA/EPA Ratio as a Predictor of Skeletal Muscle Depletion in Cachexic Patients with Advanced Gastro-intestinal Cancers. ACTA ACUST UNITED AC 2018; 31:1003-1009. [PMID: 28882973 DOI: 10.21873/invivo.11161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/10/2017] [Accepted: 06/12/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND In recent years, the number of cancer patients has increased. Cancer patients are prone to sarcopenia as a result of the decrease in muscle mass and muscle weakness which occurs in cancer cachexia. Attention has been given on the effects of fatty acid administration on cancer patients. MATERIALS AND METHODS We conducted a retrospective chart-review study of consecutive patients with unresectable advanced GI cancer (stage IV) (n=46) receiving chemotherapy treatment in an outpatient or in-hospital setting between December 2012 and September 2015 at our Institution. The collected data were characteristics, psoas muscle area as measured by computed tomography (CT), and biochemical blood test and serum fatty acid profiles. Three methods of analysis were evaluated: (i) Comparison of biomarkers between two groups: psoas muscle index change rate (ΔPMI) decrease group vs. ΔPMI increase group. (ii) Correlation between ΔPMI and biomarkers. (iii) Multiple regression of ΔPMI and biomarkers Results: In the ΔPMI decrease group, n-6/n-3 ratio and AA/EPA ratio in the decrease group were significantly higher than those in the increase group. Among all parameters, serum EPA was positively and significantly related to ΔPMI (CC=0.443, p=0.039). In contrast, serum CRP, AA/EPA ratio and n-6/n-3 ratio were negatively related to ΔPMI (CC=-0.566, CC=-0.501, CC=-0.476, p=0.006, p=0.018, p=0.025, respectively). On multiple regression analysis, serum CRP value was strongly related to ΔPMI (r2=0.421, β=-0.670, p=0.001). CONCLUSION Higher n-6/n-3 and AA/EPA ratios were associated with a decrease in psoas muscle area, that lead to diagnosis of sarcopenia. Higher CRP was also associated with a decrease in psoas muscle area, suggesting that this might be an indicator of cachexic skeletal muscle depletion in cachexic patients with advanced gastro-intestinal cancers.
Collapse
Affiliation(s)
- Moeko Kitagawa
- Department of Food Sciences and Nutrition, School of Environmental Sciences, Mukogawa Women's University, Nishinomiya, Japan
| | - Seiji Haji
- Department of General Surgery, Takatsuki Hospital, Osaka, Japan
| | - Teruyoshi Amagai
- Department of Food Sciences and Nutrition, School of Environmental Sciences, Mukogawa Women's University, Nishinomiya, Japan
| |
Collapse
|
35
|
Barriers to cancer nutrition therapy: excess catabolism of muscle and adipose tissues induced by tumour products and chemotherapy. Proc Nutr Soc 2018; 77:394-402. [PMID: 29708079 DOI: 10.1017/s0029665118000186] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cancer-associated malnutrition is driven by reduced dietary intake and by underlying metabolic changes (such as inflammation, anabolic resistance, proteolysis, lipolysis and futile cycling) induced by the tumour and activated immune cells. Cytotoxic and targeted chemotherapies also elicit proteolysis and lipolysis at the tissue level. In this review, we summarise specific mediators and chemotherapy effects that provoke excess proteolysis in muscle and excess lipolysis in adipose tissue. A nutritionally relevant question is whether and to what degree these catabolic changes can be reversed by nutritional therapy. In skeletal muscle, tumour factors and chemotherapy drugs activate intracellular signals that result in the suppression of protein synthesis and activation of a transcriptional programme leading to autophagy and degradation of myofibrillar proteins. Cancer nutrition therapy is intended to ensure adequate provision of energy fuels and a complete repertoire of biosynthetic building blocks. There is some promising evidence that cancer- and chemotherapy-associated metabolic alterations may also be corrected by certain individual nutrients. The amino acids leucine and arginine provided in the diet at least partially reverse anabolic suppression in muscle, while n-3 PUFA inhibit the transcriptional activation of muscle catabolism. Optimal conditions for exploiting these anabolic and anti-catabolic effects are currently under study, with the overall aim of net improvements in muscle mass, functionality, performance status and treatment tolerance.
Collapse
|
36
|
Tang R, Lin YM, Liu HX, Wang ES. Neuroprotective effect of docosahexaenoic acid in rat traumatic brain injury model via regulation of TLR4/NF-Kappa B signaling pathway. Int J Biochem Cell Biol 2018; 99:64-71. [PMID: 29597004 DOI: 10.1016/j.biocel.2018.03.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 01/08/2023]
Abstract
OBJECTIVE The experiments were conducted to prove that docosahexaenoic acid (DHA) alleviates traumatic brain injury (TBI) through regulating TLR4/NF-Kappa B signaling pathway. METHODS Bioinformatic analysis was performed using published data from Gene Expression Omnibus (GEO) database to investigate differentially expressed genes and signaling pathways. Controlled cortical impact (CCI) injury rat model was built, and DHA (16 mg/kg in DMSO, once each day) was used to treat TBI rats. Neurological severity score (NSS) and beam walking test and rotarod test were used to confirm whether DHA is neuron-protective against TBI. The expression of TLR4, NF-Kappa B p65, (TNF)-α and IL-1β were examined by qRT-PCR and western blot. The impact of DHA on neurocyte apoptosis was validated by TdT-mediated dUTP Nick-End Labeling (TUNEL) staining. The influence of DHA on CD11b and GFAP expression in the hippocampus was determined through immunohistochemical analysis. RESULTS TLR4/NF Kappa B pathway was suggested to be closely correlated with TBI by bioinformatic analysis. DHA could improve the neurological function and learning and memory ability of rats after TBI as well as promote neurocytes from apoptosis. TLR4 expression and the expression of inflammatory mediator NF-Kappa B were also repressed by DHA treatment. CONCLUSIONS DHA exerted a neuron-protective influence in a rat model of TBI via repressing TLR4/NF-Kappa B pathway.
Collapse
Affiliation(s)
- Ri Tang
- Department of Neurosurgery, Jinshan Hospital of Fudan University, Shanghai, 200540, China
| | - Yi-Mei Lin
- Department of Gastroenterology, Fuqing City Hospital of Fujian Province, Fuqing, 350300, Fujian, China
| | - Hong-Xing Liu
- Department of Neurosurgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Er-Song Wang
- Department of Neurosurgery, Jinshan Hospital of Fudan University, Shanghai, 200540, China.
| |
Collapse
|
37
|
Lustgarten MS, Fielding RA. Metabolites related to renal function, immune activation, and carbamylation are associated with muscle composition in older adults. Exp Gerontol 2017; 100:1-10. [PMID: 29030163 DOI: 10.1016/j.exger.2017.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/28/2017] [Accepted: 10/01/2017] [Indexed: 12/25/2022]
Abstract
Reduced skeletal muscle density in older adults is associated with insulin resistance, decreased physical function, and an increased all-cause mortality risk. To elucidate mechanisms that may underlie the maintenance of skeletal muscle density, we conducted a secondary analysis of previously published muscle composition and serum metabolomic data in 73 older adults (average age, 78y). Multivariable-adjusted linear regression was used to examine associations between 321 metabolites with muscle composition, defined as the ratio between normal density (NDM) with low density (LDM) thigh muscle cross sectional area (NDM/LDM). Sixty metabolites were significantly (p≤0.05 and q<0.30) associated with NDM/LDM. Decreased renal function and the immune response have been previously linked with reduced muscle density, but the mechanisms underlying these connections are less clear. Metabolites that were significantly associated with muscle composition were then tested for their association with circulating markers of renal function (blood urea nitrogen, creatinine, uric acid), and with the immune response (neutrophils/lymphocytes) and activation (kynurenine/tryptophan). 43 significant NDM/LDM metabolites (including urea) were co-associated with at least 1 marker of renal function; 23 of these metabolites have been previously identified as uremic solutes. The neutrophil/lymphocyte ratio was significantly associated with NDM/LDM (β±SE: -0.3±0.1, p=0.01, q=0.04). 35 significant NDM/LDM metabolites were co-associated with immune activation. Carbamylation (defined as homocitrulline/lysine) was identified as a pathway that may link renal function and immune activation with muscle composition, as 29 significant NDM/LDM metabolites were co-associated with homocitrulline/lysine, with at least 2 markers of renal function, and with kynurenine/tryptophan. When considering that elevated urea and uremic metabolites have been linked with an increased systemic microbial burden, that antimicrobial defense can be reduced in the presence of carbamylation, and that adipocytes can promote host defense, we propose the novel hypothesis that the age-related increase in adipogenesis within muscle may be a compensatory antimicrobial response to protect against an elevated microbial burden.
Collapse
Affiliation(s)
- Michael S Lustgarten
- Nutrition, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center, Tufts University, Boston, MA, USA.
| | - Roger A Fielding
- Nutrition, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center, Tufts University, Boston, MA, USA
| |
Collapse
|
38
|
Nwachukwu ID, Kouritzin TM, Aluko RE, Myrie SB. The role of omega-3 fatty acids in skeletal muscle anabolism, strength, and function in healthy and diseased states. J Food Biochem 2017. [DOI: 10.1111/jfbc.12435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ifeanyi D. Nwachukwu
- Department of Human Nutritional Sciences; University of Manitoba; Winnipeg Canada
- Richardson Centre for Functional Foods and Nutraceuticals; University of Manitoba; Winnipeg Canada
| | - Trevor M. Kouritzin
- Department of Human Nutritional Sciences; University of Manitoba; Winnipeg Canada
- Richardson Centre for Functional Foods and Nutraceuticals; University of Manitoba; Winnipeg Canada
| | - Rotimi E. Aluko
- Department of Human Nutritional Sciences; University of Manitoba; Winnipeg Canada
- Richardson Centre for Functional Foods and Nutraceuticals; University of Manitoba; Winnipeg Canada
| | - Semone B. Myrie
- Department of Human Nutritional Sciences; University of Manitoba; Winnipeg Canada
- Richardson Centre for Functional Foods and Nutraceuticals; University of Manitoba; Winnipeg Canada
| |
Collapse
|
39
|
Abreu P, Leal-Cardoso JH, Ceccatto VM, Hirabara SM. Regulation of muscle plasticity and trophism by fatty acids: A short review. Rev Assoc Med Bras (1992) 2017; 63:148-155. [PMID: 28355376 DOI: 10.1590/1806-9282.63.02.148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 06/26/2016] [Indexed: 11/22/2022] Open
Abstract
The skeletal muscle tissue has a remarkable ability to alter its plastic structural and functional properties after a harmful stimulus, regulating the expression of proteins in complex events such as muscle regeneration. In this context, considering that potential therapeutic agents have been widely studied, nutritional strategies have been investigated in order to improve the regenerative capacity of skeletal muscle. There is evidence of the modulatory action of fatty acids, such that oleic and linoleic acids, that are abundant in Western diets, on muscle function and trophism. Thus, fatty acids appear to be potential candidates to promote or impair the recovery of muscle mass and function during regeneration, since they modulate intracellular pathways that regulate myogenesis. This study is the first to describe and discuss the effect of fatty acids on muscle plasticity and trophism, with emphasis on skeletal muscle regeneration and in vitro differentiation of muscle cells.
Collapse
Affiliation(s)
- Phablo Abreu
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, SP, Brazil
| | - José Henrique Leal-Cardoso
- Department of Physiology, Institute for Biomedical Sciences, Universidade Estadual do Ceará, Fortaleza, CE, Brazil
| | - Vânia Marilande Ceccatto
- Department of Physiology, Institute for Biomedical Sciences, Universidade Estadual do Ceará, Fortaleza, CE, Brazil
| | - Sandro Massao Hirabara
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, SP, Brazil.,Interdisciplinary Graduate Program in Health Sciences, Institute of Physical Activity and Sport Sciences, Universidade Cruzeiro do Sul, São Paulo, SP, Brazil
| |
Collapse
|
40
|
Glutamate alleviates muscle protein loss by modulating TLR4, NODs, Akt/FOXO and mTOR signaling pathways in LPS-challenged piglets. PLoS One 2017; 12:e0182246. [PMID: 28783736 PMCID: PMC5544224 DOI: 10.1371/journal.pone.0182246] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 07/14/2017] [Indexed: 12/25/2022] Open
Abstract
The experiment was conducted to study the effect of the glutamate (Glu) on muscle protein loss through toll-like receptor 4 (TLR4), nucleotide-binding oligomerization domain proteins (NODs), Akt/Forkhead Box O (Akt/FOXO) and mammalian target of rapamycin (mTOR) signaling pathways in LPS-challenged piglets. Twenty-four weaned piglets were assigned into four treatments: (1) Control; (2) LPS+0% Glu; (3) LPS + 1.0% Glu; (4) LPS + 2.0% Glu. The experiment was lasted for 28 days. On d 28, the piglets in the LPS challenged groups were injected with LPS on 100 μg/kg body weight (BW), and the piglets in the control group were injected with the same volume of 0.9% NaCl solution. After 4 h LPS or saline injection, the piglets were slaughtered and the muscle samples were collected. Glu supplementation increased the protein/DNA ratio in gastrocnemius muscle, and the protein content in longissimus dorsi (LD) muscle after LPS challenge (P<0.05). In addition, Glu supplementation decreased TLR4, IL-1 receptor-associated kinase (IRAK) 1, receptor-interacting serine/threonine-protein kinase (RIPK) 2, and nuclear factor-κB (NF-κB) mRNA expression in gastrocnemius muscle (P<0.05), MyD88 mRNA expression in LD muscle, and FOXO1 mRNA expression in LD muscle (P<0.05). Moreover, Glu supplementation increased p-Akt/t-Akt ratio (P<0.05) in gastrocnemius muscle, and p-4EBP1/t-4EBP1 ratio in both gastrocnemius and LD muscles (P<0.05). Glu supplementation in the piglets' diets might be an effective strategy to alleviate LPS-induced muscle protein loss, which might be due to suppressing the mRNA expression of TLR4 and NODs signaling-related genes, and modulating Akt/FOXO and mTOR signaling pathways.
Collapse
|
41
|
Lipina C, Hundal HS. Lipid modulation of skeletal muscle mass and function. J Cachexia Sarcopenia Muscle 2017; 8:190-201. [PMID: 27897400 PMCID: PMC5377414 DOI: 10.1002/jcsm.12144] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 07/15/2016] [Accepted: 07/25/2016] [Indexed: 12/22/2022] Open
Abstract
Loss of skeletal muscle mass is a characteristic feature of various pathologies including cancer, diabetes, and obesity, as well as being a general feature of ageing. However, the processes underlying its pathogenesis are not fully understood and may involve multiple factors. Importantly, there is growing evidence which supports a role for fatty acids and their derived lipid intermediates in the regulation of skeletal muscle mass and function. In this review, we discuss evidence pertaining to those pathways which are involved in the reduction, increase and/or preservation of skeletal muscle mass by such lipids under various pathological conditions, and highlight studies investigating how these processes may be influenced by dietary supplementation as well as genetic and/or pharmacological intervention.
Collapse
Affiliation(s)
- Christopher Lipina
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Harinder S Hundal
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| |
Collapse
|
42
|
Wan J, Chen D, Yu B, Luo Y, Mao X, Zheng P, Yu J, Luo J, He J. Leucine Protects Against Skeletal Muscle Atrophy in Lipopolysaccharide-Challenged Rats. J Med Food 2016; 20:93-101. [PMID: 28009536 DOI: 10.1089/jmf.2016.3759] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Skeletal muscle atrophy is a decrease in muscle mass that occurs when protein degradation exceeds protein synthesis. Leucine (Leu), an essential branched-chain amino acid in animal nutrition, regulates skeletal muscle protein metabolism. Two experiments were conducted to evaluate whether Leu could alleviate lipopolysaccharide (LPS)-induced skeletal muscle wasting by modulating skeletal muscle protein synthesis and degradation. A total of 24 rats were randomly allocated into three groups (n = 8): (1) non-challenged control; (2) LPS-challenged control; and (3) LPS +3.0% Leu. Rats were fed with control or Leu-supplemented (part of the casein was replaced with 3.0% Leu) diets throughout the trial and were injected intraperitoneally with sterile saline or LPS at days 6, 11, 16, and 21. On the morning of day 22, serum samples were collected and rats were then sacrificed for liver and muscle analysis. In vitro protein degradation, nuclear factor-κB (NF-κB) activity, and proteolytic enzyme activities of the muscles from immune-challenged rats were also measured. Our results showed that the LPS challenge resulted in not only enhanced serum interleukin-1 and liver C-reactive protein (CRP) concentrations but also decreased the average daily body weight gain and muscle fiber diameter. However, dietary Leu inclusion attenuated the increase in CRP level and the decrease in muscle fiber diameter. Importantly, the LPS challenge caused a significant elevation in the muscle proteolysis rate, but dietary Leu supplementation significantly blocked the muscle proteolysis. The mRNA expression of NF-κB, muscle atrophy F-box (MAFbx), and muscle ring finger 1 (MuRF1) was upregulated by the LPS challenge in gastrocnemius muscles, but was downregulated by Leu supplementation. Interestingly, when muscles from the LPS-challenged rats were incubated with Leu in vitro, proteasome-, calpain-, and cathepsin-L-dependent muscle proteolysis and NF-κB activity were decreased. Collectively, the data suggest that Leu supplementation could inhibit excessive skeletal muscle degradation, as well as enhance protein synthesis and, thus, attenuate the negative effects caused by the LPS-induced immune challenge.
Collapse
Affiliation(s)
- Jin Wan
- Institute of Animal Nutrition, Sichuan Agricultural University , Chengdu, Wenjiang District, Sichuan, China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University , Chengdu, Wenjiang District, Sichuan, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University , Chengdu, Wenjiang District, Sichuan, China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University , Chengdu, Wenjiang District, Sichuan, China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University , Chengdu, Wenjiang District, Sichuan, China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University , Chengdu, Wenjiang District, Sichuan, China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University , Chengdu, Wenjiang District, Sichuan, China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University , Chengdu, Wenjiang District, Sichuan, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University , Chengdu, Wenjiang District, Sichuan, China
| |
Collapse
|
43
|
Deval C, Capel F, Laillet B, Polge C, Béchet D, Taillandier D, Attaix D, Combaret L. Docosahexaenoic acid-supplementation prior to fasting prevents muscle atrophy in mice. J Cachexia Sarcopenia Muscle 2016; 7:587-603. [PMID: 27239420 PMCID: PMC4864105 DOI: 10.1002/jcsm.12103] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 11/13/2015] [Accepted: 01/11/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Muscle wasting prevails in numerous diseases (e.g. diabetes, cardiovascular and kidney diseases, COPD,…) and increases healthcare costs. A major clinical issue is to devise new strategies preventing muscle wasting. We hypothesized that 8-week docosahexaenoic acid (DHA) supplementation prior to fasting may preserve muscle mass in vivo. METHODS Six-week-old C57BL/6 mice were fed a DHA-enriched or a control diet for 8 weeks and then fasted for 48 h. RESULTS Feeding mice a DHA-enriched diet prior to fasting elevated muscle glycogen contents, reduced muscle wasting, blocked the 55% decrease in Akt phosphorylation, and reduced by 30-40% the activation of AMPK, ubiquitination, or autophagy. The DHA-enriched diet fully abolished the fasting induced-messenger RNA (mRNA) over-expression of the endocannabinoid receptor-1. Finally, DHA prevented or modulated the fasting-dependent increase in muscle mRNA levels for Rab18, PLD1, and perilipins, which determine the formation and fate of lipid droplets, in parallel with muscle sparing. CONCLUSIONS These data suggest that 8-week DHA supplementation increased energy stores that can be efficiently mobilized, and thus preserved muscle mass in response to fasting through the regulation of Akt- and AMPK-dependent signalling pathways for reducing proteolysis activation. Whether a nutritional strategy aiming at increasing energy status may shorten recovery periods in clinical settings remains to be tested.
Collapse
Affiliation(s)
- Christiane Deval
- INRA, UMR 1019 UNH, CRNHF-63000 Auvergne Clermont-Ferrand France; Clermont Université, Université d'Auvergne Unité de Nutrition Humaine BP 10448 F-63000 Clermont-Ferrand France
| | - Frédéric Capel
- INRA, UMR 1019 UNH, CRNHF-63000 Auvergne Clermont-Ferrand France; Clermont Université, Université d'Auvergne Unité de Nutrition Humaine BP 10448 F-63000 Clermont-Ferrand France
| | - Brigitte Laillet
- INRA, UMR 1019 UNH, CRNHF-63000 Auvergne Clermont-Ferrand France; Clermont Université, Université d'Auvergne Unité de Nutrition Humaine BP 10448 F-63000 Clermont-Ferrand France
| | - Cécile Polge
- INRA, UMR 1019 UNH, CRNHF-63000 Auvergne Clermont-Ferrand France; Clermont Université, Université d'Auvergne Unité de Nutrition Humaine BP 10448 F-63000 Clermont-Ferrand France
| | - Daniel Béchet
- INRA, UMR 1019 UNH, CRNHF-63000 Auvergne Clermont-Ferrand France; Clermont Université, Université d'Auvergne Unité de Nutrition Humaine BP 10448 F-63000 Clermont-Ferrand France
| | - Daniel Taillandier
- INRA, UMR 1019 UNH, CRNHF-63000 Auvergne Clermont-Ferrand France; Clermont Université, Université d'Auvergne Unité de Nutrition Humaine BP 10448 F-63000 Clermont-Ferrand France
| | - Didier Attaix
- INRA, UMR 1019 UNH, CRNHF-63000 Auvergne Clermont-Ferrand France; Clermont Université, Université d'Auvergne Unité de Nutrition Humaine BP 10448 F-63000 Clermont-Ferrand France
| | - Lydie Combaret
- INRA, UMR 1019 UNH, CRNHF-63000 Auvergne Clermont-Ferrand France; Clermont Université, Université d'Auvergne Unité de Nutrition Humaine BP 10448 F-63000 Clermont-Ferrand France
| |
Collapse
|
44
|
Abreu P, Pinheiro CHJ, Vitzel KF, Vasconcelos DAA, Torres RP, Fortes MS, Marzuca-Nassr GN, Mancini-Filho J, Hirabara SM, Curi R. Contractile function recovery in severely injured gastrocnemius muscle of rats treated with either oleic or linoleic acid. Exp Physiol 2016; 101:1392-1405. [PMID: 27579497 DOI: 10.1113/ep085899] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/18/2016] [Indexed: 12/31/2022]
Abstract
NEW FINDINGS What is the central question of this study? Oleic and linoleic acids modulate fibroblast proliferation and myogenic differentiation in vitro. However, their in vivo effects on muscle regeneration have not yet been examined. We investigated the effects of either oleic or linoleic acid on a well-established model of muscle regeneration after severe laceration. What is the main finding and its importance? We found that linoleic acid increases fibrous tissue deposition and impairs muscle regeneration and recovery of contractile function, whereas oleic acid has the opposite effects in severely injured gastrocnemius muscle, suggesting that linoleic acid has a harmful effect and oleic acid a potential therapeutic effect on muscle regeneration. Oleic and linoleic acids control fibroblast proliferation and myogenic differentiation in vitro; however, there was no study in skeletal muscle in vivo. The aim of this study was to evaluate the effects of either oleic or linoleic acid on the fibrous tissue content (collagen deposition) of muscle and recovery of contractile function in rat gastrocnemius muscle after being severely injured by laceration. Rats were supplemented with either oleic or linoleic acid for 4 weeks after laceration [0.44 g (kg body weight)-1 day-1 ]. Muscle injury led to an increase in oleic-to-stearic acid and palmitoleic-to-palmitic acid ratios, suggesting an increase in Δ9 desaturase activity. Increased fibrous tissue deposition and reduced isotonic and tetanic specific forces and resistance to fatigue were observed in the injured muscle. Supplementation with linoleic acid increased the content of eicosadienoic (20:2, n-6) and arachidonic (20:4, n-6) acids, reduced muscle mass and fibre cross-sectional areas, increased fibrous tissue deposition and further reduced the isotonic and tetanic specific forces and resistance to fatigue induced by laceration. Supplementation with oleic acid increased the content of docosahexaenoic acid (22:6, n-3) and abolished the increase in fibrous tissue area and the decrease in isotonic and tetanic specific forces and resistance to fatigue induced by muscle injury. We concluded that supplementation with linoleic acid impairs muscle regeneration and increases fibrous tissue deposition, resulting in impaired recovery of contractile function. Oleic acid supplementation reduced fibrous tissue deposition and improved recovery of contractile function, attenuating the tissue damage caused by muscle injury.
Collapse
Affiliation(s)
- Phablo Abreu
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Carlos H J Pinheiro
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Kaio F Vitzel
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | - Rosângela P Torres
- Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Marco S Fortes
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | - Jorge Mancini-Filho
- Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Sandro M Hirabara
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.,Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, São Paulo, SP, Brazil
| | - Rui Curi
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
45
|
Yoshino J, Smith GI, Kelly SC, Julliand S, Reeds DN, Mittendorfer B. Effect of dietary n-3 PUFA supplementation on the muscle transcriptome in older adults. Physiol Rep 2016; 4:4/11/e12785. [PMID: 27252251 PMCID: PMC4908485 DOI: 10.14814/phy2.12785] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/11/2016] [Indexed: 01/20/2023] Open
Abstract
Dietary fish oil-derived n-3 PUFA supplementation can increase muscle mass, reduce oxygen demand during physical activity, and improve physical function (muscle strength and power, and endurance) in people. The results from several studies conducted in animals suggest that the anabolic and performance-enhancing effects of n-3 PUFA are at least in part transcriptionally regulated. The effect of n-3 PUFA therapy on the muscle transcriptome in people is unknown. In this study, we used muscle biopsy samples collected during a recently completed randomized controlled trial that found that n-3 PUFA therapy increased muscle mass and function in older adults to provide a comprehensive assessment of the effect of n-3 PUFA therapy on the skeletal muscle gene expression profile in these people. Using the microarray technique, we found that several pathways involved in regulating mitochondrial function and extracellular matrix organization were increased and pathways related to calpain- and ubiquitin-mediated proteolysis and inhibition of the key anabolic regulator mTOR were decreased by n-3 PUFA therapy. However, the effect of n-3 PUFA therapy on the expression of individual genes involved in regulating mitochondrial function and muscle growth, assessed by quantitative RT-PCR, was very small. These data suggest that n-3 PUFA therapy results in small but coordinated changes in the muscle transcriptome that may help explain the n-3 PUFA-induced improvements in muscle mass and function.
Collapse
Affiliation(s)
- Jun Yoshino
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri
| | - Gordon I Smith
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri
| | - Shannon C Kelly
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri
| | - Sophie Julliand
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri
| | - Dominic N Reeds
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri
| | - Bettina Mittendorfer
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
46
|
Yu Y, Li X, Liu L, Chai J, Haijun Z, Chu W, Yin H, Ma L, Duan H, Xiao M. miR-628 Promotes Burn-Induced Skeletal Muscle Atrophy via Targeting IRS1. Int J Biol Sci 2016; 12:1213-1224. [PMID: 27766036 PMCID: PMC5069443 DOI: 10.7150/ijbs.15496] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 08/08/2016] [Indexed: 12/25/2022] Open
Abstract
Skeletal muscle atrophy is a common clinical feature among patients with severe burns. Previous studies have shown that miRNAs play critical roles in the regulation of stress-induced skeletal muscle atrophy. Our previous study showed that burn-induced skeletal muscle atrophy is mediated by miR-628. In this study, compared with sham rats, rats subjected to burn injury exhibited skeletal muscle atrophy, as well as significantly decreased insulin receptor substrate 1 (IRS1) protein expression and significantly increased skeletal muscle cell apoptosis. An miRNA array showed that the levels of miR-628, a potential regulator of IRS1 protein translation, were also clearly elevated. Second, L6 myocyte cell apoptosis increased after induction of miR-628 expression, and IRS1 and p-Akt protein expression decreased significantly. Expression of the cell apoptosis-related proteins FoxO3a and cleaved caspase 3 also increased after induction of miR-628 expression. Finally, forced miR-628 expression in normal rats resulted in increased cell apoptosis and skeletal muscle atrophy, as well as changes in IRS1/Akt/FoxO3a signaling pathway activity consistent with the changes in protein expression described above. Inhibiting cell apoptosis with Z-VAD-FMK resulted in alleviation of burn-induced skeletal muscle atrophy. In general, our results indicate that miR-628 mediates burn-induced skeletal muscle atrophy by regulating the IRS1/Akt/FoxO3a signaling pathway.
Collapse
Affiliation(s)
| | | | | | - Jiake Chai
- Department of Burn & Plastic Surgery, the First Affiliated Hospital of PLA General Hospital, Beijing, 100048 China
| | | | | | | | | | | | | |
Collapse
|
47
|
Rom O, Reznick AZ. The role of E3 ubiquitin-ligases MuRF-1 and MAFbx in loss of skeletal muscle mass. Free Radic Biol Med 2016; 98:218-230. [PMID: 26738803 DOI: 10.1016/j.freeradbiomed.2015.12.031] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/30/2015] [Accepted: 12/25/2015] [Indexed: 12/21/2022]
Abstract
The ubiquitin-proteasome system (UPS) is the main regulatory mechanism of protein degradation in skeletal muscle. The ubiquitin-ligase enzymes (E3s) have a central role in determining the selectivity and specificity of the UPS. Since their identification in 2001, the muscle specific E3s, muscle RING finger-1 (MuRF-1) and muscle atrophy F-box (MAFbx), have been shown to be implicated in the regulation of skeletal muscle atrophy in various pathological and physiological conditions. This review aims to explore the involvement of MuRF-1 and MAFbx in catabolism of skeletal muscle during various pathologies, such as cancer cachexia, sarcopenia of aging, chronic kidney disease (CKD), diabetes, and chronic obstructive pulmonary disease (COPD). In addition, the effects of various lifestyle and modifiable factors (e.g. nutrition, exercise, cigarette smoking, and alcohol) on MuRF-1 and MAFbx regulation will be discussed. Finally, evidence of potential strategies to protect against skeletal muscle wasting through inhibition of MuRF-1 and MAFbx expression will be explored.
Collapse
Affiliation(s)
- Oren Rom
- Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, P.O. Box 9649, Haifa, Israel.
| | - Abraham Z Reznick
- Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, P.O. Box 9649, Haifa, Israel
| |
Collapse
|
48
|
Wang L, Yi D, Hou Y, Ding B, Li K, Li B, Zhu H, Liu Y, Wu G. Dietary Supplementation with α-Ketoglutarate Activates mTOR Signaling and Enhances Energy Status in Skeletal Muscle of Lipopolysaccharide-Challenged Piglets. J Nutr 2016; 146:1514-20. [PMID: 27385764 DOI: 10.3945/jn.116.236000] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/08/2016] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Skeletal muscle undergoes rapid loss in response to inflammation. α-Ketoglutarate (AKG) has been reported to enhance muscle growth in piglets, but the underlying mechanisms are largely unknown. OBJECTIVES This study tested the hypothesis that dietary AKG supplementation activates mechanistic target of rapamycin (mTOR) signaling and improves skeletal muscle energy metabolism in lipopolysaccharide (LPS)-challenged piglets. METHODS Forty-eight male piglets (Duroc × Landrace × Yorkshire) were weaned at 21 d of age to a corn- and soybean meal-based diet. After a 3-d period of adaptation, piglets with a mean weight of 7.21 kg were randomly assigned to control, LPS (intraperitoneal administration of 80 μg LPS/kg body weight on days 10, 12, 14, and 16), or LPS plus 1% dietary AKG (LPS+AKG) groups. On day 16, blood samples were collected from 8 piglets/group 3 h after LPS administration. On day 17, piglets were killed to obtain gastrocnemius muscle from 8 piglets/group for biochemical analysis. RESULTS Compared with the control group, LPS administration increased (P < 0.05) plasma concentrations of globulin (by 14%) and tumor necrosis factor α (by 59%) and the intramuscular ratio of AMP to ATP (by 93%) and abundance of phosphorylated acetyl-coenzyme A carboxylase (ACC) β protein (by 64%). Compared with the control group, LPS administration reduced (P < 0.05) weight gain (by 15%); plasma concentrations of glutamine (by 20%), glucose (by 23%), insulin, insulin-like growth factor I, and epidermal growth factor; intramuscular concentrations of glutamine (by 27%), ATP (by 12%), ADP (by 22%), and total adenine nucleotides; and intramuscular ratios of phosphorylated mTOR to total mTOR (by 38%) and of phosphorylated 70-kDa ribosomal protein S6 kinase (p70S6K) to total p70S6K (by 39%). These adverse effects of LPS were ameliorated (P < 0.05) by AKG supplementation. CONCLUSIONS Dietary AKG supplementation activated mTOR signaling, inhibited ACC-β, and improved energy status in skeletal muscle of LPS-challenged piglets. These results provide a biochemical basis for the use of AKG to enhance piglet growth under inflammatory or practical postweaning conditions.
Collapse
Affiliation(s)
- Lei Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China; and
| | - Dan Yi
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China; and
| | - Yongqing Hou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China; and
| | - Binying Ding
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China; and
| | - Kang Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China; and
| | - Baocheng Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China; and
| | - Huiling Zhu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China; and
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China; and
| | - Guoyao Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China; and Department of Animal Science, Texas A&M University, College Station, TX
| |
Collapse
|
49
|
Role of Inflammation in Muscle Homeostasis and Myogenesis. Mediators Inflamm 2015; 2015:805172. [PMID: 26508819 PMCID: PMC4609834 DOI: 10.1155/2015/805172] [Citation(s) in RCA: 214] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/05/2015] [Accepted: 03/10/2015] [Indexed: 12/22/2022] Open
Abstract
Skeletal muscle mass is subject to rapid changes according to growth stimuli inducing both hypertrophy, through increased protein synthesis, and hyperplasia, activating the myogenic program. Muscle wasting, characteristic of several pathological states associated with local or systemic inflammation, has been for long considered to rely on the alteration of myofiber intracellular pathways regulated by both hormones and cytokines, eventually leading to impaired anabolism and increased protein breakdown. However, there are increasing evidences that even alterations of the myogenic/regenerative program play a role in the onset of muscle wasting, even though the precise mechanisms involved are far from being fully elucidated. The comprehension of the links potentially occurring between impaired myogenesis and increased catabolism would allow the definition of effective strategies aimed at counteracting muscle wasting. The first part of this review gives an overview of skeletal muscle intracellular pathways determining fiber size, while the second part considers the cells and the regulatory pathways involved in the myogenic program. In both parts are discussed the evidences supporting the role of inflammation in impairing muscle homeostasis and myogenesis, potentially determining muscle atrophy.
Collapse
|
50
|
Swiatkiewicz S, Arczewska-Wlosek A, Jozefiak D. The relationship between dietary fat sources and immune response in poultry and pigs: An updated review. Livest Sci 2015. [DOI: 10.1016/j.livsci.2015.07.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|