1
|
Liu X, Sun X, Bao H, Ren Z, Wang S. Identification of two immunoglobulin light chain types and expression of immunoglobulin diversity in Chinese giant salamander (Andrias davidianus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 166:105358. [PMID: 40090472 DOI: 10.1016/j.dci.2025.105358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/22/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025]
Abstract
Lacking research on immunoglobulins in the Chinese giant salamanders (Andrias davidianus) has left their populations vulnerable to pathogen infections, contributing to a sharp decline in their numbers. In this study, we employed the rapid amplification of cDNA ends (RACE) technique along with paired-end 300 bp read length (PE300) sequencing. This approach was used to construct a DNA library, which enabled us to investigate the diversity of immunoglobulin gene expression. Through this approach, we identified structural features of immunoglobulin light chains. Our results revealed the presence of Igλ and Igσ. Similar to other vertebrates, the immunoglobulin light chains of Chinese giant salamanders are composed of variable (V) and constant (C) domains connected by recombination activating gene (RAG) mediated V-J (joining) recombination. This canonical gene organization allows combinatorial diversity through rearrangement of multiple V and J gene segments. The IgLC features FPPS and FYP motifs, showing high similarity to both mammalian IgLC sequences and the IgLC of the Chinese Alligator (Alligator sinensis). The IgSC, characterized by SSYL structures, showed strong homology with fish and amphibian IgSC sequences, notably the axolotl (Ambystoma mexicanum) IgSC. Both the IgLV and IgSV sequences exhibit a YYCXX fold in the last five residues of framework region 3 (FR3). FR3 is a critical framework region within the V domain that anchors the antigen binding complementarity determining regions. Notably, the FPPS/FYP motifs in Igλ and SSYL motifs in Igσ exhibited evolutionary conservation patterns consistent with those in other vertebrates. In terms of gene expression diversity, the IgH is composed of 7 IgHV, 7 IgHD, and 6 IgHJ subgroups, while the Igλ consists of 10 IgLV and 7 IgLJ subgroups, and the Igσ comprises 5 IgSV and 7 IgSJ subgroups. Dominant IgH combinations are IgHV4-IgHD3-IgHJ4 and IgHV4-IgHD2-IgHJ4. The Igλ shows high usage of IgLV8, IgLV3, IgLJ7, and IgLJ3, while the Igσ is predominantly characterized by IgSV3-IgSJ3. Notably, Cys utilization in the complementarity determining region 3 (CDR3) region was extremely low, suggesting that gene conversion plays a significant role in immune adaptation. This research enriches the immune genetic map of the Chinese giant salamanders and enhances our understanding of immunoglobulin evolution in tetrapods.
Collapse
Affiliation(s)
- Xiangyu Liu
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Xiuzhu Sun
- College of Grassland Agriculture, Northwest A&F University, Shaanxi, China
| | - Huyang Bao
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Zhanjun Ren
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Shuhui Wang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, China.
| |
Collapse
|
2
|
Altvater-Hughes TE, Hodgins HP, Hodgins DC, Bauman CA, Mallard BA. Blood and colostral IgM and IgG B cell repertoires in high, average, and low immune responder Holstein Friesian cows and heifers. Vet Immunol Immunopathol 2025; 283:110926. [PMID: 40158251 DOI: 10.1016/j.vetimm.2025.110926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/10/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
In dairy cattle, genetic selection for higher antibody-mediated (AMIR) and cell-mediated (CMIR) immune responses can enhance disease resistance. Cattle produce a unique subset of B cells with B cell receptors with ultralong complementarity determining regions 3 (CDR3). Antibodies with these specialized structures have superior virus neutralization characteristics. Published studies of B cell receptors with ultralong CDR3s in dairy cattle have been limited by the number of animals examined (1-4 animals in each study), and by varying breeds and ages. The objective of this study was to assess the percentage of IgM and IgG sequences with ultralong CDR3s, and gene usage in blood and colostral lymphocytes from cows classified as high, average, and low immune responders based on their estimated breeding values. B lymphocytes were isolated from the blood of 14 heifers and 7 cows. In addition, cells were isolated from colostrum of the 7 cows. RNA was extracted, cDNA was produced, and IgM and IgG transcripts were amplified using polymerase chain reactions. Amplicons were sequenced using Oxford Nanopore long-read sequencing. In sequences derived from blood B cells, AMIR estimated breeding values were significantly and positively associated with higher percentages of IgG ultralong CDR3 sequences. High AMIR cows (n = 3) also produced colostrum with a significantly greater percentage of IgG ultralong CDR3 sequences (18.0 %) than average AMIR cows (n = 4, mean 8.8 %). Larger studies are needed to investigate the association between percentages of B cells expressing IgG ultralong CDR3s and observed health traits.
Collapse
Affiliation(s)
- T E Altvater-Hughes
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - H P Hodgins
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - D C Hodgins
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - C A Bauman
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - B A Mallard
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
3
|
Qiu Y, Jiang J, Yi X, Wang S, Sun X. Exploration of the differential expression patterns of immunoglobulin heavy chain genes in horses and donkeys. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 166:105360. [PMID: 40112937 DOI: 10.1016/j.dci.2025.105360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/23/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
This study investigated the immunoglobulins (IG) gene locus structure and expression diversity in local Chinese horse and donkey breeds, including Ningqiang, Guanzhong horses, and varieties such as Guanzhong, Jiami, and Northern Shaanxi donkey using genome alignment and high-throughput sequencing. The aim was to expand understanding of IG expression patterns in horses, donkeys, and their different breeds. The results revealed that the donkey IGH locus contains 117 VH genes (23 functional), 44 DH genes, and 8 JH genes, arranged in a VH-DH-JH sequence on chromosome 7, spanning approximately 1189 kb. Both horses and donkeys exhibited high frequencies of the IGHV4-IGHD2-IGHJ6, IGHV4-IGHD4-IGHJ6, and IGHV4-IGHD2-IGHJ4 combinations during VDJ recombination. Significant differences in V, D, and J junctions between horses and donkeys, as well as among breeds, were observed, mainly due to variations in N-nucleotide insertion length. The CDR3H region in horses exhibited greater length diversity and a higher Cys content than that in donkeys, which may contribute to species-specific differences in IGH spatial structure. Both horses and donkeys showed a clear preference for A > G and G > A mutations during somatic hypermutation (SHM), with consistent trends across breeds and species. In conclusion, this study reveals that V(D)J recombination, junction diversity, and SHM are key mechanisms driving IGH diversity in horses and donkeys. While the basic mechanisms for IGH diversification are similar across species and breeds, their specific manifestations exhibit both distinct and consistent patterns, reflecting differences in immune system adaptations and providing a theoretical basis for understanding IGH expression diversity in equids.
Collapse
Affiliation(s)
- Yanbo Qiu
- College of Grassland Agriculture, Northwest A&F University, Yangling, China.
| | - Junyi Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.
| | - Xiaohua Yi
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.
| | - Shuhui Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.
| | - Xiuzhu Sun
- College of Grassland Agriculture, Northwest A&F University, Yangling, China.
| |
Collapse
|
4
|
Altvater-Hughes TE, Hodgins HP, Hodgins DC, Bauman CA, Paibomesai MA, Mallard BA. Investigating the IgM and IgG B Cell Receptor Repertoires and Expression of Ultralong Complementarity Determining Region 3 in Colostrum and Blood from Holstein-Friesian Cows at Calving. Animals (Basel) 2024; 14:2841. [PMID: 39409790 PMCID: PMC11475791 DOI: 10.3390/ani14192841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
In cattle, colostral maternal immunoglobulins and lymphocytes transfer across the neonate's intestinal epithelium to provide protection against pathogens. This study aimed to compare repertoires of B cell populations in blood and colostrum in cows for the first time, with an emphasis on ultralong complementarity determining region 3 (CDR3, ≥40 amino acids). Blood mononuclear cells (BMCs, n= 7) and colostral cells (n = 7) were isolated from Holstein-Friesian dairy cows. Magnetic-activated cell sorting was used to capture IgM and IgG B cells from BMCs. Colostral cells were harvested by centrifugation. RNA was extracted and cDNA was produced; IgM and IgG transcripts were amplified using polymerase chain reactions. Amplicons were sequenced using the Nanopore Native barcoding kit 24 V14 and MinION with R10.4 flow cells. In colostrum, there was a significantly greater percentage of IgM B cells with ultralong CDR3s (8.09% ± 1.73 standard error of the mean) compared to blood (4.22% ± 0.70, p = 0.05). There was a significantly greater percentage of IgG B cells in colostrum with ultralong CDR3s (12.98% ± 1.98) compared to blood (6.61% ± 1.11, p = 0.05). A higher percentage of IgM and IgG B cells with ultralong CDR3s in colostrum may be indicative of a potential role in protecting the neonate.
Collapse
Affiliation(s)
- Tess E. Altvater-Hughes
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (T.E.A.-H.); (D.C.H.)
| | - Harold P. Hodgins
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Douglas C. Hodgins
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (T.E.A.-H.); (D.C.H.)
| | - Cathy A. Bauman
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | | | - Bonnie A. Mallard
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (T.E.A.-H.); (D.C.H.)
| |
Collapse
|
5
|
Altvater-Hughes TE, Hodgins HP, Hodgins DC, Gallo NB, Chalmers GI, Ricker ND, Mallard BA. Estimates of Sequences with Ultralong and Short CDR3s in the Bovine IgM B Cell Receptor Repertoire Using the Long-read Oxford Nanopore MinION Platform. Immunohorizons 2024; 8:635-651. [PMID: 39248806 PMCID: PMC11447701 DOI: 10.4049/immunohorizons.2400050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024] Open
Abstract
Cattle produce Abs with an H chain ultralong CDR3 (40-70 aa). These Abs have been shown to have features such as broad neutralization of viruses and are investigated as human therapeutics. A common issue in sequencing the bovine BCR repertoire is the sequence length required to capture variable (V) and isotype gene information. This study aimed to assess the use of Oxford Nanopore Technologies' MinION platform to perform IgM BCR repertoire sequencing to assess variation in the percentage of ultralong CDR3s among dairy cattle. Blood was collected from nine Holstein heifers. B cells were isolated using magnetic bead-based separation, RNA was extracted, and IgM+ transcripts were amplified using PCR and sequenced using a MinION R10.4 flow cell. The distribution of CDR3 lengths was trimodal, and the percentage of ultralong CDR3s ranged among animals from 2.32 to 20.13% in DNA sequences and 1.56% to 17.02% in productive protein sequences. V segment usage varied significantly among heifers. Segment IGHV1-7, associated with ultralong CDR3s, was used in 5.8-24.2% of sequences; usage was positively correlated with ultralong CDR3 production (r = 0.99, p < 0.01). To our knowledge, this is the first study to sequence the bovine BCR repertoire using Oxford Nanopore Technologies and demonstrates the potential for cost-efficient long-read repertoire sequencing in cattle without assembly. Findings from this study support literature describing the distribution of length and percentage of ultralong CDR3s. Future studies will investigate changes in the bovine BCR repertoire associated with age, antigenic exposure, and genetics.
Collapse
Affiliation(s)
- Tess E. Altvater-Hughes
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Harold P. Hodgins
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Douglas C. Hodgins
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Natasha B. Gallo
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Gabhan I. Chalmers
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Nicole D. Ricker
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Bonnie A. Mallard
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
6
|
Qiu Y, Yi X, Tang X, Wei Y, Zhang B, Duan S, Wang S, Sun X. Differential analysis of immunoglobulin gene expression pattern in chickens of distinct breeds and developmental periods. J Anim Sci 2024; 102:skae111. [PMID: 38651250 PMCID: PMC11107122 DOI: 10.1093/jas/skae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/20/2024] [Indexed: 04/25/2024] Open
Abstract
Immunoglobulin is an essential component of the body's defense against pathogens, aiding in the recognition and clearance of foreign antigens. Research concerning immunoglobulin gene and its diversity of expression across different breeds within the same species is relatively scarce. In this study, we employed RACE (Rapid Amplification of cDNA Ends) technology, prepared DNA libraries, performed high-throughput sequencing, and conducted related bioinformatics analysis to analyze the differences in immunoglobulin gene diversity and expression at different periods in Hy-line brown hens, Lueyang black-bone chickens, and Beijing-You chickens. The study found that the composition of chicken immunoglobulin genes is relatively simple, with both the light chain and heavy chain having a functional V gene. Additionally, the mechanisms of immunoglobulin diversity generation tended to be consistent among different breeds and periods of chickens, primarily relying on abundant junctional diversity, somatic hypermutation (SHM), and gene conversion (GCV) to compensate for the limitations of low-level V(D)J recombination. As the age increased, the junctional diversity of IgH and IgL tended to diversify and showed similar expression patterns among different breeds. In the three chicken breeds, the predominant types of mutations observed in IGHV and IGLV SHM were A to G and G to A transitions. Specifically, IGLV exhibited a preference for A to G mutations, whereas IGHV displayed a bias toward G to A mutations. The regions at the junctions between framework regions (FR) and complementarity-determining regions (CDR) and within the CDR regions themselves are typically prone to mutations. The locations of GCV events in IGLV and IGHV do not show significant differences, and replacement segments are concentrated in the central regions of FR1, CDR, and FR2. Importantly, gene conversion events are not random occurrences. Additionally, our investigation revealed that CDRH3 in chickens of diverse breeds and periods the potential for diversification through the incorporation of cysteine. This study demonstrates that the diversity of immunoglobulin expression tends to converge among Hy-line brown hens, Lueyang black-bone chickens, and Beijing-You chickens, indicating that the immunoglobulin gene expression mechanisms in different breeds of chickens do not exhibit significant differences due to selective breeding.
Collapse
Affiliation(s)
- Yanbo Qiu
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Xiaohua Yi
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Xiaoqin Tang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Yanpei Wei
- College of Grassland Agriculture, Northwest A&F University, Shaanxi, China
| | - Beibei Zhang
- College of Grassland Agriculture, Northwest A&F University, Shaanxi, China
| | - Shunan Duan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Shuhui Wang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Xiuzhu Sun
- College of Grassland Agriculture, Northwest A&F University, Shaanxi, China
| |
Collapse
|
7
|
Kim DY, Kandalaft H, Lowden MJ, Yang Q, Rossotti MA, Robotham A, Kelly JF, Hussack G, Schrag JD, Henry KA, Tanha J. Sequence tolerance of immunoglobulin variable domain framework regions to noncanonical intradomain disulfide linkages. J Biol Chem 2023; 299:105278. [PMID: 37742917 PMCID: PMC10641266 DOI: 10.1016/j.jbc.2023.105278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/28/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023] Open
Abstract
Most immunoglobulin (Ig) domains bear only a single highly conserved canonical intradomain, inter-β-sheet disulfide linkage formed between Cys23-Cys104, and incorporation of rare noncanonical disulfide linkages at other locations can enhance Ig domain stability. Here, we exhaustively surveyed the sequence tolerance of Ig variable (V) domain framework regions (FRs) to noncanonical disulfide linkages. Starting from a destabilized VH domain lacking a Cys23-Cys104 disulfide linkage, we generated and screened phage-displayed libraries of engineered VHs, bearing all possible pairwise combinations of Cys residues in neighboring β-strands of the Ig fold FRs. This approach identified seven novel Cys pairs in VH FRs (Cys4-Cys25, Cys4-Cys118, Cys5-Cys120, Cys6-Cys119, Cys22-Cys88, Cys24-Cys86, and Cys45-Cys100; the international ImMunoGeneTics information system numbering), whose presence rescued domain folding and stability. Introduction of a subset of these noncanonical disulfide linkages (three intra-β-sheet: Cys4-Cys25, Cys22-Cys88, and Cys24-Cys86, and one inter-β-sheet: Cys6-Cys119) into a diverse panel of VH, VL, and VHH domains enhanced their thermostability and protease resistance without significantly impacting expression, solubility, or binding to cognate antigens. None of the noncanonical disulfide linkages identified were present in the natural human VH repertoire. These data reveal an unexpected permissiveness of Ig V domains to noncanonical disulfide linkages at diverse locations in FRs, absent in the human repertoire, whose presence is compatible with antigen recognition and improves domain stability. Our work represents the most complete assessment to date of the role of engineered noncanonical disulfide bonding within FRs in Ig V domain structure and function.
Collapse
Affiliation(s)
- Dae Young Kim
- Life Sciences Division, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Hiba Kandalaft
- Life Sciences Division, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Michael J Lowden
- Life Sciences Division, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Qingling Yang
- Life Sciences Division, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Martin A Rossotti
- Life Sciences Division, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Anna Robotham
- Life Sciences Division, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - John F Kelly
- Life Sciences Division, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Greg Hussack
- Life Sciences Division, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Joseph D Schrag
- Life Sciences Division, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Quebec, Canada
| | - Kevin A Henry
- Life Sciences Division, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Jamshid Tanha
- Life Sciences Division, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
8
|
Ott JA, Mitchell C, Sheppard M, Deiss TC, Horton JMC, Haakenson JK, Huang R, Kelley AR, Davis BW, Derr JN, Smider VV, Criscitiello MF. Evolution of immunogenetic components encoding ultralong CDR H3. Immunogenetics 2023; 75:323-339. [PMID: 37084012 PMCID: PMC10119515 DOI: 10.1007/s00251-023-01305-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/03/2023] [Indexed: 04/22/2023]
Abstract
The genomes of most vertebrates contain many V, D, and J gene segments within their Ig loci to construct highly variable CDR3 sequences through combinatorial diversity. This nucleotide variability translates into an antibody population containing extensive paratope diversity. Cattle have relatively few functional VDJ gene segments, requiring innovative approaches for generating diversity like the use of ultralong-encoding IGHV and IGHD gene segments that yield dramatically elongated CDR H3. Unique knob and stalk microdomains create protracted paratopes, where the antigen-binding knob sits atop a long stalk, allowing the antibody to bind both surface and recessed antigen epitopes. We examined genomes of twelve species of Bovidae to determine when ultralong-encoding IGHV and IGHD gene segments evolved. We located the 8-bp duplication encoding the unique TTVHQ motif in ultralong IGHV segments in six Bovid species (cattle, zebu, wild yak, domestic yak, American bison, and domestic gayal), but we did not find evidence of the duplication in species beyond the Bos and Bison genera. Additionally, we analyzed mRNA from bison spleen and identified a rich repertoire of expressed ultralong CDR H3 antibody mRNA, suggesting that bison use ultralong IGHV transcripts in their host defense. We found ultralong-encoding IGHD gene segments in all the same species except domestic yak, but again not beyond the Bos and Bison clade. Thus, the duplication event leading to this ultralong-encoding IGHV gene segment and the emergence of the ultralong-encoding IGHD gene segment appears to have evolved in a common ancestor of the Bos and Bison genera 5-10 million years ago.
Collapse
Affiliation(s)
- Jeannine A Ott
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Christian Mitchell
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Morgan Sheppard
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Thad C Deiss
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - J M Cody Horton
- Department of Veterinary Integrative Sciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Jeremy K Haakenson
- Applied Biomedical Science Institute, San Diego, CA, 92127, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Ruiqi Huang
- Applied Biomedical Science Institute, San Diego, CA, 92127, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | | | - Brian W Davis
- Department of Veterinary Integrative Sciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - James N Derr
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Vaughn V Smider
- Applied Biomedical Science Institute, San Diego, CA, 92127, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Michael F Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, Bryan, TX, 77807, USA.
| |
Collapse
|
9
|
Passon M, De Smedt S, Svilenov HL. Principles of antibodies with ultralong complementarity-determining regions and picobodies. Biotechnol Adv 2023; 64:108120. [PMID: 36764335 DOI: 10.1016/j.biotechadv.2023.108120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
In contrast to other species, cattle possess exceptional antibodies with ultra-long complementarity-determining regions (ulCDRs) that can consist of 40-70 amino acids. The bovine ulCDR is folded into a stalk and a disulfide-rich knob domain. The binding to the antigen is via the 3-6 kDa knob. There exists an immense sequence and structural diversity in the knob that enables binding to different antigens. Here we summarize the current knowledge of the ulCDR structure and provide an overview of the approaches to discover ulCDRs against novel antigens. Furthermore, we outline protein engineering approaches inspired by the natural ulCDRs. Finally, we discuss the enormous potential of using isolated bovine knobs, also named picobodies, as the smallest antigen-binding domains derived from natural antibodies.
Collapse
Affiliation(s)
- Marcel Passon
- Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Gent, Belgium
| | - Stefaan De Smedt
- Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Gent, Belgium
| | - Hristo L Svilenov
- Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Gent, Belgium.
| |
Collapse
|
10
|
Liu Y, Yi L, Li Y, Wang Z, Jirimutu. Characterization of heavy-chain antibody gene repertoires in Bactrian camels. J Genet Genomics 2023; 50:38-45. [PMID: 35500746 DOI: 10.1016/j.jgg.2022.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023]
Abstract
Camelids are the only mammals that can produce functional heavy-chain antibodies (HCAbs). Although HCAbs were discovered over 30 years ago, the antibody gene repertoire of Bactrian camels remains largely underexplored. To characterize the diversity of variable genes of HCAbs (VHHs), germline and rearranged VHH repertoires are constructed. Phylogenetics analysis shows that all camelid VHH genes are derived from a common ancestor and the nucleotide diversity of VHHs is similar across all camelid species. While species-specific hallmark sites are identified, the non-canonical cysteines specific to VHHs are distinct in Bactrian camels and dromedaries compared with alpacas. Though low divergence at the germline repertoire between wild and domestic Bactrian camels, higher expression of VHHs is observed in some wild Bactrian camels than that of domestic ones. This study not only adds our understanding of VHH repertoire diversity across camelids, but also provides useful resources for HCAb engineering.
Collapse
Affiliation(s)
- Yuexing Liu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Li Yi
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Huhhot, Inner Mongolia 010018, China
| | - Yixue Li
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China; School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Guangzhou Laboratory, Guangzhou, Guangdong 510005, China; Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200433, China.
| | - Zhen Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Jirimutu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Huhhot, Inner Mongolia 010018, China; Inner Mongolia Institute of Camel Research, West Alax, Inner Mongolia 737399, China.
| |
Collapse
|
11
|
Jenkins GW, Safonova Y, Smider VV. Germline-Encoded Positional Cysteine Polymorphisms Enhance Diversity in Antibody Ultralong CDR H3 Regions. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:2141-2148. [PMID: 36426974 PMCID: PMC9940733 DOI: 10.4049/jimmunol.2200455] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/25/2022] [Indexed: 01/04/2023]
Abstract
Ab "ultralong" third H chain complementarity-determining regions (CDR H3) appear unique to bovine Abs and may enable binding to difficult epitopes that shorter CDR H3 regions cannot easily access. Diversity is concentrated in the "knob" domain of the CDR H3, which is encoded by the DH gene segment and sits atop a β-ribbon "stalk" that protrudes far from the Ab surface. Knob region cysteine content is quite diverse in terms of total number of cysteines, sequence position, and disulfide bond pattern formation. We investigated the role of germline cysteines in production of a diverse CDR H3 structural repertoire. The relationship between DH polymorphisms and deletions relative to germline at the nucleotide level, as well as diversity in cysteine and disulfide bond content at the structural level, was ascertained. Structural diversity is formed through (1) DH polymorphisms with altered cysteine positions, (2) DH deletions, and (3) new cysteines that arise through somatic hypermutation that form new, unique disulfide bonds to alter the knob structure. Thus, a combination of mechanisms at both the germline and somatic immunogenetic levels results in diversity in knob region cysteine content, contributing to remarkable complexity in knob region disulfide patterns, loops, and Ag binding surface.
Collapse
Affiliation(s)
| | - Yana Safonova
- Computer Science and Engineering Department, University of California, San Diego, La Jolla, CA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD; and
| | - Vaughn V Smider
- Applied Biomedical Science Institute, San Diego, CA
- Department of Molecular Medicine, Scripps Research, La Jolla, CA
| |
Collapse
|
12
|
Ott JA, Haakenson JK, Kelly AR, Christian C, Criscitiello MF, Smider VV. Evolution of surrogate light chain in tetrapods and the relationship between lengths of CDR H3 and VpreB tails. Front Immunol 2022; 13:1001134. [PMID: 36311706 PMCID: PMC9614664 DOI: 10.3389/fimmu.2022.1001134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/20/2022] [Indexed: 12/05/2022] Open
Abstract
In the mammalian immune system, the surrogate light chain (SLC) shapes the antibody repertoire during B cell development by serving as a checkpoint for production of functional heavy chains (HC). Structural studies indicate that tail regions of VpreB contact and cover the third complementarity-determining region of the HC (CDR H3). However, some species, particularly bovines, have CDR H3 regions that may not be compatible with this HC-SLC interaction model. With immense structural and genetic diversity in antibody repertoires across species, we evaluated the genetic origins and sequence features of surrogate light chain components. We examined tetrapod genomes for evidence of conserved gene synteny to determine the evolutionary origin of VpreB1, VpreB2, and IGLL1, as well as VpreB3 and pre-T cell receptor alpha (PTCRA) genes. We found the genes for the SLC components (VpreB1, VpreB2, and IGLL1) only in eutherian mammals. However, genes for PTCRA occurred in all amniote groups and genes for VpreB3 occurred in all tetrapod groups, and these genes were highly conserved. Additionally, we found evidence of a new VpreB gene in non-mammalian tetrapods that is similar to the VpreB2 gene of eutherian mammals, suggesting VpreB2 may have appeared earlier in tetrapod evolution and may be a precursor to traditional VpreB2 genes in higher vertebrates. Among eutherian mammals, sequence conservation between VpreB1 and VpreB2 was low for all groups except rabbits and rodents, where VpreB2 was nearly identical to VpreB1 and did not share conserved synteny with VpreB2 of other species. VpreB2 of rabbits and rodents likely represents a duplicated variant of VpreB1 and is distinct from the VpreB2 of other mammals. Thus, rabbits and rodents have two variants of VpreB1 (VpreB1-1 and VpreB1-2) but no VpreB2. Sequence analysis of VpreB tail regions indicated differences in sequence content, charge, and length; where repertoire data was available, we observed a significant relationship between VpreB2 tail length and maximum DH length. We posit that SLC components co-evolved with immunoglobulin HC to accommodate the repertoire - particularly CDR H3 length and structure, and perhaps highly unusual HC (like ultralong HC of cattle) may bypass this developmental checkpoint altogether.
Collapse
Affiliation(s)
- Jeannine A. Ott
- Comparative Immunogenetics Lab, Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Jeremy K. Haakenson
- Applied Biomedical Science Institute, San Diego, CA, United States
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Abigail R. Kelly
- Applied Biomedical Science Institute, San Diego, CA, United States
| | - Claire Christian
- Comparative Immunogenetics Lab, Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Michael F. Criscitiello
- Comparative Immunogenetics Lab, Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Vaughn V. Smider
- Applied Biomedical Science Institute, San Diego, CA, United States
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
13
|
Salinas-Restrepo C, Misas E, Estrada-Gómez S, Quintana-Castillo JC, Guzman F, Calderón JC, Giraldo MA, Segura C. Improving the Annotation of the Venom Gland Transcriptome of Pamphobeteus verdolaga, Prospecting Novel Bioactive Peptides. Toxins (Basel) 2022; 14:408. [PMID: 35737069 PMCID: PMC9228390 DOI: 10.3390/toxins14060408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
Spider venoms constitute a trove of novel peptides with biotechnological interest. Paucity of next-generation-sequencing (NGS) data generation has led to a description of less than 1% of these peptides. Increasing evidence supports the underestimation of the assembled genes a single transcriptome assembler can predict. Here, the transcriptome of the venom gland of the spider Pamphobeteus verdolaga was re-assembled, using three free access algorithms, Trinity, SOAPdenovo-Trans, and SPAdes, to obtain a more complete annotation. Assembler's performance was evaluated by contig number, N50, read representation on the assembly, and BUSCO's terms retrieval against the arthropod dataset. Out of all the assembled sequences with all software, 39.26% were common between the three assemblers, and 27.88% were uniquely assembled by Trinity, while 27.65% were uniquely assembled by SPAdes. The non-redundant merging of all three assemblies' output permitted the annotation of 9232 sequences, which was 23% more when compared to each software and 28% more when compared to the previous P. verdolaga annotation; moreover, the description of 65 novel theraphotoxins was possible. In the generation of data for non-model organisms, as well as in the search for novel peptides with biotechnological interest, it is highly recommended to employ at least two different transcriptome assemblers.
Collapse
Affiliation(s)
- Cristian Salinas-Restrepo
- Grupo Toxinología, Alternativas Terapéuticas y Alimentarias, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellín 050012, Colombia; (C.S.-R.); (S.E.-G.)
| | - Elizabeth Misas
- Corporación para Investigaciones Biológicas, Medellín 050012, Colombia;
| | - Sebastian Estrada-Gómez
- Grupo Toxinología, Alternativas Terapéuticas y Alimentarias, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellín 050012, Colombia; (C.S.-R.); (S.E.-G.)
- Centro de Investigación en Recursos Naturales y Sustentabilidad, Universidad Bernardo O’Higgins, Aven-ida Viel 1497, Santiago 7750000, Chile
| | | | - Fanny Guzman
- Núcleo Biotecnología Curauma (NBC), Pontifícia Universidad Católica de Valparaíso, Valparaíso 2374631, Chile;
| | - Juan C. Calderón
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellín 050012, Colombia;
| | - Marco A. Giraldo
- Biophysics Group, Institute of Physics, University of Antioquia, Medellín 050012, Colombia;
| | - Cesar Segura
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquia, Medellín 050012, Colombia
| |
Collapse
|
14
|
Di Y, Cai S, Zheng S, Huang J, Du L, Song Y, Zhang M, Wang Z, Yu G, Ren L, Han H, Zhao Y. Reshaping the murine immunoglobulin heavy chain repertoire with bovine DH genes. Immunology 2021; 165:74-87. [PMID: 34428313 DOI: 10.1111/imm.13407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/04/2021] [Accepted: 08/19/2021] [Indexed: 11/30/2022] Open
Abstract
Having a limited number of VH segments, cattle rely on uniquely long DH gene segments to generate CDRH3 length variation (3-70 aa) far greater than that in humans or mice. Bovine antibodies with ultralong CDRH3s (>50 aa) possess unusual structures and abilities to bind to special antigens. In this study, we replaced most murine endogenous DH segments with bovine DH genes, generating a mouse line termed B-DH. The use of bovine DH genes significantly increased the length variation of CDRH3 and consequently the Ig heavy chain repertoire in B-DH mice. However, no ultralong CDRH3 was observed in B-DH mice, suggesting that other factors, in addition to long DH genes, are also involved in the formation of ultralong CDRH3. The B-DH mice mounted a normal humoral immune response to various antigens, although the B-cell developmental paradigm was obviously altered compared with wild-type mice. Additionally, B-DH mice are not predisposed to the generation of autoantibodies despite the interspecies DH gene replacement. The B-DH mice reported in this study provide a unique model to answer basic questions regarding the synergistic evolution of DH and VH genes, VDJ recombination and BCR selection in B-cell development.
Collapse
Affiliation(s)
- Yu Di
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Shuyi Cai
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Shunan Zheng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Jinwei Huang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Lijuan Du
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Yu Song
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Ming Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Zhao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Guotao Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Liming Ren
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Haitang Han
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Yaofeng Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
Wang H, Yan K, Wang R, Yang Y, Shen Y, Yu C, Chen L. Antibody heavy chain CDR3 length-dependent usage of human IGHJ4 and IGHJ6 germline genes. Antib Ther 2021; 4:101-108. [PMID: 34195544 PMCID: PMC8237691 DOI: 10.1093/abt/tbab010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 12/26/2022] Open
Abstract
Therapeutic antibody discovery using synthetic diversity has been proved productive, especially for target proteins not suitable for traditional animal immunization-based antibody discovery approaches. Recently, many lines of evidences suggest that the quality of synthetic diversity design limits the development success of synthetic antibody hits. The aim of our study is to understand the quality limitation and to properly address the challenges with a better design. Using VH3–23 as a model framework, we observed and quantitatively mapped CDR-H3 loop length-dependent usage of human IGHJ4 and IGHJ6 germline genes in the natural human immune repertoire. Skewed usage of DH2-JH6 and DH3-JH6 rearrangements was quantitatively determined in a CDR-H3 length-dependent manner in natural human antibodies with long CDR-H3 loops. Structural modeling suggests choices of JH help to stabilize antibody CDR-H3 loop and JH only partially contributes to the paratope. Our observations shed light on the design of next-generation synthetic diversity with improved probability of success.
Collapse
Affiliation(s)
- Huimin Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, #15 Beisanhuandong Rd, Chaoyang District, Beijing 100029, China
| | - Kai Yan
- Biotherapeutics, Biocytogen Pharmaceuticals (Beijing) Co. Ltd., #12 Baoshennan St, Daxing District, Beijing 102629, China
| | - Ruixue Wang
- Biotherapeutics, Biocytogen Pharmaceuticals (Beijing) Co. Ltd., #12 Baoshennan St, Daxing District, Beijing 102629, China
| | - Yi Yang
- Biotherapeutics, Biocytogen Pharmaceuticals (Beijing) Co. Ltd., #12 Baoshennan St, Daxing District, Beijing 102629, China
| | - Yuelei Shen
- Biotherapeutics, Biocytogen Pharmaceuticals (Beijing) Co. Ltd., #12 Baoshennan St, Daxing District, Beijing 102629, China
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, #15 Beisanhuandong Rd, Chaoyang District, Beijing 100029, China
| | - Lei Chen
- Biotherapeutics, Biocytogen Pharmaceuticals (Beijing) Co. Ltd., #12 Baoshennan St, Daxing District, Beijing 102629, China
| |
Collapse
|
16
|
Prabakaran P, Chowdhury PS. Landscape of Non-canonical Cysteines in Human V H Repertoire Revealed by Immunogenetic Analysis. Cell Rep 2021; 31:107831. [PMID: 32610132 PMCID: PMC7326410 DOI: 10.1016/j.celrep.2020.107831] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/02/2020] [Accepted: 06/08/2020] [Indexed: 12/21/2022] Open
Abstract
Human antibody repertoire data captured through next-generation sequencing (NGS) has enabled deeper insights into B cell immunogenetics and paratope diversity. By analyzing large public NGS datasets, we map the landscape of non-canonical cysteines in human variable heavy-chain domains (VHs) at the repertoire level. We identify remarkable usage of non-canonical cysteines within the heavy-chain complementarity-determining region 3 (CDR-H3) and other CDRs and framework regions. Furthermore, our study reveals the diversity and location of non-canonical cysteines and their associated motifs in human VHs, which are reminiscent of and more complex than those found in other non-human species such as chicken, camel, llama, shark, and cow. These results explain how non-canonical cysteines strategically occur in the human antibodyome to expand its paratope space. This study will guide the design of human antibodies harboring disulfide-stabilized long CDR-H3s to access difficult-to-target epitopes and influence a paradigm shift in developability involving non-canonical cysteines. NGS-based non-canonical cysteine landscape in human VHs 1 to 8 non-canonical cysteines and up to 30% in long CDR-H3s An array of potential disulfide motifs adds paratope diversity Non-canonical cysteines in human VHs are reminiscent of lower animals
Collapse
|
17
|
Jeong S, Ahn HJ, Min KJ, Byun JW, Pyo HM, Park MY, Ku BK, Nah J, Ryoo S, Wee SH, Kim SJ. Phage Display Screening of Bovine Antibodies to Foot-and-Mouth Disease Virus and Their Application in a Competitive ELISA for Serodiagnosis. Int J Mol Sci 2021; 22:ijms22094328. [PMID: 33919326 PMCID: PMC8122579 DOI: 10.3390/ijms22094328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 01/15/2023] Open
Abstract
For serodiagnosis of foot-and-mouth disease virus (FMDV), monoclonal antibody (MAb)-based competitive ELISA (cELISA) is commonly used since it allows simple and reproducible detection of antibody response to FMDV. However, the use of mouse-origin MAb as a detection reagent is questionable, as antibody responses to FMDV in mice may differ in epitope structure and preference from those in natural hosts such as cattle and pigs. To take advantage of natural host-derived antibodies, a phage-displayed scFv library was constructed from FMDV-immune cattle and subjected to two separate pannings against inactivated FMDV type O and A. Subsequent ELISA screening revealed high-affinity scFv antibodies specific to a serotype (O or A) as well as those with pan-serotype specificity. When BvO17, an scFv antibody specific to FMDV type O, was tested as a detection reagent in cELISA, it successfully detected FMDV type O antibodies for both serum samples from vaccinated cattle and virus-challenged pigs with even higher sensitivity than a mouse MAb-based commercial FMDV type O antibody detection kit. These results demonstrate the feasibility of using natural host-derived antibodies such as bovine scFv instead of mouse MAb in cELISA for serological detection of antibody response to FMDV in the susceptible animals.
Collapse
Affiliation(s)
- Sukyo Jeong
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (S.J.); (H.J.A.); (K.J.M.)
| | - Hyun Joo Ahn
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (S.J.); (H.J.A.); (K.J.M.)
| | - Kyung Jin Min
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (S.J.); (H.J.A.); (K.J.M.)
| | - Jae Won Byun
- Foot-and-Mouth Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea; (J.W.B.); (H.M.P.); (M.Y.P.); (B.K.K.); (J.N.); (S.R.); (S.H.W.)
| | - Hyun Mi Pyo
- Foot-and-Mouth Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea; (J.W.B.); (H.M.P.); (M.Y.P.); (B.K.K.); (J.N.); (S.R.); (S.H.W.)
| | - Mi Young Park
- Foot-and-Mouth Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea; (J.W.B.); (H.M.P.); (M.Y.P.); (B.K.K.); (J.N.); (S.R.); (S.H.W.)
| | - Bok Kyung Ku
- Foot-and-Mouth Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea; (J.W.B.); (H.M.P.); (M.Y.P.); (B.K.K.); (J.N.); (S.R.); (S.H.W.)
| | - Jinju Nah
- Foot-and-Mouth Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea; (J.W.B.); (H.M.P.); (M.Y.P.); (B.K.K.); (J.N.); (S.R.); (S.H.W.)
| | - Soyoon Ryoo
- Foot-and-Mouth Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea; (J.W.B.); (H.M.P.); (M.Y.P.); (B.K.K.); (J.N.); (S.R.); (S.H.W.)
| | - Sung Hwan Wee
- Foot-and-Mouth Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea; (J.W.B.); (H.M.P.); (M.Y.P.); (B.K.K.); (J.N.); (S.R.); (S.H.W.)
| | - Sang Jick Kim
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (S.J.); (H.J.A.); (K.J.M.)
- Correspondence: ; Tel.: +82-42-860-4229
| |
Collapse
|
18
|
Protective porcine influenza virus-specific monoclonal antibodies recognize similar haemagglutinin epitopes as humans. PLoS Pathog 2021; 17:e1009330. [PMID: 33662023 PMCID: PMC7932163 DOI: 10.1371/journal.ppat.1009330] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/25/2021] [Indexed: 01/18/2023] Open
Abstract
Pigs are natural hosts for the same subtypes of influenza A viruses as humans and integrally involved in virus evolution with frequent interspecies transmissions in both directions. The emergence of the 2009 pandemic H1N1 virus illustrates the importance of pigs in evolution of zoonotic strains. Here we generated pig influenza-specific monoclonal antibodies (mAbs) from H1N1pdm09 infected pigs. The mAbs recognized the same two major immunodominant haemagglutinin (HA) epitopes targeted by humans, one of which is not recognized by post-infection ferret antisera that are commonly used to monitor virus evolution. Neutralizing activity of the pig mAbs was comparable to that of potent human anti-HA mAbs. Further, prophylactic administration of a selected porcine mAb to pigs abolished lung viral load and greatly reduced lung pathology but did not eliminate nasal shedding of virus after H1N1pdm09 challenge. Hence mAbs from pigs, which target HA can significantly reduce disease severity. These results, together with the comparable sizes of pigs and humans, indicate that the pig is a valuable model for understanding how best to apply mAbs as therapy in humans and for monitoring antigenic drift of influenza viruses in humans, thereby providing information highly relevant to making influenza vaccine recommendations. Antibodies (Ab) are increasingly used to treat human infectious diseases. Pigs are large animals, natural hosts for influenza viruses and very similar to humans. We generated monoclonal Abs from influenza infected pigs and show that they recognize the same sites of the virus as humans. One of these sites was not recognized by ferret anti-sera, which are commonly used to predict the evolution of the virus and inform vaccine design. We also show that prophylactic administration of one of these mAb to pigs abolished lung viral load and prevented lung damage following infection with influenza. We conclude that the pig is a useful model to test how best to use Abs for therapy and to inform vaccine recommendations for humans.
Collapse
|
19
|
Macpherson A, Scott-Tucker A, Spiliotopoulos A, Simpson C, Staniforth J, Hold A, Snowden J, Manning L, van den Elsen J, Lawson ADG. Isolation of antigen-specific, disulphide-rich knob domain peptides from bovine antibodies. PLoS Biol 2020; 18:e3000821. [PMID: 32886672 PMCID: PMC7498065 DOI: 10.1371/journal.pbio.3000821] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 09/17/2020] [Accepted: 08/10/2020] [Indexed: 12/25/2022] Open
Abstract
As a novel alternative to established surface display or combinatorial chemistry approaches for the discovery of therapeutic peptides, we present a method for the isolation of small, cysteine-rich domains from bovine antibody ultralong complementarity-determining regions (CDRs). We show for the first time that isolated bovine antibody knob domains can function as autonomous entities by binding antigen outside the confines of the antibody scaffold. This yields antibody fragments so small as to be considered peptides, each stabilised by an intricate, bespoke arrangement of disulphide bonds. For drug discovery, cow immunisations harness the immune system to generate knob domains with affinities in the picomolar to low nanomolar range, orders of magnitude higher than unoptimized peptides from naïve library screening. Using this approach, knob domain peptides that tightly bound Complement component C5 were obtained, at scale, using conventional antibody discovery and peptide purification techniques. This study describes a method for the isolation of knob domains (a disulfide-rich domain found in the ultra-long CDRH3 of a subset of bovine antibodies) to create a uniquely small antibody fragment. With a molecular weight 3-6 KDa, the knob domain fragment is so small as to be considered a peptide. This approach uniquely harnesses the bovine immune system to affinity maturate peptides in vivo.
Collapse
Affiliation(s)
- Alex Macpherson
- UCB, Slough, United Kingdom
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
- * E-mail:
| | | | | | | | | | | | | | | | - Jean van den Elsen
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | | |
Collapse
|
20
|
Ban B, Sharma M, Shetty J. Optimization of Methods for the Production and Refolding of Biologically Active Disulfide Bond-Rich Antibody Fragments in Microbial Hosts. Antibodies (Basel) 2020; 9:E39. [PMID: 32764309 PMCID: PMC7551518 DOI: 10.3390/antib9030039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 11/17/2022] Open
Abstract
Antibodies have been used for basic research, clinical diagnostics, and therapeutic applications. Escherichia coli is one of the organisms of choice for the production of recombinant antibodies. Variable antibody genes have canonical and non-canonical disulfide bonds that are formed by the oxidation of a pair of cysteines. However, the high-level expression of an antibody is an inherent problem to the process of disulfide bond formation, ultimately leading to mispairing of cysteines which can cause misfolding and aggregation as inclusion bodies (IBs). This study demonstrated that fragment antibodies are either secreted to the periplasm as soluble proteins or expressed in the cytoplasm as insoluble inclusion bodies when expressed using engineered bacterial host strains with optimal culture conditions. It was observed that moderate-solubilization and an in vitro matrix that associated refolding strategies with redox pairing more correctly folded, structured, and yielded functionally active antibody fragments than the one achieved by a direct dilution method in the absence of a redox pair. However, natural antibodies have canonical and non-canonical disulfide bonds that need a more elaborate refolding process in the presence of optimal concentrations of chaotropic denaturants and redox agents to obtain correctly folded disulfide bonds and high yield antibodies that retain biological activity.
Collapse
Affiliation(s)
- Bhupal Ban
- Antibody Engineering and Technology Core, University of Virginia, Charlottesville, VA 22904, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22904, USA
- Pharmaceutical Biotechnology Center, Indiana Biosciences Research Institutes (IBRI), Indianapolis, IN 46202, USA
| | - Maya Sharma
- Department of Data Science, School of Informatics and Computing Indiana University–Purdue University Indianapolis (IUPUI), Indianapolis, IN 46202, USA;
| | - Jagathpala Shetty
- Antibody Engineering and Technology Core, University of Virginia, Charlottesville, VA 22904, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
21
|
Barroso R, Morrison WI, Morrison LJ. Molecular Dissection of the Antibody Response: Opportunities and Needs for Application in Cattle. Front Immunol 2020; 11:1175. [PMID: 32595642 PMCID: PMC7304342 DOI: 10.3389/fimmu.2020.01175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/13/2020] [Indexed: 12/11/2022] Open
Abstract
Improving understanding of the bovine adaptive immune response would equip researchers to more efficiently design interventions against pathogens that impact upon food security and animal welfare. There are features of the bovine antibody response that differ substantially from other mammalian species, including the best understood models in the human and mouse. These include the ability to generate a functionally diverse immunoglobulin response despite having a fraction of the germline gene diversity that underpins this process in humans and mice, and the unique structure of a subset of immunoglobulins with "ultralong" HCDR3 domains, which are of significant interest with respect to potential therapeutics, including against human pathogens. However, a more detailed understanding of the B cell response and the production of an effective antibody response in the bovine is currently hampered by the lack of reagents for the B cell lineage. In this article we outline the current state of knowledge and capabilities with regard to B cell and antibody responses in cattle, highlight resource gaps, and summarize recent advances that have the potential to fundamentally advance our understanding of this process in the bovine host.
Collapse
Affiliation(s)
- Ruben Barroso
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - W Ivan Morrison
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - Liam J Morrison
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| |
Collapse
|
22
|
Smider BA, Smider VV. Formation of ultralong DH regions through genomic rearrangement. BMC Immunol 2020; 21:30. [PMID: 32487018 PMCID: PMC7265228 DOI: 10.1186/s12865-020-00359-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 05/20/2020] [Indexed: 01/02/2023] Open
Abstract
Background Cow antibodies are very unusual in having exceptionally long CDR H3 regions. The genetic basis for this length largely derives from long heavy chain diversity (DH) regions, with a single “ultralong” DH, IGHD8–2, encoding over 50 amino acids. Many bovine IGHD regions have sequence similarity but have several nucleotide repeating units that diversify their lengths. Genomically, most DH regions exist in three clusters that appear to have formed from DNA duplication events. However, the relationship between the genomic arrangement and long CDR lengths is unclear. Results The DH cluster containing IGHD8–2 underwent a rearrangement and deletion event in relation to the other clusters in the region corresponding to IGHD8–2, with possible fusion of two DH regions and expansion of short repeats to form the ultralong IGHD8–2 gene. Conclusions Length heterogeneity within DH regions is a unique evolutionary genomic mechanism to create immune diversity, including formation of ultralong CDR H3 regions.
Collapse
Affiliation(s)
- Brevin A Smider
- The Applied Biomedical Science Institute, San Diego, CA, 92127, USA
| | - Vaughn V Smider
- The Applied Biomedical Science Institute, San Diego, CA, 92127, USA. .,The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|