1
|
Nijhuis L, Bodelόn A, Scholman RC, Houtzager I, Sijbers LJPM, Mocholi E, Picavet LW, Calis JJA, Mokry M, Vastert SJ, van Loosdregt J. Nicotinamide Inhibits CD4+ T-Cell Activation and Function. Cells 2025; 14:560. [PMID: 40277886 PMCID: PMC12025565 DOI: 10.3390/cells14080560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/28/2025] [Accepted: 04/02/2025] [Indexed: 04/26/2025] Open
Abstract
Chronic inflammation and autoimmune diseases are driven, in part, by the activation of (auto)reactive CD4+ T-cells, highlighting their potential as therapeutic targets for these diseases. Nicotinamide (NAM) has demonstrated anti-inflammatory properties in various disease models and has already demonstrated safety in several large clinical trials in humans. The mechanisms behind these observations, and especially their direct effects on CD4+ T-cells, remain poorly understood. Here, we address this gap by investigating how NAM influences CD4+ T-cell activation and function. We also describe that NAM treatment significantly suppresses CD4+ T-cell activation in vitro, as evidenced by impaired proliferation and reduced expression of surface activation markers. Additionally, NAM treatment resulted in reduced production of pro-inflammatory cytokines, IL-2, IFNy, and IL-17, further highlighting its anti-inflammatory potential. We found that NAM modulates key metabolic processes, including glycolysis and reactive oxygen species (ROS) production-both essential to T-cell activation. Taken together, our findings provide novel mechanistic insight into the regulation of T-cell activation by NAM, suggesting NAM as an attractive candidate for novel therapies targeting immune-related diseases.
Collapse
Affiliation(s)
- Lotte Nijhuis
- Center for Translational Immunology, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, The Netherlands; (L.N.); (A.B.); (R.C.S.); (L.J.P.M.S.); (S.J.V.)
| | - Alejandra Bodelόn
- Center for Translational Immunology, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, The Netherlands; (L.N.); (A.B.); (R.C.S.); (L.J.P.M.S.); (S.J.V.)
| | - Rianne C. Scholman
- Center for Translational Immunology, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, The Netherlands; (L.N.); (A.B.); (R.C.S.); (L.J.P.M.S.); (S.J.V.)
| | - Isabelle Houtzager
- Center for Translational Immunology, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, The Netherlands; (L.N.); (A.B.); (R.C.S.); (L.J.P.M.S.); (S.J.V.)
| | - Lyanne J. P. M. Sijbers
- Center for Translational Immunology, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, The Netherlands; (L.N.); (A.B.); (R.C.S.); (L.J.P.M.S.); (S.J.V.)
| | - Enric Mocholi
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands;
| | - Lucas W. Picavet
- Center for Translational Immunology, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, The Netherlands; (L.N.); (A.B.); (R.C.S.); (L.J.P.M.S.); (S.J.V.)
| | - Jorg J. A. Calis
- Center for Translational Immunology, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, The Netherlands; (L.N.); (A.B.); (R.C.S.); (L.J.P.M.S.); (S.J.V.)
| | - Michal Mokry
- Department of Experimental Cardiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands;
| | - Sebastiaan J. Vastert
- Center for Translational Immunology, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, The Netherlands; (L.N.); (A.B.); (R.C.S.); (L.J.P.M.S.); (S.J.V.)
- Department of Pediatric Rheumatology and Immunology, University Medical Center Utrecht, Lundlaan 6, 3584 CX Utrecht, The Netherlands
| | - Jorg van Loosdregt
- Center for Translational Immunology, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, The Netherlands; (L.N.); (A.B.); (R.C.S.); (L.J.P.M.S.); (S.J.V.)
| |
Collapse
|
2
|
Matsumoto K, Matsumoto Y, Wada J. PARylation-mediated post-transcriptional modifications in cancer immunity and immunotherapy. Front Immunol 2025; 16:1537615. [PMID: 40134437 PMCID: PMC11933034 DOI: 10.3389/fimmu.2025.1537615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
Poly-ADP-ribosylation (PARylation) is a post-translational modification in which ADP-ribose is added to substrate proteins. PARylation is mediated by a superfamily of ADP-ribosyl transferases known as PARPs and influences a wide range of cellular functions, including genome integrity maintenance, and the regulation of proliferation and differentiation. We and others have recently reported that PARylation of SH3 domain-binding protein 2 (3BP2) plays a role in bone metabolism, immune system regulation, and cytokine production. Additionally, PARylation has recently gained attention as a target for cancer treatment. In this review, we provide an overview of PARylation, its involvement in several signaling pathways related to cancer immunity, and the potential of combination therapies with PARP inhibitors and immune checkpoint inhibitors.
Collapse
Affiliation(s)
| | - Yoshinori Matsumoto
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of
Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | | |
Collapse
|
3
|
Herrada AA, Rodríguez-Arriaza F, Olate-Briones A, Albornoz-Muñoz S, Faúndez-Acuña JY, Rojas-Henríquez V, Retamal-Quinteros L, Prado C, Escobedo N. Yerba Mate ( Ilex paraguariensis) Ameliorates Experimental Autoimmune Encephalomyelitis by Modulating Regulatory T Cell Function. Nutrients 2025; 17:897. [PMID: 40077767 PMCID: PMC11901674 DOI: 10.3390/nu17050897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
Background/Objectives: In Latin America, yerba mate (YM) is a popular infusion processed from the leaves and stems of Ilex paraguariensis. YM has been shown to have anti-inflammatory properties in several studies, although the effect of YM on multiple sclerosis (MS) remains elusive. The purpose of this study was to examine the effect of YM on the development of MS, by using the experimental autoimmune encephalomyelitis (EAE) mouse model while also evaluating its effect over infiltration of immune cells into the central nervous system (CNS) and regulatory T cell (Treg) function. Methods: YM or vehicle were administrated to mice daily by oral gavage for seven days prior to EAE induction and during the entire course of the disease. EAE score was recorded daily, and immune cell infiltration into the CNS was measured by flow cytometry and immunofluorescence. Results: Our results showed that YM administration decreases EAE symptoms and immune cell infiltration into the CNS, along with reducing demyelination, compared to the vehicle treatment. Moreover, an increase in the Treg population, immune cells capable of generating tolerance and decreased inflammation, was observed in mice receiving YM, together with improved Treg suppressive capabilities after YM treatment in vitro. Conclusions: In summary, we showed that YM promotes an immunosuppressive environment by modulating Treg function, reducing EAE symptoms and immune cell infiltration into the brain, and suggesting that YM consumption could be a good cost-effective treatment for MS.
Collapse
Affiliation(s)
- Andrés A. Herrada
- Lymphatic Vasculature and Inflammation Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3467987, Chile; (F.R.-A.); (A.O.-B.); (S.A.-M.); (J.Y.F.-A.); (V.R.-H.); (L.R.-Q.)
| | - Francisca Rodríguez-Arriaza
- Lymphatic Vasculature and Inflammation Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3467987, Chile; (F.R.-A.); (A.O.-B.); (S.A.-M.); (J.Y.F.-A.); (V.R.-H.); (L.R.-Q.)
| | - Alexandra Olate-Briones
- Lymphatic Vasculature and Inflammation Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3467987, Chile; (F.R.-A.); (A.O.-B.); (S.A.-M.); (J.Y.F.-A.); (V.R.-H.); (L.R.-Q.)
| | - Sofía Albornoz-Muñoz
- Lymphatic Vasculature and Inflammation Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3467987, Chile; (F.R.-A.); (A.O.-B.); (S.A.-M.); (J.Y.F.-A.); (V.R.-H.); (L.R.-Q.)
| | - Jorge Y. Faúndez-Acuña
- Lymphatic Vasculature and Inflammation Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3467987, Chile; (F.R.-A.); (A.O.-B.); (S.A.-M.); (J.Y.F.-A.); (V.R.-H.); (L.R.-Q.)
| | - Victor Rojas-Henríquez
- Lymphatic Vasculature and Inflammation Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3467987, Chile; (F.R.-A.); (A.O.-B.); (S.A.-M.); (J.Y.F.-A.); (V.R.-H.); (L.R.-Q.)
| | - Ledaliz Retamal-Quinteros
- Lymphatic Vasculature and Inflammation Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3467987, Chile; (F.R.-A.); (A.O.-B.); (S.A.-M.); (J.Y.F.-A.); (V.R.-H.); (L.R.-Q.)
| | - Carolina Prado
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida del Valle Norte #725, Huechuraba, Santiago 8580702, Chile;
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510156, Chile
| | - Noelia Escobedo
- Lymphatic Vasculature and Inflammation Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3467987, Chile; (F.R.-A.); (A.O.-B.); (S.A.-M.); (J.Y.F.-A.); (V.R.-H.); (L.R.-Q.)
| |
Collapse
|
4
|
Vitali R, Novelli F, Palone F, Cucchiara S, Stronati L, Pioli C. PARP1 inactivation increases regulatory T / Th17 cell proportion in intestinal inflammation. Role of HMGB1. Immunol Lett 2024; 270:106912. [PMID: 39237041 DOI: 10.1016/j.imlet.2024.106912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 08/12/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
Inflammatory bowel diseases (IBD) are chronic relapsing disorders with increasing prevalence. Knowledge gaps still limit the possibility to develop more specific and effective therapies. Using a dextran sodium sulfate colitis mouse model, we found that inflammation increased the total number and altered the frequencies of leukocytes within colon mesenteric lymph nodes (cMLNs). Although the inflammation reduced the frequency of regulatory T (Treg) cells, their absolute numbers were increased. Increased frequency of colitogenic Th17 cells was also observed. Noteworthy, untreated mice lacking Poly(ADP-ribose)-Polimerase-1 functional gene (PARP-1KO) displayed higher frequency of Treg cells and lower percentage of Th17 cells in cMLNs. In colitic PARP-1KO mice the inflammation driven expansion of the Foxp3 Treg population was more pronounced than in WT mice. Conversely, colitis increased Th17 cells to a lower extent in PARP-1KO mice compared with WT mice, resulting in a more protective Treg/Th17 cell ratio. Consequently PARP-1KO mice developed less severe colitis with reduced expression of inflammatory cytokines. In ex vivo experiments PARP-1KO and WT CD11c dendritic cells (DCs) promoted naïve CD4 T cell differentiation differently, the former sustaining more efficiently the generation of Treg cells, the latter that of Th17 cells. Addition of HMGB1 B box or of dipotassium glycyrrhizate, which sequesters extracellular HMGB1, revealed a role for this alarmin in the regulation exerted by PARP-1 on the stimulating vs. tolerogenic function of DCs during colitis. Moreover, a higher percentage of CD11c DC from PARP-1KO mice expressed CD103, a marker associated with the ability of DC to induce Treg cells, compared with WT DC. Conversely, PARP-1KO DC were including a reduced percentage of CX3CR1+ DC, described to induce Th17 cells. These findings were observed in both splenic and colon lamina propria DC.
Collapse
Affiliation(s)
| | | | | | - Salvatore Cucchiara
- Department of Maternal Infantile and Urological Sciences, Sapienza University, Rome, Italy
| | - Laura Stronati
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | | |
Collapse
|
5
|
Luo Y, Xia Y, Liu D, Li X, Li H, Liu J, Zhou D, Dong Y, Li X, Qian Y, Xu C, Tao K, Li G, Pan W, Zhong Q, Liu X, Xu S, Wang Z, Liu R, Zhang W, Shan W, Fang T, Wang S, Peng Z, Jin P, Jin N, Shi S, Chen Y, Wang M, Jiao X, Luo M, Gong W, Wang Y, Yao Y, Zhao Y, Huang X, Ji X, He Z, Zhao G, Liu R, Wu M, Chen G, Hong L, Ma D, Fang Y, Liang H, Gao Q. Neoadjuvant PARPi or chemotherapy in ovarian cancer informs targeting effector Treg cells for homologous-recombination-deficient tumors. Cell 2024; 187:4905-4925.e24. [PMID: 38971151 DOI: 10.1016/j.cell.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/12/2024] [Accepted: 06/10/2024] [Indexed: 07/08/2024]
Abstract
Homologous recombination deficiency (HRD) is prevalent in cancer, sensitizing tumor cells to poly (ADP-ribose) polymerase (PARP) inhibition. However, the impact of HRD and related therapies on the tumor microenvironment (TME) remains elusive. Our study generates single-cell gene expression and T cell receptor profiles, along with validatory multimodal datasets from >100 high-grade serous ovarian cancer (HGSOC) samples, primarily from a phase II clinical trial (NCT04507841). Neoadjuvant monotherapy with the PARP inhibitor (PARPi) niraparib achieves impressive 62.5% and 73.6% response rates per RECIST v.1.1 and GCIG CA125, respectively. We identify effector regulatory T cells (eTregs) as key responders to HRD and neoadjuvant therapies, co-occurring with other tumor-reactive T cells, particularly terminally exhausted CD8+ T cells (Tex). TME-wide interferon signaling correlates with cancer cells upregulating MHC class II and co-inhibitory ligands, potentially driving Treg and Tex fates. Depleting eTregs in HRD mouse models, with or without PARP inhibition, significantly suppresses tumor growth without observable toxicities, underscoring the potential of eTreg-focused therapeutics for HGSOC and other HRD-related tumors.
Collapse
Affiliation(s)
- Yikai Luo
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yu Xia
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dan Liu
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiong Li
- Department of Gynecology & Obstetrics, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Huayi Li
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiahao Liu
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dongchen Zhou
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu Dong
- Precision Scientific (Beijing) Co., Ltd., Beijing 100085, China
| | - Xin Li
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yiyu Qian
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Cheng Xu
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kangjia Tao
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guannan Li
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wen Pan
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qing Zhong
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xingzhe Liu
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Sen Xu
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhi Wang
- Department of Gynecology & Obstetrics, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Ronghua Liu
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Zhang
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wanying Shan
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tian Fang
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Siyuan Wang
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zikun Peng
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ping Jin
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ning Jin
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shennan Shi
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuxin Chen
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mengjie Wang
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaofei Jiao
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mengshi Luo
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenjian Gong
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ya Wang
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yue Yao
- Precision Scientific (Beijing) Co., Ltd., Beijing 100085, China
| | - Yi Zhao
- Precision Scientific (Beijing) Co., Ltd., Beijing 100085, China
| | - Xinlin Huang
- Precision Scientific (Beijing) Co., Ltd., Beijing 100085, China
| | - Xuwo Ji
- Precision Scientific (Beijing) Co., Ltd., Beijing 100085, China
| | - Zhaoren He
- BioMap (Beijing) Intelligence Technology Limited, Beijing 100089, China
| | - Guangnian Zhao
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Rong Liu
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mingfu Wu
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Gang Chen
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Hong
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ding Ma
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yong Fang
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Qinglei Gao
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
6
|
Kristeleit R, Leary A, Oaknin A, Redondo A, George A, Chui S, Seiller A, Liste-Hermoso M, Willis J, Shemesh CS, Xiao J, Lin KK, Molinero L, Guan Y, Ray-Coquard I, Mileshkin L. PARP inhibition with rucaparib alone followed by combination with atezolizumab: Phase Ib COUPLET clinical study in advanced gynaecological and triple-negative breast cancers. Br J Cancer 2024; 131:820-831. [PMID: 38971950 PMCID: PMC11369183 DOI: 10.1038/s41416-024-02776-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/03/2024] [Accepted: 06/18/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Combining PARP inhibitors (PARPis) with immune checkpoint inhibitors may improve clinical outcomes in selected cancers. We evaluated rucaparib and atezolizumab in advanced gynaecological or triple-negative breast cancer (TNBC). METHODS After identifying the recommended dose, patients with PARPi-naive BRCA-mutated or homologous recombination-deficient/loss-of-heterozygosity-high platinum-sensitive ovarian cancer or TNBC received rucaparib plus atezolizumab. Tumour biopsies were collected pre-treatment, during single-agent rucaparib run-in, and after starting combination therapy. RESULTS The most common adverse events with rucaparib 600 mg twice daily and atezolizumab 1200 mg on Day 1 every 3 weeks were gastrointestinal effects, fatigue, liver enzyme elevations, and anaemia. Responding patients typically had BRCA-mutated tumours and higher pre-treatment tumour levels of PD-L1 and CD8 + T cells. Markers of DNA damage repair decreased during rucaparib run-in and combination treatment in responders, but typically increased in non-responders. Apoptosis signature expression showed the reverse. CD8 + T-cell activity and STING pathway activation increased during rucaparib run-in, increasing further with atezolizumab. CONCLUSIONS In this small study, rucaparib plus atezolizumab demonstrated acceptable safety and activity in BRCA-mutated tumours. Increasing anti-tumour immunity and inflammation might be a key mechanism of action for clinical benefit from the combination, potentially guiding more targeted development of such regimens. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov (NCT03101280).
Collapse
Affiliation(s)
- Rebecca Kristeleit
- University College London Cancer Institute, London, UK.
- School of Cancer and Pharmaceutical Sciences, King's College London, London, UK.
- Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK.
| | | | - Ana Oaknin
- Gynaecologic Cancer Programme, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitario Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Andres Redondo
- Medical Oncology Department, La Paz University Hospital-IdiPAZ, Madrid, Spain
| | - Angela George
- The Institute of Cancer Research, London, UK
- Royal Marsden NHS Foundation Trust, London, UK
| | - Stephen Chui
- Product Development Oncology, Genentech Inc., South San Francisco, CA, USA
| | | | | | - Jenna Willis
- Product Development Safety, Roche Products Ltd, Welwyn Garden City, UK
| | - Colby S Shemesh
- Clinical Pharmacology Oncology, Genentech Inc, South San Francisco, CA, USA
| | - Jim Xiao
- Clovis Oncology, San Francisco, CA, USA
| | | | - Luciana Molinero
- Translational Medicine, Genentech Inc., South San Francisco, CA, USA
| | - Yinghui Guan
- Translational Medicine, Genentech Inc., South San Francisco, CA, USA
| | - Isabelle Ray-Coquard
- Centre Leon Bérard, HESPER laboratory EA 7425, Université Claude Bernard Lyon Est, Lyon, France
| | - Linda Mileshkin
- Department of Medical Oncology, Peter MacCallum Cancer Centre and University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Szántó M, Yélamos J, Bai P. Specific and shared biological functions of PARP2 - is PARP2 really a lil' brother of PARP1? Expert Rev Mol Med 2024; 26:e13. [PMID: 38698556 PMCID: PMC11140550 DOI: 10.1017/erm.2024.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/07/2024] [Accepted: 03/20/2024] [Indexed: 05/05/2024]
Abstract
PARP2, that belongs to the family of ADP-ribosyl transferase enzymes (ART), is a discovery of the millennium, as it was identified in 1999. Although PARP2 was described initially as a DNA repair factor, it is now evident that PARP2 partakes in the regulation or execution of multiple biological processes as inflammation, carcinogenesis and cancer progression, metabolism or oxidative stress-related diseases. Hereby, we review the involvement of PARP2 in these processes with the aim of understanding which processes are specific for PARP2, but not for other members of the ART family. A better understanding of the specific functions of PARP2 in all of these biological processes is crucial for the development of new PARP-centred selective therapies.
Collapse
Affiliation(s)
- Magdolna Szántó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - José Yélamos
- Hospital del Mar Research Institute, Barcelona, Spain
| | - Péter Bai
- HUN-REN-UD Cell Biology and Signaling Research Group, Debrecen, 4032, Hungary
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary
| |
Collapse
|
8
|
Park J, Kim JC, Lee M, Lee J, Kim YN, Lee YJ, Kim S, Kim SW, Park SH, Lee JY. Frequency of peripheral PD-1 +regulatory T cells is associated with treatment responses to PARP inhibitor maintenance in patients with epithelial ovarian cancer. Br J Cancer 2023; 129:1841-1851. [PMID: 37821637 PMCID: PMC10667217 DOI: 10.1038/s41416-023-02455-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 09/13/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Poly (adenosine diphosphate [ADP]-ribose) polymerase inhibitors (PARPis) are becoming the standard of care for epithelial ovarian cancer (EOC). Recently, clinical trials of triple maintenance therapy (PARPi+anti-angiogenic agent+anti-PD-1/L1) are actively ongoing. Here, we investigated the immunological effects of PARPi or triple maintenance therapy on T cells and their impact on clinical responses. METHODS We collected serial blood from EOC patients receiving PARPi therapy (cohort 1: PARPi, n = 49; cohort 2: olaparib+bevacizumab+pembrolizumab, n = 31). Peripheral T cells were analyzed using flow cytometry and compared according to the PARPi response. Progression-free survival (PFS) was assessed according to prognostic biomarkers identified in a comparative analysis. RESULTS Regulatory T cells (Tregs) were suppressed by PARPi therapy, whereas PD-1 was not significantly changed. Short PFS group exhibited a higher percentage of baseline PD-1+Tregs than long PFS group, and the patients with high percentage of PD-1+Tregs before treatment showed poor PFS in cohort 1. However, the expression of PD-1 on Tregs significantly decreased after receiving triple maintenance therapy, and the reduction in PD-1+Tregs was associated with superior PFS in cohort 2 (P = 0.0078). CONCLUSION PARPi suppresses Tregs, but does not affect PD-1 expression. Adding anti-PD-1 to PARPi decreases PD-1+Tregs, which have negative prognostic value for PARPi monotherapy.
Collapse
Affiliation(s)
- Junsik Park
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jung Chul Kim
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Miran Lee
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - JooHyang Lee
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoo-Na Kim
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong Jae Lee
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sunghoon Kim
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Wun Kim
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Su-Hyung Park
- Laboratory of Translational Immunology and Vaccinology, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jung-Yun Lee
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Musso G, Saba F, Cassader M, Gambino R. Lipidomics in pathogenesis, progression and treatment of nonalcoholic steatohepatitis (NASH): Recent advances. Prog Lipid Res 2023; 91:101238. [PMID: 37244504 DOI: 10.1016/j.plipres.2023.101238] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 05/29/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease affecting up to 30% of the general adult population. NAFLD encompasses a histological spectrum ranging from pure steatosis to non-alcoholic steatohepatitis (NASH). NASH can progress to cirrhosis and is becoming the most common indication for liver transplantation, as a result of increasing disease prevalence and of the absence of approved treatments. Lipidomic readouts of liver blood and urine samples from experimental models and from NASH patients disclosed an abnormal lipid composition and metabolism. Collectively, these changes impair organelle function and promote cell damage, necro-inflammation and fibrosis, a condition termed lipotoxicity. We will discuss the lipid species and metabolic pathways leading to NASH development and progression to cirrhosis, as well as and those species that can contribute to inflammation resolution and fibrosis regression. We will also focus on emerging lipid-based therapeutic opportunities, including specialized proresolving lipid molecules and macrovesicles contributing to cell-to-cell communication and NASH pathophysiology.
Collapse
Affiliation(s)
- Giovanni Musso
- Dept of Emergency Medicine, San Luigi Gonzaga University Hospital, Orbassano, Turin, Italy.
| | - Francesca Saba
- Dept. of Medical Sciences, San Giovanni Battista Hospital, University of Turin, Turin, Italy
| | - Maurizio Cassader
- Dept. of Medical Sciences, San Giovanni Battista Hospital, University of Turin, Turin, Italy
| | - Roberto Gambino
- Dept. of Medical Sciences, San Giovanni Battista Hospital, University of Turin, Turin, Italy
| |
Collapse
|
10
|
Yi XF, Gao RL, Sun L, Wu ZX, Zhang SL, Huang LT, Han CB, Ma JT. Dual antitumor immunomodulatory effects of PARP inhibitor on the tumor microenvironment: A counterbalance between anti-tumor and pro-tumor. Biomed Pharmacother 2023; 163:114770. [PMID: 37105074 DOI: 10.1016/j.biopha.2023.114770] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/10/2023] [Accepted: 04/22/2023] [Indexed: 04/29/2023] Open
Abstract
Poly (ADP-ribose)-polymerases (PARPs) play an essential role in the maintenance of genome integrity, DNA repair, and apoptosis. PARP inhibitors (PARPi) exert antitumor effects via synthetic lethality and PARP trapping. PARPi impact the antitumor immune response by modulating the tumor microenvironment, and their effect has dual properties of promoting and inhibiting the antitumor immune response. PARPi promote M1 macrophage polarization, antigen presentation by dendritic cells, infiltration of B and T cells and their killing capacity and inhibit tumor angiogenesis. PARPi can also inhibit the activation and function of immune cells by upregulating PD-L1. In this review, we summarize the dual immunomodulatory effects and possible underlying mechanisms of PARPi, providing a basis for the design of combination regimens for clinical treatment and the identification of populations who may benefit from these therapies.
Collapse
Affiliation(s)
- Xiao-Fang Yi
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ruo-Lin Gao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Li Sun
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhi-Xuan Wu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shu-Ling Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Le-Tian Huang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Cheng-Bo Han
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Jie-Tao Ma
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
11
|
Radiotherapy, PARP Inhibition, and Immune-Checkpoint Blockade: A Triad to Overcome the Double-Edged Effects of Each Single Player. Cancers (Basel) 2023; 15:cancers15041093. [PMID: 36831435 PMCID: PMC9954050 DOI: 10.3390/cancers15041093] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Radiotherapy and, more recently, PARP inhibitors (PARPis) and immune-checkpoint inhibitors represent effective tools in cancer therapy. Radiotherapy exerts its effects not only by damaging DNA and inducing tumor cell death, but also stimulating anti-tumor immune responses. PARPis are known to exert their therapeutic effects by inhibiting DNA repair, and they may be used in combination with radiotherapy. Both radiotherapy and PARPis modulate inflammatory signals and stimulate type I IFN (IFN-I)-dependent immune activation. However, they can also support the development of an immunosuppressive tumor environment and upregulate PD-L1 expression on tumor cells. When provided as monotherapy, immune-checkpoint inhibitors (mainly antibodies to CTLA-4 and the PD-1/PD-L1 axis) result particularly effective only in immunogenic tumors. Combinations of immunotherapy with therapies that favor priming of the immune response to tumor-associated antigens are, therefore, suitable strategies. The widely explored association of radiotherapy and immunotherapy has confirmed this benefit for several cancers. Association with PARPis has also been investigated in clinical trials. Immunotherapy counteracts the immunosuppressive effects of radiotherapy and/or PARPis and synergies with their immunological effects, promoting and unleashing immune responses toward primary and metastatic lesions (abscopal effect). Here, we discuss the beneficial and counterproductive effects of each therapy and how they can synergize to overcome single-therapy limitations.
Collapse
|
12
|
Friedman MJ, Lee H, Lee JY, Oh S. Transcriptional and Epigenetic Regulation of Context-Dependent Plasticity in T-Helper Lineages. Immune Netw 2023; 23:e5. [PMID: 36911799 PMCID: PMC9995996 DOI: 10.4110/in.2023.23.e5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Th cell lineage determination and functional specialization are tightly linked to the activation of lineage-determining transcription factors (TFs) that bind cis-regulatory elements. These lineage-determining TFs act in concert with multiple layers of transcriptional regulators to alter the epigenetic landscape, including DNA methylation, histone modification and three-dimensional chromosome architecture, in order to facilitate the specific Th gene expression programs that allow for phenotypic diversification. Accumulating evidence indicates that Th cell differentiation is not as rigid as classically held; rather, extensive phenotypic plasticity is an inherent feature of T cell lineages. Recent studies have begun to uncover the epigenetic programs that mechanistically govern T cell subset specification and immunological memory. Advances in next generation sequencing technologies have allowed global transcriptomic and epigenomic interrogation of CD4+ Th cells that extends previous findings focusing on individual loci. In this review, we provide an overview of recent genome-wide insights into the transcriptional and epigenetic regulation of CD4+ T cell-mediated adaptive immunity and discuss the implications for disease as well as immunotherapies.
Collapse
Affiliation(s)
- Meyer J. Friedman
- Department and School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Haram Lee
- College of Pharmacy Korea University, Sejong 30019, Korea
| | - June-Yong Lee
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
- Institute of Genetic Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Soohwan Oh
- College of Pharmacy Korea University, Sejong 30019, Korea
| |
Collapse
|
13
|
Role of PARP Inhibitors in Cancer Immunotherapy: Potential Friends to Immune Activating Molecules and Foes to Immune Checkpoints. Cancers (Basel) 2022; 14:cancers14225633. [PMID: 36428727 PMCID: PMC9688455 DOI: 10.3390/cancers14225633] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/04/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) induce cytotoxic effects as single agents in tumors characterized by defective repair of DNA double-strand breaks deriving from BRCA1/2 mutations or other abnormalities in genes associated with homologous recombination. Preclinical studies have shown that PARPi-induced DNA damage may affect the tumor immune microenvironment and immune-mediated anti-tumor response through several mechanisms. In particular, increased DNA damage has been shown to induce the activation of type I interferon pathway and up-regulation of PD-L1 expression in cancer cells, which can both enhance sensitivity to Immune Checkpoint Inhibitors (ICIs). Despite the recent approval of ICIs for a number of advanced cancer types based on their ability to reinvigorate T-cell-mediated antitumor immune responses, a consistent percentage of treated patients fail to respond, strongly encouraging the identification of combination therapies to overcome resistance. In the present review, we analyzed both established and unexplored mechanisms that may be elicited by PARPi, supporting immune reactivation and their potential synergism with currently used ICIs. This analysis may indicate novel and possibly patient-specific immune features that might represent new pharmacological targets of PARPi, potentially leading to the identification of predictive biomarkers of response to their combination with ICIs.
Collapse
|
14
|
CD38: An important regulator of T cell function. Biomed Pharmacother 2022; 153:113395. [PMID: 35834988 DOI: 10.1016/j.biopha.2022.113395] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/03/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022] Open
Abstract
Cluster of differentiation 38 (CD38) is a multifunctional extracellular enzyme on the cell surface with NADase and cyclase activities. CD38 is not only expressed in human immune cells, such as lymphocytes and plasma cells, but also is abnormally expressed in a variety of tumor cells, which is closely related to the occurrence and development of tumors. T cells are one of the important immune cells in the body. As NAD consuming enzymes, CD38, ART2, SIRT1 and PARP1 are closely related to the number and function of T cells. CD38 may also influence the activity of ART2, SIRT1 and PARP1 through the CD38-NAD+ axis to indirectly affect the number and function of T cells. Thus, CD38-NAD+ axis has a profound effect on T cell activity. In this paper, we reviewed the role and mechanism of CD38+ CD4+ T cells / CD38+ CD8+ T cells in cellular immunity and the effects of the CD38-NAD+ axis on T cell activity. We also summarized the relationship between the CD38 expression level on T cell surface and disease prediction and prognosis, the effects of anti-CD38 monoclonal antibodies on T cell activity and function, and the role of anti-CD38 chimeric antigen receptor (CAR) T cell therapy in tumor immunity. This will provide an important theoretical basis for a comprehensive understanding of the relationship between CD38 and T cells.
Collapse
|
15
|
Maiorano BA, Lorusso D, Maiorano MFP, Ciardiello D, Parrella P, Petracca A, Cormio G, Maiello E. The Interplay between PARP Inhibitors and Immunotherapy in Ovarian Cancer: The Rationale behind a New Combination Therapy. Int J Mol Sci 2022; 23:3871. [PMID: 35409229 PMCID: PMC8998760 DOI: 10.3390/ijms23073871] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/21/2022] Open
Abstract
Ovarian cancer (OC) has a high impact on morbidity and mortality in the female population. Survival is modest after platinum progression. Therefore, the search for new therapeutic strategies is of utmost importance. BRCA mutations and HR-deficiency occur in around 50% of OC, leading to increased response and survival after Poly (ADP-ribose) polymerase inhibitors (PARPis) administration. PARPis represent a breakthrough for OC therapy, with three different agents approved. On the contrary, immune checkpoint inhibitors (ICIs), another breakthrough therapy for many solid tumors, led to modest results in OC, without clinical approvals and even withdrawal of clinical trials. Therefore, combinations aiming to overcome resistance mechanisms have become of great interest. Recently, PARPis have been evidenced to modulate tumor microenvironment at the molecular and cellular level, potentially enhancing ICIs responsiveness. This represents the rationale for the combined administration of PARPis and ICIs. Our review ought to summarize the preclinical and translational features that support the contemporary administration of these two drug classes, the clinical trials conducted so far, and future directions with ongoing studies.
Collapse
Affiliation(s)
- Brigida Anna Maiorano
- Oncology Unit, Foundation Casa Sollievo Della Sofferenza IRCCS, San Giovanni Rotondo, 71013 Foggia, Italy; (D.C.); (E.M.)
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Domenica Lorusso
- Gynecologic Oncology Unit, Catholic University of the Sacred Heart, Scientific Directorate, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy;
| | - Mauro Francesco Pio Maiorano
- Division of Obstetrics and Gynecology, Biomedical and Human Oncological Science, University of Bari “Aldo Moro”, 70121 Bari, Italy; (M.F.P.M.); (G.C.)
| | - Davide Ciardiello
- Oncology Unit, Foundation Casa Sollievo Della Sofferenza IRCCS, San Giovanni Rotondo, 71013 Foggia, Italy; (D.C.); (E.M.)
- Oncology Unit, Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80131 Naples, Italy
| | - Paola Parrella
- Oncology Laboratory, Foundation Casa Sollievo della Sofferenza IRCCS, San Giovanni Rotondo, 71013 Foggia, Italy;
| | - Antonio Petracca
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy;
| | - Gennaro Cormio
- Division of Obstetrics and Gynecology, Biomedical and Human Oncological Science, University of Bari “Aldo Moro”, 70121 Bari, Italy; (M.F.P.M.); (G.C.)
| | - Evaristo Maiello
- Oncology Unit, Foundation Casa Sollievo Della Sofferenza IRCCS, San Giovanni Rotondo, 71013 Foggia, Italy; (D.C.); (E.M.)
| |
Collapse
|
16
|
Wang Y, Pleasure D, Deng W, Guo F. Therapeutic Potentials of Poly (ADP-Ribose) Polymerase 1 (PARP1) Inhibition in Multiple Sclerosis and Animal Models: Concept Revisiting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102853. [PMID: 34935305 PMCID: PMC8844485 DOI: 10.1002/advs.202102853] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/12/2021] [Indexed: 05/05/2023]
Abstract
Poly (ADP-ribose) polymerase 1 (PARP1) plays a fundamental role in DNA repair and gene expression. Excessive PARP1 hyperactivation, however, has been associated with cell death. PARP1 and/or its activity are dysregulated in the immune and central nervous system of multiple sclerosis (MS) patients and animal models. Pharmacological PARP1 inhibition is shown to be protective against immune activation and disease severity in MS animal models while genetic PARP1 deficiency studies reported discrepant results. The inconsistency suggests that the function of PARP1 and PARP1-mediated PARylation may be complex and context-dependent. The article reviews PARP1 functions, discusses experimental findings and possible interpretations of PARP1 in inflammation, neuronal/axonal degeneration, and oligodendrogliopathy, three major pathological components cooperatively determining MS disease course and neurological progression, and points out future research directions. Cell type specific PARP1 manipulations are necessary for revisiting the role of PARP1 in the three pathological components prior to moving PARP1 inhibition into clinical trials for MS therapy.
Collapse
Affiliation(s)
- Yan Wang
- Department of NeurologySchool of MedicineUniversity of CaliforniaDavisCA95817USA
- Institute for Pediatric Regenerative MedicineUC Davis School of Medicine/Shriners Hospitals for ChildrenSacramentoCAUSA
| | - David Pleasure
- Department of NeurologySchool of MedicineUniversity of CaliforniaDavisCA95817USA
- Institute for Pediatric Regenerative MedicineUC Davis School of Medicine/Shriners Hospitals for ChildrenSacramentoCAUSA
| | - Wenbin Deng
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityGuangzhou510006China
| | - Fuzheng Guo
- Department of NeurologySchool of MedicineUniversity of CaliforniaDavisCA95817USA
- Institute for Pediatric Regenerative MedicineUC Davis School of Medicine/Shriners Hospitals for ChildrenSacramentoCAUSA
| |
Collapse
|
17
|
Lutfi N, Galindo-Campos MA, Yélamos J. Impact of DNA Damage Response-Targeted Therapies on the Immune Response to Tumours. Cancers (Basel) 2021; 13:6008. [PMID: 34885119 PMCID: PMC8656491 DOI: 10.3390/cancers13236008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 01/02/2023] Open
Abstract
The DNA damage response (DDR) maintains the stability of a genome faced with genotoxic insults (exogenous or endogenous), and aberrations of the DDR are a hallmark of cancer cells. These cancer-specific DDR defects present new therapeutic opportunities, and different compounds that inhibit key components of DDR have been approved for clinical use or are in various stages of clinical trials. Although the therapeutic rationale of these DDR-targeted agents initially focused on their action against tumour cells themselves, these agents might also impact the crosstalk between tumour cells and the immune system, which can facilitate or impede tumour progression. In this review, we summarise recent data on how DDR-targeted agents can affect the interactions between tumour cells and the components of the immune system, both by acting directly on the immune cells themselves and by altering the expression of different molecules and pathways in tumour cells that are critical for their relationship with the immune system. Obtaining an in-depth understanding of the mechanisms behind how DDR-targeted therapies affect the immune system, and their crosstalk with tumour cells, may provide invaluable clues for the rational development of new therapeutic strategies in cancer.
Collapse
Affiliation(s)
- Nura Lutfi
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain; (N.L.); (M.A.G.-C.)
| | | | - José Yélamos
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain; (N.L.); (M.A.G.-C.)
- Immunology Unit, Department of Pathology, Hospital del Mar, 08003 Barcelona, Spain
| |
Collapse
|
18
|
Szántó M, Gupte R, Kraus WL, Pacher P, Bai P. PARPs in lipid metabolism and related diseases. Prog Lipid Res 2021; 84:101117. [PMID: 34450194 DOI: 10.1016/j.plipres.2021.101117] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 12/28/2022]
Abstract
PARPs and tankyrases (TNKS) represent a family of 17 proteins. PARPs and tankyrases were originally identified as DNA repair factors, nevertheless, recent advances have shed light on their role in lipid metabolism. To date, PARP1, PARP2, PARP3, tankyrases, PARP9, PARP10, PARP14 were reported to have multi-pronged connections to lipid metabolism. The activity of PARP enzymes is fine-tuned by a set of cholesterol-based compounds as oxidized cholesterol derivatives, steroid hormones or bile acids. In turn, PARPs modulate several key processes of lipid homeostasis (lipotoxicity, fatty acid and steroid biosynthesis, lipoprotein homeostasis, fatty acid oxidation, etc.). PARPs are also cofactors of lipid-responsive nuclear receptors and transcription factors through which PARPs regulate lipid metabolism and lipid homeostasis. PARP activation often represents a disruptive signal to (lipid) metabolism, and PARP-dependent changes to lipid metabolism have pathophysiological role in the development of hyperlipidemia, obesity, alcoholic and non-alcoholic fatty liver disease, type II diabetes and its complications, atherosclerosis, cardiovascular aging and skin pathologies, just to name a few. In this synopsis we will review the evidence supporting the beneficial effects of pharmacological PARP inhibitors in these diseases/pathologies and propose repurposing PARP inhibitors already available for the treatment of various malignancies.
Collapse
Affiliation(s)
- Magdolna Szántó
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032, Hungary
| | - Rebecca Gupte
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Pal Pacher
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| | - Peter Bai
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032, Hungary; MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary; Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032, Hungary.
| |
Collapse
|
19
|
Distinct roles for PARP-1 and PARP-2 in c-Myc-driven B-cell lymphoma in mice. Blood 2021; 139:228-239. [PMID: 34359075 DOI: 10.1182/blood.2021012805] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/30/2021] [Indexed: 11/20/2022] Open
Abstract
Dysregulation of the c-Myc oncogene occurs in a wide variety of haematologic malignancies and its overexpression has been linked with aggressive tumour progression. Here, we show that Poly (ADP-ribose) polymerase (PARP)-1 and PARP-2 exert opposing influences on progression of c-Myc-driven B-cell lymphomas. PARP-1 and PARP-2 catalyse the synthesis and transfer of ADP-ribose units onto amino acid residues of acceptor proteins in response to DNA-strand breaks, playing a central role in the response to DNA damage. Accordingly, PARP inhibitors have emerged as promising new cancer therapeutics. However, the inhibitors currently available for clinical use are not able to discriminate between individual PARP proteins. We found that genetic deletion of PARP-2 prevents c-Myc-driven B-cell lymphomas, while PARP-1-deficiency accelerates lymphomagenesis in the Em-Myc mouse model of aggressive B-cell lymphoma. Loss of PARP-2 aggravates replication stress in pre-leukemic Em-Myc B cells resulting in accumulation of DNA damage and concomitant cell death that restricts the c-Myc-driven expansion of B cells, thereby providing protection against B-cell lymphoma. In contrast, PARP-1-deficiency induces a proinflammatory response, and an increase in regulatory T cells likely contributing to immune escape of B-cell lymphomas, resulting in an acceleration of lymphomagenesis. These findings pinpoint specific functions for PARP-1 and PARP-2 in c-Myc-driven lymphomagenesis with antagonistic consequences that may help inform the design of new PARP-centred therapeutic strategies with selective PARP-2 inhibition potentially representing a new therapeutic approach for the treatment of c-Myc-driven tumours.
Collapse
|
20
|
Turinetto M, Scotto G, Tuninetti V, Giannone G, Valabrega G. The Role of PARP Inhibitors in the Ovarian Cancer Microenvironment: Moving Forward From Synthetic Lethality. Front Oncol 2021; 11:689829. [PMID: 34195090 PMCID: PMC8238121 DOI: 10.3389/fonc.2021.689829] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/27/2021] [Indexed: 12/19/2022] Open
Abstract
PARP inhibitors (PARPi) have shown promising clinical results and have revolutionized the landscape of ovarian cancer management in the last few years. While the core mechanism of action of these drugs has been largely analyzed, the interaction between PARP inhibitors and the microenvironment has been scarcely researched so far. Recent data shows a variety of mechanism through which PARPi might influence the tumor microenvironment and especially the immune system response, that might even partly be the reason behind PARPi efficacy. One of many pathways that are affected is the cGAS-cGAMP-STING; the upregulation of STING (stimulator of interferon genes), produces more Interferon ϒ and pro inflammatory cytokines, thus increasing intratumoral CD4+ and CD8+ T cells. Upregulation of immune checkpoints such as PD1-PDL1 has also been observed. Another interesting mechanism of interaction between PARPi and microenvironment is the ability of PARPi to kill hypoxic cells, as these cells show an intrinsic reduction in the expression and function of the proteins involved in HR. This process has been defined "contextual synthetic lethality". Despite ovarian cancer having always been considered a poor responder to immune therapy, data is now shedding a new light on the matter. First, OC is much more heterogenous than previously thought, therefore it is fundamental to select predictive biomarkers for target therapies. While single agent therapies have not yielded significant results on the long term, influencing the immune system and the tumor microenvironment via the concomitant use of PARPi and other target therapies might be a more successful approach.
Collapse
Affiliation(s)
- Margherita Turinetto
- Department of Oncology, University of Torino, Torino, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Giulia Scotto
- Department of Oncology, University of Torino, Torino, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Valentina Tuninetti
- Department of Oncology, University of Torino, Torino, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Gaia Giannone
- Department of Oncology, University of Torino, Torino, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Giorgio Valabrega
- Department of Oncology, University of Torino, Torino, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| |
Collapse
|
21
|
Demény MA, Virág L. The PARP Enzyme Family and the Hallmarks of Cancer Part 2: Hallmarks Related to Cancer Host Interactions. Cancers (Basel) 2021; 13:2057. [PMID: 33923319 PMCID: PMC8123211 DOI: 10.3390/cancers13092057] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/07/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
Abstract
Poly (ADP-ribose) polymerases (PARPs) modify target proteins with a single ADP-ribose unit or with a poly (ADP-ribose) (PAR) polymer. PARP inhibitors (PARPis) recently became clinically available for the treatment of BRCA1/2 deficient tumors via the synthetic lethality paradigm. This personalized treatment primarily targets DNA damage-responsive PARPs (PARP1-3). However, the biological roles of PARP family member enzymes are broad; therefore, the effects of PARPis should be viewed in a much wider context, which includes complex effects on all known hallmarks of cancer. In the companion paper (part 1) to this review, we presented the fundamental roles of PARPs in intrinsic cancer cell hallmarks, such as uncontrolled proliferation, evasion of growth suppressors, cell death resistance, genome instability, replicative immortality, and reprogrammed metabolism. In the second part of this review, we present evidence linking PARPs to cancer-associated inflammation, anti-cancer immune response, invasion, and metastasis. A comprehensive overview of the roles of PARPs can facilitate the identification of novel cancer treatment opportunities and barriers limiting the efficacy of PARPi compounds.
Collapse
Affiliation(s)
- Máté A. Demény
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- MTA-DE Cell Biology and Signaling Research Group, 4032 Debrecen, Hungary
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- MTA-DE Cell Biology and Signaling Research Group, 4032 Debrecen, Hungary
| |
Collapse
|
22
|
Rosado MM, Pioli C. ADP-ribosylation in evasion, promotion and exacerbation of immune responses. Immunology 2021; 164:15-30. [PMID: 33783820 DOI: 10.1111/imm.13332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/15/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
ADP-ribosylation is the addition of one or more (up to some hundreds) ADP-ribose moieties to acceptor proteins. This evolutionary ancient post-translational modification (PTM) is involved in fundamental processes including DNA repair, inflammation, cell death, differentiation and proliferation, among others. ADP-ribosylation is catalysed by two major families of enzymes: the cholera toxin-like ADP-ribosyltransferases (ARTCs) and the diphtheria toxin-like ADP-ribosyltransferases (ARTDs, also known as PARPs). ARTCs sense and use extracellular NAD, which may represent a danger signal, whereas ARTDs are present in the cell nucleus and/or cytoplasm. ARTCs mono-ADP-ribosylate their substrates, whereas ARTDs, according to the specific family member, are able to mono- or poly-ADP-ribosylate target proteins or are devoid of enzymatic activity. Both mono- and poly-ADP-ribosylation are dynamic processes, as specific hydrolases are able to remove single or polymeric ADP moieties. This dynamic equilibrium between addition and degradation provides plasticity for fast adaptation, a feature being particularly relevant to immune cell functions. ADP-ribosylation regulates differentiation and functions of myeloid, T and B cells. It also regulates the expression of cytokines and chemokines, production of antibodies, isotype switch and the expression of several immune mediators. Alterations in these processes involve ADP-ribosylation in virtually any acute and chronic inflammatory/immune-mediated disease. Besides, pathogens developed mechanisms to contrast the action of ADP-ribosylating enzymes by using their own hydrolases and/or to exploit this PTM to sustain their virulence. In the present review, we summarize and discuss recent findings on the role of ADP-ribosylation in immunobiology, immune evasion/subversion by pathogens and immune-mediated diseases.
Collapse
Affiliation(s)
| | - Claudio Pioli
- Division of Health Protection Technologies, ENEA, Rome, Italy
| |
Collapse
|
23
|
Nastasi C, Mannarino L, D’Incalci M. DNA Damage Response and Immune Defense. Int J Mol Sci 2020; 21:E7504. [PMID: 33053746 PMCID: PMC7588887 DOI: 10.3390/ijms21207504] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 02/07/2023] Open
Abstract
DNA damage is the cause of numerous human pathologies including cancer, premature aging, and chronic inflammatory conditions. The DNA damage response (DDR), in turn, coordinates DNA damage checkpoint activation and promotes the removal of DNA lesions. In recent years, several studies have shown how the DDR and the immune system are tightly connected, revealing an important crosstalk between the two of them. This interesting interplay has opened up new perspectives in clinical studies for immunological diseases as well as for cancer treatment. In this review, we provide an overview, from cellular to molecular pathways, on how DDR and the immune system communicate and share the crucial commitment of maintaining the genomic fitness.
Collapse
Affiliation(s)
- Claudia Nastasi
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy;
| | | | - Maurizio D’Incalci
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy;
| |
Collapse
|
24
|
PARP-1 inhibitor-AG14361 suppresses acute allograft rejection via stabilizing CD4+FoxP3+ regulatory T cells. Pathol Res Pract 2020; 216:153021. [DOI: 10.1016/j.prp.2020.153021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/22/2020] [Accepted: 05/15/2020] [Indexed: 12/22/2022]
|
25
|
CD38: T Cell Immuno-Metabolic Modulator. Cells 2020; 9:cells9071716. [PMID: 32709019 PMCID: PMC7408359 DOI: 10.3390/cells9071716] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/22/2022] Open
Abstract
Activation and subsequent differentiation of T cells following antigenic stimulation are triggered by highly coordinated signaling events that lead to instilling cells with a discrete metabolic and transcriptional feature. Compelling studies indicate that intracellular nicotinamide adenine dinucleotide (NAD+) levels have profound influence on diverse signaling and metabolic pathways of T cells, and hence dictate their functional fate. CD38, a major mammalian NAD+ glycohydrolase (NADase), expresses on T cells following activation and appears to be an essential modulator of intracellular NAD+ levels. The enzymatic activity of CD38 in the process of generating the second messenger cADPR utilizes intracellular NAD+, and thus limits its availability to different NAD+ consuming enzymes (PARP, ART, and sirtuins) inside the cells. The present review discusses how the CD38-NAD+ axis affects T cell activation and differentiation through interfering with their signaling and metabolic processes. We also describe the pivotal role of the CD38-NAD+ axis in influencing the chromatin remodeling and rewiring T cell response. Overall, this review emphasizes the crucial contribution of the CD38-NAD+ axis in altering T cell response in various pathophysiological conditions.
Collapse
|
26
|
Plummer R, Dua D, Cresti N, Drew Y, Stephens P, Foegh M, Knudsen S, Sachdev P, Mistry BM, Dixit V, McGonigle S, Hall N, Matijevic M, McGrath S, Sarker D. First-in-human study of the PARP/tankyrase inhibitor E7449 in patients with advanced solid tumours and evaluation of a novel drug-response predictor. Br J Cancer 2020; 123:525-533. [PMID: 32523090 PMCID: PMC7434893 DOI: 10.1038/s41416-020-0916-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/14/2020] [Accepted: 05/14/2020] [Indexed: 11/16/2022] Open
Abstract
Background This phase 1 study examined the safety, maximum-tolerated dose (MTD) and antitumour activity of E7449, a novel PARP 1/2 and tankyrase 1/2 inhibitor. Methods E7449 was orally administered once daily in 28-day cycles to patients with advanced solid tumours (50–800-mg doses). Archival tumour samples from consenting patients were evaluated for the expression of 414 genes in a biomarker panel (2X-121 drug-response predictor [DRP]) found to be predictive of the response to E7449 in cell lines. Results Forty-one patients were enrolled (13 pancreatic, 5 ovarian, 4 each with breast, lung or colorectal cancer and 11 with other tumour types). The most common grade ≥3 treatment-related adverse event was fatigue (n = 7, 17.1%). Five patients experienced a dose-limiting toxicity (fatigue, n = 4, 800 mg; anaphylaxis, n = 1, 600 mg) for an MTD of 600 mg. E7449 exhibited antitumour activity in solid tumours, including 2 partial responses (PRs), and stable disease (SD) in 13 patients, which was durable (>23 weeks) for 8 patients. In 13 patients, the 2X-121 DRP identified those achieving PR and durable SD. E7449 showed good tolerability, promising antitumour activity and significant concentration-dependent PARP inhibition following 50–800-mg oral dosing. Conclusion The results support further clinical investigation of E7449 and its associated biomarker 2X-121 DRP. Clinical trial registration www.ClinicalTrials.gov code: NCT01618136.
Collapse
Affiliation(s)
- Ruth Plummer
- Northern Institute for Cancer Care, Freeman Hospital and Newcastle University, Newcastle upon Tyne, UK.
| | | | - Nicola Cresti
- Northern Centre for Cancer Care, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Yvette Drew
- Northern Institute for Cancer Care, Freeman Hospital and Newcastle University, Newcastle upon Tyne, UK
| | - Peter Stephens
- Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, UK
| | | | | | | | | | | | | | | | | | | | - Debashis Sarker
- King's College London and Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
27
|
Nedzvetsky VS. THE PEPTIDOGLYCAN FRACTION ENRICHED WITH MURAMYL PENTAPEPTIDE FROM Lactobacillus bulgaricus INHIBITS GLIOBLASTOMA U373MG CELL MIGRATION CAPABILITY AND UPREGULATES PARP1 AND NF-kB LEVELS. BIOTECHNOLOGIA ACTA 2020. [DOI: 10.15407/biotech13.02.065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
28
|
Immunomodulatory Roles of PARP-1 and PARP-2: Impact on PARP-Centered Cancer Therapies. Cancers (Basel) 2020; 12:cancers12020392. [PMID: 32046278 PMCID: PMC7072203 DOI: 10.3390/cancers12020392] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/03/2020] [Accepted: 02/06/2020] [Indexed: 01/11/2023] Open
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) and PARP-2 are enzymes which post-translationally modify proteins through poly(ADP-ribosyl)ation (PARylation)—the transfer of ADP-ribose chains onto amino acid residues—with a resultant modulation of protein function. Many targets of PARP-1/2-dependent PARylation are involved in the DNA damage response and hence, the loss of these proteins disrupts a wide range of biological processes, from DNA repair and epigenetics to telomere and centromere regulation. The central role of these PARPs in DNA metabolism in cancer cells has led to the development of PARP inhibitors as new cancer therapeutics, both as adjuvant treatment potentiating chemo-, radio-, and immuno-therapies and as monotherapy exploiting cancer-specific defects in DNA repair. However, a cancer is not just made up of cancer cells and the tumor microenvironment also includes multiple other cell types, particularly stromal and immune cells. Interactions between these cells—cancerous and non-cancerous—are known to either favor or limit tumorigenesis. In recent years, an important role of PARP-1 and PARP-2 has been demonstrated in different aspects of the immune response, modulating both the innate and adaptive immune system. It is now emerging that PARP-1 and PARP-2 may not only impact cancer cell biology, but also modulate the anti-tumor immune response. Understanding the immunomodulatory roles of PARP-1 and PARP-2 may provide invaluable clues to the rational development of more selective PARP-centered therapies which target both the cancer and its microenvironment.
Collapse
|
29
|
Fehr AR, Singh SA, Kerr CM, Mukai S, Higashi H, Aikawa M. The impact of PARPs and ADP-ribosylation on inflammation and host-pathogen interactions. Genes Dev 2020; 34:341-359. [PMID: 32029454 PMCID: PMC7050484 DOI: 10.1101/gad.334425.119] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Poly-adenosine diphosphate-ribose polymerases (PARPs) promote ADP-ribosylation, a highly conserved, fundamental posttranslational modification (PTM). PARP catalytic domains transfer the ADP-ribose moiety from NAD+ to amino acid residues of target proteins, leading to mono- or poly-ADP-ribosylation (MARylation or PARylation). This PTM regulates various key biological and pathological processes. In this review, we focus on the roles of the PARP family members in inflammation and host-pathogen interactions. Here we give an overview the current understanding of the mechanisms by which PARPs promote or suppress proinflammatory activation of macrophages, and various roles PARPs play in virus infections. We also demonstrate how innovative technologies, such as proteomics and systems biology, help to advance this research field and describe unanswered questions.
Collapse
Affiliation(s)
- Anthony R Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | - Sasha A Singh
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Catherine M Kerr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | - Shin Mukai
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Hideyuki Higashi
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.,Center for Excellence in Vascular Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.,Department of Human Pathology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health, Moscow 119146, Russian Federation
| |
Collapse
|
30
|
Pazzaglia S, Pioli C. Multifaceted Role of PARP-1 in DNA Repair and Inflammation: Pathological and Therapeutic Implications in Cancer and Non-Cancer Diseases. Cells 2019; 9:cells9010041. [PMID: 31877876 PMCID: PMC7017201 DOI: 10.3390/cells9010041] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022] Open
Abstract
PARP-1 (poly(ADP-ribose)-polymerase 1), mainly known for its protective role in DNA repair, also regulates inflammatory processes. Notably, defects in DNA repair and chronic inflammation may both predispose to cancer development. On the other hand, inhibition of DNA repair and inflammatory responses can be beneficial in cancer therapy and PARP inhibitors are currently used for their lethal effects on tumor cells. Furthermore, excess of PARP-1 activity has been associated with many tumors and inflammation-related clinical conditions, including asthma, sepsis, arthritis, atherosclerosis, and neurodegenerative diseases, to name a few. Activation and inhibition of PARP represent, therefore, a double-edged sword that can be exploited for therapeutic purposes. In our review, we will discuss recent findings highlighting the composite multifaceted role of PARP-1 in cancer and inflammation-related diseases.
Collapse
Affiliation(s)
- Simonetta Pazzaglia
- Correspondence: (S.P.); (C.P.); Tel.: +39-06-3048-6535 (S.P.); +39-06-3048-3398 (C.P.)
| | - Claudio Pioli
- Correspondence: (S.P.); (C.P.); Tel.: +39-06-3048-6535 (S.P.); +39-06-3048-3398 (C.P.)
| |
Collapse
|
31
|
Meira M, Sievers C, Hoffmann F, Bodmer H, Derfuss T, Kuhle J, Haghikia A, Kappos L, Lindberg RL. PARP-1 deregulation in multiple sclerosis. Mult Scler J Exp Transl Clin 2019; 5:2055217319894604. [PMID: 31897308 PMCID: PMC6918498 DOI: 10.1177/2055217319894604] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/27/2019] [Accepted: 11/14/2019] [Indexed: 12/29/2022] Open
Abstract
Background Poly (ADP-ribose) polymerase 1 (PARP-1) plays pivotal roles in immune and inflammatory responses. Accumulating evidence suggests PARP-1 as a promising target for immunomodulation in multiple sclerosis and natalizumab-associated progressive multifocal leukoencephalopathy. Objective This study explores expression of PARP-1 and downstream effectors in multiple sclerosis and during natalizumab treatment. Methods Transcriptional expressions were studied by real-time reverse transcriptase polymerase chain reaction on CD4+T/CD8+T/CD14+/B cells and peripheral blood mononuclear cells from healthy volunteers, untreated and natalizumab-treated non-progressive multifocal leukoencephalopathy and progressive multifocal leukoencephalopathy multiple sclerosis patients. Results PARP-1 expression was higher in CD4+T, CD8+T and B cells from untreated patients compared to healthy volunteers. Natalizumab treatment restored deregulated PARP-1 expression in T cells but not in B cells. Sustained upregulation of PARP-1 was associated with decreased expression of downstream PARP-1 factors such as TGFBR1/TGFBR2/BCL6 in B cells. Notably, a higher expression of PARP-1 was detected in progressive multifocal leukoencephalopathy patients. Conclusions Given the importance of PARP-1 in inflammatory processes, its upregulation in multiple sclerosis lymphocyte populations suggests a potential role in the immune pathogenesis of multiple sclerosis. Strikingly higher PARP-1 expression in progressive multifocal leukoencephalopathy cases suggests its involvement in progressive multifocal leukoencephalopathy disease pathomechanisms. These results further support the value of PARP-1 inhibitors as a potential novel therapeutic strategy for multiple sclerosis and natalizumab-associated progressive multifocal leukoencephalopathy.
Collapse
Affiliation(s)
- Maria Meira
- Departments of Biomedicine and Neurology, University Hospital Basel, Switzerland
| | - Claudia Sievers
- Departments of Biomedicine and Neurology, University Hospital Basel, Switzerland
| | - Francine Hoffmann
- Departments of Biomedicine and Neurology, University Hospital Basel, Switzerland
| | - Heidi Bodmer
- Departments of Biomedicine and Neurology, University Hospital Basel, Switzerland
| | - Tobias Derfuss
- Departments of Biomedicine and Neurology, University Hospital Basel, Switzerland
| | - Jens Kuhle
- Departments of Biomedicine and Neurology, University Hospital Basel, Switzerland
| | - Aiden Haghikia
- Department of Neurology, Ruhr-University Bochum, Germany
| | - Ludwig Kappos
- Departments of Biomedicine and Neurology, University Hospital Basel, Switzerland
| | - Raija Lp Lindberg
- Departments of Biomedicine and Neurology, University Hospital Basel, Switzerland
| |
Collapse
|
32
|
Host poly(ADP-ribose) polymerases (PARPs) in acute and chronic bacterial infections. Microbes Infect 2019; 21:423-431. [DOI: 10.1016/j.micinf.2019.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 01/04/2023]
|
33
|
Shou Q, Fu H, Huang X, Yang Y. PARP-1 controls NK cell recruitment to the site of viral infection. JCI Insight 2019; 4:121291. [PMID: 31217354 DOI: 10.1172/jci.insight.121291] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/01/2019] [Indexed: 01/19/2023] Open
Abstract
The activation and recruitment of NK cells to the site of viral infection are crucial for virus control. However, it remains largely unknown what controls the recruitment of the activated NK cells to the infection site. In a model of intraperitoneal infection with vaccinia virus (VV), we showed that poly(ADP-ribose) polymerase-1 (PARP-1), a sensor of DNA damage, is critical for NK cell recruitment to the site of infection and viral control in vivo. We further demonstrated that PARP-1 promotes the production of CCL2 and that the CCL2-CCR2 axis is essential for NK cell recruitment to the infection site. In addition, we demonstrated that peritoneal macrophages are the main producer of PARP-1-dependent CCL2 secretion. Mechanistically, PARP-1 functions as a regulator of NF-κB by promoting its nuclear translocation and binding to its response sequences in macrophages upon VV infection. Taken together, our results reveal a potentially previously unknown role for PARP-1-dependent CCL2 production in NK cell migration and viral control and may provide important insights into the design of effective NK cell-based therapies for viral infections and cancer.
Collapse
Affiliation(s)
- Qiyang Shou
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA.,Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Huiying Fu
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA.,Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaopei Huang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Yiping Yang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA.,Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
34
|
Regulating Immunity via ADP-Ribosylation: Therapeutic Implications and Beyond. Trends Immunol 2019; 40:159-173. [PMID: 30658897 DOI: 10.1016/j.it.2018.12.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/13/2018] [Accepted: 12/13/2018] [Indexed: 01/12/2023]
Abstract
Innate immune cells express pattern recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs) and endogenous danger-associated molecular patterns (DAMPs). Upon binding, PAMPs/DAMPs can initiate an immune response by activating lymphocytes, amplifying and modulating signaling cascades, and inducing appropriate effector responses. Protein ADP-ribosylation can regulate cell death, the release of DAMPs, as well as inflammatory cytokine expression. Inhibitors of ADP-ribosylation (i.e. PARP inhibitors) have been developed as therapeutic agents (in cancer), and are also able to dampen inflammation. We summarize here our most recent understanding of how ADP-ribosylation can regulate the different phases of an immune response. Moreover, we examine the potential clinical translation of pharmacological ADP-ribosylation inhibitors as putative treatment strategies for various inflammation-associated diseases (e.g. sepsis, chronic inflammatory diseases, and reperfusion injury).
Collapse
|
35
|
Poly(ADP-Ribose) Polymerases in Host-Pathogen Interactions, Inflammation, and Immunity. Microbiol Mol Biol Rev 2018; 83:83/1/e00038-18. [PMID: 30567936 DOI: 10.1128/mmbr.00038-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The literature review presented here details recent research involving members of the poly(ADP-ribose) polymerase (PARP) family of proteins. Among the 17 recognized members of the family, the human enzyme PARP1 is the most extensively studied, resulting in a number of known biological and metabolic roles. This review is focused on the roles played by PARP enzymes in host-pathogen interactions and in diseases with an associated inflammatory response. In mammalian cells, several PARPs have specific roles in the antiviral response; this is perhaps best illustrated by PARP13, also termed the zinc finger antiviral protein (ZAP). Plant stress responses and immunity are also regulated by poly(ADP-ribosyl)ation. PARPs promote inflammatory responses by stimulating proinflammatory signal transduction pathways that lead to the expression of cytokines and cell adhesion molecules. Hence, PARP inhibitors show promise in the treatment of inflammatory disorders and conditions with an inflammatory component, such as diabetes, arthritis, and stroke. These functions are correlated with the biophysical characteristics of PARP family enzymes. This work is important in providing a comprehensive understanding of the molecular basis of pathogenesis and host responses, as well as in the identification of inhibitors. This is important because the identification of inhibitors has been shown to be effective in arresting the progression of disease.
Collapse
|
36
|
Noh MY, Lee WM, Lee SJ, Kim HY, Kim SH, Kim YS. Regulatory T cells increase after treatment with poly (ADP-ribose) polymerase-1 inhibitor in ischemic stroke patients. Int Immunopharmacol 2018; 60:104-110. [PMID: 29709770 DOI: 10.1016/j.intimp.2018.04.043] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/04/2018] [Accepted: 04/24/2018] [Indexed: 01/26/2023]
Abstract
BACKGROUND Regulatory T cells (Tregs) are thought to play a modulatory role in immune responses and to improve outcomes after ischemic stroke. Thus, various strategies for increasing Tregs in animal models of ischemic stroke have yielded successful results. The aim of this study was to examine the potential effect of poly (ADP-ribose) polymerase-1 (PARP-1) inhibitor on Treg proportion in stroke patients. METHODS Peripheral blood samples were collected from 12 ischemic stroke patients (within 72 h of stroke onset) and 5 healthy control subjects. Flow cytometry analyses and quantitative reverse transcription polymerase chain reactions (qRT-PCR) were performed on peripheral blood mononuclear cells (PBMCs) before and after treating them with PARP-1 inhibitor (3-AB; JPI-289 1 μm, JPI-289 10 μm) for 24 h. RESULTS Treg proportions were significantly higher in healthy controls (median 2.8%, IQR 2.6-5.0%) than ischemic stroke patients (median 1.6%, IQR 1.25-2.2%) (p < 0.001). In the latter, Treg proportions were positively correlated with age (r = 0.595, p = 0.041), but not with infarct volume (r = 0.367, p = 0.241). After PARP-1 inhibitor treatment, Treg proportions among PBMCs increased in response to high dose (10 μm) JPI-289 (median 2.3%, IQR 2.0-2.9%) as did Treg-associated transcription factors such as FoxP3 and CTLA-4 mRNA. PARP-1 inhibitor treatment also decreased pro-inflammatory cytokines (IFN-γ, TNF-α, and IL-17) and increased anti-inflammatory cytokines (IL-4, IL-10, and TGF-β1). CONCLUSION Treg proportions are reduced in ischemic stroke patients and increased by treatment with high-dose PARP-1 inhibitor JPI-289. The PARP-1 inhibitor also had a possible anti-inflammatory effect on cytokine levels, and may ameliorate the outcome of ischemic stroke by up-regulating Tregs.
Collapse
Affiliation(s)
- Min-Young Noh
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Won Moo Lee
- Department of Obstetrics and Gynecology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Su-Jung Lee
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Hyun Young Kim
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Seung Hyun Kim
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Young Seo Kim
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
37
|
Camps-Bossacoma M, Pérez-Cano FJ, Franch À, Castell M. Theobromine Is Responsible for the Effects of Cocoa on the Antibody Immune Status of Rats. J Nutr 2018; 148:464-471. [PMID: 29546302 DOI: 10.1093/jn/nxx056] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/28/2017] [Indexed: 12/27/2022] Open
Abstract
Background A 10% cocoa-enriched diet influences immune system functionality including the prevention of the antibody response and the induction of lower immunoglobulin (Ig) concentrations. However, neither cocoa polyphenols nor cocoa fiber can totally explain these immunoregulatory properties. Objectives This study aimed to establish the influence of cocoa theobromine in systemic and intestinal Ig concentrations and to determine the effect of cocoa or theobromine feeding on lymphoid tissue lymphocyte composition. Methods Three-week-old female Lewis rats were fed either a standard diet (AIN-93M; RF group), a 10% cocoa diet (CC group), or a 0.25% theobromine diet (the same amount provided by the cocoa diet; TB group) in 2 separate experiments that lasted 19 (experiment 1) or 8 (experiment 2) d. Serum IgG, IgM, IgA, and intestinal secretory IgA (sIgA) concentrations were determined. In addition, at the end of experiment 2, thymus, mesenteric lymph node (MLN), and spleen lymphocyte populations were analyzed. Results Both CC and TB groups in experiments 1 and 2 showed similar serum IgG, IgM, and IgA and intestinal sIgA concentrations, which were lower than those in the RF group (46-98% lower in experiment 1 and 23-91% lower in experiment 2; P < 0.05). In addition, in experiment 2, the cocoa and theobromine diets similarly changed the thymocyte composition by increasing CD4-CD8- (+133%) and CD4+CD8- (+53%) proportions (P < 0.01), changed the MLN composition by decreasing the percentage of T-helper (Th) lymphocytes (-3%) (P = 0.015), and changed the spleen composition by increasing the proportion of Th lymphocytes (+9%) (P < 0.001) after 1 wk of diet treatment. Conclusions The theobromine in cocoa plays an immunoregulatory role that is responsible for cocoa's influence on both systemic and intestinal antibody concentrations and also for modifying lymphoid tissue lymphocyte composition in young healthy Lewis rats. The majority of these changes are observed after a single week of being fed a diet containing 0.25% theobromine.
Collapse
Affiliation(s)
- Mariona Camps-Bossacoma
- Section of Physiology, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain; and Nutrition and Food Safety Research Institute, University of Barcelona, Barcelona, Spain
| | - Francisco J Pérez-Cano
- Section of Physiology, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain; and Nutrition and Food Safety Research Institute, University of Barcelona, Barcelona, Spain
| | - Àngels Franch
- Section of Physiology, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain; and Nutrition and Food Safety Research Institute, University of Barcelona, Barcelona, Spain
| | - Margarida Castell
- Section of Physiology, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain; and Nutrition and Food Safety Research Institute, University of Barcelona, Barcelona, Spain
| |
Collapse
|
38
|
Zaffini R, Gotte G, Menegazzi M. Asthma and poly(ADP-ribose) polymerase inhibition: a new therapeutic approach. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:281-293. [PMID: 29483769 PMCID: PMC5813949 DOI: 10.2147/dddt.s150846] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Asthma is a chronic lung disease affecting people of all ages worldwide, and it frequently begins in childhood. Because of its chronic nature, it is characterized by pathological manifestations, including airway inflammation, remodeling, and goblet cell hyperplasia. Current therapies for asthma, including corticosteroids and beta-2 adrenergic agonists, are directed toward relieving the symptoms of the asthmatic response, with poor effectiveness against the underlying causes of the disease. Asthma initiation and progression depends on the T helper (Th) 2 type immune response carried out by a complex interplay of cytokines, such as interleukin (IL) 4, IL5, and IL13, and the signal transducer and activator of transcription 6. Much of the data resulting from different laboratories support the role of poly(ADP-ribose) polymerase (PARP) 1 and PARP14 activation in asthma. Indeed, PARP enzymes play key roles in the regulation and progression of the inflammatory asthma process because they affect the expression of genes and chemokines involved in the immune response. Consistently, PARP inhibition achievable either upon genetic ablation or by using pharmacological agents has shown a range of therapeutic effects against the disease. Indeed, in the last two decades, several preclinical studies highlighted the protective effects of PARP inhibition in various animal models of asthma. PARP inhibitors showed the ability to reduce the overall lung inflammation acting with a specific effect on immune cell recruitment and through the modulation of asthma-associated cytokines production. PARP inhibition has been shown to affect the Th1–Th2 balance and, at least in some aspects, the airway remodeling. In this review, we summarize and discuss the steps that led PARP inhibition to become a possible future therapeutic strategy against allergic asthma.
Collapse
Affiliation(s)
- Raffaela Zaffini
- Department of Neuroscience, Biomedicine and Movement Science, Biochemistry Section, University of Verona, Verona, Italy
| | - Giovanni Gotte
- Department of Neuroscience, Biomedicine and Movement Science, Biochemistry Section, University of Verona, Verona, Italy
| | - Marta Menegazzi
- Department of Neuroscience, Biomedicine and Movement Science, Biochemistry Section, University of Verona, Verona, Italy
| |
Collapse
|
39
|
Melikishvili M, Chariker JH, Rouchka EC, Fondufe-Mittendorf YN. Transcriptome-wide identification of the RNA-binding landscape of the chromatin-associated protein PARP1 reveals functions in RNA biogenesis. Cell Discov 2017; 3:17043. [PMID: 29387452 PMCID: PMC5787697 DOI: 10.1038/celldisc.2017.43] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 10/23/2017] [Indexed: 12/25/2022] Open
Abstract
Recent studies implicate Poly (ADP-ribose) polymerase 1 (PARP1) in alternative splicing regulation, and PARP1 may be an RNA-binding protein. However, detailed knowledge of RNA targets and the RNA-binding region for PARP1 are unknown. Here we report the first global study of PARP1–RNA interactions using PAR–CLIP in HeLa cells. We identified a largely overlapping set of 22 142 PARP1–RNA-binding peaks mapping to mRNAs, with 20 484 sites located in intronic regions. PARP1 preferentially bound RNA containing GC-rich sequences. Using a Bayesian model, we determined positional effects of PARP1 on regulated exon-skipping events: PARP1 binding upstream and downstream of the skipped exons generally promotes exon inclusion, whereas binding within the exon of interest and intronic regions closer to the skipped exon promotes exon skipping. Using truncation mutants, we show that removal of the Zn1Zn2 domain switches PARP1 from a DNA binder to an RNA binder. This study represents a first step into understanding the role of PARP1–RNA interaction. Continued identification and characterization of the functional interplay between PARPs and RNA may provide important insights into the role of PARPs in RNA regulation.
Collapse
Affiliation(s)
- Manana Melikishvili
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Julia H Chariker
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, KY, USA.,Kentucky Biomedical Research Infrastructure Network Bioinformatics Core, 522 East Gray Street, Louisville, KY, USA
| | - Eric C Rouchka
- Kentucky Biomedical Research Infrastructure Network Bioinformatics Core, 522 East Gray Street, Louisville, KY, USA.,Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY, USA
| | | |
Collapse
|
40
|
Sethi GS, Dharwal V, Naura AS. Poly(ADP-Ribose)Polymerase-1 in Lung Inflammatory Disorders: A Review. Front Immunol 2017; 8:1172. [PMID: 28974953 PMCID: PMC5610677 DOI: 10.3389/fimmu.2017.01172] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/04/2017] [Indexed: 12/19/2022] Open
Abstract
Asthma, acute lung injury (ALI), and chronic obstructive pulmonary disease (COPD) are lung inflammatory disorders with a common outcome, that is, difficulty in breathing. Corticosteroids, a class of potent anti-inflammatory drugs, have shown less success in the treatment/management of these disorders, particularly ALI and COPD; thus, alternative therapies are needed. Poly(ADP-ribose)polymerases (PARPs) are the post-translational modifying enzymes with a primary role in DNA repair. During the last two decades, several studies have reported the critical role played by PARPs in a good of inflammatory disorders. In the current review, the studies that address the role of PARPs in asthma, ALI, and COPD have been discussed. Among the different members of the family, PARP-1 emerges as a key player in the orchestration of lung inflammation in asthma and ALI. In addition, PARP activation seems to be associated with the progression of COPD. Furthermore, PARP-14 seems to play a crucial role in asthma. STAT-6 and GATA-3 are reported to be central players in PARP-1-mediated eosinophilic inflammation in asthma. Interestingly, oxidative stress-PARP-1-NF-κB axis appears to be tightly linked with inflammatory response in all three-lung diseases despite their distinct pathophysiologies. The present review sheds light on PARP-1-regulated factors, which may be common or differential players in asthma/ALI/COPD and put forward our prospective for future studies.
Collapse
Affiliation(s)
| | - Vivek Dharwal
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Amarjit S Naura
- Department of Biochemistry, Panjab University, Chandigarh, India
| |
Collapse
|
41
|
Jubin T, Kadam A, Gani AR, Singh M, Dwivedi M, Begum R. Poly ADP-ribose polymerase-1: Beyond transcription and towards differentiation. Semin Cell Dev Biol 2017; 63:167-179. [PMID: 27476447 DOI: 10.1016/j.semcdb.2016.07.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 07/27/2016] [Indexed: 02/07/2023]
Abstract
Gene regulation mediates the processes of cellular development and differentiation leading to the origin of different cell types each having their own signature gene expression profile. However, the compact chromatin structure and the timely recruitment of molecules involved in various signaling pathways are of prime importance for temporal and spatial gene regulation that eventually contribute towards cell type and specificity. Poly (ADP-ribose) polymerase-1 (PARP-1), a 116-kDa nuclear multitasking protein is involved in modulation of chromatin condensation leading to altered gene expression. In response to activation signals, it adds ADP-ribose units to various target proteins including itself, thus regulating various key cellular processes like DNA repair, cell death, transcription, mRNA splicing etc. This review provides insights into the role of PARP-1 in gene regulation, cell differentiation and multicellular morphogenesis. In addition, the review also explores involvement of PARP-1 in immune cells development and therapeutic possibilities to treat various human diseases.
Collapse
Affiliation(s)
- Tina Jubin
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India
| | - Ashlesha Kadam
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India
| | - Amina Rafath Gani
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India; Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 Telangana, India
| | - Mala Singh
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India
| | - Mitesh Dwivedi
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India; C.G. Bhakta Institute of Biotechnology, Faculty of Science, Uka Tarsadia University, Surat, Gujarat 394350, India
| | - Rasheedunnisa Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India.
| |
Collapse
|
42
|
Navarro J, Gozalbo-López B, Méndez AC, Dantzer F, Schreiber V, Martínez C, Arana DM, Farrés J, Revilla-Nuin B, Bueno MF, Ampurdanés C, Galindo-Campos MA, Knobel PA, Segura-Bayona S, Martin-Caballero J, Stracker TH, Aparicio P, Del Val M, Yélamos J. PARP-1/PARP-2 double deficiency in mouse T cells results in faulty immune responses and T lymphomas. Sci Rep 2017; 7:41962. [PMID: 28181505 PMCID: PMC5299517 DOI: 10.1038/srep41962] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/03/2017] [Indexed: 12/12/2022] Open
Abstract
The maintenance of T-cell homeostasis must be tightly regulated. Here, we have identified a coordinated role of Poly(ADP-ribose) polymerase-1 (PARP-1) and PARP-2 in maintaining T-lymphocyte number and function. Mice bearing a T-cell specific deficiency of PARP-2 in a PARP-1-deficient background showed defective thymocyte maturation and diminished numbers of peripheral CD4+ and CD8+ T-cells. Meanwhile, peripheral T-cell number was not affected in single PARP-1 or PARP-2-deficient mice. T-cell lymphopenia was associated with dampened in vivo immune responses to synthetic T-dependent antigens and virus, increased DNA damage and T-cell death. Moreover, double-deficiency in PARP-1/PARP-2 in T-cells led to highly aggressive T-cell lymphomas with long latency. Our findings establish a coordinated role of PARP-1 and PARP-2 in T-cell homeostasis that might impact on the development of PARP-centred therapies.
Collapse
Affiliation(s)
- Judith Navarro
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Beatriz Gozalbo-López
- Inmunología Viral, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Andrea C Méndez
- Inmunología Viral, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Françoise Dantzer
- Biotechnology and Cell Signaling, UMR7242-CNRS, Laboratory of Excellence Medalis, ESBS, Illkirch, France
| | - Valérie Schreiber
- Biotechnology and Cell Signaling, UMR7242-CNRS, Laboratory of Excellence Medalis, ESBS, Illkirch, France
| | - Carlos Martínez
- Experimental Pathology Unit, IMIB-LAIB-Arrixaca, Murcia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| | - David M Arana
- Inmunología Viral, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Jordi Farrés
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Beatriz Revilla-Nuin
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain.,Genomic Unit. IMIB-LAIB-Arrixaca, Murcia, Spain
| | - María F Bueno
- Inmunología Viral, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Coral Ampurdanés
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Miguel A Galindo-Campos
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Philip A Knobel
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Sandra Segura-Bayona
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Travis H Stracker
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Pedro Aparicio
- Department of Biochemistry, Molecular Biology and Immunology, University of Murcia, Murcia, Spain
| | - Margarita Del Val
- Inmunología Viral, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - José Yélamos
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain.,Department of Immunology, Hospital del Mar, Barcelona, Spain
| |
Collapse
|
43
|
Abplanalp J, Hottiger MO. Cell fate regulation by chromatin ADP-ribosylation. Semin Cell Dev Biol 2016; 63:114-122. [PMID: 27693398 DOI: 10.1016/j.semcdb.2016.09.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/24/2016] [Accepted: 09/16/2016] [Indexed: 11/15/2022]
Abstract
ADP-ribosylation is an evolutionarily conserved complex posttranslational modification that alters protein function and/or interaction. Intracellularly, it is mainly catalyzed by diphtheria toxin-like ADP-ribosyltransferases (ARTDs), which attach one or several ADP-ribose residues onto target proteins. Several specific mono- and poly-ADP-ribosylation binding modules exist; hydrolases reverse the modification. The best-characterized ARTD family member, ARTD1, regulates various DNA-associated processes. Here, we focus on the role of ARTD1-mediated chromatin ADP-ribosylation in development, differentiation, and pluripotency, and the recent development of new methodologies that will enable more insight into these processes.
Collapse
Affiliation(s)
- Jeannette Abplanalp
- Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland.
| |
Collapse
|
44
|
Krishnamurthy P, Kaplan MH. STAT6 and PARP Family Members in the Development of T Cell-dependent Allergic Inflammation. Immune Netw 2016; 16:201-10. [PMID: 27574499 PMCID: PMC5002446 DOI: 10.4110/in.2016.16.4.201] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/17/2016] [Accepted: 07/20/2016] [Indexed: 12/11/2022] Open
Abstract
Allergic inflammation requires the orchestration of altered gene expression in the target tissue and in the infiltrating immune cells. The transcription factor STAT6 is critical in activating cytokine gene expression and cytokine signaling both in the immune cells and in target tissue cells including airway epithelia, keratinocytes and esophageal epithelial cells. STAT6 is activated by the cytokines IL-4 and IL-13 to mediate the pathogenesis of allergic disorders such as asthma, atopic dermatitis, food allergy and eosinophilic esophagitis (EoE). In this review, we summarize the role of STAT6 in allergic diseases, its interaction with the co-factor PARP14 and the molecular mechanisms by which STAT6 and PARP14 regulate gene transcription.
Collapse
Affiliation(s)
- Purna Krishnamurthy
- Department of Pediatrics, Wells Center for Pediatric Research, Indianapolis, IN 46202, USA.; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mark H Kaplan
- Department of Pediatrics, Wells Center for Pediatric Research, Indianapolis, IN 46202, USA.; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
45
|
Chen Y, Jeffery HC, Hunter S, Bhogal R, Birtwistle J, Braitch MK, Roberts S, Ming M, Hannah J, Thomas C, Adali G, Hübscher SG, Syn W, Afford S, Lalor PF, Adams DH, Oo YH. Human intrahepatic regulatory T cells are functional, require IL-2 from effector cells for survival, and are susceptible to Fas ligand-mediated apoptosis. Hepatology 2016; 64:138-50. [PMID: 26928938 PMCID: PMC4950043 DOI: 10.1002/hep.28517] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 01/25/2016] [Accepted: 02/25/2016] [Indexed: 01/02/2023]
Abstract
UNLABELLED Regulatory T cells (Treg ) suppress T effector cell proliferation and maintain immune homeostasis. Autoimmune liver diseases persist despite high frequencies of Treg in the liver, suggesting that the local hepatic microenvironment might affect Treg stability, survival, and function. We hypothesized that interactions between Treg and endothelial cells during recruitment and then with epithelial cells within the liver affect Treg stability, survival, and function. To model this, we explored the function of Treg after migration through human hepatic sinusoidal-endothelium (postendothelial migrated Treg [PEM Treg ]) and the effect of subsequent interactions with cholangiocytes and local proinflammatory cytokines on survival and stability of Treg . Our findings suggest that the intrahepatic microenvironment is highly enriched with proinflammatory cytokines but deficient in the Treg survival cytokine interleukin (IL)-2. Migration through endothelium into a model mimicking the inflamed liver microenvironment did not affect Treg stability; however, functional capacity was reduced. Furthermore, the addition of exogenous IL-2 enhanced PEM Treg phosphorylated STAT5 signaling compared with PEMCD8. CD4 and CD8 T cells are the main source of IL-2 in the inflamed liver. Liver-infiltrating Treg reside close to bile ducts and coculture with cholangiocytes or their supernatants induced preferential apoptosis of Treg compared with CD8 effector cells. Treg from diseased livers expressed high levels of CD95, and their apoptosis was inhibited by IL-2 or blockade of CD95. CONCLUSION Recruitment through endothelium does not impair Treg stability, but a proinflammatory microenvironment deficient in IL-2 leads to impaired function and increased susceptibility of Treg to epithelial cell-induced Fas-mediated apoptosis. These results provide a mechanism to explain Treg dysfunction in inflamed tissues and suggest that IL-2 supplementation, particularly if used in conjunction with Treg therapy, could restore immune homeostasis in inflammatory and autoimmune liver disease. (Hepatology 2016;64:138-150).
Collapse
Affiliation(s)
- Yung‐Yi Chen
- Centre for Liver Research and NIHR Birmingham Liver Biomedical Research UnitUniversity of BirminghamBirminghamUnited Kingdom,Institute of Immunology and ImmunotherapyUniversity of Birmingham, BirminghamUnited Kingdom
| | - Hannah C. Jeffery
- Centre for Liver Research and NIHR Birmingham Liver Biomedical Research UnitUniversity of BirminghamBirminghamUnited Kingdom,Institute of Immunology and ImmunotherapyUniversity of Birmingham, BirminghamUnited Kingdom
| | - Stuart Hunter
- Centre for Liver Research and NIHR Birmingham Liver Biomedical Research UnitUniversity of BirminghamBirminghamUnited Kingdom
| | - Ricky Bhogal
- Centre for Liver Research and NIHR Birmingham Liver Biomedical Research UnitUniversity of BirminghamBirminghamUnited Kingdom
| | - Jane Birtwistle
- Clinical Immunology DepartmentUniversity Hospital Birmingham NHS Foundation TrustBirminghamUnited Kingdom
| | - Manjit Kaur Braitch
- Centre for Liver Research and NIHR Birmingham Liver Biomedical Research UnitUniversity of BirminghamBirminghamUnited Kingdom
| | - Sheree Roberts
- Centre for Liver Research and NIHR Birmingham Liver Biomedical Research UnitUniversity of BirminghamBirminghamUnited Kingdom
| | - Mikaela Ming
- Centre for Liver Research and NIHR Birmingham Liver Biomedical Research UnitUniversity of BirminghamBirminghamUnited Kingdom
| | - Jack Hannah
- Centre for Liver Research and NIHR Birmingham Liver Biomedical Research UnitUniversity of BirminghamBirminghamUnited Kingdom
| | - Clare Thomas
- Centre for Liver Research and NIHR Birmingham Liver Biomedical Research UnitUniversity of BirminghamBirminghamUnited Kingdom
| | - Gupse Adali
- Centre for Liver Research and NIHR Birmingham Liver Biomedical Research UnitUniversity of BirminghamBirminghamUnited Kingdom
| | - Stefan G. Hübscher
- Department of Cellular PathologyQueen Elizabeth Hospital BirminghamUnited Kingdom
| | - Wing‐Kin Syn
- The Institute of HepatologyLondonUnited Kingdom,Division of Gastroenterology and HepatologyThe Medical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Simon Afford
- Centre for Liver Research and NIHR Birmingham Liver Biomedical Research UnitUniversity of BirminghamBirminghamUnited Kingdom,Institute of Immunology and ImmunotherapyUniversity of Birmingham, BirminghamUnited Kingdom
| | - Patricia F. Lalor
- Centre for Liver Research and NIHR Birmingham Liver Biomedical Research UnitUniversity of BirminghamBirminghamUnited Kingdom,Institute of Immunology and ImmunotherapyUniversity of Birmingham, BirminghamUnited Kingdom
| | - David H. Adams
- Centre for Liver Research and NIHR Birmingham Liver Biomedical Research UnitUniversity of BirminghamBirminghamUnited Kingdom,Institute of Immunology and ImmunotherapyUniversity of Birmingham, BirminghamUnited Kingdom
| | - Ye H. Oo
- Centre for Liver Research and NIHR Birmingham Liver Biomedical Research UnitUniversity of BirminghamBirminghamUnited Kingdom,Institute of Immunology and ImmunotherapyUniversity of Birmingham, BirminghamUnited Kingdom
| |
Collapse
|
46
|
Jubin T, Kadam A, Jariwala M, Bhatt S, Sutariya S, Gani AR, Gautam S, Begum R. The PARP family: insights into functional aspects of poly (ADP-ribose) polymerase-1 in cell growth and survival. Cell Prolif 2016; 49:421-37. [PMID: 27329285 DOI: 10.1111/cpr.12268] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/04/2016] [Indexed: 12/21/2022] Open
Abstract
PARP family members can be found spread across all domains and continue to be essential molecules from lower to higher eukaryotes. Poly (ADP-ribose) polymerase 1 (PARP-1), newly termed ADP-ribosyltransferase D-type 1 (ARTD1), is a ubiquitously expressed ADP-ribosyltransferase (ART) enzyme involved in key cellular processes such as DNA repair and cell death. This review assesses current developments in PARP-1 biology and activation signals for PARP-1, other than conventional DNA damage activation. Moreover, many essential functions of PARP-1 still remain elusive. PARP-1 is found to be involved in a myriad of cellular events via conservation of genomic integrity, chromatin dynamics and transcriptional regulation. This article briefly focuses on its other equally important overlooked functions during growth, metabolic regulation, spermatogenesis, embryogenesis, epigenetics and differentiation. Understanding the role of PARP-1, its multidimensional regulatory mechanisms in the cell and its dysregulation resulting in diseased states, will help in harnessing its true therapeutic potential.
Collapse
Affiliation(s)
- T Jubin
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - A Kadam
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - M Jariwala
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - S Bhatt
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - S Sutariya
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - A R Gani
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - S Gautam
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - R Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| |
Collapse
|
47
|
Bock FJ, Chang P. New directions in poly(ADP-ribose) polymerase biology. FEBS J 2016; 283:4017-4031. [PMID: 27087568 DOI: 10.1111/febs.13737] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/18/2016] [Accepted: 04/13/2016] [Indexed: 12/17/2022]
Abstract
Poly(ADP-ribose) polymerases (PARPs) regulate the function of target proteins by modifying them with ADP-ribose, a large and unique post-translational modification. Humans express 17 PARPs; however, historically, much of the focus has been on PARP1 and its function in DNA damage repair. Recent work has uncovered an amazing diversity of function for these enzymes including the regulation of fundamental physiological processes in the cell and at the organismal level, as well as new roles in regulating cellular stress responses. In this review, we discuss recent advancements in our understanding of this important protein family, and technological developments that have been critical for moving the field forward. Finally, we discuss new directions that we feel are important areas of further scientific exploration.
Collapse
Affiliation(s)
- Florian J Bock
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK.,Institute of Cancer Sciences, University of Glasgow, Garscube Estate, UK
| | | |
Collapse
|
48
|
Larmonier CB, Shehab KW, Laubitz D, Jamwal DR, Ghishan FK, Kiela PR. Transcriptional Reprogramming and Resistance to Colonic Mucosal Injury in Poly(ADP-ribose) Polymerase 1 (PARP1)-deficient Mice. J Biol Chem 2016; 291:8918-30. [PMID: 26912654 DOI: 10.1074/jbc.m116.714386] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Indexed: 12/23/2022] Open
Abstract
Poly(ADP-ribose) polymerases (PARPs) synthesize and bind branched polymers of ADP-ribose to acceptor proteins using NAD as a substrate and participate in the control of gene transcription and DNA repair. PARP1, the most abundant isoform, regulates the expression of proinflammatory mediator cytokines, chemokines, and adhesion molecules, and inhibition of PARP1 enzymatic activity reduced or ameliorated autoimmune diseases in several experimental models, including colitis. However, the mechanism(s) underlying the protective effects of PARP1 inhibition in colitis and the cell types in which Parp1 deletion has the most significant impact are unknown. The objective of the current study was to determine the impact of Parp1 deletion on the innate immune response to mucosal injury and on the gut microbiome composition. Parp1 deficiency was evaluated in DSS-induced colitis in WT, Parp1(-/-), Rag2(-/-), and Rag2(-/-)×Parp1(-/-) double knock-out mice. Genome-wide analysis of the colonic transcriptome and fecal 16S amplicon profiling was performed. Compared with WT, we demonstrated that Parp1(-/-) were protected from dextran-sulfate sodium-induced colitis and that this protection was associated with a dramatic transcriptional reprogramming in the colon. PARP1 deficiency was also associated with a modulation of the colonic microbiota (increases relative abundance of Clostridia clusters IV and XIVa) and a concomitant increase in the frequency of mucosal CD4(+)CD25(+) Foxp3(+) regulatory T cells. The protective effects conferred by Parp1 deletion were lost in Rag2(-/-) × Parp1(-/-) mice, highlighting the role of the adaptive immune system for full protection.
Collapse
Affiliation(s)
- Claire B Larmonier
- From the Department of Pediatrics, Steele Children's Research Center, and
| | - Kareem W Shehab
- From the Department of Pediatrics, Steele Children's Research Center, and
| | - Daniel Laubitz
- From the Department of Pediatrics, Steele Children's Research Center, and
| | - Deepa R Jamwal
- From the Department of Pediatrics, Steele Children's Research Center, and
| | - Fayez K Ghishan
- From the Department of Pediatrics, Steele Children's Research Center, and
| | - Pawel R Kiela
- From the Department of Pediatrics, Steele Children's Research Center, and Department of Immunobiology, University of Arizona Health Sciences Center, Tucson, Arizona 85724
| |
Collapse
|
49
|
Luo X, Nie J, Wang S, Chen Z, Chen W, Li D, Hu H, Li B. Poly(ADP-ribosyl)ation of FOXP3 Protein Mediated by PARP-1 Protein Regulates the Function of Regulatory T Cells. J Biol Chem 2015; 290:28675-82. [PMID: 26429911 DOI: 10.1074/jbc.m115.661611] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Indexed: 11/06/2022] Open
Abstract
Poly(ADP-ribose) polymerase 1 (PARP-1) is an ADP-ribosylating enzyme participating in diverse cellular functions. The roles of PARP-1 in the immune system, however, have not been well understood. Here we find that PARP-1 interacts with FOXP3 and induces its poly(ADP-ribosyl)ation. By using PARP-1 inhibitors, we show that reduced poly(ADP-ribosyl)ation of FOXP3 results in not only FOXP3 stabilization and increased FOXP3 downstream genes but also enhanced suppressive function of regulatory T cells. Our results suggest that PARP-1 negatively regulates the suppressive function of Treg cells at the posttranslational level via FOXP3 poly(ADP-ribosyl)ation. This finding has implications for developing PARP-1 inhibitors as potential agents for the prevention and treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Xuerui Luo
- From the Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jia Nie
- From the Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shuaiwei Wang
- From the Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zuojia Chen
- From the Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - WanJun Chen
- the Mucosal Immunology Section, Oral and Pharyngeal Cancer Branch, NIDCR, National Institutes of Health, Bethesda, Maryland, 20892-2190
| | - Dan Li
- From the Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui Hu
- the Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294-2170
| | - Bin Li
- From the Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China,
| |
Collapse
|
50
|
Mehrotra P, Krishnamurthy P, Sun J, Goenka S, Kaplan MH. Poly-ADP-ribosyl polymerase-14 promotes T helper 17 and follicular T helper development. Immunology 2015. [PMID: 26222149 DOI: 10.1111/imm.12515] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Transcription factors are critical determinants of T helper cell fate and require a variety of co-factors to activate gene expression. We previously identified the ADP ribosyl-transferase poly-ADP-ribosyl polymerase 14 (PARP-14) as a co-factor of signal transducer and activator of transcription (STAT) 6 that is important in B-cell and T-cell responses to interleukin-4, particularly in the differentiation of T helper type 2 (Th2) cells. However, whether PARP-14 functions during the development of other T helper subsets is not known. In this report we demonstrate that PARP-14 is highly expressed in Th17 cells, and that PARP-14 deficiency and pharmacological blockade of PARP activity result in diminished Th17 differentiation in vitro and in a model of allergic airway inflammation. We further show that PARP-14 is expressed in T follicular helper (Tfh) cells and Tfh cell development is impaired in PARP-14-deficient mice following immunization with sheep red blood cells or inactivated influenza virus. Decreases in Th17 and Tfh development are correlated with diminished phospho-STAT3 and decreased expression of the interleukin-6 receptor α-chain in T cells. Together, these studies demonstrate that PARP-14 regulates multiple cytokine responses during inflammatory immunity.
Collapse
Affiliation(s)
- Purvi Mehrotra
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Integrative and Cellular Physiology, Indiana University-Purdue University, Indianapolis, IN, USA
| | - Purna Krishnamurthy
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jie Sun
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shreevrat Goenka
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mark H Kaplan
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|