1
|
Kim D, Kim G, Yu R, Lee J, Kim S, Gleason MR, Qiu K, Montauti E, Wang LL, Fang D, Choi J, Chandel NS, Weinberg S, Min B. Inhibitory co-receptor Lag3 supports Foxp3 + regulatory T cell function by restraining Myc-dependent metabolic programming. Immunity 2024; 57:2634-2650.e5. [PMID: 39236718 DOI: 10.1016/j.immuni.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/22/2024] [Accepted: 08/07/2024] [Indexed: 09/07/2024]
Abstract
Lymphocyte activation gene 3 (Lag3) is an inhibitory co-receptor expressed on activated T cells and has been proposed to regulate regulatory T (Treg) cell function. However, its precise modality and mechanisms remain elusive. We generated Treg cell-specific Lag3-mutant mouse models and found that Lag3 was essential for Treg cell control of autoimmunity. RNA sequencing analysis revealed that Lag3 mutation altered genes associated with metabolic processes, especially Myc target genes. Myc expression in Lag3-mutant Treg cells was increased to the level seen in conventional T helper (Th)1-type effector cells and directly correlated with their metabolic profiles and in vivo suppressive functions. The phosphatidylinositol 3-kinase (PI3K)-Akt-Rictor pathway was activated in Lag3-mutant Treg cells, and inhibiting PI3K, Rictor, or lactate dehydrogenase A (Ldha), a key Myc target enzyme converting pyruvate to lactate, was sufficient to restore normal metabolism and suppressive function in Lag3-mutant Treg cells. These findings indicate that Lag3 supports Treg cell suppression partly by tuning Myc-dependent metabolic programming.
Collapse
Affiliation(s)
- Dongkyun Kim
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Giha Kim
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Rongzhen Yu
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Juyeun Lee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Sohee Kim
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Mia R Gleason
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kevin Qiu
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Elena Montauti
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Li Lily Wang
- Department of Translational Hematology and Oncology Research, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jaehyuk Choi
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Navdeep S Chandel
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Samuel Weinberg
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Booki Min
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
2
|
Taheri MM, Javan F, Poudineh M, Athari SS. CAR-NKT Cells in Asthma: Use of NKT as a Promising Cell for CAR Therapy. Clin Rev Allergy Immunol 2024; 66:328-362. [PMID: 38995478 DOI: 10.1007/s12016-024-08998-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
NKT cells, unique lymphocytes bridging innate and adaptive immunity, offer significant potential for managing inflammatory disorders like asthma. Activating iNKT induces increasing IFN-γ, TGF-β, IL-2, and IL-10 potentially suppressing allergic asthma. However, their immunomodulatory effects, including granzyme-perforin-mediated cytotoxicity, and expression of TIM-3 and TRAIL warrant careful consideration and targeted approaches. Although CAR-T cell therapy has achieved remarkable success in treating certain cancers, its limitations necessitate exploring alternative approaches. In this context, CAR-NKT cells emerge as a promising approach for overcoming these challenges, potentially achieving safer and more effective immunotherapies. Strategies involve targeting distinct IgE-receptors and their interactions with CAR-NKT cells, potentially disrupting allergen-mast cell/basophil interactions and preventing inflammatory cytokine release. Additionally, targeting immune checkpoints like PDL-2, inducible ICOS, FASL, CTLA-4, and CD137 or dectin-1 for fungal asthma could further modulate immune responses. Furthermore, artificial intelligence and machine learning hold immense promise for revolutionizing NKT cell-based asthma therapy. AI can optimize CAR-NKT cell functionalities, design personalized treatment strategies, and unlock a future of precise and effective care. This review discusses various approaches to enhancing CAR-NKT cell efficacy and longevity, along with the challenges and opportunities they present in the treatment of allergic asthma.
Collapse
Affiliation(s)
| | - Fatemeh Javan
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohadeseh Poudineh
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Seyyed Shamsadin Athari
- Cancer Gene therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
3
|
Toadere TM, Ţichindeleanu A, Bondor DA, Topor I, Trella ŞE, Nenu I. Bridging the divide: unveiling mutual immunological pathways of cancer and pregnancy. Inflamm Res 2024; 73:793-807. [PMID: 38492049 DOI: 10.1007/s00011-024-01866-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/31/2024] [Accepted: 02/22/2024] [Indexed: 03/18/2024] Open
Abstract
The juxtaposition of two seemingly disparate physiological phenomena within the human body-namely, cancer and pregnancy-may offer profound insights into the intricate interplay between malignancies and the immune system. Recent investigations have unveiled striking similarities between the pivotal processes underpinning fetal implantation and successful gestation and those governing tumor initiation and progression. Notably, a confluence of features has emerged, underscoring parallels between the microenvironment of tumors and the maternal-fetal interface. These shared attributes encompass establishing vascular networks, cellular mobilization, recruitment of auxiliary tissue components to facilitate continued growth, and, most significantly, the orchestration of immune-suppressive mechanisms.Our particular focus herein centers on the phenomenon of immune suppression and its protective utility in both of these contexts. In the context of pregnancy, immune suppression assumes a paramount role in shielding the semi-allogeneic fetus from the potentially hostile immune responses of the maternal host. In stark contrast, in the milieu of cancer, this very same immunological suppression fosters the transformation of the tumor microenvironment into a sanctuary personalized for the neoplastic cells.Thus, the striking parallels between the immunosuppressive strategies deployed during pregnancy and those co-opted by malignancies offer a tantalizing reservoir of insights. These insights promise to inform novel avenues in the realm of cancer immunotherapy. By harnessing our understanding of the immunological events that detrimentally impact fetal development, a knowledge grounded in the context of conditions such as preeclampsia or miscarriage, we may uncover innovative immunotherapeutic strategies to combat cancer.
Collapse
Affiliation(s)
- Teodora Maria Toadere
- Department of Physiology, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400006, Cluj-Napoca, Romania.
| | - Andra Ţichindeleanu
- Department of Physiology, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400006, Cluj-Napoca, Romania.
| | - Daniela Andreea Bondor
- Department of Physiology, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400006, Cluj-Napoca, Romania
| | - Ioan Topor
- Department of Physiology, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400006, Cluj-Napoca, Romania
| | - Şerban Ellias Trella
- Department of Physiology, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400006, Cluj-Napoca, Romania
| | - Iuliana Nenu
- Department of Physiology, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400006, Cluj-Napoca, Romania
| |
Collapse
|
4
|
Santosh Nirmala S, Kayani K, Gliwiński M, Hu Y, Iwaszkiewicz-Grześ D, Piotrowska-Mieczkowska M, Sakowska J, Tomaszewicz M, Marín Morales JM, Lakshmi K, Marek-Trzonkowska NM, Trzonkowski P, Oo YH, Fuchs A. Beyond FOXP3: a 20-year journey unravelling human regulatory T-cell heterogeneity. Front Immunol 2024; 14:1321228. [PMID: 38283365 PMCID: PMC10811018 DOI: 10.3389/fimmu.2023.1321228] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/19/2023] [Indexed: 01/30/2024] Open
Abstract
The initial idea of a distinct group of T-cells responsible for suppressing immune responses was first postulated half a century ago. However, it is only in the last three decades that we have identified what we now term regulatory T-cells (Tregs), and subsequently elucidated and crystallized our understanding of them. Human Tregs have emerged as essential to immune tolerance and the prevention of autoimmune diseases and are typically contemporaneously characterized by their CD3+CD4+CD25high CD127lowFOXP3+ phenotype. It is important to note that FOXP3+ Tregs exhibit substantial diversity in their origin, phenotypic characteristics, and function. Identifying reliable markers is crucial to the accurate identification, quantification, and assessment of Tregs in health and disease, as well as the enrichment and expansion of viable cells for adoptive cell therapy. In our comprehensive review, we address the contributions of various markers identified in the last two decades since the master transcriptional factor FOXP3 was identified in establishing and enriching purity, lineage stability, tissue homing and suppressive proficiency in CD4+ Tregs. Additionally, our review delves into recent breakthroughs in innovative Treg-based therapies, underscoring the significance of distinct markers in their therapeutic utilization. Understanding Treg subsets holds the key to effectively harnessing human Tregs for immunotherapeutic approaches.
Collapse
Affiliation(s)
| | - Kayani Kayani
- Centre for Liver and Gastrointestinal Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Department of Academic Surgery, Queen Elizabeth Hospital, University of Birmingham, Birmingham, United Kingdom
- Department of Renal Surgery, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Mateusz Gliwiński
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Yueyuan Hu
- Center for Regenerative Therapies Dresden, Technical University Dresden, Dresden, Germany
| | | | | | - Justyna Sakowska
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Martyna Tomaszewicz
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Kavitha Lakshmi
- Center for Regenerative Therapies Dresden, Technical University Dresden, Dresden, Germany
| | | | - Piotr Trzonkowski
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Ye Htun Oo
- Centre for Liver and Gastrointestinal Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Liver Transplant and Hepatobiliary Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- Birmingham Advanced Cellular Therapy Facility, University of Birmingham, Birmingham, United Kingdom
- Centre for Rare Diseases, European Reference Network - Rare Liver Centre, Birmingham, United Kingdom
| | - Anke Fuchs
- Center for Regenerative Therapies Dresden, Technical University Dresden, Dresden, Germany
| |
Collapse
|
5
|
Ma X, Cao L, Raneri M, Wang H, Cao Q, Zhao Y, Bediaga NG, Naselli G, Harrison LC, Hawthorne WJ, Hu M, Yi S, O’Connell PJ. Human HLA-DR+CD27+ regulatory T cells show enhanced antigen-specific suppressive function. JCI Insight 2023; 8:e162978. [PMID: 37874660 PMCID: PMC10795828 DOI: 10.1172/jci.insight.162978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/17/2023] [Indexed: 10/26/2023] Open
Abstract
Regulatory T cells (Tregs) have potential for the treatment of autoimmune diseases and graft rejection. Antigen specificity and functional stability are considered critical for their therapeutic efficacy. In this study, expansion of human Tregs in the presence of porcine PBMCs (xenoantigen-expanded Tregs, Xn-Treg) allowed the selection of a distinct Treg subset, coexpressing the activation/memory surface markers HLA-DR and CD27 with enhanced proportion of FOXP3+Helios+ Tregs. Compared with their unsorted and HLA-DR+CD27+ double-positive (DP) cell-depleted Xn-Treg counterparts, HLA-DR+CD27+ DP-enriched Xn-Tregs expressed upregulated Treg function markers CD95 and ICOS with enhanced suppression of xenogeneic but not polyclonal mixed lymphocyte reaction. They also had less Treg-specific demethylation in the region of FOXP3 and were more resistant to conversion to effector cells under inflammatory conditions. Adoptive transfer of porcine islet recipient NOD/SCID IL2 receptor γ-/- mice with HLA-DR+CD27+ DP-enriched Xn-Tregs in a humanized mouse model inhibited porcine islet graft rejection mediated by 25-fold more human effector cells. The prolonged graft survival was associated with enhanced accumulation of FOXP3+ Tregs and upregulated expression of Treg functional genes, IL10 and cytotoxic T lymphocyte antigen 4, but downregulated expression of effector Th1, Th2, and Th17 cytokine genes, within surviving grafts. Collectively, human HLA-DR+CD27+ DP-enriched Xn-Tregs expressed a specific regulatory signature that enabled identification and isolation of antigen-specific and functionally stable Tregs with potential as a Treg-based therapy.
Collapse
Affiliation(s)
- Xiaoqian Ma
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lu Cao
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Martina Raneri
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Hannah Wang
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Qi Cao
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Yuanfei Zhao
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Naiara G. Bediaga
- Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Melbourne, Victoria, Australia
| | - Gaetano Naselli
- Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Melbourne, Victoria, Australia
| | - Leonard C. Harrison
- Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Melbourne, Victoria, Australia
| | - Wayne J. Hawthorne
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Min Hu
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Shounan Yi
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Philip J. O’Connell
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Sandhu Y, Harada N, Harada S, Nishimaki T, Sasano H, Tanabe Y, Takeshige T, Matsuno K, Ishimori A, Katsura Y, Ito J, Akiba H, Takahashi K. MAP3K19 Affects TWEAK-Induced Response in Cultured Bronchial Epithelial Cells and Regulates Allergic Airway Inflammation in an Asthma Murine Model. Curr Issues Mol Biol 2023; 45:8907-8924. [PMID: 37998736 PMCID: PMC10670632 DOI: 10.3390/cimb45110559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/27/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK) signaling pathway is involved in the epithelial-mesenchymal transition (EMT) and asthma; however, the role of mitogen-activated protein kinase kinase kinase 19 (MAP3K19) remains uncertain. Therefore, we investigated the involvement of MAP3K19 in in vitro EMT and ovalbumin (OVA)-induced asthma murine models. The involvement of MAP3K19 in the EMT and the production of cytokines and chemokines were analyzed using a cultured bronchial epithelial cell line, BEAS-2B, in which MAP3K19 was knocked down using small interfering RNA. We also evaluated the involvement of MAP3K19 in the OVA-induced asthma murine model using Map3k19-deficient (MAP3K19-/-) mice. Transforming growth factor beta 1 (TGF-β1) and tumor necrosis factor-like weak inducer of apoptosis (TWEAK) induced the MAP3K19 messenger RNA (mRNA) expression in the BEAS-2B cells. The knockdown of MAP3K19 enhanced the reduction in E-cadherin mRNA and the production of regulated upon activation normal T cell express sequence (RANTES) via stimulation with TWEAK alone or with the combination of TGF-β1 and TWEAK. Furthermore, the expression of MAP3K19 mRNA was upregulated in both the lungs and tracheas of the mice in the OVA-induced asthma murine model. The MAP3K19-/- mice exhibited worsened eosinophilic inflammation and an increased production of RANTES in the airway epithelium compared with the wild-type mice. These findings indicate that MAP3K19 suppressed the TWEAK-stimulated airway epithelial response, including adhesion factor attenuation and RANTES production, and suppressed allergic airway inflammation in an asthma mouse model, suggesting that MAP3K19 regulates allergic airway inflammation in patients with asthma.
Collapse
Affiliation(s)
- Yuuki Sandhu
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.S.); (S.H.); (T.N.); (H.S.); (Y.T.); (T.T.); (K.M.); (A.I.); (Y.K.); (J.I.); (K.T.)
| | - Norihiro Harada
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.S.); (S.H.); (T.N.); (H.S.); (Y.T.); (T.T.); (K.M.); (A.I.); (Y.K.); (J.I.); (K.T.)
- Research Institute for Diseases of Old Ages, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo 113-8421, Japan
- Atopy (Allergy) Research Center, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Sonoko Harada
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.S.); (S.H.); (T.N.); (H.S.); (Y.T.); (T.T.); (K.M.); (A.I.); (Y.K.); (J.I.); (K.T.)
- Atopy (Allergy) Research Center, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Takayasu Nishimaki
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.S.); (S.H.); (T.N.); (H.S.); (Y.T.); (T.T.); (K.M.); (A.I.); (Y.K.); (J.I.); (K.T.)
| | - Hitoshi Sasano
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.S.); (S.H.); (T.N.); (H.S.); (Y.T.); (T.T.); (K.M.); (A.I.); (Y.K.); (J.I.); (K.T.)
| | - Yuki Tanabe
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.S.); (S.H.); (T.N.); (H.S.); (Y.T.); (T.T.); (K.M.); (A.I.); (Y.K.); (J.I.); (K.T.)
| | - Tomohito Takeshige
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.S.); (S.H.); (T.N.); (H.S.); (Y.T.); (T.T.); (K.M.); (A.I.); (Y.K.); (J.I.); (K.T.)
| | - Kei Matsuno
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.S.); (S.H.); (T.N.); (H.S.); (Y.T.); (T.T.); (K.M.); (A.I.); (Y.K.); (J.I.); (K.T.)
| | - Ayako Ishimori
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.S.); (S.H.); (T.N.); (H.S.); (Y.T.); (T.T.); (K.M.); (A.I.); (Y.K.); (J.I.); (K.T.)
| | - Yoko Katsura
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.S.); (S.H.); (T.N.); (H.S.); (Y.T.); (T.T.); (K.M.); (A.I.); (Y.K.); (J.I.); (K.T.)
| | - Jun Ito
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.S.); (S.H.); (T.N.); (H.S.); (Y.T.); (T.T.); (K.M.); (A.I.); (Y.K.); (J.I.); (K.T.)
| | - Hisaya Akiba
- Department of Immunology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan;
| | - Kazuhisa Takahashi
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.S.); (S.H.); (T.N.); (H.S.); (Y.T.); (T.T.); (K.M.); (A.I.); (Y.K.); (J.I.); (K.T.)
- Research Institute for Diseases of Old Ages, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo 113-8421, Japan
| |
Collapse
|
7
|
Wang X, Sun L, Yang B, Li W, Zhang C, Yang X, Sun Y, Shen X, Gao Y, Ju B, Gao Y, Liu D, Song J, Jia X, Su Y, Jiao A, Liu H, Zhang L, Lan He, Lei L, Chen W, Zhang B. Zfp335 establishes eTreg lineage and neonatal immune tolerance by targeting Hadha-mediated fatty acid oxidation. J Clin Invest 2023; 133:e166628. [PMID: 37843279 PMCID: PMC10575732 DOI: 10.1172/jci166628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 08/15/2023] [Indexed: 10/17/2023] Open
Abstract
Regulatory T cells (Tregs) are instrumental in maintaining immune tolerance and preventing destructive autoimmunity, but how heterogeneous Treg populations are established remains largely unknown. Here, we show that Zfp335 deletion in Tregs failed to differentiate into effector Tregs (eTregs) and lose Treg-suppressive function and that KO mice exhibited early-onset lethal autoimmune inflammation with unrestricted activation of conventional T cells. Single-cell RNA-Seq analyses revealed that Zfp335-deficient Tregs lacked a eTreg population and showed dramatic accumulation of a dysfunctional Treg subset. Mechanistically, Zfp335-deficient Tregs displayed reduced oxidative phosphorylation and dysfunctional mitochondrial activity. Further studies revealed that Zfp335 controlled eTreg differentiation by regulating fatty acid oxidation (FAO) through direct targeting of the FAO enzyme Hadha. Importantly, we demonstrate a positive correlation between ZNF335 and HADHA expression in human eTregs. Our findings reveal that Zfp335 controls FAO-driven eTreg differentiation to establish immune tolerance.
Collapse
Affiliation(s)
- Xin Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Lina Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Biao Yang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Wenhua Li
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Cangang Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Xiaofeng Yang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, Shaanxi, China
- Xi’an Key Laboratory of Immune-Related Diseases, Xi’an, Shannxi, China
| | - Yae Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xiaonan Shen
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Yang Gao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Bomiao Ju
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yafeng Gao
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Dan Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Xi’an Medical University, Xi’an, Shaanxi, China
| | - Jiapeng Song
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Xiaoxuan Jia
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Haiyan Liu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Lianjun Zhang
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Lan He
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Lei Lei
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - WanJun Chen
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, Maryland, USA
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, Shaanxi, China
- Xi’an Key Laboratory of Immune-Related Diseases, Xi’an, Shannxi, China
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
8
|
Dong J, Huth WJ, Marcel N, Zhang Z, Lin LL, Lu LF. miR-15/16 clusters restrict effector Treg cell differentiation and function. J Exp Med 2023; 220:e20230321. [PMID: 37516921 PMCID: PMC10374942 DOI: 10.1084/jem.20230321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/27/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023] Open
Abstract
Effector regulatory T cells (eTregs) exhibit distinct homeostatic properties and superior suppressor capacities pivotal for controlling immune responses mediated by their conventional T cell counterpart. While the role of microRNAs (miRNAs) in Tregs has been well-established, how miRNAs regulate eTregs remains poorly understood. Here, we demonstrate that miR-15/16 clusters act as key regulators in limiting eTreg responses. Loss of miR-15/16 clusters leads to increased eTreg frequencies with enhanced suppressor function. Consequently, mice with Treg-specific ablation of miR-15/16 clusters display attenuated immune responses during neuroinflammation and upon both infectious and non-infectious challenges. Mechanistically, miR-15/16 clusters exert their regulatory effect in part through repressing IRF4, a transcription factor essential for eTreg differentiation and function. Moreover, miR-15/16 clusters also directly target neuritin, an IRF4-dependent molecule, known for its role in Treg-mediated regulation of plasma cell responses. Together, we identify an miRNA family that controls an important Treg subset and further demonstrate that eTreg responses are tightly regulated at both transcriptional and posttranscriptional levels.
Collapse
Affiliation(s)
- Jiayi Dong
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - William J. Huth
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Nimi Marcel
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Ziyue Zhang
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Ling-Li Lin
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Li-Fan Lu
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
9
|
Gao X, Tang Y, Kong L, Fan Y, Wang C, Wang R. Treg cell: Critical role of regulatory T-cells in depression. Pharmacol Res 2023; 195:106893. [PMID: 37611836 DOI: 10.1016/j.phrs.2023.106893] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/28/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023]
Abstract
Depression is a highly prevalent disorder of the central nervous system. The neuropsychiatric symptoms of clinical depression are persistent and include fatigue, anorexia, weight loss, altered sleep patterns, hyperalgesia, melancholia, anxiety, and impaired social behaviours. Mounting evidences suggest that neuroinflammation triggers dysregulated cellular immunity and increases susceptibility to psychiatric diseases. Neuroimmune responses have transformed the clinical approach to depression because of their roles in its pathophysiology and their therapeutic potential. In particular, activated regulatory T (Treg) cells play an increasingly evident role in the inflammatory immune response. In this review, we summarized the available data and discussed in depth the fundamental roles of Tregs in the pathogenesis of depression, as well as the clinical therapeutic potential of Tregs. We aimed to provide recent information regarding the potential of Tregs as immune-modulating biologics for the treatment and prevention of long-term neuropsychiatric symptoms of depression.
Collapse
Affiliation(s)
- Xiao Gao
- Department of Geriatrics, Qingdao Mental Health Center, 26600 Qingdao, Shandong Province, China
| | - Yuru Tang
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, 26600 Qingdao, Shandong Province, China
| | - Lingli Kong
- Department of Geriatrics, Qingdao Mental Health Center, 26600 Qingdao, Shandong Province, China
| | - Yong Fan
- Department of Geriatrics, Qingdao Mental Health Center, 26600 Qingdao, Shandong Province, China
| | - Chunxia Wang
- Department of Geriatrics, Qingdao Mental Health Center, 26600 Qingdao, Shandong Province, China.
| | - Rui Wang
- Department of Pain Management, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), 26600 Qingdao, Shandong Province, China.
| |
Collapse
|
10
|
Abstract
Allergic diseases typically begin in early life and can impose a heavy burden on children and their families. Effective preventive measures are currently unavailable but may be ushered in by studies on the "farm effect", the strong protection from asthma and allergy found in children born and raised on traditional farms. Two decades of epidemiologic and immunologic research have demonstrated that this protection is provided by early and intense exposure to farm-associated microbes that target primarily innate immune pathways. Farm exposure also promotes timely maturation of the gut microbiome, which mediates a proportion of the protection conferred by the farm effect. Current research seeks to identify allergy-protective compounds from traditional farm environments, but standardization and regulation of such substances will likely prove challenging. On the other hand, studies in mouse models show that administration of standardized, pharmacological-grade lysates of human airway bacteria abrogates allergic lung inflammation by acting on multiple innate immune targets, including the airway epithelium/IL-33/ILC2 axis and dendritic cells whose Myd88/Trif-dependent tolerogenic reprogramming is sufficient for asthma protection in adoptive transfer models. To the extent that these bacterial lysates mimic the protective effects of natural exposure to microbe-rich environments, these agents might provide an effective tool for prevention of allergic disease.
Collapse
Affiliation(s)
- Donata Vercelli
- Department of Cellular and Molecular Medicine, Asthma & Airway Disease Research Center, The BIO5 Institute, and The Arizona Center for the Biology of Complex Diseases, The University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
11
|
Meziani L, Gerbé de Thoré M, Clémenson C, Liu W, Laurent PA, Mondini M, Vozenin MC, Deutsch E. Optimal dosing regimen of CD73 blockade improves tumor response to radiotherapy through iCOS downregulation. J Immunother Cancer 2023; 11:jitc-2023-006846. [PMID: 37270182 DOI: 10.1136/jitc-2023-006846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND Irradiation (IR) and immune checkpoint inhibitor (ICI) combination is a promising treatment modality. However, local and distance treatment failure and resistance can occur. To counteract this resistance, several studies propose CD73, an ectoenzyme, as a potential target to improve the antitumor efficiency of IR and ICI. Although CD73 targeting in combination with IR and ICI has shown attractive antitumor effects in preclinical models, the rationale for CD73 targeting based on CD73 tumor expression level deserves further investigations. METHODS Here we evaluated for the first time the efficacy of two administration regimens of CD73 neutralizing antibody (one dose vs four doses) in combination with IR according to the expression level of CD73 in two subcutaneous tumor models expressing different levels of CD73. RESULTS We showed that CD73 is weakly expressed by MC38 tumors even after IR, when compared with the TS/A model that highly expressed CD73. Treatment with four doses of anti-CD73 improved the TS/A tumor response to IR, while it was ineffective against the CD73 low-expressing MC38 tumors. Surprisingly, a single dose of anti-CD73 exerted a significant antitumor activity against MC38 tumors. On CD73 overexpression in MC38 cells, four doses of anti-CD73 were required to improve the efficacy of IR. Mechanistically, a correlation between a downregulation of iCOS expression in CD4+ T cells and an improved response to IR after anti-CD73 treatment was observed and iCOS targeting could restore an impaired benefit from anti-CD73 treatment. CONCLUSIONS These data emphasize the importance of the dosing regimen for anti-CD73 treatment to improve tumor response to IR and identify iCOS as part of the underlying molecular mechanisms. Our data suggest that the selection of appropriate dosing regimen is required to optimize the therapeutic efficacy of immunotherapy-radiotherapy combinations.
Collapse
Affiliation(s)
- Lydia Meziani
- Laboratory of Radiation Oncology, Department of Radiation Oncology, CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- INSERM U1030, Molecular Radiotherapy, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Marine Gerbé de Thoré
- INSERM U1030, Molecular Radiotherapy, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Céline Clémenson
- INSERM U1030, Molecular Radiotherapy, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Winchygn Liu
- INSERM U1030, Molecular Radiotherapy, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Pierre-Antoine Laurent
- INSERM U1030, Molecular Radiotherapy, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Michele Mondini
- INSERM U1030, Molecular Radiotherapy, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Marie-Catherine Vozenin
- Laboratory of Radiation Oncology, Department of Radiation Oncology, CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Eric Deutsch
- INSERM U1030, Molecular Radiotherapy, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
12
|
Panneton V, Mindt BC, Bouklouch Y, Bouchard A, Mohammaei S, Chang J, Diamantopoulos N, Witalis M, Li J, Stancescu A, Bradley JE, Randall TD, Fritz JH, Suh WK. ICOS costimulation is indispensable for the differentiation of T follicular regulatory cells. Life Sci Alliance 2023; 6:e202201615. [PMID: 36754569 PMCID: PMC9909462 DOI: 10.26508/lsa.202201615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/10/2023] Open
Abstract
ICOS is a T-cell costimulatory receptor critical for Tfh cell generation and function. However, the role of ICOS in Tfr cell differentiation remains unclear. Using Foxp3-Cre-mediated ICOS knockout (ICOS FC) mice, we show that ICOS deficiency in Treg-lineage cells drastically reduces the number of Tfr cells during GC reactions but has a minimal impact on conventional Treg cells. Single-cell transcriptome analysis of Foxp3+ cells at an early stage of the GC reaction suggests that ICOS normally inhibits Klf2 expression to promote follicular features including Bcl6 up-regulation. Furthermore, ICOS costimulation promotes nuclear localization of NFAT2, a known driver of CXCR5 expression. Notably, ICOS FC mice had an unaltered overall GC B-cell output but showed signs of expanded autoreactive B cells along with elevated autoantibody titers. Thus, our study demonstrates that ICOS costimulation is critical for Tfr cell differentiation and highlights the importance of Tfr cells in maintaining humoral immune tolerance during GC reactions.
Collapse
Affiliation(s)
- Vincent Panneton
- Institut de Recherches Cliniques de Montréal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, University of Montreal, Quebec, Canada
| | - Barbara C Mindt
- Department of Microbiology and Immunology, McGill University, Quebec, Canada
- McGill University Research Centre on Complex Traits, McGill University, Quebec, Canada
| | | | - Antoine Bouchard
- Institut de Recherches Cliniques de Montréal, Quebec, Canada
- Molecular Biology Program, University of Montreal, Quebec, Canada
| | - Saba Mohammaei
- Institut de Recherches Cliniques de Montréal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Quebec, Canada
| | - Jinsam Chang
- Institut de Recherches Cliniques de Montréal, Quebec, Canada
- Molecular Biology Program, University of Montreal, Quebec, Canada
| | - Nikoletta Diamantopoulos
- Institut de Recherches Cliniques de Montréal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Quebec, Canada
| | - Mariko Witalis
- Institut de Recherches Cliniques de Montréal, Quebec, Canada
- Molecular Biology Program, University of Montreal, Quebec, Canada
| | - Joanna Li
- Institut de Recherches Cliniques de Montréal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Quebec, Canada
| | | | - John E Bradley
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Troy D Randall
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jörg H Fritz
- Department of Microbiology and Immunology, McGill University, Quebec, Canada
- McGill University Research Centre on Complex Traits, McGill University, Quebec, Canada
| | - Woong-Kyung Suh
- Institut de Recherches Cliniques de Montréal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, University of Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Quebec, Canada
- Molecular Biology Program, University of Montreal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Quebec, Canada
| |
Collapse
|
13
|
Kim D, Kim G, Yu R, Lee J, Kim S, Qiu K, Montauti E, Fang D, Chandel NS, Choi J, Min B. Lymphocyte activation gene 3 (Lag3) supports Foxp3 + Treg cell function by restraining c-Myc-dependent aerobic glycolysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.13.528371. [PMID: 36824824 PMCID: PMC9949104 DOI: 10.1101/2023.02.13.528371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Lymphocyte activation gene 3 (Lag3) has emerged as the next-generation immune checkpoint molecule due to its ability to inhibit effector T cell activity. Foxp3 + regulatory T (Treg) cells, a master regulator of immunity and tolerance, also highly express Lag3. While Lag3 is thought to be necessary for Treg cell-mediated regulation of immunity, the precise roles and underlying mechanisms remain largely elusive. In this study, we report that Lag3 is indispensable for Treg cells to control autoimmune inflammation. Utilizing a newly generated Treg cell specific Lag3 mutant mouse model, we found that these animals are highly susceptible to autoimmune diseases, suggesting defective Treg cell function. Genome wide transcriptome analysis further uncovered that Lag3 mutant Treg cells upregulated genes involved in metabolic processes. Mechanistically, we found that Lag3 limits Treg cell expression of Myc, a key regulator of aerobic glycolysis. We further found that Lag3-dependent Myc expression determines Treg cells’ metabolic programming as well as the in vivo function to suppress autoimmune inflammation. Taken together, our results uncovered a novel function of Lag3 in supporting Treg cell suppressive function by regulating Myc-dependent metabolic programming.
Collapse
|
14
|
Barra G, Gallo C, Carbone D, Ziaco M, Dell'Isola M, Affuso M, Manzo E, Nuzzo G, Fioretto L, D'Ippolito G, De Palma R, Fontana A. The immunoregulatory effect of the TREM2-agonist Sulfavant A in human allogeneic mixed lymphocyte reaction. Front Immunol 2023; 14:1050113. [PMID: 36865548 PMCID: PMC9972971 DOI: 10.3389/fimmu.2023.1050113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/27/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction Sulfavant A (SULF A) is a synthetic derivative of naturally occurring sulfolipids. The molecule triggers TREM2-related maturation of dendritic cells (DCs) and has shown promising adjuvant activity in a cancer vaccine model. Methods the immunomodulatory activity of SULF A is tested in an allogeneic mixed lymphocyte reaction (MLR) assay based on monocyte-derived dendritic cells and naïve T lymphocytes from human donors. Flow cytometry multiparametric analyses and ELISA assays were performed to characterize the immune populations, T cell proliferation, and to quantify key cytokines. Results Supplementation of 10 µg/mL SULF A to the co-cultures induced DCs to expose the costimulatory molecules ICOSL and OX40L and to reduce release of the pro-inflammatory cytokine IL-12. After 7 days of SULF A treatment, T lymphocytes proliferated more and showed increased IL-4 synthesis along with downregulation of Th1 signals such as IFNγ, T-bet and CXCR3. Consistent with these findings, naïve T cells polarized toward a regulatory phenotype with up-regulation of FOXP3 expression and IL-10 synthesis. Flow cytometry analysis also supported the priming of a CD127-/CD4+/CD25+ subpopulation positive for ICOS, the inhibitory molecule CTLA-4, and the activation marker CD69. Discussion These results prove that SULF A can modulate DC-T cell synapse and stimulate lymphocyte proliferation and activation. In the hyperresponsive and uncontrolled context of the allogeneic MLR, the effect is associated to differentiation of regulatory T cell subsets and dampening of inflammatory signals.
Collapse
Affiliation(s)
- Giusi Barra
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Carmela Gallo
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Dalila Carbone
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Marcello Ziaco
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Mario Dell'Isola
- Laboratory of Bio-Organic Chemistry and Chemical Biology, Department of Biology, University of Naples "Federico II", Napoli, Italy
| | - Mario Affuso
- Laboratory of Bio-Organic Chemistry and Chemical Biology, Department of Biology, University of Naples "Federico II", Napoli, Italy
| | - Emiliano Manzo
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Genoveffa Nuzzo
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Laura Fioretto
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Giuliana D'Ippolito
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Raffaele De Palma
- Department of Internal Medicine, University of Genova, Genova, Italy
| | - Angelo Fontana
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy.,Laboratory of Bio-Organic Chemistry and Chemical Biology, Department of Biology, University of Naples "Federico II", Napoli, Italy
| |
Collapse
|
15
|
Sim SL, Kumari S, Kaur S, Khosrotehrani K. Macrophages in Skin Wounds: Functions and Therapeutic Potential. Biomolecules 2022; 12:1659. [PMID: 36359009 PMCID: PMC9687369 DOI: 10.3390/biom12111659] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 08/29/2023] Open
Abstract
Macrophages regulate cutaneous wound healing by immune surveillance, tissue repair and remodelling. The depletion of dermal macrophages during the early and middle stages of wound healing has a detrimental impact on wound closure, characterised by reduced vessel density, fibroblast and myofibroblast proliferation, delayed re-epithelization and abated post-healing fibrosis and scar formation. However, in some animal species, oral mucosa and foetal life, cutaneous wounds can heal normally and remain scarless without any involvement of macrophages. These paradoxical observations have created much controversy on macrophages' indispensable role in skin wound healing. Advanced knowledge gained by characterising macrophage subsets, their plasticity in switching phenotypes and molecular drivers provides new insights into their functional importance during cutaneous wound healing. In this review, we highlight the recent findings on skin macrophage subsets, their functional role in adult cutaneous wound healing and the potential benefits of targeting them for therapeutic use.
Collapse
Affiliation(s)
- Seen Ling Sim
- The University of Queensland Diamantina Institute, Faculty of Medicine, Translational Research Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD 4102, Australia
| | - Snehlata Kumari
- The University of Queensland Diamantina Institute, Faculty of Medicine, Translational Research Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD 4102, Australia
| | - Simranpreet Kaur
- Mater Research Institute-UQ, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Kiarash Khosrotehrani
- The University of Queensland Diamantina Institute, Faculty of Medicine, Translational Research Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
16
|
McGee MC, Zhang T, Magazine N, Islam R, Carossino M, Huang W. PD-1 and ICOS counter-regulate tissue resident regulatory T cell development and IL-10 production during flu. Front Immunol 2022; 13:984476. [PMID: 36159872 PMCID: PMC9492985 DOI: 10.3389/fimmu.2022.984476] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/19/2022] [Indexed: 11/18/2022] Open
Abstract
Regulatory T cells that express the transcription factor Foxp3 (Treg cells) are a highly heterogenous population of immunoregulatory cells critical for maintaining immune homeostasis and preventing immunopathology during infections. Tissue resident Treg (TR-Treg) cells are maintained within nonlymphoid tissues and have been shown to suppress proinflammatory tissue resident T cell responses and promote tissue repair. Human populations are repetitively exposed to influenza infections and lung tissue resident effector T cell responses are associated with flu-induced long-term pulmonary sequelae. The kinetics of TR-Treg cell development and molecular features of TR-Treg cells during repeated and/or long-term flu infections are unclear. Utilizing a Foxp3RFP/IL-10GFP dual reporter mouse model along with intravascular fluorescent in vivo labeling, we characterized the TR-Treg cell responses to repetitive heterosubtypic influenza infections. We found lung tissue resident Treg cells accumulated and expressed high levels of co-inhibitory and co-stimulatory receptors post primary and secondary infections. Blockade of PD-1 or ICOS signaling reveals that PD-1 and ICOS signaling pathways counter-regulate TR-Treg cell expansion and IL-10 production, during secondary influenza infection. Furthermore, the virus-specific TR-Treg cell response displayed distinct kinetics, when compared to conventional CD4+ tissue resident memory T cells, during secondary flu infection. Our results provide insight into the tissue resident Foxp3+ regulatory T cell response during repetitive flu infections, which may be applicable to other respiratory infectious diseases such as tuberculosis and COVID.
Collapse
Affiliation(s)
- Michael C. McGee
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Tianyi Zhang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Nicholas Magazine
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Rezwanul Islam
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Mariano Carossino
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Weishan Huang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
- *Correspondence: Weishan Huang,
| |
Collapse
|
17
|
TLR agonists induce sustained IgG to hemagglutinin stem and modulate T cells following newborn vaccination. NPJ Vaccines 2022; 7:102. [PMID: 36038596 PMCID: PMC9424286 DOI: 10.1038/s41541-022-00523-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 08/05/2022] [Indexed: 11/08/2022] Open
Abstract
The newborn immune system is characterized by diminished immune responses that leave infants vulnerable to virus-mediated disease and make vaccination more challenging. Optimal vaccination strategies for influenza A virus (IAV) in newborns should result in robust levels of protective antibodies, including those with broad reactivity to combat the variability in IAV strains across seasons. The stem region of the hemagglutinin (HA) molecule is a target of such antibodies. Using a nonhuman primate model, we investigate the capacity of newborns to generate and maintain antibodies to the conserved stem region following vaccination. We find adjuvanting an inactivated vaccine with the TLR7/8 agonist R848 is effective in promoting sustained HA stem-specific IgG. Unexpectedly, HA stem-specific antibodies were generated with a distinct kinetic pattern compared to the overall response. Administration of R848 was associated with increased influenza-specific T follicular helper cells as well as Tregs with a less suppressive phenotype, suggesting adjuvant impacts multiple cell types that have the potential to contribute to the HA-stem response.
Collapse
|
18
|
Chang J, Bouchard A, Bouklouch Y, Panneton V, Li J, Diamantopoulos N, Mohammaei S, Istomine R, Alvarez F, Piccirillo CA, Suh WK. ICOS-Deficient Regulatory T Cells Can Prevent Spontaneous Autoimmunity but Are Impaired in Controlling Acute Inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:301-309. [PMID: 35760518 DOI: 10.4049/jimmunol.2100897] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 05/02/2022] [Indexed: 12/12/2022]
Abstract
ICOS is induced in activated T cells and its main role is to boost differentiation and function of effector T cells. ICOS is also constitutively expressed in a subpopulation of Foxp3+ regulatory T cells under steady-state condition. Studies using ICOS germline knockout mice or ICOS-blocking reagents suggested that ICOS has supportive roles in regulatory T (Treg) cell homeostasis, migration, and function. To avoid any compounding effects that may arise from ICOS-deficient non-Treg cells, we generated a conditional knockout system in which ICOS expression is selectively abrogated in Foxp3-expressing cells (ICOS FC mice). Compared to Foxp3-Cre control mice, ICOS FC mice showed a minor numerical deficit of steady-state Treg cells but did not show any signs of spontaneous autoimmunity, indicating that tissue-protective Treg populations do not heavily rely on ICOS costimulation. However, ICOS FC mice showed more severe inflammation in oxazolone-induced contact hypersensitivity, a model of atopic dermatitis. This correlated with elevated numbers of inflammatory T cells expressing IFN-γ and/or TNF-α in ICOS FC mice compared with the control group. In contrast, elimination of ICOS in all T cell compartments negated the differences, confirming that ICOS has a dual positive role in effector and Treg cells. Single-cell transcriptome analysis suggested that ICOS-deficient Treg cells fail to mature into T-bet+CXCR3+ "Th1-Treg" cells in the draining lymph node. Our results suggest that regimens that preferentially stimulate ICOS pathways in Treg cells might be beneficial for the treatment of Th1-driven inflammation.
Collapse
Affiliation(s)
- Jinsam Chang
- Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada.,Molecular Biology Program, University of Montreal, Montreal, Quebec, Canada
| | - Antoine Bouchard
- Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada.,Molecular Biology Program, University of Montreal, Montreal, Quebec, Canada
| | - Yasser Bouklouch
- Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
| | - Vincent Panneton
- Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada.,Department of Microbiology, Infectiology and Immunology, University of Montreal, Montreal, Quebec, Canada
| | - Joanna Li
- Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada; and
| | - Nikoletta Diamantopoulos
- Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada; and
| | - Saba Mohammaei
- Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Roman Istomine
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada; and
| | - Fernando Alvarez
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada; and
| | - Ciriaco A Piccirillo
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada; and
| | - Woong-Kyung Suh
- Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada; .,Molecular Biology Program, University of Montreal, Montreal, Quebec, Canada.,Department of Microbiology, Infectiology and Immunology, University of Montreal, Montreal, Quebec, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada; and.,Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
19
|
West HC, Davies J, Henderson S, Adegun OK, Ward S, Ferrer IR, Tye CA, Vallejo AF, Jardine L, Collin M, Polak ME, Bennett CL. Loss of T cell tolerance in the skin following immunopathology is linked to failed restoration of the dermal niche by recruited macrophages. Cell Rep 2022; 39:110819. [PMID: 35584681 PMCID: PMC9620741 DOI: 10.1016/j.celrep.2022.110819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 03/17/2022] [Accepted: 04/22/2022] [Indexed: 11/03/2022] Open
Abstract
T cell pathology in the skin leads to monocyte influx, but we have little understanding of the fate of recruited cells within the diseased niche, or the long-term impact on cutaneous immune homeostasis. By combining a murine model of acute graft-versus-host disease (aGVHD) with analysis of patient samples, we demonstrate that pathology initiates dermis-specific macrophage differentiation and show that aGVHD-primed macrophages continue to dominate the dermal compartment at the relative expense of quiescent MHCIIint cells. Exposure of the altered dermal niche to topical haptens after disease resolution results in hyper-activation of regulatory T cells (Treg), but local breakdown in tolerance. Disease-imprinted macrophages express increased IL-1β and are predicted to elicit altered TNF superfamily interactions with cutaneous Treg, and we demonstrate the direct loss of T cell regulation within the resolved skin. Thus, T cell pathology leaves an immunological scar in the skin marked by failure to re-set immune homeostasis.
Collapse
Affiliation(s)
- Heather C West
- Department of Haematology, University College London (UCL) Cancer Institute, London WC1E 6DD, UK; Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PF, UK
| | - James Davies
- Department of Haematology, University College London (UCL) Cancer Institute, London WC1E 6DD, UK; Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PF, UK
| | - Stephen Henderson
- Bill Lyons Informatics Centre, Cancer Institute, University College London, London WC1E 6DD, UK
| | - Oluyori K Adegun
- Department of Cellular Pathology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Sophie Ward
- Department of Haematology, University College London (UCL) Cancer Institute, London WC1E 6DD, UK; Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PF, UK
| | - Ivana R Ferrer
- Department of Haematology, University College London (UCL) Cancer Institute, London WC1E 6DD, UK; Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PF, UK
| | - Chanidapa A Tye
- Department of Haematology, University College London (UCL) Cancer Institute, London WC1E 6DD, UK; Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PF, UK
| | - Andres F Vallejo
- Clinical and Experimental Sciences (Sir Henry Wellcome Laboratories, Faculty of Medicine) and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Laura Jardine
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Matthew Collin
- Newcastle University Translational and Clinical Research Institute and NIHR Newcastle Biomedical Research Centre, Newcastle University, Newcastle Upon Tyne, UK
| | - Marta E Polak
- Clinical and Experimental Sciences (Sir Henry Wellcome Laboratories, Faculty of Medicine) and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Clare L Bennett
- Department of Haematology, University College London (UCL) Cancer Institute, London WC1E 6DD, UK; Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PF, UK.
| |
Collapse
|
20
|
Raineri D, Cappellano G, Vilardo B, Maione F, Clemente N, Canciani E, Boggio E, Gigliotti CL, Monge C, Dianzani C, Boldorini R, Dianzani U, Chiocchetti A. Inducible T-Cell Costimulator Ligand Plays a Dual Role in Melanoma Metastasis upon Binding to Osteopontin or Inducible T-Cell Costimulator. Biomedicines 2021; 10:biomedicines10010051. [PMID: 35052731 PMCID: PMC8772802 DOI: 10.3390/biomedicines10010051] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/23/2022] Open
Abstract
Recently, we demonstrated that inducible T-cell costimulator (ICOS) shares its unique ligand (ICOSL) with osteopontin (OPN), and OPN/ICOSL binding promotes tumor metastasis and angiogenesis in the 4T1 breast cancer model. Literature showed that OPN promotes melanoma metastasis by suppressing T-cell activation and recruiting myeloid suppressor cells (MDSC). On the opposite, ICOS/ICOSL interaction usually sustains an antitumor response. Here, we engineered murine B16F10 melanoma cells, by transfecting or silencing ICOSL. In vitro data showed that loss of ICOSL favors anchorage-independent growth and induces more metastases in vivo, compared to ICOSL expressing cells. To dissect individual roles of the three molecules, we compared data from C57BL/6 with those from OPN-KO, ICOS-KO, and ICOSL-KO mice, missing one partner at a time. We found that OPN produced by the tumor microenvironment (TME) favors the metastasis by interacting with stromal ICOSL. This activity is dominantly inhibited by ICOS expressed on TME by promoting Treg expansion. Importantly, we also show that OPN and ICOSL highly interact in human melanoma metastases compared to primary tumors. Interfering with this binding may be explored in immunotherapy either for nonresponding or patients resistant to conventional therapies.
Collapse
Affiliation(s)
- Davide Raineri
- Dipartimento di Scienze della Salute, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, 28100 Novara, Italy; (D.R.); (G.C.); (B.V.); (F.M.); (N.C.); (E.C.); (E.B.); (C.L.G.); (A.C.)
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy
| | - Giuseppe Cappellano
- Dipartimento di Scienze della Salute, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, 28100 Novara, Italy; (D.R.); (G.C.); (B.V.); (F.M.); (N.C.); (E.C.); (E.B.); (C.L.G.); (A.C.)
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy
| | - Beatrice Vilardo
- Dipartimento di Scienze della Salute, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, 28100 Novara, Italy; (D.R.); (G.C.); (B.V.); (F.M.); (N.C.); (E.C.); (E.B.); (C.L.G.); (A.C.)
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy
| | - Federica Maione
- Dipartimento di Scienze della Salute, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, 28100 Novara, Italy; (D.R.); (G.C.); (B.V.); (F.M.); (N.C.); (E.C.); (E.B.); (C.L.G.); (A.C.)
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy
| | - Nausicaa Clemente
- Dipartimento di Scienze della Salute, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, 28100 Novara, Italy; (D.R.); (G.C.); (B.V.); (F.M.); (N.C.); (E.C.); (E.B.); (C.L.G.); (A.C.)
| | - Elena Canciani
- Dipartimento di Scienze della Salute, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, 28100 Novara, Italy; (D.R.); (G.C.); (B.V.); (F.M.); (N.C.); (E.C.); (E.B.); (C.L.G.); (A.C.)
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy
| | - Elena Boggio
- Dipartimento di Scienze della Salute, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, 28100 Novara, Italy; (D.R.); (G.C.); (B.V.); (F.M.); (N.C.); (E.C.); (E.B.); (C.L.G.); (A.C.)
| | - Casimiro Luca Gigliotti
- Dipartimento di Scienze della Salute, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, 28100 Novara, Italy; (D.R.); (G.C.); (B.V.); (F.M.); (N.C.); (E.C.); (E.B.); (C.L.G.); (A.C.)
| | - Chiara Monge
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, 10125 Torino, Italy; (C.M.); (C.D.)
| | - Chiara Dianzani
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, 10125 Torino, Italy; (C.M.); (C.D.)
| | - Renzo Boldorini
- Divisione di Anatomia Patologica, Dipartimento di Scienze della Salute, AOU Maggiore della Carità, Università del Piemonte Orientale, 28100 Novara, Italy;
| | - Umberto Dianzani
- Dipartimento di Scienze della Salute, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, 28100 Novara, Italy; (D.R.); (G.C.); (B.V.); (F.M.); (N.C.); (E.C.); (E.B.); (C.L.G.); (A.C.)
- Laboratorio di Biochimica Clinica, Dipartimento di Scienze della Salute, AOU Maggiore della Carità, Università del Piemonte Orientale, Corso Mazzini 18, 28100 Novara, Italy
- Correspondence:
| | - Annalisa Chiocchetti
- Dipartimento di Scienze della Salute, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, 28100 Novara, Italy; (D.R.); (G.C.); (B.V.); (F.M.); (N.C.); (E.C.); (E.B.); (C.L.G.); (A.C.)
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
21
|
Zhang X, Hu X, Tian T, Pang W. The role of ICOS in allergic disease: Positive or Negative? Int Immunopharmacol 2021; 103:108394. [PMID: 34922247 DOI: 10.1016/j.intimp.2021.108394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 01/09/2023]
Abstract
With the rapid increase in the incidence of allergic diseases, the mechanisms underlying the development of these diseases have received a great deal of attention, and this is particularly true in regard to the role of ICOS in allergic diseases. Current studies have revealed that ICOS affects the functional activity of multiple immune cells that modulate the adaptive immune system. Additionally, ICOS also plays a crucial role in mediating cellular immunity and coordinating the response of the entire immune system, and thus, it plays a role in allergic reactions. However, the ICOS/ICOS-ligand (ICOS-L) axis functions in a dual role during the development of multiple allergic diseases. In this review, we explore the role of ICOS/ICOSL in the context of different immune cells that function in allergic diseases, and we summarize recent advances in their contribution to these diseases.
Collapse
Affiliation(s)
- Xueyan Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xianyang Hu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Tengfei Tian
- Department of Otolaryngology-Head and Neck Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Wenhui Pang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
22
|
Borges TJ, Murakami N, Lape IT, Gassen RB, Liu K, Cai S, Daccache J, Safa K, Shimizu T, Ohori S, Paterson AM, Cravedi P, Azzi J, Sage P, Sharpe A, Li XC, Riella LV. Overexpression of PD-1 on T cells promotes tolerance in cardiac transplantation via an ICOS-dependent mechanism. JCI Insight 2021; 6:142909. [PMID: 34752418 PMCID: PMC8783692 DOI: 10.1172/jci.insight.142909] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/04/2021] [Indexed: 12/04/2022] Open
Abstract
The programmed death 1/programmed death ligand 1 (PD-1/PD-L1) pathway is a potent inhibitory pathway involved in immune regulation and is a potential therapeutic target in transplantation. In this study, we show that overexpression of PD-1 on T cells (PD-1 Tg) promotes allograft tolerance in a fully MHC-mismatched cardiac transplant model when combined with costimulation blockade with CTLA-4–Ig. PD-1 overexpression on T cells also protected against chronic rejection in a single MHC II–mismatched cardiac transplant model, whereas the overexpression still allowed the generation of an effective immune response against an influenza A virus. Notably, Tregs from PD-1 Tg mice were required for tolerance induction and presented greater ICOS expression than those from WT mice. The survival benefit of PD-1 Tg recipients required ICOS signaling and donor PD-L1 expression. These results indicate that modulation of PD-1 expression, in combination with a costimulation blockade, is a promising therapeutic target to promote transplant tolerance.
Collapse
Affiliation(s)
- Thiago J Borges
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, United States of America
| | - Naoka Murakami
- Transplantation Research Center, Brigham & Women's Hospital, Boston, United States of America
| | - Isadora T Lape
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, United States of America
| | - Rodrigo B Gassen
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, United States of America
| | - Kaifeng Liu
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, United States of America
| | - Songjie Cai
- Transplantation Research Center, Brigham & Women's Hospital, Boston, United States of America
| | - Joe Daccache
- Transplantation Research Center, Brigham & Women's Hospital, Boston, United States of America
| | - Kassem Safa
- Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, United States of America
| | - Tetsunosuke Shimizu
- Transplantation Research Center, Brigham & Women's Hospital, Boston, United States of America
| | - Shunsuke Ohori
- Transplantation Research Center, Brigham & Women's Hospital, Boston, United States of America
| | - Alison M Paterson
- Department of Immunobiology, Harvard Medical School, Boston, United States of America
| | - Paolo Cravedi
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Jamil Azzi
- Transplantation Research Center, Brigham & Women's Hospital, Boston, United States of America
| | - Peter Sage
- Transplantation Research Center, Brigham & Women's Hospital, Boston, United States of America
| | - Arlene Sharpe
- Department of Immunology, Harvard Medical School, Boston, United States of America
| | - Xian C Li
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Houston, United States of America
| | - Leonardo V Riella
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, United States of America
| |
Collapse
|
23
|
Freitas AP, Clissa PB, Soto DR, Câmara NOS, Faquim-Mauro EL. The modulatory effect of crotoxin and its phospholipase A 2 subunit from Crotalus durissus terrificus venom on dendritic cells interferes with the generation of effector CD4 + T lymphocytes. Immunol Lett 2021; 240:56-70. [PMID: 34626682 DOI: 10.1016/j.imlet.2021.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 01/02/2023]
Abstract
Dendritic Cells (DCs) direct either cellular immune response or tolerance. The crotoxin (CTX) and its CB subunit (phospholipase A2) isolated from Crotalus durissus terrificus rattlesnake venom modulate the DC maturation induced by a TLR4 agonist. Here, we analyzed the potential effect of CTX and CB subunit on the functional ability of DCs to induce anti-ovalbumin (OVA) immune response. Thus, CTX and CB inhibited the maturation of OVA/LPS-stimulated BM-DCs from BALB/c mice, which means inhibition of costimulatory and MHC-II molecule expression and proinflammatory cytokine secretion, accompanied by high expression of ICOSL, PD-L1/2, IL-10 and TGF-β mRNA expression. The addition of CTX and CB in cultures of BM-DCs incubated with ConA or OVA/LPS inhibited the proliferation of CD3+ or CD4+T cells from OVA-immunized mice. In in vitro experiment of co-cultures of purified CD4+T cells of DO11.10 mice with OVA/LPS-stimulated BM-DCs, the CTX or CB induced lowest percentage of Th1 and Th2 and CTX induced increase of Treg cells. In in vivo, CTX and CB induced lower percentage of CD4+IFNγ+ and CD4+IL-4+ cells, as well as promoted CD4+CD25+IL-10+ population in OVA/LPS-immunized mice. CTX in vivo also inhibited the maturation of DCs. Our findings demonstrate that the modulatory action of CTX and CB on DCs interferes with the generation of adaptive immunity and, therefore contribute for the understanding of the mechanisms involved in the generation of cellular immunity, which can be useful for new therapeutic approaches for immune disorders.
Collapse
Affiliation(s)
- Amanda P Freitas
- Laboratory of Immunopathology, Butantan Institute, São Paulo, SP, Brazil; Department of Immunology, Institute of Biomedical Science, University of São Paulo, SP, Brazil
| | - Patricia B Clissa
- Laboratory of Immunopathology, Butantan Institute, São Paulo, SP, Brazil
| | - Dunia R Soto
- Laboratory of Biotechnology, Butantan Institute, São Paulo, Brazil
| | - Niels O S Câmara
- Department of Immunology, Institute of Biomedical Science, University of São Paulo, SP, Brazil
| | - Eliana L Faquim-Mauro
- Laboratory of Immunopathology, Butantan Institute, São Paulo, SP, Brazil; Department of Immunology, Institute of Biomedical Science, University of São Paulo, SP, Brazil.
| |
Collapse
|
24
|
Doyen V, Corazza F, Nhu Thi H, Le Chi T, Truyens C, Nagant C, Tran Thi Mong H, Fils JF, Thi Ngoc Huynh P, Michel O. Hookworm treatment induces a decrease of suppressive regulatory T cell associated with a Th2 inflammatory response. PLoS One 2021; 16:e0252921. [PMID: 34111180 PMCID: PMC8191899 DOI: 10.1371/journal.pone.0252921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/25/2021] [Indexed: 01/04/2023] Open
Abstract
Background Like other helminths, hookworms (HW) induce a regulatory immune response able to modulate and dampen reactivity of the host to antigens. No data about the evolution of the immune response after treatment are available. We aim to phenotype the regulatory immune response during natural HW infection and its evolution after treatment. Methodology Twenty hookworm infected (HW+) and 14 non-infected subjects HW–from endemic area in the periphery of Ho Chi Minh City were included. Blood and feces samples were obtained before, 2 and 4 weeks after treatment with Albendazole 400mg. Additional samples were obtained at 3 and 12 months in the HW+ group. Hematological parameters, Treg (CD4+CD25hiFoxP3hi) and surface molecules (CD39, CD62L, ICOS, PD-1, CD45RA) were measured as well as inflammatory and lymphocytes differentiation cytokines such as IL-1β, IL-6, IFNγ, IL-4, IL-17, IL-10, IL-2 and TGFβ. Results HW+ subjects showed higher Treg, TregICOS+, Treg PD1-, TregCD62L+ and CD45RA+FoxP3lo resting Treg (rTreg). CD45RA-FoxP3lo non-suppressive Treg cells were also increased. No preferential Th1/Th2 orientation was observed, nor difference for IL-10 between two groups. After treatment, Treg, TregICOS+, TregCD62L+, Treg PD1- and rTreg decreased while IL-4 and IL-6 cytokines increased. Conclusion During HW infection, Treg are increased and characterized by a heterogeneous population: a highly suppressive as well as a non-suppressive T cells phenotype. After treatment, Treg with immune-suppressive phenotype exhibited a decrease parallel to an inflammatory Th2 response.
Collapse
Affiliation(s)
- Virginie Doyen
- Laboratory of Translational Research, ULB223, CHU Brugmann, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Clinic of Immunoallergology, CHU Brugmann, ULB, Brussels, Belgium
- * E-mail:
| | - Francis Corazza
- Laboratory of Translational Research, ULB223, CHU Brugmann, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Immunology Laboratory, LHUB-ULB, Brussels, Belgium
| | - Hoa Nhu Thi
- Parasitology and Mycology Department, Pham Ngoc Thach University of Medicine, Ho Chi Minh, Vietnam
| | - Thanh Le Chi
- Immunology Laboratory, Pasteur Institute, Ho Chi Minh, Vietnam
| | - Carine Truyens
- Parasitology Laboratory, ULB Center for Research in immunology (U-CRI), Université Libre de Bruxelles, Brussels, Belgium
| | - Carole Nagant
- Laboratory of Translational Research, ULB223, CHU Brugmann, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Immunology Laboratory, LHUB-ULB, Brussels, Belgium
| | - Hiep Tran Thi Mong
- Department of Family Medicine, Pham Ngoc Thach University of Medicine, Ho Chi Minh, Vietnam
| | | | | | - Olivier Michel
- Clinic of Immunoallergology, CHU Brugmann, ULB, Brussels, Belgium
| |
Collapse
|
25
|
Mittelsteadt KL, Hayes ET, Campbell DJ. ICOS signaling limits regulatory T cell accumulation and function in visceral adipose tissue. J Exp Med 2021; 218:212010. [PMID: 33881452 PMCID: PMC8065270 DOI: 10.1084/jem.20201142] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/24/2020] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
A unique population of Foxp3+ regulatory T cells (TRs) resides in visceral adipose tissue (VAT) that regulates adipose inflammation and helps preserve insulin sensitivity. Inducible T cell co-stimulator (ICOS) is highly expressed on effector (e)TRs that migrate to nonlymphoid tissues, and contributes to their maintenance and function in models of autoimmunity. In this study, we report an unexpected cell-intrinsic role for ICOS expression and downstream phosphoinositide 3-kinase (PI3K) signaling in limiting the abundance, VAT-associated phenotype, and function of TRs specifically in VAT. Icos-/- mice and mice expressing a knock-in form of ICOS that cannot activate PI3K had increased VAT-TR abundance and elevated expression of canonical VAT-TR markers. Loss of ICOS signaling facilitated enhanced accumulation of TRs to VAT associated with elevated CCR3 expression, and resulted in reduced adipose inflammation and heightened insulin sensitivity in the context of a high-fat diet. Thus, we have uncovered a new and surprising molecular pathway that regulates VAT-TR accumulation and function.
Collapse
Affiliation(s)
- Kristen L Mittelsteadt
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA.,Molecular and Cellular Biology Program, University of Washington, Seattle, WA
| | - Erika T Hayes
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA.,Molecular and Cellular Biology Program, University of Washington, Seattle, WA
| | - Daniel J Campbell
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA.,Molecular and Cellular Biology Program, University of Washington, Seattle, WA.,Department of Immunology, University of Washington, Seattle, WA
| |
Collapse
|
26
|
O'Brien SA, Zhu M, Zhang W. Spontaneous Differentiation of T Follicular Helper Cells in LATY136F Mutant Mice. Front Immunol 2021; 12:656817. [PMID: 33912184 PMCID: PMC8072119 DOI: 10.3389/fimmu.2021.656817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/22/2021] [Indexed: 11/29/2022] Open
Abstract
Mice with a mutation at the LAT-PLCγ1 binding site (Y136) have a defect in thymocyte development due to dampened TCR signaling. CD4+ T cells that do reach the periphery are hyper-activated and skewed to Th2. Over time, these mice develop an autoimmune-like syndrome, characterize by overproduction of Th2 cytokines, T cell infiltration into various organs, and B cell activation, isotype switching, and autoantibody production. In this study, we examined IL4 production by CD4+ T cells in the LATY136F mice using the KN2 reporter mice, in which human CD2 expression marks T cells that are actively producing IL4 protein. We showed that these mice had spontaneous Tfh differentiation. Despite the fact that the majority of CD4+ T cells were skewed to Th2 and were GATA3+, only a small subset of them were actively secreting IL4. These T cells were Tfh cells that expressed BCL6 and were localized to B cell-rich germinal centers within the spleen. Interestingly, these Tfh cells expressed high levels of both BCL6 and GATA3. By using LAT conditional knockout mice that inducibly express only the LATY136F allele, we further showed that Tfh cell differentiation was likely the result of defective LAT-PLCγ1 signaling in the periphery. In addition, B cells were required for spontaneous development of Tfh cells and uncontrolled T cell expansion in these mice. Together, these results indicated a novel role for tonic LAT-PLCγ1 signaling in modulating Tfh cell differentiation during development of autoimmune syndrome.
Collapse
Affiliation(s)
- Sarah A O'Brien
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Minghua Zhu
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Weiguo Zhang
- Department of Immunology, Duke University Medical Center, Durham, NC, United States.,Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| |
Collapse
|
27
|
Boehne C, Behrendt AK, Meyer-Bahlburg A, Boettcher M, Drube S, Kamradt T, Hansen G. Tim-3 is dispensable for allergic inflammation and respiratory tolerance in experimental asthma. PLoS One 2021; 16:e0249605. [PMID: 33822811 PMCID: PMC8023500 DOI: 10.1371/journal.pone.0249605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/19/2021] [Indexed: 11/18/2022] Open
Abstract
T cell immunoglobulin and mucin domain-containing molecule-3 (Tim-3) has been described as a transmembrane protein, expressed on the surface of various T cells as well as different cells of innate immunity. It has since been associated with Th1 mediated autoimmune diseases and transplantation tolerance studies, thereby indicating a possible role of this receptor in counter-regulation of Th2 immune responses. In the present study we therefore directly examined the role of Tim-3 in allergic inflammation and respiratory tolerance. First, Tim-3-/- mice and wild type controls were immunized and challenged with the model allergen ovalbumin (OVA) to induce an asthma-like phenotype. Analysis of cell numbers and distribution in the bronchoalveolar lavage (BAL) fluid as well as lung histology in H&E stained lung sections demonstrated a comparable degree of eosinophilic inflammation in both mouse strains. Th2 cytokine production in restimulated cell culture supernatants and serum IgE and IgG levels were equally increased in both genotypes. In addition, cell proliferation and the distribution of different T cell subsets were comparable. Moreover, analysis of both mouse strains in our respiratory tolerance model, where mucosal application of the model allergen before immunization, prevents the development of an asthma-like phenotype, revealed no differences in any of the parameters mentioned above. The current study demonstrates that Tim-3 is dispensable not only for the development of allergic inflammation but also for induction of respiratory tolerance in mice in an OVA-based model.
Collapse
Affiliation(s)
- Carolin Boehne
- Department of Pediatrics and Adolescent Medicine, Pediatric Pulmonology, Allergology and Neonatology, Hannover Medical School, Lower Saxony, Germany
| | - Ann-Kathrin Behrendt
- Department of Pediatrics and Adolescent Medicine, Pediatric Pulmonology, Allergology and Neonatology, Hannover Medical School, Lower Saxony, Germany
| | - Almut Meyer-Bahlburg
- Department of Pediatrics and Adolescent Medicine, Pediatric Pulmonology, Allergology and Neonatology, Hannover Medical School, Lower Saxony, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Lower Saxony, Germany
| | - Martin Boettcher
- Institute of Immunology, University Hospital Jena, Jena, Thuringia, Germany
| | - Sebastian Drube
- Institute of Immunology, University Hospital Jena, Jena, Thuringia, Germany
| | - Thomas Kamradt
- Institute of Immunology, University Hospital Jena, Jena, Thuringia, Germany
| | - Gesine Hansen
- Department of Pediatrics and Adolescent Medicine, Pediatric Pulmonology, Allergology and Neonatology, Hannover Medical School, Lower Saxony, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Lower Saxony, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Lower Saxony, Germany
- * E-mail:
| |
Collapse
|
28
|
Yang D, Zhao X, Lin X. Bcl10 is required for the development and suppressive function of Foxp3 + regulatory T cells. Cell Mol Immunol 2021; 18:206-218. [PMID: 31595055 PMCID: PMC7853095 DOI: 10.1038/s41423-019-0297-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/08/2019] [Indexed: 12/13/2022] Open
Abstract
Foxp3+ regulatory T (Treg) cells play a critical role in peripheral tolerance. Bcl10, acting as a scaffolding protein in the Carma1-Bcl10-Malt1 (CBM) complex, has a critical role in TCR-induced signaling, leading to NF-κB activation and is required for T-cell activation. The role of Bcl10 in conventional T (Tconv) cells has been well characterized; however, the role of Bcl10 in the development of Treg cells and the maintenance of the suppressive function and identity of these cells has not been well characterized. In this study, we found that Bcl10 was required for not only the development but also the function of Treg cells. After deleting Bcl10 in T cells, we found that the development of Treg cells was significantly impaired. When Bcl10 was specifically deleted in mature Treg cells, the suppressive function of the Treg cells was impaired, leading to lethal autoimmunity in Bcl10fl/flFoxp3cre mice. Consistently, in contrast to WT Treg cells, Bcl10-deficient Treg cells could not protect Rag1-deficient mice from T-cell transfer-induced colitis. Furthermore, Bcl10-deficient Treg cells downregulated the expression of a series of Treg-cell effector and suppressive genes and decreased effector Treg-cell populations. Moreover, Bcl10-deficient Treg cells were converted into IFNγ-producing proinflammatory cells with increased expression of the transcription factors T-bet and HIF-1α. Together, our study results provide genetic evidence, indicating that Bcl10 is required for the development and function of Treg cells.
Collapse
Affiliation(s)
- Dandan Yang
- Department of Basic Medical Sciences and Institute for Immunology, Tsinghua University School of Medicine, Beijing, 100084, China
| | - Xueqiang Zhao
- Department of Basic Medical Sciences and Institute for Immunology, Tsinghua University School of Medicine, Beijing, 100084, China
| | - Xin Lin
- Department of Basic Medical Sciences and Institute for Immunology, Tsinghua University School of Medicine, Beijing, 100084, China.
- Tsinghua University-Peking University Jointed Center for Life Sciences, Beijing, 100084, China.
| |
Collapse
|
29
|
Building a CAR-Treg: Going from the basic to the luxury model. Cell Immunol 2020; 358:104220. [DOI: 10.1016/j.cellimm.2020.104220] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/13/2020] [Accepted: 09/17/2020] [Indexed: 01/10/2023]
|
30
|
Habener A, Happle C, Grychtol R, Skuljec J, Busse M, Dalüge K, Obernolte H, Sewald K, Braun A, Meyer-Bahlburg A, Hansen G. Regulatory B cells control airway hyperreactivity and lung remodeling in a murine asthma model. J Allergy Clin Immunol 2020; 147:2281-2294.e7. [PMID: 33249168 DOI: 10.1016/j.jaci.2020.09.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 06/05/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Asthma is a widespread, multifactorial chronic airway disease. The influence of regulatory B cells on airway hyperreactivity (AHR) and remodeling in asthma is poorly understood. OBJECTIVE Our aim was to analyze the role of B cells in a house dust mite (HDM)-based murine asthma model. METHODS The influence of B cells on lung function, tissue remodeling, and the immune response were analyzed by using wild-type and B-cell-deficient (μMT) mice and transfer of IL-10-proficient and IL-10-deficient B cells to μMT mice. RESULTS After HDM-sensitization, both wild-type and μMT mice developed AHR, but the AHR was significantly stronger in μMT mice, as confirmed by 2 independent techniques: invasive lung function measurement in vivo and examination of precision-cut lung slices ex vivo. Moreover, airway remodeling was significantly increased in allergic μMT mice, as shown by enhanced collagen deposition in the airways, whereas the numbers of FoxP3+ and FoxP3- IL-10-secreting regulatory T cells were reduced. Adoptive transfer of IL-10-proficient but not IL-10-deficient B cells into μMT mice before HDM-sensitization attenuated AHR and lung remodeling. In contrast, FoxP3+ regulatory T cells were equally upregulated by transfer of IL-10-proficient and IL-10-deficient B cells. CONCLUSION Our data in a murine asthma model illustrate a central role of regulatory B cells in the control of lung function and airway remodeling and may support future concepts for B-cell-targeted prevention and treatment strategies for allergic asthma.
Collapse
Affiliation(s)
- Anika Habener
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany
| | - Christine Happle
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany
| | - Ruth Grychtol
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany
| | - Jelena Skuljec
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany; Department of Neurology, University Medicine Essen, Essen, Germany
| | - Mandy Busse
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany; Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Kathleen Dalüge
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Helena Obernolte
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany; Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Katherina Sewald
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany; Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Armin Braun
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany; Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Almut Meyer-Bahlburg
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany; Department of Pediatrics, University Medicine Greifswald, Greifswald, Germany
| | - Gesine Hansen
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.
| |
Collapse
|
31
|
Holbrook BC, Alexander-Miller MA. Higher Frequency and Increased Expression of Molecules Associated with Suppression on T Regulatory Cells from Newborn Compared with Adult Nonhuman Primates. THE JOURNAL OF IMMUNOLOGY 2020; 205:2128-2136. [PMID: 32878911 DOI: 10.4049/jimmunol.2000461] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/04/2020] [Indexed: 01/17/2023]
Abstract
T regulatory cells (Tregs) play a critical role in controlling the immune response, often limiting pathogen-specific cells to curb immune-mediated damage. Studies in human infants have reported an increased representation of Tregs in these individuals. However, how these cells differ from those in adults at various sites and how they respond to activation signals is relatively unknown. In this study, we used a newborn nonhuman primate model to assess Treg populations present at multiple sites with regard to frequency and phenotype in comparison with those present in adult animals. We found that Foxp3+ cells were more highly represented in the T cell compartment of newborn nonhuman primates for all sites examined (i.e., the spleen, lung, and circulation). In the spleen and circulation, newborn-derived Tregs expressed significantly higher levels of Foxp3 and CD25 compared with adults, consistent with an effector phenotype. Strikingly, the phenotype of Tregs in the lungs of adult and infant animals was relatively similar, with both adult and newborn Tregs exhibiting a more uniform PD-1+CD39+ phenotype. Finally, in vitro, newborn Tregs exhibited an increased requirement for TCR engagement for survival. Further, these cells upregulated CD39 more robustly than their adult counterpart. Together, these data provide new insights into the quantity of Tregs in newborns, their activation state, and their potential to respond to activation signals.
Collapse
Affiliation(s)
- Beth C Holbrook
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101
| | | |
Collapse
|
32
|
Li DY, Xiong XZ. ICOS + Tregs: A Functional Subset of Tregs in Immune Diseases. Front Immunol 2020; 11:2104. [PMID: 32983168 PMCID: PMC7485335 DOI: 10.3389/fimmu.2020.02104] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/04/2020] [Indexed: 01/02/2023] Open
Abstract
Recent studies have reported the pathological effect of ICOS+ T cells, but ICOS signals also widely participate in anti-inflammatory responses, particularly ICOS+ regulatory T (Treg) cells. The ICOS signaling pathway endows Tregs with increased generation, proliferation, and survival abilities. Furthermore, there is enough evidence to suggest a superior capacity of ICOS+ Tregs, which is partly attributable to IL-10 induced by ICOS, yet the associated mechanism needs further investigation. In this review, we discuss the complicated role of ICOS+ Tregs in several classical autoimmune diseases, allergic diseases, and cancers and investigate the related therapeutic applications in these diseases. Moreover, we identify ICOS as a potential biomarker for disease treatment and prognostic prediction. In addition, we believe that anti-ICOS/ICOSL monoclonal antibodies exhibit excellent clinical application potential. A thorough understanding of the effect of ICOS+ Tregs and the holistic role of ICOS toward the immune system will help to improve the therapeutic schedule of diseases.
Collapse
Affiliation(s)
- Dan-Yang Li
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xian-Zhi Xiong
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
33
|
Harnessing the Complete Repertoire of Conventional Dendritic Cell Functions for Cancer Immunotherapy. Pharmaceutics 2020; 12:pharmaceutics12070663. [PMID: 32674488 PMCID: PMC7408110 DOI: 10.3390/pharmaceutics12070663] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/29/2020] [Accepted: 07/04/2020] [Indexed: 02/07/2023] Open
Abstract
The onset of checkpoint inhibition revolutionized the treatment of cancer. However, studies from the last decade suggested that the sole enhancement of T cell functionality might not suffice to fight malignancies in all individuals. Dendritic cells (DCs) are not only part of the innate immune system, but also generals of adaptive immunity and they orchestrate the de novo induction of tolerogenic and immunogenic T cell responses. Thus, combinatorial approaches addressing DCs and T cells in parallel represent an attractive strategy to achieve higher response rates across patients. However, this requires profound knowledge about the dynamic interplay of DCs, T cells, other immune and tumor cells. Here, we summarize the DC subsets present in mice and men and highlight conserved and divergent characteristics between different subsets and species. Thereby, we supply a resource of the molecular players involved in key functional features of DCs ranging from their sentinel function, the translation of the sensed environment at the DC:T cell interface to the resulting specialized T cell effector modules, as well as the influence of the tumor microenvironment on the DC function. As of today, mostly monocyte derived dendritic cells (moDCs) are used in autologous cell therapies after tumor antigen loading. While showing encouraging results in a fraction of patients, the overall clinical response rate is still not optimal. By disentangling the general aspects of DC biology, we provide rationales for the design of next generation DC vaccines enabling to exploit and manipulate the described pathways for the purpose of cancer immunotherapy in vivo. Finally, we discuss how DC-based vaccines might synergize with checkpoint inhibition in the treatment of malignant diseases.
Collapse
|
34
|
Role of Co-stimulatory Molecules in T Helper Cell Differentiation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1189:153-177. [PMID: 31758534 DOI: 10.1007/978-981-32-9717-3_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
CD4+ T cells play a central role in orchestrating the immune response to a variety of pathogens but also regulate autoimmune responses, asthma, allergic responses, as well as tumor immunity. To cover this broad spectrum of responses, naïve CD4+ T cells differentiate into one of several lineages of T helper cells, including Th1, Th2, Th17, and TFH, as defined by their cytokine pattern and function. The fate decision of T helper cell differentiation integrates signals delivered through the T cell receptor, cytokine receptors, and the pattern of co-stimulatory signals received. In this review, we summarize the contribution of co-stimulatory and co-inhibitory receptors to the differentiation and maintenance of T helper cell responses.
Collapse
|
35
|
Targeting Negative and Positive Immune Checkpoints with Monoclonal Antibodies in Therapy of Cancer. Cancers (Basel) 2019; 11:cancers11111756. [PMID: 31717326 PMCID: PMC6895894 DOI: 10.3390/cancers11111756] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 02/06/2023] Open
Abstract
The immune checkpoints are regulatory molecules that maintain immune homeostasis in physiological conditions. By sending T cells a series of co-stimulatory or co-inhibitory signals via receptors, immune checkpoints can both protect healthy tissues from adaptive immune response and activate lymphocytes to remove pathogens effectively. However, due to their mode of action, suppressive immune checkpoints may serve as unwanted protection for cancer cells. To restore the functioning of the immune system and make the patient’s immune cells able to recognize and destroy tumors, monoclonal antibodies are broadly used in cancer immunotherapy to block the suppressive or to stimulate the positive immune checkpoints. In this review, we aim to present the current state of application of monoclonal antibodies in clinics, used either as single agents or in a combined treatment. We discuss the limitations of these therapies and possible problem-solving with combined treatment approaches involving both non-biological and biological agents. We also highlight the most promising strategies based on the use of monoclonal or bispecific antibodies targeted on immune checkpoints other than currently implemented in clinics.
Collapse
|
36
|
Hrusch CL, Stein MM, Gozdz J, Holbreich M, von Mutius E, Vercelli D, Ober C, Sperling AI. T-cell phenotypes are associated with serum IgE levels in Amish and Hutterite children. J Allergy Clin Immunol 2019; 144:1391-1401.e10. [PMID: 31401285 DOI: 10.1016/j.jaci.2019.07.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/31/2019] [Accepted: 07/02/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Amish children raised on traditional farms have lower atopy and asthma risk than Hutterite children raised on modern farms. In our previous study we established that the Amish environment affects the innate immune response to decrease asthma and atopy risk. Here we investigated T-cell phenotypes in the same Amish and Hutterite children as in our earlier study to elucidate how this altered innate immunity affects adaptive T cells. METHODS Blood was collected from 30 Amish and 30 Hutterite age- and sex-matched children; cells were cryopreserved until analysis. Flow cytometry was used to analyze cell subsets. Atopy was determined based on allergen-specific and total IgE levels. RESULTS Children exposed to Amish farms had increased activated regulatory CD4+ T-cell phenotypes, whereas conventional CD4 T cells expressed lower levels of costimulation molecules and other activation markers. The increase in numbers of circulating activated regulatory CD4+ T cells was associated with an increase in inhibitory receptors on monocytes in Amish, but not Hutterite, children. Strikingly, the Amish children had a higher proportion of CD28null CD8 T cells than the Hutterite children (P < .0001, nonparametric t test), a difference that remained even after accounting for the effects of age and sex (conditional log regression exponential β = 1.08, P = .0053). The proportion of these cells correlated with high T-cell IFN-γ production (rs = 0.573, P = .005) and low serum IgE levels (rs = -0.417, P = .025). Furthermore, CD28null CD8 T-cell numbers were increased in Amish children, with high expression of the innate genes TNF and TNF-α-induced protein 3 (TNFAIP3) in peripheral blood leukocytes. CONCLUSION Amish children's blood leukocytes are not only altered in their innate immune status but also have distinct T-cell phenotypes that are often associated with increased antigen exposure.
Collapse
Affiliation(s)
- Cara L Hrusch
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Ill
| | - Michelle M Stein
- Department of Human Genetics, University of Chicago, Chicago, Ill
| | - Justyna Gozdz
- NIEHS Training Program in Environmental Toxicology, Graduate Program in Cellular and Molecular Medicine, Arizona Respiratory Center and Bio5 Institute, and the Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Ariz; Arizona Respiratory Center and Bio5 Institute, Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Ariz
| | | | - Erika von Mutius
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Donata Vercelli
- NIEHS Training Program in Environmental Toxicology, Graduate Program in Cellular and Molecular Medicine, Arizona Respiratory Center and Bio5 Institute, and the Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Ariz; Arizona Respiratory Center and Bio5 Institute, Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Ariz
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, Ill
| | - Anne I Sperling
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Ill; Committee on Immunology, University of Chicago, Chicago, Ill.
| |
Collapse
|
37
|
Christiansen D, Mouhtouris E, Hodgson R, Sutton VR, Trapani JA, Ierino FL, Sandrin MS. Antigen-specific CD4 + CD25 + T cells induced by locally expressed ICOS-Ig: the role of Foxp3, Perforin, Granzyme B and IL-10 - an experimental study. Transpl Int 2019; 32:1203-1215. [PMID: 31225919 DOI: 10.1111/tri.13474] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/24/2019] [Accepted: 06/17/2019] [Indexed: 01/03/2023]
Abstract
We have previously reported that ICOS-Ig expressed locally by a PIEC xenograft induces a perigraft cellular accumulation of CD4+ CD25+ Foxp3+ T cells and specific xenograft prolongation. In the present study we isolated and purified CD4+ CD25+ T cells from ICOS-Ig secreting PIEC grafts to examine their phenotype and mechanism of xenograft survival using knockout and mutant mice. CD4+ CD25+ T cells isolated from xenografts secreting ICOS-Ig were analysed by flow cytometry and gene expression by real-time PCR. Regulatory function was examined by suppression of xenogeneic or allogeneic primed CD4 T cells in vivo. Graft prolongation was shown to be dependent on a pre-existing Foxp3+ Treg, IL-10, perforin and granzyme B. CD4+ CD25+ Foxp3+ T cells isolated from xenografts secreting ICOS-Ig demonstrated a phenotype consistent with nTreg but with a higher expression of CD275 (ICOSL), expression of CD278 (ICOS) and MHC II and loss of CD73. Moreover, these cells were functional and specifically suppressed xenogeinic but not allogeneic primed T cells in vivo.
Collapse
Affiliation(s)
- Dale Christiansen
- Department of Surgery, Austin Health, The University of Melbourne, Heidelberg, Vic., Australia
| | - Effie Mouhtouris
- Department of Surgery, Austin Health, The University of Melbourne, Heidelberg, Vic., Australia
| | - Russell Hodgson
- Department of Surgery, Austin Health, The University of Melbourne, Heidelberg, Vic., Australia
| | - Vivien R Sutton
- Cancer Cell Death/Killer Cell Biology Laboratories, Peter MacCallum Cancer Centre, Melbourne, Vic., Australia
| | - Joseph A Trapani
- Cancer Cell Death/Killer Cell Biology Laboratories, Peter MacCallum Cancer Centre, Melbourne, Vic., Australia
| | - Francesco L Ierino
- Department of Surgery, Austin Health, The University of Melbourne, Heidelberg, Vic., Australia.,Department of Nephrology, Austin Health, Melbourne, Vic., Australia
| | - Mauro S Sandrin
- Department of Surgery, Austin Health, The University of Melbourne, Heidelberg, Vic., Australia
| |
Collapse
|
38
|
Van DV, Bauer L, Kroczek RA, Hutloff A. ICOS Costimulation Differentially Affects T Cells in Secondary Lymphoid Organs and Inflamed Tissues. Am J Respir Cell Mol Biol 2019; 59:437-447. [PMID: 29676593 DOI: 10.1165/rcmb.2017-0309oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
B-cell interaction with follicular helper T cells and subsequent differentiation of B cells into high-affinity APCs normally takes place in secondary lymphoid organs. The costimulator ICOS plays a key role in this process and is therefore considered as an attractive target to modulate exaggerated B-cell responses in autoimmune or allergic diseases. Inflamed tissues were recently recognized as additional sites of active T-cell/B-cell interaction. To analyze whether ICOS costimulation is also important there, we employed a mouse airway inflammation model that allows direct comparison of immune reactions in the lung-draining lymph node and the lung tissue as well as assessment of the relative importance of dendritic cells versus B cells as APCs. In both organs, ICOS regulated the pool size of antigen-specific T and B cells and B-cell differentiation into germinal center(-like) cells but not into antibody-secreting cells. In the lymph node, lack of ICOS costimulation drastically reduced the frequency of T follicular helper cells but did not affect production of T-helper cell type 2 (Th2) cytokines. Vice versa in the lung tissue, ICOS did not change PD-1 expression on infiltrating T cells but regulated Th2 cytokine production, a process for which ICOS ligand expression on B cells was of particular importance. Taken together, the results of this study show that ICOS differentially regulates effector T cells in secondary lymphoid organs and inflamed tissues but that blockade of the ICOS pathway is suitable to target T cell-dependent B cell responses at both sites.
Collapse
Affiliation(s)
- Dana Vu Van
- 1 Chronic Immune Reactions, German Rheumatism Research Centre, a Leibniz Institute, Berlin, Germany; and.,2 Molecular Immunology, Robert Koch Institute, Berlin, Germany
| | - Laura Bauer
- 1 Chronic Immune Reactions, German Rheumatism Research Centre, a Leibniz Institute, Berlin, Germany; and.,2 Molecular Immunology, Robert Koch Institute, Berlin, Germany
| | | | - Andreas Hutloff
- 1 Chronic Immune Reactions, German Rheumatism Research Centre, a Leibniz Institute, Berlin, Germany; and.,2 Molecular Immunology, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
39
|
Wing JB, Tay C, Sakaguchi S. Control of Regulatory T Cells by Co-signal Molecules. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1189:179-210. [DOI: 10.1007/978-981-32-9717-3_7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
40
|
Han Y, Dong Y, Yang Q, Xu W, Jiang S, Yu Z, Yu K, Zhang S. Acute Myeloid Leukemia Cells Express ICOS Ligand to Promote the Expansion of Regulatory T Cells. Front Immunol 2018. [PMID: 30319662 DOI: 10.3389/fimmu.2018.02227/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
CD4+CD25+Foxp3+ regulatory T cells (Tregs) accumulate in bone marrow microenvironment in acute myeloid leukemia (AML). However, little is known about how the tumor environment including tumor cells themselves affects this process. Here we demonstrated that AML cells expressed inducible T-cell costimulator ligand (ICOSL) that can provide costimulation through ICOS for the conversion and expansion of Tregs sustaining high Foxp3 and CD25 expression as well as a suppressive function. TNF-a stimulation up-regulated the expression of ICOSL. Furthermore, both the conversion and expansion of CD4+CD25+Foxp3+ T cells and CD4+ICOS+Foxp3+ T cells were induced by co-culture with AML cells overexpressed ICOSL. CD4+CD25+ICOS+ T cells possessed stronger ability to secrete IL-10 than CD4+CD25+ICOS- T cells. The mechanism by which IL-10 promoted the proliferation of AML cells was dependent on the activation of the Akt, Erk1/2, p38, and Stat3 signaling pathways. Blockade of ICOS signaling using anti-ICOSL antibody impaired the generation of Tregs and retarded the progression of an AML mice model injected with C1498 cells. The expression of ICOSL of patient AML cells and ICOS+ Tregs were found to be predictors for overall survival and disease-free survival in patients with AML, with ICOS+ Treg cell subset being a stronger predictor than total Tregs. These results suggest that ICOSL expression by AML cells may directly drive Treg expansion as a mechanism of immune evasion and ICOS+ Treg cell frequency is a better prognostic predictor in patients with AML.
Collapse
Affiliation(s)
- Yixiang Han
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuqing Dong
- Department of Hematology, Wenzhou Key Laboratory of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qianqian Yang
- Department of Hematology, Wenzhou Key Laboratory of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wanling Xu
- Department of Hematology, Wenzhou Key Laboratory of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Songfu Jiang
- Department of Hematology, Wenzhou Key Laboratory of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhijie Yu
- Department of Hematology, Wenzhou Key Laboratory of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kang Yu
- Department of Hematology, Wenzhou Key Laboratory of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shenghui Zhang
- Department of Hematology, Wenzhou Key Laboratory of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Division of Clinical Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
41
|
Han Y, Dong Y, Yang Q, Xu W, Jiang S, Yu Z, Yu K, Zhang S. Acute Myeloid Leukemia Cells Express ICOS Ligand to Promote the Expansion of Regulatory T Cells. Front Immunol 2018; 9:2227. [PMID: 30319662 PMCID: PMC6168677 DOI: 10.3389/fimmu.2018.02227] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/07/2018] [Indexed: 12/20/2022] Open
Abstract
CD4+CD25+Foxp3+ regulatory T cells (Tregs) accumulate in bone marrow microenvironment in acute myeloid leukemia (AML). However, little is known about how the tumor environment including tumor cells themselves affects this process. Here we demonstrated that AML cells expressed inducible T-cell costimulator ligand (ICOSL) that can provide costimulation through ICOS for the conversion and expansion of Tregs sustaining high Foxp3 and CD25 expression as well as a suppressive function. TNF-a stimulation up-regulated the expression of ICOSL. Furthermore, both the conversion and expansion of CD4+CD25+Foxp3+ T cells and CD4+ICOS+Foxp3+ T cells were induced by co-culture with AML cells overexpressed ICOSL. CD4+CD25+ICOS+ T cells possessed stronger ability to secrete IL-10 than CD4+CD25+ICOS− T cells. The mechanism by which IL-10 promoted the proliferation of AML cells was dependent on the activation of the Akt, Erk1/2, p38, and Stat3 signaling pathways. Blockade of ICOS signaling using anti-ICOSL antibody impaired the generation of Tregs and retarded the progression of an AML mice model injected with C1498 cells. The expression of ICOSL of patient AML cells and ICOS+ Tregs were found to be predictors for overall survival and disease-free survival in patients with AML, with ICOS+ Treg cell subset being a stronger predictor than total Tregs. These results suggest that ICOSL expression by AML cells may directly drive Treg expansion as a mechanism of immune evasion and ICOS+ Treg cell frequency is a better prognostic predictor in patients with AML.
Collapse
Affiliation(s)
- Yixiang Han
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuqing Dong
- Department of Hematology, Wenzhou Key Laboratory of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qianqian Yang
- Department of Hematology, Wenzhou Key Laboratory of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wanling Xu
- Department of Hematology, Wenzhou Key Laboratory of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Songfu Jiang
- Department of Hematology, Wenzhou Key Laboratory of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhijie Yu
- Department of Hematology, Wenzhou Key Laboratory of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kang Yu
- Department of Hematology, Wenzhou Key Laboratory of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shenghui Zhang
- Department of Hematology, Wenzhou Key Laboratory of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Division of Clinical Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
42
|
Wang HX, Kang X, Chu S, Li H, Li X, Yin X, Qiu YR, Lai W. Dysregulated ICOS + proinflammatory and suppressive regulatory T cells in patients with rheumatoid arthritis. Exp Ther Med 2018; 16:3728-3734. [PMID: 30233732 DOI: 10.3892/etm.2018.6657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 07/20/2018] [Indexed: 12/24/2022] Open
Abstract
Regulatory T cells (Tregs) serve an important role in the pathogenesis of rheumatoid arthritis (RA) by regulating autoimmunity and inflammation. Humans and mice contain inducible T-cell costimulator-positive (ICOS+) Tregs, although their role in RA is unclear. A total of 33 patients with RA and 17 normal control (NC) subjects were examined. The proportion of ICOS+ Tregs in the peripheral blood and intracellular cytokine levels in these cells were assessed using flow cytometry. The percentage of ICOS+ Tregs increased in the cohort of patients with RA compared with the NCs. Such increases were much larger in patients with inactive RA compared with patients with active RA. Additionally, ICOS+ Tregs expressed multiple suppressive cytokines, including interleukin (IL)-10, transforming growth factor-β and IL-35, but expressed low levels of IL-17. Importantly, the expression of suppressive cytokines in ICOS+ Tregs from patients with active RA decreased, but IL-17 expression noticeably increased compared with patients with inactive RA. The present findings suggested that ICOS+ Tregs may perform inflammatory and inhibitory functions, and abnormal ICOS+ Tregs numbers and functions may contribute to the pathogenesis of RA.
Collapse
Affiliation(s)
- Hong-Xia Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xia Kang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.,Department of Clinical Laboratory, Nanlou Division, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing 100853, P.R. China
| | - Shuai Chu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Haixia Li
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xin Li
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xiaofeng Yin
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yu-Rong Qiu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Weinan Lai
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.,Division of Rheumatology, University of Washington Medical Center, Seattle, WA 98109, USA
| |
Collapse
|
43
|
Prasad S, Neef T, Xu D, Podojil JR, Getts DR, Shea LD, Miller SD. Tolerogenic Ag-PLG nanoparticles induce tregs to suppress activated diabetogenic CD4 and CD8 T cells. J Autoimmun 2018; 89:112-124. [PMID: 29258717 PMCID: PMC5902637 DOI: 10.1016/j.jaut.2017.12.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 01/22/2023]
Abstract
Type 1 diabetes (T1D) is mediated by destruction of pancreatic β cells by autoantigen-specific CD4+ and CD8+ T cells, thus the ideal solution for T1D is the restoration of immune tolerance to β cell antigens. We demonstrate the ability of carboxylated 500 nm biodegradable poly(lactide-co-glycolide) (PLG) nanoparticles PLG nanoparticles (either surface coupled with or encapsulating the cognate diabetogenic peptides) to rapidly and efficiently restore tolerance in NOD.SCID recipients of both activated diabetogenic CD4+ BDC2.5 chromagranin A-specific and CD8+ NY8.3 islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)-specific TCR transgenic T cells in an antigen-specific manner. Further, initiation and maintenance of Ag-PLG tolerance operates via several overlapping, but independent, pathways including regulation via negative-co-stimulatory molecules (CTLA-4 and PD-1) and the systemic induction of peptide-specific Tregs which were critical for long-term maintenance of tolerance by controlling both trafficking of effector T cells to, and their release of pro-inflammatory cytokines within the pancreas, concomitant with selective retention of effector cells in the spleens of recipient mice.
Collapse
Affiliation(s)
- Suchitra Prasad
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Tobias Neef
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Dan Xu
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Joseph R Podojil
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Daniel R Getts
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, MI 48109, USA.
| | - Stephen D Miller
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
44
|
Kitashima DY, Kobayashi T, Woodring T, Idouchi K, Doebel T, Voisin B, Adachi T, Ouchi T, Takahashi H, Nishifuji K, Kaplan DH, Clausen BE, Amagai M, Nagao K. Langerhans Cells Prevent Autoimmunity via Expansion of Keratinocyte Antigen-Specific Regulatory T Cells. EBioMedicine 2017; 27:293-303. [PMID: 29307572 PMCID: PMC5828466 DOI: 10.1016/j.ebiom.2017.12.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/30/2017] [Accepted: 12/18/2017] [Indexed: 11/29/2022] Open
Abstract
Langerhans cells (LCs) are antigen-presenting cells in the epidermis whose roles in antigen-specific immune regulation remain incompletely understood. Desmoglein 3 (Dsg3) is a keratinocyte cell-cell adhesion molecule critical for epidermal integrity and an autoantigen in the autoimmune blistering disease pemphigus. Although antibody-mediated disease mechanisms in pemphigus are extensively characterized, the T cell aspect of this autoimmune disease still remains poorly understood. Herein, we utilized a mouse model of CD4+ T cell-mediated autoimmunity against Dsg3 to show that acquisition of Dsg3 and subsequent presentation to T cells by LCs depended on the C-type lectin langerin. The lack of LCs led to enhanced autoimmunity with impaired Dsg3-specific regulatory T cell expansion. LCs expressed the IL-2 receptor complex and the disruption of IL-2 signaling in LCs attenuated LC-mediated regulatory T cell expansion in vitro, demonstrating that direct IL-2 signaling shapes LC function. These data establish that LCs mediate peripheral tolerance against an epidermal autoantigen and point to langerin and IL-2 signaling pathways as attractive targets for achieving tolerogenic responses particularly in autoimmune blistering diseases such as pemphigus. Langerhans cells take up a keratinocyte-expressed autoantigen, desmoglein 3, via langerin. Langerhans cells suppress autoimmunity by expanding regulatory T cells. IL-2 receptor signaling occurs in Langerhans cells, conditioning them to mediate peripheral tolerance.
Lymphocytes are critical for combating pathogens, but they can cause autoimmune diseases when misdirected against autoantigens. While past experimental models have provided detailed mechanisms utilizing neo-antigens, immune regulation against naturally-expressed autoantigen(s) remains largely unexplored. Herein, we studied immune responses against desmoglein 3, a bona fide autoantigen in pemphigus, and demonstrated that epidermal Langerhans cells (antigen-presenting cells) take up the autoantigen from surrounding keratinocytes via a C-type lectin receptor to induce regulatory T cells, which are critical for immune suppression. IL-2 signaling in Langerhans cells was required to preferentially expand regulatory T cells, providing new insights into mechanisms that regulate autoimmunity.
Collapse
Affiliation(s)
| | - Tetsuro Kobayashi
- Dermatology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Therese Woodring
- Dermatology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kacey Idouchi
- Dermatology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Doebel
- Dermatology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin Voisin
- Dermatology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Takeya Adachi
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Takeshi Ouchi
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Hayato Takahashi
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Koji Nishifuji
- Division of Animal Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Daniel H Kaplan
- Departments of Dermatology and Immunology, University of Pittsburgh, PA, USA
| | - Björn E Clausen
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz 55131, Germany
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Keisuke Nagao
- Dermatology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
45
|
Zheng Z, Xu PP, Wang L, Zhao HJ, Weng XQ, Zhong HJ, Qu B, Xiong J, Zhao Y, Wang XF, Janin A, Zhao WL. MiR21 sensitized B-lymphoma cells to ABT-199 via ICOS/ICOSL-mediated interaction of Treg cells with endothelial cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017. [PMID: 28637496 PMCID: PMC5480196 DOI: 10.1186/s13046-017-0551-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND MicroRNAs (miRs) are involved in tumor progression by regulating tumor cells and tumor microenvironment. MiR21 is overexpressed in diffuse large B-cell lymphoma (DLBCL) and its biological impact on tumor microenvironment remains unclear. METHODS MiR21 was assessed by quantitative RT-PCR in patients with newly diagnosed DLBCL. The mechanism of action of miR21 on lymphoma progression and tumor angiogenesis was examined in vitro in B-lymphoma cell lines and in vivo in a murine xenograft model. RESULTS Serum miR21 was significantly elevated in patients and associated with advanced disease stage, International Prognostic Index indicating intermediate-high and high-risk, and increased tumor angiogenesis. When co-cultured with immune cells and endothelial cells, miR21-overexpressing B-lymphoma cells were resistant to chemotherapeutic agents, but sensitive to Bcl-2 inhibitor ABT-199, irrespective of Bcl-2 expression on lymphoma cells. In both co-culture systems of Bcl-2positive and Bcl-2negative B-lymphoma cells, miR21 induced inducible co-stimulator (ICOS) expression on regulatory T (Treg) cells. Through crosstalking with Treg cells by ICOS ligand (ICOSL), endothelial cells were activated, resulting in stimulation of Bcl-2 expression and vessel formation. ABT-199 directly targeted Bcl-2 on endothelial cells, induced endothelial cell apoptosis and inhibited tumor angiogenesis. In a murine xenograft model established with subcutaneous injection of B-lymphoma cells, ABT-199 particularly retarded the growth of miR21-overexpressing tumors, consistent with the induction of endothelial cell apoptosis and inhibition of tumor angiogenesis. CONCLUSIONS As a serum oncogenic biomarker of B-cell lymphoma, miR21 indicated B-lymphoma cell sensitivity to ABT-199 via ICOS/ICOSL-mediated interaction of Treg cells with endothelial cells.
Collapse
Affiliation(s)
- Zhong Zheng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, 200025, China
| | - Peng-Peng Xu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, 200025, China.,Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China
| | - Li Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, 200025, China.,Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China
| | - Hui-Jin Zhao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, 200025, China
| | - Xiang-Qin Weng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, 200025, China
| | - Hui-Juan Zhong
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, 200025, China
| | - Bin Qu
- Department of Laboratory Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Xiong
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, 200025, China
| | - Yan Zhao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, 200025, China
| | - Xue-Feng Wang
- Department of Laboratory Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Anne Janin
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China.,U1165 Inserm/Université Paris 7, Hôpital Saint Louis, Paris, France
| | - Wei-Li Zhao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, 200025, China. .,Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China.
| |
Collapse
|
46
|
Shalaby KH, Al Heialy S, Tsuchiya K, Farahnak S, McGovern TK, Risse PA, Suh WK, Qureshi ST, Martin JG. The TLR4-TRIF pathway can protect against the development of experimental allergic asthma. Immunology 2017; 152:138-149. [PMID: 28502093 DOI: 10.1111/imm.12755] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/25/2017] [Accepted: 05/03/2017] [Indexed: 12/17/2022] Open
Abstract
The Toll-like receptor (TLR) adaptor proteins myeloid differentiating factor 88 (MyD88) and Toll, interleukin-1 receptor and resistance protein (TIR) domain-containing adaptor inducing interferon-β (TRIF) comprise the two principal limbs of the TLR signalling network. We studied the role of these adaptors in the TLR4-dependent inhibition of allergic airway disease and induction of CD4+ ICOS+ T cells by nasal application of Protollin™, a mucosal adjuvant composed of TLR2 and TLR4 agonists. Wild-type (WT), Trif-/- or Myd88-/- mice were sensitized to birch pollen extract (BPEx), then received intranasal Protollin followed by consecutive BPEx challenges. Protollin's protection against allergic airway disease was TRIF-dependent and MyD88-independent. TRIF deficiency diminished the CD4+ ICOS+ T-cell subsets in the lymph nodes draining the nasal mucosa, as well as their recruitment to the lungs. Overall, TRIF deficiency reduced the proportion of cervical lymph node and lung CD4+ ICOS+ Foxp3- cells, in particular. Adoptive transfer of cervical lymph node cells supported a role for Protollin-induced CD4+ ICOS+ cells in the TRIF-dependent inhibition of airway hyper-responsiveness. Hence, our data demonstrate that stimulation of the TLR4-TRIF pathway can protect against the development of allergic airway disease and that a TRIF-dependent adjuvant effect on CD4+ ICOS+ T-cell responses may be a contributing mechanism.
Collapse
Affiliation(s)
- Karim H Shalaby
- Department of Medicine, Meakins-Christie Laboratories, McGill University Health Centre Research Institute, McGill University, Montréal, QC, Canada
| | - Saba Al Heialy
- Department of Medicine, Meakins-Christie Laboratories, McGill University Health Centre Research Institute, McGill University, Montréal, QC, Canada
| | - Kimitake Tsuchiya
- Department of Medicine, Meakins-Christie Laboratories, McGill University Health Centre Research Institute, McGill University, Montréal, QC, Canada
| | - Soroor Farahnak
- Department of Medicine, Meakins-Christie Laboratories, McGill University Health Centre Research Institute, McGill University, Montréal, QC, Canada
| | - Toby K McGovern
- Department of Medicine, Meakins-Christie Laboratories, McGill University Health Centre Research Institute, McGill University, Montréal, QC, Canada
| | - Paul-Andre Risse
- Department of Medicine, Meakins-Christie Laboratories, McGill University Health Centre Research Institute, McGill University, Montréal, QC, Canada
| | - Woong-Kyung Suh
- Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada
| | - Salman T Qureshi
- Department of Medicine, Meakins-Christie Laboratories, McGill University Health Centre Research Institute, McGill University, Montréal, QC, Canada
| | - James G Martin
- Department of Medicine, Meakins-Christie Laboratories, McGill University Health Centre Research Institute, McGill University, Montréal, QC, Canada
| |
Collapse
|
47
|
Happle C, Jirmo AC, Meyer-Bahlburg A, Habener A, Hoymann HG, Hennig C, Skuljec J, Hansen G. B cells control maternofetal priming of allergy and tolerance in a murine model of allergic airway inflammation. J Allergy Clin Immunol 2017; 141:685-696.e6. [PMID: 28601684 DOI: 10.1016/j.jaci.2017.03.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 02/25/2017] [Accepted: 03/27/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Allergic asthma is a chronic lung disease resulting from inappropriate immune responses to environmental antigens. Early tolerance induction is an attractive approach for primary prevention of asthma. OBJECTIVE We analyzed the mechanisms of perinatal tolerance induction to allergens, with particular focus on the role of B cells in preconception and early intrauterine immune priming. METHODS Wild-type (WT) and B cell-deficient mice received ovalbumin (OVA) intranasally before mating. Their offspring were analyzed in a murine model of allergic airway inflammation. RESULTS Although antigen application before conception protected WT progeny from allergy, it aggravated allergic airway inflammation in B cell-deficient offspring. B-cell transfer restored protection, demonstrating the crucial role of B cells in perinatal tolerance induction. Effective diaplacentar allergen transfer was detectable in pregnant WT mice but not in pregnant B-cell knockout dams, and antigen concentrations in WT amniotic fluid (AF) were higher than in IgG-free AF of B cell-deficient dams. Application of OVA/IgG immune complexes during pregnancy boosted OVA uptake by fetal dendritic cells (DCs). Fetal DCs in human subjects and mice expressed strikingly higher levels of Fcγ receptors compared with DCs from adults and were highly efficient in taking up OVA/IgG immune complexes. Moreover, murine fetal DCs effectively primed antigen-specific forkhead box P3+ regulatory T cells after in vitro coincubation with OVA/IgG-containing AF. CONCLUSION Our data support a decisive role for B cells and immunoglobulins during in utero tolerance priming. These findings improve the understanding of perinatal immunity and might support the development of effective primary prevention strategies for allergy and asthma in the future.
Collapse
Affiliation(s)
- Christine Happle
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Adan Chari Jirmo
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Almut Meyer-Bahlburg
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany; Department of Pediatrics, University Medicine Greifswald, Greifswald, Germany
| | - Anika Habener
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Heinz Gerd Hoymann
- Working Group for Airway Pharmacology, Fraunhofer Institute for Toxicology and Experimental Medicine Hannover, Hannover, Germany
| | - Christian Hennig
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Jelena Skuljec
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Gesine Hansen
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.
| |
Collapse
|
48
|
Habener A, Behrendt AK, Skuljec J, Jirmo AC, Meyer-Bahlburg A, Hansen G. B cell subsets are modulated during allergic airway inflammation but are not required for the development of respiratory tolerance in a murine model. Eur J Immunol 2017; 47:552-562. [PMID: 27995616 DOI: 10.1002/eji.201646518] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 11/01/2016] [Accepted: 12/16/2016] [Indexed: 01/04/2023]
Abstract
Allergic asthma is a widespread chronic inflammatory disease of the airways. The role of different B cell subsets in developing asthma and respiratory tolerance is not well known. Especially regulatory B (Breg) cells are proposed to be important in asthma regulation. Using wild-type (WT) and B cell-deficient (μMT) mice we investigated how B cells are affected by induction of allergic airway inflammation and respiratory tolerance and whether they are necessary to develop these conditions. WT mice with an asthma-like phenotype, characterized by increased airway hyper reactivity, eosinophilic airway inflammation, mucus hypersecretion and elevated Th2 cytokines, exhibited increased MHCII and CD23 expression on follicular mature B cells in lung, bronchial lymph nodes (bLN) and spleen, which contributed to allergen-specific T cell proliferation in vitro. Germinal center B cell numbers were elevated and associated with increased production of allergen-specific immunoglobulins especially in bLN. In contrast, respiratory tolerance clearly attenuated these B cell alterations and directly enhanced marginal zone precursor B cells, which induced regulatory T cells in vitro. However, μMT mice developed asthma-like and tolerized phenotypes like WT mice. Our data indicate that although B cell subsets are affected by asthma-like and respiratory tolerant phenotypes, B cells are not required for tolerance induction.
Collapse
Affiliation(s)
- Anika Habener
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL)
| | - Ann-Kathrin Behrendt
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Department of Paediatrics, University Medicine Greifswald, Greifswald, Germany
| | - Jelena Skuljec
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL)
| | - Adan Chari Jirmo
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL)
| | - Almut Meyer-Bahlburg
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL).,Department of Paediatrics, University Medicine Greifswald, Greifswald, Germany
| | - Gesine Hansen
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL)
| |
Collapse
|
49
|
Dieu-Nosjean MC, Giraldo NA, Kaplon H, Germain C, Fridman WH, Sautès-Fridman C. Tertiary lymphoid structures, drivers of the anti-tumor responses in human cancers. Immunol Rev 2016; 271:260-75. [PMID: 27088920 DOI: 10.1111/imr.12405] [Citation(s) in RCA: 276] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The characterization of the microenvironment of human tumors led to the description of tertiary lymphoid structures (TLS) characterized by mature dendritic cells in a T-cell zone adjacent to B-cell follicle including a germinal center. TLS represent sites of lymphoid neogenesis that develop in most solid cancers. Analysis of the current literature shows that the TLS presence is associated with a favorable clinical outcome for cancer patients, regardless of the approach used to quantify TLS and the stage of the disease. Using several approaches that combine immunohistochemistry, gene expression assays, and flow cytometry on large series of lung tumors, our work demonstrated that TLS are important sites for the initiation and/or maintenance of the local and systemic T- and B-cell responses against tumors. Surrounded by high endothelial venules, they represent a privileged area for the recruitment of lymphocytes into tumors and generation of central-memory T and B cells that circulate and limit cancer progression. TLS can be considered as a novel biomarker to stratify the overall survival risk of untreated cancer patients and as a marker of efficient immunotherapies. The induction and manipulation of cancer-associated TLS using drug agonists and/or biotherapies should open new avenues to treat cancer patients.
Collapse
Affiliation(s)
- Marie-Caroline Dieu-Nosjean
- INSERM, UMR_S 1138, Cordeliers Research Center, Team 13 Cancer, Immune Control and Escape, Paris, France.,Sorbonne Paris Cité, UMR_S 1138, Cordeliers Research Center, University Paris Descartes, Paris, France.,Sorbonne Universités, UMR_S 1138, Cordeliers Research Center, UPMC University Paris 06, Paris, France
| | - Nicolas A Giraldo
- INSERM, UMR_S 1138, Cordeliers Research Center, Team 13 Cancer, Immune Control and Escape, Paris, France.,Sorbonne Paris Cité, UMR_S 1138, Cordeliers Research Center, University Paris Descartes, Paris, France.,Sorbonne Universités, UMR_S 1138, Cordeliers Research Center, UPMC University Paris 06, Paris, France
| | - Hélène Kaplon
- INSERM, UMR_S 1138, Cordeliers Research Center, Team 13 Cancer, Immune Control and Escape, Paris, France.,Sorbonne Paris Cité, UMR_S 1138, Cordeliers Research Center, University Paris Descartes, Paris, France.,Sorbonne Universités, UMR_S 1138, Cordeliers Research Center, UPMC University Paris 06, Paris, France
| | - Claire Germain
- INSERM, UMR_S 1138, Cordeliers Research Center, Team 13 Cancer, Immune Control and Escape, Paris, France.,Sorbonne Paris Cité, UMR_S 1138, Cordeliers Research Center, University Paris Descartes, Paris, France.,Sorbonne Universités, UMR_S 1138, Cordeliers Research Center, UPMC University Paris 06, Paris, France
| | - Wolf Herman Fridman
- INSERM, UMR_S 1138, Cordeliers Research Center, Team 13 Cancer, Immune Control and Escape, Paris, France.,Sorbonne Paris Cité, UMR_S 1138, Cordeliers Research Center, University Paris Descartes, Paris, France.,Sorbonne Universités, UMR_S 1138, Cordeliers Research Center, UPMC University Paris 06, Paris, France
| | - Catherine Sautès-Fridman
- INSERM, UMR_S 1138, Cordeliers Research Center, Team 13 Cancer, Immune Control and Escape, Paris, France.,Sorbonne Paris Cité, UMR_S 1138, Cordeliers Research Center, University Paris Descartes, Paris, France.,Sorbonne Universités, UMR_S 1138, Cordeliers Research Center, UPMC University Paris 06, Paris, France
| |
Collapse
|
50
|
Ghali JR, Alikhan MA, Holdsworth SR, Kitching AR. Induced regulatory T cells are phenotypically unstable and do not protect mice from rapidly progressive glomerulonephritis. Immunology 2016; 150:100-114. [PMID: 27606831 DOI: 10.1111/imm.12671] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 08/10/2016] [Accepted: 09/02/2016] [Indexed: 12/15/2022] Open
Abstract
Regulatory T (Treg) cells are a suppressive CD4+ T-cell subset. We generated induced Treg (iTreg) cells and explored their therapeutic potential in a murine model of rapidly progressive glomerulonephritis. Polyclonal naive CD4+ T cells were cultured in vitro with interleukin-2 (IL-2), transforming growth factor-β1, all-trans-retinoic acid and monoclonal antibodies against interferon-γ and IL-4, generating Foxp3+ iTreg cells. To enhance their suppressive phenotype, iTreg cultures were modified with the addition of a monoclonal antibody against IL-12p40 or by using RORγt-/- CD4+ T cells. Induced Treg cells were transferred into models of delayed-type hypersensitivity and experimental glomerulonephritis. The iTreg cells exhibited comparable surface receptor expression and in vitro suppressive ability to natural Treg cells, but did not regulate antigen-specific delayed-type hypersensitivity or systemic inflammatory immune responses, losing Foxp3 expression in vivo. In glomerulonephritis, transferred iTreg cells did not prevent renal injury or modulate systemic T helper type 1 immune responses. Induced Treg cells cultured with anti-IL-12p40 had an enhanced suppressive phenotype in vitro and regulated dermal delayed-type hypersensitivity in vivo, but were not protective against renal injury, losing Foxp3 expression, especially in the transferred cells recruited to the kidney. Use of RORγt-/- CD4+ T cells or iTreg cells generated from sensitized CD4+ Foxp3- cells did not regulate renal or systemic inflammatory responses in vivo. In conclusion, iTreg cells suppress T-cell proliferation in vitro, but do not regulate experimental glomerulonephritis, being unstable in this inflammatory milieu in vivo.
Collapse
Affiliation(s)
- Joanna R Ghali
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Victoria, Australia.,Department of Nephrology, Monash Health, Clayton, Victoria, Australia
| | - Maliha A Alikhan
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Victoria, Australia
| | - Stephen R Holdsworth
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Victoria, Australia.,Department of Nephrology, Monash Health, Clayton, Victoria, Australia
| | - A Richard Kitching
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Victoria, Australia.,Department of Nephrology, Monash Health, Clayton, Victoria, Australia.,Department of Paediatric Nephrology, Monash Health, Clayton, Victoria, Australia
| |
Collapse
|