1
|
Thomas T, Friedrich M, Rich-Griffin C, Pohin M, Agarwal D, Pakpoor J, Lee C, Tandon R, Rendek A, Aschenbrenner D, Jainarayanan A, Voda A, Siu JHY, Sanches-Peres R, Nee E, Sathananthan D, Kotliar D, Todd P, Kiourlappou M, Gartner L, Ilott N, Issa F, Hester J, Turner J, Nayar S, Mackerodt J, Zhang F, Jonsson A, Brenner M, Raychaudhuri S, Kulicke R, Ramsdell D, Stransky N, Pagliarini R, Bielecki P, Spies N, Marsden B, Taylor S, Wagner A, Klenerman P, Walsh A, Coles M, Jostins-Dean L, Powrie FM, Filer A, Travis S, Uhlig HH, Dendrou CA, Buckley CD. A longitudinal single-cell atlas of anti-tumour necrosis factor treatment in inflammatory bowel disease. Nat Immunol 2024; 25:2152-2165. [PMID: 39438660 PMCID: PMC11519010 DOI: 10.1038/s41590-024-01994-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/18/2024] [Indexed: 10/25/2024]
Abstract
Precision medicine in immune-mediated inflammatory diseases (IMIDs) requires a cellular understanding of treatment response. We describe a therapeutic atlas for Crohn's disease (CD) and ulcerative colitis (UC) following adalimumab, an anti-tumour necrosis factor (anti-TNF) treatment. We generated ~1 million single-cell transcriptomes, organised into 109 cell states, from 216 gut biopsies (41 subjects), revealing disease-specific differences. A systems biology-spatial analysis identified granuloma signatures in CD and interferon (IFN)-response signatures localising to T cell aggregates and epithelial damage in CD and UC. Pretreatment differences in epithelial and myeloid compartments were associated with remission outcomes in both diseases. Longitudinal comparisons demonstrated disease progression in nonremission: myeloid and T cell perturbations in CD and increased multi-cellular IFN signalling in UC. IFN signalling was also observed in rheumatoid arthritis (RA) synovium with a lymphoid pathotype. Our therapeutic atlas represents the largest cellular census of perturbation with the most common biologic treatment, anti-TNF, across multiple inflammatory diseases.
Collapse
Affiliation(s)
- Tom Thomas
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
- Centre for Human Genetics, University of Oxford, Oxford, UK
- Translational Gastroenterology & Liver Unit, John Radcliffe Hospital, Headington, Oxford, UK
| | - Matthias Friedrich
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
- Translational Gastroenterology & Liver Unit, John Radcliffe Hospital, Headington, Oxford, UK
| | | | - Mathilde Pohin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Devika Agarwal
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Julia Pakpoor
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
- Centre for Human Genetics, University of Oxford, Oxford, UK
- Translational Gastroenterology & Liver Unit, John Radcliffe Hospital, Headington, Oxford, UK
| | - Carl Lee
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Ruchi Tandon
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Aniko Rendek
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Dominik Aschenbrenner
- Translational Gastroenterology & Liver Unit, John Radcliffe Hospital, Headington, Oxford, UK
| | | | - Alexandru Voda
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | | | | | - Eloise Nee
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Dharshan Sathananthan
- University of Adelaide, Adelaide, Australia
- Lyell McEwin Hospital, Adelaide, Australia
| | - Dylan Kotliar
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Peter Todd
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Lisa Gartner
- Translational Gastroenterology & Liver Unit, John Radcliffe Hospital, Headington, Oxford, UK
| | - Nicholas Ilott
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Fadi Issa
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Joanna Hester
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Jason Turner
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Saba Nayar
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre and NIHR Clinical Research Facility, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Birmingham Tissue Analytics, Institute of Translational Medicine, University of Birmingham, Birmingham, UK
| | - Jonas Mackerodt
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Fan Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Center for Health AI, University of Colorado Anschutz, Anschutz, CO, USA
| | - Anna Jonsson
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Michael Brenner
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Soumya Raychaudhuri
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | | | | | | | | | | - Noah Spies
- Celsius Therapeutics, Cambridge, MA, USA
| | - Brian Marsden
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Stephen Taylor
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Allon Wagner
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA, USA
- The Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Paul Klenerman
- Translational Gastroenterology & Liver Unit, John Radcliffe Hospital, Headington, Oxford, UK
| | - Alissa Walsh
- Translational Gastroenterology & Liver Unit, John Radcliffe Hospital, Headington, Oxford, UK
| | - Mark Coles
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | | | - Fiona M Powrie
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Andrew Filer
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre and NIHR Clinical Research Facility, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Birmingham Tissue Analytics, Institute of Translational Medicine, University of Birmingham, Birmingham, UK
| | - Simon Travis
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.
- Translational Gastroenterology & Liver Unit, John Radcliffe Hospital, Headington, Oxford, UK.
- NIHR Oxford Biomedical Research Centre, Oxford, UK.
| | - Holm H Uhlig
- Translational Gastroenterology & Liver Unit, John Radcliffe Hospital, Headington, Oxford, UK.
- NIHR Oxford Biomedical Research Centre, Oxford, UK.
- Department of Paediatrics, University of Oxford, Oxford, UK.
| | - Calliope A Dendrou
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.
- Centre for Human Genetics, University of Oxford, Oxford, UK.
- NIHR Oxford Biomedical Research Centre, Oxford, UK.
| | - Christopher D Buckley
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.
- Translational Gastroenterology & Liver Unit, John Radcliffe Hospital, Headington, Oxford, UK.
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.
- NIHR Oxford Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
2
|
Radhakrishnan K, Truong L, Carmichael CL. An "unexpected" role for EMT transcription factors in hematological development and malignancy. Front Immunol 2023; 14:1207360. [PMID: 37600794 PMCID: PMC10435889 DOI: 10.3389/fimmu.2023.1207360] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023] Open
Abstract
The epithelial to mesenchymal transition (EMT) is a fundamental developmental process essential for normal embryonic development. It is also important during various pathogenic processes including fibrosis, wound healing and epithelial cancer cell metastasis and invasion. EMT is regulated by a variety of cell signalling pathways, cell-cell interactions and microenvironmental cues, however the key drivers of EMT are transcription factors of the ZEB, TWIST and SNAIL families. Recently, novel and unexpected roles for these EMT transcription factors (EMT-TFs) during normal blood cell development have emerged, which appear to be largely independent of classical EMT processes. Furthermore, EMT-TFs have also begun to be implicated in the development and pathogenesis of malignant hematological diseases such as leukemia and lymphoma, and now present themselves or the pathways they regulate as possible new therapeutic targets within these malignancies. In this review, we discuss the ZEB, TWIST and SNAIL families of EMT-TFs, focusing on what is known about their normal roles during hematopoiesis as well as the emerging and "unexpected" contribution they play during development and progression of blood cancers.
Collapse
Affiliation(s)
- Karthika Radhakrishnan
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Lynda Truong
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Catherine L. Carmichael
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Monash University, Faculty of Medicine, Nursing and Health Sciences, Clayton, VIC, Australia
| |
Collapse
|
3
|
Saiki R, Katayama K, Dohi K. Recent Advances in Proteinuric Kidney Disease/Nephrotic Syndrome: Lessons from Knockout/Transgenic Mouse Models. Biomedicines 2023; 11:1803. [PMID: 37509442 PMCID: PMC10376620 DOI: 10.3390/biomedicines11071803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Proteinuria is known to be associated with all-cause and cardiovascular mortality, and nephrotic syndrome is defined by the level of proteinuria and hypoalbuminemia. With advances in medicine, new causative genes for genetic kidney diseases are being discovered increasingly frequently. We reviewed articles on proteinuria/nephrotic syndrome, focal segmental glomerulosclerosis, membranous nephropathy, diabetic kidney disease/nephropathy, hypertension/nephrosclerosis, Alport syndrome, and rare diseases, which have been studied in mouse models. Significant progress has been made in understanding the genetics and pathophysiology of kidney diseases thanks to advances in science, but research in this area is ongoing. In the future, genetic analyses of patients with proteinuric kidney disease/nephrotic syndrome may ultimately lead to personalized treatment options.
Collapse
Affiliation(s)
- Ryosuke Saiki
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Kan Katayama
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Kaoru Dohi
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| |
Collapse
|
4
|
Cui K, Chen Z, Cao Y, Liu S, Ren G, Hu G, Fang D, Wei D, Liu C, Zhu J, Wu C, Zhao K. Restraint of IFN-γ expression through a distal silencer CNS-28 for tissue homeostasis. Immunity 2023; 56:944-958.e6. [PMID: 37040761 PMCID: PMC10175192 DOI: 10.1016/j.immuni.2023.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 01/13/2023] [Accepted: 03/13/2023] [Indexed: 04/13/2023]
Abstract
Interferon-γ (IFN-γ) is a key cytokine in response to viral or intracellular bacterial infection in mammals. While a number of enhancers are described to promote IFN-γ responses, to the best of our knowledge, no silencers for the Ifng gene have been identified. By examining H3K4me1 histone modification in naive CD4+ T cells within Ifng locus, we identified a silencer (CNS-28) that restrains Ifng expression. Mechanistically, CNS-28 maintains Ifng silence by diminishing enhancer-promoter interactions within Ifng locus in a GATA3-dependent but T-bet-independent manner. Functionally, CNS-28 restrains Ifng transcription in NK cells, CD4+ cells, and CD8+ T cells during both innate and adaptive immune responses. Moreover, CNS-28 deficiency resulted in repressed type 2 responses due to elevated IFN-γ expression, shifting Th1 and Th2 paradigm. Thus, CNS-28 activity ensures immune cell quiescence by cooperating with other regulatory cis elements within the Ifng gene locus to minimize autoimmunity.
Collapse
Affiliation(s)
- Kairong Cui
- Laboratory of Epigenome Biology, Systems Biology Center, NHLBI, NIH, Bethesda, MD, USA
| | - Zuojia Chen
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yaqiang Cao
- Laboratory of Epigenome Biology, Systems Biology Center, NHLBI, NIH, Bethesda, MD, USA
| | - Shuai Liu
- Laboratory of Epigenome Biology, Systems Biology Center, NHLBI, NIH, Bethesda, MD, USA
| | - Gang Ren
- Laboratory of Epigenome Biology, Systems Biology Center, NHLBI, NIH, Bethesda, MD, USA
| | - Gangqing Hu
- Laboratory of Epigenome Biology, Systems Biology Center, NHLBI, NIH, Bethesda, MD, USA
| | - Difeng Fang
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Danping Wei
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chengyu Liu
- Transgenic Core Facility, DIR, NHLBI, NIH, Bethesda, MD, USA
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA.
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, NHLBI, NIH, Bethesda, MD, USA.
| |
Collapse
|
5
|
Uthaya Kumar DB, Yurieva M, Grassmann J, Kozhaya L, McBride CD, Unutmaz D, Williams A. A genome-wide CRISPR activation screen identifies SCREEM a novel SNAI1 super-enhancer demarcated by eRNAs. Front Mol Biosci 2023; 10:1110445. [PMID: 36923642 PMCID: PMC10009272 DOI: 10.3389/fmolb.2023.1110445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/13/2023] [Indexed: 03/03/2023] Open
Abstract
The genome is pervasively transcribed to produce a vast array of non-coding RNAs (ncRNAs). Long non-coding RNAs (lncRNAs) are transcripts of >200 nucleotides and are best known for their ability to regulate gene expression. Enhancer RNAs (eRNAs) are subclass of lncRNAs that are synthesized from enhancer regions and have also been shown to coordinate gene expression. The biological function and significance of most lncRNAs and eRNAs remain to be determined. Epithelial to mesenchymal transition (EMT) is a ubiquitous cellular process that occurs during cellular migration, homeostasis, fibrosis, and cancer-cell metastasis. EMT-transcription factors, such as SNAI1 induce a complex transcriptional program that coordinates the morphological and molecular changes associated with EMT. Such complex transcriptional programs are often subject to coordination by networks of ncRNAs and thus can be leveraged to identify novel functional ncRNA loci. Here, using a genome-wide CRISPR activation (CRISPRa) screen targeting ∼10,000 lncRNA loci we identified ncRNA loci that could either promote or attenuate EMT. We discovered a novel locus that we named SCREEM (SNAI1 cis-regulatory eRNAs expressed in monocytes). The SCREEM locus contained a cluster of eRNAs that when activated using CRISPRa induced expression of the neighboring gene SNAI1, driving concomitant EMT. However, the SCREEM eRNA transcripts themselves appeared dispensable for the induction of SNAI1 expression. Interestingly, the SCREEM eRNAs and SNAI1 were co-expressed in activated monocytes, where the SCREEM locus demarcated a monocyte-specific super-enhancer. These findings suggest a potential role for SNAI1 in monocytes. Exploration of the SCREEM-SNAI axis could reveal novel aspects of monocyte biology.
Collapse
Affiliation(s)
- Dinesh Babu Uthaya Kumar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
- The Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, United States
| | - Marina Yurieva
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - Jessica Grassmann
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - Lina Kozhaya
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - Caleb Dante McBride
- Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Derya Unutmaz
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - Adam Williams
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
- The Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, United States
- Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
6
|
Effect and Mechanism Analysis of Pig FUT8 Gene on Resistance to Escherichia coli F18 Infection. Int J Mol Sci 2022; 23:ijms232314713. [PMID: 36499043 PMCID: PMC9739813 DOI: 10.3390/ijms232314713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Post-weaning diarrhea caused by enterotoxigenic Escherichia coli F18 (E. coli F18) causes significant economic losses for pig producers. Fucosyltransferase 8 (FUT8) is a glycosyltransferase that catalyzes core fucosylation; however, its role in mediating the resistance to E. coli F18 infection in pigs remains unknown. In this study, we systematically verified the relationship between FUT8 expression and E. coli resistance. The results showed that FUT8 was expressed in all detected tissues of Meishan piglets and that its expression was significantly increased in the duodenum and jejunum of E. coli F18-sensitive individuals when compared to E. coli F18-resistant individuals. FUT8 expression increased after exposure to E. coli F18 (p < 0.05) and decreased significantly after LPS induction for 6 h (p < 0.01). Then, the IPEC-J2 stable cell line with FUT8 interference was constructed, and FUT8 knockdown decreased the adhesion of E. coli F18ac to IPEC-J2 cells (p < 0.05). Moreover, we performed a comparative transcriptome study of IPEC-J2 cells after FUT8 knockdown via RNA-seq. In addition, further expression verification demonstrated the significant effect of FUT8 on the glycosphingolipid biosynthesis and Toll-like signaling pathways. Moreover, the core promoter of FUT8, which was located at −1213 bp to −673 bp, was identified via luciferase assay. Interestingly, we found a 1 bp C base insertion mutation at the −774 bp region, which could clearly inhibit the transcriptional binding activity of C/EBPα to an FUT8 promoter. Therefore, it is speculated that FUT8 acts in a critical role in the process of E. coli infection; furthermore, the low expression of FUT8 is conducive to the enhancement of E. coli resistance in piglets. Our findings revealed the mechanism of pig FUT8 in regulating E. coli resistance, which provided a theoretical basis for the screening of E. coli resistance in Chinese local pig breeds.
Collapse
|
7
|
Rasouli J, Casella G, Zhang W, Xiao D, Kumar G, Fortina P, Zhang GX, Ciric B, Rostami A. Transcription Factor RUNX3 Mediates Plasticity of ThGM Cells Toward Th1 Phenotype. Front Immunol 2022; 13:912583. [PMID: 35860266 PMCID: PMC9289370 DOI: 10.3389/fimmu.2022.912583] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
GM-CSF-producing T helper (Th) cells play a crucial role in the pathogenesis of autoimmune diseases such as multiple sclerosis (MS). Recent studies have identified a distinct population of GM-CSF-producing Th cells, named ThGM cells, that also express cytokines TNF, IL-2, and IL-3, but lack expression of master transcription factors (TF) and signature cytokines of commonly recognized Th cell lineages. ThGM cells are highly encephalitogenic in a mouse model of MS, experimental autoimmune encephalomyelitis (EAE). Similar to Th17 cells, in response to IL-12, ThGM cells upregulate expression of T-bet and IFN-γ and switch their phenotype to Th1. Here we show that in addition to T-bet, TF RUNX3 also contributes to the Th1 switch of ThGM cells. T-bet-deficient ThGM cells in the CNS of mice with EAE had low expression of RUNX3, and knockdown of RUNX3 expression in ThGM cells abrogated the Th1-inducing effect of IL-12. Comparison of ThGM and Th1 cell transcriptomes showed that ThGM cells expressed a set of TFs known to inhibit the development of other Th lineages. Lack of expression of lineage-specific cytokines and TFs by ThGM cells, together with expression of TFs that inhibit the development of other Th lineages, suggests that ThGM cells are a non-polarized subset of Th cells with lineage characteristics.
Collapse
Affiliation(s)
- Javad Rasouli
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Giacomo Casella
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Weifeng Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Dan Xiao
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Gaurav Kumar
- Sidney Kimmel Cancer Center, Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Paolo Fortina
- Sidney Kimmel Cancer Center, Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Translation and Precision Medicine, Sapienza University, Rome, Italy
| | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Bogoljub Ciric
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Abdolmohamad Rostami
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
- *Correspondence: Abdolmohamad Rostami,
| |
Collapse
|
8
|
Chu TH, Khairallah C, Shieh J, Cho R, Qiu Z, Zhang Y, Eskiocak O, Thanassi DG, Kaplan MH, Beyaz S, Yang VW, Bliska JB, Sheridan BS. γδ T cell IFNγ production is directly subverted by Yersinia pseudotuberculosis outer protein YopJ in mice and humans. PLoS Pathog 2021; 17:e1010103. [PMID: 34871329 PMCID: PMC8648121 DOI: 10.1371/journal.ppat.1010103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/09/2021] [Indexed: 12/31/2022] Open
Abstract
Yersinia pseudotuberculosis is a foodborne pathogen that subverts immune function by translocation of Yersinia outer protein (Yop) effectors into host cells. As adaptive γδ T cells protect the intestinal mucosa from pathogen invasion, we assessed whether Y. pseudotuberculosis subverts these cells in mice and humans. Tracking Yop translocation revealed that the preferential delivery of Yop effectors directly into murine Vγ4 and human Vδ2+ T cells inhibited anti-microbial IFNγ production. Subversion was mediated by the adhesin YadA, injectisome component YopB, and translocated YopJ effector. A broad anti-pathogen gene signature and STAT4 phosphorylation levels were inhibited by translocated YopJ. Thus, Y. pseudotuberculosis attachment and translocation of YopJ directly into adaptive γδ T cells is a major mechanism of immune subversion in mice and humans. This study uncovered a conserved Y. pseudotuberculosis pathway that subverts adaptive γδ T cell function to promote pathogenicity. Unconventional γδ T cells are a dynamic immune population important for mucosal protection of the intestine against invading pathogens. We determined that the foodborne pathogen Y. pseudotuberculosis preferentially targets an adaptive subset of these cells to subvert immune function. We found that direct injection of Yersinia outer proteins (Yop) into adaptive γδ T cells inhibited their anti-pathogen functions. We screened all Yop effectors and identified YopJ as the sole effector to inhibit adaptive γδ T cell production of IFNγ. We determined that adaptive γδ T cell subversion occurred by limiting activation of the transcription factor STAT4. When we infected mice with Y. pseudotuberculosis expressing an inactive YopJ, this enhanced the adaptive γδ T cell response and led to greater cytokine production from this subset of cells to aid mouse recovery. This mechanism of immune evasion appears conserved in humans as direct injection of Y. pseudotuberculosis YopJ into human γδ T cells inhibited cytokine production. This suggested to us that Y. pseudotuberculosis actively inhibits the adaptive γδ T cell response through YopJ as a mechanism to evade immune surveillance at the site of pathogen invasion.
Collapse
Affiliation(s)
- Timothy H. Chu
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Camille Khairallah
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Jason Shieh
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Rhea Cho
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Zhijuan Qiu
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Yue Zhang
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Onur Eskiocak
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - David G. Thanassi
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Mark H. Kaplan
- Department of Microbiology and Immunology, School of Medicine, Indiana University, Indianapolis, Indiana, United States of America
| | - Semir Beyaz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Vincent W. Yang
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - James B. Bliska
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Dartmouth, New Hampshire, United States of America
| | - Brian S. Sheridan
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
9
|
Ren J, Xu Y, Lu X, Wang L, Ide S, Hall G, Souma T, Privratsky JR, Spurney RF, Crowley SD. Twist1 in podocytes ameliorates podocyte injury and proteinuria by limiting CCL2-dependent macrophage infiltration. JCI Insight 2021; 6:e148109. [PMID: 34369383 PMCID: PMC8410065 DOI: 10.1172/jci.insight.148109] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/06/2021] [Indexed: 11/28/2022] Open
Abstract
The transcription factor Twist1 regulates several processes that could impact kidney disease progression, including epithelial cell differentiation and inflammatory cytokine induction. Podocytes are specialized epithelia that exhibit features of immune cells and could therefore mediate unique effects of Twist1 on glomerular disease. To study Twist1 functions in podocytes during proteinuric kidney disease, we employed a conditional mutant mouse in which Twist1 was selectively ablated in podocytes (Twist1-PKO). Deletion of Twist1 in podocytes augmented proteinuria, podocyte injury, and foot process effacement in glomerular injury models. Twist1 in podocytes constrained renal accumulation of monocytes/macrophages and glomerular expression of CCL2 and the macrophage cytokine TNF-α after injury. Deletion of TNF-α selectively from podocytes had no impact on the progression of proteinuric nephropathy. By contrast, the inhibition of CCL2 abrogated the exaggeration in proteinuria and podocyte injury accruing from podocyte Twist1 deletion. Collectively, Twist1 in podocytes mitigated urine albumin excretion and podocyte injury in proteinuric kidney diseases by limiting CCL2 induction that drove monocyte/macrophage infiltration into injured glomeruli. Myeloid cells, rather than podocytes, further promoted podocyte injury and glomerular disease by secreting TNF-α. These data highlight the capacity of Twist1 in the podocyte to mitigate glomerular injury by curtailing the local myeloid immune response.
Collapse
Affiliation(s)
- Jiafa Ren
- Division of Nephrology, Department of Medicine, Durham VA and Duke University Medical Centers, Durham, North Carolina, USA.,Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yuemei Xu
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaohan Lu
- Division of Nephrology, Department of Medicine, Durham VA and Duke University Medical Centers, Durham, North Carolina, USA
| | - Liming Wang
- Division of Nephrology, Department of Medicine, Durham VA and Duke University Medical Centers, Durham, North Carolina, USA
| | - Shintaro Ide
- Division of Nephrology, Department of Medicine, Durham VA and Duke University Medical Centers, Durham, North Carolina, USA
| | - Gentzon Hall
- Division of Nephrology, Department of Medicine, Durham VA and Duke University Medical Centers, Durham, North Carolina, USA
| | - Tomokazu Souma
- Division of Nephrology, Department of Medicine, Durham VA and Duke University Medical Centers, Durham, North Carolina, USA
| | - Jamie R Privratsky
- Department of Anesthesiology, Durham VA and Duke University Medical Centers, Durham, North Carolina, USA
| | - Robert F Spurney
- Division of Nephrology, Department of Medicine, Durham VA and Duke University Medical Centers, Durham, North Carolina, USA
| | - Steven D Crowley
- Division of Nephrology, Department of Medicine, Durham VA and Duke University Medical Centers, Durham, North Carolina, USA
| |
Collapse
|
10
|
Abstract
Introduction: Innate immunity is armed with interferons (IFNs) that link innate immunity to adaptive immunity to generate long-term and protective immune responses against invading pathogens and tumors. However, regulation of IFN production is crucial because chronic IFN responses can have deleterious effects on both antitumor and antimicrobial immunity in addition to provoking autoinflammatory or autoimmune conditions.Areas covered: Here, we focus on the accumulated evidence on antimicrobial and antitumor activities of type I and II IFNs. We first summarize the intracellular and intercellular mechanisms regulating IFN production and signaling. Then, we discuss the mechanisms modulating the dual nature of IFNs for both antitumor and antimicrobial immune responses. Finally, we review the detrimental role of IFNs for induction of autoinflammation and autoimmunity.Expert opinion: The current evidence suggests that the dual role of IFNs for antimicrobial and antitumor immunity is dependent not only on the timing, administration route, and dose of IFNs but also on the type of pathogen/tumor. Therefore, we think that combinatorial therapies involving IFN-inducing adjuvants and immune-checkpoint blockers may offer therapeutic potential, especially for cancer, whereas infectious, autoinflammatory or autoimmune diseases require fine adjustment of timing, dose, and route of the administration for candidate IFN-based vaccines or immunotherapies.
Collapse
Affiliation(s)
- Burcu Temizoz
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, the University of Tokyo (IMSUT), Tokyo, Japan.,Laboratory of Vaccine Science, WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| | - Ken J Ishii
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, the University of Tokyo (IMSUT), Tokyo, Japan.,Laboratory of Vaccine Science, WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan.,Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NBIOHN), Osaka, Japan
| |
Collapse
|
11
|
Schubert K, Karkossa I, Schor J, Engelmann B, Steinheuer LM, Bruns T, Rolle-Kampczyk U, Hackermüller J, von Bergen M. A Multi-Omics Analysis of Mucosal-Associated-Invariant T Cells Reveals Key Drivers of Distinct Modes of Activation. Front Immunol 2021; 12:616967. [PMID: 34108957 PMCID: PMC8183572 DOI: 10.3389/fimmu.2021.616967] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/19/2021] [Indexed: 12/17/2022] Open
Abstract
The function of mucosal-associated invariant T (MAIT) cells highly depends on the mode of activation, either by recognition of bacterial metabolites via their T cell receptor (TCR) or in a TCR-independent manner via cytokines. The underlying molecular mechanisms are not entirely understood. To define the activation of MAIT cells on the molecular level, we applied a multi-omics approach with untargeted transcriptomics, proteomics and metabolomics. Transcriptomic analysis of E. coli- and TCR-activated MAIT cells showed a distinct transcriptional reprogramming, including altered pathways, transcription factors and effector molecules. We validated the consequences of this reprogramming on the phenotype by proteomics and metabolomics. Thus, and to distinguish between TCR-dependent and -independent activation, MAIT cells were stimulated with IL12/IL18, anti-CD3/CD28 or both. Only a combination of both led to full activation of MAIT cells, comparable to activation by E. coli. Using an integrated network-based approach, we identified key drivers of the distinct modes of activation, including cytokines and transcription factors, as well as negative feedback regulators like TWIST1 or LAG3. Taken together, we present novel insights into the biological function of MAIT cells, which may represent a basis for therapeutic approaches to target MAIT cells in pathological conditions.
Collapse
Affiliation(s)
- Kristin Schubert
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Isabel Karkossa
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Jana Schor
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Beatrice Engelmann
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Lisa Maria Steinheuer
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Tony Bruns
- Department of Medicine III, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen (RWTH), Aachen, Germany
| | - Ulrike Rolle-Kampczyk
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Jörg Hackermüller
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research (UFZ), Leipzig, Germany
- Institute of Biochemistry, Leipzig University, Leipzig, Germany
| |
Collapse
|
12
|
Mehdi SJ, Moerman-Herzog A, Wong HK. Normal and cancer fibroblasts differentially regulate TWIST1, TOX and cytokine gene expression in cutaneous T-cell lymphoma. BMC Cancer 2021; 21:492. [PMID: 33941102 PMCID: PMC8091512 DOI: 10.1186/s12885-021-08142-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 04/02/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Mycosis fungoides (MF) is a primary cutaneous T-cell lymphoma (CTCL) that transforms from mature, skin-homing T cells and progresses during the early stages in the skin. The role of the skin microenvironment in MF development is unclear, but recent findings in a variety of cancers have highlighted the role of stromal fibroblasts in promoting or inhibiting tumorigenesis. Stromal fibroblasts are an important part of the cutaneous tumor microenvironment (TME) in MF. Here we describe studies into the interaction of TME-fibroblasts and malignant T cells to gain insight into their role in CTCL. METHODS Skin from normal (n = 3) and MF patients (n = 3) were analyzed for FAPα by immunohistochemistry. MyLa is a CTCL cell line that retains expression of biomarkers TWIST1 and TOX that are frequently detected in CTCL patients. MyLa cells were cultured in the presence or absence of normal or MF skin derived fibroblasts for 5 days, trypsinized to detached MyL a cells, and gene expression analyzed by RT-PCR for MF biomarkers (TWIST1 and TOX), Th1 markers (IFNG, TBX21), Th2 markers (GATA3, IL16), and proliferation marker (MKI67). Purified fibroblasts were assayed for VIM and ACTA2 gene expression. Cellular senescence assay was performed to assess senescence. RESULTS MF skin fibroblast showed increased expression of FAP-α with increasing stage compared to normal. Normal fibroblasts co-cultured with MyLa cells suppressed expression of TWIST1 (p < 0.0006), and TOX (p < 0.03), GATA3 (p < 0.02) and IL16 (p < 0.03), and increased expression of IFNG (p < 0.03) and TBX21 (p < 0.03) in MyLa cells. In contrast, MyLa cells cultured with MF fibroblasts retained high expression of TWIST1, TOX and GATA3. MF fibroblasts co-culture with MyLa cells increased expression of IL16 (p < 0.01) and IL4 (p < 0.02), and suppressed IFNG and TBX21 in MyLa cells. Furthermore, expression of MKI67 in MyLa cells was suppressed by normal fibroblasts compared to MF fibroblasts. CONCLUSION Skin fibroblasts represent important components of the TME in MF. In co-culture model, normal and MF fibroblasts have differential influence on T-cell phenotype in modulating expression of Th1 cytokine and CTCL biomarker genes to reveal distinct roles with implications in MF progression.
Collapse
Affiliation(s)
- Syed Jafar Mehdi
- Department of Dermatology, University of Arkansas for Medical Sciences, 4301 West Markham St, #576, Little Rock, AR, 72205, USA
| | - Andrea Moerman-Herzog
- Department of Dermatology, University of Arkansas for Medical Sciences, 4301 West Markham St, #576, Little Rock, AR, 72205, USA
| | - Henry K Wong
- Department of Dermatology, University of Arkansas for Medical Sciences, 4301 West Markham St, #576, Little Rock, AR, 72205, USA.
| |
Collapse
|
13
|
Immunological memory in rheumatic inflammation - a roadblock to tolerance induction. Nat Rev Rheumatol 2021; 17:291-305. [PMID: 33824526 DOI: 10.1038/s41584-021-00601-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2021] [Indexed: 12/20/2022]
Abstract
Why do we still have no cure for chronic inflammatory diseases? One reason could be that current therapies are based on the assumption that chronic inflammation is driven by persistent 'acute' immune reactions. Here we discuss a paradigm shift by suggesting that beyond these reactions, chronic inflammation is driven by imprinted, pathogenic 'memory' cells of the immune system. This rationale is based on the observation that in patients with chronic inflammatory rheumatic diseases refractory to conventional immunosuppressive therapies, therapy-free remission can be achieved by resetting the immune system; that is, by ablating immune cells and regenerating the immune system from stem cells. The success of this approach identifies antigen-experienced and imprinted immune cells as essential and sufficient drivers of inflammation. The 'dark side' of immunological memory primarily involves memory plasma cells secreting pathogenic antibodies and memory T lymphocytes secreting pathogenic cytokines and chemokines, but can also involve cells of innate immunity. New therapeutic strategies should address the persistence of these memory cells. Selective targeting of pathogenic immune memory cells could be based on their specificity, which is challenging, or on their lifestyle, which differs from that of protective immune memory cells, in particular for pathogenic T lymphocytes. The adaptations of such pathogenic memory cells to chronic inflammation offers entirely new therapeutic options for their selective ablation and the regeneration of immunological tolerance.
Collapse
|
14
|
Ren J, Lu X, Griffiths R, Privratsky JR, Crowley SD. Twist1 in T Lymphocytes Augments Kidney Fibrosis after Ureteral Obstruction. KIDNEY360 2021; 2:784-794. [PMID: 35373065 PMCID: PMC8791343 DOI: 10.34067/kid.0007182020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/17/2021] [Indexed: 02/04/2023]
Abstract
Background Twist1 is a basic helix-loop-helix domain-containing transcription factor that participates in diverse cellular functions, including epithelial-mesenchymal transition and the cellular immune response. Although Twist1 plays critical roles in the initiation and progression of kidney diseases, the effects of Twist1 in the T lymphocyte on the progression of renal fibrosis require elucidation. Methods 129/SvEv mice with a floxed allele for the gene encoding Twist1 or TNFα were bred with CD4-Cre mice to yield CD4-Cre+ Twist1flox/flox (Twist1-TKO) or CD4-Cre+ TNFflox/flox (TNF-TKO) mice with robust, but selective, deletion of Twist1 or TNFα mRNA in T cells, respectively. Twist1 TKO, TNF TKO, and WT controls underwent UUO with assessment of kidney fibrosis and T-cell phenotype at 14 days. Results Compared with WT controls, obstructed kidneys from Twist1 TKO mice had attenuated extracellular matrix deposition. Despite this diminished fibrosis, Twist1 TKO obstructed kidneys contained more CD8+ T cells than in WTs. These intrarenal CD8+ T cells exhibited greater activation and higher levels of TNFα expression than those from WT obstructed kidneys. Further, we found that selective deletion of TNFα from T cells exaggerated renal scar formation and injury after UUO, highlighting the capacity of T-cell TNF to constrain fibrosis in the kidney. Conclusions Twist1 in T cells promotes kidney fibrogenesis, in part, by curtailing the renal accumulation of TNF-elaborating T cells.
Collapse
Affiliation(s)
- Jiafa Ren
- Division of Nephrology, Department of Medicine, Durham Veterans Affairs and Duke University Medical Center, Durham, North Carolina
| | - Xiaohan Lu
- Division of Nephrology, Department of Medicine, Durham Veterans Affairs and Duke University Medical Center, Durham, North Carolina
| | - Robert Griffiths
- Division of Nephrology, Department of Medicine, Durham Veterans Affairs and Duke University Medical Center, Durham, North Carolina
| | - Jamie R. Privratsky
- Department of Anesthesiology, Durham Veterans Affairs and Duke University Medical Center, Durham, North Carolina
| | - Steven D. Crowley
- Division of Nephrology, Department of Medicine, Durham Veterans Affairs and Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
15
|
Gene Expression Comparison between Sézary Syndrome and Lymphocytic-Variant Hypereosinophilic Syndrome Refines Biomarkers for Sézary Syndrome. Cells 2020; 9:cells9091992. [PMID: 32872487 PMCID: PMC7563155 DOI: 10.3390/cells9091992] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023] Open
Abstract
Sézary syndrome (SS), an aggressive cutaneous T-cell lymphoma (CTCL) with poor prognosis, is characterized by the clinical hallmarks of circulating malignant T cells, erythroderma and lymphadenopathy. However, highly variable clinical skin manifestations and similarities with benign mimickers can lead to significant diagnostic delay and inappropriate therapy that can lead to disease progression and mortality. SS has been the focus of numerous transcriptomic-profiling studies to identify sensitive and specific diagnostic and prognostic biomarkers. Benign inflammatory disease controls (e.g., psoriasis, atopic dermatitis) have served to identify chronic inflammatory phenotypes in gene expression profiles, but provide limited insight into the lymphoproliferative and oncogenic roles of abnormal gene expression in SS. This perspective was recently clarified by a transcriptome meta-analysis comparing SS and lymphocytic-variant hypereosinophilic syndrome, a benign yet often clonal T-cell lymphoproliferation, with clinical features similar to SS. Here we review the rationale for selecting lymphocytic-variant hypereosinophilic syndrome (L-HES) as a disease control for SS, and discuss differentially expressed genes that may distinguish benign from malignant lymphoproliferative phenotypes, including additional context from prior gene expression studies to improve understanding of genes important in SS.
Collapse
|
16
|
Hwang S, Lee C, Park K, Oh S, Jeon S, Kang B, Kim Y, Oh J, Jeon SH, Satake M, Taniuchi I, Lee H, Seong RH. Twist2 promotes CD8 + T-cell differentiation by repressing ThPOK expression. Cell Death Differ 2020; 27:3053-3064. [PMID: 32424141 DOI: 10.1038/s41418-020-0560-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 11/09/2022] Open
Abstract
CD4/CD8 T-cell lineage differentiation is a key process in immune system development; however, a defined regulator(s) that converts the signal from T-cell receptor and co-receptor complexes into lineage differentiation remains unclear. Here, we show that Twist2 is a critical factor in CD4/CD8 thymocyte differentiation. Twist2 expression is differentially regulated by T-cell receptor signaling, leading to differentiation into the CD4 or CD8 lineage. Forced Twist2 expression perturbed CD4+ thymocyte differentiation while enhancing CD8+ thymocyte differentiation. Furthermore, Twist2 expression produced mature CD8+ thymocytes in B2m-/- mice, while its deficiency significantly impaired CD8+ cells in MHC class-II-/- and TCR transgenic mice, favoring CD8 T-cell differentiation. During CD8 lineage differentiation, Twist2 interacted with Runx3 to bind to the silencer region of the ThPOK locus, thereby blocking ThPOK expression. These findings indicate that Twist2 is a part of the transcription factor network controlling CD8 lineage differentiation.
Collapse
Affiliation(s)
- Sunsook Hwang
- Department of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea
| | - Changjin Lee
- Department of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea.,Hugel, Inc., Chuncheon-si, Korea
| | - Kyungsoo Park
- Department of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea
| | - Sangwook Oh
- Department of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea
| | - Shin Jeon
- Department of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea
| | - Byeonggeun Kang
- Department of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea
| | - Yehyun Kim
- Department of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea
| | - Jaehak Oh
- Department of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea
| | - Sung Ho Jeon
- Department of Life Science, Hallym University, Chuncheon, Korea
| | - Masanobu Satake
- Department of Molecular Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RCAI, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Ho Lee
- Cancer Experimental Resources Branch, Research Institute, National Cancer Center, Goyang, Korea
| | - Rho Hyun Seong
- Department of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea.
| |
Collapse
|
17
|
Seo W, Taniuchi I. The Roles of RUNX Family Proteins in Development of Immune Cells. Mol Cells 2020; 43:107-113. [PMID: 31926543 PMCID: PMC7057832 DOI: 10.14348/molcells.2019.0291] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 12/12/2019] [Indexed: 02/04/2023] Open
Abstract
The Runt-related transcription factors (RUNX) transcription factors have been known for their critical roles in numerous developmental processes and diseases such as autoimmune disorders and cancer. Especially, RUNX proteins are best known for their roles in hematopoiesis, particularly during the development of T cells. As scientists discover more types of new immune cells, the functional diversity of RUNX proteins also has been increased over time. Furthermore, recent research has revealed complicated transcriptional networks involving RUNX proteins by the current technical advances. Databases established by next generation sequencing data analysis has identified ever increasing numbers of potential targets for RUNX proteins and other transcription factors. Here, we summarize diverse functions of RUNX proteins mainly on lymphoid lineage cells by incorporating recent discoveries.
Collapse
Affiliation(s)
- Wooseok Seo
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama 30-0045, Japan
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama 30-0045, Japan
| |
Collapse
|
18
|
Ren J, Crowley SD. Twist1: A Double-Edged Sword in Kidney Diseases. KIDNEY DISEASES 2020; 6:247-257. [PMID: 32903940 DOI: 10.1159/000505188] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/03/2019] [Indexed: 12/17/2022]
Abstract
Background Twist1 is a basic helix-loop-helix domain containing transcription factor that regulates cell differentiation, migration, proliferation, survival, and inflammatory responses by transcriptionally regulating a wide range of downstream target genes. Its homologous protein, Twist2, shares many structural and functional similarities with Twist1. Summary Accumulating evidence from both preclinical and clinical studies suggests that Twist1 is a pivotal regulator of several forms of renal disease. Twist1 is persistently activated following renal insults, particularly in chronic kidney diseases, and contributes to the renal inflammatory responses, tubular cell transformation programs, and possibly fibroblast activation, all of which are involved in the initiation and progression of kidney diseases. Key Message This review will specifically focus on Twist1 and outline our understanding of its functions in kidney disorders along with the introduction of Twist2 where pertinent. The thorough knowledge of Twist1's actions in the pathogenesis of kidney diseases should facilitate the development of novel therapeutics for kidney injury.
Collapse
Affiliation(s)
- Jiafa Ren
- Division of Nephrology, Department of Medicine, Duke University and Durham Veterans Affairs Medical Centers, Durham, North Carolina, USA
| | - Steven D Crowley
- Division of Nephrology, Department of Medicine, Duke University and Durham Veterans Affairs Medical Centers, Durham, North Carolina, USA
| |
Collapse
|
19
|
Silva PHL, Santos LN, Mendes MA, Nery JAC, Sarno EN, Esquenazi D. Involvement of TNF-Producing CD8 + Effector Memory T Cells with Immunopathogenesis of Erythema Nodosum Leprosum in Leprosy Patients. Am J Trop Med Hyg 2019; 100:377-385. [PMID: 30652669 DOI: 10.4269/ajtmh.18-0517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Type 2 reaction (T2R) or erythema nodosum leprosum (ENL), a sudden episode of acute inflammation predominantly affecting lepromatous leprosy patients (LL), characterized by a reduced cellular immune response. This possibly indicates a close relationship between the onset of T2R and the altered frequency, and functional activity of T lymphocytes, particularly of memory subsets. This study performed ex vivo and in vitro characterizations of T cell blood subpopulations from LL patients with or without T2R. In addition, the evaluation of activity of these subpopulations was performed by analyzing the frequency of these cells producing IFN-γ, TNF, and IL-10 by flow cytometry. Furthermore, the expression of transcription factors, for the differentiation of T cells, were analyzed by quantitative real-time polymerase chain reaction. Our results showed an increased frequency of CD8+/TNF+ effector memory T cells (TEM) among T2Rs. Moreover, there was evidence of a reduced frequency of CD4 and CD8+ IFN-γ-producing cells in T2R, and a reduced expression of STAT4 and TBX21. Finally, a significant and positive correlation between bacteriological index (BI) of T2R patients and CD4+/TNF+ and CD4+/IFN-γ+ T cells was observed. Thus, negative correlation between BI and the frequency of CD4+/IL-10+ T cells was noted. These results suggest that CD8+/TNF+ TEM are primarily responsible for the transient alteration in the immune response to Mycobacterium leprae in ENL patients. Thus, our study improves our understanding of pathogenic mechanisms and might suggest new therapeutic approaches for leprosy.
Collapse
Affiliation(s)
- Pedro Henrique L Silva
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Luciana N Santos
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Mayara A Mendes
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - José A C Nery
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Euzenir N Sarno
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Danuza Esquenazi
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,Department of Pathology and Laboratories, School of Medical Sciences, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
20
|
de Oliveira Boldrini V, Dos Santos Farias A, Degasperi GR. Deciphering targets of Th17 cells fate: From metabolism to nuclear receptors. Scand J Immunol 2019; 90:e12793. [PMID: 31141182 DOI: 10.1111/sji.12793] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 05/19/2019] [Accepted: 05/24/2019] [Indexed: 12/17/2022]
Abstract
Evidence indicates that reprogramming of metabolism is critically important for the differentiation of CD4 + T lymphocytes, and the manipulation of metabolic pathways in these cells may shape their fate and function. Distinct subgroups from T lymphocytes, such as Th17, adopt specific metabolic programmes to support their needs. Some important metabolic reactions, such as glycolysis, oxidative phosphorylation, are considered important for the differentiation of these lymphocytes. Since their discovery nearly a decade ago, Th17 lymphocytes have received significant attention because of their role in the pathology of several immune-mediated inflammatory diseases such as multiple sclerosis. In this review, it will be discussed as the involvement of T cell metabolism and as metabolic reprogramming in activated T cells dictates fate decisions to Th17. The involvement of nuclear receptors such as RORyt e PPARs in the induction of Th17 cells was also discussed. Understanding the metabolic pathways involved in the differentiation of the distinct subgroups of T lymphocytes helps in the design of promising therapeutic proposals.
Collapse
Affiliation(s)
- Vinícius de Oliveira Boldrini
- Autoimmune Research Laboratory, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil.,Neuroimmunology Unit, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| | - Alessandro Dos Santos Farias
- Autoimmune Research Laboratory, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil.,Neuroimmunology Unit, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| | | |
Collapse
|
21
|
Sun R, Hedl M, Abraham C. Twist1 and Twist2 Induce Human Macrophage Memory upon Chronic Innate Receptor Treatment by HDAC-Mediated Deacetylation of Cytokine Promoters. THE JOURNAL OF IMMUNOLOGY 2019; 202:3297-3308. [PMID: 31028123 DOI: 10.4049/jimmunol.1800757] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 04/01/2019] [Indexed: 12/19/2022]
Abstract
Intestinal tissues are continuously exposed to microbial products that stimulate pattern-recognition receptors (PRRs). Ongoing PRR stimulation can confer epigenetic changes in macrophages, which can then regulate subsequent immune outcomes and adaptation to the local environment. Mechanisms leading to these changes are incompletely understood. We found that short-term stimulation of the PRR NOD2 in primary human monocyte-derived macrophages resulted in increased H3 and H4 acetylation of cytokine promoters, consistent with the increased cytokine secretion observed. However, with prolonged NOD2 stimulation, both the acetylation and cytokine secretion were dramatically decreased. Chronic NOD2 stimulation upregulated the transcription factors Twist1 and Twist2, which bound to the promoters of the histone deacetylases HDAC1 and HDAC3 and induced HDAC1 and HDAC3 expression. HDAC1 and HDAC3 then mediated histone deacetylation at cytokine promoters and, in turn, cytokine downregulation under these conditions. Similar regulation was observed upon chronic stimulation of multiple PRRs. Consistent with the chronic microbial exposure in the intestinal environment, TWIST1, TWIST2, HDAC1, and HDAC3 were upregulated in human intestinal relative to peripheral macrophages. Importantly, complementing HDAC1 and HDAC3 in Twist1/Twist2-deficient monocyte-derived macrophages restored the reduced histone acetylation on cytokine promoters and the decreased cytokine secretion with chronic NOD2 stimulation. Taken together, we identify mechanisms wherein Twist1 and Twist2 promote chromatin modifications, resulting in macrophage instruction and adaptation to conditions in the intestinal microenvironment.
Collapse
Affiliation(s)
- Rui Sun
- Department of Internal Medicine, Yale University, New Haven, CT 06510
| | - Matija Hedl
- Department of Internal Medicine, Yale University, New Haven, CT 06510
| | - Clara Abraham
- Department of Internal Medicine, Yale University, New Haven, CT 06510
| |
Collapse
|
22
|
RARα supports the development of Langerhans cells and langerin-expressing conventional dendritic cells. Nat Commun 2018; 9:3896. [PMID: 30254197 PMCID: PMC6156335 DOI: 10.1038/s41467-018-06341-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 08/29/2018] [Indexed: 01/11/2023] Open
Abstract
Langerhans cells (LC) are the prototype langerin-expressing dendritic cells (DC) that reside specifically in the epidermis, but langerin-expressing conventional DCs also reside in the dermis and other tissues, yet the factors that regulate their development are unclear. Because retinoic acid receptor alpha (RARα) is highly expressed by LCs, we investigate the functions of RARα and retinoic acid (RA) in regulating the langerin-expressing DCs. Here we show that the development of LCs from embryonic and bone marrow-derived progenitors and langerin+ conventional DCs is profoundly regulated by the RARα-RA axis. During LC differentiation, RARα is required for the expression of a LC-promoting transcription factor Runx3, but suppresses that of LC-inhibiting C/EBPβ. RARα promotes the development of LCs and langerin+ conventional DCs only in hypo-RA conditions, a function effectively suppressed at systemic RA levels. Our findings identify positive and negative regulatory mechanisms to tightly regulate the development of the specialized DC populations. Langerhans cells (LC) and langerin-expressing conventional dendritic cells are made from distinct progenitors and enriched in the distinct microenvironments of the skin. Here the authors show that these immune cells are regulated by retinoic acid receptor alpha (RARα) via simultaneous induction of LC-promoting Runx3 and repression of LC-inhibiting C/EBPβ.
Collapse
|
23
|
Yin S, Yu J, Hu B, Lu C, Liu X, Gao X, Li W, Zhou L, Wang J, Wang D, Lu L, Wang L. Runx3 Mediates Resistance to Intracellular Bacterial Infection by Promoting IL12 Signaling in Group 1 ILC and NCR+ILC3. Front Immunol 2018; 9:2101. [PMID: 30258450 PMCID: PMC6144956 DOI: 10.3389/fimmu.2018.02101] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/24/2018] [Indexed: 12/20/2022] Open
Abstract
Innate lymphoid cells (ILCs) are the most recently identified family of the innate immune system and are hypothesized to modulate immune functions prior to the generation of adaptive immune responses. Subsets of ILCs reside in the mucosa and regulate immune responses to external pathogens; however, their role and the mechanism by which they protect against intracellular bacterial infection is not completely understood. In this report, using S. typhimurium and L. monocytogenes, we found that the levels of group 1 ILCs and NCR+ ILC3s were increased upon infection and that these increases were associated with Runt-related transcription factor 3 (Runx3) expression. Runx3 fl/fl PLZF-cre mice were much more sensitive to infection with the intracellular bacterial pathogens S. typhimurium and L. monocytogenes partially due to abnormal Group 1 ILC and NCR+ILC3 function. We also found that Runx3 directly binds to the Il12Rβ2 promoter and intron 8 to accelerate the expression of Il12Rβ2 and modulates IFNγ secretion triggered by the IL12/ STAT4 axis. Therefore, we demonstrate that Runx3 influences group 1 ILC- and NCR+ILC3-mediated immune protection against intracellular bacterial infections of both the gut and liver.
Collapse
Affiliation(s)
- Shengxia Yin
- Institute of Immunology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Jingjing Yu
- Institute of Immunology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Bian Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chenyu Lu
- Institute of Immunology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Xia Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Department of Laboratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xianzhi Gao
- Institute of Immunology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Wei Li
- Laboraty Animal Center, Zhejiang University, Hangzhou, China
| | - Lina Zhou
- Institute of Immunology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Jianli Wang
- Institute of Immunology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Di Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Linrong Lu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Lie Wang
- Institute of Immunology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.,Laboraty Animal Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Ni L, Lu J. Interferon gamma in cancer immunotherapy. Cancer Med 2018; 7:4509-4516. [PMID: 30039553 PMCID: PMC6143921 DOI: 10.1002/cam4.1700] [Citation(s) in RCA: 254] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 06/19/2018] [Accepted: 07/03/2018] [Indexed: 12/12/2022] Open
Abstract
Immune system can recognize self vs transformed self. That is why cancer immunotherapy achieves notable benefits in a wide variety of cancers. Recently, several papers reported that immune checkpoint blockade therapy led to upregulation of IFNγ and in turn clearance of tumor cells. In this review, we conducted an extensive literature search of recent 5-year studies about the roles of IFNγ signaling in both tumor immune surveillance and immune evasion. In addition to well-known functions, IFNγ signaling also induces tumor ischemia and homeostasis program, resulting in tumor clearance and tumor escape, respectively. The yin and the yang of IFNγ signaling are summarized. Thus, this review helps us to comprehensively understand the roles of IFNγ in tumor immunity, which contributes to better design and management of clinical immunotherapy approaches.
Collapse
Affiliation(s)
- Ling Ni
- Institute for Immunology and School of MedicineTsinghua UniversityBeijingChina
| | - Jian Lu
- Department of UrologyPeking University Third HospitalBeijingChina
| |
Collapse
|
25
|
Kim DH, Park HJ, Lim S, Koo JH, Lee HG, Choi JO, Oh JH, Ha SJ, Kang MJ, Lee CM, Lee CG, Elias JA, Choi JM. Regulation of chitinase-3-like-1 in T cell elicits Th1 and cytotoxic responses to inhibit lung metastasis. Nat Commun 2018; 9:503. [PMID: 29403003 PMCID: PMC5799380 DOI: 10.1038/s41467-017-02731-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 12/20/2017] [Indexed: 01/30/2023] Open
Abstract
Chitinase-3-like-1 (Chi3l1) is known to play a significant role in the pathogenesis of Type 2 inflammation and cancer. However, the function of Chi3l1 in T cell and its clinical implications are largely unknown. Here we show that Chi3l1 expression was increased in activated T cells, especially in Th2 cells. In addition, Chi3l1-deficient T cells are hyper-responsive to TcR stimulation and are prone to differentiating into Th1 cells. Chi3l1-deficient Th1 cells show increased expression of anti-tumor immunity genes and decreased Th1 negative regulators. Deletion of Chi3l1 in T cells in mice show reduced melanoma lung metastasis with increased IFNγ and TNFα-producing T cells in the lung. Furthermore, silencing of Chi3l1 expression in the lung using peptide-siRNA complex (dNP2-siChi3l1) efficiently inhibit lung metastasis with enhanced Th1 and CTL responses. Collectively, this study demonstrates Chi3l1 is a regulator of Th1 and CTL which could be a therapeutic target to enhance anti-tumor immunity.
Collapse
Affiliation(s)
- Do-Hyun Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Korea
| | - Hong-Jai Park
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Sangho Lim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Korea
| | - Ja-Hyun Koo
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Korea
| | - Hong-Gyun Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Korea
| | - Jin Ouk Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Korea
| | - Ji Hoon Oh
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Min-Jong Kang
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Chang-Min Lee
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912, USA
| | - Chun Geun Lee
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912, USA
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, 04763, Korea
| | - Jack A Elias
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912, USA
- Division of Medical and Biological Sciences, Warren Alpert Medical School, Brown University, Providence, RI, 02903, USA
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Korea.
- Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Korea.
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, 16419, Korea.
| |
Collapse
|
26
|
Huang S, Shen Y, Pham D, Jiang L, Wang Z, Kaplan MH, Zhang G, Sun J. IRF4 Modulates CD8 + T Cell Sensitivity to IL-2 Family Cytokines. Immunohorizons 2017; 1:92-100. [PMID: 29564420 PMCID: PMC5858712 DOI: 10.4049/immunohorizons.1700020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
IFN regulatory factor 4 (IRF4) is a key transcription factor that promotes effector CD8+ T cell differentiation and expansion. The roles of IRF4 in regulating the CD8+ T cell response to cytokines have not been explored. In this article, we show that IL-2 and IL-15 signaling and STAT5 activation regulate IRF4 expression in CD8+ T cells. Gene-expression profile analysis has also revealed that IRF4 is required for expression of the receptors of IL-2 family cytokines CD122 and CD127. We found that IRF4 binds directly to CD122 and CD127 gene loci, indicating that it may directly promote CD122 and CD127 gene transcription. As a consequence, IRF4-deficient CD8+ T cells show diminished sensitivity to IL-2, IL-15, and IL-7 treatment in vitro. Furthermore, we found that IRF4-deficient CD8+ T cells had lower expression of CD122 and CD127 in vivo during influenza virus infection. These data suggest that IRF4 regulates the sensitivity of CD8+ T cells to IL-2 family cytokines, which correlates with the diminished effector and memory CD8+ T cell responses in IRF4-deficient CD8+ T cells.
Collapse
Affiliation(s)
- Su Huang
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
- Herman B Wells Pediatric Research Center, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Yingjia Shen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Duy Pham
- Herman B Wells Pediatric Research Center, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Li Jiang
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Zheng Wang
- Herman B Wells Pediatric Research Center, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Mark H. Kaplan
- Herman B Wells Pediatric Research Center, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Guangjun Zhang
- Department of Comparative Pathobiology, Center for Cancer Research, Purdue University, West Lafayette, IN 47907
| | - Jie Sun
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
- Herman B Wells Pediatric Research Center, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
27
|
Roberts CM, Shahin SA, Loeza J, Dellinger TH, Williams JC, Glackin CA. Disruption of TWIST1-RELA binding by mutation and competitive inhibition to validate the TWIST1 WR domain as a therapeutic target. BMC Cancer 2017; 17:184. [PMID: 28283022 PMCID: PMC5345230 DOI: 10.1186/s12885-017-3169-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 03/04/2017] [Indexed: 11/15/2022] Open
Abstract
Background Most cancer deaths result from tumor cells that have metastasized beyond their tissue of origin, or have developed drug resistance. Across many cancer types, patients with advanced stage disease would benefit from a novel therapy preventing or reversing these changes. To this end, we have investigated the unique WR domain of the transcription factor TWIST1, which has been shown to play a role in driving metastasis and drug resistance. Methods In this study, we identified evolutionarily well-conserved residues within the TWIST1 WR domain and used alanine substitution to determine their role in WR domain-mediated protein binding. Co-immunoprecipitation was used to assay binding affinity between TWIST1 and the NFκB subunit p65 (RELA). Biological activity of this complex was assayed using a dual luciferase assay system in which firefly luciferase was driven by the interleukin-8 (IL-8) promoter, which is upregulated by the TWIST1-RELA complex. Finally, in order to inhibit the TWIST1-RELA interaction, we created a fusion protein comprising GFP and the WR domain. Cell fractionation and proteasome inhibition experiments were utilized to elucidate the mechanism of action of the GFP-WR fusion. Results We found that the central residues of the WR domain (W190, R191, E193) were important for TWIST1 binding to RELA, and for increased activation of the IL-8 promoter. We also found that the C-terminal 245 residues of RELA are important for TWIST1 binding and IL-8 promoter activation. Finally, we found the GFP-WR fusion protein antagonized TWIST1-RELA binding and downstream signaling. Co-expression of GFP-WR with TWIST1 and RELA led to proteasomal degradation of TWIST1, which could be inhibited by MG132 treatment. Conclusions These data provide evidence that mutation or inhibition of the WR domain reduces TWIST1 activity, and may represent a potential therapeutic modality. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3169-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cai M Roberts
- City of Hope, 1500 E Duarte Rd, Duarte, CA, 91010, USA.,Present address: Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | | | - Joana Loeza
- California State University, 5151 State University Drive, Los Angeles, CA, 90032, USA.,Present address: University of California, San Francisco, 505 Parnassus Ave, San Francisco, CA, 94143, USA
| | | | | | | |
Collapse
|
28
|
Roberts AR, Vecellio M, Chen L, Ridley A, Cortes A, Knight JC, Bowness P, Cohen CJ, Wordsworth BP. An ankylosing spondylitis-associated genetic variant in the IL23R-IL12RB2 intergenic region modulates enhancer activity and is associated with increased Th1-cell differentiation. Ann Rheum Dis 2016; 75:2150-2156. [PMID: 26916345 PMCID: PMC5136719 DOI: 10.1136/annrheumdis-2015-208640] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 02/02/2016] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To explore the functional basis for the association between ankylosing spondylitis (AS) and single-nucleotide polymorphisms (SNPs) in the IL23R-IL12RB2 intergenic region. METHODS We performed conditional analysis on genetic association data and used epigenetic data on chromatin remodelling and transcription factor (TF) binding to identify the primary AS-associated IL23R-IL12RB2 intergenic SNP. Functional effects were tested in luciferase reporter assays in HEK293T cells and allele-specific TF binding was investigated by electrophoretic mobility gel shift assays. IL23R and IL12RB2 mRNA levels in CD4+ T cells were compared between cases homozygous for the AS-risk 'A' allele and the protective 'G' allele. The proportions of interleukin (IL)-17A+ and interferon (IFN)-γ+ CD4+ T-cells were measured by fluorescence-activated cell sorting and compared between these AS-risk and protective genotypes. RESULTS Conditional analysis identified rs11209032 as the probable causal SNP within a 1.14 kb putative enhancer between IL23R and IL12RB2. Reduced luciferase activity was seen for the risk allele (p<0.001) and reduced H3K4me1 methylation observed in CD4+ T-cells from 'A/A' homozygotes (p=0.02). The binding of nuclear extract to the risk allele was decreased ∼3.5-fold compared with the protective allele (p<0.001). The proportion of IFN-γ+ CD4+ T-cells was increased in 'A/A' homozygotes (p=0.004), but neither IL23R nor IL12RB2 mRNA was affected. CONCLUSIONS The rs11209032 SNP downstream of IL23R forms part of an enhancer, allelic variation of which may influence Th1-cell numbers. Homozygosity for the risk 'A' allele is associated with more IFN-γ-secreting (Th1) cells. Further work is necessary to explain the mechanisms for these important observations.
Collapse
Affiliation(s)
- Amity R Roberts
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| | - Matteo Vecellio
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| | - Liye Chen
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| | - Anna Ridley
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| | - Adrian Cortes
- Division of Clinical Neurology, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Wellcome Trust Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, UK
| | - Julian C Knight
- Wellcome Trust Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, UK
| | - Paul Bowness
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| | - Carla J Cohen
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| | - B Paul Wordsworth
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| |
Collapse
|
29
|
Fan L, Wang X, Fan L, Chen Q, Zhang H, Pan H, Xu A, Wang H, Yu Y. MicroRNA-145 influences the balance of Th1/Th2 via regulating RUNX3 in asthma patients. Exp Lung Res 2016; 42:417-424. [PMID: 27902892 DOI: 10.1080/01902148.2016.1256452] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIM OF THE STUDY To delineate the underlying mechanism of microRNA-145 modulate the balance of Th1/Th2 via targeting RUNX3 in asthma patients. MATERIALS AND METHODS Peripheral blood samples were collected from asthma patients and healthy controls. CD4+ T cells were isolated and cultured. Using quantitative PCR detect, the level of microRNA-145 and RUNX3 mRNA level in the CD4+ T cells from asthma patients and healthy controls, meanwhile, western blot was used to detect the RUNX3 protein level. Th1 or Th2 related cytokines were measured by enzyme-linked immunosorbent assay. Dual-Luciferase Reporter Assay was performed to confirm the correlation between microRNA-145 and RUNX3. MicroRNA-145 mimic or inhibitor was transfected in the CD4+ T cells and the changes of RUNX3 level, Th1 or Th2 related cytokines and the percentage of Th1 and Th2 were observed after transfection. RESULTS MicroRNA-145 level of CD4+ T cells was higher with a lower RUNX3 expression in asthma patients. There is negative correlation between microRNA-145 and RUNX3. Th2 hyperactivity and Th1 deficiency was detected in the CD4+ T cells of asthma patients. Dual-Luciferase Reporter Assay has shown that RUNX3 is a target of microRNA. Up-regulation or down-regulation of miR-145 level caused RUNX3 expression changes in CD4+ T cells and influence the related cytokines. Inhibition of microRNA-145 may reverse the imbalance of Th1/Th2 in asthma patients. CONCLUSION MicroRNA-145 could regulate the balance of Th1/Th2 through targeting the RUNX3 in asthma patients. MicroRNA-145 and RUNX3 may be used as biomarkers or targets in the diagnosis or therapy of asthma.
Collapse
Affiliation(s)
- Linxia Fan
- a Respiratory Department in the Cadre Ward , Gansu Provincial Hospital , Lanzhou , China
| | - Xiaojun Wang
- b Respiratory Department , Gansu Provincial Hospital , Lanzhou , China
| | - Linlan Fan
- c Medical Experimental Center of Lanzhou University , Lanzhou , China
| | - Qizhang Chen
- a Respiratory Department in the Cadre Ward , Gansu Provincial Hospital , Lanzhou , China
| | - Hong Zhang
- d Asthma Center of the Gansu Provincial Hospital , Lanzhou , China
| | - Hui Pan
- e Department of Internet Information , Gansu Provincial Hospital , Lanzhou , China
| | - Aixia Xu
- f Department of Pharmacy , Gansu Provincial Hospital , Lanzhou , China
| | - Hongjuan Wang
- a Respiratory Department in the Cadre Ward , Gansu Provincial Hospital , Lanzhou , China
| | - Yang Yu
- g Department of Internal Medicine , Traditional Chinese Medicine Hospital of Lintao County , Lintao , China
| |
Collapse
|
30
|
|
31
|
Vargas JE, de Souza APD, Porto BN, Fazolo T, Mayer FQ, Pitrez PM, Stein RT. Immunomodulator plasmid projected by systems biology as a candidate for the development of adjunctive therapy for respiratory syncytial virus infection. Med Hypotheses 2015; 88:86-90. [PMID: 26601594 DOI: 10.1016/j.mehy.2015.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 11/08/2015] [Indexed: 12/24/2022]
Abstract
An imbalance in Th1/Th2 cytokine immune response has been described to influence the pathogenesis of respiratory syncytial virus (RSV) acute bronchiolitis and the severity of infection. Th2-driven response has been well described under first RSV vaccine (formalin-inactivated RSV vaccine antigens) and replicated in some conditions for RSV-infected mice, in which a Th2-dependent lung eosinophilia increases illness severity, accompanied of tissue damage. Currently, several prototypes of RSV vaccine are being tested, but there is no vaccine available so far. The advance of bioinformatics can help to solve this issue. Systems biology approaches based on network topological analysis may help to identify new genes in order to direct Th1 immune response during RSV challenge. For this purpose, network centrality analyses from high-throughput experiments were performed in order to select major genes enrolled in each T-helper immune response. Thus, genes termed Hub (B) and bottlenecks (H), which control the flow of biological information (Th1 or Th2 immune response, in this case) within the network, would be identified. As these genes possess high potential to promote Th1 immune response, they could be cloned under regulation of specific promoters in a plasmid, which will be available as a gene-transfer adjunctive to vaccines. Th1 immune response potentiated by our strategy may contribute to accelerate Th1/Th2 shift from neonatal immune system, which might favor protective immunity against RSV infection and reduce lung damage.
Collapse
Affiliation(s)
- José Eduardo Vargas
- Centro Infant - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 2° andar, 90610-000 Porto Alegre, RS, Brazil.
| | - Ana Paula Duarte de Souza
- Centro Infant - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 2° andar, 90610-000 Porto Alegre, RS, Brazil
| | - Bárbara Nery Porto
- Centro Infant - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 2° andar, 90610-000 Porto Alegre, RS, Brazil
| | - Tiago Fazolo
- Departamento de Biologia Celular e Molecular, FABIO, Instituto de Pesquisas Biomédicas, PUCRS, Av. Ipiranga, 6690 2° andar, 90610-000 Porto Alegre, RS, Brazil
| | - Fabiana Quoos Mayer
- Laboratório de Biologia Molecular, Instituto de Pesquisas Veterinárias Desidério Finamor, Fundação Estadual de Pesquisa Agropecuária, Estrada do Conde, 6000, Eldorado do Sul, RS 92990-000, Brazil
| | - Paulo Márcio Pitrez
- Centro Infant - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 2° andar, 90610-000 Porto Alegre, RS, Brazil
| | - Renato Tetelbom Stein
- Centro Infant - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 2° andar, 90610-000 Porto Alegre, RS, Brazil
| |
Collapse
|
32
|
Nuti SV, Mor G, Li P, Yin G. TWIST and ovarian cancer stem cells: implications for chemoresistance and metastasis. Oncotarget 2015; 5:7260-71. [PMID: 25238494 PMCID: PMC4202121 DOI: 10.18632/oncotarget.2428] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The transcription factor TWIST1 is a highly evolutionally conserved basic Helix-Loop-Helix (bHLH) transcription factor that functions as a master regulator of gastrulation and mesodermal development. Although TWIST1 was initially associated with embryo development, an increasing number of studies have shown TWIST1 role in the regulation of tissue homeostasis, primarily as a regulator of inflammation. More recently, TWIST1 has been found to be involved in the process of tumor metastasis through the regulation of Epithelial Mesenchymal Transition (EMT). The objective of this review is to examine the normal functions of TWIST1 and its role in tumor development, with a particular focus on ovarian cancer. We discuss the potential role of TWIST1 in the context of ovarian cancer stem cells and its influence in the process of tumor formation.
Collapse
Affiliation(s)
- Sudhakar V Nuti
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Gil Mor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Peiyao Li
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Gang Yin
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
33
|
Zheng S, Hedl M, Abraham C. Twist1 and Twist2 Contribute to Cytokine Downregulation following Chronic NOD2 Stimulation of Human Macrophages through the Coordinated Regulation of Transcriptional Repressors and Activators. THE JOURNAL OF IMMUNOLOGY 2015; 195:217-26. [PMID: 26019273 DOI: 10.4049/jimmunol.1402808] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 04/27/2015] [Indexed: 12/13/2022]
Abstract
Proper regulation of microbial-induced cytokines is critical to intestinal immune homeostasis. Acute stimulation of nucleotide-binding oligomerization domain 2 (NOD2), the Crohn's disease-associated sensor of bacterial peptidoglycan, induces cytokines. However, chronic NOD2 stimulation in macrophages decreases cytokines upon pattern recognition receptor (PRR) restimulation; cytokine attenuation to PRR stimulation is similarly observed in intestinal macrophages. The role for the transcriptional repressors Twist1 and Twist2 in regulating PRR-induced cytokine outcomes is poorly understood and has not been reported for NOD2. We found that Twist1 and Twist2 were required for optimal cytokine downregulation during acute and, particularly, chronic NOD2 stimulation of human macrophages. Consistently, Twist1 and Twist2 expression was increased after chronic NOD2 stimulation; this increased expression was IL-10 and TGF-β dependent. Although Twist1 and Twist2 did not coregulate each other's expression, they cooperated to enhance binding to cytokine promoters after chronic NOD2 stimulation. Moreover, Twist1 and Twist2 contributed to enhance expression and promoter binding of the proinflammatory inhibitor c-Maf and the transcriptional repressor Bmi1. Restoring c-Maf and Bmi1 expression in Twist-deficient macrophages restored NOD2-induced cytokine downregulation. Furthermore, with chronic NOD2 stimulation, Twist1 and Twist2 contributed to the decreased expression and cytokine promoter binding of the transcriptional activators activating transcription factor 4, C/EBPα, Runx1, and Runx2. Knockdown of these transcriptional activators in Twist-deficient macrophages restored cytokine downregulation after chronic NOD2 stimulation. Finally, NOD2 synergized with additional PRRs to increase Twist1 and Twist2 expression and Twist-dependent pathways. Therefore, after chronic NOD2 stimulation Twist1 and Twist2 coordinate the regulation of both transcriptional activators and repressors, thereby mediating optimal cytokine downregulation.
Collapse
Affiliation(s)
- Shasha Zheng
- Department of Internal Medicine, Yale University, New Haven, CT 06520
| | - Matija Hedl
- Department of Internal Medicine, Yale University, New Haven, CT 06520
| | - Clara Abraham
- Department of Internal Medicine, Yale University, New Haven, CT 06520
| |
Collapse
|
34
|
Promoter-Specific Hypomethylation Is Associated with Overexpression of PLS3, GATA6, and TWIST1 in the Sezary Syndrome. J Invest Dermatol 2015; 135:2084-2092. [PMID: 25806852 DOI: 10.1038/jid.2015.116] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 10/25/2014] [Accepted: 11/11/2014] [Indexed: 11/09/2022]
Abstract
The Sézary Syndrome (SS) is an aggressive CD4+ leukemic variant of cutaneous T-cell lymphoma. Epigenetic modification of cancer cell genome is often linked to the expression of important cancer-related genes. Here we addressed the hypothesis that, in SS, DNA hypomethylation is involved in upregulation of PLS3, GATA6, and TWIST1, genes that are undetected in normal lymphocytes. Pyrosequencing analysis of CpG rich regions, and CpG dinucleotides within the 5' regulatory regions, confirmed hypomethylation of all three genes in SS, compared with controls. We then studied how methylation regulates PLS3 transcription in vitro using PLS3-negative (Jurkat) and PLS3-positive (HT-1080) cell lines. Treatment with the hypomethylating agent 5-azacytidine induced PLS3 expression in Jurkat cells and in vitro methylation of the cloned PLS3 promoter suppressed luciferase expression in HT-1080 cells. In conclusion, we show that promoter hypomethylation is associated with PLS3, GATA6, and TWIST1 overexpression in SS CD4+ T cells and that methylation can regulate PLS3 expression in vitro. The mechanisms of DNA hypomethylation in vivo and the functional role of PLS3, TWIST1, and GATA6 in SS are being investigated.
Collapse
|
35
|
Effector Vγ9Vδ2 T cells dominate the human fetal γδ T-cell repertoire. Proc Natl Acad Sci U S A 2015; 112:E556-65. [PMID: 25617367 DOI: 10.1073/pnas.1412058112] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
γδ T cells are unconventional T cells recognizing antigens via their γδ T-cell receptor (TCR) in a way that is fundamentally different from conventional αβ T cells. γδ T cells usually are divided into subsets according the type of Vγ and/or Vδ chain they express in their TCR. T cells expressing the TCR containing the γ-chain variable region 9 and the δ-chain variable region 2 (Vγ9Vδ2 T cells) are the predominant γδ T-cell subset in human adult peripheral blood. The current thought is that this predominance is the result of the postnatal expansion of cells expressing particular complementary-determining region 3 (CDR3) in response to encounters with microbes, especially those generating phosphoantigens derived from the 2-C-methyl-d-erythritol 4-phosphate pathway of isoprenoid synthesis. However, here we show that, rather than requiring postnatal microbial exposure, Vγ9Vδ2 T cells are the predominant blood subset in the second-trimester fetus, whereas Vδ1(+) and Vδ3(+) γδ T cells are present only at low frequencies at this gestational time. Fetal blood Vγ9Vδ2 T cells are phosphoantigen responsive and display very limited diversity in the CDR3 of the Vγ9 chain gene, where a germline-encoded sequence accounts for >50% of all sequences, in association with a prototypic CDR3δ2. Furthermore, these fetal blood Vγ9Vδ2 T cells are functionally preprogrammed (e.g., IFN-γ and granzymes-A/K), with properties of rapidly activatable innatelike T cells. Thus, enrichment for phosphoantigen-responsive effector T cells has occurred within the fetus before postnatal microbial exposure. These various characteristics have been linked in the mouse to the action of selecting elements and would establish a much stronger parallel between human and murine γδ T cells than is usually articulated.
Collapse
|
36
|
Helmstetter C, Flossdorf M, Peine M, Kupz A, Zhu J, Hegazy AN, Duque-Correa MA, Zhang Q, Vainshtein Y, Radbruch A, Kaufmann SH, Paul WE, Höfer T, Löhning M. Individual T helper cells have a quantitative cytokine memory. Immunity 2015; 42:108-22. [PMID: 25607461 PMCID: PMC4562415 DOI: 10.1016/j.immuni.2014.12.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 11/14/2014] [Accepted: 12/19/2014] [Indexed: 12/24/2022]
Abstract
The probabilistic expression of cytokine genes in differentiated T helper (Th) cell populations remains ill defined. By single-cell analyses and mathematical modeling, we show that one stimulation featured stable cytokine nonproducers as well as stable producers with wide cell-to-cell variability in the magnitude of expression. Focusing on interferon-γ (IFN-γ) expression by Th1 cells, mathematical modeling predicted that this behavior reflected different cell-intrinsic capacities and not mere gene-expression noise. In vivo, Th1 cells sort purified by secreted IFN-γ amounts preserved a quantitative memory for both probability and magnitude of IFN-γ re-expression for at least 1 month. Mechanistically, this memory resulted from quantitatively distinct transcription of individual alleles and was controlled by stable expression differences of the Th1 cell lineage-specifying transcription factor T-bet. Functionally, Th1 cells with graded IFN-γ production competence differentially activated Salmonella-infected macrophages for bacterial killing. Thus, individual Th cells commit to produce distinct amounts of a given cytokine, thereby generating functional intrapopulation heterogeneity.
Collapse
Affiliation(s)
- Caroline Helmstetter
- Experimental Immunology, Department of Rheumatology and Clinical Immunology, Charité-University Medicine Berlin, 10117 Berlin, Germany; German Rheumatism Research Center (DRFZ), a Leibniz Institute, 10117 Berlin, Germany
| | - Michael Flossdorf
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Bioquant Center, University of Heidelberg, 69120 Heidelberg, Germany
| | - Michael Peine
- Experimental Immunology, Department of Rheumatology and Clinical Immunology, Charité-University Medicine Berlin, 10117 Berlin, Germany; German Rheumatism Research Center (DRFZ), a Leibniz Institute, 10117 Berlin, Germany
| | - Andreas Kupz
- Department of Immunology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany; Queensland Tropical Health Alliance Research Laboratory, James Cook University, Cairns Campus, Smithfield, QLD 4878, Australia
| | - Jinfang Zhu
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Ahmed N Hegazy
- Experimental Immunology, Department of Rheumatology and Clinical Immunology, Charité-University Medicine Berlin, 10117 Berlin, Germany; German Rheumatism Research Center (DRFZ), a Leibniz Institute, 10117 Berlin, Germany; Department of Gastroenterology, Hepatology and Endocrinology, Charité, 10117 Berlin, Germany
| | - Maria A Duque-Correa
- Department of Immunology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - Qin Zhang
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Bioquant Center, University of Heidelberg, 69120 Heidelberg, Germany
| | - Yevhen Vainshtein
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Bioquant Center, University of Heidelberg, 69120 Heidelberg, Germany
| | - Andreas Radbruch
- German Rheumatism Research Center (DRFZ), a Leibniz Institute, 10117 Berlin, Germany
| | - Stefan H Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - William E Paul
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Bioquant Center, University of Heidelberg, 69120 Heidelberg, Germany.
| | - Max Löhning
- Experimental Immunology, Department of Rheumatology and Clinical Immunology, Charité-University Medicine Berlin, 10117 Berlin, Germany; German Rheumatism Research Center (DRFZ), a Leibniz Institute, 10117 Berlin, Germany.
| |
Collapse
|
37
|
Pham D, Sehra S, Sun X, Kaplan MH. The transcription factor Etv5 controls TH17 cell development and allergic airway inflammation. J Allergy Clin Immunol 2014; 134:204-14. [PMID: 24486067 PMCID: PMC4209254 DOI: 10.1016/j.jaci.2013.12.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 11/05/2013] [Accepted: 12/06/2013] [Indexed: 10/25/2022]
Abstract
BACKGROUND The differentiation of TH17 cells, which promote pulmonary inflammation, requires the cooperation of a network of transcription factors. OBJECTIVES We sought to define the role of Etv5, an Ets-family transcription factor, in TH17 cell development and function. METHODS TH17 development was examined in primary mouse T cells wherein Etv5 expression was altered by retroviral transduction, small interfering RNA targeting a specific gene, and mice with a conditional deletion of Etv5 in T cells. The direct function of Etv5 on the Il17 locus was tested with chromatin immunoprecipitation and reporter assays. The house dust mite-induced allergic inflammation model was used to test the requirement for Etv5-dependent TH17 functions in vivo. RESULTS We identify Etv5 as a signal transducer and activator of transcription 3-induced positive regulator of TH17 development. Etv5 controls TH17 differentiation by directly promoting Il17a and Il17f expression. Etv5 recruits histone-modifying enzymes to the Il17a-Il17f locus, resulting in increased active histone marks and decreased repressive histone marks. In a model of allergic airway inflammation, mice with Etv5-deficient T cells have reduced airway inflammation and IL-17A/F production in the lung and bronchoalveolar lavage fluid compared with wild-type mice, without changes in TH2 cytokine production. CONCLUSIONS These data define signal transducer and activator of transcription 3-dependent feed-forward control of TH17 cytokine production and a novel role for Etv5 in promoting T cell-dependent airway inflammation.
Collapse
Affiliation(s)
- Duy Pham
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Ind; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Ind
| | - Sarita Sehra
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Ind
| | - Xin Sun
- Laboratory of Genetics, University of Wisconsin-Madison, Wis
| | - Mark H Kaplan
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Ind; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Ind.
| |
Collapse
|
38
|
Merindol N, Riquet A, Szablewski V, Eliaou JF, Puisieux A, Bonnefoy N. The emerging role of Twist proteins in hematopoietic cells and hematological malignancies. Blood Cancer J 2014; 4:e206. [PMID: 24769647 PMCID: PMC4003416 DOI: 10.1038/bcj.2014.22] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 03/17/2014] [Indexed: 02/03/2023] Open
Abstract
Twist1 and Twist2 (Twist1–2) are two transcription factors, members of the basic helix-loop-helix family, that have been well established as master transcriptional regulators of embryogenesis and developmental programs of mesenchymal cell lineages. Their role in oncogenesis in epithelium-derived cancer and in epithelial-to-mesenchymal transition has also been thoroughly characterized. Recently, emerging evidence also suggests a key role for Twist1–2 in the function and development of hematopoietic cells, as well as in survival and development of numerous hematological malignancies. In this review, we summarize the latest data that depict the role of Twist1–2 in monocytes, T cells and B lymphocyte activation, and in associated hematological malignancies.
Collapse
Affiliation(s)
- N Merindol
- Université de Lyon and INSERM U1111, Lyon, France
| | - A Riquet
- Université de Lyon and INSERM U1111, Lyon, France
| | - V Szablewski
- 1] IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U896, Université Montpellier 1, Montpellier, France [2] Département de Biopathologie, Centre Hospitalier Régional Universitaire de Montpellier et Faculté de Médecine, Université Montpellier 1, Montpellier, France
| | - J-F Eliaou
- 1] IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U896, Université Montpellier 1, Montpellier, France [2] Département d'Immunologie, Centre Hospitalier Régional Universitaire de Montpellier et Faculté de Médecine, Université Montpellier 1, Montpellier, France
| | - A Puisieux
- Centre de Receherche en Cancérologie de Lyon, INSERM UMR-S1052, Centre Léon Bérard, Lyon, France
| | - N Bonnefoy
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U896, Université Montpellier 1, Montpellier, France
| |
Collapse
|
39
|
Myor/ABF-1 mRNA [corrected] Expression Marks Follicular Helper T Cells but Is Dispensable for Tfh Cell Differentiation and Function In Vivo. PLoS One 2013; 8:e84415. [PMID: 24386375 PMCID: PMC3873420 DOI: 10.1371/journal.pone.0084415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 11/20/2013] [Indexed: 11/27/2022] Open
Abstract
Follicular T helper cells (Tfh) are crucial for effective antibody responses and long term T cell-dependent humoral immunity. Although many studies are devoted to this novel T helper cell population, the molecular mechanisms governing Tfh cell differentiation have yet to be characterized. MyoR/ABF-1 is a basic helix-loop-helix transcription factor that plays a role in the differentiation of the skeletal muscle and Hodgkin lymphoma. Here we show that MyoR mRNA is progressively induced during the course of Tfh-like cell differentiation in vitro and is expressed in Tfh responding to Alum-precipitated antigens in vivo. This expression pattern suggests that MyoR could play a role in the differentiation and/or function of Tfh cells. We tested this hypothesis using MyoR-deficient mice and found this deficiency had no impact on Tfh differentiation. Hence, MyoR-deficient mice developed optimal T-dependent humoral responses to Alum-precipitated antigens. In conclusion, MyoR is a transcription factor selectively up-regulated in CD4 T cells during Tfh cell differentiation in vitro and upon response to alum-protein vaccines in vivo, but the functional significance of this up-regulation remains uncertain.
Collapse
|
40
|
Yao S, Buzo BF, Pham D, Jiang L, Taparowsky EJ, Kaplan MH, Sun J. Interferon regulatory factor 4 sustains CD8(+) T cell expansion and effector differentiation. Immunity 2013; 39:833-45. [PMID: 24211184 DOI: 10.1016/j.immuni.2013.10.007] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 10/11/2013] [Indexed: 12/19/2022]
Abstract
Upon infection, CD8(+) T cells undergo a stepwise process of early activation, expansion, and differentiation into effector cells. How these phases are transcriptionally regulated is incompletely defined. Here, we report that interferon regulatory factor 4 (IRF4), dispensable for early CD8(+) T cell activation, was vital for sustaining the expansion and effector differentiation of CD8(+) T cells. Mechanistically, IRF4 promoted the expression and function of Blimp1 and T-bet, two transcription factors required for CD8(+) T cell effector differentiation, and simultaneously repressed genes that mediate cell cycle arrest and apoptosis. Selective ablation of Irf4 in peripheral CD8(+) T cells impaired antiviral CD8(+) T cell responses, viral clearance, and CD8(+) T cell-mediated host recovery from influenza infection. IRF4 expression was regulated by T cell receptor (TCR) signaling strength via mammalian target of rapamycin (mTOR). Our data reveal that IRF4 translates differential strength of TCR signaling into different quantitative and qualitative CD8(+) T cell responses.
Collapse
Affiliation(s)
- Shuyu Yao
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Microbiology and Immunology, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Cytokine-dependent induction of CD4+ T cells with cytotoxic potential during influenza virus infection. J Virol 2013; 87:11884-93. [PMID: 23986597 DOI: 10.1128/jvi.01461-13] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Recent evidence has identified the role of granzyme B- and perforin-expressing CD4(+) T cells with cytotoxic potential in antiviral immunity. However, the in vivo cytokine cues and downstream pathways governing the differentiation of these cells are unclear. Here, we have identified that CD4(+) T cells with cytotoxic potential are specifically induced at the site of infection during influenza virus infection. The development of CD4(+) T cells with cytotoxic potential in vivo was dependent on the cooperation of the STAT2-dependent type I interferon signaling and the interleukin-2/interleukin-2 receptor alpha pathway for the induction of the transcription factors T-bet and Blimp-1. We showed that Blimp-1 promoted the binding of T-bet to the promoters of cytolytic genes in CD4(+) T cells and was required for the cytolytic function of the in vitro- and in vivo-generated CD4(+) T cells with cytotoxic potential. Thus, our data define the molecular basis of regulation of the in vivo development of this functionally cytotoxic Th subset during acute respiratory virus infection. The potential implications for the functions of these cells are discussed.
Collapse
|
42
|
Pham D, Walline CC, Hollister K, Dent AL, Blum JS, Firulli AB, Kaplan MH. The transcription factor Twist1 limits T helper 17 and T follicular helper cell development by repressing the gene encoding the interleukin-6 receptor α chain. J Biol Chem 2013; 288:27423-27433. [PMID: 23935104 DOI: 10.1074/jbc.m113.497248] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cytokine responsiveness is a critical component of the ability of cells to respond to the extracellular milieu. Transcription factor-mediated regulation of cytokine receptor expression is a common mode of altering responses to the external environment. We identify the transcription factor Twist1 as a component of a STAT3-induced feedback loop that controls IL-6 signals by directly repressing Il6ra. Human and mouse T cells lacking Twist1 have an increased ability to differentiate into Th17 cells. Mice with a T cell-specific deletion of Twist1 demonstrate increased Th17 and T follicular helper cell development, early onset experimental autoimmune encephalomyelitis, and increased antigen-specific antibody responses. Thus, Twist1 has a critical role in limiting both cell-mediated and humoral immunity.
Collapse
Affiliation(s)
- Duy Pham
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Crystal C Walline
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Kristin Hollister
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research
| | - Alexander L Dent
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research
| | - Janice S Blum
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Anthony B Firulli
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research
| | - Mark H Kaplan
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202.
| |
Collapse
|
43
|
Wang M, Ramirez J, Han J, Jia Y, Domenico J, Seibold MA, Hagman JR, Gelfand EW. The steroidogenic enzyme Cyp11a1 is essential for development of peanut-induced intestinal anaphylaxis. J Allergy Clin Immunol 2013; 132:1174-1183.e8. [PMID: 23870673 DOI: 10.1016/j.jaci.2013.05.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/20/2013] [Accepted: 05/22/2013] [Indexed: 01/03/2023]
Abstract
BACKGROUND Cytochrome P450, family 11, subfamily A, polypeptide 1 (Cyp11a1), a cytochrome P450 enzyme, is the first and rate-limiting enzyme in the steroidogenic pathway, converting cholesterol to pregnenolone. Cyp11a1 expression is increased in activated T cells. OBJECTIVES We sought to determine the role of Cyp11a1 activation in the development of peanut allergy and TH cell functional differentiation. METHODS A Cyp11a1 inhibitor, aminoglutethimide (AMG), was administered to peanut-sensitized and challenged mice. Clinical symptoms, intestinal inflammation, and Cyp11a1 levels were assessed. The effects of Cyp11a1 inhibition on T(H)1, T(H)2, and T(H)17 differentiation were determined. Cyp11a1 gene silencing was performed with Cyp11a1-targeted short hairpin RNA. RESULTS Peanut sensitization and challenge resulted in diarrhea, inflammation, and increased levels of Cyp11a1, IL13, and IL17A mRNA in the small intestine. Inhibition of Cyp11a1 with AMG prevented allergic diarrhea and inflammation. Levels of pregnenolone in serum were reduced in parallel. AMG treatment decreased IL13 and IL17A mRNA expression in the small intestine without affecting Cyp11a1 mRNA or protein levels. In vitro the inhibitor decreased IL13 and IL17A mRNA and protein levels in differentiated T(H)2 and T(H)17 CD4 T cells, respectively, without affecting GATA3, retinoic acid-related orphan receptor γt (RORγt), or T(H)1 cells and IFNG and T-bet expression. Short hairpin RNA-mediated silencing of Cyp11a1 in polarized T(H)2 CD4 T cells significantly decreased pregnenolone and IL13 mRNA and protein levels. CONCLUSION Cyp11a1 plays an important role in the development of peanut allergy, regulating peanut-induced allergic responses through effects on steroidogenesis, an essential pathway in T(H)2 differentiation. Cyp11a1 thus serves as a novel target in the regulation and treatment of peanut allergy.
Collapse
Affiliation(s)
- Meiqin Wang
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colo
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Pham D, Yu Q, Walline CC, Muthukrishnan R, Blum JS, Kaplan MH. Opposing roles of STAT4 and Dnmt3a in Th1 gene regulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:902-11. [PMID: 23772023 PMCID: PMC3703830 DOI: 10.4049/jimmunol.1203229] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The STAT transcription factor STAT4 is a critical regulator of Th1 differentiation and inflammatory disease. Yet, how STAT4 regulates gene expression is still unclear. In this report, we define a STAT4-dependent sequence of events including histone H3 lysine 4 methylation, Jmjd3 association with STAT4 target loci, and a Jmjd3-dependent decrease in histone H3 lysine 27 trimethylation and DNA methyltransferase (Dnmt) 3a association with STAT4 target loci. Dnmt3a has an obligate role in repressing Th1 gene expression, and in Th1 cultures deficient in both STAT4 and Dnmt3a, there is recovery in the expression of a subset of Th1 genes that is sufficient to increase IFN-γ production. Moreover, although STAT4-deficient mice are protected from the development of experimental autoimmune encephalomyelitis, mice deficient in STAT4 and conditionally deficient in Dnmt3a in T cells develop paralysis. Th1 genes that are derepressed in the absence of Dnmt3a have greater induction after the ectopic expression of the Th1-associated transcription factors T-bet and Hlx1. Together, these data demonstrate that STAT4 and Dnmt3a play opposing roles in regulating Th1 gene expression, and that one mechanism for STAT4-dependent gene programming is in establishing a derepressed genetic state susceptible to transactivation by additional fate-determining transcription factors.
Collapse
Affiliation(s)
- Duy Pham
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | |
Collapse
|
45
|
Vincentz JW, Firulli BA, Lin A, Spicer DB, Howard MJ, Firulli AB. Twist1 controls a cell-specification switch governing cell fate decisions within the cardiac neural crest. PLoS Genet 2013; 9:e1003405. [PMID: 23555309 PMCID: PMC3605159 DOI: 10.1371/journal.pgen.1003405] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 02/07/2013] [Indexed: 01/31/2023] Open
Abstract
Neural crest cells are multipotent progenitor cells that can generate both ectodermal cell types, such as neurons, and mesodermal cell types, such as smooth muscle. The mechanisms controlling this cell fate choice are not known. The basic Helix-loop-Helix (bHLH) transcription factor Twist1 is expressed throughout the migratory and post-migratory cardiac neural crest. Twist1 ablation or mutation of the Twist-box causes differentiation of ectopic neuronal cells, which molecularly resemble sympathetic ganglia, in the cardiac outflow tract. Twist1 interacts with the pro-neural factor Sox10 via its Twist-box domain and binds to the Phox2b promoter to repress transcriptional activity. Mesodermal cardiac neural crest trans-differentiation into ectodermal sympathetic ganglia-like neurons is dependent upon Phox2b function. Ectopic Twist1 expression in neural crest precursors disrupts sympathetic neurogenesis. These data demonstrate that Twist1 functions in post-migratory neural crest cells to repress pro-neural factors and thereby regulate cell fate determination between ectodermal and mesodermal lineages. During vertebrate development, a unique population of cells, termed neural crest cells, migrates throughout the developing embryo, generating various cell types, for example, the smooth muscle that divides the aorta and pulmonary artery where they connect to the heart, and the autonomic neurons, which coordinate organ function. The distinctions between neural crest cells that will form smooth muscle and those that will become neurons are thought to occur prior to migration. Here, we show that, in mice with mutations of the transcription factor Twist1, a subpopulation of presumptive smooth muscle cells, following migration to the heart, instead mis-specify to resemble autonomic neurons. Twist1 represses transcription of the pro-neural factor Phox2b both through antagonism of its upstream effector, Sox10, and through direct binding to its promoter. Phox2b is absolutely required for autonomic neuron development, and indeed, the aberrant neurons in Twist1 mutants disappear when Phox2b is also mutated. Ectopic Twist1 expression within all neural crest cells disrupts the specification of normal autonomic neurons. Collectively, these data reveal that neural crest cells can alter their cell fate from mesoderm to ectoderm after they have migrated and that Twist1 functions to maintain neural crest cell potency during embryonic development.
Collapse
Affiliation(s)
- Joshua W Vincentz
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Division of Pediatrics Cardiology, Departments of Anatomy, Indiana University Medical School, Indianapolis, Indiana, United States of America
| | | | | | | | | | | |
Collapse
|
46
|
Dobrian AD. A tale with a Twist: a developmental gene with potential relevance for metabolic dysfunction and inflammation in adipose tissue. Front Endocrinol (Lausanne) 2012; 3:108. [PMID: 22969750 PMCID: PMC3430876 DOI: 10.3389/fendo.2012.00108] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 08/15/2012] [Indexed: 01/19/2023] Open
Abstract
The Twist proteins (Twist-1 and -2) are highly conserved developmental proteins with key roles for the transcriptional regulation in mesenchymal cell lineages. They belong to the super-family of bHLH proteins and exhibit bi-functional roles as both activators and repressors of gene transcription. The Twist proteins are expressed at low levels in adult tissues but may become abundantly re-expressed in cells undergoing malignant transformation. This observation prompted extensive research on the roles of Twist proteins in cancer progression and metastasis. Very recent studies indicate a novel role for Twist-1 as a potential regulator of adipose tissue (AT) remodeling and inflammation. Several studies suggested that developmental genes are important determinants of obesity, fat distribution and remodeling capacity of different adipose depots. Twist-1 is abundantly and selectively expressed in the adult AT and its constitutive expression is significantly higher in subcutaneous (SAT) vs. visceral (VAT) fat in both mice and humans. Moreover, Twist1 expression is strongly correlated with BMI and insulin resistance in humans. However, the functional roles and transcriptional downstream targets of Twist1 in AT are largely unexplored. The purpose of this review is to highlight the major findings related to Twist1 expression in different fat depots and cellular components of AT and to discuss the potential mechanisms suggesting a role for Twist1 in AT metabolism, inflammation and remodeling.
Collapse
Affiliation(s)
- Anca D. Dobrian
- *Correspondence: Anca D. Dobrian, Department of Physiological Sciences, Eastern Virginia Medical School, 700W Olney Rd., Norfolk, VA 23507, USA. e-mail:
| |
Collapse
|