1
|
Giraud M, Peterson P. The Autoimmune Regulator (AIRE) Gene, The Master Activator of Self-Antigen Expression in the Thymus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1471:199-221. [PMID: 40067588 DOI: 10.1007/978-3-031-77921-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
It has been more than 20 years since the AIRE gene was discovered. The mutations in the AIRE gene cause a rare and life-threatening autoimmune disease with severe manifestations against a variety of organs. Since the identification of the AIRE gene in 1997, more than two decades of investigations have revealed key insights into the role of AIRE and its mode of action. These studies have shown that AIRE uniquely induces the expression of thousands of tissue-restricted self-antigens in the thymus. These self-antigens are presented to developing T cells, resulting in the deletion of the self-reactive T cells and the generation of regulatory T cells. Thus, AIRE is a master guardian in establishing and maintaining central immune tolerance.
Collapse
Affiliation(s)
- Matthieu Giraud
- INSERM, Nantes Université, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France.
| | - Pärt Peterson
- Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.
| |
Collapse
|
2
|
Irla M. Thymic Crosstalk: An Overview of the Complex Cellular Interactions that Control the Establishment of T-Cell Tolerance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1471:177-197. [PMID: 40067587 DOI: 10.1007/978-3-031-77921-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
The thymus ensures the generation of a self-tolerant T-cell repertoire capable of recognizing foreign antigens. The selection of the T-cell repertoire is dictated by the thymic microenvironment. Among stromal cells, medullary thymic epithelial cells (mTECs) play a pivotal role in this process through their unique ability to express thousands of tissue-restricted self-antigens. In turn, developing T cells control the pool and maturation of mTECs. This phenomenon of bidirectional interactions between TECs and thymocytes is referred to as thymic crosstalk. In this chapter, I discuss the discovery of thymic crosstalk and our current understanding of bidirectional interactions between mTECs and thymocytes. Finally, I summarize recent advances indicating that thymic crosstalk is not restricted to TECs and thymocytes but also occurs between TECs and dendritic cells, as well as B cells and thymocytes. This complex cellular interplay is essential for efficient T-cell selection.
Collapse
Affiliation(s)
- Magali Irla
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France.
| |
Collapse
|
3
|
Rowell J, Lau CI, Ross S, Yanez DC, Peña OA, Chain B, Crompton T. Distinct T-cell receptor (TCR) gene segment usage and MHC-restriction between foetal and adult thymus. eLife 2024; 13:RP93493. [PMID: 39636212 PMCID: PMC11620746 DOI: 10.7554/elife.93493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Here, we sequenced rearranged TCRβ and TCRα chain sequences in CD4+CD8+ double positive (DP), CD4+CD8- single positive (SP4) and CD4-CD8+ (SP8) thymocyte populations from the foetus and young adult mouse. We found that life-stage had a greater impact on TCRβ and TCRα gene segment usage than cell-type. Foetal repertoires showed bias towards 3'TRAV and 5'TRAJ rearrangements in all populations, whereas adult repertoires used more 5'TRAV gene segments, suggesting that progressive TCRα rearrangements occur less frequently in foetal DP cells. When we synchronised young adult DP thymocyte differentiation by hydrocortisone treatment the new recovering DP thymocyte population showed more foetal-like 3'TRAV and 5'TRAJ gene segment usage. In foetus we identified less influence of MHC-restriction on α-chain and β-chain combinatorial VxJ usage and CDR1xCDR2 (V region) usage in SP compared to adult, indicating weaker impact of MHC-restriction on the foetal TCR repertoire. The foetal TCRβ repertoire was less diverse, less evenly distributed, with fewer non-template insertions, and all foetal populations contained more clonotypic expansions than adult. The differences between the foetal and adult thymus TCR repertoires are consistent with the foetal thymus producing αβT-cells with properties and functions that are distinct from adult T-cells: their repertoire is less governed by MHC-restriction, with preference for particular gene segment usage, less diverse with more clonotypic expansions, and more closely encoded by genomic sequence.
Collapse
Affiliation(s)
- Jasmine Rowell
- UCL Great Ormond Street Institute of Child HealthLondonUnited Kingdom
| | - Ching-In Lau
- UCL Great Ormond Street Institute of Child HealthLondonUnited Kingdom
| | - Susan Ross
- UCL Great Ormond Street Institute of Child HealthLondonUnited Kingdom
| | - Diana C Yanez
- UCL Great Ormond Street Institute of Child HealthLondonUnited Kingdom
| | - Oscar A Peña
- School of Biochemistry, University of BristolBristolUnited Kingdom
| | - Benny Chain
- Division of Infection and Immunity, University College LondonLondonUnited Kingdom
| | - Tessa Crompton
- UCL Great Ormond Street Institute of Child HealthLondonUnited Kingdom
| |
Collapse
|
4
|
Hayama M, Ishii H, Miyauchi M, Yoshida M, Hagiwara N, Muramtatu W, Namiki K, Endo R, Miyao T, Akiyama N, Akiyama T. Direct and indirect RANK and CD40 signaling regulate the maintenance of thymic epithelial cell frequency and properties in the adult thymus. Front Immunol 2024; 15:1500908. [PMID: 39676866 PMCID: PMC11638669 DOI: 10.3389/fimmu.2024.1500908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/13/2024] [Indexed: 12/17/2024] Open
Abstract
Medullary thymic epithelial cells (mTECs) play a crucial role in suppressing the onset of autoimmunity by eliminating autoreactive T cells and promoting the development of regulatory T cells in the thymus. Although mTECs undergo turnover in adults, the molecular mechanisms behind this process remain unclear. This study describes the direct and indirect roles of receptor activator of NF-κB (RANK) and CD40 signaling in TECs in the adult thymus. Flow cytometric and single-cell RNA-seq (scRNA-seq) analyses suggest that the depletion of both RANK and CD40 signaling inhibits mTEC differentiation from CCL21+ mTEC progenitors to transit-amplifying TECs in the adult thymus. Unexpectedly, this depletion also exerts indirect effects on the gene expression of TEC progenitors and cortical TECs. Additionally, the expression levels of AP-1 genes, which enable the further subdivision of TEC progenitors, are up-regulated following the depletion of RANK and CD40 signaling. Overall, our data propose that RANK and CD40 signaling cooperatively maintain mature mTEC frequency in the adult thymus and sustain the characteristics of TEC progenitors through an indirect mechanism.
Collapse
Affiliation(s)
- Mio Hayama
- Laboratory for Immune Homeostasis, RIKEN Center of Integrative Medical Sciences, Yokohama, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Hiroto Ishii
- Laboratory for Immune Homeostasis, RIKEN Center of Integrative Medical Sciences, Yokohama, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Maki Miyauchi
- Laboratory for Immune Homeostasis, RIKEN Center of Integrative Medical Sciences, Yokohama, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Masaki Yoshida
- Laboratory for Immune Homeostasis, RIKEN Center of Integrative Medical Sciences, Yokohama, Japan
| | - Naho Hagiwara
- Laboratory for Immune Homeostasis, RIKEN Center of Integrative Medical Sciences, Yokohama, Japan
| | - Wataru Muramtatu
- Laboratory for Immune Homeostasis, RIKEN Center of Integrative Medical Sciences, Yokohama, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Kano Namiki
- Laboratory for Immune Homeostasis, RIKEN Center of Integrative Medical Sciences, Yokohama, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Rin Endo
- Laboratory for Immune Homeostasis, RIKEN Center of Integrative Medical Sciences, Yokohama, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Takahisa Miyao
- Laboratory for Immune Homeostasis, RIKEN Center of Integrative Medical Sciences, Yokohama, Japan
| | - Nobuko Akiyama
- Laboratory for Immune Homeostasis, RIKEN Center of Integrative Medical Sciences, Yokohama, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Taishin Akiyama
- Laboratory for Immune Homeostasis, RIKEN Center of Integrative Medical Sciences, Yokohama, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| |
Collapse
|
5
|
Miller CN, Waterfield MR, Gardner JM, Anderson MS. Aire in Autoimmunity. Annu Rev Immunol 2024; 42:427-53. [PMID: 38360547 PMCID: PMC11774315 DOI: 10.1146/annurev-immunol-090222-101050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The role of the autoimmune regulator (Aire) in central immune tolerance and thymic self-representation was first described more than 20 years ago, but fascinating new insights into its biology continue to emerge, particularly in the era of advanced single-cell genomics. We briefly describe the role of human genetics in the discovery of Aire, as well as insights into its function gained from genotype-phenotype correlations and the spectrum of Aire-associated autoimmunity-including insights from patients with Aire mutations with broad and diverse implications for human health. We then highlight emerging trends in Aire biology, focusing on three topic areas. First, we discuss medullary thymic epithelial diversity and the role of Aire in thymic epithelial development. Second, we highlight recent developments regarding the molecular mechanisms of Aire and its binding partners. Finally, we describe the rapidly evolving biology of the identity and function of extrathymic Aire-expressing cells (eTACs), and a novel eTAC subset called Janus cells, as well as their potential roles in immune homeostasis.
Collapse
Affiliation(s)
- Corey N Miller
- Diabetes Center, University of California, San Francisco, California, USA; ,
- Department of Medicine, University of California, San Francisco, California, USA
| | - Michael R Waterfield
- Department of Pediatrics, University of California, San Francisco, California, USA
| | - James M Gardner
- Diabetes Center, University of California, San Francisco, California, USA; ,
- Department of Surgery, University of California, San Francisco, California, USA
| | - Mark S Anderson
- Diabetes Center, University of California, San Francisco, California, USA; ,
- Department of Medicine, University of California, San Francisco, California, USA
| |
Collapse
|
6
|
Onji M, Penninger JM. RANKL and RANK in Cancer Therapy. Physiology (Bethesda) 2023; 38:0. [PMID: 36473204 DOI: 10.1152/physiol.00020.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Receptor activator of nuclear factor-κB (RANK) and its ligand (RANKL) are key regulators of mammalian physiology such as bone metabolism, immune tolerance and antitumor immunity, and mammary gland biology. Here, we explore the multiple functions of RANKL/RANK in physiology and pathophysiology and discuss underlying principles and strategies to modulate the RANKL/RANK pathway as a therapeutic target in immune-mediated cancer treatment.
Collapse
Affiliation(s)
- Masahiro Onji
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, VBC-Vienna BioCenter, Vienna, Austria
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, VBC-Vienna BioCenter, Vienna, Austria.,Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
7
|
Ohigashi I, Matsuda-Lennikov M, Takahama Y. Large-Scale Isolation of Mouse Thymic Epithelial Cells. Methods Mol Biol 2023; 2580:189-197. [PMID: 36374458 PMCID: PMC10280300 DOI: 10.1007/978-1-0716-2740-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The thymus is compartmentalized into the cortex and the medulla. Cortical and medullary thymic epithelial cells (TECs) characterize T cell-producing and T cell-selecting functions of cortical and medullary microenvironments in the thymus. Enzymatic digestion of the thymus and flow cytometric isolation of TECs and their subpopulations are useful for molecular and cellular characterization of TECs. However, the cellularity of cTECs and mTECs isolated from mouse thymus is limited. In this chapter, we describe the method for isolation of a large number of TECs using enlarged mouse thymus, which enables biochemical and proteomic analysis of TEC subpopulations.
Collapse
Affiliation(s)
- Izumi Ohigashi
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima, Japan
| | - Mami Matsuda-Lennikov
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yousuke Takahama
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
8
|
Szwarc MM, Hai L, Maurya VK, Rajapakshe K, Perera D, Ittmann MM, Mo Q, Lin Y, Bettini ML, Coarfa C, Lydon JP. Histopathologic and transcriptomic phenotypes of a conditional RANKL transgenic mouse thymus. Cytokine 2022; 160:156022. [PMID: 36099756 DOI: 10.1016/j.cyto.2022.156022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 11/19/2022]
Abstract
Although conventional knockout and transgenic mouse models have significantly advanced our understanding of Receptor Activator of NF-κB Ligand (RANKL) signaling in intra-thymic crosstalk that establishes self-tolerance and later stages of lymphopoiesis, the unique advantages of conditional mouse transgenesis have yet to be explored. A main advantage of conditional transgenesis is the ability to express a transgene in a spatiotemporal restricted manner, enabling the induction (or de-induction) of transgene expression during predetermined stages of embryogenesis or during defined postnatal developmental or physiological states, such as puberty, adulthood, and pregnancy. Here, we describe the K5: RANKL bigenic mouse, in which transgene derived RANKL expression is induced by doxycycline and targeted to cytokeratin 5 positive medullary thymic epithelial cells (mTECs). Short-term doxycycline induction reveals that RANKL transgene expression is significantly induced in the thymic medulla and only in response to doxycycline. Prolonged doxycycline induction in the K5: RANKL bigenic results in a significantly enlarged thymus in which mTECs are hyperproliferative. Flow cytometry showed that there is a marked enrichment of CD4+ and CD8+ single positive thymocytes with a concomitant depletion of CD4+ CD8+ double positives. Furthermore, there is an increase in the number of FOXP3+ T regulatory (Treg) cells and Ulex Europaeus Agglutinin 1+ (UEA1+) mTECs. Transcriptomics revealed that a remarkable array of signals-cytokines, chemokines, growth factors, transcription factors, and morphogens-are governed by RANKL and drive in part the K5: RANKL thymic phenotype. Extended doxycycline administration to 6-weeks results in a K5: RANKL thymus that begins to display distinct histopathological features, such as medullary epithelial hyperplasia, extensive immune cell infiltration, and central tissue necrosis. As there are intense efforts to develop clinical approaches to restore thymic medullary function in the adult to treat immunopathological conditions in which immune cell function is compromised following cancer therapy or toxin exposure, an improved molecular understanding of RANKL's involvement in thymic medulla enlargement will be required. We believe the versatility of the conditional K5: RANKL mouse represents a tractable model system to assist in addressing this requirement as well as many other questions related to RANKL's role in thymic normal physiology and disease processes.
Collapse
Affiliation(s)
- Maria M Szwarc
- Department of Molecular & Cellular Biology, United States
| | - Lan Hai
- Department of Molecular & Cellular Biology, United States
| | - Vineet K Maurya
- Department of Molecular & Cellular Biology, United States
| | | | - Dimuthu Perera
- Department of Molecular & Cellular Biology, United States
| | - Michael M Ittmann
- Department of Pathology, Baylor College of Medicine, Houston, TX, United States
| | - Qianxing Mo
- Department of Biostatistics & Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Yong Lin
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Matthew L Bettini
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Cristian Coarfa
- Department of Molecular & Cellular Biology, United States
| | - John P Lydon
- Department of Molecular & Cellular Biology, United States.
| |
Collapse
|
9
|
Dong X, Liang Z, Zhang J, Zhang Q, Xu Y, Zhang Z, Zhang L, Zhang B, Zhao Y. Trappc1 deficiency impairs thymic epithelial cell development by breaking endoplasmic reticulum homeostasis. Eur J Immunol 2022; 52:1789-1804. [PMID: 35908180 DOI: 10.1002/eji.202249915] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/28/2022] [Accepted: 07/26/2022] [Indexed: 11/05/2022]
Abstract
Thymic epithelial cells (TECs) are important for T cell development and immune tolerance establishment. Although comprehensive molecular regulation of TEC development has been studied, the role of transport protein particle complexes (Trappcs) in TECs is not clear. Using TEC-specific homozygous or heterozygous Trappc1 deleted mice model, we found that Trappc1 deficiency caused severe thymus atrophy with decreased cell number and blocked maturation of TECs. Mice with a TEC-specific Trappc1 deletion show poor thymic T cell output and have a greater percentage of activated/memory T cells, suffered from spontaneous autoimmune disorders. Our RNA-seq and molecular studies indicated that the decreased endoplasmic reticulum (ER) and Golgi apparatus, enhanced unfolded protein response (UPR) and subsequent Atf4-CHOP-mediated apoptosis, and reactive oxygen species (ROS)-mediated ferroptosis coordinately contributed to the reduction of Trappc1-deleted TECs. Additionally, reduced Aire+ mTECs accompanied by the decreased expression of Irf4, Irf8, and Tbx21 in Trappc1 deficiency mTECs, may further coordinately block the tissue-restricted antigen expression. In this study, we reveal that Trappc1 plays an indispensable role in TEC development and maturation and provide evidence for the importance of inter-organelle traffic and ER homeostasis in TEC development. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xue Dong
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences.,University of Chinese Academy of Sciences
| | - Zhanfeng Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences.,University of Chinese Academy of Sciences.,Beijing Institute for Stem Cell and Regeneration
| | - Jiayu Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences.,University of Chinese Academy of Sciences
| | - Qian Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences.,University of Chinese Academy of Sciences
| | - Yanan Xu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences.,University of Chinese Academy of Sciences
| | - Zhaoqi Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences.,University of Chinese Academy of Sciences
| | - Lianfeng Zhang
- Key Laboratory of Human Diseases and Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences.,University of Chinese Academy of Sciences.,Beijing Institute for Stem Cell and Regeneration
| |
Collapse
|
10
|
Mohtashami M, Li YR, Lee CR, Zúñiga-Pflücker JC. Thymus Reconstitution in Young and Aged Mice Is Facilitated by In Vitro-Generated Progenitor T Cells. Front Immunol 2022; 13:926773. [PMID: 35874726 PMCID: PMC9304753 DOI: 10.3389/fimmu.2022.926773] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
The prolonged lag in T cell recovery seen in older patients undergoing hematopoietic stem cell transplant (HSCT), after chemo-/radiotherapy, can lead to immune dysfunction. As a result, recovering patients may experience a relapse in malignancies and opportunistic infections, leading to high mortality rates. The delay in T cell recovery is partly due to thymic involution, a natural collapse in the size and function of the thymus, as individuals age, and partly due to the damage sustained by the thymic stromal cells through exposure to chemo-/radiotherapy. There is a clear need for new strategies to accelerate intrathymic T cell reconstitution when treating aged patients to counter the effects of involution and cancer therapy regimens. Adoptive transfer of human progenitor T (proT) cells has been shown to accelerate T cell regeneration in radiation-treated young mice and to restore thymic architecture in immunodeficient mice. Here, we demonstrate that the adoptive transfer of in vitro-generated proT cells in aged mice (18-24 months) accelerated thymic reconstitution after treatment with chemotherapy and gamma irradiation compared to HSCT alone. We noted that aged mice appeared to have a more limited expansion of CD4-CD8- thymocytes and slower temporal kinetics in the development of donor proT cells into mature T cells, when compared to younger mice, despite following the same chemo/radiation regimen. This suggests a greater resilience of the young thymus compared to the aged thymus. Nevertheless, newly generated T cells from proT cell engrafted aged and young mice were readily present in the periphery accelerating the reappearance of new naïve T cells. Accelerated T cell recovery was also observed in both aged and young mice receiving both proT cells and HSCT. The strategy of transferring proT cells can potentially be used as an effective cellular therapy in aged patients to improve immune recovery and reduce the risk of opportunistic infections post-HSCT.
Collapse
Affiliation(s)
| | - Yue Ru Li
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Christina R. Lee
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Juan Carlos Zúñiga-Pflücker
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
García-León MJ, Mosquera M, Cela C, Alcain J, Zuklys S, Holländer G, Toribio ML. Abrogation of Notch Signaling in Embryonic TECs Impacts Postnatal mTEC Homeostasis and Thymic Involution. Front Immunol 2022; 13:867302. [PMID: 35707539 PMCID: PMC9189879 DOI: 10.3389/fimmu.2022.867302] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/29/2022] [Indexed: 11/18/2022] Open
Abstract
Notch signaling is crucial for fate specification and maturation of thymus-seeding progenitors along the T-cell lineage. Recent studies have extended the role of Notch signaling to thymic epithelial cells (TECs), showing that Notch regulates TEC progenitor maintenance and emergence of medullary TECs (mTECs) in fetal thymopoiesis. Based on immunohistochemistry studies of spatiotemporal regulation of Notch activation in the postnatal thymus, we show that in vivo Notch activation is not confined to fetal TECs. Rather, Notch signaling, likely mediated through the Notch1 receptor, is induced in postnatal cortical and medullary TECs, and increases significantly with age in the latter, in both humans and mice, suggesting a conserved role for Notch signaling in TEC homeostasis during thymus aging. To investigate the functional impact of Notch activation in postnatal TEC biology, we used a mouse model in which RPBJκ, the transcriptional effector of canonical Notch signaling, is deleted in epithelial cells, including TECs, under the control of the transcription factor Foxn1. Immunohistochemistry and flow cytometry analyses revealed no significant differences in TEC composition in mutant (RPBJκ-KOTEC) and wild-type (WT) littermate mice at early postnatal ages. However, a significant reduction of the medullary region was observed in mutant compared to WT older thymi, which was accompanied by an accelerated decrease of postnatal mTEC numbers. Also, we found that organization and integrity of the postnatal thymic medulla critically depends on activation of the canonical Notch signaling pathway, as abrogation of Notch signaling in TECs led to the disruption of the medullary thymic microenvironment and to an accelerated thymus atrophy. These features paralleled a significant increase in the proportion of intrathymic non-T lineage cells, mostly B cells, and a slight decrease of DP thymocyte numbers compatible with a compromised thymic function in mutant mice. Therefore, impaired Notch signaling induced in embryonic development impacts postnatal TECs and leads to an accelerated mTEC degeneration and a premature thymus involution. Collectively, our data have uncovered a new role for Notch1 signaling in the control of adult mTEC homeostasis, and point toward Notch signaling manipulation as a novel strategy for thymus regeneration and functional recovery from immunosenescence.
Collapse
Affiliation(s)
- María Jesús García-León
- Immune System Development and Function Unit, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Marta Mosquera
- Immune System Development and Function Unit, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Carmela Cela
- Immune System Development and Function Unit, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Juan Alcain
- Immune System Development and Function Unit, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Saulius Zuklys
- Department of Biomedicine and University Children's Hospital of Basel, University of Basel, Basel, Switzerland
| | - Georg Holländer
- Department of Biomedicine and University Children's Hospital of Basel, University of Basel, Basel, Switzerland.,Department of Paediatrics and the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - María L Toribio
- Immune System Development and Function Unit, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| |
Collapse
|
12
|
Rosichini M, Catanoso M, Screpanti I, Felli MP, Locatelli F, Velardi E. Signaling Crosstalks Drive Generation and Regeneration of the Thymus. Front Immunol 2022; 13:920306. [PMID: 35734178 PMCID: PMC9207182 DOI: 10.3389/fimmu.2022.920306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/17/2022] [Indexed: 12/19/2022] Open
Abstract
Optimal recovery of immune competence after periods of hematopoietic insults or stress is crucial to re-establish patient response to vaccines, pathogens and tumor antigens. This is particularly relevant for patients receiving high doses of chemotherapy or radiotherapy, who experience prolonged periods of lymphopenia, which can be associated with an increased risk of infections, malignant relapse, and adverse clinical outcome. While the thymus represents the primary organ responsible for the generation of a diverse pool of T cells, its function is profoundly impaired by a range of acute insults (including those caused by cytoreductive chemo/radiation therapy, infections and graft-versus-host disease) and by the chronic physiological deterioration associated with aging. Impaired thymic function increases the risk of infections and tumor antigen escape due to a restriction in T-cell receptor diversity and suboptimal immune response. Therapeutic approaches that can promote the renewal of the thymus have the potential to restore immune competence in patients. Previous work has documented the importance of the crosstalk between thymocytes and thymic epithelial cells in establishing correct architecture and function of thymic epithelium. This crosstalk is relevant not only during thymus organogenesis, but also to promote the recovery of its function after injuries. In this review, we will analyze the signals involved in the crosstalk between TECs and hematopoietic cells. We will focus in particular on how signals from T-cells can regulate TEC function and discuss the relevance of these pathways in restoring thymic function and T-cell immunity in experimental models, as well as in the clinical setting.
Collapse
Affiliation(s)
- Marco Rosichini
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Marialuigia Catanoso
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Department of Maternal and Child Health, Sapienza University of Rome, Rome, Italy
| | - Enrico Velardi
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- *Correspondence: Enrico Velardi,
| |
Collapse
|
13
|
Ferreirinha P, Pinheiro RGR, Landry JJM, Alves NL. Identification of fibroblast progenitors in the developing mouse thymus. Development 2022; 149:275509. [PMID: 35587733 PMCID: PMC9188757 DOI: 10.1242/dev.200513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/22/2022] [Indexed: 11/20/2022]
Abstract
The thymus stroma constitutes a fundamental microenvironment for T-cell generation. Despite the chief contribution of thymic epithelial cells, recent studies emphasize the regulatory role of mesenchymal cells in thymic function. Mesenchymal progenitors are suggested to exist in the postnatal thymus; nonetheless, an understanding of their nature and the mechanism controlling their homeostasis in vivo remains elusive. We resolved two new thymic fibroblast subsets with distinct developmental features. Whereas CD140αβ+GP38+SCA-1− cells prevailed in the embryonic thymus and declined thereafter, CD140αβ+GP38+SCA-1+ cells emerged in the late embryonic period and predominated in postnatal life. The fibroblastic-associated transcriptional programme was upregulated in CD140αβ+GP38+SCA-1+ cells, suggesting that they represent a mature subset. Lineage analysis showed that CD140αβ+GP38+SCA-1+ maintained their phenotype in thymic organoids. Strikingly, CD140αβ+GP38+SCA-1− generated CD140αβ+GP38+SCA-1+, inferring that this subset harboured progenitor cell activity. Moreover, the abundance of CD140αβ+GP38+SCA-1+ fibroblasts was gradually reduced in Rag2−/− and Rag2−/−Il2rg−/− thymi, indicating that fibroblast maturation depends on thymic crosstalk. Our findings identify CD140αβ+GP38+SCA-1− as a source of fibroblast progenitors and define SCA-1 as a marker for developmental stages of thymic fibroblast differentiation. Summary: This study resolves previously unidentified subsets of immature and mature thymic fibroblasts, providing further evidence that their homeostasis is controlled by signals provided by developing thymocytes.
Collapse
Affiliation(s)
- Pedro Ferreirinha
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto 1 , 4200-135, Porto , Portugal
- Instituto de Biologia Molecular e Celular 2 , 4200-135, Porto , Portugal
| | - Ruben G. R. Pinheiro
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto 1 , 4200-135, Porto , Portugal
- Instituto de Biologia Molecular e Celular 2 , 4200-135, Porto , Portugal
- Doctoral Program in Molecular and Cell Biology, Instituto de Ciências Biomédicas Abel Salazar 3 , , 4200-135, Porto , Portugal
- Universidade do Porto 3 , , 4200-135, Porto , Portugal
| | - Jonathan J. M. Landry
- Genomics Core Facility, European Molecular Biology Laboratory 4 , 69117 Heidelberg , Germany
| | - Nuno L. Alves
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto 1 , 4200-135, Porto , Portugal
- Instituto de Biologia Molecular e Celular 2 , 4200-135, Porto , Portugal
| |
Collapse
|
14
|
In vitro and in vivo functions of T cells produced in complemented thymi of chimeric mice generated by blastocyst complementation. Sci Rep 2022; 12:3242. [PMID: 35217706 PMCID: PMC8881621 DOI: 10.1038/s41598-022-07159-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/07/2022] [Indexed: 11/19/2022] Open
Abstract
Blastocyst complementation is an intriguing way of generating humanized animals for organ preparation in regenerative medicine and establishing novel models for drug development. Confirming that complemented organs and cells work normally in chimeric animals is critical to demonstrating the feasibility of blastocyst complementation. Here, we generated thymus-complemented chimeric mice, assessed the efficacy of anti-PD-L1 antibody in tumor-bearing chimeric mice, and then investigated T-cell function. Thymus-complemented chimeric mice were generated by injecting C57BL/6 (B6) embryonic stem cells into Foxn1nu/nu morulae or blastocysts. Flow cytometry data showed that the chimeric mouse thymic epithelial cells (TECs) were derived from the B6 cells. T cells appeared outside the thymi. Single-cell RNA-sequencing analysis revealed that the TEC gene-expression profile was comparable to that in B6 mice. Splenic T cells of chimeric mice responded very well to anti-CD3 stimulation in vitro; CD4+ and CD8+ T cells proliferated and produced IFNγ, IL-2, and granzyme B, as in B6 mice. Anti-PD-L1 antibody treatment inhibited MC38 tumor growth in chimeric mice. Moreover, in the chimeras, anti-PD-L1 antibody restored T-cell activation by significantly decreasing PD-1 expression on T cells and increasing IFNγ-producing T cells in the draining lymph nodes and tumors. T cells produced by complemented thymi thus functioned normally in vitro and in vivo. To successfully generate humanized animals by blastocyst complementation, both verification of the function and gene expression profiling of complemented organs/cells in interspecific chimeras will be important in the near future.
Collapse
|
15
|
Wakitani S, Kawabata R, Yasuda M. Insufficiency of CD205-positive cortical thymic epithelial cells in immature Japanese Black cattle with severe thymic abnormalities and poor prognosis. Vet Immunol Immunopathol 2022; 245:110379. [PMID: 35038635 DOI: 10.1016/j.vetimm.2021.110379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/21/2021] [Accepted: 12/31/2021] [Indexed: 11/19/2022]
Abstract
To investigate the involvement of thymic function in the development of diseases with poor prognosis in calves, this study conducted a survey for the assessment of thymus cell composition in immature Japanese Black cattle with poor prognosis. Histopathological evaluation of 47 cattle showed signs of acute thymic involution in most cases. Less than half of the cases had a cortex predominant over the medulla in the thymic parenchyma, and a quarter of the cases indicated severe histological condition with an unclear boundary between the cortex and medulla. Correlation analysis revealed a close relationship between the corresponding stages of acute involution, cortical occupancy, and the expression of CD4, CD8B, and CD205. When cases were grouped by cortical occupancy, the expression of CD4 and CD8B expression was lower in the severe group with less than 25 % cortical occupancy, and the expression of CD205 was lower in the group with an unclear cortical-medullary boundary. Meanwhile, there was no difference in the expressions of IL7, CD80, FEZF2, and FOXN1 according to cortical occupancy. Immunohistochemistry has shown that cytokeratin-positive thymic epithelial cells are more densely populated in the severe thymus. UEA-I-binding medullary thymic epithelial cells were also present, but CD205-positive cortical thymic epithelial cells were rare in severe thymus. Moreover, there were significantly fewer Ki-67-positive cells in cattle with severe thymus. Therefore, these results indicate that thymic histological abnormalities frequently occur in immature cattle with a poor prognosis, and the presence of CD205-positive cortical thymic epithelial cells is associated with the severity of the abnormalities.
Collapse
Affiliation(s)
- Shoichi Wakitani
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan.
| | - Risako Kawabata
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Masahiro Yasuda
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| |
Collapse
|
16
|
Martinez-Ruíz GU, Morales-Sánchez A, Bhandoola A. Transcriptional and epigenetic regulation in thymic epithelial cells. Immunol Rev 2022; 305:43-58. [PMID: 34750841 PMCID: PMC8766885 DOI: 10.1111/imr.13034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 01/03/2023]
Abstract
The thymus is required for the development of both adaptive and innate-like T cell subsets. There is keen interest in manipulating thymic function for therapeutic purposes in circumstances of autoimmunity, immunodeficiency, and for purposes of immunotherapy. Within the thymus, thymic epithelial cells play essential roles in directing T cell development. Several transcription factors are known to be essential for thymic epithelial cell development and function, and a few transcription factors have been studied in considerable detail. However, the role of many other transcription factors is less well understood. Further, it is likely that roles exist for other transcription factors not yet known to be important in thymic epithelial cells. Recent progress in understanding of thymic epithelial cell heterogeneity has provided some new insight into transcriptional requirements in subtypes of thymic epithelial cells. However, it is unknown whether progenitors of thymic epithelial cells exist in the adult thymus, and consequently, developmental relationships linking putative precursors with differentiated cell types are poorly understood. While we do not presently possess a clear understanding of stage-specific requirements for transcription factors in thymic epithelial cells, new single-cell transcriptomic and epigenomic technologies should enable rapid progress in this field. Here, we review our current knowledge of transcription factors involved in the development, maintenance, and function of thymic epithelial cells, and the mechanisms by which they act.
Collapse
Affiliation(s)
- Gustavo Ulises Martinez-Ruíz
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Research Division, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
- Children’s Hospital of Mexico Federico Gomez, Mexico City, Mexico
| | - Abigail Morales-Sánchez
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Children’s Hospital of Mexico Federico Gomez, Mexico City, Mexico
| | - Avinash Bhandoola
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
17
|
Tao Z, Jiang Y, Xia S. Regulation of thymic T regulatory cell differentiation by TECs in health and disease. Scand J Immunol 2021; 94:e13094. [PMID: 34780092 DOI: 10.1111/sji.13094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/22/2022]
Abstract
The thymus produces self-limiting and self-tolerant T cells through the interaction between thymocytes and thymus epithelial cells (TECs), thereby generating central immune tolerance. The TECs are composed of cortical and medullary thymic epithelial cells, which regulate the positive and negative selection of T cells, respectively. During the process of negative selection, thymocytes with self-reactive ability are deleted or differentiated into regulatory T cells (Tregs). Tregs are a subset of suppressor T cells that are important for maintaining immune homeostasis. The differentiation and development of Tregs depend on the development of TECs and other underlying molecular mechanisms. Tregs regulated by thymic epithelial cells are closely related to human health and are significant in autoimmune diseases, thymoma and pregnancy. In this review, we summarize the current molecular and transcriptional regulatory mechanisms by which TECs affect the development and function of thymic Tregs. We also review the pathophysiological models of thymic epithelial cells regulating thymic Tregs in human diseases and specific physiological conditions.
Collapse
Affiliation(s)
- Zehua Tao
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yalan Jiang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Sheng Xia
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
18
|
Jain R, Zhao K, Sheridan JM, Heinlein M, Kupresanin F, Abeysekera W, Hall C, Rickard J, Bouillet P, Walczak H, Strasser A, Silke J, Gray DHD. Dual roles for LUBAC signaling in thymic epithelial cell development and survival. Cell Death Differ 2021; 28:2946-2956. [PMID: 34381167 PMCID: PMC8481470 DOI: 10.1038/s41418-021-00850-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 01/08/2023] Open
Abstract
Thymic epithelial cells (TECs) form a unique microenvironment that orchestrates T cell differentiation and immunological tolerance. Despite the importance of TECs for adaptive immunity, there is an incomplete understanding of the signalling networks that support their differentiation and survival. We report that the linear ubiquitin chain assembly complex (LUBAC) is essential for medullary TEC (mTEC) differentiation, cortical TEC survival and prevention of premature thymic atrophy. TEC-specific loss of LUBAC proteins, HOIL-1 or HOIP, severely impaired expansion of the thymic medulla and AIRE-expressing cells. Furthermore, HOIL-1-deficiency caused early thymic atrophy due to Caspase-8/MLKL-dependent apoptosis/necroptosis of cortical TECs. By contrast, deficiency in the LUBAC component, SHARPIN, caused relatively mild defects only in mTECs. These distinct roles for LUBAC components in TECs correlate with their function in linear ubiquitination, NFκB activation and cell survival. Thus, our findings reveal dual roles for LUBAC signaling in TEC differentiation and survival.
Collapse
Affiliation(s)
- Reema Jain
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Kelin Zhao
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Julie M Sheridan
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Melanie Heinlein
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- Department of Molecular Oncology, Genentech, Inc., South San Francisco, CA, USA
| | - Fiona Kupresanin
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- ANZAC Research Institute, Concord, Australia
| | - Waruni Abeysekera
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Cathrine Hall
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - James Rickard
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Philippe Bouillet
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Henning Walczak
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, London, UK
- Centre for Biochemistry, University of Cologne, Cologne, Germany
| | - Andreas Strasser
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - John Silke
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Daniel H D Gray
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
19
|
Duah M, Li L, Shen J, Lan Q, Pan B, Xu K. Thymus Degeneration and Regeneration. Front Immunol 2021; 12:706244. [PMID: 34539637 PMCID: PMC8442952 DOI: 10.3389/fimmu.2021.706244] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/16/2021] [Indexed: 01/08/2023] Open
Abstract
The immune system’s ability to resist the invasion of foreign pathogens and the tolerance to self-antigens are primarily centered on the efficient functions of the various subsets of T lymphocytes. As the primary organ of thymopoiesis, the thymus performs a crucial role in generating a self-tolerant but diverse repertoire of T cell receptors and peripheral T cell pool, with the capacity to recognize a wide variety of antigens and for the surveillance of malignancies. However, cells in the thymus are fragile and sensitive to changes in the external environment and acute insults such as infections, chemo- and radiation-therapy, resulting in thymic injury and degeneration. Though the thymus has the capacity to self-regenerate, it is often insufficient to reconstitute an intact thymic function. Thymic dysfunction leads to an increased risk of opportunistic infections, tumor relapse, autoimmunity, and adverse clinical outcome. Thus, exploiting the mechanism of thymic regeneration would provide new therapeutic options for these settings. This review summarizes the thymus’s development, factors causing thymic injury, and the strategies for improving thymus regeneration.
Collapse
Affiliation(s)
- Maxwell Duah
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Lingling Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Jingyi Shen
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Qiu Lan
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Bin Pan
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Kailin Xu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
20
|
Sharma H, Moroni L. Recent Advancements in Regenerative Approaches for Thymus Rejuvenation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100543. [PMID: 34306981 PMCID: PMC8292900 DOI: 10.1002/advs.202100543] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/04/2021] [Indexed: 05/29/2023]
Abstract
The thymus plays a key role in adaptive immunity by generating a diverse population of T cells that defend the body against pathogens. Various factors from disease and toxic insults contribute to the degeneration of the thymus resulting in a fewer output of T cells. Consequently, the body is prone to a wide host of diseases and infections. In this review, first, the relevance of the thymus is discussed, followed by thymic embryological organogenesis and anatomy as well as the development and functionality of T cells. Attempts to regenerate the thymus include in vitro methods, such as forming thymic organoids aided by biofabrication techniques that are transplantable. Ex vivo methods that have shown promise in enhancing thymic regeneration are also discussed. Current regenerative technologies have not yet matched the complexity and functionality of the thymus. Therefore, emerging techniques that have shown promise and the challenges that lie ahead are explored.
Collapse
Affiliation(s)
- Himal Sharma
- MERLN Institute for Technology‐Inspired Regenerative MedicineDepartment of Complex Tissue RegenerationMaastricht UniversityMaastricht6229 ERNetherlands
| | - Lorenzo Moroni
- MERLN Institute for Technology‐Inspired Regenerative MedicineDepartment of Complex Tissue RegenerationMaastricht UniversityMaastricht6229 ERNetherlands
| |
Collapse
|
21
|
Khosravi-Maharlooei M, Li H, Hoelzl M, Zhao G, Ruiz A, Misra A, Li Y, Teteloshvili N, Nauman G, Danzl N, Ding X, Pinker EY, Obradovic A, Yang YG, Iuga A, Creusot RJ, Winchester R, Sykes M. Role of the thymus in spontaneous development of a multi-organ autoimmune disease in human immune system mice. J Autoimmun 2021; 119:102612. [PMID: 33611150 PMCID: PMC8044037 DOI: 10.1016/j.jaut.2021.102612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 01/13/2023]
Abstract
We evaluated the role of the thymus in development of multi-organ autoimmunity in human immune system (HIS) mice. T cells were essential for disease development and the same T cell clones with varying phenotypes infiltrated multiple tissues. De novo-generated hematopoietic stem cell (HSC)-derived T cells were the major disease drivers, though thymocytes pre-existing in grafted human thymi contributed if not first depleted. HIS mice with a native mouse thymus developed disease earlier than thymectomized mice with a thymocyte-depleted human thymus graft. Defective structure in the native mouse thymus was associated with impaired negative selection of thymocytes expressing a transgenic TCR recognizing a self-antigen. Disease developed without direct recognition of antigens on recipient mouse MHC. While human thymus grafts had normal structure and negative selection, failure to tolerize human T cells recognizing mouse antigens presented on HLA molecules may explain eventual disease development. These new insights have implications for human autoimmunity and suggest methods of avoiding autoimmunity in next-generation HIS mice.
Collapse
Affiliation(s)
- Mohsen Khosravi-Maharlooei
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - HaoWei Li
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - Markus Hoelzl
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - Guiling Zhao
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - Amanda Ruiz
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - Aditya Misra
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - Yang Li
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - Nato Teteloshvili
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - Grace Nauman
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - Nichole Danzl
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - Xiaolan Ding
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - Elisha Y Pinker
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - Aleksandar Obradovic
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - Yong-Guang Yang
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - Alina Iuga
- Department of Pathology, Columbia University Medical Center, Columbia University, New York, NY, 10032, USA
| | - Remi J Creusot
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - Robert Winchester
- Department of Pathology, Columbia University Medical Center, Columbia University, New York, NY, 10032, USA,Division of Rheumatology, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA,Department of Microbiology & Immunology, Columbia University Medical Center, Columbia University, New York, NY, 10032, USA,Department of Surgery, Columbia University Medical Center, Columbia University, New York, NY, 10032, USA
| |
Collapse
|
22
|
Santamaria JC, Borelli A, Irla M. Regulatory T Cell Heterogeneity in the Thymus: Impact on Their Functional Activities. Front Immunol 2021; 12:643153. [PMID: 33643324 PMCID: PMC7904894 DOI: 10.3389/fimmu.2021.643153] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/25/2021] [Indexed: 01/07/2023] Open
Abstract
Foxp3+ regulatory T cells (Treg) maintain the integrity of the organism by preventing excessive immune responses. These cells protect against autoimmune diseases but are also important regulators of other immune responses including inflammation, allergy, infection, and tumors. Furthermore, they exert non-immune functions such as tissue repair and regeneration. In the periphery, Foxp3+ Treg have emerged as a highly heterogeneous cell population with distinct molecular and functional properties. Foxp3+ Treg mainly develop within the thymus where they receive instructive signals for their differentiation. Recent studies have revealed that thymic Treg are also heterogeneous with two distinct precursors that give rise to mature Foxp3+ Treg exhibiting non-overlapping regulatory activities characterized by a differential ability to control different types of autoimmune reactions. Furthermore, the thymic Treg cell pool is not only composed of newly developing Treg, but also contain a large fraction of recirculating peripheral cells. Here, we review the two pathways of thymic Treg cell differentiation and their potential impact on Treg activity in the periphery. We also summarize our current knowledge on recirculating peripheral Treg in the thymus.
Collapse
Affiliation(s)
- Jérémy C Santamaria
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Alexia Borelli
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Magali Irla
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| |
Collapse
|
23
|
Walsh MC, Choi Y. Regulation of T cell-associated tissues and T cell activation by RANKL-RANK-OPG. J Bone Miner Metab 2021; 39:54-63. [PMID: 33438173 PMCID: PMC8670018 DOI: 10.1007/s00774-020-01178-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/28/2020] [Indexed: 10/22/2022]
Abstract
The receptor activator of nuclear factor kappa-B ligand (RANKL)-RANK-osteoprotegerin (OPG) system is critical to bone homeostasis, but genetically deficient mouse models have revealed important roles in the immune system as well. RANKL-RANK-OPG is particularly important to T cell biology because of its organogenic control of thymic development and secondary lymphoid tissues influence central T cell tolerance and peripheral T cell function. RANKL-RANK-OPG cytokine-receptor interactions are often controlled by regulation of expression of RANKL on developing T cells, which interacts with RANK expressed on some lymphoid tissue cells to stimulate key downstream signaling pathways that affect critical tuning functions of the T cell compartment, like cell survival and antigen presentation. Activation of peripheral T cells is regulated by RANKL-enhanced dendritic cell survival, and dysregulation of the RANKL-RANK-OPG system in this context is associated with loss of T cell tolerance and autoimmune disease. Given its broader implications for immune homeostasis and osteoimmunology, it is critical to further understand how the RANKL-RANK-OPG system operates in T cell biology.
Collapse
Affiliation(s)
- Matthew C Walsh
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Yongwon Choi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
24
|
Kinsella S, Dudakov JA. When the Damage Is Done: Injury and Repair in Thymus Function. Front Immunol 2020; 11:1745. [PMID: 32903477 PMCID: PMC7435010 DOI: 10.3389/fimmu.2020.01745] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/30/2020] [Indexed: 01/02/2023] Open
Abstract
Even though the thymus is exquisitely sensitive to acute insults like infection, shock, or common cancer therapies such as cytoreductive chemo- or radiation-therapy, it also has a remarkable capacity for repair. This phenomenon of endogenous thymic regeneration has been known for longer even than its primary function to generate T cells, however, the underlying mechanisms controlling the process have been largely unstudied. Although there is likely continual thymic involution and regeneration in response to stress and infection in otherwise healthy people, acute and profound thymic damage such as that caused by common cancer cytoreductive therapies or the conditioning regimes as part of hematopoietic cell transplantation (HCT), leads to prolonged T cell deficiency; precipitating high morbidity and mortality from opportunistic infections and may even facilitate cancer relapse. Furthermore, this capacity for regeneration declines with age as a function of thymic involution; which even at steady state leads to reduced capacity to respond to new pathogens, vaccines, and immunotherapy. Consequently, there is a real clinical need for strategies that can boost thymic function and enhance T cell immunity. One approach to the development of such therapies is to exploit the processes of endogenous thymic regeneration into novel pharmacologic strategies to boost T cell reconstitution in clinical settings of immune depletion such as HCT. In this review, we will highlight recent work that has revealed the mechanisms by which the thymus is capable of repairing itself and how this knowledge is being used to develop novel therapies to boost immune function.
Collapse
Affiliation(s)
- Sinéad Kinsella
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Jarrod A. Dudakov
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Immunology, University of Washington, Seattle, WA, United States
| |
Collapse
|
25
|
Liu D, Kousa AI, O'Neill KE, Rouse P, Popis M, Farley AM, Tomlinson SR, Ulyanchenko S, Guillemot F, Seymour PA, Jørgensen MC, Serup P, Koch U, Radtke F, Blackburn CC. Canonical Notch signaling controls the early thymic epithelial progenitor cell state and emergence of the medullary epithelial lineage in fetal thymus development. Development 2020; 147:dev.178582. [PMID: 32467237 PMCID: PMC7328009 DOI: 10.1242/dev.178582] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/04/2020] [Indexed: 12/27/2022]
Abstract
Thymus function depends on the epithelial compartment of the thymic stroma. Cortical thymic epithelial cells (cTECs) regulate T cell lineage commitment and positive selection, while medullary (m) TECs impose central tolerance on the T cell repertoire. During thymus organogenesis, these functionally distinct sub-lineages are thought to arise from a common thymic epithelial progenitor cell (TEPC). However, the mechanisms controlling cTEC and mTEC production from the common TEPC are not understood. Here, we show that emergence of the earliest mTEC lineage-restricted progenitors requires active NOTCH signaling in progenitor TEC and that, once specified, further mTEC development is NOTCH independent. In addition, we demonstrate that persistent NOTCH activity favors maintenance of undifferentiated TEPCs at the expense of cTEC differentiation. Finally, we uncover a cross-regulatory relationship between NOTCH and FOXN1, a master regulator of TEC differentiation. These data establish NOTCH as a potent regulator of TEPC and mTEC fate during fetal thymus development, and are thus of high relevance to strategies aimed at generating/regenerating functional thymic tissue in vitro and in vivo. Summary: Notch signaling regulates the initial emergence of medullary thymic epithelial sublineage, implicating Notch in the maintenance of primitive thymic epithelial progenitors and uncovering its cross-interaction with Foxn1.
Collapse
Affiliation(s)
- Dong Liu
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, 5, Little France Drive, Edinburgh EH16 4UU, UK
| | - Anastasia I Kousa
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, 5, Little France Drive, Edinburgh EH16 4UU, UK
| | - Kathy E O'Neill
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, 5, Little France Drive, Edinburgh EH16 4UU, UK
| | - Paul Rouse
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, 5, Little France Drive, Edinburgh EH16 4UU, UK
| | - Martyna Popis
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, 5, Little France Drive, Edinburgh EH16 4UU, UK
| | - Alison M Farley
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, 5, Little France Drive, Edinburgh EH16 4UU, UK
| | - Simon R Tomlinson
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, 5, Little France Drive, Edinburgh EH16 4UU, UK
| | - Svetlana Ulyanchenko
- Biotech Research and Innovation Centre (BRIC), Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | | | - Philip A Seymour
- NNF Center for Stem Cell Biology, University of Copenhagen, Nørre Alle 14, DK-2200 Copenhagen N, Denmark
| | - Mette C Jørgensen
- NNF Center for Stem Cell Biology, University of Copenhagen, Nørre Alle 14, DK-2200 Copenhagen N, Denmark
| | - Palle Serup
- NNF Center for Stem Cell Biology, University of Copenhagen, Nørre Alle 14, DK-2200 Copenhagen N, Denmark
| | - Ute Koch
- Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Freddy Radtke
- Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - C Clare Blackburn
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, 5, Little France Drive, Edinburgh EH16 4UU, UK
| |
Collapse
|
26
|
Park JE, Botting RA, Domínguez Conde C, Popescu DM, Lavaert M, Kunz DJ, Goh I, Stephenson E, Ragazzini R, Tuck E, Wilbrey-Clark A, Roberts K, Kedlian VR, Ferdinand JR, He X, Webb S, Maunder D, Vandamme N, Mahbubani KT, Polanski K, Mamanova L, Bolt L, Crossland D, de Rita F, Fuller A, Filby A, Reynolds G, Dixon D, Saeb-Parsy K, Lisgo S, Henderson D, Vento-Tormo R, Bayraktar OA, Barker RA, Meyer KB, Saeys Y, Bonfanti P, Behjati S, Clatworthy MR, Taghon T, Haniffa M, Teichmann SA. A cell atlas of human thymic development defines T cell repertoire formation. Science 2020; 367:367/6480/eaay3224. [PMID: 32079746 DOI: 10.1126/science.aay3224] [Citation(s) in RCA: 427] [Impact Index Per Article: 85.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 01/16/2020] [Indexed: 11/03/2022]
Abstract
The thymus provides a nurturing environment for the differentiation and selection of T cells, a process orchestrated by their interaction with multiple thymic cell types. We used single-cell RNA sequencing to create a cell census of the human thymus across the life span and to reconstruct T cell differentiation trajectories and T cell receptor (TCR) recombination kinetics. Using this approach, we identified and located in situ CD8αα+ T cell populations, thymic fibroblast subtypes, and activated dendritic cell states. In addition, we reveal a bias in TCR recombination and selection, which is attributed to genomic position and the kinetics of lineage commitment. Taken together, our data provide a comprehensive atlas of the human thymus across the life span with new insights into human T cell development.
Collapse
Affiliation(s)
- Jong-Eun Park
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Rachel A Botting
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | | | - Dorin-Mirel Popescu
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Marieke Lavaert
- Faculty of Medicine and Health Sciences, Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Daniel J Kunz
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.,Theory of Condensed Matter Group, Cavendish Laboratory/Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK.,Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Issac Goh
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Emily Stephenson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Roberta Ragazzini
- Epithelial Stem Cell Biology and Regenerative Medicine Laboratory, Francis Crick Institute, London NW1 1AT, UK.,Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Elizabeth Tuck
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Anna Wilbrey-Clark
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Kenny Roberts
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Veronika R Kedlian
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - John R Ferdinand
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 0QQ, UK
| | - Xiaoling He
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, UK
| | - Simone Webb
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Daniel Maunder
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Niels Vandamme
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Krishnaa T Mahbubani
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| | - Krzysztof Polanski
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Lira Mamanova
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Liam Bolt
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - David Crossland
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.,Department of Adult Congenital Heart Disease and Paediatric Cardiology/Cardiothoracic Surgery, Freeman Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4LP, UK
| | - Fabrizio de Rita
- Department of Adult Congenital Heart Disease and Paediatric Cardiology/Cardiothoracic Surgery, Freeman Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4LP, UK
| | - Andrew Fuller
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Andrew Filby
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Gary Reynolds
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - David Dixon
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| | - Steven Lisgo
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Deborah Henderson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Roser Vento-Tormo
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Omer A Bayraktar
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Roger A Barker
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, UK.,WT-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| | - Kerstin B Meyer
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Yvan Saeys
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Paola Bonfanti
- Epithelial Stem Cell Biology and Regenerative Medicine Laboratory, Francis Crick Institute, London NW1 1AT, UK.,Great Ormond Street Institute of Child Health, University College London, London, UK.,Institute of Immunity and Transplantation, University College London, London, UK
| | - Sam Behjati
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.,Department of Paediatrics, University of Cambridge, Cambridge CB2 0SP, UK
| | - Menna R Clatworthy
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.,Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 0QQ, UK.,Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Tom Taghon
- Faculty of Medicine and Health Sciences, Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium. .,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Muzlifah Haniffa
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK. .,Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.,Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4LP, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK. .,Theory of Condensed Matter Group, Cavendish Laboratory/Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
| |
Collapse
|
27
|
Park JE, Botting RA, Domínguez Conde C, Popescu DM, Lavaert M, Kunz DJ, Goh I, Stephenson E, Ragazzini R, Tuck E, Wilbrey-Clark A, Roberts K, Kedlian VR, Ferdinand JR, He X, Webb S, Maunder D, Vandamme N, Mahbubani KT, Polanski K, Mamanova L, Bolt L, Crossland D, de Rita F, Fuller A, Filby A, Reynolds G, Dixon D, Saeb-Parsy K, Lisgo S, Henderson D, Vento-Tormo R, Bayraktar OA, Barker RA, Meyer KB, Saeys Y, Bonfanti P, Behjati S, Clatworthy MR, Taghon T, Haniffa M, Teichmann SA. A cell atlas of human thymic development defines T cell repertoire formation. Science 2020. [DOI: 10.1126/science.aay3224 32079746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jong-Eun Park
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Rachel A. Botting
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | | | - Dorin-Mirel Popescu
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Marieke Lavaert
- Faculty of Medicine and Health Sciences, Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Daniel J. Kunz
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Theory of Condensed Matter Group, Cavendish Laboratory/Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Issac Goh
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Emily Stephenson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Roberta Ragazzini
- Epithelial Stem Cell Biology and Regenerative Medicine Laboratory, Francis Crick Institute, London NW1 1AT, UK
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Elizabeth Tuck
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Anna Wilbrey-Clark
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Kenny Roberts
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Veronika R. Kedlian
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - John R. Ferdinand
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 0QQ, UK
| | - Xiaoling He
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, UK
| | - Simone Webb
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Daniel Maunder
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Niels Vandamme
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Krishnaa T. Mahbubani
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| | - Krzysztof Polanski
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Lira Mamanova
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Liam Bolt
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - David Crossland
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Department of Adult Congenital Heart Disease and Paediatric Cardiology/Cardiothoracic Surgery, Freeman Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4LP, UK
| | - Fabrizio de Rita
- Department of Adult Congenital Heart Disease and Paediatric Cardiology/Cardiothoracic Surgery, Freeman Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4LP, UK
| | - Andrew Fuller
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Andrew Filby
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Gary Reynolds
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - David Dixon
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| | - Steven Lisgo
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Deborah Henderson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Roser Vento-Tormo
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Omer A. Bayraktar
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Roger A. Barker
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, UK
- WT-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| | - Kerstin B. Meyer
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Yvan Saeys
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Paola Bonfanti
- Epithelial Stem Cell Biology and Regenerative Medicine Laboratory, Francis Crick Institute, London NW1 1AT, UK
- Great Ormond Street Institute of Child Health, University College London, London, UK
- Institute of Immunity and Transplantation, University College London, London, UK
| | - Sam Behjati
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Department of Paediatrics, University of Cambridge, Cambridge CB2 0SP, UK
| | - Menna R. Clatworthy
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 0QQ, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Tom Taghon
- Faculty of Medicine and Health Sciences, Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Muzlifah Haniffa
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4LP, UK
| | - Sarah A. Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Theory of Condensed Matter Group, Cavendish Laboratory/Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
| |
Collapse
|
28
|
Dynamic changes in epithelial cell morphology control thymic organ size during atrophy and regeneration. Nat Commun 2019; 10:4402. [PMID: 31562306 PMCID: PMC6765001 DOI: 10.1038/s41467-019-11879-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/07/2019] [Indexed: 12/31/2022] Open
Abstract
T lymphocytes must be produced throughout life, yet the thymus, where T lymphocytes are made, exhibits accelerated atrophy with age. Even in advanced atrophy, however, the thymus remains plastic, and can be regenerated by appropriate stimuli. Logically, thymic atrophy is thought to reflect senescent cell death, while regeneration requires proliferation of stem or progenitor cells, although evidence is scarce. Here we use conditional reporters to show that accelerated thymic atrophy reflects contraction of complex cell projections unique to cortical epithelial cells, while regeneration requires their regrowth. Both atrophy and regeneration are independent of changes in epithelial cell number, suggesting that the size of the thymus is regulated primarily by rate-limiting morphological changes in cortical stroma, rather than by their cell death or proliferation. Our data also suggest that cortical epithelial morphology is under the control of medullary stromal signals, revealing a previously unrecognized endocrine-paracrine signaling axis in the thymus.
Collapse
|
29
|
Sobacchi C, Menale C, Villa A. The RANKL-RANK Axis: A Bone to Thymus Round Trip. Front Immunol 2019; 10:629. [PMID: 30984193 PMCID: PMC6450200 DOI: 10.3389/fimmu.2019.00629] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/08/2019] [Indexed: 12/13/2022] Open
Abstract
The identification of Receptor activator of nuclear factor kappa B ligand (RANKL) and its cognate receptor Receptor activator of nuclear factor kappa B (RANK) during a search for novel tumor necrosis factor receptor (TNFR) superfamily members has dramatically changed the scenario of bone biology by providing the functional and biochemical proof that RANKL signaling via RANK is the master factor for osteoclastogenesis. In parallel, two independent studies reported the identification of mouse RANKL on activated T cells and of a ligand for osteoprotegerin on a murine bone marrow-derived stromal cell line. After these seminal findings, accumulating data indicated RANKL and RANK not only as essential players for the development and activation of osteoclasts, but also for the correct differentiation of medullary thymic epithelial cells (mTECs) that act as mediators of the central tolerance process by which self-reactive T cells are eliminated while regulatory T cells are generated. In light of the RANKL-RANK multi-task function, an antibody targeting this pathway, denosumab, is now commonly used in the therapy of bone loss diseases including chronic inflammatory bone disorders and osteolytic bone metastases; furthermore, preclinical data support the therapeutic application of denosumab in the framework of a broader spectrum of tumors. Here, we discuss advances in cellular and molecular mechanisms elicited by RANKL-RANK pathway in the bone and thymus, and the extent to which its inhibition or augmentation can be translated in the clinical arena.
Collapse
Affiliation(s)
- Cristina Sobacchi
- Milan Unit, Institute for Genetic and Biomedical Research (CNR-IRGB), Milan, Italy.,Humanitas Clinical and Research Center IRCCS, Rozzano, Italy
| | - Ciro Menale
- Milan Unit, Institute for Genetic and Biomedical Research (CNR-IRGB), Milan, Italy.,Humanitas Clinical and Research Center IRCCS, Rozzano, Italy
| | - Anna Villa
- Milan Unit, Institute for Genetic and Biomedical Research (CNR-IRGB), Milan, Italy.,San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
30
|
Ribeiro C, Alves NL, Ferreirinha P. Medullary thymic epithelial cells: Deciphering the functional diversity beyond promiscuous gene expression. Immunol Lett 2019; 215:24-27. [PMID: 30853502 DOI: 10.1016/j.imlet.2019.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 12/27/2022]
Abstract
Within the thymus, cortical and medullary thymic epithelial cells (cTECs and mTECs, respectively) provide unique microenvironments for the development of T cells that are responsive to diverse foreign antigens while self-tolerant. Essential for tolerance induction, mTECs play a critical role in negative selection and T regulatory cell differentiation. In this article, we review the current knowledge on the functional diversity within mTECs and discuss how these novel subsets contribute to tolerance induction and are integrated in the complex blueprint of mTEC differentiation.
Collapse
Affiliation(s)
- Camila Ribeiro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
| | - Nuno L Alves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
| | - Pedro Ferreirinha
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal.
| |
Collapse
|
31
|
Fernandes MT, Caroço LS, Pacheco-Leyva I, Dos Santos NR. NF-κB-dependent RANKL expression in a mouse model of immature T-cell leukemia. Biochem Biophys Res Commun 2019; 510:272-277. [PMID: 30711250 DOI: 10.1016/j.bbrc.2019.01.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 01/19/2019] [Indexed: 10/27/2022]
Abstract
Activation of the receptor activator of nuclear factor-κB (RANK) by its ligand (RANKL) is involved in both solid and hematological malignancies, including multiple myeloma, acute myeloid leukemia and B-cell leukemia. Although RANKL expression has been described in normal T cells, a potential role in T-cell leukemia remains undefined. Here, we used a model of immature T-cell leukemia/lymphoma, the TEL-JAK2 transgenic mice, to assess RANKL expression in leukemic cells and its regulatory mechanisms. We found that Rankl mRNA was significantly overexpressed in leukemic T cells when compared to wild-type thymocytes, their nonmalignant counterparts. Moreover, Rankl mRNA and RANKL surface expression in leukemic cells was induced by T-cell receptor (TCR) signaling activation, dependently on the NF-κB signaling pathway. These results indicate that TCR-activated leukemic T cells express high levels of RANKL and are potential inducers of RANK signaling in microenvironmental cells.
Collapse
Affiliation(s)
- Mónica T Fernandes
- Centre for Biomedical Research (CBMR), University of Algarve, 8005-139, Faro, Portugal; PhD Program in Biomedical Sciences, Department of Biomedical Sciences and Medicine, University of Algarve, 8005-139, Faro, Portugal.
| | - Lara S Caroço
- Centre for Biomedical Research (CBMR), University of Algarve, 8005-139, Faro, Portugal.
| | - Ivette Pacheco-Leyva
- Centre for Biomedical Research (CBMR), University of Algarve, 8005-139, Faro, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal.
| | - Nuno R Dos Santos
- Centre for Biomedical Research (CBMR), University of Algarve, 8005-139, Faro, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal.
| |
Collapse
|
32
|
Navet B, Vargas-Franco JW, Gama A, Amiaud J, Choi Y, Yagita H, Mueller CG, Rédini F, Heymann D, Castaneda B, Lézot F. Maternal RANKL Reduces the Osteopetrotic Phenotype of Null Mutant Mouse Pups. J Clin Med 2018; 7:jcm7110426. [PMID: 30413057 PMCID: PMC6262436 DOI: 10.3390/jcm7110426] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 10/29/2018] [Accepted: 11/06/2018] [Indexed: 02/01/2023] Open
Abstract
RANKL signalization is implicated in the morphogenesis of various organs, including the skeleton. Mice invalidated for Rankl present an osteopetrotic phenotype that was less severe than anticipated, depending on RANKL’s implication in morphogenesis. The hypothesis of an attenuated phenotype, as a result of compensation during gestation by RANKL of maternal origin, was thus brought into question. In order to answer this question, Rankl null mutant pups from null mutant parents were generated, and the phenotype analyzed. The results validated the presence of a more severe osteopetrotic phenotype in the second-generation null mutant with perinatal lethality. The experiments also confirmed that RANKL signalization plays a part in the morphogenesis of skeletal elements through its involvement in cell-to-cell communication, such as in control of osteoclast differentiation. To conclude, we have demonstrated that the phenotype associated with Rankl invalidation is attenuated through compensation by RANKL of maternal origin.
Collapse
Affiliation(s)
- Benjamin Navet
- INSERM, UMR 1238, Faculté de Médecine, Université de Nantes, F-44035 Nantes, France.
| | - Jorge William Vargas-Franco
- INSERM, UMR 1238, Faculté de Médecine, Université de Nantes, F-44035 Nantes, France.
- Department of Basic Studies, Faculty of Odontology, University of Antioquia, Medellin AA 1226, Colombia.
| | - Andrea Gama
- INSERM, UMR-1138, Equipe 5, Centre de Recherche des Cordeliers, F-75006 Paris, France.
| | - Jérome Amiaud
- INSERM, UMR 1238, Faculté de Médecine, Université de Nantes, F-44035 Nantes, France.
| | - Yongwon Choi
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Hideo Yagita
- Department of Immunology, School of Medicine, Juntendo University, Tokyo 113-8421, Japan.
| | - Christopher G Mueller
- CNRS, UPR-9021, Laboratoire Immunologie et Chimie Thérapeutiques, Institut de Biologie Moléculaire et Cellulaire (IBMC), Université de Strasbourg, F-67084 Strasbourg, France.
| | - Françoise Rédini
- INSERM, UMR 1238, Faculté de Médecine, Université de Nantes, F-44035 Nantes, France.
| | - Dominique Heymann
- INSERM, LEA Sarcoma Research Unit, Department of Oncology and Human Metabolism, Medical School, University of Sheffield, Sheffield S10 2RX, UK.
- INSERM, UMR 1232, LabCT, Université de Nantes, Université d'Angers, Institut de Cancérologie de l'Ouest, site René Gauducheau, F-44805 Saint-Herblain, France.
| | - Beatriz Castaneda
- INSERM, UMR-1138, Equipe 5, Centre de Recherche des Cordeliers, F-75006 Paris, France.
| | - Frédéric Lézot
- INSERM, UMR 1238, Faculté de Médecine, Université de Nantes, F-44035 Nantes, France.
| |
Collapse
|
33
|
Villegas JA, Gradolatto A, Truffault F, Roussin R, Berrih-Aknin S, Le Panse R, Dragin N. Cultured Human Thymic-Derived Cells Display Medullary Thymic Epithelial Cell Phenotype and Functionality. Front Immunol 2018; 9:1663. [PMID: 30083154 PMCID: PMC6064927 DOI: 10.3389/fimmu.2018.01663] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/04/2018] [Indexed: 12/13/2022] Open
Abstract
Thymic epithelial cells are one of the main components of the thymic microenvironment required for T-cell development. In this work, we describe an efficient method free of enzymatic and Facs-sorted methods to culture human medullary thymic epithelial cells without affecting the cell phenotypic, physiologic and functional features. Human medulla thymic epithelial cells (mTECs) are obtained by culturing thymic biopsies explants. After 7 days of primo-culture, mTECs keep their ability to express key molecules involved in immune tolerance processes such as autoimmune regulator, tissue-specific antigens, chemokines, and cytokines. In addition, the cells sensor their cultured environment and consequently adjust their gene expression network. Therefore, we describe and provide a human mTEC model that may be used to test the effect of various molecules on thymic epithelial cell homeostasis and physiology. This method should allow the investigations of the specificities and the knowledge of human mTECs in normal or pathological conditions and therefore discontinue the extrapolations done on the murine models.
Collapse
Affiliation(s)
- José A Villegas
- INSERM, AIM, Center of Research in Myology, UMRS974, Sorbonne University, Paris, France
| | - Angeline Gradolatto
- INSERM, AIM, Center of Research in Myology, UMRS974, Sorbonne University, Paris, France
| | - Frédérique Truffault
- INSERM, AIM, Center of Research in Myology, UMRS974, Sorbonne University, Paris, France
| | | | - Sonia Berrih-Aknin
- INSERM, AIM, Center of Research in Myology, UMRS974, Sorbonne University, Paris, France
| | - Rozen Le Panse
- INSERM, AIM, Center of Research in Myology, UMRS974, Sorbonne University, Paris, France
| | - Nadine Dragin
- INSERM, AIM, Center of Research in Myology, UMRS974, Sorbonne University, Paris, France.,Inovarion, Paris, France
| |
Collapse
|
34
|
Abstract
Aberrant or prolonged immune responses often affect bone metabolism. The investigation on bone destruction observed in autoimmune arthritis contributed to the development of research area on effect of the immune system on bone. A number of reports on bone phenotypes of immunocompromised mice indicate that the immune and skeletal systems share various molecules, including transcription factors, signaling molecules, and membrane receptors, suggesting the interplay between the two systems. Furthermore, much attention has been paid to the modulation of immune cells, including hematopoietic progenitor cells, by bone cells in the bone marrow. Thus, osteoimmunology which deals with the crosstalk and shared mechanisms of the bone and immune systems became the conceptual framework fundamental to a proper understanding of both systems and the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Asuka Terashima
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
35
|
Bolzoni M, Toscani D, Costa F, Vicario E, Aversa F, Giuliani N. The link between bone microenvironment and immune cells in multiple myeloma: Emerging role of CD38. Immunol Lett 2018; 205:65-70. [PMID: 29702149 DOI: 10.1016/j.imlet.2018.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 04/23/2018] [Indexed: 12/30/2022]
Abstract
The relationship between bone and immune cells is well established both in physiological and pathological conditions. Multiple myeloma (MM) is a plasma cell malignancy characterized by an increase of number and activity of osteoclasts (OCLs) and a decrease of osteoblasts (OBs). These events are responsible for bone lesions of MM patients. OCLs support MM cells survival in vitro and in vivo. Recently, the possible role of OCLs as immunosuppressive cells in the MM BM microenvironment has been underlined. OCLs protect MM cells against T cell-mediated cytotoxicity through the expression of several molecules including programmed death-ligand (PD-L) 1, galectin (Gal) 9, CD200, and indoleamine-2,3-dioxygenase (IDO). Among the molecules that could be involved in the link between immune-microenvironment and osteoclastogenesis the role of CD38 has been hypothesized. CD38 is a well-known adhesion molecule and an ectoenzyme highly expressed by MM cells. Moreover, CD38 is expressed by OCLs and at the surface level on OCL precursors. Targeting CD38 with monoclonal antibodies showed inhibition of both osteoclastogenesis and OCL-mediated suppression of T cell function. This review elucidates this evidence indicating that osteoclastogenesis affect MM immune-microenvironment being a potential target to improve anti-MM immunity and to ameliorate bone disease.
Collapse
Affiliation(s)
- Marina Bolzoni
- Department Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Denise Toscani
- Department Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Federica Costa
- Department Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Emanuela Vicario
- Department Medicine and Surgery, University of Parma, 43126 Parma, Italy; Biopathology and Medical Biotechnologies, Biology and Genetic Section, University of Palermo, 90133 Palermo, Italy
| | - Franco Aversa
- Department Medicine and Surgery, University of Parma, 43126 Parma, Italy; Hematology and BMT Center, "Azienda Ospedaliero-Universitaria di Parma", 43126 Parma, Italy
| | - Nicola Giuliani
- Department Medicine and Surgery, University of Parma, 43126 Parma, Italy; Hematology and BMT Center, "Azienda Ospedaliero-Universitaria di Parma", 43126 Parma, Italy.
| |
Collapse
|
36
|
Abstract
About two decades ago, cloning of the autoimmune regulator (AIRE) gene materialized one of the most important actors on the scene of self-tolerance. Thymic transcription of genes encoding tissue-specific antigens (ts-ags) is activated by AIRE protein and embodies the essence of thymic self-representation. Pathogenic AIRE variants cause the autoimmune polyglandular syndrome type 1, which is a rare and complex disease that is gaining attention in research on autoimmunity. The animal models of disease, although not identically reproducing the human picture, supply fundamental information on mechanisms and extent of AIRE action: thanks to its multidomain structure, AIRE localizes to chromatin enclosing the target genes, binds to histones, and offers an anchorage to multimolecular complexes involved in initiation and post-initiation events of gene transcription. In addition, AIRE enhances mRNA diversity by favoring alternative mRNA splicing. Once synthesized, ts-ags are presented to, and cause deletion of the self-reactive thymocyte clones. However, AIRE function is not restricted to the activation of gene transcription. AIRE would control presentation and transfer of self-antigens for thymic cellular interplay: such mechanism is aimed at increasing the likelihood of engagement of the thymocytes that carry the corresponding T-cell receptors. Another fundamental role of AIRE in promoting self-tolerance is related to the development of thymocyte anergy, as thymic self-representation shapes at the same time the repertoire of regulatory T cells. Finally, AIRE seems to replicate its action in the secondary lymphoid organs, albeit the cell lineage detaining such property has not been fully characterized. Delineation of AIRE functions adds interesting data to the knowledge of the mechanisms of self-tolerance and introduces exciting perspectives of therapeutic interventions against the related diseases.
Collapse
Affiliation(s)
- Roberto Perniola
- Department of Pediatrics, Neonatal Intensive Care, Vito Fazzi Regional Hospital, Lecce, Italy
| |
Collapse
|
37
|
Berrih-Aknin S, Panse RL, Dragin N. AIRE: a missing link to explain female susceptibility to autoimmune diseases. Ann N Y Acad Sci 2018; 1412:21-32. [PMID: 29291257 DOI: 10.1111/nyas.13529] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/20/2017] [Accepted: 09/25/2017] [Indexed: 12/13/2022]
Abstract
Women are more susceptible to autoimmune diseases than men. Autoimmunity results from tolerance breakdown toward self-components. Recently, three transcription modulators were identified in medullary thymic epithelial cells that orchestrate immune central tolerance processes: the autoimmune regulator (AIRE), FEZ family zinc finger 2 (FEZF2 or FEZ1), and PR domain zinc finger protein 1 (PRDM1). Interestingly, these three transcription modulators regulate nonredundant tissue-specific antigen subsets and thus cover broad antigen diversity. Recent data from different groups demonstrated that sex hormones (estrogen and testosterone) are involved in the regulation of thymic AIRE expression in humans and mice through direct transcriptional modulation and epigenetic changes. As a consequence, AIRE displays gender-biased thymic expression, with females showing a lower expression compared with males, a finding that could explain the female susceptibility to autoimmune diseases. So far, FEZF2 has not been related to an increased gender bias in autoimmune disease. PRDM1 expression has not been shown to display gender-differential thymic expression, but its expression level and its gene polymorphisms are associated with female-dependent autoimmune disease risk. Altogether, various studies have demonstrated that increased female susceptibility to autoimmune diseases is in part a consequence of hormone-driven reduced thymic AIRE expression.
Collapse
Affiliation(s)
- Sonia Berrih-Aknin
- UPMC Sorbonne Universities, Paris, France
- INSERM U974, Paris, France
- AIM, Institute of Myology, Paris, France
| | - Rozen Le Panse
- UPMC Sorbonne Universities, Paris, France
- INSERM U974, Paris, France
- AIM, Institute of Myology, Paris, France
| | - Nadine Dragin
- UPMC Sorbonne Universities, Paris, France
- INSERM U974, Paris, France
- AIM, Institute of Myology, Paris, France
- Inovarion, Paris, France
| |
Collapse
|
38
|
Perera J, Zheng Z, Li S, Gudjonson H, Kalinina O, Benichou JIC, Block KE, Louzoun Y, Yin D, Chong AS, Dinner AR, Weigert M, Huang H. Self-Antigen-Driven Thymic B Cell Class Switching Promotes T Cell Central Tolerance. Cell Rep 2017; 17:387-398. [PMID: 27705788 DOI: 10.1016/j.celrep.2016.09.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 07/20/2016] [Accepted: 09/02/2016] [Indexed: 11/26/2022] Open
Abstract
B cells are unique antigen-presenting cells because their antigen presentation machinery is closely tied to the B cell receptor. Autoreactive thymic B cells can efficiently present cognate self-antigens to mediate CD4+ T cell-negative selection. However, the nature of thymocyte-thymic B cell interaction and how this interaction affects the selection of thymic B cell repertoire and, in turn, the T cell repertoire are not well understood. Here we demonstrate that a large percentage of thymic B cells have undergone class switching intrathymically. Thymic B cell class switching requires cognate interaction with specific T cells. Class-switched thymic B cells have a distinct repertoire compared with unswitched thymic B cells or splenic B cells. Particularly, autoreactive B cell specificities preferentially expand in the thymus by undergoing class switching, and these enriched, class-switched autoreactive thymic B cells play an important role in CD4 T cell tolerance.
Collapse
Affiliation(s)
- Jason Perera
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Department of Medicine, Section of Rheumatology, and Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL 60637, USA
| | - Zhong Zheng
- Department of Medicine, Section of Rheumatology, and Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL 60637, USA
| | - Shuyin Li
- Department of Medicine, Section of Rheumatology, and Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL 60637, USA
| | - Herman Gudjonson
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Graduate Program in the Biophysical Sciences, Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Olga Kalinina
- Knapp Center for Lupus and Immunology Research, Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Jennifer I C Benichou
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 52900, Israel
| | - Katharine E Block
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Department of Medicine, Section of Rheumatology, and Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL 60637, USA
| | - Yoram Louzoun
- Department of Mathematics and Gonda Brain Research Center, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Dengping Yin
- Section of Transplantation, Department of Surgery, University of Chicago, Chicago, IL 60637, USA
| | - Anita S Chong
- Section of Transplantation, Department of Surgery, University of Chicago, Chicago, IL 60637, USA
| | - Aaron R Dinner
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Graduate Program in the Biophysical Sciences, Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Martin Weigert
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Knapp Center for Lupus and Immunology Research, Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Haochu Huang
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Department of Medicine, Section of Rheumatology, and Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
39
|
Dudakov JA, Mertelsmann AM, O'Connor MH, Jenq RR, Velardi E, Young LF, Smith OM, Boyd RL, van den Brink MRM, Hanash AM. Loss of thymic innate lymphoid cells leads to impaired thymopoiesis in experimental graft-versus-host disease. Blood 2017; 130:933-942. [PMID: 28607133 PMCID: PMC5561900 DOI: 10.1182/blood-2017-01-762658] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/13/2017] [Indexed: 12/22/2022] Open
Abstract
Graft-versus-host disease (GVHD) and posttransplant immunodeficiency are frequently related complications of allogeneic hematopoietic transplantation. Alloreactive donor T cells can damage thymic epithelium, thus limiting new T-cell development. Although the thymus has a remarkable capacity to regenerate after injury, endogenous thymic regeneration is impaired in GVHD. The mechanisms leading to this regenerative failure are largely unknown. Here we demonstrate in experimental mouse models that GVHD results in depletion of intrathymic group 3 innate lymphoid cells (ILC3s) necessary for thymic regeneration. Loss of thymic ILC3s resulted in deficiency of intrathymic interleukin-22 (IL-22) compared with transplant recipients without GVHD, thereby inhibiting IL-22-mediated protection of thymic epithelial cells (TECs) and impairing recovery of thymopoiesis. Conversely, abrogating IL-21 receptor signaling in donor T cells and inhibiting the elimination of thymic ILCs improved thymopoiesis in an IL-22-dependent fashion. We found that the thymopoietic impairment in GVHD associated with loss of ILCs could be improved by restoration of IL-22 signaling. Despite uninhibited alloreactivity, exogenous IL-22 administration posttransplant resulted in increased recovery of thymopoiesis and development of new thymus-derived peripheral T cells. Our study highlights the role of innate immune function in thymic regeneration and restoration of adaptive immunity posttransplant. Manipulation of the ILC-IL-22-TEC axis may be useful for augmenting immune reconstitution after clinical hematopoietic transplantation and other settings of T-cell deficiency.
Collapse
Affiliation(s)
- Jarrod A Dudakov
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Immunology, University of Washington, Seattle, WA
| | - Anna M Mertelsmann
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Margaret H O'Connor
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Robert R Jenq
- Department of Genomic Medicine and
- Department of Stem Cell Transplantation Cellular Therapy, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Enrico Velardi
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Lauren F Young
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Odette M Smith
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Richard L Boyd
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia; and
| | - Marcel R M van den Brink
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Alan M Hanash
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| |
Collapse
|
40
|
Thymic homing of activated CD4 + T cells induces degeneration of the thymic epithelium through excessive RANK signaling. Sci Rep 2017; 7:2421. [PMID: 28546567 PMCID: PMC5445095 DOI: 10.1038/s41598-017-02653-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 04/25/2017] [Indexed: 11/09/2022] Open
Abstract
Activated T cells have been shown to be able to recirculate into the thymus from the periphery. The present study was aimed to elucidate the functional consequences of thymic homing of activated T cells upon developing thymocytes and thymic epithelial cells (TEC). In the presence of activated T cells, especially CD4+ T cells, T cell development was found to be inhibited in thymic organ cultures with markedly reduced cellularity. Thymic transplantation demonstrated that the inhibitory effect was most likely due to a defective microenvironment. As the major component of the thymic stroma, the TEC compartment was severely disturbed after prolonged exposure to the activated T cells. In addition to reduced cell proliferation, TEC differentiation was heavily skewed to the mTEC lineage. Furthermore, we demonstrated that RANKL highly expressed by activated CD4+ T cells was primarily responsible for the detrimental effects. Presumably, excessive RANK signaling drove overproduction of mTECs and possibly exhaustion of epithelial progenitors, thereby facilitating the deterioration of the epithelial structures. These findings not only reveal a novel activity of activated T cells re-entering the thymus, but also provide a new perspective for understanding the mechanism underlying thymic involution.
Collapse
|
41
|
Smith MJ, Reichenbach DK, Parker SL, Riddle MJ, Mitchell J, Osum KC, Mohtashami M, Stefanski HE, Fife BT, Bhandoola A, Hogquist KA, Holländer GA, Zúñiga-Pflücker JC, Tolar J, Blazar BR. T cell progenitor therapy-facilitated thymopoiesis depends upon thymic input and continued thymic microenvironment interaction. JCI Insight 2017; 2:92056. [PMID: 28515359 PMCID: PMC5436538 DOI: 10.1172/jci.insight.92056] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/13/2017] [Indexed: 12/12/2022] Open
Abstract
Infusion of in vitro-derived T cell progenitor (proT) therapy with hematopoietic stem cell transplant aids the recovery of the thymus damaged by total body irradiation. To understand the interaction between proTs and the thymic microenvironment, WT mice were lethally irradiated and given T cell-deficient (Rag1-/-) marrow with WT in vitro-generated proTs, limiting mature T cell development to infused proTs. ProTs within the host thymus led to a significant increase in thymic epithelial cells (TECs) by day 21 after transplant, increasing actively cycling TECs. Upon thymus egress (day 28), proT TEC effects were lost, suggesting that continued signaling from proTs is required to sustain TEC cycling and cellularity. Thymocytes increased significantly by day 21, followed by a significant improvement in mature T cell numbers in the periphery by day 35. This protective surge was temporary, receding by day 60. Double-negative 2 (DN2) proTs selectively increased thymocyte number, while DN3 proTs preferentially increased TECs and T cells in the spleen that persisted at day 60. These findings highlight the importance of the interaction between proTs and TECs in the proliferation and survival of TECs and that the maturation stage of proTs has unique effects on thymopoiesis and peripheral T cell recovery.
Collapse
Affiliation(s)
- Michelle J. Smith
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Immunology, Department of Medicine, and
| | - Dawn K. Reichenbach
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Immunology, Department of Medicine, and
| | - Sarah L. Parker
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Megan J. Riddle
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jason Mitchell
- Center for Immunology, Department of Medicine, and
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Kevin C. Osum
- Center for Immunology, Department of Medicine, and
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Mahmood Mohtashami
- Sunnybrook Research Institute and Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Heather E. Stefanski
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Brian T. Fife
- Center for Immunology, Department of Medicine, and
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Avinash Bhandoola
- T-Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | | | - Georg A. Holländer
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Paediatrics and Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Jakub Tolar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Bruce R. Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Immunology, Department of Medicine, and
| |
Collapse
|
42
|
Abstract
Intrathymic T cell development is a complex process that depends upon continuous guidance from thymus stromal cell microenvironments. The thymic epithelium within the thymic stroma comprises highly specialized cells with a high degree of anatomic, phenotypic, and functional heterogeneity. These properties are collectively required to bias thymocyte development toward production of self-tolerant and functionally competent T cells. The importance of thymic epithelial cells (TECs) is evidenced by clear links between their dysfunction and multiple diseases where autoimmunity and immunodeficiency are major components. Consequently, TECs are an attractive target for cell therapies to restore effective immune system function. The pathways and molecular regulators that control TEC development are becoming clearer, as are their influences on particular stages of T cell development. Here, we review both historical and the most recent advances in our understanding of the cellular and molecular mechanisms controlling TEC development, function, dysfunction, and regeneration.
Collapse
Affiliation(s)
- Jakub Abramson
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel;
| | - Graham Anderson
- MRC Centre for Immune Regulation, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, United Kingdom;
| |
Collapse
|
43
|
Dragin N, Le Panse R, Berrih-Aknin S. [Autoimmune disease predisposition: Aire « protects » men]. Med Sci (Paris) 2017; 33:169-175. [PMID: 28240208 DOI: 10.1051/medsci/20173302012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Autoimmune diseases are a group of about 80 different diseases affecting 5-8% of the population. They are due to a deregulation of the immune system that attacks specific molecules and/or cells in the body. The thymus is the school of T cells that must be able to react to foreign molecules penetrating into the body. This education process is mediated by interactions between T cells and thymic epithelial cells (TEC) that express specific proteins of the peripheral tissues (TSA, "tissue-specific antigen"). This complex mechanism is called central tolerance. Most of the autoimmune diseases display a common feature : women are more susceptible to these diseases than men. Since the thymus is the main organ of central tolerance, we conducted a comparative study of thymic transcriptome of women and men. Our data revealed sex-associated differences in the expression of TSAs that are controlled by the autoimmune regulator (AIRE), a key factor in central tolerance. By studying human and murine cell models, we analyzed the relationship between gender, hormones and AIRE. Our work shows that AIRE is less expressed in women than in men after puberty. Furthermore, we show that estrogen induces decreased thymic AIRE expression by epigenetic modifications through increased number of methylation sites within the AIRE promoter. Consequently, these data suggest that from puberty, women have a reduced effectiveness of central tolerance process, leading to increased number of autoreactive lymphocytes, and as a result, increased susceptibility to autoimmune diseases. Together, these data may question the impact of exposure to "estrogen-like" molecules on the growing incidence of autoimmune diseases.
Collapse
Affiliation(s)
- Nadine Dragin
- Sorbonne Universités, UPMC Université Paris 6, Inserm U974, Institut de Myologie, 105, boulevard de l'Hôpital, hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Rozen Le Panse
- Sorbonne Universités, UPMC Université Paris 6, Inserm U974, Institut de Myologie, 105, boulevard de l'Hôpital, hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Sonia Berrih-Aknin
- Sorbonne Universités, UPMC Université Paris 6, Inserm U974, Institut de Myologie, 105, boulevard de l'Hôpital, hôpital Pitié-Salpêtrière, 75013 Paris, France
| |
Collapse
|
44
|
Ruyssen-Witrand A, Degboé Y, Cantagrel A, Nigon D, Lukas C, Scaramuzzino S, Allanore Y, Vittecoq O, Schaeverbeke T, Morel J, Sibilia J, Cambon-Thomsen A, Dieudé P, Constantin A. Association between RANK, RANKL and OPG polymorphisms with ACPA and erosions in rheumatoid arthritis: results from a meta-analysis involving three French cohorts. RMD Open 2016; 2:e000226. [PMID: 27651922 PMCID: PMC5020667 DOI: 10.1136/rmdopen-2015-000226] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/24/2016] [Accepted: 03/07/2016] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES The RANK/RANKL/osteoprotegerin (OPG) system plays a central role in the pathogenesis of bone erosions in rheumatoid arthritis (RA). The aim of this study was to test the association between 11 single-nucleotide polymorphisms (SNPs) located on RANK, RANKL and OPG genes and anticitrullinated peptide antibody (ACPA) presence or erosions in RA. METHODS PATIENTS This work was performed on three independent samples of French patients with RA: the Etude de Suivi des PolyArthrites Indifférenciées Récentes (ESPOIR) (n=632), Rangueil Midi-Pyrénées (RMP) (n=249) and French Rheumatoid Arthritis Genetic Consortium (FRAGC) (n=590) cohorts. Genotyping: the genotyping of 11 SNPs located on RANK, RANKL and OPG were performed by PCR. STATISTICAL ANALYSES The association between the genotypes with ACPA or erosions was first tested in the ESPOIR cohort using a χ(2) test and, in the case of significant association, replicated in the RMP and FRACG cohorts. A meta-analysis on the three cohorts was performed using the Mantel-Haenszel method. RESULTS One SNP on RANK (rs8086340) and three SNPs on RANKL (rs7984870, rs7325635, rs1054016) were significantly associated with ACPA presence, while one SNP on OPG (rs2073618) and one SNP on RANKL (rs7325635) were significantly associated with erosions in the ESPOIR cohort. Following meta-analysis performed on the three samples, the SNP on RANK and the GGG haplotype of the three SNPs located on RANKL were both significantly associated with ACPA presence, while only the SNP on OPG remained significantly associated with erosions. CONCLUSIONS This study identified one SNP located on RANK, one haplotype on RANKL associated with ACPA presence, and one SNP located on OPG associated with erosions in three different samples of French patients with RA.
Collapse
Affiliation(s)
- Adeline Ruyssen-Witrand
- UMR 1027, INSERM, Toulouse, France; University Paul Sabatier Toulouse III, Toulouse, France; Rheumatology Center, Purpan Hospital, Toulouse, France
| | - Yannick Degboé
- University Paul Sabatier Toulouse III, Toulouse, France; Rheumatology Center, Purpan Hospital, Toulouse, France; UMR 1043, INSERM, Toulouse, France
| | - A Cantagrel
- University Paul Sabatier Toulouse III, Toulouse, France; Rheumatology Center, Purpan Hospital, Toulouse, France; UMR 1043, INSERM, Toulouse, France
| | - D Nigon
- Rheumatology Center, Purpan Hospital , Toulouse , France
| | - C Lukas
- Rheumatology Department , Lapeyronie Teaching Hospital , Montpellier , France
| | - S Scaramuzzino
- UMR 1027, INSERM, Toulouse, France; University Paul Sabatier Toulouse III, Toulouse, France
| | - Y Allanore
- Rheumatology Department , Cochin Teaching Hospital , Paris , France
| | - O Vittecoq
- Department of Rheumatology , Rouen University Hospital & INSERM U905 , Rouen , France
| | - T Schaeverbeke
- Rheumatology Department , Pellegrin Hospital , Bordeaux , France
| | - J Morel
- Rheumatology Department , Lapeyronie Teaching Hospital , Montpellier , France
| | - J Sibilia
- Department of Rheumatology , Hôpitaux Universitaires de Strasbourg, Université de Strasbourg , Strasbourg , France
| | - A Cambon-Thomsen
- UMR 1027, INSERM, Toulouse, France; University Paul Sabatier Toulouse III, Toulouse, France
| | - P Dieudé
- Rheumatology Department , Claude Bernard-Bichat Teaching Hospital, Paris VII University , Paris , France
| | - A Constantin
- University Paul Sabatier Toulouse III, Toulouse, France; Rheumatology Center, Purpan Hospital, Toulouse, France; UMR 1043, INSERM, Toulouse, France
| |
Collapse
|
45
|
Danks L, Komatsu N, Guerrini MM, Sawa S, Armaka M, Kollias G, Nakashima T, Takayanagi H. RANKL expressed on synovial fibroblasts is primarily responsible for bone erosions during joint inflammation. Ann Rheum Dis 2016; 75:1187-95. [PMID: 26025971 DOI: 10.1136/annrheumdis-2014-207137] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 05/01/2015] [Indexed: 11/04/2022]
Abstract
OBJECTIVE RANKL is mainly expressed by synovial fibroblasts and T cells within the joints of rheumatoid arthritis patients. The relative importance of RANKL expression by these cell types for the formation of bone erosions is unclear. We therefore aimed to quantify the contribution of RANKL by each cell type to osteoclast differentiation and bone destruction during inflammatory arthritis. METHODS RANKL was specifically deleted in T cells (Tnfsf11(flox/Δ) Lck-Cre), in collagen VI expressing cells including synovial fibroblasts (Tnfsf11(flox/Δ) Col6a1-Cre) and in collagen II expressing cells including articular chondrocytes (Tnfsf11(flox/Δ) Col2a1-Cre). Erosive disease was induced using the collagen antibody-induced arthritis (CAIA) and collagen-induced arthritis (CIA) models. Osteoclasts and cartilage degradation were assessed by histology and bone erosions were assessed by micro-CT. RESULTS The inflammatory joint score during CAIA was equivalent in all mice regardless of cell-targeted deletion of RANKL. Significant increases in osteoclast numbers and bone erosions were observed in both the Tnfsf11(flox/Δ) and the Tnfsf11(flox/Δ) Lck-Cre groups during CAIA; however, the Tnfsf11(flox/Δ) Col6a1-Cre mice showed significant protection against osteoclast formation and bone erosions. Similar results on osteoclast formation and bone erosions were obtained in CIA mice. The deletion of RANKL on any cell type did not prevent articular cartilage loss in either model of arthritis used. CONCLUSIONS The expression of RANKL on synovial fibroblasts rather than T cells is predominantly responsible for the formation of osteoclasts and erosions during inflammatory arthritis. Synovial fibroblasts would be the best direct target in RANKL inhibition therapies.
Collapse
Affiliation(s)
- Lynett Danks
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan Explorative Research for Advanced Technology (ERATO) Program, Japan Science and Technology Agency (JST), Takayanagi Osteonetwork Project, Tokyo, Japan
| | - Noriko Komatsu
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Matteo M Guerrini
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan Explorative Research for Advanced Technology (ERATO) Program, Japan Science and Technology Agency (JST), Takayanagi Osteonetwork Project, Tokyo, Japan
| | - Shinichiro Sawa
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan Explorative Research for Advanced Technology (ERATO) Program, Japan Science and Technology Agency (JST), Takayanagi Osteonetwork Project, Tokyo, Japan
| | - Marietta Armaka
- Institute of Immunology, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - George Kollias
- Institute of Immunology, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Tomoki Nakashima
- Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan Explorative Research for Advanced Technology (ERATO) Program, Japan Science and Technology Agency (JST), Takayanagi Osteonetwork Project, Tokyo, Japan
| |
Collapse
|
46
|
Lucas B, McCarthy NI, Baik S, Cosway E, James KD, Parnell SM, White AJ, Jenkinson WE, Anderson G. Control of the thymic medulla and its influence on αβT-cell development. Immunol Rev 2016; 271:23-37. [PMID: 27088905 PMCID: PMC4982089 DOI: 10.1111/imr.12406] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The thymus is a primary lymphoid tissue that supports the generation of αβT cells. In this review, we describe the processes that give rise to the thymus medulla, a site that nurtures self-tolerant T-cell generation following positive selection events that take place in the cortex. To summarize the developmental pathways that generate medullary thymic epithelial cells (mTEC) from their immature progenitors, we describe work on both the initial emergence of the medulla during embryogenesis, and the maintenance of the medulla during postnatal stages. We also investigate the varying roles that receptors belonging to the tumor necrosis factor receptor superfamily have on thymus medulla development and formation, and highlight the impact that T-cell development has on thymus medulla formation. Finally, we examine the evidence that the thymic medulla plays an important role during the intrathymic generation of distinct αβT-cell subtypes. Collectively, these studies provide new insight into the development and functional importance of medullary microenvironments during self-tolerant T-cell production in the thymus.
Collapse
Affiliation(s)
- Beth Lucas
- MRC Centre for Immune RegulationInstitute for Immunology and ImmunotherapyMedical SchoolUniversity of BirminghamBirminghamUK
| | - Nicholas I. McCarthy
- MRC Centre for Immune RegulationInstitute for Immunology and ImmunotherapyMedical SchoolUniversity of BirminghamBirminghamUK
| | - Song Baik
- MRC Centre for Immune RegulationInstitute for Immunology and ImmunotherapyMedical SchoolUniversity of BirminghamBirminghamUK
| | - Emilie Cosway
- MRC Centre for Immune RegulationInstitute for Immunology and ImmunotherapyMedical SchoolUniversity of BirminghamBirminghamUK
| | - Kieran D. James
- MRC Centre for Immune RegulationInstitute for Immunology and ImmunotherapyMedical SchoolUniversity of BirminghamBirminghamUK
| | - Sonia M. Parnell
- MRC Centre for Immune RegulationInstitute for Immunology and ImmunotherapyMedical SchoolUniversity of BirminghamBirminghamUK
| | - Andrea J. White
- MRC Centre for Immune RegulationInstitute for Immunology and ImmunotherapyMedical SchoolUniversity of BirminghamBirminghamUK
| | - William E. Jenkinson
- MRC Centre for Immune RegulationInstitute for Immunology and ImmunotherapyMedical SchoolUniversity of BirminghamBirminghamUK
| | - Graham Anderson
- MRC Centre for Immune RegulationInstitute for Immunology and ImmunotherapyMedical SchoolUniversity of BirminghamBirminghamUK
| |
Collapse
|
47
|
TNF superfamily members play distinct roles in shaping the thymic stromal microenvironment. Mol Immunol 2016; 72:92-102. [PMID: 27011037 DOI: 10.1016/j.molimm.2016.02.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 02/10/2016] [Accepted: 02/29/2016] [Indexed: 12/31/2022]
Abstract
The differentiation and proper function of thymic epithelial cells (TECs) depend on various tumor necrosis factor superfamily (TNFSF) signals that are needed to maintain the thymic stromal microenvironment. Nevertheless, the direct transcriptional effects of these signals on TECs remain unclear. To address this issue, we stimulated murine embryonic thymus tissue with selected TNFSF ligands and performed a gene expression profiling study. We show that Aire expression is a direct and specific effect of RANKL stimulation, whereas LTβ and TNFα are major inducers of chemokines in the thymic stroma and we propose differential NF-κB binding as one possible cause of these gene expression patterns. Our work provides further insight into the complex molecular pathways that shape the thymic microenvironment and maintain central tolerance.
Collapse
|
48
|
Lomada D, Jain M, Bolner M, Reeh KAG, Kang R, Reddy MC, DiGiovanni J, Richie ER. Stat3 Signaling Promotes Survival And Maintenance Of Medullary Thymic Epithelial Cells. PLoS Genet 2016; 12:e1005777. [PMID: 26789196 PMCID: PMC4720390 DOI: 10.1371/journal.pgen.1005777] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 12/08/2015] [Indexed: 11/26/2022] Open
Abstract
Medullary thymic epithelial cells (mTECs) are essential for establishing central tolerance by expressing a diverse array of self-peptides that delete autoreactive thymocytes and/or divert thymocytes into the regulatory T cell lineage. Activation of the NFκB signaling pathway in mTEC precursors is indispensable for mTEC maturation and proliferation resulting in proper medullary region formation. Here we show that the Stat3-mediated signaling pathway also plays a key role in mTEC development and homeostasis. Expression of a constitutively active Stat3 transgene targeted to the mTEC compartment increases mTEC cellularity and bypasses the requirement for signals from positively selected thymocytes to drive medullary region formation. Conversely, conditional deletion of Stat3 disrupts medullary region architecture and reduces the number of mTECs. Stat3 signaling does not affect mTEC proliferation, but rather promotes survival of immature MHCIIloCD80lo mTEC precursors. In contrast to striking alterations in the mTEC compartment, neither enforced expression nor deletion of Stat3 affects cTEC cellularity or organization. These results demonstrate that in addition to the NFkB pathway, Stat3-mediated signals play an essential role in regulating mTEC cellularity and medullary region homeostasis. T cells, an essential component of the immune system, generate protective immune responses against pathogenic organisms and cancer cells. T cells are produced in the thymus, which provides a unique microenvironment required for T cell development. Distinct subsets of thymic epithelial cells (TECs) in the outer cortex and inner medulla provide signals required for the survival and differentiation of immature T cells, referred to as thymocytes. Medullary TECs (mTECs) play a critical role in preventing autoimmunity because they have the unique ability to express peptides found in other organs throughout the body. Presentation of self-peptides to thymocytes causes deletion of cells that express high affinity self-reactive receptors. Numerous studies have established that a major signaling pathway mediated by NFκB family members is indispensable for mTEC development. However, whether other signaling pathways are also required has remained an open question. Here, we use gain- and loss-of-function genetic approaches to demonstrate that another pathway, mediated by Stat3 signaling, plays an important role in mTEC development and homeostasis. We show that constitutive Stat3 activation enhances the survival of immature mTECs and bypasses the requirement for thymocyte-derived signals in medullary region formation. In contrast, Stat3 depletion reduces mTEC cellularity and impairs medullary region formation.
Collapse
Affiliation(s)
- Dakshayani Lomada
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, Texas, United States of America
| | - Manju Jain
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, Texas, United States of America
| | - Michelle Bolner
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, Texas, United States of America
- Epigenetics and Molecular Carcinogenesis Graduate Program, The University of Texas Graduate School of Biomedical Sciences Houston, Texas, United States of America
| | - Kaitlin A. G. Reeh
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, Texas, United States of America
- Epigenetics and Molecular Carcinogenesis Graduate Program, The University of Texas Graduate School of Biomedical Sciences Houston, Texas, United States of America
| | - Rhea Kang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, Texas, United States of America
| | - Madhava C. Reddy
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, Texas, United States of America
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, United States of America
| | - Ellen R. Richie
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, Texas, United States of America
- * E-mail:
| |
Collapse
|
49
|
Saldaña JI, Solanki A, Lau CI, Sahni H, Ross S, Furmanski AL, Ono M, Holländer G, Crompton T. Sonic Hedgehog regulates thymic epithelial cell differentiation. J Autoimmun 2016; 68:86-97. [PMID: 26778835 PMCID: PMC4803023 DOI: 10.1016/j.jaut.2015.12.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/11/2015] [Accepted: 12/16/2015] [Indexed: 12/12/2022]
Abstract
Sonic Hedgehog (Shh) is expressed in the thymus, where it regulates T cell development. Here we investigated the influence of Shh on thymic epithelial cell (TEC) development. Components of the Hedgehog (Hh) signalling pathway were expressed by TEC, and use of a Gli Binding Site-green fluorescence protein (GFP) transgenic reporter mouse demonstrated active Hh-dependent transcription in TEC in the foetal and adult thymus. Analysis of Shh-deficient foetal thymus organ cultures (FTOC) showed that Shh is required for normal TEC differentiation. Shh-deficient foetal thymus contained fewer TEC than wild type (WT), the proportion of medullary TEC was reduced relative to cortical TEC, and cell surface expression of MHC Class II molecules was increased on both cortical and medullary TEC populations. In contrast, the Gli3-deficient thymus, which shows increased Hh-dependent transcription in thymic stroma, had increased numbers of TEC, but decreased cell surface expression of MHC Class II molecules on both cortical and medullary TEC. Neutralisation of endogenous Hh proteins in WT FTOC led to a reduction in TEC numbers, and in the proportion of mature Aire-expressing medullary TEC, but an increase in cell surface expression of MHC Class II molecules on medullary TEC. Likewise, conditional deletion of Shh from TEC in the adult thymus resulted in alterations in TEC differentiation and consequent changes in T cell development. TEC numbers, and the proportion of mature Aire-expressing medullary TEC were reduced, and cell surface expression of MHC Class II molecules on medullary TEC was increased. Differentiation of mature CD4 and CD8 single positive thymocytes was increased, demonstrating the regulatory role of Shh production by TEC on T cell development. Treatment of human thymus explants with recombinant Shh or neutralising anti-Shh antibody indicated that the Hedgehog pathway is also involved in regulation of differentiation from DP to mature SP T cells in the human thymus. TEC express components of the Hedgehog signalling pathway and transduce it's signals. Sonic hedgehog (Shh) is required for normal TEC development. Sonic hedgehog particularly influences differentiation to the medullary TEC lineage. Shh regulates cell surface MHCII expression on both cortical and medullary TEC.
Collapse
Affiliation(s)
- José Ignacio Saldaña
- Immunobiology Section, UCL Institute of Child Health, 30 Guilford Street London WC1N 1EH, UK
| | - Anisha Solanki
- Immunobiology Section, UCL Institute of Child Health, 30 Guilford Street London WC1N 1EH, UK
| | - Ching-In Lau
- Immunobiology Section, UCL Institute of Child Health, 30 Guilford Street London WC1N 1EH, UK
| | - Hemant Sahni
- Immunobiology Section, UCL Institute of Child Health, 30 Guilford Street London WC1N 1EH, UK
| | - Susan Ross
- Immunobiology Section, UCL Institute of Child Health, 30 Guilford Street London WC1N 1EH, UK
| | - Anna L Furmanski
- Immunobiology Section, UCL Institute of Child Health, 30 Guilford Street London WC1N 1EH, UK
| | - Masahiro Ono
- Immunobiology Section, UCL Institute of Child Health, 30 Guilford Street London WC1N 1EH, UK
| | - Georg Holländer
- Weatherall Institute of Molecular Medicine, and Department of Paediatrics, University of Oxford, UK
| | - Tessa Crompton
- Immunobiology Section, UCL Institute of Child Health, 30 Guilford Street London WC1N 1EH, UK.
| |
Collapse
|
50
|
McCarthy NI, Cowan JE, Nakamura K, Bacon A, Baik S, White AJ, Parnell SM, Jenkinson EJ, Jenkinson WE, Anderson G. Osteoprotegerin-Mediated Homeostasis of Rank+ Thymic Epithelial Cells Does Not Limit Foxp3+ Regulatory T Cell Development. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:2675-82. [PMID: 26254339 PMCID: PMC4560491 DOI: 10.4049/jimmunol.1501226] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/09/2015] [Indexed: 11/21/2022]
Abstract
In the thymus, medullary thymic epithelial cells (mTEC) regulate T cell tolerance via negative selection and Foxp3(+) regulatory T cell (Treg) development, and alterations in the mTEC compartment can lead to tolerance breakdown and autoimmunity. Both the receptor activator for NF-κB (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) axis and expression of the transcriptional regulator Aire are involved in the regulation of thymus medullary microenvironments. However, their impact on the mechanisms controlling mTEC homeostasis is poorly understood, as are the processes that enable the thymus medulla to support the balanced production of mTEC-dependent Foxp3(+) Treg. In this study, we have investigated the control of mTEC homeostasis and examined how this process impacts the efficacy of Foxp3(+) Treg development. Using newly generated RANK Venus reporter mice, we identify distinct RANK(+) subsets that reside within both the mTEC(hi) and mTEC(lo) compartments and that represent direct targets of OPG-mediated control. Moreover, by mapping OPG expression to a subset of Aire(+) mTEC, our data show how cis- and trans-acting mechanisms are able to control the thymus medulla by operating on multiple mTEC targets. Finally, we show that whereas the increase in mTEC availability in OPG-deficient (Tnfrsf11b(-/-)) mice impacts the intrathymic Foxp3(+) Treg pool by enhancing peripheral Treg recirculation back to the thymus, it does not alter the number of de novo Rag2pGFP(+)Foxp3(+) Treg that are generated. Collectively, our study defines patterns of RANK expression within the thymus medulla, and it shows that mTEC homeostasis is not a rate-limiting step in intrathymic Foxp3(+) Treg production.
Collapse
Affiliation(s)
- Nicholas I McCarthy
- Medical Research Council Centre for Immune Regulation, Institute for Biomedical Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jennifer E Cowan
- Medical Research Council Centre for Immune Regulation, Institute for Biomedical Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Kyoko Nakamura
- Medical Research Council Centre for Immune Regulation, Institute for Biomedical Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Andrea Bacon
- Medical Research Council Centre for Immune Regulation, Institute for Biomedical Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Song Baik
- Medical Research Council Centre for Immune Regulation, Institute for Biomedical Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Andrea J White
- Medical Research Council Centre for Immune Regulation, Institute for Biomedical Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Sonia M Parnell
- Medical Research Council Centre for Immune Regulation, Institute for Biomedical Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Eric J Jenkinson
- Medical Research Council Centre for Immune Regulation, Institute for Biomedical Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - William E Jenkinson
- Medical Research Council Centre for Immune Regulation, Institute for Biomedical Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Graham Anderson
- Medical Research Council Centre for Immune Regulation, Institute for Biomedical Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|