1
|
Rodriguez-Pomar C, Carpena-Torres C, Serramito M, Perez-de-Lara MJ, Martinez-Aguila A, Martin-Gil A, Carracedo G. Decreased inflammatory biomarkers after using artificial tears with Aloe vera and hypromellose for dry eye. Clin Exp Optom 2025:1-7. [PMID: 40258777 DOI: 10.1080/08164622.2025.2485236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 02/12/2025] [Accepted: 03/23/2025] [Indexed: 04/23/2025] Open
Abstract
CLINICAL RELEVANCE Research has increasingly highlighted the therapeutic potential of Aloe vera and hypromellose for treating dry eye due to their healing properties and multifaceted benefits including anti-inflammatory, antioxidant, antimicrobial, and wetting capabilities. BACKGROUND During the last few years, the use of natural extracts in the form of ophthalmic and oral formulations has been proposed as an alternative to those currently available treatments for dry eye. The purpose of the current study was to demonstrate the anti-inflammatory effect of artificial tears containing an extract of Aloe vera and hypromellose on ocular surface inflammation in dry eye patients, along with evaluating various signs and symptoms of dry eye. METHODS A three-month prospective, randomised, double-masked, and placebo-controlled study was performed on twenty dry eye patients (51.9 ± 8.4 years). One eye was treated with saline solution as a placebo control, while the contralateral eye was treated with artificial tears containing Aloe vera and hypromellose, randomly assigned. Concentrations of MMP-9, IL-1β, and IL-6 in tears, tear secretion, tear meniscus height, tear break-up time, and dry eye questionnaire were measured immediately before (baseline) and after (one month and three months) the topical instillation of the treatments. RESULTS Compared with the baseline, the saline solution showed no significant changes in any of the studied variables (p ≥ 0.05). Conversely, the artificial tears containing Aloe vera and hypromellose showed beneficial effects on concentrations of MMP-9 and IL-6 in tears, tear break-up time, and ocular symptoms of dryness and irritation after three months (p < 0.05). CONCLUSIONS The topical instillation of artificial tears containing Aloe vera and hypromellose is presented as an effective and alternative treatment for dry eye management, especially in cases where the severity of disease is mild.
Collapse
Affiliation(s)
- Candela Rodriguez-Pomar
- Ocupharm Research Group, Department of Optometry and Vision, Complutense University of Madrid, Madrid, Spain
| | - Carlos Carpena-Torres
- Ocupharm Research Group, Department of Optometry and Vision, Complutense University of Madrid, Madrid, Spain
| | - Maria Serramito
- Ocupharm Research Group, Department of Optometry and Vision, Complutense University of Madrid, Madrid, Spain
| | - Maria Jesus Perez-de-Lara
- Ocupharm Research Group, Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| | - Alejandro Martinez-Aguila
- Ocupharm Research Group, Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| | - Alba Martin-Gil
- Ocupharm Research Group, Department of Optometry and Vision, Complutense University of Madrid, Madrid, Spain
| | - Gonzalo Carracedo
- Ocupharm Research Group, Department of Optometry and Vision, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
2
|
Kandil SM, Soliman II, Hosni M, Salama A, Abdou EM. Assessment of therapeutic effectiveness of developed colchicine transnovasomes in treatment of recurrent aphthous ulcer as monotherapy and combination therapy with platelet-rich plasma. Pharm Dev Technol 2025; 30:323-341. [PMID: 40052372 DOI: 10.1080/10837450.2025.2475967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/27/2025] [Accepted: 03/01/2025] [Indexed: 03/12/2025]
Abstract
OBJECTIVES Transnovasomes is a new exciting class of lipid-based nanovesicles. Colchicine (COL) is a hydrophilic natural alkaloid with anti-inflammatory features having oral administration and permeation defects. Recurrent Aphthous Ulcer (RAU) is the most prevalent disease of the oral mucosa suffering from lack of a particular and final preventative therapy. So, designing a prolonged and effective specialized delivery system for ulcer treatment is important. METHODS Colchicine transnovasomes (COL-TNs) were prepared using surfactants (Span 60 & Span 80), free fatty acids (Oleic acid & Stearic acid), Cholesterol and Brij 58. COL-TNs were evaluated for their vesicle size (VS), polydispersity index (PDI), zeta potential (ZP), entrapment efficiency (EE%), and ex-vivo permeation after 12 h (Q12h). RESULTS Values of VS, PDI, ZP, EE% and Q12h of the optimized formulation were 256.74 ± 11.2 nm, 0.322 ± 0.08, -43.3 ± 0.62, 85.35 ± 3.7% and 72.69 ± 5.84% respectively. Drug accumulation from the optimized formulation was ninefold greater than drug solution after 8 h. In-vivo, COL-TNs formulation, alone or in combination with platelet-rich plasma (PRP), achieved complete healing of acetic-acid induced RAU restoring normal levels of assayed biomarkers and normal oral mucosa histological features. CONCLUSIONS COL-TNs can be used as a promising, safe, efficient treatment of RAU, as monotherapy or combination therapy with PRP.
Collapse
Affiliation(s)
- Soha M Kandil
- Department of Pharmaceutics and Drug Manufacturing, Faculty of Pharmacy, Modern University for Technology & Information (MTI), Cairo, Egypt
| | - Iman I Soliman
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Marwa Hosni
- Department of Pharmaceutics and Drug Manufacturing, Faculty of Pharmacy, Modern University for Technology & Information (MTI), Cairo, Egypt
| | - Abeer Salama
- Department of Pharmacology, National Research Centre (NRC), Cairo, Egypt
| | - Ebtisam M Abdou
- Department of Pharmaceutics, Egyptian Drug Authority (EDA), Cairo, Egypt
| |
Collapse
|
3
|
Hutcherson C, Luke B, Khader K, Dhaher YY. Unraveling the complex interplay of sex, endocrinology, and inflammation in post-Injury articular cartilage breakdown through in silico modeling. Sci Rep 2024; 14:28654. [PMID: 39562596 PMCID: PMC11576913 DOI: 10.1038/s41598-024-77730-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/24/2024] [Indexed: 11/21/2024] Open
Abstract
The onset of degenerative joint diseases such as post-traumatic osteoarthritis (PTOA) are associated with joint injury, biomechanical changes, and synovial biochemical anomalies. Sex and reproductive endocrinology have been emerging as potential risk factors, with epidemiological evidence revealing that female's exhibit higher PTOA risk and poorer outcomes post-injury compared to males. Sex hormones, including estradiol, progesterone, and testosterone, have been shown to regulate inflammatory signaling in immune and synovial cells, yet their collective impact on injury-induced joint inflammation and catabolism is poorly understood. Using an in silico kinetic model, we investigated the effects of sex-specific endocrine states on post-injury mechanisms in the human synovial joint. Our model results reveal that heightened estradiol levels in pre-menopausal females during the peri-ovulatory phase increase interleukin (IL)-1β expression and suppress IL-10 expression within the synovium after a simulated injury. Conversely, elevated testosterone levels in males decrease post-injury IL-1β, tumor necrosis factor alpha (TNF)-α, and stromelysin (MMP)-3 expression while increasing IL-10 production compared to females. Gaining insight into the effects of sex hormones on injury-induced inflammation and cartilage degradation provides a basis for designing future experimental and clinical studies to explore their effects on the synovial system, with a particular focus on the female sex.
Collapse
Affiliation(s)
- C Hutcherson
- Department of Physical Medicine and Rehabilitation, University of Texas Southwestern, Dallas, TX, USA
- Department of Orthopaedic Surgery, University of Texas Southwestern, Dallas, TX, USA
| | - B Luke
- Department of Mechanical Engineering, Valparaiso University, Valparaiso, IN, USA
| | - K Khader
- Division of Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Y Y Dhaher
- Department of Physical Medicine and Rehabilitation, University of Texas Southwestern, Dallas, TX, USA.
- Department of Orthopaedic Surgery, University of Texas Southwestern, Dallas, TX, USA.
| |
Collapse
|
4
|
Todorova VK, Azhar G, Stone A, Malapati SJ, Che Y, Zhang W, Makhoul I, Wei JY. Neutrophil Biomarkers Can Predict Cardiotoxicity of Anthracyclines in Breast Cancer. Int J Mol Sci 2024; 25:9735. [PMID: 39273682 PMCID: PMC11395913 DOI: 10.3390/ijms25179735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
Doxorubicin (DOX), a commonly used anticancer agent, causes cardiotoxicity that begins with the first dose and may progress to heart failure years after treatment. An inflammatory response associated with neutrophil recruitment has been recognized as a mechanism of DOX-induced cardiotoxicity. This study aimed to validate mRNA expression of the previously identified biomarkers of DOX-induced cardiotoxicity, PGLYRP1, CAMP, MMP9, and CEACAM8, and to assay their protein expression in the peripheral blood of breast cancer patients. Blood samples from 40 breast cancer patients treated with DOX-based chemotherapy were collected before and after the first chemotherapy cycle and > 2 years after treatment. The protein and gene expression of PGLYRP1/Tag7, CAMP/LL37, MMP9/gelatinase B, and CEACAM8/CD66b were determined using ELISA and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Receiver operating characteristic (ROC) curve analysis was used to determine the diagnostic value of each candidate biomarker. Patients with cardiotoxicity (n = 20) had significantly elevated levels of PGLYRP1, CAMP, MMP9, and CEACAM8 at baseline, after the first dose of DOX-based chemotherapy, and at > 2 years after treatment relative to patients without cardiotoxicity (n = 20). The first dose of DOX induced significantly higher levels of all examined biomarkers in both groups of patients. At > 2 years post treatment, the levels of all but MMP9 dropped below the baseline. There was a good correlation between the expression of mRNA and the target proteins. We demonstrate that circulating levels of PGLYRP1, CAMP, MMP9, and CEACAM8 can predict the cardiotoxicity of DOX. This novel finding may be of value in the early identification of patients at risk for cardiotoxicity.
Collapse
Affiliation(s)
- Valentina K Todorova
- Division of Hematology/Oncology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| | - Gohar Azhar
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Annjanette Stone
- Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| | - Sindhu J Malapati
- Division of Hematology/Oncology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Yingni Che
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Wei Zhang
- Department of Mathematics and Statistics, University of Arkansas at Little Rock, Little Rock, AR 72205, USA
| | - Issam Makhoul
- Division of Hematology/Oncology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jeanne Y Wei
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
5
|
Pandur E, Pap R, Sipos K. Activated THP-1 Macrophage-Derived Factors Increase the Cytokine, Fractalkine, and EGF Secretions, the Invasion-Related MMP Production, and Antioxidant Activity of HEC-1A Endometrium Cells. Int J Mol Sci 2024; 25:9624. [PMID: 39273575 PMCID: PMC11395051 DOI: 10.3390/ijms25179624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Endometrium receptivity is a multifactor-regulated process involving progesterone receptor-regulated signaling, cytokines and chemokines, and additional growth regulatory factors. In the female reproductive system, macrophages have distinct roles in the regulation of receptivity, embryo implantation, immune tolerance, and angiogenesis or oxidative stress. In the present study, we investigated the effects of PMA-activated THP-1 macrophages on the receptivity-related genes, cytokines and chemokines, growth regulators, and oxidative stress-related molecules of HEC-1A endometrium cells. We established a non-contact co-culture in which the culture medium of the PMA-activated macrophages exhibiting the pro-inflammatory phenotype was used for the treatment of the endometrial cells. In the endometrium cells, the expression of the growth-related factors activin and bone morphogenetic protein 2, the growth hormone EGF, and the activation of the downstream signaling molecules pERK1/2 and pAkt were analyzed by ELISA and Western blot. The secretions of cytokines and chemokines, which are involved in the establishment of endometrial receptivity, and the expression of matrix metalloproteinases implicated in invasion were also determined. Based on the results, the PMA-activated THP-1 macrophages exhibiting a pro-inflammatory phenotype may play a role in the regulation of HEC-1A endometrium cells. They alter the secretion of cytokines and chemokines, as well as the protein level of MMPs of HEC-1A cells. Moreover, activated THP-1 macrophages may elevate oxidative stress protection of HEC-1A endometrium cells. All these suggest that pro-inflammatory macrophages have a special role in the regulation of receptivity-related and implantation-related factors of HEC-1A cells.
Collapse
Affiliation(s)
- Edina Pandur
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, 7624 Pécs, Hungary; (R.P.); (K.S.)
- National Laboratory of Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | - Ramóna Pap
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, 7624 Pécs, Hungary; (R.P.); (K.S.)
- National Laboratory of Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | - Katalin Sipos
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, 7624 Pécs, Hungary; (R.P.); (K.S.)
- National Laboratory of Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
6
|
Jhilta A, Jadhav K, Singh R, Ray E, Kumar A, Singh AK, Verma RK. Breaking the Cycle: Matrix Metalloproteinase Inhibitors as an Alternative Approach in Managing Tuberculosis Pathogenesis and Progression. ACS Infect Dis 2024; 10:2567-2583. [PMID: 39038212 DOI: 10.1021/acsinfecdis.4c00385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Mycobacterium tuberculosis (Mtb) has long posed a significant challenge to global public health, resulting in approximately 1.6 million deaths annually. Pulmonary tuberculosis (TB) instigated by Mtb is characterized by extensive lung tissue damage, leading to lesions and dissemination within the tissue matrix. Matrix metalloproteinases (MMPs) exhibit endopeptidase activity, contributing to inflammatory tissue damage and, consequently, morbidity and mortality in TB patients. MMP activities in TB are intricately regulated by various components, including cytokines, chemokines, cell receptors, and growth factors, through intracellular signaling pathways. Primarily, Mtb-infected macrophages induce MMP expression, disrupting the balance between MMPs and tissue inhibitors of metalloproteinases (TIMPs), thereby impairing extracellular matrix (ECM) deposition in the lungs. Recent research underscores the significance of immunomodulatory factors in MMP secretion and granuloma formation during Mtb pathogenesis. Several studies have investigated both the activation and inhibition of MMPs using endogenous MMP inhibitors (i.e., TIMPs) and synthetic inhibitors. However, despite their promising pharmacological potential, few MMP inhibitors have been explored for TB treatment as host-directed therapy. Scientists are exploring novel strategies to enhance TB therapeutic regimens by suppressing MMP activity to mitigate Mtb-associated matrix destruction and reduce TB induced lung inflammation. These strategies include the use of MMP inhibitor molecules alone or in combination with anti-TB drugs. Additionally, there is growing interest in developing novel formulations containing MMP inhibitors or MMP-responsive drug delivery systems to suppress MMPs and release drugs at specific target sites. This review summarizes MMPs' expression and regulation in TB, their role in immune response, and the potential of MMP inhibitors as effective therapeutic targets to alleviate TB immunopathology.
Collapse
Affiliation(s)
- Agrim Jhilta
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, India 140306
| | - Krishna Jadhav
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, India 140306
| | - Raghuraj Singh
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, India 140306
| | - Eupa Ray
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, India 140306
| | - Alok Kumar
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India 226014
| | - Amit Kumar Singh
- Experimental Animal Facility, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India 282004
| | - Rahul Kumar Verma
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, India 140306
| |
Collapse
|
7
|
Rodrigues KE, Pontes MHB, Cantão MBS, Prado AF. The role of matrix metalloproteinase-9 in cardiac remodeling and dysfunction and as a possible blood biomarker in heart failure. Pharmacol Res 2024; 206:107285. [PMID: 38942342 DOI: 10.1016/j.phrs.2024.107285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/15/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
Heart failure (HF) is the leading cause of morbidity and mortality in cardiovascular diseases, being responsible for many hospitalizations annually. HF is considered a public health problem with significant economic and social impact, which makes searches essential for strategies that improve the ability to predict and diagnose HF. In this way, biomarkers can help in risk stratification for a more personalized approach to patients with HF. Preclinical and clinical evidence shows the participation of matrix metalloproteinase 9 (MMP-9) in the HF process. In this review, we will demonstrate the critical role that MMP-9 plays in cardiac remodeling and dysfunction. We will also show its importance as a blood biomarker in acute and chronic HF patients.
Collapse
Affiliation(s)
- Keuri Eleutério Rodrigues
- Biodiversity and Biotechnology Post Graduate Program - BIONORTE, Institute of Biological Sciences, Federal University of Para, Belem, Brazil; Cardiovascular System Pharmacology and Toxicology Laboratory, Institute of Biological Sciences, Federal University of Para, Belem, Brazil
| | - Maria Helena Barbosa Pontes
- Cardiovascular System Pharmacology and Toxicology Laboratory, Institute of Biological Sciences, Federal University of Para, Belem, Brazil; Pharmacology and Biochemistry Post Graduate Program - FARMABIO, Institute of Biological Sciences, Federal University of Para, Belem, Brazil
| | - Manoel Benedito Sousa Cantão
- Cardiovascular System Pharmacology and Toxicology Laboratory, Institute of Biological Sciences, Federal University of Para, Belem, Brazil; Pharmacology and Biochemistry Post Graduate Program - FARMABIO, Institute of Biological Sciences, Federal University of Para, Belem, Brazil
| | - Alejandro Ferraz Prado
- Biodiversity and Biotechnology Post Graduate Program - BIONORTE, Institute of Biological Sciences, Federal University of Para, Belem, Brazil; Cardiovascular System Pharmacology and Toxicology Laboratory, Institute of Biological Sciences, Federal University of Para, Belem, Brazil; Pharmacology and Biochemistry Post Graduate Program - FARMABIO, Institute of Biological Sciences, Federal University of Para, Belem, Brazil.
| |
Collapse
|
8
|
Wang Y, Jiao L, Qiang C, Chen C, Shen Z, Ding F, Lv L, Zhu T, Lu Y, Cui X. The role of matrix metalloproteinase 9 in fibrosis diseases and its molecular mechanisms. Biomed Pharmacother 2024; 171:116116. [PMID: 38181715 DOI: 10.1016/j.biopha.2023.116116] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024] Open
Abstract
Fibrosis is a process of tissue repair that results in the slow creation of scar tissue to replace healthy tissue and can affect any tissue or organ. Its primary feature is the massive deposition of extracellular matrix (mainly collagen), eventually leading to tissue dysfunction and organ failure. The progression of fibrotic diseases has put a significant strain on global health and the economy, and as a result, there is an urgent need to find some new therapies. Previous studies have identified that inflammation, oxidative stress, some cytokines, and remodeling play a crucial role in fibrotic diseases and are essential avenues for treating fibrotic diseases. Among them, matrix metalloproteinases (MMPs) are considered the main targets for the treatment of fibrotic diseases since they are the primary driver involved in ECM degradation, and tissue inhibitors of metalloproteinases (TIMPs) are natural endogenous inhibitors of MMPs. Through previous studies, we found that MMP-9 is an essential target for treating fibrotic diseases. However, it is worth noting that MMP-9 plays a bidirectional regulatory role in different fibrotic diseases or different stages of the same fibrotic disease. Previously identified MMP-9 inhibitors, such as pirfenidone and nintedanib, suffer from some rather pronounced side effects, and therefore, there is an urgent need to investigate new drugs. In this review, we explore the mechanism of action and signaling pathways of MMP-9 in different tissues and organs, hoping to provide some ideas for developing safer and more effective biologics.
Collapse
Affiliation(s)
- Yuling Wang
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Linke Jiao
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Caoxia Qiang
- Department of Traditional Chinese Medicine, Tumor Hospital Affiliated to Nantong University, Jiangsu, China
| | - Chen Chen
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zihuan Shen
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Fan Ding
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Lifei Lv
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tingting Zhu
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingdong Lu
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiangning Cui
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
9
|
Nguyen HTN, Duhon BH, Kuo HC, Fisher M, Brickey OM, Zhang L, Otero JJ, Prevedello DM, Adunka OF, Ren Y. Matrix metalloproteinase 9: An emerging biomarker for classification of adherent vestibular schwannoma. Neurooncol Adv 2024; 6:vdae058. [PMID: 38887507 PMCID: PMC11181934 DOI: 10.1093/noajnl/vdae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024] Open
Abstract
Background The progression of vestibular schwannoma (VS) is intricately linked with interactions between schwannoma cells and the extracellular matrix. Surgical resection of VS is associated with substantial risks as tumors are adherent to the brainstem and cranial nerves. We evaluate the role of matrix metalloproteinase 9 (MMP9) in VS and explore its potential as a biomarker to classify adherent VS. Methods Transcriptomic analysis of a murine schwannoma allograft model and immunohistochemical analysis of 17 human VS were performed. MMP9 abundance was assessed in mouse and human schwannoma cell lines. Transwell studies were performed to evaluate the effect of MMP9 on schwannoma invasion in vitro. Plasma biomarkers were identified from a multiplexed proteomic analysis in 45 prospective VS patients and validated in primary culture. The therapeutic efficacy of MMP9 inhibition was evaluated in a mouse schwannoma model. Results MMP9 was the most highly upregulated protease in mouse schwannomas and was significantly enriched in adherent VS, particularly around tumor vasculature. High levels of MMP9 were found in plasma of patients with adherent VS. MMP9 outperformed clinical and radiographic variables to classify adherent VS with outstanding discriminatory ability. Human schwannoma cells secreted MMP9 in response to TNF-α which promoted cellular invasion and adhesion protein expression in vitro. Lastly, MMP9 inhibition decreased mouse schwannoma growth in vivo. Conclusions We identify MMP9 as a preoperative biomarker to classify adherent VS. MMP9 may represent a new therapeutic target in adherent VS associated with poor surgical outcomes that lack other viable treatment options.
Collapse
Affiliation(s)
- Han T N Nguyen
- Division of Otology, Neurotology, and Cranial Base Surgery, Department of Otolaryngology—Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Bailey H Duhon
- Division of Otology, Neurotology, and Cranial Base Surgery, Department of Otolaryngology—Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Hsuan-Chih Kuo
- Division of Otology, Neurotology, and Cranial Base Surgery, Department of Otolaryngology—Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Melanie Fisher
- Division of Otology, Neurotology, and Cranial Base Surgery, Department of Otolaryngology—Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Olivia M Brickey
- Division of Otology, Neurotology, and Cranial Base Surgery, Department of Otolaryngology—Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Lisa Zhang
- Division of Otology, Neurotology, and Cranial Base Surgery, Department of Otolaryngology—Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Jose J Otero
- Division of Neuropathology, Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Daniel M Prevedello
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Oliver F Adunka
- Division of Otology, Neurotology, and Cranial Base Surgery, Department of Otolaryngology—Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Yin Ren
- Division of Otology, Neurotology, and Cranial Base Surgery, Department of Otolaryngology—Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
10
|
Farmand S, Sender V, Karlsson J, Merkl P, Normark S, Henriques-Normark B. STAT3 Deficiency Alters the Macrophage Activation Pattern and Enhances Matrix Metalloproteinase 9 Expression during Staphylococcal Pneumonia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:69-80. [PMID: 37982695 PMCID: PMC10733582 DOI: 10.4049/jimmunol.2300151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/19/2023] [Indexed: 11/21/2023]
Abstract
Staphylococcus aureus is a significant cause of morbidity and mortality in pulmonary infections. Patients with autosomal-dominant hyper-IgE syndrome due to STAT3 deficiency are particularly susceptible to acquiring staphylococcal pneumonia associated with lung tissue destruction. Because macrophages are involved in both pathogen defense and inflammation, we investigated the impact of murine myeloid STAT3 deficiency on the macrophage phenotype in vitro and on pathogen clearance and inflammation during murine staphylococcal pneumonia. Murine bone marrow-derived macrophages (BMDM) from STAT3 LysMCre+ knockout or Cre- wild-type littermate controls were challenged with S. aureus, LPS, IL-4, or vehicle control in vitro. Pro- and anti-inflammatory responses as well as polarization and activation markers were analyzed. Mice were infected intratracheally with S. aureus, bronchoalveolar lavage and lungs were harvested, and immunohistofluorescence was performed on lung sections. S. aureus infection of STAT3-deficient BMDM led to an increased proinflammatory cytokine release and to enhanced upregulation of costimulatory MHC class II and CD86. Murine myeloid STAT3 deficiency did not affect pathogen clearance in vitro or in vivo. Matrix metalloproteinase 9 was upregulated in Staphylococcus-treated STAT3-deficient BMDM and in lung tissues of STAT3 knockout mice infected with S. aureus. Moreover, the expression of miR-155 was increased. The enhanced inflammatory responses and upregulation of matrix metalloproteinase 9 and miR-155 expression in murine STAT3-deficient as compared with wild-type macrophages during S. aureus infections may contribute to tissue damage as observed in STAT3-deficient patients during staphylococcal pneumonia.
Collapse
Affiliation(s)
- Susan Farmand
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Division of Pediatric Stem Cell Transplantation and Immunology, Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Vicky Sender
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Clinical Microbiology, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Jens Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Clinical Microbiology, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Padryk Merkl
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Staffan Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Clinical Microbiology, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
11
|
Akbari T, Kazemi Fard T, Fadaei R, Rostami R, Moradi N, Movahedi M, Fallah S. Evaluation of MMP-9, IL-6, TNF-α levels and peripheral blood mononuclear cells genes expression of MMP-9 and TIMP-1 in Iranian patients with coronary artery disease. J Cardiovasc Thorac Res 2023; 15:223-230. [PMID: 38357561 PMCID: PMC10862034 DOI: 10.34172/jcvtr.2023.31844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/27/2023] [Indexed: 02/16/2024] Open
Abstract
Introduction Coronary artery disease (CAD) is the main cause of death and is characterized by atherosclerosis in coronary arteries. Inflammation plays a crucial role in the progression and development of atherosclerosis. Methods The present study consisted of 132 Iranian individuals who underwent coronary angiography, 65 patients with CAD, and 67 controls. The matrix metalloproteinase-9 (MMP-9), TNF-α, IL-6, and vitamin D serum levels were measured by the ELISA technique. The gene expression of MMP-9 and tissue inhibitors of metalloproteinase (TIMP-1) was estimated by real-time PCR assay. Results A considerable increase in levels and PBMC gene expression of MMP-9 and serum levels of IL-6 and TNF-α were found in CAD patients compared with controls. A significant decrease was detected in vitamin D levels of CAD patients in comparison with controls. A considerable direct correlation was found between MMP-9 levels and MMP-9 and TIMP1 gene expression in CAD patients. MMP-9 levels positively correlated with LDL-C in CAD patients. The correlation between TIMP1 gene expression and IL-6 levels was also negatively significant. There were positive correlations between MMP-9 levels with IL-6 and TNF-α serum levels in CAD patients. Conclusion This study showed that the interaction between MMPs, TIMP1, and cytokines could play a role in the pathogenesis of atherosclerosis. The present study suggested that high levels of TNF-α and IL-6 and vitamin D deficiency in our studied patients could disturb the MMP-9/TIMP-1 balance and lipid metabolism, leading to plaque formation/ rupture in predisposed CAD patients.
Collapse
Affiliation(s)
- Tooran Akbari
- Department of Biochemistry, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Toktam Kazemi Fard
- Department of Biochemistry, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Reza Fadaei
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Rahim Rostami
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nariman Moradi
- Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Monireh Movahedi
- Department of Biochemistry, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Soudabeh Fallah
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Ciryam P, Gerzanich V, Simard JM. Interleukin-6 in Traumatic Brain Injury: A Janus-Faced Player in Damage and Repair. J Neurotrauma 2023; 40:2249-2269. [PMID: 37166354 PMCID: PMC10649197 DOI: 10.1089/neu.2023.0135] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
Traumatic brain injury (TBI) is a common and often devastating illness, with wide-ranging public health implications. In addition to the primary injury, victims of TBI are at risk for secondary neurological injury by numerous mechanisms. Current treatments are limited and do not target the profound immune response associated with injury. This immune response reflects a convergence of peripheral and central nervous system-resident immune cells whose interaction is mediated in part by a disruption in the blood-brain barrier (BBB). The diverse family of cytokines helps to govern this communication and among these, Interleukin (IL)-6 is a notable player in the immune response to acute neurological injury. It is also a well-established pharmacological target in a variety of other disease contexts. In TBI, elevated IL-6 levels are associated with worse outcomes, but the role of IL-6 in response to injury is double-edged. IL-6 promotes neurogenesis and wound healing in animal models of TBI, but it may also contribute to disruptions in the BBB and the progression of cerebral edema. Here, we review IL-6 biology in the context of TBI, with an eye to clarifying its controversial role and understanding its potential as a target for modulating the immune response in this disease.
Collapse
Affiliation(s)
- Prajwal Ciryam
- Shock Trauma Neurocritical Care, Program in Trauma, R Adams Cowley Shock Trauma Center, University of Maryland Medical System, Baltimore, Maryland, USA
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
13
|
Wong YS, Mançanares AC, Navarrete FI, Poblete PM, Méndez-Pérez L, Ferreira-Dias GML, Rodriguez-Alvarez L, Castro FO. Mare stromal endometrial cells differentially modulate inflammation depending on oestrus cycle status: an in vitro study. Front Vet Sci 2023; 10:1271240. [PMID: 37869492 PMCID: PMC10587403 DOI: 10.3389/fvets.2023.1271240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/13/2023] [Indexed: 10/24/2023] Open
Abstract
The modulation of inflammation is pivotal for uterine homeostasis. Here we evaluated the effect of the oestrus cycle on the expression of pro-inflammatory and anti-inflammatory markers in a cellular model of induced fibrosis. Mare endometrial stromal cells isolated from follicular or mid-luteal phase were primed with 10 ng/mL of TGFβ alone or in combination with either IL1β, IL6, or TNFα (10 ng/mL each) or all together for 24 h. Control cells were not primed. Messenger and miRNA expression were analyzed using real-time quantitative PCR (RT-qPCR). Cells in the follicular phase primed with pro-inflammatory cytokines showed higher expression of collagen-related genes (CTGF, COL1A1, COL3A1, and TIMP1) and mesenchymal marker (SLUG, VIM, CDH2, and CDH11) genes; p < 0.05. Cells primed during the mid-luteal overexpressed genes associated with extracellular matrix, processing, and prostaglandin E synthase (MMP2, MMP9, PGR, TIMP2, and PTGES; p < 0.05). There was a notable upregulation of pro-fibrotic miRNAs (miR17, miR21, and miR433) in the follicular phase when the cells were exposed to TGFβ + IL1β, TGFβ + IL6 or TGFβ + IL1β + IL6 + TNFα. Conversely, in cells from the mid-luteal phase, the treatments either did not or diminished the expression of the same miRNAs. On the contrary, the anti-fibrotic miRNAs (miR26a, miR29b, miR29c, miR145, miR378, and mir488) were not upregulated with treatments in the follicular phase. Rather, they were overexpressed in cells from the mid-luteal phase, with the highest regulation observed in TGFβ + IL1β + IL6 + TNFα treatment groups. These miRNAs were also analyzed in the extracellular vesicles secreted by the cells. A similar trend as seen with cellular miRNAs was noted, where anti-fibrotic miRNAs were downregulated in the follicular phase, while notably elevated pro-fibrotic miRNAs were observed in extracellular vesicles originating from the follicular phase. Pro-inflammatory cytokines may amplify the TGFβ signal in the follicular phase resulting in significant upregulation of extracellular matrix-related genes, an imbalance in the metalloproteinases, downregulation of estrogen receptors, and upregulation of pro-fibrotic factors. Conversely, in the luteal phase, there is a protective role mediated primarily through an increase in anti-fibrotic miRNAs, a decrease in SMAD2 phosphorylation, and reduced expression of fibrosis-related genes.
Collapse
Affiliation(s)
- Yat S. Wong
- Laboratory of Animal Biotechnology, Faculty of Veterinary Sciences, Department of Animal Science, Universidad de Concepción, Chillán, Chile
| | - Ana C. Mançanares
- Laboratory of Animal Biotechnology, Faculty of Veterinary Sciences, Department of Animal Science, Universidad de Concepción, Chillán, Chile
| | - Felipe I. Navarrete
- Laboratory of Animal Biotechnology, Faculty of Veterinary Sciences, Department of Animal Science, Universidad de Concepción, Chillán, Chile
| | - Pamela M. Poblete
- Laboratory of Animal Biotechnology, Faculty of Veterinary Sciences, Department of Animal Science, Universidad de Concepción, Chillán, Chile
| | - Lídice Méndez-Pérez
- Laboratory of Animal Biotechnology, Faculty of Veterinary Sciences, Department of Animal Science, Universidad de Concepción, Chillán, Chile
| | - Graça M. L. Ferreira-Dias
- Faculty of Veterinary Medicine, Department of Morphology and Function, CIISA—Centre for Interdisciplinary Research in Animal Health, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
| | - Lleretny Rodriguez-Alvarez
- Laboratory of Animal Biotechnology, Faculty of Veterinary Sciences, Department of Animal Science, Universidad de Concepción, Chillán, Chile
| | - Fidel Ovidio Castro
- Laboratory of Animal Biotechnology, Faculty of Veterinary Sciences, Department of Animal Science, Universidad de Concepción, Chillán, Chile
| |
Collapse
|
14
|
Dar AI, Randhawa S, Verma M, Acharya A. Erythrocyte Membrane Cloaked Cytokine Functionalized Gold Nanoparticles Create Localized Controlled Inflammation for Rapid In Vitro Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45585-45600. [PMID: 37737830 DOI: 10.1021/acsami.3c08166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Due to impaired wound healing, millions of acute and chronic wound cases with increased morbidity have been recorded in the developed countries. The primary reason has been attributed to uncontrolled inflammation at the wound site, which makes healing impossible for years. The use of red blood cell (RBC) ghosts or erythrocyte membranes for different theranostic applications has gained significant attention in recent years due to their biocompatibility and biomimicking properties. Our study builds upon this concept by presenting a new approach for creating an improved and controlled inflammatory response by employing RBC ghost encapsulated tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) modified AuNPs (gold nanoparticles) for accelerating the wound healing at early postinjury stage (∼48 h). The results suggested that the developed GTNFα-IL6@AuNPs created a controlled and time dependent TNF-α response and showed increased reactive oxygen species generation at ∼12 h. Further, proper M1/M2 functional transition of macrophages was observed in macrophages at different time intervals. The expression results suggested that the levels of wound healing biomarkers like transforming growth factor-β (1.8-fold) and collagen (2.4-fold) increased while matrix metalloproteinase (3-8-fold) levels declined at later stages, which possibly increased the cell migration rate of NP treated cells to ∼90%. Hence, we are here reducing the timeline of the inflammatory phase of wound healing by actually creating a controlled inflammatory response at an early postinjury stage and further assisting in regaining the ability of cells for wound remodelation and repair. We intend that this new approach has the potential to improve the current treatment strategies for wound healing and skin repair under both in vitro and in vivo conditions.
Collapse
Affiliation(s)
- Aqib Iqbal Dar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shiwani Randhawa
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohini Verma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amitabha Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
15
|
Sheng XR, Gao X, Schiffman C, Jiang J, Ramalingam TR, Lin CJF, Khanna D, Neighbors M. Biomarkers of fibrosis, inflammation, and extracellular matrix in the phase 3 trial of tocilizumab in systemic sclerosis. Clin Immunol 2023; 254:109695. [PMID: 37479123 DOI: 10.1016/j.clim.2023.109695] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/16/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
Drug development for systemic sclerosis (SSc) benefits from understanding the relationship between disease and circulating biomarkers to enable activities such as patient stratification and evaluation of therapeutic response. We measured biomarkers in serum from SSc patients from a phase 3 trial of tocilizumab (focuSSced) and compared baseline levels with healthy controls (HCs). Several baseline biomarkers appeared elevated in SSc patients compared to HCs, suggesting activation of epithelial damage, inflammation, fibrosis, and extracellular matrix (ECM) remodeling. Baseline correlations among both periostin/COMP and ECM biomarker subsets implicated their participation in fibroblast activation. Tocilizumab treatment modulated serum biomarkers of macrophage activation, inflammation, and ECM turnover, including collagen formation and degradation neoepitopes. Baseline CRP, periostin, and SP-D showed prognostic trends for worsening lung function, and IL-6, COMP, periostin, and Pro-C3 showed prognostic trends for worsening skin thickness. These prognostic results warrant confirmation in additional patient cohorts to verify their utility.
Collapse
Affiliation(s)
- X Rebecca Sheng
- Genentech Inc., South San Francisco, CA, United States of America.
| | - Xia Gao
- Genentech Inc., South San Francisco, CA, United States of America
| | | | - Jenny Jiang
- Genentech Inc., South San Francisco, CA, United States of America
| | | | - Celia J F Lin
- Genentech Inc., South San Francisco, CA, United States of America
| | - Dinesh Khanna
- University of Michigan Scleroderma Program, Division of Rheumatology/Department of Internal Medicine, Ann Arbor, MI, United States of America
| | | |
Collapse
|
16
|
Fomin G, Tabynov K, Islamov R, Turebekov N, Yessimseit D, Yerubaev T. Cytokine response and damages in the lungs of aging Syrian hamsters on a high-fat diet infected with the SARS-CoV-2 virus. Front Immunol 2023; 14:1223086. [PMID: 37520568 PMCID: PMC10375707 DOI: 10.3389/fimmu.2023.1223086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023] Open
Abstract
Hypertriglyceridemia, obesity, and aging are among the key risk factors for severe COVID-19 with acute respiratory distress syndrome (ARDS). One of the main prognostic biomarkers of ARDS is the level of cytokines IL-6 and TNF-α in the blood. In our study, we modeled hyperglyceridemia and hypercholesterolemia on 18-month-old Syrian hamsters (Mesocricetus auratus). By 18 months, the animals showed such markers of aging as weight stabilization with a tendency to reduce it, polycystic liver disease, decreased motor activity, and foci of alopecia. The high-fat diet caused an increase in triglycerides and cholesterol, as well as fatty changes in the liver. On the third day after infection with the SARS-CoV-2 virus, animals showed a decrease in weight in the groups with a high-fat diet. In the lungs of males on both diets, there was an increase in the concentration of IFN-α, as well as IL-6 in both males and females, regardless of the type of diet. At the same time, the levels of TNF-α and IFN-γ did not change in infected animals. Morphological studies of the lungs of hamsters with SARS-CoV-2 showed the presence of a pathological process characteristic of ARDS. These included bronchointerstitial pneumonia and diffuse alveolar damages. These observations suggest that in aging hamsters, the immune response to pro-inflammatory cytokines may be delayed to a later period. Hypertriglyceridemia, age, and gender affect the severity of COVID-19. These results will help to understand the pathogenesis of COVID-19 associated with age, gender, and disorders of fat metabolism in humans.
Collapse
Affiliation(s)
- Gleb Fomin
- Central Reference Laboratory, Aikimbayev’s National Scientific Center for Especially Dangerous Infections, Almaty, Kazakhstan
- Department of Biodiversity and Bioresources, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Kairat Tabynov
- Central Reference Laboratory, Aikimbayev’s National Scientific Center for Especially Dangerous Infections, Almaty, Kazakhstan
- International Center for Vaccinology, Kazakh National Agrarian Research University, Almaty, Kazakhstan
| | - Rinat Islamov
- Central Reference Laboratory, Aikimbayev’s National Scientific Center for Especially Dangerous Infections, Almaty, Kazakhstan
| | - Nurkeldi Turebekov
- Central Reference Laboratory, Aikimbayev’s National Scientific Center for Especially Dangerous Infections, Almaty, Kazakhstan
| | - Duman Yessimseit
- Central Reference Laboratory, Aikimbayev’s National Scientific Center for Especially Dangerous Infections, Almaty, Kazakhstan
| | - Toktasyn Yerubaev
- Central Reference Laboratory, Aikimbayev’s National Scientific Center for Especially Dangerous Infections, Almaty, Kazakhstan
| |
Collapse
|
17
|
Bahlmann LC, Xue C, Chin AA, Skirzynska A, Lu J, Thériault B, Uehling D, Yerofeyeva Y, Peters R, Liu K, Chen J, Martel AL, Yaffe M, Al-Awar R, Goswami RS, Ylanko J, Andrews DW, Kuruvilla J, Laister RC, Shoichet MS. Targeting tumour-associated macrophages in hodgkin lymphoma using engineered extracellular matrix-mimicking cryogels. Biomaterials 2023; 297:122121. [PMID: 37075613 DOI: 10.1016/j.biomaterials.2023.122121] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/08/2023] [Accepted: 04/06/2023] [Indexed: 04/21/2023]
Abstract
Tumour-associated macrophages are linked with poor prognosis and resistance to therapy in Hodgkin lymphoma; however, there are no suitable preclinical models to identify macrophage-targeting therapeutics. We used primary human tumours to guide the development of a mimetic cryogel, wherein Hodgkin (but not Non-Hodgkin) lymphoma cells promoted primary human macrophage invasion. In an invasion inhibitor screen, we identified five drug hits that significantly reduced tumour-associated macrophage invasion: marimastat, batimastat, AS1517499, ruxolitinib, and PD-169316. Importantly, ruxolitinib has demonstrated recent success in Hodgkin lymphoma clinical trials. Both ruxolitinib and PD-169316 (a p38 mitogen-activated protein kinase (p38 MAPK) inhibitor) decreased the percent of M2-like macrophages; however, only PD-169316 enhanced the percentage of M1-like macrophages. We validated p38 MAPK as an anti-invasion drug target with five additional drugs using a high-content imaging platform. With our biomimetic cryogel, we modeled macrophage invasion in Hodgkin lymphoma and then used it for target discovery and drug screening, ultimately identifying potential future therapeutics.
Collapse
Affiliation(s)
- Laura C Bahlmann
- Institute of Biomedical Engineering, 164 College Street, Toronto, Ontario, M5S 3G9, Canada; The Donnelly Centre, University of Toronto, Toronto, 160 College St, Ontario, M5S 3E1, Canada
| | - Chang Xue
- Institute of Biomedical Engineering, 164 College Street, Toronto, Ontario, M5S 3G9, Canada; The Donnelly Centre, University of Toronto, Toronto, 160 College St, Ontario, M5S 3E1, Canada
| | - Allysia A Chin
- The Donnelly Centre, University of Toronto, Toronto, 160 College St, Ontario, M5S 3E1, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
| | - Arianna Skirzynska
- Institute of Biomedical Engineering, 164 College Street, Toronto, Ontario, M5S 3G9, Canada; The Donnelly Centre, University of Toronto, Toronto, 160 College St, Ontario, M5S 3E1, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
| | - Joy Lu
- Institute of Biomedical Engineering, 164 College Street, Toronto, Ontario, M5S 3G9, Canada; The Donnelly Centre, University of Toronto, Toronto, 160 College St, Ontario, M5S 3E1, Canada
| | - Brigitte Thériault
- Drug Discovery Program, Ontario Institute of Cancer Research, 661 University Ave Suite 510, Toronto, Ontario, M5G 0A3, Canada
| | - David Uehling
- Drug Discovery Program, Ontario Institute of Cancer Research, 661 University Ave Suite 510, Toronto, Ontario, M5G 0A3, Canada
| | - Yulia Yerofeyeva
- Biomarker Imaging Research Laboratory, Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, Ontario, M4N 3M5, Canada
| | - Rachel Peters
- Biomarker Imaging Research Laboratory, Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, Ontario, M4N 3M5, Canada
| | - Kela Liu
- Biomarker Imaging Research Laboratory, Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, Ontario, M4N 3M5, Canada
| | - Jianan Chen
- Department of Medical Biophysics, University of Toronto, 101 College St Suite 15-701, Toronto, Ontario, M5G 1L7, Canada
| | - Anne L Martel
- Department of Medical Biophysics, University of Toronto, 101 College St Suite 15-701, Toronto, Ontario, M5G 1L7, Canada; Physical Sciences, Odette Cancer Research Program, Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, Ontario, M4N 3M5, Canada
| | - Martin Yaffe
- Department of Medical Biophysics, University of Toronto, 101 College St Suite 15-701, Toronto, Ontario, M5G 1L7, Canada; Physical Sciences, Odette Cancer Research Program, Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, Ontario, M4N 3M5, Canada
| | - Rima Al-Awar
- Drug Discovery Program, Ontario Institute of Cancer Research, 661 University Ave Suite 510, Toronto, Ontario, M5G 0A3, Canada; Department of Pharmacology & Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Rashmi S Goswami
- Biological Sciences, Odette Cancer Research Program, Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, Ontario, M4N 3M5, Canada; Department of Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, 2075 Bayview Ave, Toronto, Ontario, M4N 3M5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Jarkko Ylanko
- Biological Sciences, Odette Cancer Research Program, Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, Ontario, M4N 3M5, Canada
| | - David W Andrews
- Department of Medical Biophysics, University of Toronto, 101 College St Suite 15-701, Toronto, Ontario, M5G 1L7, Canada; Biological Sciences, Odette Cancer Research Program, Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, Ontario, M4N 3M5, Canada; Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - John Kuruvilla
- Princess Margaret Cancer Centre, University Health Network, 610 University Ave, Toronto, Ontario, M5G 2C1, Canada
| | - Rob C Laister
- Princess Margaret Cancer Centre, University Health Network, 610 University Ave, Toronto, Ontario, M5G 2C1, Canada.
| | - Molly S Shoichet
- Institute of Biomedical Engineering, 164 College Street, Toronto, Ontario, M5S 3G9, Canada; The Donnelly Centre, University of Toronto, Toronto, 160 College St, Ontario, M5S 3E1, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| |
Collapse
|
18
|
Obi AT, Sharma SB, Elfline MA, Luke CE, Dowling AR, Cai Q, Kimball AS, Hollinstat M, Stanger L, Moore BB, Jaffer FA, Henke PK. Experimental venous thrombus resolution is driven by IL-6 mediated monocyte actions. Sci Rep 2023; 13:3253. [PMID: 36828892 PMCID: PMC9951841 DOI: 10.1038/s41598-023-30149-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/16/2023] [Indexed: 02/26/2023] Open
Abstract
Deep venous thrombosis and residual thrombus burden correlates with circulating IL-6 levels in humans. To investigate the cellular source and role of IL-6 in thrombus resolution, Wild type C57BL/6J (WT), and IL-6-/- mice underwent induction of VT via inferior vena cava (IVC) stenosis or stasis. Vein wall (VW) and thrombus were analyzed by western blot, immunohistochemistry, and flow cytometry. Adoptive transfer of WT bone marrow derived monocytes was performed into IL6-/- mice to assess for rescue. Cultured BMDMs from WT and IL-6-/- mice underwent quantitative real time PCR and immunoblotting for fibrinolytic factors and matrix metalloproteinase activity. No differences in baseline coagulation function or platelet function were found between WT and IL-6-/- mice. VW and thrombus IL-6 and IL-6 leukocyte-specific receptor CD126 were elevated in a time-dependent fashion in both VT models. Ly6Clo Mo/MØ were the predominant leukocyte source of IL-6. IL-6-/- mice demonstrated larger, non-resolving stasis thrombi with less neovascularization, despite a similar number of monocytes/macrophages (Mo/MØ). Adoptive transfer of WT BMDM into IL-6-/- mice undergoing stasis VT resulted in phenotype rescue. Human specimens of endophlebectomized tissue showed co-staining of Monocyte and IL-6 receptor. Thrombosis matrix analysis revealed significantly increased thrombus fibronectin and collagen in IL-6-/- mice. MMP9 activity in vitro depended on endogenous IL-6 expression in Mo/MØ, and IL-6-/- mice exhibited stunted matrix metalloproteinase activity. Lack of IL-6 signaling impairs thrombus resolution potentially via dysregulation of MMP-9 leading to impaired thrombus recanalization and resolution. Restoring or augmenting monocyte-mediated IL-6 signaling in IL-6 deficient or normal subjects, respectively, may represent a non-anticoagulant target to improve thrombus resolution.
Collapse
Affiliation(s)
- Andrea T Obi
- Conrad Jobst Vascular Research Laboratories, University of Michigan Medical School, Ann Arbor, USA.
- University of Michigan Health System, 1500 E. Medical Center Drive, Cardiovascular Center - 5463, Ann Arbor, MI, 48109-5867, USA.
| | - Sriganesh B Sharma
- Conrad Jobst Vascular Research Laboratories, University of Michigan Medical School, Ann Arbor, USA
| | - Megan A Elfline
- Conrad Jobst Vascular Research Laboratories, University of Michigan Medical School, Ann Arbor, USA
| | - Catherine E Luke
- Conrad Jobst Vascular Research Laboratories, University of Michigan Medical School, Ann Arbor, USA
| | - Abigail R Dowling
- Conrad Jobst Vascular Research Laboratories, University of Michigan Medical School, Ann Arbor, USA
| | - Qing Cai
- Conrad Jobst Vascular Research Laboratories, University of Michigan Medical School, Ann Arbor, USA
| | - Andrew S Kimball
- Section of Vascular Surgery, University of Alabama Division of Vascular Surgery, University of Michigan Medical School, Ann Arbor, USA
| | - Mike Hollinstat
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, USA
| | - Livia Stanger
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, USA
| | - Bethany B Moore
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, USA
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, University of Michigan Medical School, Ann Arbor, USA
| | - Farouc A Jaffer
- Section of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Peter K Henke
- Conrad Jobst Vascular Research Laboratories, University of Michigan Medical School, Ann Arbor, USA
| |
Collapse
|
19
|
Meyyazhagan A, Kuchi Bhotla H, Pappuswamy M, Tsibizova V, Al Qasem M, Di Renzo GC. Cytokine see-saw across pregnancy, its related complexities and consequences. Int J Gynaecol Obstet 2023; 160:516-525. [PMID: 35810391 DOI: 10.1002/ijgo.14333] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/17/2022] [Accepted: 07/07/2022] [Indexed: 01/20/2023]
Abstract
During pregnancy, a woman's immune system adapts to the changing hormonal concentrations, causing immunologic transition. These immunologic changes are required for a full-term pregnancy, preserving the fetus' innate and adaptive immunity. Preterm labor, miscarriage, gestational diabetes mellitus, and pre-eclampsia are all caused by abnormal cytokine expression during pregnancy and childbirth. A disruption in the cytokine balance can lead to autoimmune diseases or microbiologic infections, or to autoimmune illness remission during pregnancy with postpartum recurrence. The cytokine treatments are essential and damaging to the developing fetus. The current review summarizes the known research on cytokine changes during pregnancy and their possible consequences for pregnant women. Studies suggest that customizing medication for each woman and her progesterone levels should be based on the cytokine profile of each pregnant woman. Immune cells and chemicals play an important function in development of the placenta and embryo. During pregnancy, T cells divide and move, and a careful balance between proinflammatory and anti-inflammatory cytokines is necessary. The present review focuses on the mother's endurance in generating fetal cells and the immunologic mechanism involved.
Collapse
Affiliation(s)
- Arun Meyyazhagan
- Center for Perinatal and Reproductive Medicine, University of Perugia, Perugia, Italy.,PREIS International and European School of Perinatal, Neonatal and Reproductive Medicine, Florence, Italy
| | - Haripriya Kuchi Bhotla
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru, Karnataka, India
| | - Manikantan Pappuswamy
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru, Karnataka, India
| | - Valentina Tsibizova
- PREIS International and European School of Perinatal, Neonatal and Reproductive Medicine, Florence, Italy.,Institute of Perinatology and Pediatrics, Almazov National Medical Research Center, Saint-Petersburg, Russia
| | - Malek Al Qasem
- PREIS International and European School of Perinatal, Neonatal and Reproductive Medicine, Florence, Italy.,Department of Obstetrics and Gynecology, Faculty of Medicine, Mutah University, Al-Karak, Jordan
| | - Gian Carlo Di Renzo
- Center for Perinatal and Reproductive Medicine, University of Perugia, Perugia, Italy.,PREIS International and European School of Perinatal, Neonatal and Reproductive Medicine, Florence, Italy.,Department of Obstetrics and Gynecology, I.M. Sechenov First State University of Moscow, Moscow, Russia
| |
Collapse
|
20
|
Arias JL, Funes SC, Blas R, Callegari E, Eliçabe RJ, Páez MD, Munarriz A, Pardo-Hidalgo R, Tamashiro H, Di Genaro MS. S100A8 alarmin supports IL-6 and metalloproteinase-9 production by fibroblasts in the synovial microenvironment of peripheral spondyloarthritis. Front Immunol 2023; 13:1077914. [PMID: 36700196 PMCID: PMC9868917 DOI: 10.3389/fimmu.2022.1077914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction Spondyloarthritis (SpA) is a common autoinflammatory disease. S100A8/ S100A9 alarmin is strongly expressed in the synovial sublining layers of psoriatic arthritis. S100A8/ S100A9 is the most abundant protein in rheumatoid arthritis synovial fluid (SF) and has a key role in promoting IL-6 expression in fibroblast-like synoviocytes (FLS). The molecular mechanisms and the role of S100-alarmins in the synovial microenvironment of SpA have never been demonstrated. Methods and Results Here, we confirm the effect of the synovial microenvironment of peripheral SpA on interleukin-6 (IL-6) and metalloproteinase (MMP)-9 production by FLS. MMP-9 expression and activity were detected, which were reduced in the presence of anti-IL-6R. Analyzing cell signaling mechanisms, we found that stimulation with IL-6 co-triggered MMP-9 and IL-10 secretion. MMP-9 secretion depended on JNK and p38 MAPKs, whereas IL-10 secretion was dependent on the JAK pathway as a potential feedback mechanism controlling IL-6-induced MMP-9 expression. Using a proteomic approach, we identified S100A8 in the peripheral SpA SF. This presence was confirmed by immunoblotting. S100A8 increased the IL-6 secretion via ERK and p38 MAPK pathways. Furthermore, anti-S100A8/A9 reduced both IL-6 and MMP-9 production induced by SpA SF in FLS. Discussion Our data reveal a marked relationship between S100A8 alarmin with IL-6 and MMP-9 secretion by FLS in the real synovial microenvironment of peripheral SpA. These results identify a mechanism linking S100A8 to the pathogenesis of peripheral SpA.
Collapse
Affiliation(s)
- José L. Arias
- Biochemistry Department, Universidad Nacional de San Luis, San Luis, ;Argentina
| | - Samanta C. Funes
- Instituto Multidisciplinario de Investigaciones Biológicas-San Luis (IMIBIO-SL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de San Luis (UNSL), San Luis, Argentina
| | | | - Eduardo Callegari
- South Dakota (SD) Biomedical Research Infrastructure Network (SD BRIN), Stanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| | - Ricardo J. Eliçabe
- Biochemistry Department, Universidad Nacional de San Luis, San Luis, ;Argentina,Instituto Multidisciplinario de Investigaciones Biológicas-San Luis (IMIBIO-SL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de San Luis (UNSL), San Luis, Argentina
| | - María D. Páez
- South Dakota (SD) Biomedical Research Infrastructure Network (SD BRIN), Stanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| | - Alicia Munarriz
- Centro Médico Centro de Especialidades Neurológicas y Rehabilitación (CENYR), San Luis, Argentina
| | - Rodolfo Pardo-Hidalgo
- Centro de Rehabilitación Médica Centro de Rehabilitación Médica (CER), San Juan, Argentina
| | | | - María S. Di Genaro
- Biochemistry Department, Universidad Nacional de San Luis, San Luis, ;Argentina,Instituto Multidisciplinario de Investigaciones Biológicas-San Luis (IMIBIO-SL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de San Luis (UNSL), San Luis, Argentina,*Correspondence: María S. Di Genaro,
| |
Collapse
|
21
|
Pretorius D, Richter RP, Anand T, Cardenas JC, Richter JR. Alterations in heparan sulfate proteoglycan synthesis and sulfation and the impact on vascular endothelial function. Matrix Biol Plus 2022; 16:100121. [PMID: 36160687 PMCID: PMC9494232 DOI: 10.1016/j.mbplus.2022.100121] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 11/05/2022] Open
Abstract
The glycocalyx attached to the apical surface of vascular endothelial cells is a rich network of proteoglycans, glycosaminoglycans, and glycoproteins with instrumental roles in vascular homeostasis. Given their molecular complexity and ability to interact with the intra- and extracellular environment, heparan sulfate proteoglycans uniquely contribute to the glycocalyx's role in regulating endothelial permeability, mechanosignaling, and ligand recognition by cognate cell surface receptors. Much attention has recently been devoted to the enzymatic shedding of heparan sulfate proteoglycans from the endothelial glycocalyx and its impact on vascular function. However, other molecular modifications to heparan sulfate proteoglycans are possible and may have equal or complementary clinical significance. In this narrative review, we focus on putative mechanisms driving non-proteolytic changes in heparan sulfate proteoglycan expression and alterations in the sulfation of heparan sulfate side chains within the endothelial glycocalyx. We then discuss how these specific changes to the endothelial glycocalyx impact endothelial cell function and highlight therapeutic strategies to target or potentially reverse these pathologic changes.
Collapse
Key Words
- ACE2, Angiotensin-converting enzyme 2
- CLP, cecal ligation and puncture
- COVID-19, Coronavirus disease 2019
- EXT, Exostosin
- EXTL, Exostosin-like glycosyltransferase
- FFP, Fresh frozen plasma
- FGF, Fibroblast growth factor
- FGFR1, Fibroblast growth factor receptor 1
- GAG, Glycosaminoglycan
- GPC, Glypican
- Gal, Galactose
- GlcA, Glucuronic acid
- GlcNAc, N-actetyl glucosamine
- Glycocalyx
- HLMVEC, Human lung microvascular endothelial cell
- HS, Heparan sulfate
- HS2ST, Heparan sulfate 2-O-sulfotransferase
- HS3ST, Heparan sulfate 3-O-sulfotransferase
- HS6ST, Heparan sulfate 6-O-sulfotransferase
- HSPG, Heparan sulfate proteoglycan
- HUVEC, Human umbilical vein endothelial cell
- Heparan sulfate proteoglycan
- LPS, lipopolysaccharide
- NDST, N-deacetylase/N-sulfotransferase
- SARS-CoV-2, Severe acute respiratory syndrome coronavirus 2
- SDC, Syndecan
- Sulf, Endosulfatase
- Sulfation
- Synthesis
- TNFα, Tumor necrosis factor alpha
- UA, Hexuronic acid
- VEGF, Vascular endothelial growth factor
- Vascular endothelium
- XYLT, Xylosyltransferase
- Xyl, Xylose
- eGCX, Endothelial glycocalyx
- eNOS, Endothelial nitric oxide synthase
Collapse
Affiliation(s)
- Danielle Pretorius
- Division of Trauma & Acute Care Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Robert P. Richter
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
- Center for Injury Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Tanya Anand
- Division of Trauma, Critical Care, Burn & Emergency Surgery, Department of Surgery, University of Arizona, Tucson, AZ, United States
| | - Jessica C. Cardenas
- Division of Acute Care Surgery, Department of Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
- Center for Translational Injury Research, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jillian R. Richter
- Division of Trauma & Acute Care Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
- Center for Injury Science, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
22
|
Guerra M, Carvalho NB, Santos S, Nascimento MT, Sá R, Carvalho AM, Carvalho EM, Carvalho LP. TNF-induced metalloproteinase-9 production is associated with neurological manifestations in HTLV-1-infected individuals. Front Immunol 2022; 13:954103. [PMID: 36311773 PMCID: PMC9608347 DOI: 10.3389/fimmu.2022.954103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022] Open
Abstract
HTLV-1-infected individuals may develop a neurologic inflammatory condition known as HTLV-1-associated myelopathy (HAM/TSP), in which the high production of TNF is observed. These patients exhibit higher proviral loads, enhanced production of proinflammatory cytokines and lymphocyte proliferation in comparison to asymptomatic HTLV-1 carriers and those presenting overactive bladder (OAB-HTLV-infected). Metalloproteinases (MMPs) are known to degrade the components of the blood-brain barrier, favoring the migration of infected cells into the central nervous system. Moreover, the unbalanced production of MMPs and their inhibitors (TIMPs) has also been associated with tissue damage. The present work studied the production of MMP-9 and TIMPs in HTLV-1-infected individuals with and without neurological manifestations. HAM/TSP patients presented higher concentrations of MMP-9 in peripheral blood mononuclear cell (PBMC) culture supernatants, as well as a higher MMP-9/TIMP-3 ratio when compared to the other groups studied. MMP-9 levels positively correlated with proviral load and TNF in OAB-HTLV-infected individuals, and the in vitro neutralization of TNF significantly decreased MMP-9 levels in PBMC culture supernatants. Our findings indicate an association between MMP-9 production and the proinflammatory state associated with HTLV-1 infection, as well as HAM/TSP.
Collapse
Affiliation(s)
- Mariele Guerra
- Immunology Service, University Hospital Complex Professor Edgard Santos (C-HUPES), Federal University of Bahia (UFBA), Salvador, Bahia, Brazil
| | - Natália B. Carvalho
- Immunology Service, University Hospital Complex Professor Edgard Santos (C-HUPES), Federal University of Bahia (UFBA), Salvador, Bahia, Brazil
| | - Silvane Santos
- Biology Department, State University of Feira de Santana, Feira de Santana, Bahia, Brazil
| | - Mauricio T. Nascimento
- Gonçalo Moniz Institute (IGM), Oswaldo Cruz Foundation Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil
| | - Renata Sá
- Immunology Service, University Hospital Complex Professor Edgard Santos (C-HUPES), Federal University of Bahia (UFBA), Salvador, Bahia, Brazil
- Gonçalo Moniz Institute (IGM), Oswaldo Cruz Foundation Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil
| | - Augusto M. Carvalho
- Gonçalo Moniz Institute (IGM), Oswaldo Cruz Foundation Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil
| | - Edgar M. Carvalho
- Immunology Service, University Hospital Complex Professor Edgard Santos (C-HUPES), Federal University of Bahia (UFBA), Salvador, Bahia, Brazil
- Gonçalo Moniz Institute (IGM), Oswaldo Cruz Foundation Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil
- National Institute of Science and Technology - Tropical Diseases Conselho Nacional de Pesquisa/Ministério da Ciência e Tecnologia (CNPq/MCT), Salvador, Bahia, Brazil
| | - Lucas P. Carvalho
- Immunology Service, University Hospital Complex Professor Edgard Santos (C-HUPES), Federal University of Bahia (UFBA), Salvador, Bahia, Brazil
- Gonçalo Moniz Institute (IGM), Oswaldo Cruz Foundation Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil
- National Institute of Science and Technology - Tropical Diseases Conselho Nacional de Pesquisa/Ministério da Ciência e Tecnologia (CNPq/MCT), Salvador, Bahia, Brazil
- *Correspondence: Lucas P. Carvalho,
| |
Collapse
|
23
|
Panchal NK, Swarnalatha P, Prince SE. Trichopus zeylanicus ameliorates ibuprofen inebriated hepatotoxicity and enteropathy: an insight into its modulatory impact on pro/anti-inflammatory cytokines and apoptotic signaling pathways. Inflammopharmacology 2022; 30:2229-2242. [PMID: 36008576 PMCID: PMC9410745 DOI: 10.1007/s10787-022-01052-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022]
Abstract
Ibuprofen is a nonsteroidal anti-inflammatory drug that is commonly used for its analgesic, antipyretic and anti-inflammatory effects worldwide. However ibuprofen comes with serious unavoidable adverse effects on various organs when used for long duration or overdosed. Trichopus zeylanicus is a medicinal plant endemic to India owning various beneficial properties and is been used in treating various ailments. Therefore, the objective of this study was to evaluate the ameliorative effect of aqueous leaves’ extract of Trichopus zeylanicus against ibuprofen-induced hepatic toxicity and enteropathy in rats. Overall in this study 30 male albino rats were used, which were divided into five groups (six in each group). Group-I was normal control, Group-II was ibuprofen (400 mg/kg/day) inebriated group, Group-III was silymarin (25 mg/kg/day) pretreated + ibuprofen (400 mg/kg/day), Group-IV was ALETZ (1000 mg/kg/day) pretreated + ibuprofen (400 mg/kg/day), and Group-V was ALETZ alone (1000 mg/kg/day) group. The duration of the administration was for five days, followed by scarifying rats on the sixth day. Later the rats were assessed for liver and intestine enzyme markers, antioxidant parameters along with histopathological changes. In addition the pro-inflammatory markers such as TNF-α, IL-6 and IL-1β as well as anti-inflammatory cytokine IL-10 levels were measured using ELISA. Lastly the expression pattern of apoptotic signaling markers such as caspase-3, caspase-8 and Bcl-2 was evaluated using western blot. The results obtained from this study showed changes in levels of aforesaid parameter which presented the toxic effect of ibuprofen on liver and small intestine. Pre-treatment of ALETZ in ibuprofen-inebriated group was able to normalize the adverse effect caused due to ibuprofen. The conclusion of the study deduces that pre-treatment with ALETZ alleviates by modulating oxidative stress, inflammation, and apoptosis in ibuprofen inebriated rats, indicating its protective mechanism.
Collapse
Affiliation(s)
- Nagesh Kishan Panchal
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632 014, India
| | - Purushotham Swarnalatha
- Department of Information Security, School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, India, 632104
| | - Sabina Evan Prince
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632 014, India.
| |
Collapse
|
24
|
Sim TM, Mak A, Tay SH. Insights into the role of neutrophils in neuropsychiatric systemic lupus erythematosus: Current understanding and future directions. Front Immunol 2022; 13:957303. [PMID: 36016935 PMCID: PMC9396336 DOI: 10.3389/fimmu.2022.957303] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/19/2022] [Indexed: 12/12/2022] Open
Abstract
Central nervous system (CNS) involvement of systemic lupus erythematosus (SLE), termed neuropsychiatric SLE (NPSLE), is a major and debilitating manifestation of the disease. While patients with SLE mostly complain of common neuropsychological symptoms such headache and mild mood disorders that may not even be technically attributed to SLE, many SLE patients present with life-threatening NPSLE syndromes such as cerebrovascular disease, seizures and psychosis that are equally challenging in terms of early diagnosis and therapy. While we are just beginning to unravel some mysteries behind the immunologic basis of NPSLE, advancements in the mechanistic understanding of the complex pathogenic processes of NPSLE have been emerging through recent murine and human studies. The pathogenic pathways implicated in NPSLE are multifarious and various immune effectors such as cell-mediated inflammation, autoantibodies and cytokines including type I interferons have been found to act in concert with the disruption of the blood-brain barrier (BBB) and other neurovascular interfaces. Beyond antimicrobial functions, neutrophils are emerging as decision-shapers during innate and adaptive immune responses. Activated neutrophils have been recognized to be involved in ischemic and infective processes in the CNS by releasing neutrophil extracellular traps (NETs), matrix metalloproteinase-9 and proinflammatory cytokines. In the context of NPSLE, these mechanisms contribute to BBB disruption, neuroinflammation and externalization of modified proteins on NETs that serve as autoantigens. Neutrophils that sediment within the peripheral blood mononuclear cell fraction after density centrifugation of blood are generally defined as low-density neutrophils (LDNs) or low-density granulocytes. LDNs are a proinflammatory subset of neutrophils that are increased with SLE disease activity and are primed to undergo NETosis and release cytokines such as interferon-α and tumor necrosis factor. This review discusses the immunopathogenesis of NPSLE with a focus on neutrophils as a core mediator of the disease and potential target for translational research in NPSLE.
Collapse
|
25
|
Ivanova EL, Costa B, Eisemann T, Lohr S, Boskovic P, Eichwald V, Meckler J, Jugold M, Orian-Rousseau V, Peterziel H, Angel P. CD44 expressed by myeloid cells promotes glioma invasion. Front Oncol 2022; 12:969787. [PMID: 35992852 PMCID: PMC9386454 DOI: 10.3389/fonc.2022.969787] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/11/2022] [Indexed: 12/07/2022] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most common and malignant brain tumors in adulthood with a median survival of only 15 months. This poor prognosis is related to GBM’s ability to extensively infiltrate the surrounding brain parenchyma resulting in diffuse spread of neoplastic cells in the brain, responsible for high rate of recurrence. CD44 (Cluster of Differentiation 44) is a transmembrane protein, overexpressed in multiple cancer types, including gliomas, and implicated in cell motility, proliferation and angiogenesis. Multiple studies have investigated the role of CD44 in GBM cells and have highlighted a link between tumor malignancy and CD44 expression. However up to date, little is known of the role of CD44 on cells from the tumor microenvironment (TME). Here, we have investigated a potential role of CD44 in the TME in regards to GBM invasiveness. Using an ex-vivo organotypic brain slice invasion assay, we show that absence of CD44 from the TME impairs the ability of glioma cells to invade the surrounding brain parenchyma. By deleting CD44 in the astrocytic, endothelial and myeloid compartments, we show that it is specifically CD44 expression in myeloid cells that is responsible for the observed phenotype. Combining in vivo studies in cell-specific knock-out mice and in vitro analyses on primary microglia we demonstrate that myeloid CD44 is implicated in Toll Like Receptor 2 signaling and is a major regulator of Matrix metalloproteinase 9 expression.
Collapse
Affiliation(s)
- Ekaterina L. Ivanova
- Division of Signal Transduction and Growth Control, DKFZ/ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Barbara Costa
- Division of Signal Transduction and Growth Control, DKFZ/ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tanja Eisemann
- Division of Signal Transduction and Growth Control, DKFZ/ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sabrina Lohr
- Division of Signal Transduction and Growth Control, DKFZ/ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pavle Boskovic
- Division of Signal Transduction and Growth Control, DKFZ/ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Viktoria Eichwald
- Core Facility Small Animal Imaging Center, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jasmin Meckler
- Division of Signal Transduction and Growth Control, DKFZ/ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Manfred Jugold
- Core Facility Small Animal Imaging Center, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Veronique Orian-Rousseau
- Karlsruhe Institute of Technology (KIT), Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS-FMS), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, Germany
| | - Heike Peterziel
- Division of Signal Transduction and Growth Control, DKFZ/ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Angel
- Division of Signal Transduction and Growth Control, DKFZ/ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany
- *Correspondence: Peter Angel,
| |
Collapse
|
26
|
Prunetinoside Inhibits Lipopolysaccharide-Provoked Inflammatory Response via Suppressing NF-κB and Activating the JNK-Mediated Signaling Pathway in RAW264.7 Macrophage Cells. Int J Mol Sci 2022; 23:ijms23105442. [PMID: 35628252 PMCID: PMC9140926 DOI: 10.3390/ijms23105442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/25/2022] Open
Abstract
Inflammation is a multifaceted response of the immune system at the site of injury or infection caused by pathogens or stress via immune cells. Due to the adverse effects of chemical drugs, plant-based compounds are gaining interest in current research. Prunetinoside or prunetin-5-O-glucoside (PUG) is a plant-based active compound, which possesses anti-inflammatory effects on immune cells. In this study, we investigate the effect of PUG on mouse macrophage RAW264.7 cells with or without stimulation of lipopolysaccharide (LPS). Cytotoxicity results showed that PUG is non-cytotoxic to the cells and it reversed the cytotoxicity in LPS-stimulated cells. The levels of nitric oxide (NO) and interleukin-6 (IL-6) were determined using a NO detection kit and IL-6 ELISA kit, respectively, and showed a significant decrease in NO and IL-6 in PUG-treated cells. Western blot and qRT-PCR were performed for the expression of two important pro-inflammatory cytokines, COX2 and iNOS, and found that their expression was downregulated in a dose-dependent manner. Other pro-inflammatory cytokines, such as IL-1β, IL-6, and TNFα, had reduced mRNA expression after PUG treatment. Furthermore, a Western blot was performed to calculate the expression of NF-κB and MAPK pathway proteins. The results show that PUG administration dramatically reduced the phosphorylation of p-Iκbα, p-NF-κB 65, and p-JNK. Remarkably, after PUG treatment, p-P38 and p-ERK remain unchanged. Furthermore, docking studies revealed that PUG is covalently linked to NF-κB and suppresses inflammation. In conclusion, PUG exerted the anti-inflammatory mechanism by barring the NF-κB pathway and activating JNK. Thus, prunetinoside could be adopted as a therapeutic compound for inflammatory-related conditions.
Collapse
|
27
|
Lee AJ, Feng E, Chew MV, Balint E, Poznanski SM, Giles E, Zhang A, Marzok A, Revill SD, Vahedi F, Dubey A, Ayaub E, Jimenez-Saiz R, McGrath JJC, Ritchie TM, Jordana M, Jonigk DD, Ackermann M, Ask K, Miller M, Richards CD, Ashkar AA. Type I interferon regulates proteolysis by macrophages to prevent immunopathology following viral infection. PLoS Pathog 2022; 18:e1010471. [PMID: 35512020 PMCID: PMC9113601 DOI: 10.1371/journal.ppat.1010471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 05/17/2022] [Accepted: 03/24/2022] [Indexed: 11/18/2022] Open
Abstract
The ability to treat severe viral infections is limited by our understanding of the mechanisms behind virus-induced immunopathology. While the role of type I interferons (IFNs) in early control of viral replication is clear, less is known about how IFNs can regulate the development of immunopathology and affect disease outcomes. Here, we report that absence of type I IFN receptor (IFNAR) is associated with extensive immunopathology following mucosal viral infection. This pathology occurred independent of viral load or type II immunity but required the presence of macrophages and IL-6. The depletion of macrophages and inhibition of IL-6 signaling significantly abrogated immunopathology. Tissue destruction was mediated by macrophage-derived matrix metalloproteinases (MMPs), as MMP inhibition by doxycycline and Ro 28–2653 reduced the severity of tissue pathology. Analysis of post-mortem COVID-19 patient lungs also displayed significant upregulation of the expression of MMPs and accumulation of macrophages. Overall, we demonstrate that IFNs inhibit macrophage-mediated MMP production to prevent virus-induced immunopathology and uncover MMPs as a therapeutic target towards viral infections.
Collapse
Affiliation(s)
- Amanda J. Lee
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Emily Feng
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Marianne V. Chew
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Elizabeth Balint
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Sophie M. Poznanski
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Elizabeth Giles
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Ali Zhang
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Art Marzok
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Spencer D. Revill
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, Firestone Institute of Respiratory Health, McMaster University, Hamilton, Ontario, Canada
| | - Fatemeh Vahedi
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Anisha Dubey
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, Firestone Institute of Respiratory Health, McMaster University, Hamilton, Ontario, Canada
| | - Ehab Ayaub
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, Firestone Institute of Respiratory Health, McMaster University, Hamilton, Ontario, Canada
| | - Rodrigo Jimenez-Saiz
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Joshua J. C. McGrath
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Tyrah M. Ritchie
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Manel Jordana
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Danny D. Jonigk
- Institute of Pathology, Hannover Medical School, Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Maximilian Ackermann
- Institute of Pathology and Molecular Pathology, Helios University Clinic Wuppertal, University of Witten/Herdecke, Wuppertal, Germany
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Kjetil Ask
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, Firestone Institute of Respiratory Health, McMaster University, Hamilton, Ontario, Canada
| | - Matthew Miller
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Carl D. Richards
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Ali A. Ashkar
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
28
|
Tchetina EV, Markova GA, Satybaldyev AM, Lila AM. Downregulation of Tumour Necrosis Factor α Gene Expression in Peripheral Blood Mononuclear Cells Cultured in the Presence of Tofacitinib Prior to Therapy Is Associated with Clinical Remission in Patients with Rheumatoid Arthritis. Curr Issues Mol Biol 2022; 44:1941-1949. [PMID: 35678661 PMCID: PMC9164049 DOI: 10.3390/cimb44050132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by pain, synovial hyperplasia, mononuclear cell infiltration, bone erosion and joint destruction. Efficacy of personalized therapy in RA is associated with correct choice of therapeutic agent and a possibility to predict its effect prior to treatment. Our objective was to examine the association of baseline expression of metalloproteinase (MMP)-9 and cathepsin K, which are involved in cartilage and bone degradation, as well as proinflammatory cytokines tumour necrosis factor (TNF)α and interleukin (IL)-1β in the peripheral blood mononuclear cells (PBMCs) obtained from patients with RA cultured with tofacitinib (TFCN) and remission achievement. We examined 12 tofacitinib-naïve patients with RA, with a median age of 51 years and disease duration of 37.6 months. After three months of TFCN therapy, six of these patients reached clinical remission criteria while others preserved high and moderate disease activity. PBMCs were tested prior to therapy followed by their isolation in Ficoll density gradient and cultured with 100 nM TFCN for 48 h. Gene expression analysis for MMP-9, cathepsin K, IL-1β, and TNFα was performed with quantitative real-time RT-PCR using total RNA isolated from and cultured with TFCN PBMCs compared with untreated cells. Expression of all the examined genes was significantly upregulated in those cultured with TFCN PBMCs from patients who maintained high and moderate disease activity after TFCN therapy while TNFα gene expression was significantly downregulated in patients who gained remission compared with untreated counterparts. Downregulation of TNFα gene expression in PBMCs from TFCN-naïve patients with RA cultured with TFCN prior to therapy compared with untreated counterparts might serve a prognostic biomarker for remission attainment in response to tofacitinib therapy.
Collapse
Affiliation(s)
- Elena V. Tchetina
- Immunology & Molecular Biology Laboratory, Nasonova Research Institute of Rheumatology, 115522 Moscow, Russia;
- Correspondence:
| | - Galina A. Markova
- Immunology & Molecular Biology Laboratory, Nasonova Research Institute of Rheumatology, 115522 Moscow, Russia;
| | - Azamat M. Satybaldyev
- Early Rheumatoid Arthritis Department, Nasonova Research Institute of Rheumatology, 115522 Moscow, Russia; (A.M.S.); (A.M.L.)
| | - Aleksandr M. Lila
- Early Rheumatoid Arthritis Department, Nasonova Research Institute of Rheumatology, 115522 Moscow, Russia; (A.M.S.); (A.M.L.)
| |
Collapse
|
29
|
Hsu CY, Vo TTT, Lee CW, Chen YL, Lin WN, Cheng HC, Vo QC, Lee IT. Carbon monoxide releasing molecule-2 attenuates angiotensin II-induced IL-6/Jak2/Stat3-associated inflammation by inhibiting NADPH oxidase- and mitochondria-derived ROS in human aortic smooth muscle cells. Biochem Pharmacol 2022; 198:114978. [PMID: 35218740 DOI: 10.1016/j.bcp.2022.114978] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 02/07/2023]
Abstract
Abdominal aortic aneurysm (AAA) is a common inflammatory vascular disease. Angiotensin II (Ang II) involves in AAA progression by promoting the proliferation and migration of vascular smooth muscle cells, the degradation of extracellular matrices, and the generation of ROS to lead to vascular inflammation. Carbon monoxide releasing molecule-2 (CORM-2) is known to exert anti-inflammatory and antioxidant activities. However, it remains unclear whether CORM-2 can suppress Ang II-induced vascular inflammation to prevent AAA progression. Therefore, this study aimed to investigate the vasoprotective effects of CORM-2 against Ang II-induced inflammatory responses of human aortic smooth muscle cells (HASMCs) and the underlying mechanisms of those effects. The results showed that Ang II induced inflammatory responses of HASMCs via NADPH oxidase- and mitochondria-derived ROS/NF-κB/IL-6/Jak2/Stat3 pathway which was attenuated by the pretreatment with CORM-2. Additionally, CORM-2 further exhibited anti-inflammatory activities in Ang II-stimulated HASMCs, as indicated by the reduction of monocyte adhesion to HASMCs and migration of HASMCs via the suppression of ICAM-1 and VCAM-1 as well as MMP-2 and MMP-9 levels, respectively. Moreover, Ang II-induced COX-2-mediated PGE2 secretion was also inhibited by the pretreatment with CORM-2. Importantly, our data demonstrated that CORM-2 reversed Ang II-induced IL-6 overexpression dependent on Nrf2 activation and HO-1 expression. Taken together, the present study indicates that CORM-2-induced Nrf2/HO-1 alleviates IL-6/Jak2/Stat3-mediated inflammatory responses to Ang II by inhibiting NADPH oxidase- and mitochondria-derived ROS, suggesting that CORM-2 is a promising pharmacologic candidate to reverse the pathological changes involved in the inflammation of vessel wall for the prevention and treatment of AAA.
Collapse
Affiliation(s)
- Chien-Yi Hsu
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan; Division of Cardiology and Cardiovascular Research Center, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Thi Thuy Tien Vo
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chiang-Wen Lee
- Department of Nursing, Division of Basic Medical Sciences, Chronic Diseases and Health Promotion Research Center and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Puzi City, Chiayi County, Taiwan; Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County, Taiwan; Department of Safety Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City, Taiwan; College of Medicine, Chang Gung University, Guishan District, Taoyuan City, Taiwan
| | - Yuh-Lien Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Ning Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Hsin-Chung Cheng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan; Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
| | - Quang Canh Vo
- Department of Dental Biomaterials Science, Dental Research Institute and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
30
|
Araki T, Sangtian J, Ruanpeng D, Tummala R, Clark B, Burmeister L, Peterson D, Venteicher AS, Kawakami Y. Acute elevation of interleukin 6 and matrix metalloproteinase 9 during the onset of pituitary apoplexy in Cushing's disease. Pituitary 2021; 24:859-866. [PMID: 34041660 PMCID: PMC8551006 DOI: 10.1007/s11102-021-01157-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/17/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE Pituitary apoplexy is a rare endocrine emergency. The purpose of this study is to characterize physiological changes involved in pituitary apoplexy, especially during the acute phase. METHODS A Cushing's disease patient experienced corticotroph releasing hormone (CRH)-induced pituitary apoplexy during inferior petrosal sinus sampling (IPSS). The IPSS blood samples from the Cushing's disease patient were retrospectively analyzed for cytokine markers. For comparison, we also analyzed cytokine markers in blood samples from two pituitary ACTH-secreting microadenoma patients and one patient with an ectopic ACTH-secreting tumor. RESULTS Acute elevation of interleukin 6 (IL-6) and matrix metalloproteinase 9 (MMP9) was observed in the IPSS blood sample on the apoplectic hemorrhagic site of the tumor. In contrast, such a change was not observed in the blood samples from the contralateral side of the apoplexy patient and in other IPSS samples from two non-apoplexy Cushing's disease patient and a patient with ectopic Cushing's syndrome. CONCLUSION IL-6 and MMP9 may be involved in the acute process of pituitary apoplexy in Cushing's disease.
Collapse
Affiliation(s)
- Takako Araki
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, 516 Delaware Street, SE, Minneapolis, MN, 55455, USA.
| | - Jutarat Sangtian
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, 516 Delaware Street, SE, Minneapolis, MN, 55455, USA
| | - Darin Ruanpeng
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, 516 Delaware Street, SE, Minneapolis, MN, 55455, USA
| | - Ramachandra Tummala
- Department of Neurosurgery, University of Minnesota, 500 SE Harvard St., Minneapolis, MN, 55455, USA
| | - Brent Clark
- Department of Laboratory Medicine and Pathology, University of Minnesota, 500 SE Harvard St., Minneapolis, MN, 55455, USA
| | - Lynn Burmeister
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, 516 Delaware Street, SE, Minneapolis, MN, 55455, USA
| | - Daniel Peterson
- Special Chemistry Laboratory, University of Minnesota Fairview Clinic, 500 SE Harvard St., Minneapolis, MN, 55455, USA
| | - Andrew S Venteicher
- Department of Neurosurgery, University of Minnesota, 500 SE Harvard St., Minneapolis, MN, 55455, USA
| | - Yasuhiko Kawakami
- Department of Genetics, Cell Biology and Development, University of Minnesota, 321 Church St. SE., 6-160 Jackson Hall, Minneapolis, MN, 55455, USA
- Stem Cell Institute, University of Minnesota, 2001 6th Street SE, Minneapolis, MN, 55455, USA
| |
Collapse
|
31
|
Brokhman I, Watkin AMT, Bacher JC, Glazer SA, Galea AM. A Novel Method for the Production of an Autologous Anti-Inflammatory and Anti-Catabolic Product (Cytorich) from Human Blood: A Prospective Treatment for the COVID-19-Induced Cytokine Storm. Med Sci Monit 2021; 27:e934365. [PMID: 34795200 PMCID: PMC8609770 DOI: 10.12659/msm.934365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background Autologous blood-derived products can target specific inflammatory molecular pathways and have potentially beneficial therapeutic effects on inflammatory pathologies. The purpose of this study was to assess in vitro the anti-inflammatory and anti-catabolic potential of an autologous blood product as a possible treatment for COVID-19-induced cytokine storm. Material/Methods Blood samples from healthy donors and donors who had recovered from COVID-19 were incubated using different techniques and analyzed for the presence of anti-inflammatory, anti-catabolic, regenerative, pro-inflammatory, and procatabolic molecules. Results The highest concentrations of therapeutic molecules for targeting inflammatory pathways were found in the blood that had been incubated for 24 h at 37°C, whereas a significant increase was observed after 6 h of incubation in blood from COVID-19-recovered donors. Beneficially, the 6-h incubation process did not downregulate anti-COVID-19 immunoglobulin G concentrations. Unfortunately, increases in matrix metalloproteinase 9, tumor necrosis factor α, and interleukin-1 were detected in the product after incubation; however, these increases could be blocked by adding citric acid, with no effect on the concentration of the target therapeutic molecules. Our data allow for safer and more effective future treatments. Conclusions An autologous blood-derived product containing anti-inflammatory and anti-catabolic molecules, which we term Cytorich, has a promising therapeutic role in the treatment of a virus-induced cytokine storm, including that associated with COVID-19.
Collapse
Affiliation(s)
- Irina Brokhman
- Department of Research and Development, The Institute of Human Mechanics, Toronto, ON, Canada
| | - Alyssia M T Watkin
- Department of Research and Development, The Institute of Human Mechanics, Toronto, ON, Canada
| | - Jeffrey C Bacher
- Department of Research and Development, The Institute of Human Mechanics, Toronto, ON, Canada
| | - Stephen A Glazer
- Toronto Critical Care Medicine, Humber River Hospital, Toronto, ON, Canada
| | - Anthony M Galea
- Department of Research and Development, The Institute of Human Mechanics, Toronto, ON, Canada
| |
Collapse
|
32
|
Reversal of elastase-induced abdominal aortic aneurysm following the delivery of nanoparticle-based pentagalloyl glucose (PGG) is associated with reduced inflammatory and immune markers. Eur J Pharmacol 2021; 910:174487. [PMID: 34516951 DOI: 10.1016/j.ejphar.2021.174487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE An Abdominal aortic aneurysm (AAA), a deadly disease in elderly population, is featured by expansion of aortic diameter, degradation and weakening of vasculature. Its common and significant characteristics are disarray and inflammation in vasculature. We tested the hypothesis that the reversal of abdominal aortic aneurysm by pentagalloyl glucose-loaded nanoparticles (PGG-NPs) therapy that targets degraded elastin suppresses inflammatory and immune markers to ameliorate the pathophysiology of the disease in advance stage aneurysm in a porcine pancreatic elastase (PPE)-induced mouse model of AAA. METHODS AND RESULTS After induction of aneurysm in pathogen-free C57BL/6 male mice by applying PPE peri-adventitially to the abdominal aorta, once a week for two doses of intravenous injections of pentagalloyl glucose-loaded nanoparticles (PGG-NPs) conjugated with elastin targeted antibody were used to reverse the aneurysms. We showed that PGG-NPs therapy could suppress infiltration of macrophages, CD8 and CD4 subsets of T cells, matrix metalloproteinases (MMPs), inflammatory cytokines interferon (IFN-γ) and interleukin (IL)-6 at the local and systemic level. Moreover, such PGG-NPs therapy increases the induction of anti-inflammatory cytokines IL-13, IL-27 and IL-10 at the local and systemic level. The therapy also led to remodeling of elastic lamina at the aneurysm site. CONCLUSION Nanoparticles-loaded pentagalloyl glucose therapy can be an effective treatment option against advanced stage aneurysms to reverse the disease by ameliorating inflammation and restoring arterial homeostasis.
Collapse
|
33
|
D'Souza S, Nair AP, Sahu GR, Vaidya T, Shetty R, Khamar P, Mullick R, Gupta S, Dickman MM, Nuijts RMMA, Mohan RR, Ghosh A, Sethu S. Keratoconus patients exhibit a distinct ocular surface immune cell and inflammatory profile. Sci Rep 2021; 11:20891. [PMID: 34686755 PMCID: PMC8536707 DOI: 10.1038/s41598-021-99805-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammatory factors have been considered to contribute to keratoconus (KC) pathogenesis. This study aims to determine the immune cells subsets and soluble inflammatory factor profile on the ocular surface of KC patients. 32 KC subjects (51 eyes) across different grades of severity and 15 healthy controls (23 eyes) were included in the study. Keratometry and pachymetry measurements were recorded. Ocular surface immune cells (collected by ocular surface wash) immunophenotyped using flow cytometry include leukocytes, neutrophils, macrophages, natural killer (NK) cells, pan-T cells, gamma delta T (γδT) cells and NKT cells. Tear fluid collected using Schirmer's strip was used to measure 50 soluble factors by multiplex ELISA. Proportions of activated neutrophils, NK cells and γδT cells were significantly increased in KC patients. Significantly higher levels of tear fluid IL-1β, IL-6, LIF, IL-17A, TNFα, IFNα/β/γ, EPO, TGFβ1, PDGF-BB, sVCAM, sL-selectin, granzyme-B, perforin, MMP2, sFasL and IgE, along with significantly lower levels of IL-1α and IL-9 were observed in KC patients. Alterations observed in few of the immuno-inflammatory parameters correlated with grades of disease, allergy, eye rubbing and keratometry or pachymetry measurements. The observation implies a distinct immuno-inflammatory component in KC pathogenesis and its potential as an additional therapeutic target in KC management.
Collapse
Affiliation(s)
- Sharon D'Souza
- Department of Cornea and Refractive Surgery, Narayana Nethralaya, Bangalore, India
| | - Archana Padmanabhan Nair
- GROW Research Laboratory, Narayana Nethralaya Foundation, 3rd Floor, Narayana Nethralaya, #258/A Hosur Road, Bommasandra, Bangalore, 560099, India.,Manipal Academy of Higher Education, Manipal, India
| | - Ganesh Ram Sahu
- GROW Research Laboratory, Narayana Nethralaya Foundation, 3rd Floor, Narayana Nethralaya, #258/A Hosur Road, Bommasandra, Bangalore, 560099, India
| | - Tanuja Vaidya
- GROW Research Laboratory, Narayana Nethralaya Foundation, 3rd Floor, Narayana Nethralaya, #258/A Hosur Road, Bommasandra, Bangalore, 560099, India.,Manipal Academy of Higher Education, Manipal, India
| | - Rohit Shetty
- Department of Cornea and Refractive Surgery, Narayana Nethralaya, Bangalore, India
| | - Pooja Khamar
- Department of Cornea and Refractive Surgery, Narayana Nethralaya, Bangalore, India
| | - Ritika Mullick
- Department of Cornea and Refractive Surgery, Narayana Nethralaya, Bangalore, India
| | - Sneha Gupta
- Department of Cornea and Refractive Surgery, Narayana Nethralaya, Bangalore, India
| | - Mor M Dickman
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands.,MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Rudy M M A Nuijts
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Rajiv R Mohan
- Department of Veterinary Medicine and Surgery, University of Missouri, 1600 E. Rollins Rd, Columbia, MO, 65211, USA. .,Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, USA. .,Harry S Truman Veterans' Memorial Hospital, Columbia, MO, USA.
| | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, 3rd Floor, Narayana Nethralaya, #258/A Hosur Road, Bommasandra, Bangalore, 560099, India. .,Singapore Eye Research Institute, Singapore, Singapore.
| | - Swaminathan Sethu
- GROW Research Laboratory, Narayana Nethralaya Foundation, 3rd Floor, Narayana Nethralaya, #258/A Hosur Road, Bommasandra, Bangalore, 560099, India.
| |
Collapse
|
34
|
Chevalier CM, Krampert L, Schreckenbach M, Schubert CF, Reich J, Novak B, Schmidt MV, Rutten BPF, Schmidt U. MMP9 mRNA is a potential diagnostic and treatment monitoring marker for PTSD: Evidence from mice and humans. Eur Neuropsychopharmacol 2021; 51:20-32. [PMID: 34022747 DOI: 10.1016/j.euroneuro.2021.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
Although matrix metalloproteinase 9 (MMP9) has been found associated with various psychiatric disorders and with threat memories in humans, its role in post-traumatic stress disorder (PTSD) and related animal models is understudied. Thus, we analyzed MMP9 mRNA expression kinetics during two different stress experiments, i.e., the Trier Social Stress Test and the dexamethasone suppression test (DST), in whole blood of two independent cohorts of PTSD patients vs. non-traumatized healthy controls (HC) and, moreover, in a mouse model of PTSD and in dexamethasone-treated mice. Besides MMP9, we quantified mRNA levels of four of its regulators, i.e., interleukin (IL)-1 receptor 1 and 2 (IL1R1, IL1R2), IL-6 receptor and tumor necrosis factor receptor 1 (TNFR1) in 10 patients exposed to the DST before vs. after successful PTSD psychotherapy vs. 13 HC and, except from Il6r, also in different brain regions of the PTSD mouse model. We are the first to show that blood MMP9 mRNA concentrations were elevated after acute dexamethasone in PTSD patients, improved upon partial remission of PTSD and were, furthermore, also elevated, together with its regulator Tnfr1, in the prefrontal cortex of PTSD-like mice. In contrast, blood TNFR1 and IL1R2 were markedly underexpressed in PTSD patients. In conclusion, we found translational evidence supporting that, I, TNFR1 and MMP9 mRNA expression might be involved in PTSD pathobiology, II, might constitute potential diagnostic blood biomarkers for PTSD and, importantly, III, post-dexamethasone blood MMP9 hyperexpression, which speculatively results from post-dexamethasone underexpression of IL1R2, might serve also as potential treatment monitoring biomarker for PTSD.
Collapse
Affiliation(s)
- Céleste M Chevalier
- Department of General and Interventional Cardiology, University Heart Center Hamburg, Martinistrasse 52, 20246 Hamburg, Germany; Max Planck Institute of Psychiatry, Kraepelinstrasse 10, 80804 Munich, Germany
| | - Luka Krampert
- Max Planck Institute of Psychiatry, Kraepelinstrasse 10, 80804 Munich, Germany; Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Monika Schreckenbach
- Max Planck Institute of Psychiatry, Kraepelinstrasse 10, 80804 Munich, Germany; Verein zur Förderung der Klinischen Verhaltenstherapie (VFKV) - Ausbildungsinstitut München gGmbH, Lindwurmstr. 117, 80337 München, Germany
| | - Christine F Schubert
- Max Planck Institute of Psychiatry, Kraepelinstrasse 10, 80804 Munich, Germany; Verein zur Förderung der Klinischen Verhaltenstherapie (VFKV) - Ausbildungsinstitut München gGmbH, Lindwurmstr. 117, 80337 München, Germany; Catholic University of Eichstätt-Ingolstadt, Ostenstraße 25, 85072 Eichstätt, Germany
| | - Johanna Reich
- Max Planck Institute of Psychiatry, Kraepelinstrasse 10, 80804 Munich, Germany; Schön Klinik München Schwabing, Parzivalpl. 4, 80804 München, Germany
| | - Bozidar Novak
- Max Planck Institute of Psychiatry, Kraepelinstrasse 10, 80804 Munich, Germany
| | - Mathias V Schmidt
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Kraepelinstrasse 10, 80804 Munich, Germany
| | - Bart P F Rutten
- Maastricht University Medical Centre, School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Universiteitssingel 50, 6229 ER, PO Box 616 6200 MD, Maastricht, The Netherlands
| | - Ulrike Schmidt
- Max Planck Institute of Psychiatry, Kraepelinstrasse 10, 80804 Munich, Germany; Maastricht University Medical Centre, School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Universiteitssingel 50, 6229 ER, PO Box 616 6200 MD, Maastricht, The Netherlands; RG Molecular and Clinical Psychotraumatology, Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany; RG Traumatic Stress & Neurodegeneration & PTSD Treatment Unit, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Von-Siebold-Straße 5, 37075 Göttingen, Germany.
| |
Collapse
|
35
|
Yu L, Yu C, Dong H, Mu Y, Zhang R, Zhang Q, Liang W, Li W, Wang X, Zhang L. Recent Developments About the Pathogenesis of Dry Eye Disease: Based on Immune Inflammatory Mechanisms. Front Pharmacol 2021; 12:732887. [PMID: 34421626 PMCID: PMC8375318 DOI: 10.3389/fphar.2021.732887] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/26/2021] [Indexed: 01/18/2023] Open
Abstract
Dry eye disease is a common and frequently occurring ophthalmology with complex and diverse causes, and its incidence is on the upward trend. The pathogenesis of DED is still completely clear. However, the immune response based on inflammation has been recognized as the core basis of this disease. In this review, we will systematically review the previous research on the treatment of DED in immune inflammation, analyze the latest views and research hotspots, and provide reference for the prevention and treatment of DED.
Collapse
Affiliation(s)
- Lifei Yu
- Department of Ophthalmology, The Third People’s Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chunjing Yu
- Department of Ophthalmology, The Third People’s Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| | - He Dong
- Department of Ophthalmology, The Third People’s Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yanan Mu
- Department of Ophthalmology, The Third People’s Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Rui Zhang
- Department of Ophthalmology, The Third People’s Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qiaosi Zhang
- Department of Ophthalmology, The Third People’s Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wei Liang
- Department of Ophthalmology, The Third People’s Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wenjia Li
- Department of Ophthalmology, The Third People’s Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xun Wang
- Department of Neurosurgery, The Third People’s Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Lijun Zhang
- Department of Ophthalmology, The Third People’s Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
36
|
Yokokawa T, Misaka T, Kimishima Y, Wada K, Minakawa K, Sugimoto K, Ishida T, Morishita S, Komatsu N, Ikeda K, Takeishi Y. Crucial role of hematopoietic JAK2 V617F in the development of aortic aneurysms. Haematologica 2021; 106:1910-1922. [PMID: 33567809 PMCID: PMC8252954 DOI: 10.3324/haematol.2020.264085] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Indexed: 12/11/2022] Open
Abstract
JAK2 V617F is the most frequent driver mutation in myeloproliferative neoplasms (MPN) and is associated with vascular complications. However, the impact of hematopoietic JAK2 V617F on aortic aneurysms (AA) remains unknown. Our cross-sectional study indicated that nine (23%) of 39 MPN patients with JAK2 V617F exhibited the presence of AA. In order to clarify whether the hematopoietic JAK2 V617F contributes to the AA, we applied bone marrow transplantation (BMT) with the donor cells from Jak2 V617F transgenic (JAK2V617F) mice or control wild-type (WT) mice into lethally irradiated apolipoprotein E-deficient mice. Five weeks after BMT, the JAK2V617F-BMT mice and WT-BMT mice were subjected to continuous angiotensin II infusion to induce AA formation. Four weeks after angiotensin II infusion, the abdominal aorta diameter in the JAK2V617F-BMT mice was significantly enlarged compared to that in the WT-BMT mice. Additionally, the abdominal AA-free survival rate was significantly lower in the JAK2V617F-BMT mice. Hematopoietic JAK2 V617F accelerated aortic elastic lamina degradation as well as activation of matrix metalloproteinase (MMP)-2 and MMP-9 in the abdominal aorta. The numbers of infiltrated macrophages were significantly upregulated in the abdominal aorta of the JAK2V617F-BMT mice accompanied by STAT3 phosphorylation. The accumulation of BM-derived hematopoietic cells carrying JAK2 V617F in the abdominal aorta was confirmed by use of the reporter green fluorescent proteintransgene. BM-derived macrophages carrying JAK2 V617F showed increases in mRNA expression levels of Mmp2, Mmp9, and Mmp13. Ruxolitinib decreased the abdominal aorta diameter and the incidence of abdominal AA in the JAK2V617F-BMT mice. Our findings provide a novel feature of vascular complications of AA in MPN with JAK2 V617F.
Collapse
Affiliation(s)
- Tetsuro Yokokawa
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan; Department of Pulmonary Hypertension, Fukushima Medical University, Fukushima
| | - Tomofumi Misaka
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan; Department of Advanced Cardiac Therapeutics, Fukushima Medical University, Fukushima.
| | - Yusuke Kimishima
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima
| | - Kento Wada
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima
| | - Keiji Minakawa
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University, Fukushima
| | - Koichi Sugimoto
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan; Department of Pulmonary Hypertension, Fukushima Medical University, Fukushima
| | - Takafumi Ishida
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima
| | - Soji Morishita
- Department of Transfusion Medicine and Stem Cell Regulation, Juntendo University Graduate School of Medicine, Tokyo
| | - Norio Komatsu
- Department of Hematology, Juntendo University Graduate School of Medicine, Tokyo
| | - Kazuhiko Ikeda
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University, Fukushima.
| | - Yasuchika Takeishi
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima
| |
Collapse
|
37
|
Tucker B, Vaidya K, Cochran BJ, Patel S. Inflammation during Percutaneous Coronary Intervention-Prognostic Value, Mechanisms and Therapeutic Targets. Cells 2021; 10:cells10061391. [PMID: 34199975 PMCID: PMC8230292 DOI: 10.3390/cells10061391] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/17/2022] Open
Abstract
Periprocedural myocardial injury and myocardial infarction (MI) are not infrequent complications of percutaneous coronary intervention (PCI) and are associated with greater short- and long-term mortality. There is an abundance of preclinical and observational data demonstrating that high levels of pre-, intra- and post-procedural inflammation are associated with a higher incidence of periprocedural myonecrosis as well as future ischaemic events, heart failure hospitalisations and cardiac-related mortality. Beyond inflammation associated with the underlying coronary pathology, PCI itself elicits an acute inflammatory response. PCI-induced inflammation is driven by a combination of direct endothelial damage, liberation of intra-plaque proinflammatory debris and reperfusion injury. Therefore, anti-inflammatory medications, such as colchicine, may provide a novel means of improving PCI outcomes in both the short- and long-term. This review summarises periprocedural MI epidemiology and pathophysiology, evaluates the prognostic value of pre-, intra- and post-procedural inflammation, dissects the mechanisms involved in the acute inflammatory response to PCI and discusses the potential for periprocedural anti-inflammatory treatment.
Collapse
Affiliation(s)
- Bradley Tucker
- Heart Research Institute, 7 Eliza St., Newtown 2042, Australia;
- Sydney Medical School, University of Sydney, Camperdown 2050, Australia;
- School of Medical Sciences, University of New South Wales, Kensington 2052, Australia;
| | - Kaivan Vaidya
- Sydney Medical School, University of Sydney, Camperdown 2050, Australia;
- Royal Prince Alfred Hospital, Camperdown 2050, Australia
| | - Blake J. Cochran
- School of Medical Sciences, University of New South Wales, Kensington 2052, Australia;
| | - Sanjay Patel
- Heart Research Institute, 7 Eliza St., Newtown 2042, Australia;
- Sydney Medical School, University of Sydney, Camperdown 2050, Australia;
- Royal Prince Alfred Hospital, Camperdown 2050, Australia
- Correspondence: ; Tel.: +61-2-9515-6111
| |
Collapse
|
38
|
Delprat V, Michiels C. A bi-directional dialog between vascular cells and monocytes/macrophages regulates tumor progression. Cancer Metastasis Rev 2021; 40:477-500. [PMID: 33783686 PMCID: PMC8213675 DOI: 10.1007/s10555-021-09958-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/23/2021] [Indexed: 02/06/2023]
Abstract
Cancer progression largely depends on tumor blood vessels as well on immune cell infiltration. In various tumors, vascular cells, namely endothelial cells (ECs) and pericytes, strongly regulate leukocyte infiltration into tumors and immune cell activation, hence the immune response to cancers. Recently, a lot of compelling studies unraveled the molecular mechanisms by which tumor vascular cells regulate monocyte and tumor-associated macrophage (TAM) recruitment and phenotype, and consequently tumor progression. Reciprocally, TAMs and monocytes strongly modulate tumor blood vessel and tumor lymphatic vessel formation by exerting pro-angiogenic and lymphangiogenic effects, respectively. Finally, the interaction between monocytes/TAMs and vascular cells is also impacting several steps of the spread of cancer cells throughout the body, a process called metastasis. In this review, the impact of the bi-directional dialog between blood vascular cells and monocytes/TAMs in the regulation of tumor progression is discussed. All together, these data led to the design of combinations of anti-angiogenic and immunotherapy targeting TAMs/monocyte whose effects are briefly discussed in the last part of this review.
Collapse
Affiliation(s)
- Victor Delprat
- Biochemistry and Cellular Biology Research Unit (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 61 Rue de Bruxelles, B-5000, Namur, Belgium
| | - Carine Michiels
- Biochemistry and Cellular Biology Research Unit (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 61 Rue de Bruxelles, B-5000, Namur, Belgium.
| |
Collapse
|
39
|
A Review of Acquired Autoimmune Blistering Diseases in Inherited Epidermolysis Bullosa: Implications for the Future of Gene Therapy. Antibodies (Basel) 2021; 10:antib10020019. [PMID: 34067512 PMCID: PMC8161452 DOI: 10.3390/antib10020019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/24/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
Gene therapy serves as a promising therapy in the pipeline for treatment of epidermolysis bullosa (EB). However, with great promise, the risk of autoimmunity must be considered. While EB is a group of inherited blistering disorders caused by mutations in various skin proteins, autoimmune blistering diseases (AIBD) have a similar clinical phenotype and are caused by autoantibodies targeting skin antigens. Often, AIBD and EB have the same protein targeted through antibody or mutation, respectively. Moreover, EB patients are also reported to carry anti-skin antibodies of questionable pathogenicity. It has been speculated that activation of autoimmunity is both a consequence and cause of further skin deterioration in EB due to a state of chronic inflammation. Herein, we review the factors that facilitate the initiation of autoimmune and inflammatory responses to help understand the pathogenesis and therapeutic implications of the overlap between EB and AIBD. These may also help explain whether corrections of highly immunogenic portions of protein through gene therapy confers a greater risk towards developing AIBD.
Collapse
|
40
|
Munro SK, Balakrishnan B, Lissaman AC, Gujral P, Ponnampalam AP. Cytokines and pregnancy: Potential regulation by histone deacetylases. Mol Reprod Dev 2021; 88:321-337. [PMID: 33904218 DOI: 10.1002/mrd.23430] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 10/04/2020] [Accepted: 10/12/2020] [Indexed: 12/26/2022]
Abstract
Cytokines are important regulators of pregnancy and parturition. Aberrant expression of proinflammatory cytokines during pregnancy contributes towards preterm labor, pre-eclampsia, and gestational diabetes mellitus. The regulation of cytokine expression in human cells is highly complex, involving interactions between environment, transcription factors, and feedback mechanisms. Recent developments in epigenetic research have made tremendous advancements in exploring histone modifications as a key epigenetic regulator of cytokine expression and the effect of their signaling molecules on various organ systems in the human body. Histone acetylation and subsequent deacetylation by histone deacetylases (HDACs) are major epigenetic regulators of protein expression in the human body. The expression of various proinflammatory cytokines, their role in normal and abnormal pregnancy, and their epigenetic regulation via HDACs will be discussed in this review.
Collapse
Affiliation(s)
- Sheryl K Munro
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Biju Balakrishnan
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Abbey C Lissaman
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Palak Gujral
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Anna P Ponnampalam
- Liggins Institute, The University of Auckland, Auckland, New Zealand.,Department of Physiology, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand.,Department of Obstetrics and Gynaecology, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
41
|
Park ES, Kim S, Huang S, Yoo JY, Körbelin J, Lee TJ, Kaur B, Dash PK, Chen PR, Kim E. Selective Endothelial Hyperactivation of Oncogenic KRAS Induces Brain Arteriovenous Malformations in Mice. Ann Neurol 2021; 89:926-941. [PMID: 33675084 DOI: 10.1002/ana.26059] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Brain arteriovenous malformations (bAVMs) are a leading cause of hemorrhagic stroke and neurological deficits in children and young adults, however, no pharmacological intervention is available to treat these patients. Although more than 95% of bAVMs are sporadic without family history, the pathogenesis of sporadic bAVMs is largely unknown, which may account for the lack of therapeutic options. KRAS mutations are frequently observed in cancer, and a recent unprecedented finding of these mutations in human sporadic bAVMs offers a new direction in the bAVM research. Using a novel adeno-associated virus targeting brain endothelium (AAV-BR1), the current study tested if endothelial KRASG12V mutation induces sporadic bAVMs in mice. METHODS Five-week-old mice were systemically injected with either AAV-BR1-GFP or -KRASG12V . At 8 weeks after the AAV injection, bAVM formation and characteristics were addressed by histological and molecular analyses. The effect of MEK/ERK inhibition on KRASG12V -induced bAVMs was determined by treatment of trametinib, a US Food and Drug Administration (FDA)-approved MEK/ERK inhibitor. RESULTS The viral-mediated KRASG12V overexpression induced bAVMs, which were composed of a tangled nidus mirroring the distinctive morphology of human bAVMs. The bAVMs were accompanied by focal angiogenesis, intracerebral hemorrhages, altered vascular constituents, neuroinflammation, and impaired sensory/cognitive/motor functions. Finally, we confirmed that bAVM growth was inhibited by trametinib treatment. INTERPRETATION Our innovative approach using AAV-BR1 confirms that KRAS mutations promote bAVM development via the MEK/ERK pathway, and provides a novel preclinical mouse model of bAVMs which will be useful to develop a therapeutic strategy for patients with bAVM. ANN NEUROL 2021;89:926-941.
Collapse
Affiliation(s)
- Eun S Park
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Sehee Kim
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Shuning Huang
- Department of Diagnostic and Interventional Imaging, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Ji Young Yoo
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Jakob Körbelin
- II. Department of Internal Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tae Jin Lee
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Balveen Kaur
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Pramod K Dash
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Peng R Chen
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Eunhee Kim
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| |
Collapse
|
42
|
Lin E, Liu X, Liu Y, Zhang Z, Xie L, Tian K, Liu J, Yu Y. Roles of the Dynamic Tumor Immune Microenvironment in the Individualized Treatment of Advanced Clear Cell Renal Cell Carcinoma. Front Immunol 2021; 12:653358. [PMID: 33746989 PMCID: PMC7970116 DOI: 10.3389/fimmu.2021.653358] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/12/2021] [Indexed: 02/05/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) are currently a first-line treatment option for clear cell renal cell carcinoma (ccRCC). However, recent clinical studies have shown that a large number of patients do not respond to ICIs. Moreover, only a few patients achieve a stable and durable response even with combination therapy based on ICIs. Available studies have concluded that the response to immunotherapy and targeted therapy in patients with ccRCC is affected by the tumor immune microenvironment (TIME), which can be manipulated by targeted therapy and tumor genomic characteristics. Therefore, an in-depth understanding of the dynamic nature of the TIME is important for improving the efficacy of immunotherapy or combination therapy in patients with advanced ccRCC. Here, we explore the possible mechanisms by which the TIME affects the efficacy of immunotherapy and targeted therapy, as well as the factors that drive dynamic changes in the TIME in ccRCC, including the immunomodulatory effect of targeted therapy and genomic changes. We also describe the progress on novel therapeutic modalities for advanced ccRCC based on the TIME. Overall, this review provides valuable information on the optimization of combination therapy and development of individualized therapy for advanced ccRCC.
Collapse
MESH Headings
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/genetics
- Carcinoma, Renal Cell/drug therapy
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/immunology
- Carcinoma, Renal Cell/mortality
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/immunology
- Humans
- Immune Checkpoint Inhibitors/pharmacology
- Immune Checkpoint Inhibitors/therapeutic use
- Kidney Neoplasms/drug therapy
- Kidney Neoplasms/genetics
- Kidney Neoplasms/immunology
- Kidney Neoplasms/mortality
- Molecular Targeted Therapy/methods
- Precision Medicine/methods
- Progression-Free Survival
- Randomized Controlled Trials as Topic
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Enyu Lin
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Xuechao Liu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanjun Liu
- Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Zedan Zhang
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Lu Xie
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Kaiwen Tian
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jiumin Liu
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yuming Yu
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
43
|
Vieyra-Garcia PA, Wolf P. A deep dive into UV-based phototherapy: Mechanisms of action and emerging molecular targets in inflammation and cancer. Pharmacol Ther 2020; 222:107784. [PMID: 33316286 DOI: 10.1016/j.pharmthera.2020.107784] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023]
Abstract
UV-based phototherapy (including psoralen plus UVA (PUVA), UVB and UVA1) has a long, successful history in the management of numerous cutaneous disorders. Photoresponsive diseases are etiologically diverse, but most involve disturbances in local (and occasionally systemic) inflammatory cells and/or abnormalities in keratinocytes that trigger inflammation. UV-based phototherapy works by regulating the inflammatory component and inducing apoptosis of pathogenic cells. This results in a fascinating and complex network of simultaneous events-immediate transcriptional changes in keratinocytes, immune cells, and pigment cells; the emergence of apoptotic bodies; and the trafficking of antigen-presenting cells in skin-that quickly transform the microenvironment of UV-exposed skin. Molecular elements in this system of UV recognition and response include chromophores, metabolic byproducts, innate immune receptors, neurotransmitters and mediators such as chemokines and cytokines, antimicrobial peptides, and platelet activating factor (PAF) and PAF-like molecules that simultaneously shape the immunomodulatory effects of UV and their interplay with the microbiota of the skin and beyond. Phototherapy's key effects-proapoptotic, immunomodulatory, antipruritic, antifibrotic, propigmentary, and pro-prebiotic-promote clinical improvement in various skin diseases such as psoriasis, atopic dermatitis (AD), graft-versus-host disease (GvHD), vitiligo, scleroderma, and cutaneous T-cell lymphoma (CTCL) as well as prevention of polymorphic light eruption (PLE). As understanding of phototherapy improves, new therapies (UV- and non-UV-based) are being developed that will modify regulatory T-cells (Treg), interact with (resident) memory T-cells and /or utilize agonists and antagonists as well as antibodies targeting soluble molecules such as cytokines and chemokines, transcription factors, and a variety of membrane-associated receptors.
Collapse
Affiliation(s)
- Pablo A Vieyra-Garcia
- Department of Dermatology, Medical University of Graz, Auenbruggerplatz 8, Graz A-8036, Austria.
| | - Peter Wolf
- Department of Dermatology, Medical University of Graz, Auenbruggerplatz 8, Graz A-8036, Austria.
| |
Collapse
|
44
|
Periman LM, Mah FS, Karpecki PM. A Review of the Mechanism of Action of Cyclosporine A: The Role of Cyclosporine A in Dry Eye Disease and Recent Formulation Developments. Clin Ophthalmol 2020; 14:4187-4200. [PMID: 33299295 PMCID: PMC7719434 DOI: 10.2147/opth.s279051] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/23/2020] [Indexed: 12/18/2022] Open
Abstract
Dry eye disease (DED) is a multifactorial disease of the ocular surface and tear film that has gained awareness as a public health problem. Characteristics of DED include tear film instability, hyperosmolarity, and ocular surface inflammation, which can occur independently or may be a sequela of numerous ocular diseases, ocular surgery or contact lens wear. Much has been learned about the impact of the disease to help affected individuals who report symptoms of poor vision, pain, and tearing. Recently, new research highlights the importance of the role of ocular surface inflammation and damage in DED-leading to a vicious cycle of inflammation as well as loss of tear film homeostasis. DED immunopathophysiology is characterized by four stages: initiation, amplification, recruitment, and re-initiation. Cyclosporine is proven to be a valuable ophthalmic therapeutic for DED through its immunomodulatory actions and regulation of the adaptive immune response. Cyclosporine mechanism of action is well described in the published literature and the myriad of benefits in all four stages lend a broad-based immunomodulatory function particularly suitable for addressing DED. Furthermore, cyclosporine has unique goblet cell density improvement capabilities as well as anti-apoptotic properties. Topical formulations of cyclosporine are centered around addressing the highly lipophilic nature of the molecule. The poor aqueous solubility of cyclosporine traditionally presented technical challenges in drug delivery to the ocular surface. Newer formulations such as cationic emulsions and nanomicellar aqueous solutions address formulation, tissue concentration, and drug delivery challenges.
Collapse
|
45
|
Abstract
Enzymes are a class of protein that catalyze a wide range of chemical reactions, including the cleavage of specific peptide bonds. They are expressed in all cell types, play vital roles in tissue development and homeostasis, and in many diseases, such as cancer. Enzymatic activity is tightly controlled through the use of inactive pro-enzymes, endogenous inhibitors and spatial localization. Since the presence of specific enzymes is often correlated with biological processes, and these proteins can directly modify biomolecules, they are an ideal biological input for cell-responsive biomaterials. These materials include both natural and synthetic polymers, cross-linked hydrogels and self-assembled peptide nanostructures. Within these systems enzymatic activity has been used to induce biodegradation, release therapeutic agents and for disease diagnosis. As technological advancements increase our ability to quantify the expression and nanoscale organization of proteins in cells and tissues, as well as the synthesis of increasingly complex and well-defined biomaterials, enzyme-responsive biomaterials are poised to play vital roles in the future of biomedicine.
Collapse
Affiliation(s)
- E. Thomas Pashuck
- Department of Bioengineering, P.C. Rossin College of Engineering and Applied Science, Lehigh University Bethlehem Pennsylvania USA
| |
Collapse
|
46
|
Lee TH, Liu PS, Tsai MM, Chen JL, Wang SJ, Hsieh HL. The COX-2-derived PGE 2 autocrine contributes to bradykinin-induced matrix metalloproteinase-9 expression and astrocytic migration via STAT3 signaling. Cell Commun Signal 2020; 18:185. [PMID: 33228717 PMCID: PMC7685582 DOI: 10.1186/s12964-020-00680-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Abstract
Background The matrix metalloproteinase-9 (MMP-9) is up-regulated by several proinflammatory mediators in the central nervous system (CNS) diseases. Increasing reports show that MMP-9 expression is an inflammatory biomarker of several CNS disorders, including the CNS inflammation and neurodegeneration. Bradykinin (BK) is a common proinflammatory mediator and elevated in several brain injury and inflammatory disorders. The raised BK may be detrimental effects on the CNS that may aggravate brain inflammation through MMP-9 up-regulation or cyclooxygenase-2 (COX-2)-derived prostaglandin E2 (PGE2) production in brain astrocytes. However, the relationship between BK-induced MMP-9 expression and COX-2-derived PGE2 release in brain astrocytes remains unclear. Methods Herein we used rat brain astrocytes (RBA) to investigate the role of the COX-2/PGE2 system in BK-induced MMP-9 expression. We used zymographic, RT-PCR, EIA, and Western blotting analyses to confirm that BK induces MMP-9 expression via a COX-2/PGE2-dependent pathway. Results Our results show activation of native COX-2 by BK led to PGE2 production and release. Subsequently, PGE2 induced MMP-9 expression via PGE2 receptor (EP)-mediated c-Src, Jak2, ERK1/2, and then activated signal transducer and activator of transcription 3 (STAT3) signaling pathway. Finally, up-regulation of MMP-9 by BK via the pathway may promote astrocytic migration. Conclusion These results demonstrated that a novel autocrine pathway for BK-induced MMP-9 protein expression is mediated through activation of STAT3 by native COX-2/PGE2-mediated c-Src/Jak2/ERK cascades in brain astrocytes. Video Abstract
Collapse
Affiliation(s)
- Tsong-Hai Lee
- Stroke Center and Stroke Section, Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Pei-Shan Liu
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | - Ming-Ming Tsai
- Department of Nursing, Division of Basic Medical Sciences, Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, 261 Wenhua 1st Road, Guishan, Taoyuan, Taiwan.,Department of General Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Jiun-Liang Chen
- Division of Chinese Internal Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Su-Jane Wang
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Hsi-Lung Hsieh
- Department of Nursing, Division of Basic Medical Sciences, Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, 261 Wenhua 1st Road, Guishan, Taoyuan, Taiwan. .,Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
47
|
Belo VA, Pereira JA, Souza SFD, Tana FDL, Pereira BP, Lopes DDO, Ceron CS, Novaes RD, Corsetti PP, de Almeida LA. The role of IL-10 in immune responses against Pseudomonas aeruginosa during acute lung infection. Cell Tissue Res 2020; 383:1123-1133. [PMID: 33165659 DOI: 10.1007/s00441-020-03308-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/22/2020] [Indexed: 11/28/2022]
Abstract
Pseudomonas aeruginosa is considered an opportunistic pathogen of great clinical importance. The clearance of this bacterium occurs through recognition of the pathogen by innate immune system receptors, leading to a lung inflammatory response. However, this response must be controlled via immunoregulatory pathways. In this study, we evaluate the role of endogenous murine IL-10 after acute infection with the virulent strain P. aeruginosa PA14. To assess the role of IL-10, intratracheal infection with the PA14 strain was performed in C57BL/6 or IL-10 KO mice. The PA14 strain was recovered in both types of animals, although IL-10 KO mice presented a higher number of viable bacteria in the lung when compared to the C57BL/6 group. Histopathological and stereological analyses showed that IL-10 KO mice had higher tissue damage and inflammatory infiltrate when compared to control animals. The activity of MMP-9 but not MMP-2, as well as IL-6 and TNF-α expression, were augmented in the lungs of infected animals and was much more evident in IL-10 KO animals when compared to the other analyzed groups. This work indicates that endogenous IL-10 control P. aeruginosa infection, the expression of pro-inflammatory genes, MMP-9 activity and histopathological processes of the infectious process in question.
Collapse
Affiliation(s)
- Valéria Aparecida Belo
- Departmento de Microbiologia E Imunologia, Universidade Federal de Alfenas, Alfenas, Brazil
| | - Jéssica Assis Pereira
- Departmento de Microbiologia E Imunologia, Universidade Federal de Alfenas, Alfenas, Brazil
| | - Sara Franchin D Souza
- Departmento de Microbiologia E Imunologia, Universidade Federal de Alfenas, Alfenas, Brazil
| | - Fernanda de Lima Tana
- Departmento de Microbiologia E Imunologia, Universidade Federal de Alfenas, Alfenas, Brazil
| | - Bruna P Pereira
- Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas, Brazil
| | - Débora de Oliveira Lopes
- Laboratório de Biologia Molecular, Universidade Federal de São João Del-Rei (CCO), Divinópolis, Brazil
| | - Carla S Ceron
- Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas, Brazil
| | - Rômulo D Novaes
- Departamento de Biologia Estrutural, Universidade Federal de Alfenas, Alfenas, Brazil
| | - Patrícia Paiva Corsetti
- Laboratório de Imunologia das Doenças Infecciosas E Crônicas, Universidade José Do Rosário Vellano, Alfenas, Minas Gerais, Brazil
| | | |
Collapse
|
48
|
Robb CT, Goepp M, Rossi AG, Yao C. Non-steroidal anti-inflammatory drugs, prostaglandins, and COVID-19. Br J Pharmacol 2020; 177:4899-4920. [PMID: 32700336 PMCID: PMC7405053 DOI: 10.1111/bph.15206] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the novel coronavirus disease 2019 (COVID-19), a highly pathogenic and sometimes fatal respiratory disease responsible for the current 2020 global pandemic. Presently, there remains no effective vaccine or efficient treatment strategies against COVID-19. Non-steroidal anti-inflammatory drugs (NSAIDs) are medicines very widely used to alleviate fever, pain, and inflammation (common symptoms of COVID-19 patients) through effectively blocking production of prostaglandins (PGs) via inhibition of cyclooxyganase enzymes. PGs can exert either proinflammatory or anti-inflammatory effects depending on the inflammatory scenario. In this review, we survey the potential roles that NSAIDs and PGs may play during SARS-CoV-2 infection and the development and progression of COVID-19. LINKED ARTICLES: This article is part of a themed issue on The Pharmacology of COVID-19. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.21/issuetoc.
Collapse
Affiliation(s)
- Calum T. Robb
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| | - Marie Goepp
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| | - Adriano G. Rossi
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| | - Chengcan Yao
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| |
Collapse
|
49
|
de O Farias MC, Cavalcante TDLT, Assunção ML, Bueno NB. Association between maternal or cord blood concentrations of 25-hydroxycholecalciferol or vitamin D supplementation during pregnancy and the cytokines profile in the umbilical cord blood: Systematic literature review. J Steroid Biochem Mol Biol 2020; 203:105739. [PMID: 32846186 DOI: 10.1016/j.jsbmb.2020.105739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Evidence suggests that vitamin D suppresses the production of pro-inflammatory cytokines and induces the production of anti-inflammatory cytokines during pregnancy. OBJECTIVES To assess, through a systematic literature review, the relationship between maternal or cord blood concentrations of 25-hydroxycholecalciferol (25-OH-D) or vitamin D supplementation during pregnancy and the cytokines profile in the umbilical cord. METHODS The following databases were searched: PUBMED, CENTRAL, Web of Science, LILACS, and gray literature, up to July 2020. The search strategy included terms related to the exposure (25-OH-D) and the primary outcome (cytokines). Observational studies and randomized clinical trials were included, measuring cytokines in the umbilical cord blood, or in ex vivo bioassays, and blood concentrations of 25-OH-D, either throughout pregnancy or in the umbilical cord blood. Studies with twin pregnancies, with placental or autoimmune diseases, were excluded. The protocol is registered in PROSPERO (number CRD42019136643). RESULTS From 14,605 unique articles identified in the databases, 28 were read in full, and of these, eight met the eligibility criteria, being three randomized clinical trials, and five observational studies. The eight studies showed adequate methodological quality. IL-10 was the most studied cytokine, being reported in seven studies. There were higher concentrations of IL-10 in the umbilical cord of women with 25-OH-D sufficiency in the observational studies. Clinical trials showed mixed results with the use of ex vivo bioassays with several stimulants. Associations with other cytokines were less consistent or absent. CONCLUSION 25-OH-D status is positively associated with the IL-10 levels of the umbilical cord, in observational studies.
Collapse
Affiliation(s)
- Myrla C de O Farias
- Faculdade de Nutrição, Universidade Federal de Alagoas, Campus A. C. Simões, BR 104 Norte, Km 96,7, Tabuleiro dos Martins, CEP 57.072-970, Maceió, Alagoas, Brazil
| | - Thayse de L T Cavalcante
- Faculdade de Nutrição, Universidade Federal de Alagoas, Campus A. C. Simões, BR 104 Norte, Km 96,7, Tabuleiro dos Martins, CEP 57.072-970, Maceió, Alagoas, Brazil
| | - Monica L Assunção
- Faculdade de Nutrição, Universidade Federal de Alagoas, Campus A. C. Simões, BR 104 Norte, Km 96,7, Tabuleiro dos Martins, CEP 57.072-970, Maceió, Alagoas, Brazil
| | - Nassib B Bueno
- Faculdade de Nutrição, Universidade Federal de Alagoas, Campus A. C. Simões, BR 104 Norte, Km 96,7, Tabuleiro dos Martins, CEP 57.072-970, Maceió, Alagoas, Brazil.
| |
Collapse
|
50
|
Njatcha C, Farooqui M, Almotlak AA, Siegfried JM. Prevention of Tobacco Carcinogen-Induced Lung Tumor Development by a Novel STAT3 Decoy Inhibitor. Cancer Prev Res (Phila) 2020; 13:735-746. [PMID: 32655003 PMCID: PMC7485626 DOI: 10.1158/1940-6207.capr-20-0033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/01/2020] [Accepted: 07/01/2020] [Indexed: 12/17/2022]
Abstract
The STAT3 pathway is frequently overactive in non-small cell lung cancer (NSCLC), an often fatal disease with known risk factors including tobacco and chemical exposures. Whether STAT3 can be downmodulated to delay or prevent development of lung cancer resulting from an environmental exposure has not been previously tested. A circular oligonucleotide STAT3 decoy (CS3D) was used to treat mice previously exposed to the tobacco carcinogen nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. CS3D contains a double-stranded STAT3 DNA response element sequence and interrupts STAT3 signaling by binding to STAT3 dimers, rendering them unable to initiate transcription at native STAT3 DNA binding sites. An intermittent course of CS3D decreased the development of airway preneoplasias by 42% at 1 week posttreatment, reduced the progression of preneoplasia to adenomas by 54% at 8 weeks posttreatment, and reduced the size and number of resulting lung tumors by 49.7% and 29.5%, respectively, at 20 weeks posttreatment. No toxicity was detected. A mutant cyclic oligonucleotide with no STAT3 binding ability was used as a control. Chemopreventive effects were independent of the KRAS mutational status of the tumors. In lungs harvested during and after the treatment course with CS3D, airway preneoplasias had reduced STAT3 signaling. Chemopreventive effects were accompanied by decreased VEGFA expression, ablated IL6, COX-2, and p-NF-κB, and decreased pulmonary M2 macrophages and myeloid-derived suppressor cells. Thus, downmodulation of STAT3 activity using a decoy molecule both reduced oncogenic signaling in the airway epithelium and favored a lung microenvironment with reduced immunosuppression.
Collapse
Affiliation(s)
- Christian Njatcha
- Department of Pharmacology, Medical School, and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Mariya Farooqui
- Department of Pharmacology, Medical School, and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Abdulaziz A Almotlak
- Department of Pharmacology, Medical School, and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Saudi Arabia
| | - Jill M Siegfried
- Department of Pharmacology, Medical School, and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|